1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version hnoether.lib 4.1.2.0 Feb_2019 "; // $Id$ |
---|
3 | |
---|
4 | category="Singularities"; |
---|
5 | info=" |
---|
6 | LIBRARY: hnoether.lib Hamburger-Noether (Puiseux) Expansion |
---|
7 | AUTHORS: Martin Lamm, lamm@mathematik.uni-kl.de |
---|
8 | Christoph Lossen, lossen@mathematik.uni-kl.de |
---|
9 | |
---|
10 | OVERVIEW: |
---|
11 | A library for computing the Hamburger-Noether expansion (analogue of |
---|
12 | Puiseux expansion over fields of arbitrary characteristic) of a reduced |
---|
13 | plane curve singularity following [Campillo, A.: Algebroid curves in |
---|
14 | positive characteristic, Springer LNM 813 (1980)]. @* |
---|
15 | The library contains also procedures for computing the (topological) |
---|
16 | numerical invariants of plane curve singularities. |
---|
17 | |
---|
18 | PROCEDURES: |
---|
19 | hnexpansion(f [,\"ess\"]); Hamburger-Noether (HN) expansion of f |
---|
20 | develop(f [,n]); HN expansion of irreducible plane curve germs |
---|
21 | extdevelop(hne,n); extension of the H-N expansion hne of f |
---|
22 | param(hne [,s]); parametrization of branches described by HN data |
---|
23 | displayHNE(hne); display HN expansion as an ideal |
---|
24 | invariants(hne); invariants of f, e.g. the characteristic exponents |
---|
25 | displayInvariants(hne); display invariants of f |
---|
26 | multsequence(hne); sequence of multiplicities |
---|
27 | displayMultsequence(hne); display sequence of multiplicities |
---|
28 | intersection(hne1,hne2); intersection multiplicity of two local branches |
---|
29 | is_irred(f); test whether f is irreducible as power series |
---|
30 | delta(f); delta invariant of f |
---|
31 | newtonpoly(f); (local) Newton polygon of f |
---|
32 | is_NND(f); test whether f is Newton non-degenerate |
---|
33 | |
---|
34 | |
---|
35 | stripHNE(hne); reduce amount of memory consumed by hne |
---|
36 | puiseux2generators(m,n); convert Puiseux pairs to generators of semigroup |
---|
37 | separateHNE(hne1,hne2); number of quadratic transf. needed for separation |
---|
38 | squarefree(f); a squarefree divisor of the polynomial f |
---|
39 | allsquarefree(f,l); the maximal squarefree divisor of the polynomial f |
---|
40 | further_hn_proc(); show further procedures useful for interactive use |
---|
41 | |
---|
42 | KEYWORDS: Hamburger-Noether expansion; Puiseux expansion; curve singularities |
---|
43 | "; |
---|
44 | |
---|
45 | // essdevelop(f); HN expansion of essential branches |
---|
46 | // multiplicities(hne); multiplicities of blowed up curves |
---|
47 | |
---|
48 | /////////////////////////////////////////////////////////////////////////////// |
---|
49 | LIB "primitiv.lib"; |
---|
50 | LIB "inout.lib"; |
---|
51 | LIB "sing.lib"; |
---|
52 | LIB "ring.lib"; |
---|
53 | |
---|
54 | /////////////////////////////////////////////////////////////////////////////// |
---|
55 | |
---|
56 | proc further_hn_proc() |
---|
57 | "USAGE: further_hn_proc(); |
---|
58 | NOTE: The library @code{hnoether.lib} contains some more procedures which |
---|
59 | are not shown when typing @code{help hnoether.lib;}. They may be useful |
---|
60 | for interactive use (e.g. if you want to do the calculation of an HN |
---|
61 | development \"by hand\" to see the intermediate results), and they |
---|
62 | can be enumerated by calling @code{further_hn_proc()}. @* |
---|
63 | Use @code{help <procedure>;} for detailed information about each of |
---|
64 | them. |
---|
65 | " |
---|
66 | { |
---|
67 | " |
---|
68 | The following procedures are also part of 'hnoether.lib': |
---|
69 | |
---|
70 | getnm(f); intersection pts. of Newton polygon with axes |
---|
71 | T_Transform(f,Q,N); returns f(y,xy^Q)/y^NQ (f: poly, Q,N: int) |
---|
72 | T1_Transform(f,d,M); returns f(x,y+d*x^M) (f: poly,d:number,M:int) |
---|
73 | T2_Transform(f,d,M,N,ref); a composition of T1 & T |
---|
74 | koeff(f,I,J); gets coefficient of indicated monomial of polynomial f |
---|
75 | redleit(f,S,E); restriction of monomials of f to line (S-E) |
---|
76 | leit(f,n,m); special case of redleit (for irred. polynomials) |
---|
77 | testreducible(f,n,m); tests whether f is reducible |
---|
78 | charPoly(f,M,N); characteristic polynomial of f |
---|
79 | find_in_list(L,p); find int p in list L |
---|
80 | get_last_divisor(M,N); last divisor in Euclid's algorithm |
---|
81 | factorfirst(f,M,N); try to factor f without 'factorize' |
---|
82 | factorlist(L); factorize a list L of polynomials |
---|
83 | referencepoly(D); a polynomial f s.t. D is the Newton diagram of f"; |
---|
84 | |
---|
85 | // static procedures not useful for interactive use: |
---|
86 | // polytest(f); tests coefficients and exponents of polynomial f |
---|
87 | // extractHNEs(H,t); extracts output H of HN to output of hnexpansion |
---|
88 | // HN(f,grenze); recursive subroutine for hnexpansion |
---|
89 | // constructHNEs(...); subroutine for HN |
---|
90 | } |
---|
91 | example |
---|
92 | { echo=2; |
---|
93 | further_hn_proc(); |
---|
94 | } |
---|
95 | /////////////////////////////////////////////////////////////////////////////// |
---|
96 | |
---|
97 | proc getnm (poly f) |
---|
98 | "USAGE: getnm(f); f bivariate polynomial |
---|
99 | RETURN: intvec(n,m) : (0,n) is the intersection point of the Newton |
---|
100 | polygon of f with the y-axis, n=-1 if it doesn't exist |
---|
101 | (m,0) is its intersection point with the x-axis, |
---|
102 | m=-1 if this point doesn't exist |
---|
103 | ASSUME: ring has ordering 'ls' or 'ds' |
---|
104 | EXAMPLE: example getnm; shows an example |
---|
105 | " |
---|
106 | { |
---|
107 | // assume being called by develop ==> ring ordering is ls (ds would also work) |
---|
108 | return(ord(subst(f,var(1),0)),ord(subst(f,var(2),0))); |
---|
109 | } |
---|
110 | example |
---|
111 | { "EXAMPLE:"; echo = 2; |
---|
112 | ring r = 0,(x,y),ds; |
---|
113 | poly f = x5+x4y3-y2+y4; |
---|
114 | getnm(f); |
---|
115 | } |
---|
116 | /////////////////////////////////////////////////////////////////////////////// |
---|
117 | |
---|
118 | proc leit (poly f, int n, int m) |
---|
119 | "USAGE: leit(f,n,m); poly f, int n,m |
---|
120 | RETURN: all monomials on the line from (0,n) to (m,0) in the Newton diagram |
---|
121 | EXAMPLE: example leit; shows an example |
---|
122 | " |
---|
123 | { |
---|
124 | return(jet(f,m*n,intvec(n,m))-jet(f,m*n-1,intvec(n,m))) |
---|
125 | } |
---|
126 | example |
---|
127 | { "EXAMPLE:"; echo = 2; |
---|
128 | ring r = 0,(x,y),ds; |
---|
129 | poly f = x5+x4y3-y2+y4; |
---|
130 | leit(f,2,5); |
---|
131 | } |
---|
132 | /////////////////////////////////////////////////////////////////////////////// |
---|
133 | proc testreducible (poly f, int n, int m) |
---|
