1 | // $Id: hnoether.lib,v 1.24 2000-12-13 20:55:14 lamm Exp $ |
---|
2 | // last change: 31.08.00 |
---|
3 | /////////////////////////////////////////////////////////////////////////////// |
---|
4 | // This library is for Singular 1-3-7 or newer |
---|
5 | |
---|
6 | version="$Id: hnoether.lib,v 1.24 2000-12-13 20:55:14 lamm Exp $"; |
---|
7 | info=" |
---|
8 | LIBRARY: hnoether.lib Procedures for the Hamburger-Noether (Puiseux) development |
---|
9 | |
---|
10 | AUTHOR: Martin Lamm, lamm@mathematik.uni-kl.de |
---|
11 | |
---|
12 | OVERVIEW: |
---|
13 | A library for computing the Hamburger-Noether resp. Puiseux |
---|
14 | development of a plane curve singularity following A. Campillo: |
---|
15 | Algebroid curves in positive characteristic, Lecture Notes in Math. |
---|
16 | 813, Springer (1980). |
---|
17 | The library contains also procedures for computing the (topological) |
---|
18 | numerical invariants of plane curve singularities. |
---|
19 | |
---|
20 | MAIN PROCEDURES: |
---|
21 | HNdevelop(f); Hamburger-Noether development of f |
---|
22 | develop(f [,n]); Hamburger-Noether development of irreducible curves |
---|
23 | reddevelop(f); Hamburger-Noether development of reducible curves |
---|
24 | essdevelop(f); Hamburger-Noether development of essential branches |
---|
25 | extdevelop(hne,n); extension of the Hamburger-Noether development hne of f |
---|
26 | param(hne [,x]); returns a parametrization of f (input=output(develop)) |
---|
27 | displayHNE(hne); display Hamburger-Noether development as an ideal |
---|
28 | invariants(hne); invariants of f, e.g. the characteristic exponents |
---|
29 | displayInvariants(hne); display invariants of f |
---|
30 | intersection(hne1,hne2); intersection multiplicity of two curves |
---|
31 | multsequence(hne); sequence of multiplicities |
---|
32 | displayMultsequence(hne); display sequence of multiplicities |
---|
33 | stripHNE(hne); reduce amount of memory consumed by hne |
---|
34 | is_irred(f); test for irreducibility |
---|
35 | |
---|
36 | AUXILIARY PROCEDURES: |
---|
37 | puiseux2generators(m,n); convert Puiseux pairs to generators of semigroup |
---|
38 | multiplicities(hne); multiplicities of blowed up curves |
---|
39 | separateHNE(hne1,hne2); number of quadratic transf. needed for separation |
---|
40 | squarefree(f); returns a squarefree divisor of the poly f |
---|
41 | allsquarefree(f,l); returns the maximal squarefree divisor of the poly f |
---|
42 | further_hn_proc(); show further procedures useful for interactive use |
---|
43 | |
---|
44 | KEYWORDS: Hamburger-Noether expansion; curve singularities |
---|
45 | "; |
---|
46 | /////////////////////////////////////////////////////////////////////////////// |
---|
47 | LIB "primitiv.lib"; |
---|
48 | LIB "inout.lib"; |
---|
49 | |
---|
50 | /////////////////////////////////////////////////////////////////////////////// |
---|
51 | |
---|
52 | proc further_hn_proc() |
---|
53 | "USAGE: further_hn_proc(); |
---|
54 | The library `hnoether.lib' contains some more procedures which are not |
---|
55 | shown when typing @code{help hnoether.lib}. They may be useful for |
---|
56 | interactive use (e.g. if you want to do the calculation of a HNE |
---|
57 | \"by hand\" to see the intermediate results), and they can be enumerated by |
---|
58 | calling further_hn_proc. Use @code{help <procedure>;} for detailed |
---|
59 | information about each of them. |
---|
60 | " |
---|
61 | { |
---|
62 | " |
---|
63 | The following procedures are also part of the library `hnoether.lib': |
---|
64 | |
---|
65 | newtonpoly(f); Newton polygon of polynom f |
---|
66 | getnm(f); intersection pts. of Newton polygon with the axes |
---|
67 | T_Transform(f,Q,N); returns f(y,xy^Q)/y^NQ (f: poly, Q,N: int) |
---|
68 | T1_Transform(f,d,M); returns f(x,y+d*x^M) (f: poly,d:number,M:int) |
---|
69 | T2_Transform(f,d,M,N,ref); a composition of T1 & T |
---|
70 | koeff(f,I,J); gets coefficient of indicated monomial of poly f |
---|
71 | redleit(f,S,E); restriction of monomials of f to line (S-E) |
---|
72 | leit(f,n,m); special case of redleit (for irred. polynomials) |
---|
73 | testreducible(f,n,m); tests whether f is reducible |
---|
74 | charPoly(f,M,N); characteristic polynomial of f |
---|
75 | find_in_list(L,p); find int p in list L |
---|
76 | get_last_divisor(M,N); last divisor in Euclid's algorithm |
---|
77 | factorfirst(f,M,N); try to factor f in a trivial way without `factorize' |
---|
78 | factorlist(L); factorize a list L of polynomials |
---|
79 | referencepoly(D); a polynomial f s.t. D is the Newton diagram of f"; |
---|
80 | |
---|
81 | // extrafactor(f,M,N); try to factor charPoly(f,M,N) where 'factorize' cannot |
---|
82 | // (will hopefully become obsolete soon) |
---|
83 | // |
---|
84 | // static procedures not useful for interactive use: |
---|
85 | // polytest(f); tests coefficients and exponents of poly f |
---|
86 | // extractHNEs(H,t); extracts output H of HN to output of reddevelop |
---|
87 | // HN(f,grenze); recursive subroutine for reddevelop |
---|
88 | // constructHNEs(...); subroutine for HN |
---|
89 | } |
---|
90 | example |
---|
91 | { echo=2; |
---|
92 | further_hn_proc(); |
---|
93 | } |
---|
94 | /////////////////////////////////////////////////////////////////////////////// |
---|
95 | |
---|
96 | proc getnm (poly f) |
---|
97 | "USAGE: getnm(f); f bivariate polynomial |
---|
98 | RETURN: intvec(n,m) : (0,n) is the intersection point of the Newton |
---|
99 | polygon of f with the y-axis, n=-1 if it doesn't exist |
---|
100 | (m,0) is its intersection point with the x-axis, |
---|
101 | m=-1 if this point doesn't exist |
---|
102 | ASSUME: ring has ordering `ls' or `ds' |
---|
103 | EXAMPLE: example getnm; shows an example |
---|
104 | " |
---|
105 | { |
---|
106 | // assume being called by develop ==> ring ordering is ls (ds would also work) |
---|
107 | return(ord(subst(f,var(1),0)),ord(subst(f,var(2),0))); |
---|
108 | } |
---|
109 | example |
---|
110 | { "EXAMPLE:"; echo = 2; |
---|
111 | ring r = 0,(x,y),ds; |
---|
112 | poly f = x5+x4y3-y2+y4; |
---|
113 | getnm(f); |
---|
114 | } |
---|
115 | /////////////////////////////////////////////////////////////////////////////// |
---|
116 | |
---|
117 | proc leit (poly f, int n, int m) |
---|
118 | "USAGE: leit(f,n,m); poly f, int n,m |
---|
119 | RETURN: all monomials on the line from (0,n) to (m,0) in the Newton diagram |
---|
120 | EXAMPLE: example leit; shows an example |
---|
121 | " |
---|
122 | { |
---|
123 | return(jet(f,m*n,intvec(n,m))-jet(f,m*n-1,intvec(n,m))) |
---|
124 | } |
---|
125 | example |
---|
126 | { "EXAMPLE:"; echo = 2; |
---|
127 | ring r = 0,(x,y),ds; |
---|
128 | poly f = x5+x4y3-y2+y4; |
---|
129 | leit(f,2,5); |
---|
130 | } |
---|
131 | /////////////////////////////////////////////////////////////////////////////// |
---|
132 | proc testreducible (poly f, int n, int m) |
---|
133 | "USAGE: testreducible(f,n,m); f poly, n,m int |
---|
134 | RETURN: 1 if there are points in the Newton diagram below the line (0,n)-(m,0) |
---|
135 | 0 else |
---|
136 | EXAMPLE: example testreducible; shows an example |
---|
137 | " |
---|
138 | { |
---|
139 | return(size(jet(f,m*n-1,intvec(n,m))) != 0) |
---|
140 | } |
---|
141 | example |
---|
142 | { "EXAMPLE:"; echo = 2; |
---|
143 | ring rg=0,(x,y),ls; |
---|
144 | testreducible(x2+y3-xy4,3,2); |
---|
145 | } |
---|
146 | /////////////////////////////////////////////////////////////////////////////// |
---|
147 | proc T_Transform (poly f, int Q, int N) |
---|
148 | "USAGE: T_Transform(f,Q,N); f poly, Q,N int |
---|
149 | RETURN: f(y,xy^Q)/y^NQ if x,y are the ring variables |
---|
150 | NOTE: this is intended for irreducible power series f |
---|
151 | EXAMPLE: example T_Transform; shows an example |
---|
152 | " |
---|
153 | { |
---|
154 | map T = basering,var(2),var(1)*var(2)^Q; |
---|
155 | return(T(f)/var(2)^(N*Q)); |
---|
156 | } |
---|
157 | example |
---|
158 | { "EXAMPLE:"; echo = 2; |
---|
159 | ring exrg=0,(x,y),ls; |
---|
160 | export exrg; |
---|
161 | T_Transform(x3+y2-xy3,1,2); |
---|
162 | kill exrg; |
---|
163 | } |
---|
164 | /////////////////////////////////////////////////////////////////////////////// |
---|
165 | proc T1_Transform (poly f, number d, int Q) |
---|
166 | "USAGE: T1_Transform(f,d,Q); f poly, d number, Q int |
---|
167 | RETURN: f(x,y+d*x^Q) if x,y are the ring variables |
---|
168 | EXAMPLE: example T1_Transform; shows an example |
---|
169 | " |
---|
170 | { |
---|
171 | map T1 = basering,var(1),var(2)+d*var(1)^Q; |
---|
172 | return(T1(f)); |
---|
173 | } |
---|
174 | example |
---|
175 | { "EXAMPLE:"; echo = 2; |
---|
176 | ring exrg=0,(x,y),ls; |
---|
177 | export exrg; |
---|
178 | T1_Transform(y2-2xy+x2+x2y,1,1); |
---|
179 | kill exrg; |
---|
180 | } |
---|
181 | /////////////////////////////////////////////////////////////////////////////// |
---|
182 | |
---|
183 | proc T2_Transform (poly f, number d, int M, int N, poly refpoly) |
---|
184 | "USAGE: T2_Transform(f,d,M,N,ref); f poly, d number; M,N int; ref poly |
---|
185 | RETURN: list: poly T2(f,d',M,N), number d' in \{ d, 1/d \} |
---|
186 | ASSUME: ref has the same Newton polygon as f (but can be simpler) |
---|
187 | for this you can e.g. use the proc `referencepoly' or simply f again |
---|
188 | COMMENT: T2 is a composition of T_Transform and T1_Transform; the exact |
---|
189 | definition can be found in Rybowicz: `Sur le calcul des places ...' |
---|
190 | or in Lamm: `Hamburger-Noether-Entwicklung von Kurvensingularitaeten' |
---|
191 | SEE ALSO: T_Transform, T1_Transform, referencepoly |
---|
192 | EXAMPLE: example T2_Transform; shows an example |
---|
193 | " |
---|
194 | { |
---|
195 | //---------------------- compute gcd and extgcd of N,M ----------------------- |
---|
196 | int ggt=gcd(M,N); |
---|
197 | M=M/ggt; N=N/ggt; |
---|
198 | list ts=extgcd(M,N); |
---|
199 | int tau,sigma=ts[2],-ts[3]; |
---|
200 | int s,t; |
---|
201 | poly xp=var(1); |
---|
202 | poly yp=var(2); |
---|
203 | poly hilf; |
---|
204 | if (sigma<0) { tau=-tau; sigma=-sigma;} |
---|
205 | // es gilt: 0<=tau<=N, 0<=sigma<=M, |N*sigma-M*tau| = 1 = ggT(M,N) |
---|
206 | if (N*sigma < M*tau) { d = 1/d; } |
---|
207 | //--------------------------- euklid. Algorithmus ---------------------------- |
---|
208 | int R; |
---|
209 | int M1,N1=M,N; |
---|
210 | for ( R=M1%N1; R!=0; ) { M1=N1; N1=R; R=M1%N1;} |
---|
211 | int Q=M1 / N1; |
---|
212 | map T1 = basering,xp,yp+d*xp^Q; |
---|
213 | map Tstar=basering,xp^(N-Q*tau)*yp^tau,xp^(M-sigma*Q)*yp^sigma; |
---|
214 | if (defined(HNDebugOn)) { |
---|
215 | "Trafo. T2: x->x^"+string(N-Q*tau)+"*y^"+string(tau)+", y->x^" |
---|
216 | +string(M-sigma*Q)+"*y^"+string(sigma); |
---|
217 | "delta =",d,"Q =",Q,"tau,sigma =",tau,sigma; |
---|
218 | } |
---|
219 | //------------------- Durchfuehrung der Transformation T2 -------------------- |
---|
220 | f=Tstar(f); |
---|
221 | refpoly=Tstar(refpoly); |
---|
222 | //--- dividiere f so lange durch x & y, wie die Div. aufgeht, benutze ein --- |
---|
223 | //--- Referenzpolynom mit gleichem Newtonpolynom wie f zur Beschleunigung: --- |
---|
224 | for (hilf=refpoly/xp; hilf*xp==refpoly; hilf=refpoly/xp) {refpoly=hilf; s++;} |
---|
225 | for (hilf=refpoly/yp; hilf*yp==refpoly; hilf=refpoly/yp) {refpoly=hilf; t++;} |
---|
226 | f=f/(xp^s*yp^t); |
---|
227 | return(list(T1(f),d)); |
---|
228 | } |
---|
229 | example |
---|
230 | { "EXAMPLE:"; echo = 2; |
---|
231 | ring exrg=0,(x,y),ds; |
---|
232 | export exrg; |
---|
233 | poly f=y2-2x2y+x6-x5y+x4y2; |
---|
234 | T2_Transform(f,1/2,4,1,f); |
---|
235 | T2_Transform(f,1/2,4,1,referencepoly(newtonpoly(f))); |
---|
236 | // if size(referencepoly) << size(f) the 2nd example would be faster |
---|
237 | referencepoly(newtonpoly(f)); |
---|
238 | kill exrg; |
---|
239 | } |
---|
240 | /////////////////////////////////////////////////////////////////////////////// |
---|
241 | |
---|
242 | proc koeff (poly f, int I, int J) |
---|
243 | "USAGE: koeff(f,I,J); f bivariate polynomial, I,J integers |
---|
244 | RETURN: if f = sum(a(i,j)*x^i*y^j), then koeff(f,I,J)= a(I,J) (of type number) |
---|
245 | NOTE: J must be in the range of the exponents of the 2nd ring variable |
---|
246 | EXAMPLE: example koeff; shows an example |
---|
247 | " |
---|
248 | { |
---|
249 | matrix mat = coeffs(coeffs(f,var(2))[J+1,1],var(1)); |
---|
250 | if (size(mat) <= I) { return(0);} |
---|
251 | else { return(leadcoef(mat[I+1,1]));} |
---|
252 | } |
---|
253 | example |
---|
254 | { "EXAMPLE:"; echo = 2; |
---|
255 | ring r=0,(x,y),dp; |
---|
256 | koeff(x2+2xy+3xy2-x2y-2y3,1,2); |
---|
257 | } |
---|
258 | /////////////////////////////////////////////////////////////////////////////// |
---|
259 | |
---|
260 | proc squarefree (poly f) |
---|
261 | "USAGE: squarefree(f); f a bivariate polynomial |
---|
262 | RETURN: a squarefree divisor of f. |
---|
263 | Normally the return value is a greatest squarefree divisor, but there |
---|
264 | is an exception: factors with a p-th root, p the ring characteristic, |
---|
265 | are lost. |
---|
266 | SEE ALSO: allsquarefree |
---|
267 | EXAMPLE: example squarefree; shows some examples. |
---|
268 | " |
---|
269 | { |
---|
270 | //----------------- Wechsel in geeigneten Ring & Variablendefinition --------- |
---|
271 | def altring = basering; |
---|
272 | int e; |
---|
273 | int gcd_ok=1; |
---|
274 | string mipl="0"; |
---|
275 | if (size(parstr(altring))==1) { mipl=string(minpoly); } |
---|
276 | //---- test: char = (p^k,a) (-> gcd not implemented) or (p,a) (gcd works) ---- |
---|
277 | if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) { |
---|
278 | string tststr=charstr(basering); |
---|
279 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
280 | gcd_ok=(tststr==string(char(basering))); |
---|
281 | } |
---|
282 | execute("ring rsqrf = ("+charstr(altring)+"),(x,y),dp;"); |
---|
283 | if ((gcd_ok!=0) && (mipl!="0")) { execute("minpoly="+mipl+";"); } |
---|
284 | poly f=fetch(altring,f); |
---|
285 | poly dif,g,l; |
---|
286 | if ((char(basering)==0) and (charstr(basering)!=string(char(basering))) |
---|
287 | and (mipl!="0")) { |
---|
288 | gcd_ok=0; // since Singular 1.2 gcd no longer implemented |
---|
289 | } |
---|
290 | if (gcd_ok!=0) { |
---|
291 | //--------------------- Berechne f/ggT(f,df/dx,df/dy) ------------------------ |
---|
292 | dif=diff(f,x); |
---|
293 | if (dif==0) { g=f; } // zur Beschleunigung |
---|
294 | else { g=gcd(f,dif); } |
---|
295 | if (g!=1) { // sonst schon sicher, dass f quadratfrei |
---|
296 | dif=diff(f,y); |
---|
297 | if (dif!=0) { g=gcd(g,dif); } |
---|
298 | } |
---|
299 | if (g!=1) { |
---|
300 | e=0; |
---|
301 | if (g==f) { l=1; } // zur Beschleunigung |
---|
302 | else { |
---|
303 | module m=syz(ideal(g,f)); |
---|
304 | if (deg(m[2,1])>0) { |
---|
305 | "!! The Singular command 'syz' has returned a wrong result !!"; |
---|
306 | l=1; // Division f/g muss aufgehen |
---|
307 | } |
---|
308 | else { l=m[1,1]; } |
---|
309 | } |
---|
310 | } |
---|
311 | else { e=1; } |
---|
312 | } |
---|
313 | else { |
---|
314 | //------------------- Berechne syz(f,df/dx) oder syz(f,df/dy) ---------------- |
---|
315 | //-- Achtung: Ist f reduzibel, koennen Faktoren mit Ableitung Null verloren -- |
---|
316 | //-- gehen! Ist aber nicht weiter schlimm, weil char (p^k,a) nur im irred. -- |
---|
317 | //-- Fall vorkommen kann. Wenn f nicht g^p ist, wird auf jeden Fall -- |
---|
318 | //------------------------ ein Faktor gefunden. ------------------------------ |
---|
319 | dif=diff(f,x); |
---|
320 | if (dif == 0) { |
---|
321 | dif=diff(f,y); |
---|
322 | if (dif==0) { e=2; l=1; } // f is of power divisible by char of basefield |
---|
323 | else { l=syz(ideal(dif,f))[1,1]; // x^p+y^(p-1) abgedeckt |
---|
324 | if (subst(f,x,0)==0) { l=l*x; } |
---|
325 | if (deg(l)==deg(f)) { e=1;} |
---|
326 | else {e=0;} |
---|
327 | } |
---|
328 | } |
---|
329 | else { l=syz(ideal(dif,f))[1,1]; |
---|
330 | if (subst(f,y,0)==0) { l=l*y; } |
---|
331 | if (deg(l)==deg(f)) { e=1;} |
---|
332 | else {e=0;} |
---|
333 | } |
---|
334 | } |
---|
335 | //--------------- Wechsel in alten Ring und Rueckgabe des Ergebnisses -------- |
---|
336 | setring altring; |
---|
337 | if (e==1) { return(f); } // zur Beschleunigung |
---|
338 | else { |
---|
339 | poly l=fetch(rsqrf,l); |
---|
340 | return(l); |
---|
341 | } |
---|
342 | } |
---|
343 | example |
---|
344 | { "EXAMPLE:"; echo = 2; |
---|
345 | ring exring=3,(x,y),dp; |
---|
346 | squarefree(x3+y); |
---|
347 | squarefree(x3); |
---|
348 | squarefree(x2); |
---|
349 | squarefree(xy+x); |
---|
350 | squarefree((x+y)^3*(x-y)^2); // (x+y)^3 is lost |
---|
351 | squarefree((x+y)^4*(x-y)^2); // result is (x+y)*(x-y) |
---|
352 | } |
---|
353 | /////////////////////////////////////////////////////////////////////////////// |
---|
354 | |
---|
355 | proc allsquarefree (poly f, poly l) |
---|
356 | "USAGE : allsquarefree(f,l); poly f,l |
---|
357 | l is the squarefree divisor of f you get by @code{l=squarefree(f);} |
---|
358 | RETURN: the squarefree divisor of f consisting of all irreducible factors of f |
---|
359 | NOTE : This proc uses factorize to get the missing factors of f not in l and |
---|
360 | therefore may be slow. |
---|
361 | SEE ALSO: squarefree |
---|
362 | EXAMPLE: example allsquarefree; shows an example |
---|
363 | " |
---|
364 | { |
---|
365 | //------------------------ Wechsel in geeigneten Ring ------------------------ |
---|
366 | def altring = basering; |
---|
367 | string mipl="0"; |
---|
368 | if (size(parstr(altring))==1) { mipl=string(minpoly); } |
---|
369 | if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) { |
---|
370 | string tststr=charstr(basering); |
---|
371 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
372 | if (tststr!=string(char(basering))) { |
---|
373 | " Sorry -- not implemented for this ring (gcd doesn't work)"; |
---|
374 | return(l); |
---|
375 | } |
---|
376 | } |
---|
377 | execute("ring rsqrf = ("+charstr(altring)+"),(x,y),dp;"); |
---|
378 | if (mipl!="0") { execute("minpoly="+mipl+";"); } |
---|
379 | poly f=fetch(altring,f); |
---|
380 | poly l=fetch(altring,l); |
---|
381 | //---------- eliminiere bereits mit squarefree gefundene Faktoren ------------ |
---|
382 | poly g=l; |
---|
383 | while (deg(g)!=0) { |
---|
384 | f=syz(ideal(g,f))[1,1]; // f=f/g; |
---|
385 | g=gcd(f,l); |
---|
386 | } // jetzt f=h^p |
---|
387 | //--------------- Berechne uebrige Faktoren mit factorize -------------------- |
---|
388 | if (deg(f)>0) { |
---|
389 | g=1; |
---|
390 | ideal factf=factorize(f,1); |
---|
391 | for (int i=1; i<=size(factf); i++) { g=g*factf[i]; } |
---|
392 | poly testp=squarefree(g); |
---|
393 | if (deg(testp)<deg(g)) { |
---|
394 | "!! factorize has not worked correctly !!"; |
---|
395 | if (testp==1) {" We cannot proceed ..."; g=1;} |
---|
396 | else {" But we could recover some factors..."; g=testp;} |
---|
397 | } |
---|
398 | l=l*g; |
---|
399 | } |
---|
400 | //--------------- Wechsel in alten Ring und Rueckgabe des Ergebnisses -------- |
---|
401 | setring altring; |
---|
402 | l=fetch(rsqrf,l); |
---|
403 | return(l); |
---|
404 | } |
---|
405 | example |
---|
406 | { "EXAMPLE:"; echo = 2; |
---|
407 | ring exring=7,(x,y),dp; |
---|
408 | poly f=(x+y)^7*(x-y)^8; |
---|
409 | poly l=squarefree(f); |
---|
410 | l; // x-y found because 7 does not divide 8 |
---|
411 | allsquarefree(f,l); // all factors (x+y)*(x-y) found |
---|
412 | } |
---|
413 | /////////////////////////////////////////////////////////////////////////////// |
---|
414 | |
---|
415 | proc is_irred (poly f) |
---|
416 | "USAGE: is_irred(f); f a squarefree bivariate polynomial |
---|
417 | RETURN: an integer: |
---|
418 | @* is_irred(f) @math{= 1} if f is irreducible as a formal power series |
---|
419 | over the algebraic closure of its coefficient field (f defines an |
---|
420 | analytically irreducible curve at zero), |
---|
421 | @* is_irred(f) @math{= 0} else. |
---|
422 | NOTE: @math{f = 0} and units in the ring of formal power series are not |
---|
423 | considered irreducible. |
---|
424 | KEYWORDS: irreducible power series |
---|
425 | EXAMPLE: example is_irred; shows an example |
---|
426 | " |
---|
427 | { |
---|
428 | int pl=printlevel; |
---|
429 | printlevel=-1; |
---|
430 | list hnl=develop(f,-1); |
---|
431 | printlevel=pl; |
---|
432 | return(hnl[5]); |
---|
433 | } |
---|
434 | example |
---|
435 | { "EXAMPLE:"; echo = 2; |
---|
436 | ring exring=0,(x,y),ls; |