134 | "USAGE: testreducible(f,n,m); f poly, n,m int |
---|
135 | RETURN: 1 if there are points in the Newton diagram below the line (0,n)-(m,0) |
---|
136 | 0 else |
---|
137 | EXAMPLE: example testreducible; shows an example |
---|
138 | " |
---|
139 | { |
---|
140 | return(size(jet(f,m*n-1,intvec(n,m))) != 0) |
---|
141 | } |
---|
142 | example |
---|
143 | { "EXAMPLE:"; echo = 2; |
---|
144 | ring rg=0,(x,y),ls; |
---|
145 | testreducible(x2+y3-xy4,3,2); |
---|
146 | } |
---|
147 | /////////////////////////////////////////////////////////////////////////////// |
---|
148 | proc T_Transform (poly f, int Q, int N) |
---|
149 | "USAGE: T_Transform(f,Q,N); f poly, Q,N int |
---|
150 | RETURN: f(y,xy^Q)/y^NQ if x,y are the ring variables |
---|
151 | NOTE: this is intended for irreducible power series f |
---|
152 | EXAMPLE: example T_Transform; shows an example |
---|
153 | " |
---|
154 | { |
---|
155 | map T = basering,var(2),var(1)*var(2)^Q; |
---|
156 | return(T(f)/var(2)^(N*Q)); |
---|
157 | } |
---|
158 | example |
---|
159 | { "EXAMPLE:"; echo = 2; |
---|
160 | ring exrg=0,(x,y),ls; |
---|
161 | export exrg; |
---|
162 | T_Transform(x3+y2-xy3,1,2); |
---|
163 | kill exrg; |
---|
164 | } |
---|
165 | /////////////////////////////////////////////////////////////////////////////// |
---|
166 | proc T1_Transform (poly f, number d, int Q) |
---|
167 | "USAGE: T1_Transform(f,d,Q); f poly, d number, Q int |
---|
168 | RETURN: f(x,y+d*x^Q) if x,y are the ring variables |
---|
169 | EXAMPLE: example T1_Transform; shows an example |
---|
170 | " |
---|
171 | { |
---|
172 | map T1 = basering,var(1),var(2)+d*var(1)^Q; |
---|
173 | return(T1(f)); |
---|
174 | } |
---|
175 | example |
---|
176 | { "EXAMPLE:"; echo = 2; |
---|
177 | ring exrg=0,(x,y),ls; |
---|
178 | export exrg; |
---|
179 | T1_Transform(y2-2xy+x2+x2y,1,1); |
---|
180 | kill exrg; |
---|
181 | } |
---|
182 | /////////////////////////////////////////////////////////////////////////////// |
---|
183 | |
---|
184 | proc T2_Transform (poly f_neu, number d, int M, int N, poly refpoly) |
---|
185 | "USAGE: T2_Transform(f,d,M,N,ref); f poly, d number; M,N int; ref poly |
---|
186 | RETURN: list: poly T2(f,d',M,N), number d' in \{ d, 1/d \} |
---|
187 | ASSUME: ref has the same Newton polygon as f (but can be simpler) |
---|
188 | for this you can e.g. use the proc 'referencepoly' or simply f again |
---|
189 | COMMENT: T2 is a composition of T_Transform and T1_Transform; the exact |
---|
190 | definition can be found in Rybowicz: 'Sur le calcul des places ...' |
---|
191 | or in Lamm: 'Hamburger-Noether-Entwicklung von Kurvensingularitaeten' |
---|
192 | SEE ALSO: T_Transform, T1_Transform, referencepoly |
---|
193 | EXAMPLE: example T2_Transform; shows an example |
---|
194 | " |
---|
195 | { |
---|
196 | //---------------------- compute gcd and extgcd of N,M ----------------------- |
---|
197 | int ggt=gcd(M,N); |
---|
198 | M=M div ggt; N=N div ggt; |
---|
199 | list ts=extgcd(M,N); |
---|
200 | int tau,sigma=ts[2],-ts[3]; |
---|
201 | int s,t; |
---|
202 | poly xp=var(1); |
---|
203 | poly yp=var(2); |
---|
204 | poly hilf; |
---|
205 | if (sigma<0) { tau=-tau; sigma=-sigma;} |
---|
206 | // es gilt: 0<=tau<=N, 0<=sigma<=M, |N*sigma-M*tau| = 1 = ggT(M,N) |
---|
207 | if (N*sigma < M*tau) { d = 1/d; } |
---|
208 | //--------------------------- euklid. Algorithmus ---------------------------- |
---|
209 | int R; |
---|
210 | int M1,N1=M,N; |
---|
211 | for ( R=M1%N1; R!=0; ) { M1=N1; N1=R; R=M1%N1;} |
---|
212 | int Q=M1 div N1; |
---|
213 | map T1 = basering,xp,yp+d*xp^Q; |
---|
214 | map Tstar=basering,xp^(N-Q*tau)*yp^tau,xp^(M-sigma*Q)*yp^sigma; |
---|
215 | if (defined(HNDebugOn)) { |
---|
216 | "Trafo. T2: x->x^"+string(N-Q*tau)+"*y^"+string(tau)+", y->x^" |
---|
217 | +string(M-sigma*Q)+"*y^"+string(sigma); |
---|
218 | "delt =",d,"Q =",Q,"tau,sigma =",tau,sigma; |
---|
219 | } |
---|
220 | //------------------- Durchfuehrung der Transformation T2 -------------------- |
---|
221 | f_neu=Tstar(f_neu); |
---|
222 | refpoly=Tstar(refpoly); |
---|
223 | //--- dividiere f_neu so lange durch x & y, wie die Division aufgeht, |
---|
224 | // benutze ein Referenzpolynom mit gleichem Newtonpolynom wie f_neu zur |
---|
225 | // Beschleunigung: --- |
---|
226 | for (hilf=refpoly/xp; hilf*xp==refpoly; hilf=refpoly/xp) {refpoly=hilf; s++;} |
---|
227 | for (hilf=refpoly/yp; hilf*yp==refpoly; hilf=refpoly/yp) {refpoly=hilf; t++;} |
---|
228 | f_neu=f_neu/(xp^s*yp^t); |
---|
229 | return(list(T1(f_neu),d)); |
---|
230 | } |
---|
231 | example |
---|
232 | { "EXAMPLE:"; echo = 2; |
---|
233 | ring exrg=0,(x,y),ds; |
---|
234 | export exrg; |
---|
235 | poly f=y2-2x2y+x6-x5y+x4y2; |
---|
236 | T2_Transform(f,1/2,4,1,f); |
---|
237 | T2_Transform(f,1/2,4,1,referencepoly(newtonpoly(f,1))); |
---|
238 | // if size(referencepoly) << size(f) the 2nd example would be faster |
---|
239 | referencepoly(newtonpoly(f,1)); |
---|
240 | kill exrg; |
---|
241 | } |
---|
242 | /////////////////////////////////////////////////////////////////////////////// |
---|
243 | |
---|
244 | proc koeff (poly f, int I, int J) |
---|
245 | "USAGE: koeff(f,I,J); f bivariate polynomial, I,J integers |
---|
246 | RETURN: if f = sum(a(i,j)*x^i*y^j), then koeff(f,I,J)= a(I,J) (of type number) |
---|
247 | NOTE: J must be in the range of the exponents of the 2nd ring variable |
---|
248 | EXAMPLE: example koeff; shows an example |
---|
249 | " |
---|
250 | { |
---|
251 | matrix mat = coeffs(coeffs(f,var(2))[J+1,1],var(1)); |
---|
252 | if (size(mat) <= I) { return(0);} |
---|
253 | else { return(leadcoef(mat[I+1,1]));} |
---|
254 | } |
---|
255 | example |
---|
256 | { "EXAMPLE:"; echo = 2; |
---|
257 | ring r=0,(x,y),dp; |
---|
258 | koeff(x2+2xy+3xy2-x2y-2y3,1,2); |
---|
259 | } |
---|
260 | /////////////////////////////////////////////////////////////////////////////// |
---|
261 | |
---|
262 | proc squarefree (poly f) |
---|
263 | "USAGE: squarefree(f); f poly |
---|
264 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables). |
---|
265 | RETURN: poly, a squarefree divisor of f. |
---|
266 | NOTE: Usually, the return value is the greatest squarefree divisor, but |
---|
267 | there is one exception: factors with a p-th root, p the |
---|
268 | characteristic of the basering, are lost. |
---|
269 | SEE ALSO: allsquarefree |
---|
270 | EXAMPLE: example squarefree; shows some examples. |
---|
271 | " |
---|
272 | { |
---|
273 | //----------------- Wechsel in geeigneten Ring & Variablendefinition --------- |
---|
274 | if (nvars(basering)!=2) |
---|
275 | { ERROR("basering must have exactly 2 variables for Hnoether::squarefree"); } |
---|
276 | def altring = basering; |
---|
277 | int e; |
---|
278 | string mipl="0"; |
---|