---|
437 | is_irred(x2+y3); |
---|
438 | is_irred(x2+y2); |
---|
439 | is_irred(x2+y3+1); |
---|
440 | } |
---|
441 | /////////////////////////////////////////////////////////////////////////////// |
---|
442 | |
---|
443 | static proc polytest(poly f) |
---|
444 | "USAGE : polytest(f); f poly in x and y |
---|
445 | RETURN: a monomial of f with |coefficient| > 16001 |
---|
446 | or exponent divisible by 32003, if there is one |
---|
447 | 0 else (in this case computing a squarefree divisor |
---|
448 | in characteristic 32003 could make sense) |
---|
449 | NOTE: this procedure is only useful in characteristic zero, because otherwise |
---|
450 | there is no appropriate ordering of the leading coefficients |
---|
451 | " |
---|
452 | { |
---|
453 | poly verbrecher=0; |
---|
454 | intvec leitexp; |
---|
455 | for (; (f<>0) and (verbrecher==0); f=f-lead(f)) { |
---|
456 | if ((leadcoef(f)<-16001) or (leadcoef(f)>16001)) {verbrecher=lead(f);} |
---|
457 | leitexp=leadexp(f); |
---|
458 | if (( ((leitexp[1] % 32003) == 0) and (leitexp[1]<>0)) |
---|
459 | or ( ((leitexp[2] % 32003) == 0) and (leitexp[2]<>0)) ) |
---|
460 | {verbrecher=lead(f);} |
---|
461 | } |
---|
462 | return(verbrecher); |
---|
463 | } |
---|
464 | |
---|
465 | ////////////////////////////////////////////////////////////////////////////// |
---|
466 | |
---|
467 | |
---|
468 | proc develop |
---|
469 | "USAGE: develop(f [,n]); f polynomial in two variables, n integer |
---|
470 | RETURN: Hamburger-Noether development of f, in form of a list: |
---|
471 | @* [1]: Hamburger-Noether matrix: |
---|
472 | Each row contains the coefficients of the corresponding line of the |
---|
473 | Hamburger-Noether expansion (HNE). The end of the line is marked in |
---|
474 | the matrix as the first ring variable (usually x). |
---|
475 | @* [2]: intvec indicating the length of lines of the HNE |
---|
476 | @* [3]: int: |
---|
477 | 0 if the 1st ring variable was transversal (with respect to f), |
---|
478 | @* 1 if the variables were changed at the beginning of the |
---|
479 | computation, |
---|
480 | -1 if an error has occurred. |
---|
481 | @* [4]: the transformed polynomial of f to make it possible to extend the |
---|
482 | Hamburger-Noether development a posteriori without having to do |
---|
483 | all the previous calculation once again (0 if not needed) |
---|
484 | @* [5]: int: |
---|
485 | 1 if the curve has exactly one branch (i.e. is irreducible), |
---|
486 | @* 0 else (i.e. the curve has more than one HNE or f is not valid). |
---|
487 | |
---|
488 | ASSUME: f irreducible as a power series (for reducible f use |
---|
489 | @code{reddevelop}) |
---|
490 | DISPLAY: The (non zero) elements of the HNE (if not called by another proc). |
---|
491 | |
---|
492 | NOTE: If the optional parameter @math{n} is given, the HN-matrix will have |
---|
493 | at least @math{n} columns. Otherwise the number of columns will be chosen |
---|
494 | minimal s.t. the matrix contains all necessary information (i.e. all |
---|
495 | lines of the HNE but the last (which is in general infinite) have place). |
---|
496 | If @math{n} is negative, the algorithm is stopped as soon as possible, |
---|
497 | i.e. the information computed is enough for `@code{invariants}', but the |
---|
498 | HN-matrix may contain undetermined elements, which are marked with the |
---|
499 | 2nd variable (of the basering). |
---|
500 | In any case, the optional parameter only affects the calculation of |
---|
501 | the LAST line of the HNE; @code{develop}(f) gives already all necessary |
---|
502 | information for the procedure `@code{invariants}'. A negative value of |
---|
503 | @math{n} will result in a very poor parametrization, but it can make |
---|
504 | `@code{develop}' faster; a positive value will improve the exactness of |
---|
505 | the parametrization. |
---|
506 | |
---|
507 | For time critical computations it is recommended to use |
---|
508 | \"@code{ring ...,(x,y),ls}\" as basering - it increases the algorithm's |
---|
509 | speed. |
---|
510 | |
---|
511 | SEE ALSO: reddevelop, extdevelop, displayHNE |
---|
512 | EXAMPLES: example develop; shows an example |
---|
513 | example param; shows an example for using the 2nd parameter |
---|
514 | " |
---|
515 | { |
---|
516 | //--------- Abfangen unzulaessiger Ringe: 1) nur eine Unbestimmte ------------ |
---|
517 | poly f=#[1]; |
---|
518 | if (size(#) > 1) {int maxspalte=#[2];} |
---|
519 | else {int maxspalte= 1 ; } |
---|
520 | if (nvars(basering) < 2) { |
---|
521 | " Sorry. I need two variables in the ring."; |
---|
522 | return(list(matrix(maxideal(1)[1]),intvec(0),-1,poly(0),0));} |
---|
523 | if (nvars(basering) > 2) { |
---|
524 | " Warning! You have defined too many variables!"; |
---|
525 | " All variables except the first two will be ignored!";} |
---|
526 | |
---|
527 | string namex=varstr(1); string namey=varstr(2); |
---|
528 | list return_error=matrix(maxideal(1)[2]),intvec(0),int(-1),poly(0),int(0); |
---|
529 | |
---|
530 | //------------- 2) mehrere Unbestimmte, weitere unzulaessige Ringe ----------- |
---|
531 | // Wir koennen einheitlichen Rueckgabewert benutzen, aus dem ersichtlich ist, |
---|
532 | // dass ein Fehler aufgetreten ist: return_error. |
---|
533 | //---------------------------------------------------------------------------- |
---|
534 | |
---|
535 | if (charstr(basering)=="real") { |
---|
536 | " The algorithm doesn't work with 'real' as coefficient field."; |
---|
537 | // denn : map from characteristic -1 to -1 not implemented |
---|
538 | return(return_error); |
---|
539 | } |
---|
540 | if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) { |
---|
541 | //-- teste, ob char = (p^k,a) (-> a primitiv; erlaubt) oder (p,a[,b,...]) ---- |
---|
542 | string tststr=charstr(basering); |
---|
543 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
544 | int primit=(tststr==string(char(basering))); |
---|
545 | if (primit!=0) { |
---|
546 | " Such extensions of Z/p are not implemented."; |
---|
547 | " Please try (p^k,a) as ground field or use `reddevelop'."; |
---|
548 | return(return_error); |
---|
549 | } |
---|
550 | } |
---|
551 | //---- Ende der unzulaessigen Ringe; Ringwechsel in einen guenstigen Ring: --- |
---|
552 | |
---|
553 | int ringwechsel=(varstr(basering)!="x,y") or (ordstr(basering)!="ls(2),C"); |
---|
554 | |
---|
555 | def altring = basering; |
---|
556 | if (ringwechsel) { |
---|
557 | string mipl=string(minpoly); |
---|
558 | execute("ring guenstig = ("+charstr(altring)+"),(x,y),ls;"); |
---|
559 | if ((char(basering)==0) && (mipl!="0")) { |
---|
560 | execute("minpoly="+mipl+";"); |
---|
561 | }} |
---|
562 | else { def guenstig=basering; } |
---|
563 | export guenstig; |
---|
564 | |
---|
565 | //-------------------------- Initialisierungen ------------------------------- |
---|
566 | map m=altring,x,y; |
---|
567 | if (ringwechsel) { poly f=m(f); } |
---|
568 | if (defined(HNDebugOn)) |
---|
569 | {"received polynomial: ",f,", where x =",namex,", y =",namey;} |
---|
570 | |
---|
571 | int M,N,Q,R,l,e,hilf,eps,getauscht,Abbruch,zeile,exponent,Ausgabe; |
---|
572 | |
---|
573 | // Werte von Ausgabe: 0 : normale HNE-Matrix, |
---|
574 | // 1 : Fehler aufgetreten - Matrix (namey) zurueck |
---|
575 | // 2 : Die HNE ist eine Nullzeile - Matrix (0) zurueck |
---|
576 | // int maxspalte=1; geaendert: wird jetzt am Anfang gesetzt |
---|
577 | |
---|
578 | int minimalHNE=0; // Flag fuer minimale HNE-Berechnung |
---|
579 | int einzweig=1; // Flag fuer Irreduzibilit"at |
---|
580 | intvec hqs; // erhaelt die Werte von h(zeile)=Q; |
---|
581 | |
---|
582 | if (maxspalte<0) { |
---|
583 | minimalHNE=1; |
---|
584 | maxspalte=1; |
---|
585 | } |
---|
586 | |
---|
587 | number c,delta; |
---|
588 | int p = char(basering); |
---|
589 | string ringchar=charstr(basering); |
---|
590 | map xytausch = basering,y,x; |
---|
591 | if ((p!=0) and (ringchar != string(p))) { |
---|
592 | // coefficient field is extension of Z/pZ |
---|
593 | execute("int n_elements="+ |
---|
594 | ringchar[1,size(ringchar)-size(parstr(basering))-1]+";"); |
---|
595 | // number of elements of actual ring |
---|
596 | number generat=par(1); // generator of the coefficient field of the ring |
---|
597 | } |
---|
598 | |
---|
599 | |
---|
600 | //========= Abfangen von unzulaessigen oder trivialen Eingaben =============== |
---|
601 | //------------ Nullpolynom oder Einheit im Potenzreihenring: ----------------- |
---|
602 | if (f == 0) { |
---|
603 | dbprint(printlevel+1,"You have given me the zero-polynomial !"); |
---|
604 | Abbruch=1; Ausgabe=1; |
---|
605 | } |
---|
606 | else { |
---|
607 | intvec nm = getnm(f); |
---|
608 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpolygon mit Achsen |
---|
609 | if (N == 0) { |
---|
610 | dbprint(printlevel+1,"The given polynomial is a unit as power series !"); |
---|
611 | Abbruch=1; Ausgabe=1; |
---|
612 | } |
---|
613 | else { |
---|
614 | if (N == -1) { |
---|
615 | if ((voice==2) && (printlevel > -1)) { "The HNE is x = 0"; } |
---|
616 | Abbruch=1; Ausgabe=2; getauscht=1; |
---|
617 | if (M <> 1) { einzweig=0; } |
---|
618 | } |
---|
619 | else { |
---|
620 | if (M == -1) { |
---|
621 | if ((voice==2) && (printlevel > -1)) { "The HNE is y = 0"; } |
---|
622 | Abbruch=1; Ausgabe=2; |
---|
623 | if (N <> 1) { einzweig=0; } |
---|
624 | }}} |
---|
625 | } |
---|
626 | //--------------------- Test auf Quadratfreiheit ----------------------------- |
---|
627 | if (Abbruch==0) { |
---|
628 | |
---|
629 | //-------- Fall basering==0,... : Wechsel in Ring mit char >0 ---------------- |
---|
630 | // weil squarefree eine Standardbasis berechnen muss (verwendet Syzygien) |
---|
631 | // -- wenn f in diesem Ring quadratfrei ist, dann erst recht im Ring guenstig |
---|
632 | //---------------------------------------------------------------------------- |
---|
633 | |
---|
634 | if ((p==0) and (size(charstr(basering))==1)) { |
---|
635 | int testerg=(polytest(f)==0); |
---|
636 | ring zweitring = 32003,(x,y),dp; |
---|
637 | map polyhinueber=guenstig,x,y; // fetch geht nicht |
---|
638 | poly f=polyhinueber(f); |
---|
639 | poly test_sqr=squarefree(f); |
---|
640 | if (test_sqr != f) { |
---|
641 | if (printlevel>0) { |
---|
642 | "Most probably the given polynomial is not squarefree. But the test was"; |
---|
643 | "made in characteristic 32003 and not 0 to improve speed. You can"; |
---|
644 | "(r) redo the test in char 0 (but this may take some time)"; |
---|
645 | "(c) continue the development, if you're sure that the polynomial", |
---|
646 | "IS squarefree"; |
---|
647 | if (testerg==1) { |
---|
648 | "(s) continue the development with a squarefree factor (*)";} |
---|
649 | "(q) or just quit the algorithm (default action)"; |
---|
650 | "";"Please enter the letter of your choice:"; |
---|
651 | string str=read("")[1]; |
---|
652 | } |
---|
653 | else { string str="r"; } // printlevel <= 0: non-interactive behaviour |
---|
654 | setring guenstig; |
---|
655 | map polyhinueber=zweitring,x,y; |
---|
656 | if (str=="r") { |
---|
657 | poly test_sqr=squarefree(f); |
---|
658 | if (test_sqr != f) { |
---|
659 | if (printlevel>0) { "The given polynomial is in fact not squarefree."; } |
---|
660 | else { "The given polynomial is not squarefree!"; } |
---|
661 | "I'll continue with the radical."; |
---|
662 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
663 | f=test_sqr; |
---|
664 | } |
---|
665 | else { |
---|
666 | dbprint(printlevel, |
---|
667 | "everything is ok -- the polynomial is squarefree in char(k)=0"); |
---|
668 | } |
---|
669 | } |
---|
670 | else { |
---|
671 | if ((str=="s") and (testerg==1)) { |
---|
672 | "(*) attention: it could be that the factor is only one in char 32003!"; |
---|
673 | f=polyhinueber(test_sqr); |
---|
674 | } |
---|
675 | else { |
---|
676 | if (str<>"c") { |
---|
677 | setring altring;kill guenstig;kill zweitring; |
---|
678 | return(return_error);} |
---|
679 | else { "if the algorithm doesn't terminate, you were wrong...";} |
---|
680 | }} |
---|
681 | kill zweitring; |
---|
682 | nm = getnm(f); // N,M haben sich evtl. veraendert |
---|
683 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpoly mit Achsen |
---|
684 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
685 | } |
---|
686 | else { |
---|
687 | setring guenstig; |
---|
688 | kill zweitring; |
---|
689 | } |
---|
690 | } |
---|
691 | // ------------------- Fall Charakteristik > 0 ------------------------------- |
---|
692 | else { |
---|
693 | poly test_sqr=squarefree(f); |
---|
694 | if (test_sqr == 1) { |
---|
695 | "The given polynomial is of the form g^"+string(p)+", therefore", |
---|
696 | "reducible.";"Please try again."; |
---|
697 | setring altring; |
---|
698 | kill guenstig; |
---|
699 | return(return_error);} |
---|
700 | if (test_sqr != f) { |
---|
701 | "The given polynomial is not squarefree. I'll continue with the radical."; |
---|
702 | if (p != 0) |
---|
703 | {"But if the polynomial contains a factor of the form g^"+string(p)+","; |
---|
704 | "this factor will be lost.";} |
---|
705 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
706 | f=test_sqr; |
---|
707 | nm = getnm(f); // N,M haben sich veraendert |
---|
708 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpoly mit Achsen |
---|
709 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
710 | } |
---|
711 | |
---|
712 | } // endelse(p==0) |
---|
713 | |
---|
714 | if (N==0) { |
---|
715 | " Sorry. The remaining polynomial is a unit in the power series ring..."; |
---|
716 | setring altring;kill guenstig;return(return_error); |
---|
717 | } |
---|
718 | //---------------------- gewaehrleiste, dass x transvers ist ----------------- |
---|
719 | if (M < N) |
---|
720 | { f = xytausch(f); // Variablentausch : x jetzt transvers |
---|
721 | getauscht = 1; // den Tausch merken |
---|
722 | M = M+N; N = M-N; M = M-N; // M, N auch vertauschen |
---|
723 | } |
---|
724 | if (defined(HNDebugOn)) { |
---|
725 | if (getauscht) {"x<->y were exchanged; poly is now ",f;} |
---|
726 | else {"x , y were not exchanged";} |
---|
727 | "M resp. N are now",M,N; |
---|
728 | } |
---|
729 | } // end(if Abbruch==0) |
---|
730 | |
---|
731 | ideal a(0); |
---|
732 | while (Abbruch==0) { |
---|
733 | |
---|
734 | //================= Beginn der Schleife (eigentliche Entwicklung) ============ |
---|
735 | |
---|
736 | //------------------- ist das Newtonpolygon eine gerade Linie? --------------- |
---|
737 | if (testreducible(f,N,M)) { |
---|
738 | dbprint(printlevel+1," The given polynomial is not irreducible"); |
---|
739 | kill guenstig; |
---|
740 | setring altring; |
---|
741 | return(return_error); // Abbruch der Prozedur! |
---|
742 | } |
---|
743 | R = M%N; |
---|
744 | Q = M / N; |
---|
745 | |
---|
746 | //-------------------- Fall Rest der Division R = 0 : ------------------------ |
---|
747 | if (R == 0) { |
---|
748 | c = koeff(f,0,N); |
---|
749 | if (c == 0) {"Something has gone wrong! I didn't get N correctly!"; exit;} |
---|
750 | e = gcd(M,N); |
---|
751 | //----------------- Test, ob leitf = c*(y^N - delta*x^(m/e))^e ist ----------- |
---|
752 | if (p==0) { |
---|
753 | delta = koeff(f,M/ e,N - N/ e) / (-1*e*c); |
---|
754 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
755 | leit(f,N,M)," = ",c,"* (y -",delta,"* x^"+string(M/ e)+")^",e," ?";} |
---|
756 | if (leit(f,N,M) != c*(y^(N/ e) - delta*x^(M/ e))^e) { |
---|
757 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
758 | Abbruch=1; Ausgabe=1; } |
---|
759 | } |
---|
760 | else { // p!=0 |
---|
761 | if (e%p != 0) { |
---|
762 | delta = koeff(f,M/ e,N - N/ e) / (-1*e*c); |
---|
763 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
764 | leit(f,N,M)," = ",c,"* (y -",delta,"* x^"+string(M/ e)+")^",e," ?";} |
---|
765 | if (leit(f,N,M) != c*(y^(N/ e) - delta*x^(M/ e))^e) { |
---|
766 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
767 | Abbruch=1; Ausgabe=1; } |
---|
768 | } |
---|
769 | |
---|
770 | else { // e%p == 0 |
---|
771 | eps = e; |
---|
772 | for (l = 0; eps%p == 0; l=l+1) { eps=eps/ p;} |
---|
773 | if (defined(HNDebugOn)) {e," -> ",eps,"*",p,"^",l;} |
---|
774 | delta = koeff(f,(M/ e)*p^l,(N/ e)*p^l*(eps-1)) / (-1*eps*c); |
---|
775 | |
---|
776 | if ((ringchar != string(p)) and (delta != 0)) { |
---|
777 | //- coeff. field is not Z/pZ => we`ve to correct delta by taking (p^l)th root- |
---|
778 | if (delta == generat) {exponent=1;} |
---|
779 | else { |
---|
780 | if (delta == 1) {exponent=0;} |
---|
781 | else { |
---|
782 | exponent=pardeg(delta); |
---|
783 | |
---|
784 | //-- an dieser Stelle kann ein Fehler auftreten, wenn wir eine transzendente - |
---|
785 | //-- Erweiterung von Z/pZ haben: dann ist das hinzuadjungierte Element kein - |
---|
786 | //-- Erzeuger der mult. Gruppe, d.h. in Z/pZ (a) gibt es i.allg. keinen - |
---|
787 | //-- Exponenten mit z.B. a2+a = a^exp - |
---|
788 | //---------------------------------------------------------------------------- |
---|
789 | }} |
---|
790 | delta = generat^(extgcd(n_elements-1,p^l)[3]*exponent); |
---|
791 | } |
---|
792 | |
---|
793 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
794 | leit(f,N,M)," = ",c,"* (y^"+string(N/ e),"-",delta,"* x^" |
---|
795 | +string(M/ e)+")^",e," ?";} |
---|
796 | if (leit(f,N,M) != c*(y^(N/ e) - delta*x^(M/ e))^e) { |
---|
797 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
798 | Abbruch=1; Ausgabe=1; } |
---|
799 | } |
---|
800 | } |
---|
801 | if (Abbruch == 0) { |
---|
802 | f = T1_Transform(f,delta,M/ e); |
---|
803 | if ((voice==2) && (printlevel > -1)) |
---|
804 | { "a("+string(zeile)+","+string(Q)+") =",delta; } |
---|
805 | a(zeile)[Q]=delta; |
---|
806 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;}} |
---|
807 | |
---|
808 | nm=getnm(f); N=nm[1]; M=nm[2]; // Neuberechnung des Newtonpolygons |
---|
809 | } |
---|
810 | //--------------------------- Fall R > 0 : ----------------------------------- |
---|
811 | else { |
---|
812 | if ((voice==2) && (printlevel > -1)) { "h("+string(zeile)+") =",Q; } |
---|
813 | hqs[zeile+1]=Q; // denn zeile beginnt mit dem Wert 0 |
---|
814 | a(zeile)[Q+1]=x; // Markierung des Zeilenendes der HNE |
---|
815 | maxspalte=maxspalte*((Q+1) < maxspalte) + (Q+1)*((Q+1) >= maxspalte); |
---|
816 | // Anpassung der Sp.zahl der HNE-Matrix |
---|
817 | f = T_Transform(f,Q,N); |
---|
818 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;} |
---|
819 | zeile=zeile+1; |
---|
820 | //------------ Bereitstellung von Speicherplatz fuer eine neue Zeile: -------- |
---|
821 | ideal a(zeile); |
---|
822 | M=N;N=R; |
---|
823 | } |
---|
824 | |
---|
825 | //--------------- schneidet das Newtonpolygon beide Achsen? ------------------ |
---|
826 | if (M==-1) { |
---|
827 | if ((voice==2) && (printlevel > -1)) { "The HNE is finite!"; } |
---|
828 | a(zeile)[Q+1]=x; // Markiere das Ende der Zeile |
---|
829 | hqs[zeile+1]=Q; |
---|
830 | maxspalte=maxspalte*((Q+1) < maxspalte) + (Q+1)*((Q+1) >= maxspalte); |
---|
831 | if (N <> 1) { einzweig=0; } |
---|
832 | f=0; // transformiertes Polynom wird nicht mehr gebraucht |
---|
833 | Abbruch=1; |
---|
834 | } |
---|
835 | else {if (M<N) {"Something has gone wrong: M<N";}} |
---|
836 | if(defined(HNDebugOn)) {"new M,N:",M,N;} |
---|
837 | |
---|
838 | //----------------- Abbruchbedingungen fuer die Schleife: -------------------- |
---|
839 | if ((N==1) and (Abbruch!=1) and ((M > maxspalte) or (minimalHNE==1)) |
---|
840 | and (size(a(zeile))>0)) |
---|
841 | //---------------------------------------------------------------------------- |
---|
842 | // Abbruch, wenn die Matrix so voll ist, dass eine neue Spalte angefangen |
---|
843 | // werden muesste und die letzte Zeile nicht nur Nullen enthaelt |
---|
844 | // oder wenn die Matrix nicht voll gemacht werden soll (minimale Information) |
---|
845 | //---------------------------------------------------------------------------- |
---|
846 | { Abbruch=1; hqs[zeile+1]=-1; |
---|
847 | if (maxspalte < ncols(a(zeile))) { maxspalte=ncols(a(zeile));} |
---|
848 | if ((minimalHNE==1) and (M <= maxspalte)) { |
---|
849 | // teile param mit, dass Eintraege der letzten Zeile nur teilw. richtig sind:- |
---|
850 | hqs[zeile+1]=-M; |
---|
851 | //------------- markiere den Rest der Zeile als unbekannt: ------------------- |
---|
852 | for (R=M; R <= maxspalte; R++) { a(zeile)[R]=y;} |
---|
853 | } // R wird nicht mehr gebraucht |
---|
854 | } |
---|
855 | //========================= Ende der Schleife ================================ |
---|
856 | |
---|
857 | } |
---|
858 | setring altring; |
---|
859 | if (Ausgabe == 0) { |
---|
860 | //-------------------- Ergebnis in den alten Ring transferieren: ------------- |
---|
861 | map zurueck=guenstig,maxideal(1)[1],maxideal(1)[2]; |
---|
862 | matrix amat[zeile+1][maxspalte]; |
---|
863 | ideal uebergabe; |
---|
864 | for (e=0; e<=zeile; e=e+1) { |
---|
865 | uebergabe=zurueck(a(e)); |
---|
866 | if (ncols(uebergabe) > 1) { |
---|
867 | amat[e+1,1..ncols(uebergabe)]=uebergabe;} |
---|
868 | else {amat[e+1,1]=uebergabe[1];} |
---|
869 | } |
---|
870 | if (ringwechsel) { |
---|
871 | if (nvars(altring)==2) { f=fetch(guenstig,f); } |
---|
872 | else { f=zurueck(f); } |
---|
873 | } |
---|
874 | } |
---|
875 | |
---|
876 | kill guenstig; |
---|
877 | if ((einzweig==0) && (voice==2) && (printlevel > -1)) { |
---|
878 | "// Note: The curve is reducible, but we were able to compute a HNE."; |
---|
879 | "// This means the result is only one of several existing HNE's."; |
---|
880 | } |
---|
881 | if (Ausgabe == 0) { return(list(amat,hqs,getauscht,f,einzweig));} |
---|
882 | if (Ausgabe == 1) { return(return_error);} // error has occurred |
---|
883 | if (Ausgabe == 2) { return(list(matrix(ideal(0,x)),intvec(1),getauscht, |
---|
884 | poly(0),einzweig));} // HNE is x=0 or y=0 |
---|
885 | } |
---|
886 | example |
---|
887 | { "EXAMPLE:"; echo = 2; |
---|
888 | ring exring = 7,(x,y),ds; |
---|
889 | list hne=develop(4x98+2x49y7+x11y14+2y14); |
---|
890 | print(hne[1]); |
---|
891 | // therefore the HNE is: |
---|
892 | // z(-1)= 3*z(0)^7 + z(0)^7*z(1), |
---|
893 | // z(0) = z(1)*z(2), |
---|
894 | // (note that there is 1 zero in the 2nd row before x) |
---|
895 | // z(1) = z(2)^3*z(3), (there are 3 zeroes in the 3rd row) |
---|
896 | // z(2) = z(3)*z(4), |
---|
897 | // z(3) = -z(4)^2 + 0*z(4)^3 +...+ 0*z(4)^8 + ?*z(4)^9 + ... |
---|
898 | // (the missing x in the matrix indicates that this line |
---|
899 | // is not complete. It can only occur in the last line of the |
---|
900 | // HNE, and normally does.) |
---|
901 | hne[2]; |
---|
902 | param(hne); |
---|
903 | // returns the parametrization |
---|
904 | // x(t)= -t^14+O(t^21), y(t)= -3t^98+O(t^105) |
---|
905 | // (the term -t^109 in y may have a wrong coefficient) |
---|
906 | displayHNE(hne); |
---|
907 | } |
---|
908 | |
---|
909 | /////////////////////////////////////////////////////////////////////////////// |
---|
910 | // procedures to extract information out of HNE // |
---|
911 | /////////////////////////////////////////////////////////////////////////////// |
---|
912 | |
---|
913 | proc param |
---|
914 | "USAGE: param(l [,x]) takes the output of develop(f) |
---|
915 | (list l (matrix m, intvec v, int s[,poly g,...])) |
---|
916 | and gives a parametrization for f; the first variable of the active |
---|
917 | ring is chosen as indefinite. If the ring contains more than |
---|
918 | two variables, the 3rd variable is chosen (remember that develop takes |
---|
919 | the first two variables and therefore the other vars should be unused). |
---|
920 | @* x is an optional parameter of any type. |
---|
921 | RETURN: If only the list l is given: |
---|
922 | ideal of two polynomials: if the HNE was finite, f(param[1],param[2]) |
---|
923 | will be zero. If not, the real parametrization will be |
---|
924 | two power series; then param will return a truncation of these series. |
---|
925 | |
---|
926 | If the optional parameter x is given: |
---|
927 | list L with L[1]=param(l) (the ideal containing the parametrization) |
---|
928 | and L[2]=intvec with two entries indicating the highest degree unto |
---|
929 | which the coefficients of the monomials in L[1] are exact (a value of |
---|
930 | -1 is for infinity, i.e. the corresponding polynomial is exact). |
---|
931 | SEE ALSO: develop, extdevelop |
---|
932 | KEYWORDS: parametrization |
---|
933 | EXAMPLE: example param; shows an example |
---|
934 | example develop; shows another example |
---|
935 | " |
---|
936 | { |
---|
937 | //-------------------------- Initialisierungen ------------------------------- |
---|
938 | if (typeof(#[1])=="list") { |
---|
939 | list Li=#[1]; |
---|
940 | matrix m=Li[1]; |
---|
941 | intvec v=Li[2]; |
---|
942 | int switch=Li[3]; |
---|
943 | int return_list=1; |
---|
944 | } |
---|
945 | else { |
---|
946 | matrix m=#[1]; |
---|
947 | intvec v=#[2]; |
---|
948 | int switch=#[3]; |
---|
949 | int return_list=0; |
---|
950 | } |
---|
951 | if (switch==-1) { |
---|
952 | "An error has occurred in develop, so there is no HNE."; |
---|
953 | return(ideal(0,0)); |
---|
954 | } |
---|
955 | int fehler,fehlervor,untergrad,untervor,beginn,i,zeile,hilf; |
---|
956 | |
---|
957 | if (nvars(basering) > 2) { poly z(size(v)+1)=var(3); } |
---|
958 | else { poly z(size(v)+1)=var(1); } |
---|
959 | poly z(size(v)); |
---|
960 | zeile=size(v); |
---|
961 | //------------- Parametrisierung der untersten Zeile der HNE ----------------- |
---|
962 | if (v[zeile] > 0) { |
---|
963 | fehler=0; // die Parametrisierung wird exakt werden |
---|
964 | for (i=1; i<=v[zeile]; i++) { |
---|
965 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
966 | }} |
---|
967 | else { |
---|
968 | untervor=1; // = Untergrad der vorhergehenden Zeile |
---|
969 | if (v[zeile]==-1) { |
---|
970 | fehler=ncols(m)+1; |
---|
971 | for (i=1; i<=ncols(m); i++) { |
---|
972 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
973 | if ((untergrad==0) and (m[zeile,i]!=0)) {untergrad=i;} |
---|
974 | // = Untergrad der aktuellen Zeile |
---|
975 | }} |
---|
976 | else { |
---|
977 | fehler= -v[zeile]; |
---|
978 | for (i=1; i<-v[zeile]; i++) { |
---|
979 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
980 | if ((untergrad==0) and (m[zeile,i]!=0)) {untergrad=i;} |
---|
981 | }} |
---|
982 | } |
---|
983 | //------------- Parametrisierung der restlichen Zeilen der HNE --------------- |
---|
984 | for (zeile=size(v)-1; zeile>0; zeile--) { |
---|
985 | poly z(zeile); |
---|
986 | beginn=0; // Beginn der aktuellen Zeile |
---|
987 | for (i=1; i<=v[zeile]; i++) { |
---|
988 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
989 | if ((beginn==0) and (m[zeile,i]!=0)) { beginn=i;} |
---|
990 | } |
---|
991 | z(zeile)=z(zeile) + z(zeile+1)^v[zeile] * z(zeile+2); |
---|
992 | if (beginn==0) { |
---|
993 | if (fehler>0) { // damit fehler=0 bleibt bei exakter Param. |
---|
994 | fehlervor=fehler; // Fehler der letzten Zeile |
---|
995 | fehler=fehler+untergrad*(v[zeile]-1)+untervor; // Fehler dieser Zeile |
---|
996 | hilf=untergrad; |
---|
997 | untergrad=untergrad*v[zeile]+untervor; |
---|
998 | untervor=hilf;}} // untervor = altes untergrad |
---|
999 | else { |
---|
1000 | fehlervor=fehler; |
---|
1001 | fehler=fehler+untergrad*(beginn-1); |
---|
1002 | untervor=untergrad; |
---|
1003 | untergrad=untergrad*beginn; |
---|
1004 | }} |
---|
1005 | //--------------------- Ausgabe der Fehlerabschaetzung ----------------------- |
---|
1006 | if (switch==0) { |
---|
1007 | if (fehler>0) { |
---|
1008 | if (fehlervor>0) { |
---|
1009 | if ((voice==2) && (printlevel > -1)) { |
---|
1010 | "// ** Warning: result is exact up to order",fehlervor-1,"in", |
---|
1011 | maxideal(1)[1],"and",fehler-1,"in",maxideal(1)[2],"!"; |
---|
1012 | }} |
---|
1013 | else { |
---|
1014 | if ((voice==2) && (printlevel > -1)) { |
---|
1015 | "// ** Warning: result is exact up to order",fehler-1,"in", |
---|
1016 | maxideal(1)[2],"!"; |
---|
1017 | }} |
---|
1018 | } |
---|
1019 | if (return_list==0) { return(ideal(z(2),z(1))); } |
---|
1020 | else { return(list(ideal(z(2),z(1)),intvec(fehlervor-1,fehler-1))); } |
---|
1021 | } |
---|
1022 | else { |
---|
1023 | if (fehler>0) { |
---|
1024 | if (fehlervor>0) { |
---|
1025 | if ((voice==2) && (printlevel > -1)) { |
---|
1026 | "// ** Warning: result is exact up to order",fehler-1,"in", |
---|
1027 | maxideal(1)[1],"and",fehlervor-1,"in",maxideal(1)[2],"!"; |
---|
1028 | }} |
---|
1029 | else { |
---|
1030 | if ((voice==2) && (printlevel > -1)) { |
---|
1031 | "// ** Warning: result is exact up to order",fehler-1,"in", |
---|
1032 | maxideal(1)[1],"!"; |
---|
1033 | }} |
---|
1034 | } |
---|
1035 | if (return_list==0) { return(ideal(z(1),z(2))); } |
---|
1036 | else { return(list(ideal(z(1),z(2)),intvec(fehler-1,fehlervor-1))); } |
---|
1037 | } |
---|
1038 | } |
---|
1039 | example |
---|
1040 | { "EXAMPLE:"; echo = 2; |
---|
1041 | ring exring=0,(x,y,t),ds; |
---|
1042 | poly f=x3+2xy2+y2; |
---|
1043 | list hne=develop(f); |
---|
1044 | list hne_extended1=develop(f,6); |
---|
1045 | list hne_extended2=develop(f,10); |
---|
1046 | // compare the different matrices ... |
---|
1047 | print(hne[1]); |
---|
1048 | print(hne_extended1[1]); |
---|
1049 | print(hne_extended2[1]); |
---|
1050 | // ... and the resulting parametrizations: |
---|
1051 | param(hne); |
---|
1052 | param(hne_extended1); |
---|
1053 | param(hne_extended2); |
---|
1054 | param(hne_extended2,0); |
---|
1055 | } |
---|
1056 | /////////////////////////////////////////////////////////////////////////////// |
---|
1057 | |
---|
1058 | proc invariants |
---|
1059 | "USAGE: invariants(l) takes the output of develop(f) |
---|
1060 | (list l (matrix m, intvec v, int s[,poly g,...])) |
---|
1061 | and computes the following irreducible curve invariants: |
---|
1062 | RETURN: a list, if l contains a valid HNE: |
---|
1063 | @format |
---|
1064 | - invariants(l)[1]: intvec (characteristic exponents) |
---|
1065 | - invariants(l)[2]: intvec (generators of the semigroup) |
---|
1066 | - invariants(l)[3],[4]: 2 x intvec (Puiseux pairs, 1st and 2nd components) |
---|
1067 | - invariants(l)[5]: int (degree of the conductor) |
---|
1068 | - invariants(l)[6]: intvec (sequence of multiplicities) |
---|
1069 | @end format |
---|
1070 | an empty list, if an error occurred in the procedure develop. |
---|
1071 | SEE ALSO: develop, displayInvariants, multsequence, intersection |
---|
1072 | KEYWORDS: characteristic exponents; semigroup of values; Puiseux pairs; |
---|
1073 | conductor, degree; multiplicities, sequence of |
---|
1074 | EXAMPLE: example invariants; shows an example |
---|
1075 | " |
---|
1076 | { |
---|
1077 | //-------------------------- Initialisierungen ------------------------------- |
---|
1078 | matrix m=#[1]; |
---|
1079 | intvec v=#[2]; |
---|
1080 | int switch=#[3]; |
---|
1081 | list ergebnis; |
---|
1082 | if (switch==-1) { |
---|
1083 | "An error has occurred in develop, so there is no HNE."; |
---|
1084 | return(ergebnis); |
---|
1085 | } |
---|
1086 | intvec beta,s,svorl,ordnung,multseq,mpuiseux,npuiseux,halbgr; |
---|
1087 | int genus,zeile,i,j,k,summe,conductor,ggT; |
---|
1088 | string Ausgabe; |
---|
1089 | int nc=ncols(m); int nr=nrows(m); |
---|
1090 | ordnung[nr]=1; |
---|
1091 | // alle Indizes muessen (gegenueber [Ca]) um 1 erhoeht werden, |
---|
1092 | // weil 0..r nicht als Wertebereich erlaubt ist (aber nrows(m)==r+1) |
---|
1093 | |
---|
1094 | //---------------- Bestimme den Untergrad der einzelnen Zeilen --------------- |
---|
1095 | for (zeile=nr; zeile>1; zeile--) { |
---|
1096 | if ((size(ideal(m[zeile,1..nc])) > 1) or (zeile==nr)) { // keine Nullzeile |
---|
1097 | k=1; |
---|
1098 | while (m[zeile,k]==0) {k++;} |
---|
1099 | ordnung[zeile-1]=k*ordnung[zeile]; // vgl. auch Def. von untergrad in |
---|
1100 | genus++; // proc param |
---|
1101 | svorl[genus]=zeile;} // werden gerade in umgekehrter Reihenfolge abgelegt |
---|
1102 | else { |
---|
1103 | ordnung[zeile-1]=v[zeile]*ordnung[zeile]+ordnung[zeile+1]; |
---|
1104 | }} |
---|
1105 | //----------------- charakteristische Exponenten (beta) ---------------------- |
---|
1106 | s[1]=1; |
---|
1107 | for (k=1; k <= genus; k++) { s[k+1]=svorl[genus-k+1];} // s[2]==s(1), u.s.w. |
---|
1108 | beta[1]=ordnung[1]; //charakt. Exponenten: Index wieder verschoben |
---|
1109 | for (k=1; k <= genus; k++) { |
---|
1110 | summe=0; |
---|
1111 | for (i=1; i <= s[k]; i++) {summe=summe+v[i]*ordnung[i];} |
---|
1112 | beta[k+1]=summe+ordnung[s[k]]+ordnung[s[k]+1]-ordnung[1]; |
---|
1113 | } |
---|
1114 | //--------------------------- Puiseuxpaare ----------------------------------- |
---|
1115 | int produkt=1; |
---|
1116 | for (i=1; i<=genus; i++) { |
---|
1117 | ggT=gcd(beta[1],beta[i+1]*produkt); |
---|
1118 | mpuiseux[i]=beta[i+1]*produkt / ggT; |
---|
1119 | npuiseux[i]=beta[1] / ggT; |
---|
1120 | produkt=produkt*npuiseux[i]; |
---|
1121 | } |
---|
1122 | //---------------------- Grad des Konduktors --------------------------------- |
---|
1123 | summe=1-ordnung[1]; |
---|
1124 | if (genus > 0) { |
---|
1125 | for (i=2; i <= genus+1; i++) { |
---|
1126 | summe=summe + beta[i] * (ordnung[s[i-1]] - ordnung[s[i]]); |
---|
1127 | } // n.b.: Indizierung wieder um 1 verschoben |
---|
1128 | } |
---|
1129 | conductor=summe; |
---|
1130 | //------------------- Erzeuger der Halbgruppe: ------------------------------- |
---|
1131 | halbgr=puiseux2generators(mpuiseux,npuiseux); |
---|
1132 | |
---|
1133 | //------------------- Multiplizitaetensequenz: ------------------------------- |
---|
1134 | k=1; |
---|
1135 | for (i=1; i<size(v); i++) { |
---|
1136 | for (j=1; j<=v[i]; j++) { |
---|
1137 | multseq[k]=ordnung[i]; |
---|
1138 | k++; |
---|
1139 | }} |
---|
1140 | multseq[k]=1; |
---|
1141 | //------------------------- Rueckgabe ---------------------------------------- |
---|
1142 | ergebnis=beta,halbgr,mpuiseux,npuiseux,conductor,multseq; |
---|
1143 | return(ergebnis); |
---|
1144 | } |
---|
1145 | example |
---|
1146 | { "EXAMPLE:"; echo = 2; |
---|
1147 | ring exring=0,(x,y),dp; |
---|
1148 | list hne=develop(y4+2x3y2+x6+x5y); |
---|
1149 | list erg=invariants(hne); |
---|
1150 | erg[1]; // the characteristic exponents |
---|
1151 | erg[2]; // the generators of the semigroup of values |
---|
1152 | erg[3],erg[4]; // the Puiseux pairs in packed form |
---|
1153 | erg[5] / 2; // the delta-invariant |
---|
1154 | erg[6]; // the sequence of multiplicities |
---|
1155 | // To display the invariants more 'nicely': |
---|
1156 | displayInvariants(hne); |
---|
1157 | } |
---|
1158 | /////////////////////////////////////////////////////////////////////////////// |
---|
1159 | |
---|
1160 | proc displayInvariants |
---|
1161 | "USAGE: displayInvariants(l); takes the output both of |
---|
1162 | develop(f) and reddevelop(f) |
---|
1163 | ( list l (matrix m, intvec v, int s[,poly g,...]) |
---|
1164 | or list of lists in the form l ) |
---|
1165 | RETURN: nothing |
---|
1166 | DISPLAY: invariants of the corresponding branch, resp. of all branches, |
---|
1167 | in a better readable form. |
---|
1168 | SEE ALSO: invariants, intersection, develop, reddevelop |
---|
1169 | EXAMPLE: example displayInvariants; shows an example |
---|
1170 | " |
---|
1171 | { |
---|
1172 | int i,j,k,mul; |
---|
1173 | string Ausgabe; |
---|
1174 | list ergebnis; |
---|
1175 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1176 | #=stripHNE(#); |
---|
1177 | //-------------------- Ausgabe eines Zweiges --------------------------------- |
---|
1178 | if (typeof(#[1])=="matrix") { |
---|
1179 | ergebnis=invariants(#); |
---|
1180 | if (size(ergebnis)!=0) { |
---|
1181 | " characteristic exponents :",ergebnis[1]; |
---|
1182 | " generators of semigroup :",ergebnis[2]; |
---|
1183 | if (size(ergebnis[1])>1) { |
---|
1184 | for (i=1; i<=size(ergebnis[3]); i++) { |
---|
1185 | Ausgabe=Ausgabe+"("+string(ergebnis[3][i])+"," |
---|
1186 | +string(ergebnis[4][i])+")"; |
---|
1187 | }} |
---|
1188 | " Puiseux pairs :",Ausgabe; |
---|
1189 | " degree of the conductor :",ergebnis[5]; |
---|
1190 | " delta invariant :",ergebnis[5]/2; |
---|
1191 | " sequence of multiplicities:",ergebnis[6]; |
---|
1192 | }} |
---|
1193 | //-------------------- Ausgabe aller Zweige ---------------------------------- |
---|
1194 | else { |
---|
1195 | for (j=1; j<=size(#); j++) { |
---|
1196 | ergebnis=invariants(#[j]); |
---|
1197 | " --- invariants of branch number",j,": ---"; |
---|
1198 | " characteristic exponents :",ergebnis[1]; |
---|
1199 | " generators of semigroup :",ergebnis[2]; |
---|
1200 | Ausgabe=""; |
---|
1201 | if (size(ergebnis[1])>1) { |
---|
1202 | for (i=1; i<=size(ergebnis[3]); i++) { |
---|
1203 | Ausgabe=Ausgabe+"("+string(ergebnis[3][i])+"," |
---|
1204 | +string(ergebnis[4][i])+")"; |
---|
1205 | }} |
---|
1206 | " Puiseux pairs :",Ausgabe; |
---|
1207 | " degree of the conductor :",ergebnis[5]; |
---|
1208 | " delta invariant :",ergebnis[5]/2; |
---|
1209 | " sequence of multiplicities:",ergebnis[6]; |
---|
1210 | ""; |
---|
1211 | } |
---|
1212 | if (size(#)>1) { |
---|
1213 | " -------------- intersection multiplicities : -------------- ";""; |
---|
1214 | Ausgabe="branch | "; |
---|
1215 | for (j=size(#); j>1; j--) { |
---|
1216 | if (size(string(j))==1) { Ausgabe=Ausgabe+" "+string(j)+" "; } |
---|
1217 | else { Ausgabe=Ausgabe+string(j)+" "; } |
---|
1218 | } |
---|
1219 | Ausgabe; |
---|
1220 | Ausgabe="-------+"; |
---|
1221 | for (j=2; j<size(#); j++) { Ausgabe=Ausgabe+"------"; } |
---|
1222 | Ausgabe=Ausgabe+"-----"; |
---|
1223 | Ausgabe; |
---|
1224 | } |
---|
1225 | for (j=1; j<size(#); j++) { |
---|
1226 | if (size(string(j))==1) { Ausgabe=" "+string(j)+" |"; } |
---|
1227 | else { Ausgabe=" " +string(j)+" |"; } |
---|
1228 | for (k=size(#); k>j; k--) { |
---|
1229 | mul=intersection(#[j],#[k]); |
---|
1230 | for (i=1; i<=5-size(string(mul)); i++) { Ausgabe=Ausgabe+" "; } |
---|
1231 | Ausgabe=Ausgabe+string(mul); |
---|
1232 | if (k>j+1) { Ausgabe=Ausgabe+","; } |
---|
1233 | } |
---|
1234 | Ausgabe; |
---|
1235 | } |
---|
1236 | } |
---|
1237 | return(); |
---|
1238 | } |
---|
1239 | example |
---|
1240 | { "EXAMPLE:"; echo = 2; |
---|
1241 | ring exring=0,(x,y),dp; |
---|
1242 | list hne=develop(y4+2x3y2+x6+x5y); |
---|
1243 | displayInvariants(hne); |
---|
1244 | } |
---|
1245 | /////////////////////////////////////////////////////////////////////////////// |
---|
1246 | |
---|
1247 | proc multiplicities |
---|
1248 | "USAGE: multiplicities(l) takes the output of develop(f) |
---|
1249 | (list l (matrix m, intvec v, int s[,poly g,...])) |
---|
1250 | RETURN: intvec of the different multiplicities that occur during the |
---|
1251 | successive blowing up of the curve corresponding to f |
---|
1252 | SEE ALSO: develop |
---|
1253 | EXAMPLE: example multiplicities; shows an example |
---|
1254 | " |
---|
1255 | { |
---|
1256 | matrix m=#[1]; |
---|
1257 | intvec v=#[2]; |
---|
1258 | int switch=#[3]; |
---|
1259 | list ergebnis; |
---|
1260 | if (switch==-1) { |
---|
1261 | "An error has occurred in develop, so there is no HNE."; |
---|
1262 | return(intvec(0)); |
---|
1263 | } |
---|
1264 | intvec ordnung; |
---|
1265 | int zeile,k; |
---|
1266 | int nc=ncols(m); int nr=nrows(m); |
---|
1267 | ordnung[nr]=1; |
---|
1268 | //---------------- Bestimme den Untergrad der einzelnen Zeilen --------------- |
---|
1269 | for (zeile=nr; zeile>1; zeile--) { |
---|
1270 | if ((size(ideal(m[zeile,1..nc])) > 1) or (zeile==nr)) { // keine Nullzeile |
---|
1271 | k=1; |
---|
1272 | while (m[zeile,k]==0) {k++;} |
---|
1273 | ordnung[zeile-1]=k*ordnung[zeile]; |
---|
1274 | } |
---|
1275 | else { |
---|
1276 | ordnung[zeile-1]=v[zeile]*ordnung[zeile]+ordnung[zeile+1]; |
---|
1277 | }} |
---|
1278 | return(ordnung); |
---|
1279 | } |
---|
1280 | example |
---|
1281 | { "EXAMPLE:"; echo = 2; |
---|
1282 | int p=printlevel; printlevel=-1; |
---|
1283 | ring r=0,(x,y),dp; |
---|
1284 | multiplicities(develop(x5+y7)); |
---|
1285 | // The first value is the multiplicity of the curve itself, here it's 5 |
---|
1286 | printlevel=p; |
---|
1287 | } |
---|
1288 | /////////////////////////////////////////////////////////////////////////////// |
---|
1289 | |
---|
1290 | proc puiseux2generators (intvec m, intvec n) |
---|
1291 | "USAGE: puiseux2generators(m,n); |
---|
1292 | m,n intvecs with 1st resp. 2nd components of Puiseux pairs |
---|
1293 | RETURN: intvec of the generators of the semigroup of values |
---|
1294 | SEE ALSO: invariants |
---|
1295 | EXAMPLE: example puiseux2generators; shows an example |
---|
1296 | " |
---|
1297 | { |
---|
1298 | intvec beta; |
---|
1299 | int q=1; |
---|
1300 | //------------ glatte Kurve (eigentl. waeren m,n leer): ---------------------- |
---|
1301 | if (m==0) { return(intvec(1)); } |
---|
1302 | //------------------- singulaere Kurve: -------------------------------------- |
---|
1303 | for (int i=1; i<=size(n); i++) { q=q*n[i]; } |