279 | if (size(parstr(altring))==1) { mipl=string(minpoly); } |
---|
280 | //---- test: char = (p^k,a) (-> gcd not implemented) or (p,a) (gcd works) ---- |
---|
281 | //if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) |
---|
282 | int gcd_ok= ! hasGFCoefficient(basering); |
---|
283 | ring rsqrf = create_ring(ringlist(altring)[1],"(x,y)","dp","no_minpoly"); |
---|
284 | if ((gcd_ok!=0) && (mipl!="0")) { execute("minpoly="+mipl+";"); } |
---|
285 | poly f=fetch(altring,f); |
---|
286 | poly dif,g,l; |
---|
287 | if (gcd_ok!=0) { |
---|
288 | //--------------------- Berechne f/ggT(f,df/dx,df/dy) ------------------------ |
---|
289 | dif=diff(f,x); |
---|
290 | if (dif==0) { g=f; } // zur Beschleunigung |
---|
291 | else { g=gcd(f,dif); } |
---|
292 | if (g!=1) { // sonst schon sicher, dass f quadratfrei |
---|
293 | dif=diff(f,y); |
---|
294 | if (dif!=0) { g=gcd(g,dif); } |
---|
295 | } |
---|
296 | if (g!=1) { |
---|
297 | e=0; |
---|
298 | if (g==f) { l=1; } // zur Beschleunigung |
---|
299 | else { |
---|
300 | module m=syz(ideal(g,f)); |
---|
301 | if (deg(m[2,1])>0) { |
---|
302 | "!! The Singular command 'syz' has returned a wrong result !!"; |
---|
303 | l=1; // Division f/g muss aufgehen |
---|
304 | } |
---|
305 | else { l=m[1,1]; } |
---|
306 | } |
---|
307 | } |
---|
308 | else { e=1; } |
---|
309 | } |
---|
310 | else { |
---|
311 | //------------------- Berechne syz(f,df/dx) oder syz(f,df/dy) ---------------- |
---|
312 | //-- Achtung: Ist f reduzibel, koennen Faktoren mit Ableitung Null verloren -- |
---|
313 | //-- gehen! Ist aber nicht weiter schlimm, weil char (p^k,a) nur im irred. -- |
---|
314 | //-- Fall vorkommen kann. Wenn f nicht g^p ist, wird auf jeden Fall -- |
---|
315 | //------------------------ ein Faktor gefunden. ------------------------------ |
---|
316 | dif=diff(f,x); |
---|
317 | if (dif == 0) { |
---|
318 | dif=diff(f,y); |
---|
319 | if (dif==0) { e=2; l=1; } // f is of power divisible by char of basefield |
---|
320 | else { l=syz(ideal(dif,f))[1,1]; // x^p+y^(p-1) abgedeckt |
---|
321 | if (subst(f,x,0)==0) { l=l*x; } |
---|
322 | if (deg(l)==deg(f)) { e=1;} |
---|
323 | else {e=0;} |
---|
324 | } |
---|
325 | } |
---|
326 | else { l=syz(ideal(dif,f))[1,1]; |
---|
327 | if (subst(f,y,0)==0) { l=l*y; } |
---|
328 | if (deg(l)==deg(f)) { e=1;} |
---|
329 | else {e=0;} |
---|
330 | } |
---|
331 | } |
---|
332 | //--------------- Wechsel in alten Ring und Rueckgabe des Ergebnisses -------- |
---|
333 | setring altring; |
---|
334 | if (e==1) { return(f); } // zur Beschleunigung |
---|
335 | else { |
---|
336 | poly l=fetch(rsqrf,l); |
---|
337 | return(l); |
---|
338 | } |
---|
339 | } |
---|
340 | example |
---|
341 | { "EXAMPLE:"; echo = 2; |
---|
342 | ring exring=3,(x,y),dp; |
---|
343 | squarefree((x3+y)^2); |
---|
344 | squarefree((x+y)^3*(x-y)^2); // Warning: (x+y)^3 is lost |
---|
345 | squarefree((x+y)^4*(x-y)^2); // result is (x+y)*(x-y) |
---|
346 | } |
---|
347 | /////////////////////////////////////////////////////////////////////////////// |
---|
348 | |
---|
349 | proc allsquarefree (poly f, poly l) |
---|
350 | "USAGE : allsquarefree(f,g); f,g poly |
---|
351 | ASSUME: g is the output of @code{squarefree(f)}. |
---|
352 | RETURN: the greatest squarefree divisor of f. |
---|
353 | NOTE : This proc uses factorize to get the missing factors of f not in g and, |
---|
354 | therefore, may be slow. |
---|
355 | SEE ALSO: squarefree |
---|
356 | EXAMPLE: example allsquarefree; shows an example |
---|
357 | " |
---|
358 | { |
---|
359 | //------------------------ Wechsel in geeigneten Ring ------------------------ |
---|
360 | def altring = basering; |
---|
361 | string mipl="0"; |
---|
362 | if (size(parstr(altring))==1) { mipl=string(minpoly); } |
---|
363 | if (hasGFCoefficient(basering)) |
---|
364 | { |
---|
365 | ERROR(" Sorry -- not implemented for this ring (gcd doesn't work)"); |
---|
366 | } |
---|
367 | ring rsqrf = create_ring(ringlist(altring)[1],"(x,y)","dp","no_minpoly"); |
---|
368 | if (mipl!="0") { execute("minpoly="+mipl+";"); } |
---|
369 | poly f=fetch(altring,f); |
---|
370 | poly l=fetch(altring,l); |
---|
371 | //---------- eliminiere bereits mit squarefree gefundene Faktoren ------------ |
---|
372 | poly g=l; |
---|
373 | while (deg(g)!=0) { |
---|
374 | f=syz(ideal(g,f))[1,1]; // f=f/g; |
---|
375 | g=gcd(f,l); |
---|
376 | } // jetzt f=h^p |
---|
377 | //--------------- Berechne uebrige Faktoren mit factorize -------------------- |
---|
378 | if (deg(f)>0) { |
---|
379 | g=1; |
---|
380 | //*CL old: ideal factf=factorize(f,1); |
---|
381 | //* for (int i=1; i<=size(factf); i++) { g=g*factf[i]; } |
---|
382 | ideal factf=factorize(f)[1]; |
---|
383 | for (int i=2; i<=size(factf); i++) { g=g*factf[i]; } |
---|
384 | poly testp=squarefree(g); |
---|
385 | if (deg(testp)<deg(g)) { |
---|
386 | "!! factorize has not worked correctly !!"; |
---|
387 | if (testp==1) {" We cannot proceed ..."; g=1;} |
---|
388 | else {" But we could recover some factors..."; g=testp;} |
---|
389 | } |
---|
390 | l=l*g; |
---|
391 | } |
---|
392 | //--------------- Wechsel in alten Ring und Rueckgabe des Ergebnisses -------- |
---|
393 | setring altring; |
---|
394 | l=fetch(rsqrf,l); |
---|
395 | return(l); |
---|
396 | } |
---|
397 | example |
---|
398 | { "EXAMPLE:"; echo = 2; |
---|
399 | ring exring=7,(x,y),dp; |
---|
400 | poly f=(x+y)^7*(x-y)^8; |
---|
401 | poly g=squarefree(f); |
---|
402 | g; // factor x+y lost, since characteristic=7 |
---|
403 | allsquarefree(f,g); // all factors (x+y)*(x-y) found |
---|
404 | } |
---|
405 | /////////////////////////////////////////////////////////////////////////////// |
---|
406 | |
---|
407 | proc is_irred (poly f) |
---|
408 | "USAGE: is_irred(f); f poly |
---|
409 | ASSUME: f is a squarefree bivariate polynomial (in the first 2 ring |
---|
410 | variables). |
---|
411 | RETURN: int (0 or 1): @* |
---|
412 | - @code{is_irred(f)=1} if f is irreducible as a formal power |
---|
413 | series over the algebraic closure of its coefficient field (f |
---|
414 | defines an analytically irreducible curve at zero), @* |
---|
415 | - @code{is_irred(f)=0} otherwise. |
---|
416 | NOTE: 0 and units in the ring of formal power series are considered to be |
---|
417 | not irreducible. |
---|
418 | KEYWORDS: irreducible power series |
---|
419 | EXAMPLE: example is_irred; shows an example |
---|
420 | " |
---|
421 | { |
---|
422 | int pl=printlevel; |
---|
423 | printlevel=-1; |
---|
424 | list hnl=develop(f,-1); |
---|
425 | printlevel=pl; |
---|
426 | return(hnl[5]); |
---|
427 | } |
---|
428 | example |
---|
429 | { "EXAMPLE:"; echo = 2; |
---|
430 | ring exring=0,(x,y),ls; |
---|
431 | is_irred(x2+y3); |
---|
432 | is_irred(x2+y2); |
---|
433 | is_irred(x2+y3+1); |