---|
1304 | beta[1]=q; // == q_0 |
---|
1305 | m=1,m; n=1,n; // m[1] ist damit m_0 usw., genau wie beta[1]==beta_0 |
---|
1306 | for (i=2; i<=size(n); i++) { |
---|
1307 | beta[i]=m[i]*q/n[i] - m[i-1]*q + n[i-1]*beta[i-1]; |
---|
1308 | q=q/n[i]; // == q_i |
---|
1309 | } |
---|
1310 | return(beta); |
---|
1311 | } |
---|
1312 | example |
---|
1313 | { "EXAMPLE:"; echo = 2; |
---|
1314 | // take (3,2),(7,2),(15,2),(31,2),(63,2),(127,2) as Puiseux pairs: |
---|
1315 | puiseux2generators(intvec(3,7,15,31,63,127),intvec(2,2,2,2,2,2)); |
---|
1316 | } |
---|
1317 | /////////////////////////////////////////////////////////////////////////////// |
---|
1318 | |
---|
1319 | proc intersection (list hn1, list hn2) |
---|
1320 | "USAGE: intersection(hne1,hne2); |
---|
1321 | hne1,hne2: two lists representing a HNE (normally two entries out of |
---|
1322 | the output of reddevelop), i.e. list(matrix,intvec,int[,poly]). |
---|
1323 | RETURN: The intersection multiplicity of the branches corresponding to |
---|
1324 | hne1 & hne2 (of type int). |
---|
1325 | SEE ALSO: reddevelop, displayInvariants |
---|
1326 | KEYWORDS: intersection multiplicity |
---|
1327 | EXAMPLE: example intersection; shows an example |
---|
1328 | " |
---|
1329 | { |
---|
1330 | //------------------ `intersect' ist schon reserviert ... -------------------- |
---|
1331 | int i,j,s,sum,schnitt,unterschied; |
---|
1332 | matrix a1=hn1[1]; |
---|
1333 | matrix a2=hn2[1]; |
---|
1334 | intvec h1=hn1[2]; |
---|
1335 | intvec h2=hn2[2]; |
---|
1336 | intvec n1=multiplicities(hn1); |
---|
1337 | intvec n2=multiplicities(hn2); |
---|
1338 | if (hn1[3]!=hn2[3]) { |
---|
1339 | //-- die jeweils erste Zeile von hn1,hn2 gehoert zu verschiedenen Parametern - |
---|
1340 | //---------------- d.h. beide Kurven schneiden sich transversal -------------- |
---|
1341 | schnitt=n1[1]*n2[1]; // = mult(hn1)*mult(hn2) |
---|
1342 | } |
---|
1343 | else { |
---|
1344 | //--------- die jeweils erste Zeile gehoert zum gleichen Parameter ----------- |
---|
1345 | unterschied=0; |
---|
1346 | for (s=1; (h1[s]==h2[s]) && (s<size(h1)) && (s<size(h2)) |
---|
1347 | && (unterschied==0); s++) { |
---|
1348 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]); i++) {;} |
---|
1349 | if (i<=h1[s]) { |
---|
1350 | unterschied=1; |
---|
1351 | s--; // um s++ am Schleifenende wieder auszugleichen |
---|
1352 | } |
---|
1353 | } |
---|
1354 | if (unterschied==0) { |
---|
1355 | if ((s<size(h1)) && (s<size(h2))) { |
---|
1356 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]) && (i<=h2[s]); i++) {;} |
---|
1357 | } |
---|
1358 | else { |
---|
1359 | //-------------- Sonderfall: Unterschied in letzter Zeile suchen ------------- |
---|
1360 | // Beachte: Es koennen undefinierte Stellen auftreten, bei abbrechender HNE |
---|
1361 | // muss die Ende-Markierung weg, h_[r] ist unendlich, die Matrix muss mit |
---|
1362 | // Nullen fortgesetzt gedacht werden |
---|
1363 | //---------------------------------------------------------------------------- |
---|
1364 | if (ncols(a1)>ncols(a2)) { j=ncols(a1); } |
---|
1365 | else { j=ncols(a2); } |
---|
1366 | unterschied=0; |
---|
1367 | if ((h1[s]>0) && (s==size(h1))) { |
---|
1368 | a1[s,h1[s]+1]=0; |
---|
1369 | if (ncols(a1)<=ncols(a2)) { unterschied=1; } |
---|
1370 | } |
---|
1371 | if ((h2[s]>0) && (s==size(h2))) { |
---|
1372 | a2[s,h2[s]+1]=0; |
---|
1373 | if (ncols(a2)<=ncols(a1)) { unterschied=1; } |
---|
1374 | } |
---|
1375 | if (unterschied==1) { // mind. eine HNE war endlich |
---|
1376 | matrix ma1[1][j]=a1[s,1..ncols(a1)]; // und bedarf der Fortsetzung |
---|
1377 | matrix ma2[1][j]=a2[s,1..ncols(a2)]; // mit Nullen |
---|
1378 | } |
---|
1379 | else { |
---|
1380 | if (ncols(a1)>ncols(a2)) { j=ncols(a2); } |
---|
1381 | else { j=ncols(a1); } |
---|
1382 | matrix ma1[1][j]=a1[s,1..j]; // Beschr. auf vergleichbaren |
---|
1383 | matrix ma2[1][j]=a2[s,1..j]; // Teil (der evtl. y's enth.) |
---|
1384 | } |
---|
1385 | for (i=1; (ma1[1,i]==ma2[1,i]) && (i<j) && (ma1[1,i]!=var(2)); i++) {;} |
---|
1386 | if (ma1[1,i]==ma2[1,i]) { |
---|
1387 | "//** The two HNE's are identical!"; |
---|
1388 | "//** You have either tried to intersect a branch with itself,"; |
---|
1389 | "//** or the two branches have been developed separately."; |
---|
1390 | "// In the latter case use `extdevelop' to extend the HNE's until", |
---|
1391 | "they differ."; |
---|
1392 | return(-1); |
---|
1393 | } |
---|
1394 | if ((ma1[1,i]==var(2)) || (ma2[1,i]==var(2))) { |
---|
1395 | "//** The two HNE's are (so far) identical. This is because they", |
---|
1396 | "have been"; |
---|
1397 | "//** computed separately. I need more data; use `extdevelop' to", |
---|
1398 | "extend them,"; |
---|
1399 | if (ma1[1,i]==var(2)) {"//** at least the first one.";} |
---|
1400 | else {"//** at least the second one.";} |
---|
1401 | return(-1); |
---|
1402 | } |
---|
1403 | } |
---|
1404 | } |
---|
1405 | sum=0; |
---|
1406 | h1[size(h1)]=ncols(a1)+42; // Ersatz fuer h1[r]=infinity |
---|
1407 | h2[size(h2)]=ncols(a2)+42; |
---|
1408 | for (j=1; j<s; j++) {sum=sum+h1[j]*n1[j]*n2[j];} |
---|
1409 | if ((i<=h1[s]) && (i<=h2[s])) { schnitt=sum+i*n1[s]*n2[s]; } |
---|
1410 | if (i==h2[s]+1) { schnitt=sum+h2[s]*n1[s]*n2[s]+n2[s+1]*n1[s]; } |
---|
1411 | if (i==h1[s]+1) { schnitt=sum+h1[s]*n2[s]*n1[s]+n1[s+1]*n2[s]; } |
---|
1412 | // "s:",s-1,"i:",i,"S:",sum; |
---|
1413 | } |
---|
1414 | return(schnitt); |
---|
1415 | } |
---|
1416 | example |
---|
1417 | { |
---|
1418 | // -------- prepare for example --------- |
---|
1419 | if (nameof(basering)=="HNEring") { |
---|
1420 | def rettering=HNEring; |
---|
1421 | kill HNEring; |
---|
1422 | } |
---|
1423 | // ------ the example starts here ------- |
---|
1424 | "EXAMPLE:"; echo = 2; |
---|
1425 | ring r=0,(x,y),dp; |
---|
1426 | list hne=reddevelop((x2-y3)*(x2+y3)); |
---|
1427 | intersection(hne[1],hne[2]); |
---|
1428 | kill HNEring,r; |
---|
1429 | echo = 0; |
---|
1430 | // --- restore HNEring if previously defined --- |
---|
1431 | if (defined(rettering)) { |
---|
1432 | setring rettering; |
---|
1433 | def HNEring=rettering; |
---|
1434 | export HNEring; |
---|
1435 | } |
---|
1436 | } |
---|
1437 | /////////////////////////////////////////////////////////////////////////////// |
---|
1438 | |
---|
1439 | proc multsequence |
---|
1440 | "USAGE: multsequence(l); |
---|
1441 | l is the output of either develop(f) or reddevelop(f) |
---|
1442 | RETURN: - if l=@code{develop}(f) or l=@code{reddevelop}(f)[i]: |
---|
1443 | intvec of the sequence of multiplicities of the curve |
---|
1444 | resp. of the i-th branch (the same as @code{invariants}(l)[6]; ) |
---|
1445 | |
---|
1446 | - if l=@code{reddevelop}(f) : list of two integer matrices: |
---|
1447 | @* @code{multsequence}(l)[1][i,*] contains the multiplicities of the branches |
---|
1448 | at their infinitely near point of 0 in its (i-1) order |
---|
1449 | neighbourhood (i.e. i=1: multiplicity of the branches themselves, |
---|
1450 | i=2: multiplicity of their 1st quadratic transformed etc., |
---|
1451 | @* or to say it in another way: @code{multsequence}(l)[1][*,j] is the |
---|
1452 | sequence of multiplicities of the j-th branch). |
---|
1453 | @* @code{multsequence}(l)[2][i,*] contains the information which of these |
---|
1454 | infinitely near points coincide. |
---|
1455 | NOTE: The order of elements of the list obtained from @code{reddevelop} must |
---|
1456 | not be changed (because then the coincident infinitely near points |
---|
1457 | couldn't be grouped together, cf. meaning of 2nd intmat in example). |
---|
1458 | Hence it is not wise to compute the HNE of several polynomials |
---|
1459 | separately, put them into a list l and call @code{multsequence}(l). |
---|
1460 | |
---|
1461 | Use @code{displayMultsequence} to produce a better readable output for |
---|
1462 | reducible curves on the screen. |
---|
1463 | SEE ALSO: displayMultsequence, develop, reddevelop, separateHNE |
---|
1464 | EXAMPLE: example multsequence; shows an example |
---|
1465 | " |
---|
1466 | { |
---|
1467 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1468 | #=stripHNE(#); |
---|
1469 | int k,i,j; |
---|
1470 | //----------------- Multiplizitaetensequenz eines Zweiges -------------------- |
---|
1471 | if (typeof(#[1])=="matrix") { |
---|
1472 | intvec v=#[2]; |
---|
1473 | list ergebnis; |
---|
1474 | if (#[3]==-1) { |
---|
1475 | "An error has occurred in develop, so there is no HNE."; |
---|
1476 | return(intvec(0)); |
---|
1477 | } |
---|
1478 | intvec multips,multseq; |
---|
1479 | multips=multiplicities(#); |
---|
1480 | k=1; |
---|
1481 | for (i=1; i<size(v); i++) { |
---|
1482 | for (j=1; j<=v[i]; j++) { |
---|
1483 | multseq[k]=multips[i]; |
---|
1484 | k++; |
---|
1485 | }} |
---|
1486 | multseq[k]=1; |
---|
1487 | return(multseq); |
---|
1488 | } |
---|
1489 | //---------------------------- mehrere Zweige -------------------------------- |
---|
1490 | else { |
---|
1491 | list HNEs=#; |
---|
1492 | int anzahl=size(HNEs); |
---|
1493 | int maxlength=0; |
---|
1494 | int bisher; |
---|
1495 | intvec schnitt,ones; |
---|
1496 | ones[anzahl]=0; |
---|
1497 | ones=ones+1; // = 1,1,...,1 |
---|
1498 | for (i=1; i<anzahl; i++) { |
---|
1499 | schnitt[i]=separateHNE(HNEs[i],HNEs[i+1]); |
---|
1500 | j=size(multsequence(HNEs[i])); |
---|
1501 | maxlength=maxlength*(j < maxlength) + j*(j >= maxlength); |
---|
1502 | maxlength=maxlength*(schnitt[i]+1 < maxlength) |
---|
1503 | + (schnitt[i]+1)*(schnitt[i]+1 >= maxlength); |
---|
1504 | } |
---|
1505 | j=size(multsequence(HNEs[anzahl])); |
---|
1506 | maxlength=maxlength*(j < maxlength) + j*(j >= maxlength); |
---|
1507 | |
---|
1508 | //-------------- Konstruktion der ersten zu berechnenden Matrix --------------- |
---|
1509 | intmat allmults[maxlength][anzahl]; |
---|
1510 | for (i=1; i<=maxlength; i++) { allmults[i,1..anzahl]=ones[1..anzahl]; } |
---|
1511 | for (i=1; i<=anzahl; i++) { |
---|
1512 | ones=multsequence(HNEs[i]); |
---|
1513 | allmults[1..size(ones),i]=ones[1..size(ones)]; |
---|
1514 | } |
---|
1515 | //---------------------- Konstruktion der zweiten Matrix ---------------------- |
---|
1516 | intmat separate[maxlength][anzahl]; |
---|
1517 | for (i=1; i<=maxlength; i++) { |
---|
1518 | k=1; |
---|
1519 | bisher=0; |
---|
1520 | if (anzahl==1) { separate[i,1]=1; } |
---|
1521 | for (j=1; j<anzahl; j++) { |
---|
1522 | if (schnitt[j]<i) { |
---|
1523 | separate[i,k]=j-bisher; |
---|
1524 | bisher=j; |
---|
1525 | k++; |
---|
1526 | } |
---|
1527 | separate[i,k]=anzahl-bisher; |
---|
1528 | } |
---|
1529 | } |
---|
1530 | return(list(allmults,separate)); |
---|
1531 | } |
---|
1532 | } |
---|
1533 | example |
---|
1534 | { |
---|
1535 | // -------- prepare for example --------- |
---|
1536 | if (nameof(basering)=="HNEring") { |
---|
1537 | def rettering=HNEring; |
---|
1538 | kill HNEring; |
---|
1539 | } |
---|
1540 | // ------ the example starts here ------- |
---|
1541 | "EXAMPLE:"; echo = 2; |
---|
1542 | ring r=0,(x,y),dp; |
---|
1543 | list hne=reddevelop((x6-y10)*(x+y2-y3)*(x+y2+y3)); |
---|
1544 | |
---|
1545 | multsequence(hne[1])," | ",multsequence(hne[2])," | ", |
---|
1546 | multsequence(hne[3])," | ",multsequence(hne[4]); |
---|
1547 | multsequence(hne); |
---|
1548 | // The meaning of the entries of the 2nd matrix is as follows: |
---|
1549 | displayMultsequence(hne); |
---|
1550 | kill HNEring,r; |
---|
1551 | echo = 0; |
---|
1552 | // --- restore HNEring if previously defined --- |
---|
1553 | if (defined(rettering)) { |
---|
1554 | setring rettering; |
---|
1555 | def HNEring=rettering; |
---|
1556 | export HNEring; |
---|
1557 | } |
---|
1558 | } |
---|
1559 | /////////////////////////////////////////////////////////////////////////////// |
---|
1560 | |
---|
1561 | proc displayMultsequence |
---|
1562 | "USAGE: displayMultsequence(l); |
---|
1563 | l is the output of either develop(f) or reddevelop(f) |
---|
1564 | RETURN: nothing |
---|
1565 | DISPLAY: the sequence of multiplicities: |
---|
1566 | if l=develop(f) or l=reddevelop(f)[i] : just the sequence a,b,c,...,1 |
---|
1567 | @* if l=reddevelop(f) : a sequence of the following form: |
---|
1568 | |
---|
1569 | @* @math{[(a_1,....,b_1,....,c_1)]}, |
---|
1570 | @* @math{[(a_2,...),...,(...,c_2)]}, |
---|
1571 | @* @math{ ...................} |
---|
1572 | @* @math{[(a_n),(b_n),.....,(c_n)]} |
---|
1573 | |
---|
1574 | @* with @math{a_1,...,a_n} the sequence of multiplicities of the 1st branch |
---|
1575 | @* [...] the multiplicities of the j-th transformed of all branches |
---|
1576 | @* (...) the multiplicities of those branches meeting in the same |
---|
1577 | infinitely near point. |
---|
1578 | NOTE: The same restrictions for l as in `@code{multsequence}' apply. |
---|
1579 | SEE ALSO: multsequence, develop, reddevelop, separateHNE |
---|
1580 | EXAMPLE: example displayMultsequence; shows an example |
---|
1581 | " |
---|
1582 | { |
---|
1583 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1584 | #=stripHNE(#); |
---|
1585 | //----------------- Multiplizitaetensequenz eines Zweiges -------------------- |
---|
1586 | if (typeof(#[1])=="matrix") { |
---|
1587 | if (#[3]==-1) { |
---|
1588 | "An error has occurred in develop, so there is no HNE."; |
---|
1589 | } |
---|
1590 | else { |
---|
1591 | "The sequence of multiplicities is ",multiplicities(#); |
---|
1592 | }} |
---|
1593 | //---------------------------- mehrere Zweige -------------------------------- |
---|
1594 | else { |
---|
1595 | list multips=multsequence(#); |
---|
1596 | int i,j,k,l; |
---|
1597 | string output; |
---|
1598 | for (i=1; i<=nrows(multips[1]); i++) { |
---|
1599 | output="["; |
---|
1600 | k=1; |
---|
1601 | for (l=1; k<=ncols(multips[1]); l++) { |
---|
1602 | output=output+"("; |
---|
1603 | for (j=1; j<=multips[2][i,l]; j++) { |
---|
1604 | output=output+string(multips[1][i,k]); |
---|
1605 | k++; |
---|
1606 | if (j<multips[2][i,l]) { output=output+","; } |
---|
1607 | } |
---|
1608 | output=output+")"; |
---|
1609 | if ((k-1) < ncols(multips[1])) { output=output+","; } |
---|
1610 | } |
---|
1611 | output=output+"]"; |
---|
1612 | if (i<nrows(multips[1])) { output=output+","; } |
---|
1613 | output; |
---|
1614 | } |
---|
1615 | } |
---|
1616 | } // example multsequence; geht wegen echo nicht (muesste auf 3 gesetzt werden) |
---|
1617 | example |
---|
1618 | { |
---|
1619 | // -------- prepare for example --------- |
---|
1620 | if (nameof(basering)=="HNEring") { |
---|
1621 | def rettering=HNEring; |
---|
1622 | kill HNEring; |
---|
1623 | } |
---|
1624 | // ------ the example starts here ------- |
---|
1625 | "EXAMPLE:"; echo = 2; |
---|
1626 | ring r=0,(x,y),dp; |
---|
1627 | list hne=reddevelop((x6-y10)*(x+y2-y3)*(x+y2+y3)); |
---|
1628 | |
---|
1629 | displayMultsequence(hne[1]); |
---|
1630 | displayMultsequence(hne); |
---|
1631 | kill HNEring,r; |
---|
1632 | echo = 0; |
---|
1633 | // --- restore HNEring if previously defined --- |
---|
1634 | if (defined(rettering)) { |
---|
1635 | setring rettering; |
---|
1636 | def HNEring=rettering; |
---|
1637 | export HNEring; |
---|
1638 | } |
---|
1639 | } |
---|
1640 | /////////////////////////////////////////////////////////////////////////////// |
---|
1641 | |
---|
1642 | proc separateHNE (list hn1,list hn2) |
---|
1643 | "USAGE: separateHNE(hne1,hne2); list hne1,hne2: output of develop |
---|
1644 | RETURN: number of quadratic transformations needed to separate both curves |
---|
1645 | SEE ALSO: develop, reddevelop, multsequence, displayMultsequence |
---|
1646 | EXAMPLE: example separateHNE; shows an example |
---|
1647 | " |
---|
1648 | { |
---|
1649 | int i,j,s,unterschied,separated; |
---|
1650 | matrix a1=hn1[1]; |
---|
1651 | matrix a2=hn2[1]; |
---|
1652 | intvec h1=hn1[2]; |
---|
1653 | intvec h2=hn2[2]; |
---|
1654 | if (hn1[3]!=hn2[3]) { |
---|
1655 | //-- die jeweils erste Zeile von hn1,hn2 gehoert zu verschiedenen Parametern - |
---|
1656 | //---------------- d.h. beide Kurven schneiden sich transversal -------------- |
---|
1657 | separated=1; |
---|
1658 | } |
---|
1659 | else { |
---|
1660 | //--------- die jeweils erste Zeile gehoert zum gleichen Parameter ----------- |
---|
1661 | unterschied=0; |
---|
1662 | for (s=1; (h1[s]==h2[s]) && (s<size(h1)) && (s<size(h2)) |
---|
1663 | && (unterschied==0); s++) { |
---|
1664 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]); i++) {;} |
---|
1665 | if (i<=h1[s]) { |
---|
1666 | unterschied=1; |
---|
1667 | s--; // um s++ am Schleifenende wieder auszugleichen |
---|
1668 | } |
---|
1669 | } |
---|
1670 | if (unterschied==0) { |
---|
1671 | if ((s<size(h1)) && (s<size(h2))) { |
---|
1672 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]) && (i<=h2[s]); i++) {;} |
---|
1673 | } |
---|
1674 | else { |
---|
1675 | //-------------- Sonderfall: Unterschied in letzter Zeile suchen ------------- |
---|
1676 | // Beachte: Es koennen undefinierte Stellen auftreten, bei abbrechender HNE |
---|
1677 | // muss die Ende-Markierung weg, h_[r] ist unendlich, die Matrix muss mit |
---|
1678 | // Nullen fortgesetzt gedacht werden |
---|
1679 | //---------------------------------------------------------------------------- |
---|
1680 | if (ncols(a1)>ncols(a2)) { j=ncols(a1); } |
---|
1681 | else { j=ncols(a2); } |
---|
1682 | unterschied=0; |
---|
1683 | if ((h1[s]>0) && (s==size(h1))) { |
---|
1684 | a1[s,h1[s]+1]=0; |
---|
1685 | if (ncols(a1)<=ncols(a2)) { unterschied=1; } |
---|
1686 | } |
---|
1687 | if ((h2[s]>0) && (s==size(h2))) { |
---|
1688 | a2[s,h2[s]+1]=0; |
---|
1689 | if (ncols(a2)<=ncols(a1)) { unterschied=1; } |
---|
1690 | } |
---|
1691 | if (unterschied==1) { // mind. eine HNE war endlich |
---|
1692 | matrix ma1[1][j]=a1[s,1..ncols(a1)]; // und bedarf der Fortsetzung |
---|
1693 | matrix ma2[1][j]=a2[s,1..ncols(a2)]; // mit Nullen |
---|
1694 | } |
---|
1695 | else { |
---|
1696 | if (ncols(a1)>ncols(a2)) { j=ncols(a2); } |
---|
1697 | else { j=ncols(a1); } |
---|
1698 | matrix ma1[1][j]=a1[s,1..j]; // Beschr. auf vergleichbaren |
---|
1699 | matrix ma2[1][j]=a2[s,1..j]; // Teil (der evtl. y's enth.) |
---|
1700 | } |
---|
1701 | for (i=1; (ma1[1,i]==ma2[1,i]) && (i<j) && (ma1[1,i]!=var(2)); i++) {;} |
---|
1702 | if (ma1[1,i]==ma2[1,i]) { |
---|
1703 | "//** The two HNE's are identical!"; |
---|
1704 | "//** You have either tried to compare a branch with itself,"; |
---|
1705 | "//** or the two branches have been developed separately."; |
---|
1706 | "// In the latter case use `extdevelop' to extend the HNE's until", |
---|
1707 | "they differ."; |
---|
1708 | return(-1); |
---|
1709 | } |
---|
1710 | if ((ma1[1,i]==var(2)) || (ma2[1,i]==var(2))) { |
---|
1711 | "//** The two HNE's are (so far) identical. This is because they", |
---|
1712 | "have been"; |
---|
1713 | "//** computed separately. I need more data; use `extdevelop' to", |
---|
1714 | "extend them,"; |
---|
1715 | if (ma1[1,i]==var(2)) {"//** at least the first one.";} |
---|
1716 | else {"//** at least the second one.";} |
---|
1717 | return(-1); |
---|
1718 | } |
---|
1719 | } |
---|
1720 | } |
---|
1721 | separated=i; |
---|
1722 | for (j=1; j<s; j++) { separated=separated+h1[j]; } |
---|
1723 | } |
---|
1724 | return(separated); |
---|
1725 | } |
---|
1726 | example |
---|
1727 | { "EXAMPLE:"; echo = 2; |
---|
1728 | int p=printlevel; printlevel=-1; |
---|
1729 | ring r=0,(x,y),dp; |
---|
1730 | list hne1=develop(x); |
---|
1731 | list hne2=develop(x+y); |
---|
1732 | list hne3=develop(x+y2); |
---|
1733 | separateHNE(hne1,hne2); // two transversal lines |
---|
1734 | separateHNE(hne1,hne3); // one quadratic transform. gives 1st example |
---|
1735 | printlevel=p; |
---|
1736 | } |
---|
1737 | /////////////////////////////////////////////////////////////////////////////// |
---|
1738 | |
---|
1739 | proc displayHNE(list ldev,list #) |
---|
1740 | "USAGE: displayHNE(ldev,[,n]); ldev=list (the output of develop(f) or |
---|
1741 | reddevelop(f)), n=int |
---|
1742 | RETURN: - if only one argument is given, no return value, but |
---|
1743 | display an ideal HNE of the following form: |
---|
1744 | @example |
---|
1745 | HNE[1]=-y+[]*z(0)^1+[]*z(0)^2+...+z(0)^<>*z(1) |
---|
1746 | HNE[2]=-x+ []*z(1)^2+...+z(1)^<>*z(2) |
---|
1747 | HNE[3]= []*z(2)^2+...+z(2)^<>*z(3) |
---|
1748 | ....... .......................... |
---|
1749 | HNE[r+1]= []*z(r)^2+[]*z(r)^3+...... |
---|
1750 | @end example |
---|
1751 | where x,y are the indeterminates of the basering. The values of @code{[]} |