---|
434 | } |
---|
435 | /////////////////////////////////////////////////////////////////////////////// |
---|
436 | |
---|
437 | static proc polytest(poly f) |
---|
438 | "USAGE : polytest(f); f poly in x and y |
---|
439 | RETURN: a monomial of f with |coefficient| > 16001 |
---|
440 | or exponent divisible by 32003, if there is one |
---|
441 | 0 else (in this case computing a squarefree divisor |
---|
442 | in characteristic 32003 could make sense) |
---|
443 | NOTE: this procedure is only useful in characteristic zero, because otherwise |
---|
444 | there is no appropriate ordering of the leading coefficients |
---|
445 | " |
---|
446 | { |
---|
447 | poly verbrecher=0; |
---|
448 | intvec leitexp; |
---|
449 | for (; (f<>0) and (verbrecher==0); f=f-lead(f)) { |
---|
450 | if ((leadcoef(f)<-16001) or (leadcoef(f)>16001)) {verbrecher=lead(f);} |
---|
451 | leitexp=leadexp(f); |
---|
452 | if (( ((leitexp[1] % 32003) == 0) and (leitexp[1]<>0)) |
---|
453 | or ( ((leitexp[2] % 32003) == 0) and (leitexp[2]<>0)) ) |
---|
454 | {verbrecher=lead(f);} |
---|
455 | } |
---|
456 | return(verbrecher); |
---|
457 | } |
---|
458 | |
---|
459 | ////////////////////////////////////////////////////////////////////////////// |
---|
460 | |
---|
461 | |
---|
462 | proc develop(list #) |
---|
463 | "USAGE: develop(f [,n]); f poly, n int |
---|
464 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables) and |
---|
465 | irreducible as power series (for reducible f use @code{hnexpansion}). |
---|
466 | RETURN: list @code{L} with: |
---|
467 | @texinfo |
---|
468 | @table @asis |
---|
469 | @item @code{L[1]}; matrix: |
---|
470 | Each row contains the coefficients of the corresponding line of the |
---|
471 | Hamburger-Noether expansion (HNE). The end of the line is marked in |
---|
472 | the matrix by the first ring variable (usually x). |
---|
473 | @item @code{L[2]}; intvec: |
---|
474 | indicating the length of lines of the HNE |
---|
475 | @item @code{L[3]}; int: |
---|
476 | 0 if the 1st ring variable was transversal (with respect to f), @* |
---|
477 | 1 if the variables were changed at the beginning of the |
---|
478 | computation, @* |
---|
479 | -1 if an error has occurred. |
---|
480 | @item @code{L[4]}; poly: |
---|
481 | the transformed polynomial of f to make it possible to extend the |
---|
482 | Hamburger-Noether development a posteriori without having to do |
---|
483 | all the previous calculation once again (0 if not needed) |
---|
484 | @item @code{L[5]}; int: |
---|
485 | 1 if the curve has exactly one branch (i.e., is irreducible), @* |
---|
486 | 0 else (i.e., the curve has more than one HNE, or f is not valid). |
---|
487 | @end table |
---|
488 | @end texinfo |
---|
489 | DISPLAY: The (non zero) elements of the HNE (if not called by another proc). |
---|
490 | NOTE: The optional parameter @code{n} affects only the computation of |
---|
491 | the LAST line of the HNE. If it is given, the HN-matrix @code{L[1]} |
---|
492 | will have at least @code{n} columns. @* |
---|
493 | Otherwise, the number of columns will be chosen minimal such that the |
---|
494 | matrix contains all necessary information (i.e., all lines of the HNE |
---|
495 | but the last (which is in general infinite) have place). @* |
---|
496 | If @code{n} is negative, the algorithm is stopped as soon as the |
---|
497 | computed information is sufficient for @code{invariants(L)}, but the |
---|
498 | HN-matrix @code{L[1]} may still contain undetermined elements, which |
---|
499 | are marked with the 2nd variable (of the basering). @* |
---|
500 | For time critical computations it is recommended to use |
---|
501 | @code{ring ...,(x,y),ls} as basering - it increases the algorithm's |
---|
502 | speed. @* |
---|
503 | If @code{printlevel>=0} comments are displayed (default is |
---|
504 | @code{printlevel=0}). |
---|
505 | SEE ALSO: hnexpansion, extdevelop, displayHNE |
---|
506 | EXAMPLES: example develop; shows an example |
---|
507 | example parametrize; shows an example for using the 2nd parameter |
---|
508 | " |
---|
509 | { |
---|
510 | //--------- Abfangen unzulaessiger Ringe: 1) nur eine Unbestimmte ------------ |
---|
511 | poly f=#[1]; |
---|
512 | if (size(#) > 1) {int maxspalte=#[2];} |
---|
513 | else {int maxspalte= 1 ; } |
---|
514 | if (nvars(basering) < 2) { |
---|
515 | " Sorry. I need two variables in the ring."; |
---|
516 | return(list(matrix(maxideal(1)[1]),intvec(0),-1,poly(0),0));} |
---|
517 | if (nvars(basering) > 2) { |
---|
518 | dbprint(printlevel-voice+2, |
---|
519 | " Warning! You have defined too many variables! |
---|
520 | All variables except the first two will be ignored!" |
---|
521 | ); |
---|
522 | } |
---|
523 | |
---|
524 | string namex=varstr(1); string namey=varstr(2); |
---|
525 | list return_error=matrix(maxideal(1)[2]),intvec(0),int(-1),poly(0),int(0); |
---|
526 | |
---|
527 | //------------- 2) mehrere Unbestimmte, weitere unzulaessige Ringe ----------- |
---|
528 | // Wir koennen einheitlichen Rueckgabewert benutzen, aus dem ersichtlich ist, |
---|
529 | // dass ein Fehler aufgetreten ist: return_error. |
---|
530 | //---------------------------------------------------------------------------- |
---|
531 | |
---|
532 | if (find(charstr(basering),"Float(")) { |
---|
533 | " The algorithm doesn't work with 'Float' as coefficient field."; |
---|
534 | // denn : map from characteristic -1 to -1 not implemented |
---|
535 | return(return_error); |
---|
536 | } |
---|
537 | if (((char(basering)!=0) |
---|
538 | and ((hasAlgExtensionCoefficient(basering) |
---|
539 | ||(hasTransExtensionCoefficient(basering))))) |
---|
540 | || (npars(basering)>1)) |
---|
541 | { |
---|
542 | //-- teste, ob char = (p^k,a) (-> a primitiv; erlaubt) oder (p,a[,b,...]) ---- |
---|
543 | " Such extensions of Z/p are not implemented."; |
---|
544 | " Please try (p^k,a) as ground field or use 'hnexpansion'."; |
---|
545 | return(return_error); |
---|
546 | } |
---|
547 | //---- Ende der unzulaessigen Ringe; Ringwechsel in einen guenstigen Ring: --- |
---|
548 | |
---|
549 | int ringwechsel=(varstr(basering)!="x,y") or (ordstr(basering)!="ls(2),C"); |
---|
550 | |
---|
551 | def altring = basering; |
---|
552 | if (ringwechsel) { |
---|
553 | string mipl=string(minpoly); |
---|
554 | ring guenstig = create_ring(ringlist(altring)[1],"(x,y)","ls","no_minpoly"); |
---|
555 | if ((char(basering)==0) && (mipl!="0")) { |
---|
556 | execute("minpoly="+mipl+";"); |
---|
557 | }} |
---|
558 | else { def guenstig=basering; } |
---|
559 | export guenstig; |
---|
560 | |
---|
561 | //-------------------------- Initialisierungen ------------------------------- |
---|
562 | map m=altring,x,y; |
---|
563 | if (ringwechsel) { poly f=m(f); } |
---|
564 | if (defined(HNDebugOn)) |
---|
565 | {"received polynomial: ",f,", where x =",namex,", y =",namey;} |
---|
566 | kill m; |
---|
567 | int M,N,Q,R,l,e,hilf,eps,getauscht,Abbruch,zeile,exponent,Ausgabe; |
---|
568 | |
---|
569 | // Werte von Ausgabe: 0 : normale HNE-Matrix, |
---|
570 | // 1 : Fehler aufgetreten - Matrix (namey) zurueck |
---|
571 | // 2 : Die HNE ist eine Nullzeile - Matrix (0) zurueck |
---|
572 | // int maxspalte=1; geaendert: wird jetzt am Anfang gesetzt |
---|
573 | |
---|
574 | int minimalHNE=0; // Flag fuer minimale HNE-Berechnung |
---|
575 | int einzweig=1; // Flag fuer Irreduzibilit"at |
---|
576 | intvec hqs; // erhaelt die Werte von h(zeile)=Q; |
---|
577 | |
---|
578 | if (maxspalte<0) { |
---|
579 | minimalHNE=1; |
---|
580 | maxspalte=1; |
---|
581 | } |
---|
582 | |
---|
583 | number c,delt; |
---|
584 | int p = char(basering); |
---|
585 | map xytausch = basering,y,x; |
---|
586 | if ((p!=0) and (hasGFCoefficient(basering))) { |
---|
587 | // coefficient field is extension of Z/pZ |
---|
588 | int n_elements=size(basering); |
---|
589 | // number of elements of actual ring |
---|
590 | number generat=par(1); // generator of the coefficient field of the ring |
---|
591 | } |
---|
592 | |
---|
593 | |
---|
594 | //========= Abfangen von unzulaessigen oder trivialen Eingaben =============== |
---|
595 | //------------ Nullpolynom oder Einheit im Potenzreihenring: ----------------- |
---|
596 | if (f == 0) { |
---|
597 | dbprint(printlevel+1,"The given polynomial is the zero-polynomial !"); |
---|
598 | Abbruch=1; Ausgabe=1; |
---|
599 | } |
---|
600 | else { |
---|
601 | intvec nm = getnm(f); |
---|
602 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpolygon mit Achsen |
---|
603 | if (N == 0) { |
---|
604 | dbprint(printlevel+1,"The given polynomial is a unit as power series !"); |
---|
605 | Abbruch=1; Ausgabe=1; |
---|
606 | } |
---|
607 | else { |
---|
608 | if (N == -1) { |
---|
609 | if ((voice==2) && (printlevel > -1)) { "The HNE is x = 0"; } |
---|
610 | Abbruch=1; Ausgabe=2; getauscht=1; |
---|
611 | if (M <> 1) { einzweig=0; } |
---|
612 | } |
---|
613 | else { |
---|
614 | if (M == -1) { |
---|
615 | if ((voice==2) && (printlevel > -1)) { "The HNE is y = 0"; } |
---|
616 | Abbruch=1; Ausgabe=2; |
---|
617 | if (N <> 1) { einzweig=0; } |
---|
618 | }}} |
---|
619 | } |
---|
620 | //--------------------- Test auf Quadratfreiheit ----------------------------- |
---|
621 | if (Abbruch==0) { |
---|
622 | |
---|
623 | //-------- Fall basering==0,... : Wechsel in Ring mit char >0 ---------------- |
---|
624 | // weil squarefree eine Standardbasis berechnen muss (verwendet Syzygien) |
---|
625 | // -- wenn f in diesem Ring quadratfrei ist, dann erst recht im Ring guenstig |
---|
626 | //---------------------------------------------------------------------------- |
---|
627 | |
---|
628 | if ((p==0) and (size(charstr(basering))==1)) { |
---|
629 | int testerg=(polytest(f)==0); |
---|
630 | ring zweitring = 32003,(x,y),dp; |
---|
631 | map polyhinueber=guenstig,x,y; // fetch geht nicht |
---|
632 | poly f=polyhinueber(f); |
---|
633 | poly test_sqr=squarefree(f); |
---|
634 | if (test_sqr != f) { |
---|
635 | if (printlevel>0) { |
---|
636 | "Most probably the given polynomial is not squarefree. But the test was"; |
---|
637 | "made in characteristic 32003 and not 0 to improve speed. You can"; |
---|
638 | "(r) redo the test in char 0 (but this may take some time)"; |
---|
639 | "(c) continue the development, if you're sure that the polynomial", |
---|
640 | "IS squarefree"; |
---|
641 | if (testerg==1) { |
---|
642 | "(s) continue the development with a squarefree factor (*)";} |
---|
643 | "(q) or just quit the algorithm (default action)"; |
---|
644 | "";"Please enter the letter of your choice:"; |
---|
645 | string str=read("")[1]; |
---|
646 | } |
---|
647 | else { string str="r"; } // printlevel <= 0: non-interactive behaviour |
---|
648 | setring guenstig; |
---|
649 | map polyhinueber=zweitring,x,y; |
---|
650 | if (str=="r") { |
---|
651 | poly test_sqr=squarefree(f); |
---|
652 | if (test_sqr != f) { |
---|
653 | if (printlevel>0) { "The given polynomial is in fact not squarefree."; } |
---|
654 | else { "The given polynomial is not squarefree!"; } |
---|
655 | "I'll continue with the radical."; |
---|
656 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
657 | f=test_sqr; |
---|
658 | } |
---|
659 | else { |
---|
660 | dbprint(printlevel, |
---|
661 | "everything is ok -- the polynomial is squarefree in char(k)=0"); |
---|
662 | } |
---|
663 | } |
---|
664 | else { |
---|
665 | if ((str=="s") and (testerg==1)) { |
---|
666 | "(*) attention: it could be that the factor is only one in char 32003!"; |
---|
667 | f=polyhinueber(test_sqr); |
---|
668 | } |
---|
669 | else { |
---|
670 | if (str<>"c") { |
---|
671 | setring altring;kill guenstig;kill zweitring; |
---|
672 | return(return_error);} |
---|
673 | else { "if the algorithm doesn't terminate, you were wrong...";} |
---|
674 | }} |
---|
675 | kill zweitring; |
---|
676 | nm = getnm(f); // N,M haben sich evtl. veraendert |
---|
677 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpolynom mit Achsen |
---|
678 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
679 | } |
---|
680 | else { |
---|
681 | setring guenstig; |
---|
682 | kill zweitring; |
---|
683 | } |
---|
684 | } |
---|
685 | // ------------------- Fall Charakteristik > 0 ------------------------------- |
---|
686 | else { |
---|
687 | poly test_sqr=squarefree(f); |
---|
688 | if (test_sqr == 1) { |
---|
689 | "The given polynomial is of the form g^"+string(p)+", therefore", |
---|
690 | "reducible.";"Please try again."; |
---|
691 | setring altring; |
---|
692 | kill guenstig; |
---|
693 | return(return_error);} |
---|
694 | if (test_sqr != f) { |
---|
695 | "The given polynomial is not squarefree. I'll continue with the radical."; |
---|
696 | if (p != 0) |
---|
697 | {"But if the polynomial contains a factor of the form g^"+string(p)+","; |
---|
698 | "this factor will be lost.";} |
---|
699 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
700 | f=test_sqr; |
---|
701 | nm = getnm(f); // N,M haben sich veraendert |
---|
702 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpolynom mit Achsen |
---|
703 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
704 | } |
---|
705 | |
---|
706 | } // endelse(p==0) |
---|
707 | |
---|
708 | if (N==0) { |
---|
709 | " Sorry. The remaining polynomial is a unit in the power series ring..."; |
---|
710 | setring altring;kill guenstig;return(return_error); |
---|
711 | } |
---|
712 | //---------------------- gewaehrleiste, dass x transvers ist ----------------- |
---|
713 | if (M < N) |
---|
714 | { f = xytausch(f); // Variablentausch : x jetzt transvers |