---|
1752 | are the coefficients of the Hamburger-Noether matrix, the values of |
---|
1753 | @code{<>} are represented in the HN-matrix as `x'. |
---|
1754 | @* The 1st line (@code{HNE[1]}) means that |
---|
1755 | @math{y=}@code{[]}@math{*z(0)^1+...}, |
---|
1756 | the 2nd line (@code{HNE[2]}) means that |
---|
1757 | @math{x=}@code{[]}@math{*z(1)^2+...}, |
---|
1758 | so you can see which indeterminate corresponds to which line |
---|
1759 | (it's also possible that x corresponds to the 1st line and y to the 2nd). |
---|
1760 | @* - if a second argument is given, create and export a new ring with |
---|
1761 | name `displayring' containing an ideal `HNE' as described above. |
---|
1762 | |
---|
1763 | If ldev contains the output of @code{reddevelop}(f), @code{displayHNE} |
---|
1764 | shows the HNE's of all branches of f in the form described above. |
---|
1765 | The optional parameter is then ignored. |
---|
1766 | |
---|
1767 | SEE ALSO: develop, reddevelop |
---|
1768 | EXAMPLE: example displayHNE; shows an example |
---|
1769 | " |
---|
1770 | { |
---|
1771 | if ((typeof(ldev[1])=="list") || (typeof(ldev[1])=="none")) { |
---|
1772 | for (int i=1; i<=size(ldev); i++) { |
---|
1773 | "// Hamburger-Noether development of branch nr."+string(i)+":"; |
---|
1774 | displayHNE(ldev[i]);""; |
---|
1775 | } |
---|
1776 | return(); |
---|
1777 | } |
---|
1778 | //--------------------- Initialisierungen und Ringwechsel -------------------- |
---|
1779 | matrix m=ldev[1]; |
---|
1780 | intvec v=ldev[2]; |
---|
1781 | int switch=ldev[3]; |
---|
1782 | if (switch==-1) { |
---|
1783 | "An error has occurred in develop, so there is no HNE."; |
---|
1784 | return(ideal(0)); |
---|
1785 | } |
---|
1786 | def altring=basering; |
---|
1787 | if (parstr(basering)!="") { |
---|
1788 | if (charstr(basering)!=string(char(basering))+","+parstr(basering)) { |
---|
1789 | execute |
---|
1790 | ("ring dazu=("+charstr(basering)+"),z(0.."+string(size(v)-1)+"),ls;"); |
---|
1791 | } |
---|
1792 | else { ring dazu=char(altring),z(0..size(v)-1),ls; } |
---|
1793 | } |
---|
1794 | else { ring dazu=char(altring),z(0..size(v)-1),ls; } |
---|
1795 | def displayring=dazu+altring; |
---|
1796 | setring displayring; |
---|
1797 | if (size(#) != 0) { |
---|
1798 | export displayring; |
---|
1799 | } |
---|
1800 | map holematrix=altring,0; // mappt nur die Monome vom Grad Null |
---|
1801 | matrix m=holematrix(m); |
---|
1802 | //--------------------- Erzeuge Matrix n mit n[i,j]=z(j-1)^i ----------------- |
---|
1803 | int i; |
---|
1804 | matrix n[ncols(m)][nrows(m)]; |
---|
1805 | for (int j=1; j<=nrows(m); j++) { |
---|
1806 | for (i=1; i<=ncols(m); i++) { n[i,j]=z(j-1)^i; } |
---|
1807 | } |
---|
1808 | matrix displaymat=m*n; |
---|
1809 | ideal HNE; |
---|
1810 | for (i=1; i<nrows(m); i++) { HNE[i]=displaymat[i,i]+z(i)*z(i-1)^v[i]; } |
---|
1811 | HNE[nrows(m)]=displaymat[nrows(m),nrows(m)]; |
---|
1812 | if (nrows(m)<2) { HNE[2]=z(0); } |
---|
1813 | if (switch==0) { |
---|
1814 | HNE[1] = HNE[1]-var(size(v)+2); |
---|
1815 | HNE[2] = HNE[2]-var(size(v)+1); |
---|
1816 | } |
---|
1817 | else { |
---|
1818 | HNE[1] = HNE[1]-var(size(v)+1); |
---|
1819 | HNE[2] = HNE[2]-var(size(v)+2); |
---|
1820 | } |
---|
1821 | if (size(#) == 0) { |
---|
1822 | HNE; |
---|
1823 | return(); |
---|
1824 | } |
---|
1825 | if (size(#) != 0) { |
---|
1826 | "// basering is now 'displayring' containing ideal 'HNE'"; |
---|
1827 | keepring(displayring); |
---|
1828 | export(HNE); |
---|
1829 | return(HNE); |
---|
1830 | } |
---|
1831 | } |
---|
1832 | example |
---|
1833 | { "EXAMPLE:"; echo = 2; |
---|
1834 | ring r=0,(x,y),dp; |
---|
1835 | poly f=x3+2xy2+y2; |
---|
1836 | list hn=develop(f); |
---|
1837 | displayHNE(hn); |
---|
1838 | } |
---|
1839 | /////////////////////////////////////////////////////////////////////////////// |
---|
1840 | // procedures for reducible curves // |
---|
1841 | /////////////////////////////////////////////////////////////////////////////// |
---|
1842 | |
---|
1843 | // proc newtonhoehne (poly f) |
---|
1844 | // USAGE: newtonhoehne(f); f poly |
---|
1845 | // ASSUME: basering = ...,(x,y),ds or ls |
---|
1846 | // RETURN: list of intvec(x,y) of coordinates of the newtonpolygon of f |
---|
1847 | // NOTE: This proc is only available in versions of Singular that know the |
---|
1848 | // command system("newton",f); f poly |
---|
1849 | // { |
---|
1850 | // intvec nm = getnm(f); |
---|
1851 | // if ((nm[1]>0) && (nm[2]>0)) { f=jet(f,nm[1]*nm[2],nm); } |
---|
1852 | // list erg=system("newton",f); |
---|
1853 | // int i; list Ausgabe; |
---|
1854 | // for (i=1; i<=size(erg); i++) { Ausgabe[i]=leadexp(erg[i]); } |
---|
1855 | // return(Ausgabe); |
---|
1856 | // } |
---|
1857 | /////////////////////////////////////////////////////////////////////////////// |
---|
1858 | |
---|
1859 | proc newtonpoly (poly f) |
---|
1860 | "USAGE: newtonpoly(f); f poly |
---|
1861 | RETURN: list of intvec(x,y) of coordinates of the Newton polygon of f |
---|
1862 | ASSUME: For performance reasons, newtonpoly assumes that |
---|
1863 | - the basering has ordering `ls' |
---|
1864 | - f(x,0) != 0 != f(0,y), f(0,0) = 0 |
---|
1865 | EXAMPLE: example newtonpoly; shows an example |
---|
1866 | " |
---|
1867 | { |
---|
1868 | intvec A=(0,ord(subst(f,var(1),0))); |
---|
1869 | intvec B=(ord(subst(f,var(2),0)),0); |
---|
1870 | intvec C,H; list L; |
---|
1871 | int abbruch,i; |
---|
1872 | poly hilf; |
---|
1873 | |
---|
1874 | L[1]=A; |
---|
1875 | //-------- wirf alle Monome auf oder oberhalb der Geraden AB raus: ----------- |
---|
1876 | f=jet(f,A[2]*B[1]-1,intvec(A[2],B[1])); |
---|
1877 | map xytausch=basering,var(2),var(1); |
---|
1878 | for (i=2; f!=0; i++) { |
---|
1879 | abbruch=0; |
---|
1880 | while (abbruch==0) { |
---|
1881 | // finde den Punkt aus {verbliebene Pkte (a,b) mit a minimal} mit b minimal: - |
---|
1882 | |
---|
1883 | C=leadexp(f); // Ordnung ls ist wesentlich! |
---|
1884 | |
---|
1885 | if (jet(f,A[2]*C[1]-A[1]*C[2]-1,intvec(A[2]-C[2],C[1]-A[1]))==0) |
---|
1886 | { abbruch=1; } // keine Monome unterhalb der Geraden AC |
---|
1887 | |
---|
1888 | // ----- alle Monome auf der Parallelen zur y-Achse durch C wegwerfen: ------- |
---|
1889 | // ------------------ (links von C gibt es sowieso keine mehr) --------------- |
---|
1890 | else { f=jet(f,-C[1]-1,intvec(-1,0)); } |
---|
1891 | } |
---|
1892 | //- finde alle Monome auf der Geraden durch A und C (unterhalb gibt's keine) - |
---|
1893 | hilf=jet(f,A[2]*C[1]-A[1]*C[2],intvec(A[2]-C[2],C[1]-A[1])); |
---|
1894 | |
---|
1895 | H=leadexp(xytausch(hilf)); |
---|
1896 | A=H[2],H[1]; |
---|
1897 | |
---|
1898 | // die Alternative waere ein Ringwechsel nach ..,(y,x),ds gewesen |
---|
1899 | // A_neu ist der naechste Eckpunkt (unterster Punkt auf Geraden durch A,C) |
---|
1900 | |
---|
1901 | L[i]=A; |
---|
1902 | //----------------- alle Monome auf oder unterhalb AB raus ------------------- |
---|
1903 | f=jet(f,A[2]*B[1]-1,intvec(A[2],B[1]-A[1])); |
---|
1904 | } |
---|
1905 | L[i]=B; |
---|
1906 | return(L); |
---|
1907 | } |
---|
1908 | example |
---|
1909 | { "EXAMPLE:"; |
---|
1910 | ring @exring_Newt=0,(x,y),ls; |
---|
1911 | export @exring_Newt; |
---|
1912 | " ring exring=0,(x,y),ls;"; |
---|
1913 | echo = 2; |
---|
1914 | poly f=x5+2x3y-x2y2+3xy5+y6-y7; |
---|
1915 | newtonpoly(f); |
---|
1916 | echo = 0; |
---|
1917 | kill @exring_Newt; |
---|
1918 | } |
---|
1919 | /////////////////////////////////////////////////////////////////////////////// |
---|
1920 | |
---|
1921 | proc charPoly(poly f, int M, int N) |
---|
1922 | "USAGE: charPoly(f,M,N); f bivariate poly, M,N int: length and height |
---|
1923 | of Newton polygon of f, which has to be only one line |
---|
1924 | RETURN: the characteristic polynomial of f |
---|
1925 | EXAMPLE: example charPoly; shows an example |
---|
1926 | " |
---|
1927 | { |
---|
1928 | poly charp; |
---|
1929 | int Np=N/ gcd(M,N); |
---|
1930 | f=subst(f,var(1),1); |
---|
1931 | for(charp=0; f<>0; f=f-lead(f)) |
---|
1932 | { charp=charp+leadcoef(f)*var(2)^(leadexp(f)[2]/ Np);} |
---|
1933 | return(charp); |
---|
1934 | } |
---|
1935 | example |
---|
1936 | { "EXAMPLE:"; echo = 2; |
---|
1937 | ring exring=0,(x,y),dp; |
---|
1938 | charPoly(y4+2y3x2-yx6+x8,8,4); |
---|
1939 | charPoly(y6+3y3x2-x4,4,6); |
---|
1940 | } |
---|
1941 | /////////////////////////////////////////////////////////////////////////////// |
---|
1942 | |
---|
1943 | proc find_in_list(list L,int p) |
---|
1944 | "USAGE: find_in_list(L,p); L: list of intvec(x,y) |
---|
1945 | (sorted in y: L[1][2]>=L[2][2]), int p >= 0 |
---|
1946 | RETURN: int i: L[i][2]=p if existent; otherwise i with L[i][2]<p if existent; |
---|
1947 | otherwise i = size(L)+1; |
---|
1948 | EXAMPLE: example find_in_list; shows an example |
---|
1949 | " |
---|
1950 | { |
---|
1951 | int i; |
---|
1952 | L[size(L)+1]=intvec(0,-1); // falls p nicht in L[.][2] vorkommt |
---|
1953 | for (i=1; L[i][2]>p; i++) {;} |
---|
1954 | return(i); |
---|
1955 | } |
---|
1956 | example |
---|
1957 | { "EXAMPLE:"; echo = 2; |
---|
1958 | list L = intvec(0,4), intvec(1,2), intvec(2,1), intvec(4,0); |
---|
1959 | find_in_list(L,1); |
---|
1960 | L[find_in_list(L,2)]; |
---|
1961 | } |
---|
1962 | /////////////////////////////////////////////////////////////////////////////// |
---|
1963 | |
---|
1964 | proc get_last_divisor(int M, int N) |
---|
1965 | "USAGE: get_last_divisor(M,N); int M,N |
---|
1966 | RETURN: int Q: M=q1*N+r1, N=q2*r1+r2, ..., ri=Q*r(i+1) (Euclidean alg.) |
---|
1967 | EXAMPLE: example get_last_divisor; shows an example |
---|
1968 | " |
---|
1969 | { |
---|
1970 | int R=M%N; int Q=M / N; |
---|
1971 | while (R!=0) {M=N; N=R; R=M%N; Q=M / N;} |
---|
1972 | return(Q) |
---|
1973 | } |
---|
1974 | example |
---|
1975 | { "EXAMPLE"; echo = 2; |
---|
1976 | ring r=0,(x,y),dp; |
---|
1977 | get_last_divisor(12,10); |
---|
1978 | } |
---|
1979 | /////////////////////////////////////////////////////////////////////////////// |
---|
1980 | proc redleit (poly f,intvec S, intvec E) |
---|
1981 | "USAGE: redleit(f,S,E); f poly, S,E intvec(x,y) |
---|
1982 | S,E are two different points on a line in the Newton diagram of f |
---|
1983 | RETURN: poly g: all monomials of f which lie on or below that line |
---|
1984 | NOTE: The main purpose is that if the line defined by S and E is part of the |
---|
1985 | Newton polygon, the result is the quasihomogeneous leading form of f |
---|
1986 | wrt. that line. |
---|
1987 | SEE ALSO: newtonpoly |
---|
1988 | EXAMPLE: example redleit; shows an example |
---|
1989 | " |
---|
1990 | { |
---|
1991 | if (E[1]<S[1]) { intvec H=E; E=S; S=H; } // S,E verkehrt herum eingegeben |
---|
1992 | return(jet(f,E[1]*S[2]-E[2]*S[1],intvec(S[2]-E[2],E[1]-S[1]))); |
---|
1993 | } |
---|
1994 | example |
---|
1995 | { "EXAMPLE"; echo = 2; |
---|
1996 | ring exring=0,(x,y),dp; |
---|
1997 | redleit(y6+xy4-2x3y2+x4y+x6,intvec(3,2),intvec(4,1)); |
---|
1998 | } |
---|
1999 | /////////////////////////////////////////////////////////////////////////////// |
---|
2000 | |
---|
2001 | |
---|
2002 | proc extdevelop (list l, int Exaktheit) |
---|
2003 | "USAGE: extdevelop(l,n); |
---|
2004 | list l (matrix m, intvec v, int s, poly g[,int b]), int n |
---|
2005 | @* takes the output l of develop(f) ( or extdevelop(L,N), |
---|
2006 | or one entry of the output of reddevelop(f)) and |
---|
2007 | RETURN: an extension of the Hamburger-Noether development of f in the same |
---|
2008 | form as l (i.e. list(matrix, intvec, int, poly) ). |
---|
2009 | The new HN-matrix will have at least n columns |
---|
2010 | (if the HNE isn't finite). |
---|
2011 | Thus if f is irreducible, @code{extdevelop}(@code{develop}(f),n); |
---|
2012 | (in most cases) will produce the same result as @code{develop}(f,n). |
---|
2013 | Type `help develop;' for more details. |
---|
2014 | NOTE: If the matrix m of l has N columns, the exactness of |
---|
2015 | @code{param}(@code{extdevelop}(l,n)) will be increased by at least |
---|
2016 | (n-N) more significant monomials compared with @code{param}(l). |
---|
2017 | SEE ALSO: develop, reddevelop, param |
---|
2018 | EXAMPLE: example extdevelop; shows an example |
---|
2019 | " |
---|
2020 | { |
---|
2021 | //------------ Initialisierungen und Abfangen unzulaessiger Aufrufe ---------- |
---|
2022 | matrix m=l[1]; |
---|
2023 | intvec v=l[2]; |
---|
2024 | int switch=l[3]; |
---|
2025 | if (nvars(basering) < 2) { |
---|
2026 | " Sorry. I need two variables in the ring."; |
---|
2027 | return(list(matrix(maxideal(1)[1]),intvec(0),-1,poly(0)));} |
---|
2028 | if (switch==-1) { |
---|
2029 | "An error has occurred in develop, so there is no HNE and no extension."; |
---|
2030 | return(l); |
---|
2031 | } |
---|
2032 | poly f=l[4]; |
---|
2033 | if (f==0) { |
---|
2034 | " No extension is possible"; |
---|
2035 | return(l); |
---|
2036 | } |
---|
2037 | int Q=v[size(v)]; |
---|
2038 | if (Q>0) { |
---|
2039 | " The HNE was already exact"; |
---|
2040 | return(l); |
---|
2041 | } |
---|
2042 | else { |
---|
2043 | if (Q==-1) { Q=ncols(m); } |
---|
2044 | else { Q=-Q-1; } |
---|
2045 | } |
---|
2046 | int zeile=nrows(m); |
---|
2047 | int spalten,i,M; |
---|
2048 | ideal lastrow=m[zeile,1..Q]; |
---|
2049 | int ringwechsel=(varstr(basering)!="x,y") or (ordstr(basering)!="ls(2),C"); |
---|
2050 | |
---|
2051 | //------------------------- Ringwechsel, falls noetig ------------------------ |
---|
2052 | if (ringwechsel) { |
---|
2053 | def altring = basering; |
---|
2054 | int p = char(basering); |
---|
2055 | if (charstr(basering)!=string(p)) { |
---|
2056 | string tststr=charstr(basering); |
---|
2057 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
2058 | if (tststr==string(p)) { |
---|
2059 | if (size(parstr(basering))>1) { // ring (p,a,..),... |
---|
2060 | execute("ring extdguenstig=("+charstr(basering)+"),(x,y),ls;"); |
---|
2061 | } |
---|
2062 | else { // ring (p,a),... |
---|
2063 | string mipl=string(minpoly); |
---|
2064 | ring extdguenstig=(p,`parstr(basering)`),(x,y),ls; |
---|
2065 | if (mipl!="0") { execute("minpoly="+mipl+";"); } |
---|
2066 | } |
---|
2067 | } |
---|
2068 | else { |
---|
2069 | execute("ring extdguenstig=("+charstr(basering)+"),(x,y),ls;"); |
---|
2070 | } |
---|
2071 | } |
---|
2072 | else { // charstr(basering)== p : no parameter |
---|
2073 | ring extdguenstig=p,(x,y),ls; |
---|
2074 | } |
---|
2075 | export extdguenstig; |
---|
2076 | map hole=altring,x,y; |
---|
2077 | //----- map kann sehr zeitaufwendig sein, daher Vermeidung, wo moeglich: ----- |
---|
2078 | if (nvars(altring)==2) { poly f=fetch(altring,f); } |
---|
2079 | else { poly f=hole(f); } |
---|
2080 | ideal a=hole(lastrow); |
---|
2081 | } |
---|
2082 | else { ideal a=lastrow; } |
---|
2083 | list Newton=newtonpoly(f); |
---|
2084 | int M1=Newton[size(Newton)-1][1]; // konstant |
---|
2085 | number delta; |
---|
2086 | if (Newton[size(Newton)-1][2]!=1) { |
---|
2087 | " *** The transformed polynomial was not valid!!";} |
---|
2088 | else { |
---|
2089 | //--------------------- Fortsetzung der HNE ---------------------------------- |
---|
2090 | while (Q<Exaktheit) { |
---|
2091 | M=ord(subst(f,y,0)); |
---|
2092 | Q=M-M1; |
---|
2093 | //------ quasihomogene Leitform ist c*x^M1*y+d*x^(M1+Q) => delta=-d/c: ------- |
---|
2094 | delta=-koeff(f,M,0)/koeff(f,M1,1); |
---|
2095 | a[Q]=delta; |
---|
2096 | if ((voice==2) && (printlevel > -1)) |
---|
2097 | { "a("+string(zeile-1)+","+string(Q)+") =",delta; } |
---|
2098 | if (Q<Exaktheit) { |
---|
2099 | f=T1_Transform(f,delta,Q); |
---|
2100 | if (defined(HNDebugOn)) { "transformed polynomial:",f; } |
---|
2101 | if (subst(f,y,0)==0) { |
---|
2102 | if ((voice==2) && (printlevel > -1)) { "The HNE is finite!"; } |
---|
2103 | a[Q+1]=x; Exaktheit=Q; |
---|
2104 | f=0; // Speicherersparnis: f nicht mehr gebraucht |
---|
2105 | } |
---|
2106 | } |
---|
2107 | } |
---|
2108 | } |
---|
2109 | //------- Wechsel in alten Ring, Zusammensetzung alte HNE + Erweiterung ------ |
---|
2110 | if (ringwechsel) { |
---|
2111 | setring altring; |
---|
2112 | map zurueck=extdguenstig,var(1),var(2); |
---|
2113 | if (nvars(altring)==2) { f=fetch(extdguenstig,f); } |
---|
2114 | else { f=zurueck(f); } |
---|
2115 | lastrow=zurueck(a); |
---|
2116 | } |
---|
2117 | else { lastrow=a; } |
---|
2118 | if (ncols(lastrow)>ncols(m)) { spalten=ncols(lastrow); } |
---|
2119 | else { spalten=ncols(m); } |
---|
2120 | matrix mneu[zeile][spalten]; |
---|
2121 | for (i=1; i<nrows(m); i++) { |
---|
2122 | mneu[i,1..ncols(m)]=m[i,1..ncols(m)]; |
---|
2123 | } |
---|
2124 | mneu[zeile,1..ncols(lastrow)]=lastrow; |
---|
2125 | if (lastrow[ncols(lastrow)]!=var(1)) { |
---|
2126 | if (ncols(lastrow)==spalten) { v[zeile]=-1; } // keine undefinierten Stellen |
---|
2127 | else { |
---|
2128 | v[zeile]=-Q-1; |
---|
2129 | for (i=ncols(lastrow)+1; i<=spalten; i++) { |
---|
2130 | mneu[zeile,i]=var(2); // fuelle nicht def. Stellen der Matrix auf |
---|
2131 | }}} |
---|
2132 | else { v[zeile]=Q; } // HNE war exakt |
---|
2133 | if (ringwechsel) |
---|
2134 | { |
---|
2135 | if(system("with","Namespaces")) { kill Top::extdguenstig; } |
---|
2136 | kill extdguenstig; |
---|
2137 | } |
---|
2138 | |
---|
2139 | return(list(mneu,v,switch,f)); |
---|
2140 | } |
---|
2141 | example |
---|
2142 | { |
---|
2143 | // -------- prepare for example --------- |
---|
2144 | if (nameof(basering)=="HNEring") { |
---|
2145 | def rettering=HNEring; |
---|
2146 | kill HNEring; |
---|
2147 | } |
---|
2148 | // ------ the example starts here ------- |
---|
2149 | "EXAMPLE:"; echo = 2; |
---|
2150 | ring exring=0,(x,y),dp; |
---|
2151 | list hne=reddevelop(x14-3y2x11-y3x10-y2x9+3y4x8+y5x7+3y4x6+x5*(-y6+y5) |
---|
2152 | -3y6x3-y7x2+y8); |
---|
2153 | print(hne[1][1]); // finite HNE |
---|
2154 | print(extdevelop(hne[1],5)[1]); |
---|
2155 | // ------------------------------------------ |
---|
2156 | print(hne[2][1]); // HNE that can be extended |
---|
2157 | list ehne=extdevelop(hne[2],5); |
---|
2158 | print(ehne[1]); // new HN-matrix has 5 columns |
---|
2159 | param(hne[2]); |
---|
2160 | param(ehne); |
---|
2161 | kill HNEring,exring; |
---|
2162 | echo = 0; |
---|
2163 | // --- restore HNEring if previously defined --- |
---|
2164 | if (defined(rettering)) { |
---|
2165 | setring rettering; |
---|
2166 | def HNEring=rettering; |
---|
2167 | export HNEring; |
---|
2168 | } |
---|
2169 | } |
---|
2170 | /////////////////////////////////////////////////////////////////////////////// |
---|
2171 | |
---|
2172 | proc stripHNE (list l) |
---|
2173 | "USAGE: stripHNE(l); takes the output both of develop(f) and reddevelop(f) |
---|
2174 | @* ( list l (matrix m, intvec v, int s[,poly g,...]) |
---|
2175 | or list of lists in the form l ) |
---|
2176 | RETURN: a list in the same format as l, but all polynomials g are set to zero |
---|
2177 | NOTE: The purpose of this procedure is to remove huge amounts of data |
---|
2178 | no longer needed. It is useful, if one or more of the polynomials |
---|
2179 | in l consumes much memory. It is still possible to compute invariants, |
---|
2180 | parametrizations etc. with the stripped HNE(s), but it is not possible |
---|
2181 | to use extdevelop with them. |
---|
2182 | SEE ALSO: develop, reddevelop, extdevelop |
---|
2183 | EXAMPLE: example stripHNE; shows an example |
---|
2184 | " |
---|
2185 | { |
---|
2186 | list h; |
---|
2187 | if (typeof(l[1])=="matrix") { l[4]=poly(0); } |
---|
2188 | else { |
---|
2189 | for (int i=1; i<=size(l); i++) { |
---|
2190 | h=l[i]; |
---|
2191 | h[4]=poly(0); |
---|
2192 | l[i]=h; |
---|
2193 | } |
---|
2194 | } |
---|
2195 | return(l); |
---|
2196 | } |
---|
2197 | example |
---|
2198 | { "EXAMPLE:"; echo = 2; |
---|
2199 | ring r=0,(x,y),dp; |
---|
2200 | list hne=develop(x2+y3+y4); |
---|
2201 | hne; |
---|
2202 | stripHNE(hne); |
---|
2203 | } |
---|
2204 | /////////////////////////////////////////////////////////////////////////////// |
---|
2205 | static proc extractHNEs(list HNEs, int transvers) |
---|
2206 | "USAGE: extractHNEs(HNEs,transvers); list HNEs (output from HN), |
---|
2207 | int transvers: 1 if x,y were exchanged, 0 else |
---|
2208 | RETURN: list of Hamburger-Noether-Extensions in the form of reddevelop |
---|
2209 | NOTE: This procedure is only for internal purpose; examples don't make sense |
---|
2210 | " |
---|
2211 | { |
---|
2212 | int i,maxspalte,hspalte,hnezaehler; |
---|
2213 | list HNEaktu,Ergebnis; |
---|