---|
715 | getauscht = 1; // den Tausch merken |
---|
716 | M = M+N; N = M-N; M = M-N; // M, N auch vertauschen |
---|
717 | } |
---|
718 | if (defined(HNDebugOn)) { |
---|
719 | if (getauscht) {"x<->y were exchanged; polynomial is now ",f;} |
---|
720 | else {"x , y were not exchanged";} |
---|
721 | "M resp. N are now",M,N; |
---|
722 | } |
---|
723 | } // end(if Abbruch==0) |
---|
724 | |
---|
725 | ideal a(0); |
---|
726 | while (Abbruch==0) { |
---|
727 | |
---|
728 | //================= Beginn der Schleife (eigentliche Entwicklung) ============ |
---|
729 | |
---|
730 | //------------------- ist das Newtonpolygon eine gerade Linie? --------------- |
---|
731 | if (testreducible(f,N,M)) { |
---|
732 | dbprint(printlevel+1," The given polynomial is not irreducible"); |
---|
733 | kill guenstig; |
---|
734 | setring altring; |
---|
735 | return(return_error); // Abbruch der Prozedur! |
---|
736 | } |
---|
737 | R = M%N; |
---|
738 | Q = M div N; |
---|
739 | |
---|
740 | //-------------------- Fall Rest der Division R = 0 : ------------------------ |
---|
741 | if (R == 0) { |
---|
742 | c = koeff(f,0,N); |
---|
743 | if (c == 0) {"Something has gone wrong! I didn't get N correctly!"; exit;} |
---|
744 | e = gcd(M,N); |
---|
745 | //----------------- Test, ob leitf = c*(y^N - delta*x^(m/e))^e ist ----------- |
---|
746 | if (p==0) { |
---|
747 | delt = koeff(f,M div e,N - N div e) / (-1*e*c); |
---|
748 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
749 | leit(f,N,M)," = ",c,"* (y -",delt,"* x^"+string(M div e)+")^",e," ?";} |
---|
750 | if (leit(f,N,M) != c*(y^(N div e) - delt*x^(M div e))^e) { |
---|
751 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
752 | Abbruch=1; Ausgabe=1; } |
---|
753 | } |
---|
754 | else { // p!=0 |
---|
755 | if (e%p != 0) { |
---|
756 | delt = koeff(f,M div e,N - N div e) / (-1*e*c); |
---|
757 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
758 | leit(f,N,M)," = ",c,"* (y -",delt,"* x^"+string(M div e)+")^",e," ?";} |
---|
759 | if (leit(f,N,M) != c*(y^(N div e) - delt*x^(M div e))^e) { |
---|
760 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
761 | Abbruch=1; Ausgabe=1; } |
---|
762 | } |
---|
763 | |
---|
764 | else { // e%p == 0 |
---|
765 | eps = e; |
---|
766 | for (l = 0; eps%p == 0; l=l+1) { eps=eps div p;} |
---|
767 | if (defined(HNDebugOn)) {e," -> ",eps,"*",p,"^",l;} |
---|
768 | delt = koeff(f,(M div e)*p^l,(N div e)*p^l*(eps-1)) / (-1*eps*c); |
---|
769 | |
---|
770 | if ((!hasZpCoefficient(basering)) and (delt != 0)) { |
---|
771 | //- coeff. field is not Z/pZ => we've to correct delta by taking (p^l)th root- |
---|
772 | if (delt == generat) {exponent=1;} |
---|
773 | else { |
---|
774 | if (delt == 1) {exponent=0;} |
---|
775 | else { |
---|
776 | exponent=pardeg(delt); |
---|
777 | |
---|
778 | //-- an dieser Stelle kann ein Fehler auftreten, wenn wir eine transzendente - |
---|
779 | //-- Erweiterung von Z/pZ haben: dann ist das hinzuadjungierte Element kein - |
---|
780 | //-- Erzeuger der mult. Gruppe, d.h. in Z/pZ (a) gibt es i.allg. keinen - |
---|
781 | //-- Exponenten mit z.B. a2+a = a^exp - |
---|
782 | //---------------------------------------------------------------------------- |
---|
783 | }} |
---|
784 | delt = generat^(extgcd(n_elements-1,p^l)[3]*exponent); |
---|
785 | } |
---|
786 | |
---|
787 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
788 | leit(f,N,M)," = ",c,"* (y^"+string(N div e),"-",delt,"* x^" |
---|
789 | +string(M div e)+")^",e," ?";} |
---|
790 | if (leit(f,N,M) != c*(y^(N div e) - delt*x^(M div e))^e) { |
---|
791 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
792 | Abbruch=1; Ausgabe=1; } |
---|
793 | } |
---|
794 | } |
---|
795 | if (Abbruch == 0) { |
---|
796 | f = T1_Transform(f,delt,M div e); |
---|
797 | dbprint(printlevel-voice+2,"a("+string(zeile)+","+string(Q)+") = " |
---|
798 | +string(delt)); |
---|
799 | a(zeile)[Q]=delt; |
---|
800 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;}} |
---|
801 | |
---|
802 | nm=getnm(f); N=nm[1]; M=nm[2]; // Neuberechnung des Newtonpolygons |
---|
803 | } |
---|
804 | //--------------------------- Fall R > 0 : ----------------------------------- |
---|
805 | else { |
---|
806 | dbprint(printlevel-voice+2, "h("+string(zeile)+ ") ="+string(Q)); |
---|
807 | hqs[zeile+1]=Q; // denn zeile beginnt mit dem Wert 0 |
---|
808 | a(zeile)[Q+1]=x; // Markierung des Zeilenendes der HNE |
---|
809 | maxspalte=maxspalte*((Q+1) < maxspalte) + (Q+1)*((Q+1) >= maxspalte); |
---|
810 | // Anpassung der Sp.zahl der HNE-Matrix |
---|
811 | f = T_Transform(f,Q,N); |
---|
812 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;} |
---|
813 | zeile=zeile+1; |
---|
814 | //------------ Bereitstellung von Speicherplatz fuer eine neue Zeile: -------- |
---|
815 | ideal a(zeile); |
---|
816 | M=N;N=R; |
---|
817 | } |
---|
818 | |
---|
819 | //--------------- schneidet das Newtonpolygon beide Achsen? ------------------ |
---|
820 | if (M==-1) { |
---|
821 | dbprint(printlevel-voice+2,"The HNE is finite!"); |
---|
822 | a(zeile)[Q+1]=x; // Markiere das Ende der Zeile |
---|
823 | hqs[zeile+1]=Q; |
---|
824 | maxspalte=maxspalte*((Q+1) < maxspalte) + (Q+1)*((Q+1) >= maxspalte); |
---|
825 | if (N <> 1) { einzweig=0; } |
---|
826 | f=0; // transformiertes Polynom wird nicht mehr gebraucht |
---|
827 | Abbruch=1; |
---|
828 | } |
---|
829 | else {if (M<N) {"Something has gone wrong: M<N";}} |
---|
830 | if(defined(HNDebugOn)) {"new M,N:",M,N;} |
---|
831 | |
---|
832 | //----------------- Abbruchbedingungen fuer die Schleife: -------------------- |
---|
833 | if ((N==1) and (Abbruch!=1) and ((M > maxspalte) or (minimalHNE==1)) |
---|
834 | and (size(a(zeile))>0)) |
---|
835 | //---------------------------------------------------------------------------- |
---|
836 | // Abbruch, wenn die Matrix so voll ist, dass eine neue Spalte angefangen |
---|
837 | // werden muesste und die letzte Zeile nicht nur Nullen enthaelt |
---|
838 | // oder wenn die Matrix nicht voll gemacht werden soll (minimale Information) |
---|
839 | //---------------------------------------------------------------------------- |
---|
840 | { Abbruch=1; hqs[zeile+1]=-1; |
---|
841 | if (maxspalte < ncols(a(zeile))) { maxspalte=ncols(a(zeile));} |
---|
842 | if ((minimalHNE==1) and (M <= maxspalte)) { |
---|
843 | // teile param mit, dass Eintraege der letzten Zeile nur teilw. richtig sind:- |
---|
844 | hqs[zeile+1]=-M; |
---|
845 | //------------- markiere den Rest der Zeile als unbekannt: ------------------- |
---|
846 | for (R=M; R <= maxspalte; R++) { a(zeile)[R]=y;} |
---|
847 | } // R wird nicht mehr gebraucht |
---|
848 | } |
---|
849 | //========================= Ende der Schleife ================================ |
---|
850 | |
---|
851 | } |
---|
852 | setring altring; |
---|
853 | if (Ausgabe == 0) { |
---|
854 | //-------------------- Ergebnis in den alten Ring transferieren: ------------- |
---|
855 | map zurueck=guenstig,maxideal(1)[1],maxideal(1)[2]; |
---|
856 | matrix amat[zeile+1][maxspalte]; |
---|
857 | ideal uebergabe; |
---|
858 | for (e=0; e<=zeile; e=e+1) { |
---|
859 | uebergabe=zurueck(a(e)); |
---|
860 | if (ncols(uebergabe) > 1) { |
---|
861 | amat[e+1,1..ncols(uebergabe)]=uebergabe;} |
---|
862 | else {amat[e+1,1]=uebergabe[1];} |
---|
863 | } |
---|
864 | if (ringwechsel) { |
---|
865 | if (nvars(altring)==2) { f=fetch(guenstig,f); } |
---|
866 | else { f=zurueck(f); } |
---|
867 | } |
---|
868 | } |
---|
869 | |
---|
870 | kill guenstig; |
---|
871 | if ((einzweig==0) && (voice==2) && (printlevel > -1)) { |
---|
872 | "// Note: The curve is reducible, but we were able to compute a HNE."; |
---|
873 | "// This means the result is only one of several existing HNE's."; |
---|
874 | } |
---|
875 | if (Ausgabe == 0) { return(list(amat,hqs,getauscht,f,einzweig));} |
---|
876 | if (Ausgabe == 1) { return(return_error);} // error has occurred |
---|
877 | if (Ausgabe == 2) { return(list(matrix(ideal(0,x)),intvec(1),getauscht, |
---|
878 | poly(0),einzweig));} // HNE is x=0 or y=0 |
---|
879 | } |
---|
880 | example |
---|
881 | { "EXAMPLE:"; echo = 2; |
---|
882 | ring exring = 7,(x,y),ds; |
---|
883 | list Hne=develop(4x98+2x49y7+x11y14+2y14); |
---|
884 | print(Hne[1]); |
---|
885 | // therefore the HNE is: |
---|
886 | // z(-1)= 3*z(0)^7 + z(0)^7*z(1), |
---|
887 | // z(0) = z(1)*z(2), (there is 1 zero in the 2nd row before x) |
---|
888 | // z(1) = z(2)^3*z(3), (there are 3 zeroes in the 3rd row) |
---|
889 | // z(2) = z(3)*z(4), |
---|
890 | // z(3) = -z(4)^2 + 0*z(4)^3 +...+ 0*z(4)^8 + ?*z(4)^9 + ... |
---|
891 | // (the missing x in the last line indicates that it is not complete.) |
---|
892 | Hne[2]; |
---|
893 | param(Hne); |
---|
894 | // parametrization: x(t)= -t^14+O(t^21), y(t)= -3t^98+O(t^105) |
---|
895 | // (the term -t^109 in y may have a wrong coefficient) |
---|
896 | displayHNE(Hne); |
---|
897 | } |
---|
898 | |
---|
899 | |
---|
900 | /////////////////////////////////////////////////////////////////////////////// |
---|
901 | // procedures to extract information out of HNE // |
---|
902 | /////////////////////////////////////////////////////////////////////////////// |
---|
903 | |
---|
904 | proc param (list L, list #) |
---|
905 | "USAGE: param(L [,s]); L list, s any type (optional) |
---|
906 | ASSUME: L is the output of @code{develop(f)}, or of |
---|
907 | @code{extdevelop(develop(f),n)}, or (one entry in) the list of HN |
---|
908 | data created by @code{hnexpansion(f[,\"ess\"])}. |
---|
909 | RETURN: If L are the HN data of an irreducible plane curve singularity f: a |
---|
910 | parametrization for f in the following format: @* |
---|
911 | - if only the list L is given, the result is an ideal of two |
---|
912 | polynomials p[1],p[2]: if the HNE was finite then f(p[1],p[2])=0}; |
---|
913 | if not, the true parametrization will be given by two power series, |
---|
914 | and p[1],p[2] are truncations of these series.@* |
---|
915 | - if the optional parameter s is given, the result is a list l: |
---|
916 | l[1]=param(L) (ideal) and l[2]=intvec with two entries indicating |
---|
917 | the highest degree up to which the coefficients of the monomials in |
---|
918 | l[1] are exact (entry -1 means that the corresponding parametrization |
---|
919 | is exact). |
---|
920 | If L collects the HN data of a reducible plane curve singularity f, |
---|
921 | the return value is a list of parametrizations in the respective |
---|
922 | format. |
---|
923 | NOTE: If the basering has only 2 variables, the first variable is chosen |
---|
924 | as indefinite. Otherwise, the 3rd variable is chosen. |
---|
925 | SEE ALSO: develop, extdevelop |
---|
926 | KEYWORDS: parametrization |
---|
927 | EXAMPLE: example param; shows an example |
---|
928 | example develop; shows another example |
---|
929 | " |
---|
930 | { |
---|
931 | //-------------------------- Initialisierungen ------------------------------- |
---|
932 | int return_list; |
---|
933 | if (size(#)>0) { return_list=1; } |
---|
934 | |
---|
935 | if (typeof(L[1])=="list") { // output of hnexpansion (> 1 branch) |
---|
936 | list Ergebnis; |
---|
937 | for (int i=1; i<=size(L); i++) { |
---|
938 | dbprint(printlevel-voice+4,"// Parametrization of branch number " |
---|
939 | +string(i)+" computed."); |
---|
940 | printlevel=printlevel+1; |
---|
941 | if (return_list==1) { Ergebnis[i]=param(L[i],1); } |
---|
942 | else { Ergebnis[i]=param(L[i]); } |
---|
943 | printlevel=printlevel-1; |
---|
944 | } |
---|
945 | return(Ergebnis); |
---|
946 | } |
---|
947 | else { |
---|
948 | matrix m=L[1]; |
---|
949 | intvec v=L[2]; |
---|
950 | int switch=L[3]; |
---|
951 | } |
---|
952 | if (switch==-1) { |
---|
953 | "An error has occurred in develop, so there is no HNE."; |
---|
954 | return(ideal(0,0)); |
---|
955 | } |
---|
956 | int fehler,fehlervor,untergrad,untervor,beginn,i,zeile,hilf; |
---|
957 | |
---|
958 | if (nvars(basering) > 2) { poly z(size(v)+1)=var(3); } |
---|
959 | else { poly z(size(v)+1)=var(1); } |
---|
960 | poly z(size(v)); |
---|
961 | zeile=size(v); |
---|
962 | //------------- Parametrisierung der untersten Zeile der HNE ----------------- |
---|
963 | if (v[zeile] > 0) { |
---|
964 | fehler=0; // die Parametrisierung wird exakt werden |
---|
965 | for (i=1; i<=v[zeile]; i++) { |
---|
966 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
967 | } |
---|
968 | } |
---|
969 | else { |
---|
970 | untervor=1; // = Untergrad der vorhergehenden Zeile |
---|
971 | if (v[zeile]==-1) { |
---|
972 | fehler=ncols(m)+1; |
---|
973 | for (i=1; i<=ncols(m); i++) { |
---|
974 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
975 | if ((untergrad==0) and (m[zeile,i]!=0)) {untergrad=i;} |
---|
976 | // = Untergrad der aktuellen Zeile |
---|
977 | } |
---|
978 | } |
---|
979 | else { |
---|
980 | fehler= -v[zeile]; |
---|
981 | for (i=1; i<-v[zeile]; i++) { |
---|
982 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
983 | if ((untergrad==0) and (m[zeile,i]!=0)) {untergrad=i;} |
---|
984 | } |
---|
985 | } |
---|
986 | } |
---|
987 | //------------- Parametrisierung der restlichen Zeilen der HNE --------------- |
---|
988 | for (zeile=size(v)-1; zeile>0; zeile--) { |
---|
989 | poly z(zeile); |
---|
990 | beginn=0; // Beginn der aktuellen Zeile |
---|
991 | for (i=1; i<=v[zeile]; i++) { |
---|
992 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
993 | if ((beginn==0) and (m[zeile,i]!=0)) { beginn=i;} |
---|
994 | } |
---|