2214 | for (hnezaehler=1; hnezaehler<=size(HNEs); hnezaehler++) { |
---|
2215 | maxspalte=0; |
---|
2216 | HNEaktu=HNEs[hnezaehler]; |
---|
2217 | if (defined(HNDebugOn)) {"To process:";HNEaktu;} |
---|
2218 | if (size(HNEaktu)!=size(HNEaktu[1])+2) { |
---|
2219 | "The ideals and the hqs in HNEs[",hnezaehler,"] don't match!!"; |
---|
2220 | HNEs[hnezaehler]; |
---|
2221 | } |
---|
2222 | //------------ ermittle maximale Anzahl benoetigter Spalten: ---------------- |
---|
2223 | for (i=2; i<size(HNEaktu); i++) { |
---|
2224 | hspalte=ncols(HNEaktu[i]); |
---|
2225 | maxspalte=maxspalte*(hspalte < maxspalte)+hspalte*(hspalte >= maxspalte); |
---|
2226 | } |
---|
2227 | //------------- schreibe Ausgabe fuer hnezaehler-ten Zweig: ------------------ |
---|
2228 | matrix ma[size(HNEaktu)-2][maxspalte]; |
---|
2229 | for (i=1; i<=(size(HNEaktu)-2); i++) { |
---|
2230 | if (ncols(HNEaktu[i+1]) > 1) { |
---|
2231 | ma[i,1..ncols(HNEaktu[i+1])]=HNEaktu[i+1]; } |
---|
2232 | else { ma[i,1]=HNEaktu[i+1][1];} |
---|
2233 | } |
---|
2234 | Ergebnis[hnezaehler]=list(ma,HNEaktu[1],transvers,HNEaktu[size(HNEaktu)]); |
---|
2235 | kill ma; |
---|
2236 | } |
---|
2237 | return(Ergebnis); |
---|
2238 | } |
---|
2239 | /////////////////////////////////////////////////////////////////////////////// |
---|
2240 | |
---|
2241 | proc factorfirst(poly f, int M, int N) |
---|
2242 | "USAGE : factorfirst(f,M,N); f poly, M,N int |
---|
2243 | RETURN: number d: f=c*(y^(N/e) - d*x^(M/e))^e with e=gcd(M,N), number c fitting |
---|
2244 | 0 if d does not exist |
---|
2245 | EXAMPLE: example factorfirst; shows an example |
---|
2246 | " |
---|
2247 | { |
---|
2248 | number c = koeff(f,0,N); |
---|
2249 | number delta; |
---|
2250 | int eps,l; |
---|
2251 | int p=char(basering); |
---|
2252 | string ringchar=charstr(basering); |
---|
2253 | |
---|
2254 | if (c == 0) {"Something has gone wrong! I didn't get N correctly!"; exit;} |
---|
2255 | int e = gcd(M,N); |
---|
2256 | |
---|
2257 | if (p==0) { delta = koeff(f,M/ e,N - N/ e) / (-1*e*c); } |
---|
2258 | else { |
---|
2259 | if (e%p != 0) { delta = koeff(f,M/ e,N - N/ e) / (-1*e*c); } |
---|
2260 | else { |
---|
2261 | eps = e; |
---|
2262 | for (l = 0; eps%p == 0; l=l+1) { eps=eps/ p;} |
---|
2263 | if (defined(HNDebugOn)) {e," -> ",eps,"*",p,"^",l;} |
---|
2264 | delta = koeff(f,(M/ e)*p^l,(N/ e)*p^l*(eps-1)) / (-1*eps*c); |
---|
2265 | |
---|
2266 | if ((charstr(basering) != string(p)) and (delta != 0)) { |
---|
2267 | //------ coefficient field is not Z/pZ => (p^l)th root is not identity ------- |
---|
2268 | delta=0; |
---|
2269 | if (defined(HNDebugOn)) { |
---|
2270 | "trivial factorization not implemented for", |
---|
2271 | "parameters---I've to use 'factorize'"; |
---|
2272 | } |
---|
2273 | } |
---|
2274 | } |
---|
2275 | } |
---|
2276 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:",f," = ",c, |
---|
2277 | "* (y^"+string(N/ e),"-",delta,"* x^"+string(M/ e)+")^",e," ?";} |
---|
2278 | if (f != c*(var(2)^(N/ e) - delta*var(1)^(M/ e))^e) {return(0);} |
---|
2279 | else {return(delta);} |
---|
2280 | } |
---|
2281 | example |
---|
2282 | { "EXAMPLE:"; echo = 2; |
---|
2283 | ring exring=7,(x,y),dp; |
---|
2284 | factorfirst(2*(y3-3x4)^5,20,15); |
---|
2285 | factorfirst(x14+y7,14,7); |
---|
2286 | factorfirst(x14+x8y3+y7,14,7); |
---|
2287 | } |
---|
2288 | /////////////////////////////////////////////////////////////////////////////// |
---|
2289 | |
---|
2290 | proc HNdevelop (poly f) |
---|
2291 | "USAGE: HNdevelop(f); f poly |
---|
2292 | RETURN: Hamburger-Noether development of f: |
---|
2293 | A list of lists in the form of develop(f) |
---|
2294 | (matrix,intvec,int,poly -- the last int indicating irreducibility is |
---|
2295 | omitted); each entry contains the data for one of the branches of f. |
---|
2296 | For more details type `help develop;' |
---|
2297 | CREATE: a ring with name `HNEring', variables `x,y' and ordering `ls' over |
---|
2298 | a field extension of the current basering's ground field. |
---|
2299 | As the Hamburger-Noether development normally does not exist |
---|
2300 | in the originally given basering, @code{HNdevelop} always defines |
---|
2301 | HNEring and changes to it. The field extension is chosen minimal. |
---|
2302 | NOTE: @code{HNdevelop} decides which procedure (@code{develop} or |
---|
2303 | @code{reddevelop}) applies best to the given problem and calls it. |
---|
2304 | SEE ALSO: develop, reddevelop, extdevelop |
---|
2305 | EXAMPLE: example HNdevelop; shows an example |
---|
2306 | " |
---|
2307 | { |
---|
2308 | int irred=0; |
---|
2309 | //--------- Falls Ring (p^k,a),...: Wechsel in (p,a),... + minpoly ----------- |
---|
2310 | if ((find(charstr(basering),string(char(basering)))!=1) && |
---|
2311 | (charstr(basering)<>"real")) { |
---|
2312 | string strmip=string(minpoly); |
---|
2313 | string strf=string(f); |
---|
2314 | execute("ring tempr=("+string(char(basering))+","+parstr(basering)+"),(" |
---|
2315 | +varstr(basering)+"),dp;"); |
---|
2316 | execute("minpoly="+strmip+";"); |
---|
2317 | execute("poly f="+strf+";"); |
---|
2318 | list hne=reddevelop(f); |
---|
2319 | if ((voice==2) && (printlevel > -1)) { |
---|
2320 | "// Attention: The parameter",par(1),"has changed its meaning!"; |
---|
2321 | "// It need no longer be a generator of the cyclic group of unities!"; |
---|
2322 | } |
---|
2323 | } |
---|
2324 | else { |
---|
2325 | //--- Falls Ring (0,a),... + minpoly : solange factorize nicht in Singular --- |
---|
2326 | //------- implementiert ist, develop aufrufen (kann spaeter entfallen) ------- |
---|
2327 | if ((char(basering)==0) && (npars(basering)==1)) { |
---|
2328 | if (string(minpoly)<>"0") { irred=1; } |
---|
2329 | } |
---|
2330 | //------------------ Aufruf der geeigneten Prozedur -------------------------- |
---|
2331 | if (irred==0) { |
---|
2332 | list hne=pre_HN(f,0); // = reddevelop(f); |
---|
2333 | dbprint(printlevel+1, |
---|
2334 | "// result: "+string(size(hne))+" branch(es) successfully computed,", |
---|
2335 | "// basering has changed to HNEring"); |
---|
2336 | } |
---|
2337 | else { |
---|
2338 | def altring=basering; |
---|
2339 | string strmip=string(minpoly); |
---|
2340 | ring HNEring=(char(altring),`parstr(altring)`),(x,y),ls; |
---|
2341 | execute("minpoly="+strmip+";"); |
---|
2342 | export HNEring; |
---|
2343 | poly f=fetch(altring,f); |
---|
2344 | list hn=develop(f,-1); |
---|
2345 | list hne; |
---|
2346 | if (hn[3] <> -1) { |
---|
2347 | hne[1]=list(hn[1],hn[2],hn[3],hn[4]); |
---|
2348 | if (hn[5] <> 1) { |
---|
2349 | " ** WARNING : The curve is reducible, but only one branch could be found!"; |
---|
2350 | } |
---|
2351 | } |
---|
2352 | else { " ** Sorry -- could not find a HNE."; } |
---|
2353 | dbprint(printlevel+1,"// note: basering has changed to HNEring"); |
---|
2354 | } |
---|
2355 | } |
---|
2356 | keepring basering; |
---|
2357 | return(hne); |
---|
2358 | } |
---|
2359 | example |
---|
2360 | { |
---|
2361 | // -------- prepare for example --------- |
---|
2362 | if (nameof(basering)=="HNEring") { |
---|
2363 | def rettering=HNEring; |
---|
2364 | kill HNEring; |
---|
2365 | } |
---|
2366 | // ------ the example starts here ------- |
---|
2367 | "EXAMPLE:"; echo = 2; |
---|
2368 | ring r=0,(x,y),dp; |
---|
2369 | list hne=HNdevelop(x4-y6); |
---|
2370 | nameof(basering); |
---|
2371 | size(hne); // i.e. x4-y6 has two branches |
---|
2372 | print(hne[1][1]); // HN-matrix of 1st branch |
---|
2373 | param(hne[1]); |
---|
2374 | param(hne[2]); |
---|
2375 | displayInvariants(hne); |
---|
2376 | kill HNEring,r; |
---|
2377 | echo = 0; |
---|
2378 | // --- restore HNEring if previously defined --- |
---|
2379 | if (defined(rettering)) { |
---|
2380 | setring rettering; |
---|
2381 | def HNEring=rettering; |
---|
2382 | export HNEring; |
---|
2383 | } |
---|
2384 | } |
---|
2385 | /////////////////////////////////////////////////////////////////////////////// |
---|
2386 | |
---|
2387 | proc reddevelop (poly f) |
---|
2388 | "USAGE: reddevelop(f); f poly |
---|
2389 | RETURN: Hamburger-Noether development of f: |
---|
2390 | A list of lists in the form of develop(f) |
---|
2391 | (matrix,intvec,int,poly -- the last int indicating irreducibility is |
---|
2392 | omitted); each entry contains the data for one of the branches of f. |
---|
2393 | For more details type `help develop;' |
---|
2394 | CREATE: a ring with name `HNEring', variables `x,y' and ordering `ls' over |
---|
2395 | a field extension of the current basering's ground field. |
---|
2396 | As the Hamburger-Noether development of a reducible curve normally |
---|
2397 | does not exist in the given basering, @code{reddevelop} always defines |
---|
2398 | HNEring and changes to it. The field extension is chosen minimal. |
---|
2399 | SEE ALSO: develop, extdevelop, displayHNE |
---|
2400 | EXAMPLE: example reddevelop; shows an example |
---|
2401 | " |
---|
2402 | { |
---|
2403 | list Ergebnis=pre_HN(f,0); |
---|
2404 | if (size(Ergebnis)>0) { // otherwise an error may have occurred |
---|
2405 | dbprint(printlevel+1, |
---|
2406 | "// result: "+string(size(Ergebnis))+" branch(es) successfully computed,", |
---|
2407 | "// basering has changed to HNEring"); |
---|
2408 | } |
---|
2409 | keepring basering; |
---|
2410 | return(Ergebnis); |
---|
2411 | } |
---|
2412 | example |
---|
2413 | { |
---|
2414 | // -------- prepare for example --------- |
---|
2415 | if (nameof(basering)=="HNEring") |
---|
2416 | { |
---|
2417 | def rettering=HNEring; |
---|
2418 | kill HNEring; |
---|
2419 | } |
---|
2420 | // ------ the example starts here ------- |
---|
2421 | "EXAMPLE:"; echo = 2; |
---|
2422 | ring r=0,(x,y),dp; |
---|
2423 | list hne=reddevelop(x4-y6); |
---|
2424 | size(hne); // i.e. x4-y6 has two branches |
---|
2425 | print(hne[1][1]); // HN-matrix of 1st branch |
---|
2426 | param(hne[1]); |
---|
2427 | param(hne[2]); |
---|
2428 | displayInvariants(hne); |
---|
2429 | kill HNEring,r; |
---|
2430 | // ----------------- a more interesting example: -------------------- |
---|
2431 | ring r = 32003,(x,y),dp; |
---|
2432 | poly f = x25+x24-4x23-1x22y+4x22+8x21y-2x21-12x20y-4x19y2+4x20+10x19y |
---|
2433 | +12x18y2-24x18y-20x17y2-4x16y3+x18+60x16y2+20x15y3-9x16y |
---|
2434 | -80x14y3-10x13y4+36x14y2+60x12y4+2x11y5-84x12y3-24x10y5 |
---|
2435 | +126x10y4+4x8y6-126x8y5+84x6y6-36x4y7+9x2y8-1y9; |
---|
2436 | list hne=reddevelop(f); |
---|
2437 | size(hne); |
---|
2438 | print(hne[1][1]); |
---|
2439 | print(hne[4][1]); |
---|
2440 | // a ring change was necessary, a is a parameter |
---|
2441 | HNEring; |
---|
2442 | kill HNEring,r; |
---|
2443 | echo = 0; |
---|
2444 | // --- restore HNEring if previously defined --- |
---|
2445 | if (defined(rettering)) { |
---|
2446 | setring rettering; |
---|
2447 | def HNEring=rettering; |
---|
2448 | export HNEring; |
---|
2449 | } |
---|
2450 | } |
---|
2451 | /////////////////////////////////////////////////////////////////////////////// |
---|
2452 | |
---|
2453 | static proc pre_HN (poly f, int essential) |
---|
2454 | "NOTE: This procedure is only for internal use, it is called via |
---|
2455 | reddevelop or essdevelop" |
---|
2456 | { |
---|
2457 | def altring = basering; |
---|
2458 | int p = char(basering); // Ringcharakteristik |
---|
2459 | |
---|
2460 | //-------------------- Tests auf Zulaessigkeit von basering ------------------ |
---|
2461 | if (charstr(basering)=="real") { |
---|
2462 | " Singular cannot factorize over 'real' as ground field"; |
---|
2463 | return(list()); |
---|
2464 | } |
---|
2465 | if (size(maxideal(1))<2) { |
---|
2466 | " A univariate polynomial ring makes no sense !"; |
---|
2467 | return(list()); |
---|
2468 | } |
---|
2469 | if ((size(maxideal(1))>2) && (printlevel > -1)) { |
---|
2470 | " Warning: all but the first two variables are ignored!"; |
---|
2471 | } |
---|
2472 | if (find(charstr(basering),string(char(basering)))!=1) { |
---|
2473 | " ring of type (p^k,a) not implemented"; |
---|
2474 | //---------------------------------------------------------------------------- |
---|
2475 | // weder primitives Element noch factorize noch map "char p^k" -> "char -p" |
---|
2476 | // [(p^k,a)->(p,a) ground field] noch fetch |
---|
2477 | //---------------------------------------------------------------------------- |
---|
2478 | return(list()); |
---|
2479 | } |
---|
2480 | //----------------- Definition eines neuen Ringes: HNEring ------------------- |
---|
2481 | string namex=varstr(1); string namey=varstr(2); |
---|
2482 | if (string(char(altring))==charstr(altring)) { // kein Parameter |
---|
2483 | ring HNEring = char(altring),(x,y),ls; |
---|
2484 | map m=altring,x,y; |
---|
2485 | poly f=m(f); |
---|
2486 | kill m; |
---|
2487 | } |
---|
2488 | else { |
---|
2489 | string mipl=string(minpoly); |
---|
2490 | if (mipl=="0") { |
---|
2491 | " ** WARNING: No algebraic extension of this ground field is possible!"; |
---|
2492 | " ** We try to develop this polynomial, but if the need for an extension"; |
---|
2493 | " ** occurs during the calculation, we cannot proceed with the"; |
---|
2494 | " ** corresponding branches ..."; |
---|
2495 | execute("ring HNEring=("+charstr(basering)+"),(x,y),ls;"); |
---|
2496 | //--- ring ...=(char(.),`parstr()`),... geht nicht, wenn mehr als 1 Param. --- |
---|
2497 | } |
---|
2498 | else { |
---|
2499 | string pa=parstr(altring); |
---|
2500 | ring HNhelpring=p,`pa`,dp; |
---|
2501 | execute("poly mipo="+mipl+";"); // Minimalpolynom in Polynom umgewandelt |
---|
2502 | ring HNEring=(p,a),(x,y),ls; |
---|
2503 | map getminpol=HNhelpring,a; |
---|
2504 | mipl=string(getminpol(mipo)); // String umgewandelt mit 'a' als Param. |
---|
2505 | execute("minpoly="+mipl+";"); // "minpoly=poly is not supported" |
---|
2506 | kill HNhelpring, getminpol; |
---|
2507 | } |
---|
2508 | if (nvars(altring)==2) { poly f=fetch(altring,f); } |
---|
2509 | else { |
---|
2510 | map m=altring,x,y; |
---|
2511 | poly f=m(f); |
---|
2512 | kill m; |
---|
2513 | } |
---|
2514 | } |
---|
2515 | export HNEring; |
---|
2516 | |
---|
2517 | if (defined(HNDebugOn)) |
---|
2518 | {"received polynomial: ",f,", with x =",namex,", y =",namey;} |
---|
2519 | |
---|
2520 | //----------------------- Variablendefinitionen ------------------------------ |
---|
2521 | int Abbruch,i,NullHNEx,NullHNEy; |
---|
2522 | string str; |
---|
2523 | list Newton,Ergebnis,hilflist; |
---|
2524 | |
---|
2525 | //====================== Tests auf Zulaessigkeit des Polynoms ================ |
---|
2526 | |
---|
2527 | //-------------------------- Test, ob Einheit oder Null ---------------------- |
---|
2528 | if (subst(subst(f,x,0),y,0)!=0) { |
---|
2529 | dbprint(printlevel+1, |
---|
2530 | "The given polynomial is a unit in the power series ring!"); |
---|
2531 | keepring HNEring; |
---|
2532 | return(list()); // there are no HNEs |
---|
2533 | } |
---|
2534 | if (f==0) { |
---|
2535 | dbprint(printlevel+1,"The given polynomial is zero!"); |
---|
2536 | keepring HNEring; |
---|
2537 | return(list()); // there are no HNEs |
---|
2538 | } |
---|
2539 | |
---|
2540 | //----------------------- Test auf Quadratfreiheit -------------------------- |
---|
2541 | |
---|
2542 | if ((p==0) and (size(charstr(basering))==1)) { |
---|
2543 | |
---|
2544 | //-------- Fall basering==0,... : Wechsel in Ring mit char >0 ---------------- |
---|
2545 | // weil squarefree eine Standardbasis berechnen muss (verwendet Syzygien) |
---|
2546 | // -- wenn f in diesem Ring quadratfrei ist, dann erst recht im Ring HNEring |
---|
2547 | //---------------------------------------------------------------------------- |
---|
2548 | int testerg=(polytest(f)==0); |
---|
2549 | ring zweitring = 32003,(x,y),dp; |
---|
2550 | |
---|
2551 | map polyhinueber=HNEring,x,y; // fetch geht nicht |
---|
2552 | poly f=polyhinueber(f); |
---|
2553 | poly test_sqr=squarefree(f); |
---|
2554 | if (test_sqr != f) { |
---|
2555 | if (printlevel>0) { |
---|
2556 | "Most probably the given polynomial is not squarefree. But the test was"; |
---|
2557 | "made in characteristic 32003 and not 0 to improve speed. You can"; |
---|
2558 | "(r) redo the test in char 0 (but this may take some time)"; |
---|
2559 | "(c) continue the development, if you're sure that the polynomial IS", |
---|
2560 | "squarefree"; |
---|
2561 | if (testerg==1) { |
---|
2562 | "(s) continue the development with a squarefree factor (*)";} |
---|
2563 | "(q) or just quit the algorithm (default action)"; |
---|
2564 | "";"Please enter the letter of your choice:"; |
---|
2565 | str=read("")[1]; // reads one character |
---|
2566 | } |
---|
2567 | else { str="r"; } // printlevel <= 0: non-interactive behaviour |
---|
2568 | setring HNEring; |
---|
2569 | map polyhinueber=zweitring,x,y; |
---|
2570 | if (str=="r") { |
---|
2571 | poly test_sqr=squarefree(f); |
---|
2572 | if (test_sqr != f) { |
---|
2573 | if (printlevel>0) { "The given polynomial is in fact not squarefree."; } |
---|
2574 | else { "The given polynomial is not squarefree!"; } |
---|
2575 | "I'll continue with the radical."; |
---|
2576 | f=test_sqr; |
---|
2577 | } |
---|
2578 | else { |
---|
2579 | dbprint(printlevel, |
---|
2580 | "everything is ok -- the polynomial is squarefree in characteristic 0"); |
---|
2581 | } |
---|
2582 | } |
---|
2583 | else { |
---|
2584 | if ((str=="s") and (testerg==1)) { |
---|
2585 | "(*)attention: it could be that the factor is only one in char 32003!"; |
---|
2586 | f=polyhinueber(test_sqr); |
---|
2587 | } |
---|
2588 | else { |
---|
2589 | if (str<>"c") { |
---|
2590 | setring altring; |
---|
2591 | if(system("with","Namespaces")) { kill Top::HNEring; } |
---|
2592 | kill HNEring;kill zweitring; |
---|
2593 | return(list());} |
---|
2594 | else { "if the algorithm doesn't terminate, you were wrong...";} |
---|
2595 | }} |
---|
2596 | kill zweitring; |
---|
2597 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
2598 | } |
---|
2599 | else { |
---|
2600 | setring HNEring; |
---|
2601 | kill zweitring; |
---|
2602 | } |
---|
2603 | } |
---|
2604 | //------------------ Fall Char > 0 oder Ring hat Parameter ------------------- |
---|
2605 | else { |
---|
2606 | poly test_sqr=squarefree(f); |
---|
2607 | if (test_sqr != f) { |
---|
2608 | if (printlevel>0) { |
---|
2609 | if (test_sqr == 1) { |
---|
2610 | "The given polynomial is of the form g^"+string(p)+","; |
---|
2611 | "therefore not squarefree. You can:"; |
---|
2612 | " (q) quit the algorithm (recommended) or"; |
---|
2613 | " (f) continue with the full radical (using a factorization of the"; |
---|
2614 | " pure power part; this could take much time)"; |
---|
2615 | "";"Please enter the letter of your choice:"; |
---|
2616 | str=read("")[1]; |
---|
2617 | if (str<>"f") { str="q"; } |
---|
2618 | } |
---|
2619 | else { |
---|
2620 | "The given polynomial is not squarefree."; |
---|
2621 | if (p != 0) |
---|
2622 | { |
---|
2623 | " You can:"; |
---|
2624 | " (c) continue with a squarefree divisor (but factors of the form g^" |
---|
2625 | +string(p); |
---|
2626 | " are lost; this is recommended, takes no more time)"; |
---|
2627 | " (f) continue with the full radical (using a factorization of the"; |
---|
2628 | " pure power part; this could take much time)"; |
---|
2629 | " (q) quit the algorithm"; |
---|
2630 | "";"Please enter the letter of your choice:"; |
---|
2631 | str=read("")[1]; |
---|
2632 | if ((str<>"f") && (str<>"q")) { str="c"; } |
---|
2633 | } |
---|
2634 | else { "I'll continue with the radical."; str="c"; } |
---|
2635 | } // endelse (test_sqr!=1) |
---|
2636 | } |
---|
2637 | else { |
---|
2638 | "//** Error: The given polynomial is not squarefree!"; |
---|
2639 | "//** Since the global variable `printlevel' has the value",printlevel, |
---|
2640 | "we stop here."; |
---|
2641 | "// Either call me again with a squarefree polynomial f or assign"; |
---|
2642 | " printlevel=1;"; |
---|
2643 | "// before calling me with a non-squarefree f."; |
---|
2644 | "// If printlevel > 0, I will present to you some possibilities how to", |
---|
2645 | "proceed."; |
---|
2646 | str="q"; |
---|
2647 | } |
---|
2648 | if (str=="q") { |
---|
2649 | if(system("with","Namespaces")) { kill Top::HNEring; } |
---|
2650 | setring altring;kill HNEring; |
---|
2651 | return(list()); |
---|
2652 | } |
---|
2653 | if (str=="c") { f=test_sqr; } |
---|
2654 | if (str=="f") { f=allsquarefree(f,test_sqr); } |
---|
2655 | } |
---|
2656 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
2657 | |
---|
2658 | } |
---|
2659 | //====================== Ende Test auf Quadratfreiheit ======================= |
---|
2660 | if (subst(subst(f,x,0),y,0)!=0) { |
---|
2661 | "Sorry. The remaining polynomial is a unit in the power series ring..."; |
---|
2662 | keepring HNEring; |
---|
2663 | return(list()); |
---|
2664 | } |
---|
2665 | //---------------------- Test, ob f teilbar durch x oder y ------------------- |
---|
2666 | if (subst(f,y,0)==0) { |
---|
2667 | f=f/y; NullHNEy=1; } // y=0 is a solution |
---|
2668 | if (subst(f,x,0)==0) { |
---|
2669 | f=f/x; NullHNEx=1; } // x=0 is a solution |
---|
2670 | |
---|
2671 | Newton=newtonpoly(f); |
---|
2672 | i=1; Abbruch=0; |
---|
2673 | //---------------------------------------------------------------------------- |
---|
2674 | // finde Eckpkt. des Newtonpolys, der den Teil abgrenzt, fuer den x transvers: |
---|
2675 | // Annahme: Newton ist sortiert, s.d. Newton[1]=Punkt auf der y-Achse, |
---|
2676 | // Newton[letzt]=Punkt auf der x-Achse |
---|
2677 | //---------------------------------------------------------------------------- |
---|
2678 | while ((i<size(Newton)) and (Abbruch==0)) { |
---|
2679 | if ((Newton[i+1][1]-Newton[i][1])>=(Newton[i][2]-Newton[i+1][2])) |
---|
2680 | {Abbruch=1;} |
---|
2681 | else {i=i+1;} |
---|
2682 | } |
---|
2683 | int grenze1=Newton[i][2]; |
---|
2684 | int grenze2=Newton[i][1]; |
---|
2685 | //---------------------------------------------------------------------------- |
---|
2686 | // Stelle Ring bereit zur Uebertragung der Daten im Fall einer Koerperer- |
---|
2687 | // weiterung. Definiere Objekte, die spaeter uebertragen werden. |
---|
2688 | // Binde die Listen (azeilen,...) an den Ring (um sie nicht zu ueberschreiben |
---|
2689 | // bei Def. in einem anderen Ring). |
---|
2690 | // Exportiere Objekte, damit sie auch in der proc HN noch da sind |
---|
2691 | //---------------------------------------------------------------------------- |
---|
2692 | ring HNE_noparam = char(altring),(a,x,y),ls; |
---|
2693 | export HNE_noparam; |
---|
2694 | poly f; |
---|
2695 | list azeilen=ideal(0); |
---|
2696 | list HNEs=ideal(0); |
---|
2697 | list aneu=ideal(0); |
---|
2698 | list faktoren=ideal(0); |
---|
2699 | ideal deltais; |
---|
2700 | poly delta; // nicht number, weil delta von a abhaengen kann |
---|
2701 | export f,azeilen,HNEs,aneu,faktoren,deltais,delta; |
---|
2702 | //----- hier steht die Anzahl bisher benoetigter Ringerweiterungen drin: ----- |
---|
2703 | int EXTHNEnumber=0; export EXTHNEnumber; |
---|
2704 | setring HNEring; |
---|
2705 | |
---|
2706 | // ================= Die eigentliche Berechnung der HNE: ===================== |
---|
2707 | |
---|
2708 | // ------- Berechne HNE von allen Zweigen, fuer die x transversal ist: ------- |
---|
2709 | if (defined(HNDebugOn)) |
---|
2710 | {"1st step: Treat Newton polygon until height",grenze1;} |
---|
2711 | if (grenze1>0) { |
---|
2712 | hilflist=HN(f,grenze1,1,essential); |
---|
2713 | if (typeof(hilflist[1][1])=="ideal") { hilflist[1]=list(); } |
---|
2714 | //- fuer den Fall, dass keine Zweige in transz. Erw. berechnet werden konnten- |
---|
2715 | Ergebnis=extractHNEs(hilflist[1],0); |
---|
2716 | if (hilflist[2]!=-1) { |
---|
2717 | if (defined(HNDebugOn)) {" ring change in HN(",1,") detected";} |
---|
2718 | poly transfproc=hilflist[2]; |
---|
2719 | map hole=HNE_noparam,transfproc,x,y; |
---|
2720 | setring HNE_noparam; |
---|
2721 | f=imap(HNEring,f); |
---|
2722 | setring EXTHNEring(EXTHNEnumber); |
---|
2723 | poly f=hole(f); |
---|
2724 | } |
---|
2725 | } |
---|
2726 | if (NullHNEy==1) { |
---|
2727 | Ergebnis=Ergebnis+list(list(matrix(ideal(0,x)),intvec(1),int(0),poly(0))); |
---|
2728 | } |
---|
2729 | // --------------- Berechne HNE von allen verbliebenen Zweigen: -------------- |
---|
2730 | if (defined(HNDebugOn)) |
---|
2731 | {"2nd step: Treat Newton polygon until height",grenze2;} |
---|
2732 | if (grenze2>0) { |
---|
2733 | map xytausch=basering,y,x; |
---|
2734 | kill hilflist; |
---|
2735 | def letztring=basering; |
---|
2736 | if (EXTHNEnumber==0) { setring HNEring; } |
---|
2737 | else { setring EXTHNEring(EXTHNEnumber); } |
---|
2738 | list hilflist=HN(xytausch(f),grenze2,1,essential); |
---|
2739 | if (typeof(hilflist[1][1])=="ideal") { hilflist[1]=list(); } |
---|
2740 | if (not defined(Ergebnis)) { |
---|
2741 | //-- HN wurde schon mal ausgefuehrt; Ringwechsel beim zweiten Aufruf von HN -- |
---|
2742 | if (defined(HNDebugOn)) {" ring change in HN(",1,") detected";} |
---|
2743 | poly transfproc=hilflist[2]; |
---|
2744 | map hole=HNE_noparam,transfproc,x,y; |
---|
2745 | setring HNE_noparam; |
---|
2746 | list Ergebnis=imap(letztring,Ergebnis); |
---|
2747 | setring EXTHNEring(EXTHNEnumber); |
---|
2748 | list Ergebnis=hole(Ergebnis); |
---|
2749 | } |
---|
2750 | Ergebnis=Ergebnis+extractHNEs(hilflist[1],1); |
---|
2751 | } |
---|
2752 | if (NullHNEx==1) { |
---|
2753 | Ergebnis=Ergebnis+list(list(matrix(ideal(0,x)),intvec(1),int(1),poly(0))); |
---|
2754 | } |
---|
2755 | //------------------- Loesche globale, nicht mehr benoetigte Objekte: -------- |
---|
2756 | if (EXTHNEnumber>0) { |
---|
2757 | if(system("with","Namespaces")) { kill Top::HNEring; } |
---|
2758 | kill HNEring; |
---|
2759 | def HNEring=EXTHNEring(EXTHNEnumber); |
---|
2760 | setring HNEring; |
---|
2761 | export HNEring; |
---|
2762 | kill EXTHNEring(1..EXTHNEnumber); |
---|
2763 | } |
---|
2764 | kill HNE_noparam; |
---|
2765 | kill EXTHNEnumber; |
---|
2766 | keepring basering; |
---|
2767 | return(Ergebnis); |
---|
2768 | } |
---|
2769 | |
---|
2770 | /////////////////////////////////////////////////////////////////////////////// |
---|
2771 | proc essdevelop (poly f) |
---|
2772 | "USAGE: essdevelop(f); f poly |
---|
2773 | RETURN: Hamburger-Noether development of essential branches of f: |
---|
2774 | A list of lists in the form of develop(f) |
---|
2775 | (matrix,intvec,int,poly -- the last int indicating irreducibility is |
---|
2776 | omitted); each entry contains the data for one of the branches of f. |
---|
2777 | For more details type `help develop;' |
---|
2778 | CREATE: a ring with name `HNEring', variables `x,y' and ordering `ls' over |
---|
2779 | a field extension of the current basering's ground field. |
---|
2780 | As the Hamburger-Noether development of a reducible curve normally |
---|
2781 | does not exist in the given basering, @code{essdevelop} always defines |
---|
2782 | HNEring and changes to it. The field extension is chosen minimal. |
---|
2783 | NOTE: If the HNE needs a field extension, some of the branches will be |
---|
2784 | conjugate. In this case @code{essdevelop} reduces the computation to |
---|
2785 | one representative for each group of conjugate branches. |
---|
2786 | Note that the degree of each branch is in general less than the degree |
---|
2787 | of the field extension in which all HNEs can be put. |
---|
2788 | |
---|
2789 | Use @code{reddevelop} or @code{HNdevelop} to compute a complete HNE, |
---|
2790 | i.e. a HNE for all branches. |
---|
2791 | SEE ALSO: develop, reddevelop, HNdevelop, extdevelop |
---|
2792 | EXAMPLE: example essdevelop; shows an example |
---|
2793 | " |
---|
2794 | { |
---|
2795 | list Ergebnis=pre_HN(f,1); |
---|
2796 | dbprint(printlevel+1, |
---|
2797 | "// result: "+string(size(Ergebnis))+" branch(es) successfully computed;"); |
---|
2798 | if (string(minpoly) <> "0") { |
---|
2799 | dbprint(printlevel+1, |
---|
2800 | "// note that conjugate branches are omitted and that the number", |
---|
2801 | "// of branches represented by each remaining one may vary!"); |
---|
2802 | } |
---|
2803 | dbprint(printlevel+1, |
---|
2804 | "// basering has changed to HNEring"); |
---|
2805 | keepring basering; |
---|
2806 | return(Ergebnis); |
---|
2807 | } |
---|
2808 | example |
---|
2809 | { |
---|
2810 | // -------- prepare for example --------- |
---|
2811 | if (nameof(basering)=="HNEring") { |
---|
2812 | def rettering=HNEring; |
---|
2813 | kill HNEring; |
---|
2814 | } |
---|
2815 | // ------ the example starts here ------- |
---|
2816 | "EXAMPLE:"; echo = 2; |
---|
2817 | ring r=2,(x,y),dp; |
---|
2818 | poly f=(x4+x2y+y2)*(x3+xy2+y3); |
---|
2819 | // --------- compute all branches: --------- |
---|
2820 | list hne=reddevelop(f); |
---|
2821 | displayHNE(hne); |
---|
2822 | setring r; |
---|
2823 | // --- compute only one of conjugate branches: --- |
---|
2824 | list hne=essdevelop(f); |
---|
2825 | displayHNE(hne); |
---|
2826 | // nr. 1 of essdevelop represents nr. 1 - 3 of reddevelop and |
---|
2827 | // nr. 2 of essdevelop represents nr. 4 + 5 of reddevelop |
---|
2828 | echo = 0; |
---|
2829 | // --- restore HNEring if previously defined --- |
---|
2830 | if (defined(rettering)) { |
---|
2831 | setring rettering; |
---|
2832 | def HNEring=rettering; |
---|
2833 | export HNEring; |
---|
2834 | } |
---|
2835 | } |
---|
2836 | |
---|
2837 | /////////////////////////////////////////////////////////////////////////////// |
---|
2838 | static proc HN (poly f,int grenze, int Aufruf_Ebene, int essential) |
---|
2839 | "NOTE: This procedure is only for internal use, it is called via pre_HN" |
---|
2840 | { |
---|
2841 | //---------- Variablendefinitionen fuer den unverzweigten Teil: -------------- |
---|
2842 | if (defined(HNDebugOn)) {"procedure HN",Aufruf_Ebene;} |
---|
2843 | int Abbruch,ende,i,j,e,M,N,Q,R,zeiger,zeile,zeilevorher; |
---|
2844 | intvec hqs; |
---|
2845 | poly fvorher; |
---|
2846 | list erg=ideal(0); list HNEs=ideal(0); // um die Listen an den Ring zu binden |
---|
2847 | |
---|
2848 | //-------------------- Bedeutung von Abbruch: -------------------------------- |
---|
2849 | //------- 0:keine Verzweigung | 1:Verzweigung,nicht fertig | 2:fertig -------- |
---|
2850 | // |
---|
2851 | // Struktur von HNEs : Liste von Listen L (fuer jeden Zweig) der Form |
---|
2852 | // L[1]=intvec (hqs), L[2],L[3],... ideal (die Zeilen (0,1,...) der HNE) |
---|
2853 | // L[letztes]=poly (transformiertes f) |
---|
2854 | //---------------------------------------------------------------------------- |
---|
2855 | list Newton; |
---|
2856 | number delta; |
---|
2857 | int p = char(basering); // Ringcharakteristik |
---|
2858 | list azeilen=ideal(0); |
---|
2859 | ideal hilfid; list hilflist=ideal(0); intvec hilfvec; |
---|
2860 | |
---|
2861 | // ======================= der unverzweigte Teil: ============================ |
---|
2862 | while (Abbruch==0) { |
---|
2863 | Newton=newtonpoly(f); |
---|
2864 | zeiger=find_in_list(Newton,grenze); |
---|
2865 | if (Newton[zeiger][2] != grenze) |
---|
2866 | {"Didn't find an edge in the Newton polygon!";} |
---|
2867 | if (zeiger==size(Newton)-1) { |
---|
2868 | if (defined(HNDebugOn)) {"only one relevant side in Newton polygon";} |
---|
2869 | M=Newton[zeiger+1][1]-Newton[zeiger][1]; |
---|
2870 | N=Newton[zeiger][2]-Newton[zeiger+1][2]; |
---|
2871 | R = M%N; |
---|
2872 | Q = M / N; |
---|
2873 | |
---|
2874 | //-------- 1. Versuch: ist der quasihomogene Leitterm reine Potenz ? --------- |
---|
2875 | // (dann geht alles wie im irreduziblen Fall) |
---|
2876 | //---------------------------------------------------------------------------- |
---|
2877 | e = gcd(M,N); |
---|
2878 | delta=factorfirst(redleit(f,Newton[zeiger],Newton[zeiger+1]) |
---|
2879 | /x^Newton[zeiger][1],M,N); |
---|
2880 | if (delta==0) { |
---|
2881 | if (defined(HNDebugOn)) {" The given polynomial is reducible !";} |
---|
2882 | Abbruch=1; |
---|
2883 | } |
---|
2884 | if (Abbruch==0) { |
---|
2885 | //-------------- f,zeile retten fuer den Spezialfall (###): ------------------ |
---|
2886 | fvorher=f;zeilevorher=zeile; |
---|
2887 | if (R==0) { |
---|
2888 | //------------- transformiere f mit T1, wenn kein Abbruch nachher: ----------- |
---|
2889 | if (N>1) { f = T1_Transform(f,delta,M/ e); } |
---|
2890 | else { ende=1; } |
---|
2891 | if (defined(HNDebugOn)) {"a("+string(zeile)+","+string(Q)+") =",delta;} |
---|
2892 | azeilen[zeile+1][Q]=delta; |
---|
2893 | } |
---|
2894 | else { |
---|
2895 | //------------- R > 0 : transformiere f mit T2 ------------------------------- |
---|
2896 | erg=T2_Transform(f,delta,M,N,referencepoly(Newton)); |
---|
2897 | f=erg[1];delta=erg[2]; |
---|
2898 | //------- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: --------- |
---|
2899 | while (R!=0) { |
---|
2900 | if (defined(HNDebugOn)) { "h("+string(zeile)+") =",Q; } |
---|
2901 | hqs[zeile+1]=Q; // denn zeile beginnt mit dem Wert 0 |
---|
2902 | //------------------ markiere das Zeilenende der HNE: ------------------------ |
---|
2903 | azeilen[zeile+1][Q+1]=x; |
---|
2904 | zeile=zeile+1; |
---|
2905 | //----------- Bereitstellung von Speicherplatz fuer eine neue Zeile: --------- |
---|
2906 | azeilen[zeile+1]=ideal(0); |
---|
2907 | M=N; N=R; R=M%N; Q=M / N; |
---|
2908 | } |
---|
2909 | if (defined(HNDebugOn)) {"a("+string(zeile)+","+string(Q)+") =",delta;} |
---|
2910 | azeilen[zeile+1][Q]=delta; |
---|
2911 | } |
---|
2912 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;} |
---|
2913 | grenze=e; |
---|
2914 | //----------------------- teste Abbruchbedingungen: -------------------------- |
---|
2915 | if (subst(f,y,0)==0) { // <==> y|f |
---|
2916 | dbprint(printlevel+1,"finite HNE of one branch found"); |
---|
2917 | // voice abzufragen macht bei rekursiven procs keinen Sinn |
---|
2918 | azeilen[zeile+1][Q+1]=x; |
---|
2919 | //- Q wird nur in hqs eingetragen, wenn der Spezialfall nicht eintritt (s.u.)- |
---|
2920 | Abbruch=2; |
---|
2921 | if (grenze>1) { |
---|
2922 | if (jet(f,1,intvec(0,1))==0) { |
---|
2923 | //------ jet(...)=alle Monome von f, die nicht durch y2 teilbar sind --------- |
---|
2924 | "THE TEST FOR SQUAREFREENESS WAS BAD!! The polynomial was NOT squarefree!!!";} |
---|
2925 | else { |
---|
2926 | //-------------------------- Spezialfall (###): ------------------------------ |
---|
2927 | // Wir haben das Problem, dass die HNE eines Zweiges hier abbricht, aber ein |
---|
2928 | // anderer Zweig bis hierher genau die gleiche HNE hat, die noch weiter geht |
---|
2929 | // Loesung: mache Transform. rueckgaengig und behandle f im Verzweigungsteil |
---|
2930 | //---------------------------------------------------------------------------- |
---|
2931 | Abbruch=1; |
---|
2932 | f=fvorher;zeile=zeilevorher;grenze=Newton[zeiger][2]; |
---|
2933 | }} |
---|
2934 | else {f=0;} // f nicht mehr gebraucht - spare Speicher |
---|
2935 | if (Abbruch==2) { hqs[zeile+1]=Q; } |
---|
2936 | } // Spezialfall nicht eingetreten |
---|
2937 | else { |
---|
2938 | if (ende==1) { |
---|
2939 | dbprint(printlevel+1,"HNE of one branch found"); |
---|
2940 | Abbruch=2; hqs[zeile+1]=-Q-1;} |
---|
2941 | } |
---|
2942 | } // end(if Abbruch==0) |
---|
2943 | } // end(if zeiger...) |
---|
2944 | else { Abbruch=1;} |
---|
2945 | } // end(while Abbruch==0) |
---|
2946 | |
---|
2947 | // ===================== der Teil bei Verzweigung: =========================== |
---|
2948 | |
---|
2949 | if (Abbruch==1) { |
---|
2950 | //---------- Variablendefinitionen fuer den verzweigten Teil: ---------------- |
---|
2951 | poly leitf,teiler,transformiert; |
---|
2952 | list aneu=ideal(0); |
---|
2953 | list faktoren; |
---|
2954 | list HNEakut=ideal(0); |
---|
2955 | ideal deltais; |
---|
2956 | intvec eis; |
---|
2957 | int zaehler,hnezaehler,zl,zl1,M1,N1,R1,Q1,needext; |
---|
2958 | int numberofRingchanges,lastRingnumber,ringischanged,flag; |
---|
2959 | string letztringname; |
---|
2960 | |
---|
2961 | zeiger=find_in_list(Newton,grenze); |
---|
2962 | if (defined(HNDebugOn)) { |
---|
2963 | "Branching part reached---Newton polygon :",Newton; |
---|
2964 | "relevant part until height",grenze,", from",Newton[zeiger],"on"; |
---|
2965 | } |
---|
2966 | azeilen=list(hqs)+azeilen; // hat jetzt Struktur von HNEs: hqs in der 1.Zeile |
---|
2967 | |
---|
2968 | //======= Schleife fuer jede zu betrachtende Seite des Newtonpolygons: ======= |
---|
2969 | for(i=zeiger; i<size(Newton); i++) { |
---|
2970 | if (defined(HNDebugOn)) { "we consider side",Newton[i],Newton[i+1]; } |
---|
2971 | M=Newton[i+1][1]-Newton[i][1]; |
---|
2972 | N=Newton[i][2]-Newton[i+1][2]; |
---|
2973 | R = M%N; |
---|
2974 | Q = M / N; |
---|
2975 | e=gcd(M,N); |
---|
2976 | needext=1; |
---|
2977 | letztringname=nameof(basering); |
---|
2978 | lastRingnumber=EXTHNEnumber; |
---|
2979 | faktoren=list(ideal(charPoly(redleit(f,Newton[i],Newton[i+1]) |
---|
2980 | /(x^Newton[i][1]*y^Newton[i+1][2]),M,N) ), |
---|
2981 | intvec(1)); // = (zu faktoriserendes Poly, 1) |
---|
2982 | |
---|
2983 | //-- wechsle so lange in Ringerw., bis Leitform vollst. in Linearfakt. zerf.:- |
---|
2984 | for (numberofRingchanges=1; needext==1; numberofRingchanges++) { |
---|
2985 | leitf=redleit(f,Newton[i],Newton[i+1])/(x^Newton[i][1]*y^Newton[i+1][2]); |
---|
2986 | delta=factorfirst(leitf,M,N); |
---|
2987 | needext=0; |
---|
2988 | if (delta==0) { |
---|
2989 | |
---|
2990 | //---------- Sonderbehandlung: faktorisere einige Polynome ueber Q(a): ------- |
---|
2991 | if (charstr(basering)=="0,a") { |
---|
2992 | faktoren,flag=extrafactor(leitf,M,N); // damit funktion. Bsp. Baladi 5 |
---|
2993 | if (flag==0) |
---|
2994 | { ERROR("Could not factorize in field of type (0,a)!"); } |
---|
2995 | } |
---|
2996 | else { |
---|
2997 | //------------------ faktorisiere das charakt. Polynom: ---------------------- |
---|
2998 | if ((numberofRingchanges==1) or (essential==0)) { |
---|
2999 | faktoren=factorlist(faktoren); |
---|
3000 | } |
---|
3001 | else { // eliminiere alle konjugierten Nullstellen bis auf eine: |
---|
3002 | ideal hilf_id; |
---|
3003 | for (zaehler=1; zaehler<=size(faktoren[1]); zaehler++) { |
---|
3004 | hilf_id=factorize(faktoren[1][zaehler],0)[1]; |
---|
3005 | if (size(hilf_id)>1) { faktoren[1][zaehler]=hilf_id[2]; } |
---|
3006 | else { faktoren[1][zaehler]=hilf_id[1]; } |
---|
3007 | } |
---|
3008 | } |
---|
3009 | } |
---|
3010 | |
---|
3011 | zaehler=1; eis=0; |
---|
3012 | for (j=1; j<=size(faktoren[2]); j++) { |
---|
3013 | teiler=faktoren[1][j]; |
---|
3014 | if (teiler/y != 0) { // sonst war's eine Einheit --> wegwerfen! |
---|
3015 | if (defined(HNDebugOn)) {"factor of leading form found:",teiler;} |
---|
3016 | if (teiler/y2 == 0) { // --> Faktor hat die Form cy+d |
---|
3017 | deltais[zaehler]=-subst(teiler,y,0)/koeff(teiler,0,1); //=-d/c |
---|
3018 | eis[zaehler]=faktoren[2][j]; |
---|
3019 | zaehler++; |
---|
3020 | } |
---|
3021 | else { |
---|
3022 | dbprint(printlevel+1, |
---|
3023 | " Change of basering (field extension) necessary!"); |
---|
3024 | if (defined(HNDebugOn)) { teiler,"is not properly factored!"; } |
---|
3025 | if (needext==0) { poly zerlege=teiler; } |
---|
3026 | needext=1; |
---|
3027 | } |
---|
3028 | } |
---|
3029 | } // end(for j) |
---|
3030 | } |
---|
3031 | else { deltais=ideal(delta); eis=e;} |
---|
3032 | if (defined(HNDebugOn)) {"roots of char. poly:";deltais; |
---|
3033 | "with multiplicities:",eis;} |
---|
3034 | if (needext==1) { |
---|
3035 | //--------------------- fuehre den Ringwechsel aus: -------------------------- |
---|
3036 | ringischanged=1; |
---|
3037 | if ((size(parstr(basering))>0) && string(minpoly)=="0") { |
---|
3038 | " ** We've had bad luck! The HNE cannot completely be calculated!"; |
---|
3039 | // HNE in transzendenter Erw. fehlgeschlagen |
---|
3040 | kill zerlege; |
---|
3041 | ringischanged=0; break; // weiter mit gefundenen Faktoren |
---|
3042 | } |
---|
3043 | if (parstr(basering)=="") { |
---|
3044 | EXTHNEnumber++; |
---|
3045 | splitring(zerlege,"EXTHNEring("+string(EXTHNEnumber)+")"); |
---|
3046 | poly transf=0; |
---|
3047 | poly transfproc=0; |
---|
3048 | } |
---|
3049 | else { |
---|
3050 | if (defined(translist)) { kill translist; } // Vermeidung einer Warnung |
---|
3051 | if (numberofRingchanges>1) { // ein Ringwechsel hat nicht gereicht |
---|
3052 | list translist=splitring(zerlege,"",list(transf,transfproc,faktoren)); |
---|
3053 | poly transf=translist[1]; |
---|
3054 | poly transfproc=translist[2]; |
---|
3055 | list faktoren=translist[3]; |
---|
3056 | } |
---|
3057 | else { |
---|
3058 | if (defined(transfproc)) { // in dieser proc geschah schon Ringwechsel |
---|
3059 | EXTHNEnumber++; |
---|
3060 | list translist=splitring(zerlege,"EXTHNEring(" |
---|
3061 | +string(EXTHNEnumber)+")",list(a,transfproc)); |
---|
3062 | poly transf=translist[1]; |
---|
3063 | poly transfproc=translist[2]; |
---|
3064 | } |
---|
3065 | else { |
---|
3066 | EXTHNEnumber++; |
---|
3067 | list translist=splitring(zerlege,"EXTHNEring(" |
---|
3068 | +string(EXTHNEnumber)+")",a); |
---|
3069 | poly transf=translist[1]; |
---|
3070 | poly transfproc=transf; |
---|
3071 | }} |
---|
3072 | } |
---|
3073 | //---------------------------------------------------------------------------- |
---|
3074 | // transf enthaelt jetzt den alten Parameter des Ringes, der aktiv war vor |
---|
3075 | // Beginn der Schleife (evtl. also ueber mehrere Ringwechsel weitergereicht), |
---|
3076 | // transfproc enthaelt den alten Parm. des R., der aktiv war zu Beginn der |
---|
3077 | // Prozedur, und der an die aufrufende Prozedur zurueckgegeben werden muss |
---|
3078 | // transf ist Null, falls der alte Ring keinen Parameter hatte, |
---|
3079 | // das gleiche gilt fuer transfproc |
---|
3080 | //---------------------------------------------------------------------------- |
---|
3081 | |
---|
3082 | //------ Neudef. von Variablen, Uebertragung bisher errechneter Daten: ------- |
---|
3083 | poly leitf,teiler,transformiert; |
---|
3084 | list aneu=ideal(0); |
---|
3085 | ideal deltais; |
---|
3086 | number delta; |
---|
3087 | setring HNE_noparam; |
---|
3088 | if (defined(letztring)) { kill letztring; } |
---|
3089 | if (lastRingnumber>0) { def letztring=EXTHNEring(lastRingnumber); } |
---|
3090 | else { def letztring=HNEring; } |
---|
3091 | f=imap(letztring,f); |
---|
3092 | faktoren=imap(letztring,faktoren); |
---|
3093 | setring EXTHNEring(EXTHNEnumber); |
---|
3094 | map hole=HNE_noparam,transf,x,y; |
---|
3095 | poly f=hole(f); |
---|
3096 | if (not defined(faktoren)) { |
---|
3097 | list faktoren=hole(faktoren); |
---|
3098 | } |
---|
3099 | } |
---|
3100 | } // end (while needext==1) bzw. for (numberofRingchanges) |
---|
3101 | |
---|
3102 | if (eis==0) { i++; continue; } |
---|
3103 | if (ringischanged==1) { |
---|
3104 | list erg,hilflist,HNEakut; // dienen nur zum Sp. von Zwi.erg. |
---|
3105 | ideal hilfid; |
---|
3106 | erg=ideal(0); hilflist=erg; HNEakut=erg; |
---|
3107 | |
---|
3108 | hole=HNE_noparam,transf,x,y; |
---|
3109 | setring HNE_noparam; |
---|
3110 | azeilen=imap(letztring,azeilen); |
---|
3111 | HNEs=imap(letztring,HNEs); |
---|
3112 | |
---|
3113 | setring EXTHNEring(EXTHNEnumber); |
---|
3114 | list azeilen=hole(azeilen); |
---|
3115 | list HNEs=hole(HNEs); |
---|
3116 | kill letztring; |
---|
3117 | ringischanged=0; |
---|
3118 | } |
---|
3119 | |
---|
3120 | //============ Schleife fuer jeden gefundenen Faktor der Leitform: =========== |
---|
3121 | for (j=1; j<=size(eis); j++) { |
---|
3122 | //-- Mache Transf. T1 oder T2, trage Daten in HNEs ein, falls HNE abbricht: -- |
---|
3123 | |
---|
3124 | //------------------------ Fall R==0: ---------------------------------------- |
---|
3125 | if (R==0) { |
---|
3126 | transformiert = T1_Transform(f,number(deltais[j]),M/ e); |
---|
3127 | if (defined(HNDebugOn)) { |
---|
3128 | "a("+string(zeile)+","+string(Q)+") =",deltais[j]; |
---|
3129 | "transformed polynomial: ",transformiert; |
---|
3130 | } |
---|
3131 | if (subst(transformiert,y,0)==0) { |
---|
3132 | dbprint(printlevel+1,"finite HNE found"); |
---|
3133 | hnezaehler++; |
---|
3134 | //------------ trage deltais[j],x ein in letzte Zeile, fertig: --------------- |
---|
3135 | HNEakut=azeilen+list(poly(0)); // =HNEs[hnezaehler]; |
---|
3136 | hilfid=HNEakut[zeile+2]; hilfid[Q]=deltais[j]; hilfid[Q+1]=x; |
---|
3137 | HNEakut[zeile+2]=hilfid; |
---|
3138 | HNEakut[1][zeile+1]=Q; // aktualisiere Vektor mit den hqs |
---|
3139 | HNEs[hnezaehler]=HNEakut; |
---|
3140 | if (eis[j]>1) { |
---|
3141 | transformiert=transformiert/y; |
---|
3142 | if (subst(transformiert,y,0)==0) { |
---|
3143 | "THE TEST FOR SQUAREFREENESS WAS BAD!! The polynomial was NOT squarefree!!!";} |
---|
3144 | else { |
---|
3145 | //------ Spezialfall (###) eingetreten: Noch weitere Zweige vorhanden -------- |
---|
3146 | eis[j]=eis[j]-1; |
---|
3147 | } |
---|
3148 | } |
---|
3149 | } |
---|
3150 | } |
---|
3151 | else { |
---|
3152 | //------------------------ Fall R <> 0: -------------------------------------- |
---|
3153 | erg=T2_Transform(f,number(deltais[j]),M,N,referencepoly(Newton)); |
---|
3154 | transformiert=erg[1];delta=erg[2]; |
---|
3155 | if (defined(HNDebugOn)) {"transformed polynomial: ",transformiert;} |
---|
3156 | if (subst(transformiert,y,0)==0) { |
---|
3157 | dbprint(printlevel+1,"finite HNE found"); |
---|
3158 | hnezaehler++; |
---|
3159 | //---------------- trage endliche HNE in HNEs ein: --------------------------- |
---|
3160 | HNEakut=azeilen; // dupliziere den gemeins. Anfang der HNE's |
---|
3161 | zl=2; // (kommt schliesslich nach HNEs[hnezaehler]) |
---|
3162 | //---------------------------------------------------------------------------- |
---|
3163 | // Werte von: zeile: aktuelle Zeilennummer der HNE (gemeinsamer Teil) |
---|
3164 | // zl : die HNE spaltet auf; zeile+zl ist der Index fuer die |
---|
3165 | // Zeile des aktuellen Zweigs; (zeile+zl-2) ist die tatsaechl. Zeilennr. |
---|
3166 | // (bei 0 angefangen) der HNE ([1] <- intvec(hqs), [2] <- 0. Zeile usw.) |
---|
3167 | //---------------------------------------------------------------------------- |
---|
3168 | |
---|
3169 | //---------- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ------ |
---|
3170 | M1=M;N1=N;R1=R;Q1=M1/ N1; |
---|
3171 | while (R1!=0) { |
---|
3172 | if (defined(HNDebugOn)) { "h("+string(zeile+zl-2)+") =",Q1; } |
---|
3173 | HNEakut[1][zeile+zl-1]=Q1; |
---|
3174 | HNEakut[zeile+zl][Q1+1]=x; |
---|
3175 | // markiere das Zeilenende der HNE |
---|
3176 | zl=zl+1; |
---|
3177 | //-------- Bereitstellung von Speicherplatz fuer eine neue Zeile: ------------ |
---|
3178 | HNEakut[zeile+zl]=ideal(0); |
---|
3179 | |
---|
3180 | M1=N1; N1=R1; R1=M1%N1; Q1=M1 / N1; |
---|
3181 | } |
---|
3182 | if (defined(HNDebugOn)) { |
---|
3183 | "a("+string(zeile+zl-2)+","+string(Q1)+") =",delta; |
---|
3184 | } |
---|
3185 | HNEakut[zeile+zl][Q1] =delta; |
---|
3186 | HNEakut[zeile+zl][Q1+1]=x; |
---|
3187 | HNEakut[1][zeile+zl-1] =Q1; // aktualisiere Vektor mit hqs |
---|
3188 | HNEakut[zeile+zl+1]=poly(0); |
---|
3189 | HNEs[hnezaehler]=HNEakut; |
---|
3190 | //-------------------- Ende der Eintragungen in HNEs ------------------------- |
---|
3191 | |
---|
3192 | if (eis[j]>1) { |
---|
3193 | transformiert=transformiert/y; |
---|
3194 | if (subst(transformiert,y,0)==0) { |
---|
3195 | "THE TEST FOR SQUAREFREENESS WAS BAD!! The polynomial was NOT squarefree!!!";} |
---|
3196 | else { |
---|
3197 | //--------- Spezialfall (###) eingetreten: Noch weitere Zweige vorhanden ----- |
---|
3198 | eis[j]=eis[j]-1; |
---|
3199 | }} |
---|
3200 | } // endif (subst()==0) |
---|
3201 | } // endelse (R<>0) |
---|
3202 | |
---|
3203 | //========== Falls HNE nicht abbricht: Rekursiver Aufruf von HN: ============= |
---|
3204 | //------------------- Berechne HNE von transformiert ------------------------- |
---|
3205 | if (subst(transformiert,y,0)!=0) { |
---|
3206 | lastRingnumber=EXTHNEnumber; |
---|
3207 | list HNerg=HN(transformiert,eis[j],Aufruf_Ebene+1,essential); |
---|
3208 | if (HNerg[2]==-1) { // kein Ringwechsel in HN aufgetreten |
---|
3209 | aneu=HNerg[1]; } |
---|
3210 | else { |
---|
3211 | if (defined(HNDebugOn)) |
---|
3212 | {" ring change in HN(",Aufruf_Ebene+1,") detected";} |
---|
3213 | list aneu=HNerg[1]; |
---|
3214 | poly transfproc=HNerg[2]; |
---|
3215 | |
---|
3216 | //- stelle lokale Var. im neuen Ring wieder her und rette ggf. ihren Inhalt: - |
---|
3217 | list erg,hilflist,faktoren,HNEakut; |
---|
3218 | ideal hilfid; |
---|
3219 | erg=ideal(0); hilflist=erg; faktoren=erg; HNEakut=erg; |
---|
3220 | poly leitf,teiler,transformiert; |
---|
3221 | |
---|
3222 | map hole=HNE_noparam,transfproc,x,y; |
---|
3223 | setring HNE_noparam; |
---|
3224 | if (lastRingnumber>0) { def letztring=EXTHNEring(lastRingnumber); } |
---|
3225 | else { def letztring=HNEring; } |
---|
3226 | HNEs=imap(letztring,HNEs); |
---|
3227 | azeilen=imap(letztring,azeilen); |
---|
3228 | deltais=imap(letztring,deltais); |
---|
3229 | delta=imap(letztring,delta); |
---|
3230 | f=imap(letztring,f); |
---|
3231 | |
---|
3232 | setring EXTHNEring(EXTHNEnumber); |
---|
3233 | list HNEs=hole(HNEs); |
---|
3234 | list azeilen=hole(azeilen); |
---|
3235 | ideal deltais=hole(deltais); |
---|
3236 | number delta=number(hole(delta)); |
---|
3237 | poly f=hole(f); |
---|
3238 | } |
---|
3239 | kill HNerg; |
---|
3240 | //---------------------------------------------------------------------------- |
---|
3241 | // HNerg muss jedesmal mit "list" neu definiert werden, weil vorher noch nicht |
---|
3242 | // ------- klar ist, ob der Ring nach Aufruf von HN noch derselbe ist -------- |
---|
3243 | |
---|
3244 | //============= Verknuepfe bisherige HNE mit von HN gelieferten HNEs: ======== |
---|
3245 | if (R==0) { |
---|
3246 | HNEs,hnezaehler=constructHNEs(HNEs,hnezaehler,aneu,azeilen,zeile, |
---|
3247 | deltais,Q,j); |
---|
3248 | } |
---|
3249 | else { |
---|
3250 | for (zaehler=1; zaehler<=size(aneu); zaehler++) { |
---|
3251 | hnezaehler++; |
---|
3252 | HNEakut=azeilen; // dupliziere den gemeinsamen Anfang der HNE's |
---|
3253 | zl=2; // (kommt schliesslich nach HNEs[hnezaehler]) |
---|
3254 | //---------------- Trage Beitrag dieser Transformation T2 ein: --------------- |
---|
3255 | //--------- Zur Bedeutung von zeile, zl: siehe Kommentar weiter oben --------- |
---|
3256 | |
---|
3257 | //--------- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ------- |
---|
3258 | M1=M;N1=N;R1=R;Q1=M1/ N1; |
---|
3259 | while (R1!=0) { |
---|
3260 | if (defined(HNDebugOn)) { "h("+string(zeile+zl-2)+") =",Q1; } |
---|
3261 | HNEakut[1][zeile+zl-1]=Q1; |
---|
3262 | HNEakut[zeile+zl][Q1+1]=x; // Markierung des Zeilenendes der HNE |
---|
3263 | zl=zl+1; |
---|
3264 | //-------- Bereitstellung von Speicherplatz fuer eine neue Zeile: ------------ |
---|
3265 | HNEakut[zeile+zl]=ideal(0); |
---|
3266 | M1=N1; N1=R1; R1=M1%N1; Q1=M1 / N1; |
---|
3267 | } |
---|
3268 | if (defined(HNDebugOn)) { |
---|
3269 | "a("+string(zeile+zl-2)+","+string(Q1)+") =",delta; |
---|
3270 | } |
---|
3271 | HNEakut[zeile+zl][Q1]=delta; |
---|
3272 | |
---|
3273 | //--- Daten aus T2_Transform sind eingetragen; haenge Daten von HN an: ------- |
---|
3274 | hilfid=HNEakut[zeile+zl]; |
---|
3275 | for (zl1=Q1+1; zl1<=ncols(aneu[zaehler][2]); zl1++) { |
---|
3276 | hilfid[zl1]=aneu[zaehler][2][zl1]; |
---|
3277 | } |
---|
3278 | HNEakut[zeile+zl]=hilfid; |
---|
3279 | //--- vorher HNEs[.][zeile+zl]<-aneu[.][2], jetzt [zeile+zl+1] <- [3] usw.: -- |
---|
3280 | for (zl1=3; zl1<=size(aneu[zaehler]); zl1++) { |
---|
3281 | HNEakut[zeile+zl+zl1-2]=aneu[zaehler][zl1]; |
---|
3282 | } |
---|
3283 | //--- setze die hqs zusammen: HNEs[hnezaehler][1]=HNEs[..][1],aneu[..][1] ---- |
---|
3284 | hilfvec=HNEakut[1],aneu[zaehler][1]; |
---|
3285 | HNEakut[1]=hilfvec; |
---|
3286 | //----------- weil nicht geht: liste[1]=liste[1],aneu[zaehler][1] ------------ |
---|
3287 | HNEs[hnezaehler]=HNEakut; |
---|
3288 | } // end(for zaehler) |
---|
3289 | } // endelse (R<>0) |
---|
3290 | } // endif (subst()!=0) (weiteres Aufblasen mit HN) |
---|
3291 | |
---|
3292 | } // end(for j) (Behandlung der einzelnen delta_i) |
---|
3293 | |
---|
3294 | } |
---|
3295 | keepring basering; |
---|
3296 | if (defined(transfproc)) { return(list(HNEs,transfproc)); } |
---|
3297 | else { return(list(HNEs,poly(-1))); } |
---|
3298 | // -1 als 2. Rueckgabewert zeigt an, dass kein Ringwechsel stattgefunden hat - |
---|
3299 | } |
---|
3300 | else { |
---|
3301 | HNEs[1]=list(hqs)+azeilen+list(f); // f ist das transform. Poly oder Null |
---|
3302 | keepring basering; |
---|
3303 | return(list(HNEs,poly(-1))); |
---|
3304 | //-- in dieser proc trat keine Verzweigung auf, also auch kein Ringwechsel --- |
---|
3305 | } |
---|
3306 | } |
---|
3307 | /////////////////////////////////////////////////////////////////////////////// |
---|
3308 | |
---|
3309 | static proc constructHNEs (list HNEs,int hnezaehler,list aneu,list azeilen, |
---|
3310 | int zeile,ideal deltais,int Q,int j) |
---|
3311 | "NOTE: This procedure is only for internal use, it is called via HN" |
---|
3312 | { |
---|
3313 | int zaehler,zl; |
---|
3314 | ideal hilfid; |
---|
3315 | list hilflist; |
---|
3316 | intvec hilfvec; |
---|
3317 | for (zaehler=1; zaehler<=size(aneu); zaehler++) { |
---|
3318 | hnezaehler++; |
---|
3319 | // HNEs[hnezaehler]=azeilen; // dupliziere gemeins. Anfang |
---|
3320 | //----------------------- trage neu berechnete Daten ein --------------------- |
---|
3321 | hilfid=azeilen[zeile+2]; |
---|
3322 | hilfid[Q]=deltais[j]; |
---|
3323 | for (zl=Q+1; zl<=ncols(aneu[zaehler][2]); zl++) { |
---|
3324 | hilfid[zl]=aneu[zaehler][2][zl]; |
---|
3325 | } |
---|
3326 | hilflist=azeilen; hilflist[zeile+2]=hilfid; |
---|
3327 | //------------------ haenge uebrige Zeilen von aneu[] an: -------------------- |
---|
3328 | for (zl=3; zl<=size(aneu[zaehler]); zl++) { |
---|
3329 | hilflist[zeile+zl]=aneu[zaehler][zl]; |
---|
3330 | } |
---|
3331 | //--- setze die hqs zusammen: HNEs[hnezaehler][1]=HNEs[..][1],aneu[..][1] ---- |
---|
3332 | if (hilflist[1]==0) { hilflist[1]=aneu[zaehler][1]; } |
---|
3333 | else { hilfvec=hilflist[1],aneu[zaehler][1]; hilflist[1]=hilfvec; } |
---|
3334 | HNEs[hnezaehler]=hilflist; |
---|
3335 | } |
---|
3336 | return(HNEs,hnezaehler); |
---|
3337 | } |
---|
3338 | /////////////////////////////////////////////////////////////////////////////// |
---|
3339 | |
---|
3340 | proc referencepoly (list newton) |
---|
3341 | "USAGE: referencepoly(newton); |
---|
3342 | newton is list of intvec(x,y) which represents points in the Newton |
---|
3343 | diagram (e.g. output of the proc newtonpoly) |
---|
3344 | RETURN: a polynomial which has newton as Newton diagram |
---|
3345 | SEE ALSO: newtonpoly |
---|
3346 | EXAMPLE: example referencepoly; shows an example |
---|
3347 | " |
---|
3348 | { |
---|
3349 | poly f; |
---|
3350 | for (int i=1; i<=size(newton); i++) { |
---|
3351 | f=f+var(1)^newton[i][1]*var(2)^newton[i][2]; |
---|
3352 | } |
---|
3353 | return(f); |
---|
3354 | } |
---|
3355 | example |
---|
3356 | { "EXAMPLE:"; echo = 2; |
---|
3357 | ring exring=0,(x,y),ds; |
---|
3358 | referencepoly(list(intvec(0,4),intvec(2,3),intvec(5,1),intvec(7,0))); |
---|
3359 | } |
---|
3360 | /////////////////////////////////////////////////////////////////////////////// |
---|
3361 | |
---|
3362 | proc factorlist (list L) |
---|
3363 | "USAGE: factorlist(L); L a list in the format of `factorize' |
---|
3364 | RETURN: the nonconstant irreducible factors of |
---|
3365 | L[1][1]^L[2][1] * L[1][2]^L[2][2] *...* L[1][size(L[1])]^... |
---|
3366 | with multiplicities (same format as factorize) |
---|
3367 | SEE ALSO: factorize |
---|
3368 | EXAMPLE: example factorlist; shows an example |
---|
3369 | " |
---|
3370 | { |
---|
3371 | // eine Sortierung der Faktoren eruebrigt sich, weil keine zwei versch. |
---|
3372 | // red.Fakt. einen gleichen irred. Fakt. haben koennen (I.3.27 Diplarb.) |
---|
3373 | int i,gross; |
---|
3374 | list faktoren,hilf; |
---|
3375 | ideal hil1,hil2; |
---|
3376 | intvec v,w; |
---|
3377 | for (i=1; (L[1][i] == jet(L[1][i],0)) && (i<size(L[1])); i++) {;} |
---|
3378 | if (L[1][i] != jet(L[1][i],0)) { |
---|
3379 | hilf=factorize(L[1][i]); |
---|
3380 | // Achtung!!! factorize(..,2) wirft entgegen der Beschreibung nicht nur |
---|
3381 | // konstante Faktoren raus, sondern alle Einheiten in der LOKALISIERUNG nach |
---|
3382 | // der Monomordnung!!! Im Beispiel unten verschwindet der Faktor x+y+1, wenn |
---|
3383 | // man ds statt dp als Ordnung nimmt! |
---|
3384 | hilf[2]=hilf[2]*L[2][i]; |
---|
3385 | hil1=hilf[1]; |
---|
3386 | gross=size(hil1); |
---|
3387 | if (gross>1) { |
---|
3388 | // faktoren=list(hilf[1][2..gross],hilf[2][2..gross]); |
---|
3389 | // --> `? indexed object must have a name' |
---|
3390 | v=hilf[2]; |
---|
3391 | faktoren=list(ideal(hil1[2..gross]),intvec(v[2..gross])); |
---|
3392 | } |
---|
3393 | else { faktoren=hilf; } |
---|
3394 | } |
---|
3395 | else { |
---|
3396 | faktoren=L; |
---|
3397 | } |
---|
3398 | |
---|
3399 | for (i++; i<=size(L[2]); i++) { |
---|
3400 | //------------------------- linearer Term -- irreduzibel --------------------- |
---|
3401 | if (L[1][i] == jet(L[1][i],1)) { |
---|
3402 | if (L[1][i] != jet(L[1][i],0)) { // konst. Faktoren eliminieren |
---|
3403 | hil1=faktoren[1]; |
---|
3404 | hil1[size(hil1)+1]=L[1][i]; |
---|
3405 | faktoren[1]=hil1; |
---|
3406 | v=faktoren[2],L[2][i]; |
---|
3407 | faktoren[2]=v; |
---|
3408 | } |
---|
3409 | } |
---|
3410 | //----------------------- nichtlinearer Term -- faktorisiere ----------------- |
---|
3411 | else { |
---|
3412 | hilf=factorize(L[1][i]); |
---|
3413 | hilf[2]=hilf[2]*L[2][i]; |
---|
3414 | hil1=faktoren[1]; |
---|
3415 | hil2=hilf[1]; |
---|
3416 | gross=size(hil2); |
---|
3417 | // hil2[1] ist konstant, wird weggelassen: |
---|
3418 | hil1[(size(hil1)+1)..(size(hil1)+gross-1)]=hil2[2..gross]; |
---|
3419 | // ideal+ideal does not work due to simplification; |
---|
3420 | // ideal,ideal not allowed |
---|
3421 | faktoren[1]=hil1; |
---|
3422 | w=hilf[2]; |
---|
3423 | v=faktoren[2],w[2..gross]; |
---|
3424 | faktoren[2]=v; |
---|
3425 | } |
---|
3426 | } |
---|
3427 | return(faktoren); |
---|
3428 | } |
---|
3429 | example |
---|
3430 | { "EXAMPLE:"; echo = 2; |
---|
3431 | ring exring=0,(x,y),ds; |
---|
3432 | list L=ideal(x,(x-y)^2*(x+y+1),x+y),intvec(2,2,1); |
---|
3433 | L; |
---|
3434 | factorlist(L); |
---|
3435 | } |
---|
3436 | /////////////////////////////////////////////////////////////////////////////// |
---|
3437 | |
---|
3438 | proc extrafactor (poly leitf, int M, int N) |
---|
3439 | "USAGE: factors,flag=extrafactor(f,M,N); |
---|
3440 | list factors, int flag,M,N, poly f in x,y |
---|
3441 | RETURN: for some special f, factors is a list of the factors of |
---|
3442 | charPoly(f,M,N), same format as factorize |
---|
3443 | (see help charPoly; help factorize) |
---|
3444 | In this case, flag!=0 (TRUE). If extrafactor cannot factorize f, |
---|
3445 | flag will be 0 (FALSE), factors will be the empty list. |
---|
3446 | ASSUME: basering is (0,a),(x,y),ds or ls |
---|
3447 | Newton polygon of f is one side with height N, length M |
---|
3448 | NOTE: This procedure is designed to make reddevelop able to compute some |
---|
3449 | special cases that need a ring extension in char 0. |
---|
3450 | It becomes obsolete as soon as `factorize' works also in such rings. |
---|
3451 | EXAMPLE: example extrafactor; shows an example |
---|
3452 | " |
---|
3453 | { |
---|
3454 | list faktoren; |
---|
3455 | |
---|
3456 | if (a2==-1) { |
---|
3457 | poly testpol=charPoly(leitf,M,N); |
---|
3458 | if (testpol==1+2y2+y4) { |
---|
3459 | faktoren=list(ideal(y+a,y-a),intvec(2,2)); |
---|
3460 | testpol=0; |
---|
3461 | } |
---|
3462 | //------------ ist Poly von der Form q*i+r*y^n, n in N, q,r in Q ?: ---------- |
---|
3463 | if ((size(testpol)==2) && (find(string(lead(testpol)),"a")>0) |
---|
3464 | && (find(string(testpol-lead(testpol)),"a")==0)) { |
---|
3465 | faktoren=list(ideal(testpol),intvec(1)); |
---|
3466 | testpol=0; |
---|
3467 | } |
---|
3468 | } |
---|
3469 | if (a4==-625) { |
---|
3470 | poly testpol=charPoly(leitf,M,N); |
---|
3471 | if (testpol==4a2-4y2) |
---|
3472 | { faktoren=list(ideal(-4,y+a,y-a),intvec(1,1,1)); testpol=0;} |
---|
3473 | if (testpol==-4a2-4y2) |
---|
3474 | { faktoren=list(ideal(-4,y+1/25*a3,y-1/25*a3),intvec(1,1,1)); |
---|
3475 | testpol=0;} |
---|
3476 | } |
---|
3477 | if (a2+a==-1) { |
---|
3478 | poly testpol=charPoly(leitf,M,N); |
---|
3479 | if (testpol==1+2y+3y2+2y3+y4) |
---|
3480 | { faktoren=list(ideal(1,y-a,y+a+1),intvec(1,2,2)); testpol=0;} |
---|
3481 | } |
---|
3482 | if (defined(testpol)==0) { poly testpol=1; } |
---|
3483 | if (testpol!=0) { |
---|
3484 | "factorize not implemented in char (0,a)!"; |
---|
3485 | "could not factorize:",charPoly(leitf,M,N); |
---|
3486 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
3487 | } |
---|
3488 | return(faktoren,(testpol==0)); // Test: faktoren==list() geht leider nicht |
---|
3489 | } |
---|
3490 | example |
---|
3491 | { "EXAMPLE:"; echo=2; |
---|
3492 | ring r=(0,a),(x,y),ds; |
---|
3493 | minpoly=a2+1; |
---|
3494 | poly f=x4+2x2y2+y4; |
---|
3495 | charPoly(f,4,4); |
---|
3496 | list factors; |
---|
3497 | int flag; |
---|
3498 | factors,flag=extrafactor(f,4,4); |
---|
3499 | if (flag!=0) {factors;} |
---|
3500 | } |
---|