995 | z(zeile)=z(zeile) + z(zeile+1)^v[zeile] * z(zeile+2); |
---|
996 | if (beginn==0) { |
---|
997 | if (fehler>0) { // damit fehler=0 bleibt bei exakter Param. |
---|
998 | fehlervor=fehler; // Fehler der letzten Zeile |
---|
999 | fehler=fehler+untergrad*(v[zeile]-1)+untervor; // Fehler dieser Zeile |
---|
1000 | hilf=untergrad; |
---|
1001 | untergrad=untergrad*v[zeile]+untervor; |
---|
1002 | untervor=hilf;} // untervor = altes untergrad |
---|
1003 | } |
---|
1004 | else { |
---|
1005 | fehlervor=fehler; |
---|
1006 | fehler=fehler+untergrad*(beginn-1); |
---|
1007 | untervor=untergrad; |
---|
1008 | untergrad=untergrad*beginn; |
---|
1009 | } |
---|
1010 | } |
---|
1011 | //--------------------- Ausgabe der Fehlerabschaetzung ----------------------- |
---|
1012 | if (switch==0) { |
---|
1013 | if (fehler>0) { |
---|
1014 | if (fehlervor>0) { |
---|
1015 | dbprint(printlevel-voice+4,""+ |
---|
1016 | "// ** Warning: result is exact up to order "+string(fehlervor-1)+ |
---|
1017 | " in "+ string(var(1))+" and "+string(fehler-1)+" in " + |
---|
1018 | string(var(2))+" !"); |
---|
1019 | } |
---|
1020 | else { |
---|
1021 | dbprint(printlevel-voice+4,""+ |
---|
1022 | "// ** Warning: result is exact up to order "+ string(fehler-1)+ |
---|
1023 | " in "+string(var(2))+" !"); |
---|
1024 | } |
---|
1025 | } |
---|
1026 | if (return_list==0) { return(ideal(z(2),z(1))); } |
---|
1027 | else { return(list(ideal(z(2),z(1)),intvec(fehlervor-1,fehler-1))); } |
---|
1028 | } |
---|
1029 | else { |
---|
1030 | if (fehler>0) { |
---|
1031 | if (fehlervor>0) { |
---|
1032 | dbprint(printlevel-voice+4,""+ |
---|
1033 | "// ** Warning: result is exact up to order "+string(fehler-1)+ |
---|
1034 | " in "+ string(var(1))+" and "+string(fehlervor-1)+" in " + |
---|
1035 | string(var(2))+" !"); |
---|
1036 | } |
---|
1037 | else { |
---|
1038 | dbprint(printlevel-voice+4,""+ |
---|
1039 | "// ** Warning: result is exact up to order "+ string(fehler-1)+ |
---|
1040 | " in "+string(var(1))+" !"); |
---|
1041 | } |
---|
1042 | } |
---|
1043 | if (return_list==0) { return(ideal(z(1),z(2))); } |
---|
1044 | else { return(list(ideal(z(1),z(2)),intvec(fehler-1,fehlervor-1))); } |
---|
1045 | } |
---|
1046 | } |
---|
1047 | example |
---|
1048 | { "EXAMPLE:"; echo = 2; |
---|
1049 | ring exring=0,(x,y,t),ds; |
---|
1050 | poly f=x3+2xy2+y2; |
---|
1051 | list Hne=develop(f); |
---|
1052 | list hne_extended=extdevelop(Hne,10); |
---|
1053 | // compare the HNE matrices ... |
---|
1054 | print(Hne[1]); |
---|
1055 | print(hne_extended[1]); |
---|
1056 | // ... and the resulting parametrizations: |
---|
1057 | param(Hne); |
---|
1058 | param(hne_extended); |
---|
1059 | param(hne_extended,0); |
---|
1060 | |
---|
1061 | // An example with more than one branch: |
---|
1062 | list L=hnexpansion(f*(x2+y4)); |
---|
1063 | def HNring = L[1]; setring HNring; |
---|
1064 | param(hne); |
---|
1065 | } |
---|
1066 | |
---|
1067 | /////////////////////////////////////////////////////////////////////////////// |
---|
1068 | |
---|
1069 | proc invariants |
---|
1070 | "USAGE: invariants(INPUT); INPUT list or poly |
---|
1071 | ASSUME: @code{INPUT} is the output of @code{develop(f)}, or of |
---|
1072 | @code{extdevelop(develop(f),n)}, or one entry of the list of HN data |
---|
1073 | computed by @code{hnexpansion(f[,\"ess\"])}. |
---|
1074 | RETURN: list @code{INV} of the following format: |
---|
1075 | @format |
---|
1076 | INV[1]: intvec (characteristic exponents) |
---|
1077 | INV[2]: intvec (generators of the semigroup) |
---|
1078 | INV[3]: intvec (Puiseux pairs, 1st components) |
---|
1079 | INV[4]: intvec (Puiseux pairs, 2nd components) |
---|
1080 | INV[5]: int (degree of the conductor) |
---|
1081 | INV[6]: intvec (sequence of multiplicities) |
---|
1082 | @end format |
---|
1083 | If @code{INPUT} contains no valid HN expansion, the empty list is |
---|
1084 | returned. |
---|
1085 | ASSUME: @code{INPUT} is a bivariate polynomial f, or the output of |
---|
1086 | @code{hnexpansion(f)}, or the list of HN data computed by |
---|
1087 | @code{hnexpansion(f [,\"ess\"])}. |
---|
1088 | RETURN: list @code{INV}, such that @code{INV[i]} coincides with the output of |
---|
1089 | @code{invariants(develop(f[i]))}, where f[i] is the i-th branch of |
---|
1090 | f, and the last entry of @code{INV} contains further invariants of |
---|
1091 | f in the format: |
---|
1092 | @format |
---|
1093 | INV[last][1] : intmat (contact matrix of the branches) |
---|
1094 | INV[last][2] : intmat (intersection multiplicities of the branches) |
---|
1095 | INV[last][3] : int (delta invariant of f) |
---|
1096 | @end format |
---|
1097 | NOTE: In case the Hamburger-Noether expansion of the curve f is needed |
---|
1098 | for other purposes as well it is better to calculate this first |
---|
1099 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1100 | the polynomial itself. |
---|
1101 | SEE ALSO: hnexpansion, develop, displayInvariants, multsequence, intersection |
---|
1102 | KEYWORDS: characteristic exponents; semigroup of values; Puiseux pairs; |
---|
1103 | conductor, degree; multiplicities, sequence of |
---|
1104 | EXAMPLE: example invariants; shows an example |
---|
1105 | " |
---|
1106 | { |
---|
1107 | //---- INPUT = poly, or HNEring, or hne of reducible curve ----------------- |
---|
1108 | if (typeof(#[1])!="matrix") { |
---|
1109 | if (typeof(#[1])=="poly") { |
---|
1110 | list L=hnexpansion(#[1]); |
---|
1111 | if (typeof(L[1])=="ring") { |
---|
1112 | def altring = basering; |
---|
1113 | def HNring = L[1]; setring HNring; |
---|
1114 | list Ergebnis = invariants(hne); |
---|
1115 | setring altring; |
---|
1116 | kill HNring; |
---|
1117 | return(Ergebnis); |
---|
1118 | } |
---|
1119 | else { |
---|
1120 | return(invariants(L)); |
---|
1121 | } |
---|
1122 | } |
---|
1123 | if (typeof(#[1])=="ring") { |
---|
1124 | def altring = basering; |
---|
1125 | def HNring = #[1]; setring HNring; |
---|
1126 | list Ergebnis = invariants(hne); |
---|
1127 | setring altring; |
---|
1128 | kill HNring; |
---|
1129 | return(Ergebnis); |
---|
1130 | } |
---|
1131 | if (typeof(#[1])=="list") { |
---|
1132 | list hne=#; |
---|
1133 | list Ergebnis; |
---|
1134 | for (int lauf=1;lauf<=size(hne);lauf++) { |
---|
1135 | Ergebnis[lauf]=invariants(hne[lauf]); |
---|
1136 | } |
---|
1137 | // Calculate the intersection matrix and the intersection multiplicities. |
---|
1138 | intmat contact[size(hne)][size(hne)]; |
---|
1139 | intmat intersectionmatrix[size(hne)][size(hne)]; |
---|
1140 | int Lauf; |
---|
1141 | for (lauf=1;lauf<=size(hne);lauf++) { |
---|
1142 | for (Lauf=lauf+1;Lauf<=size(hne);Lauf++) { |
---|
1143 | contact[lauf,Lauf]=separateHNE(hne[lauf],hne[Lauf]); |
---|
1144 | contact[Lauf,lauf]=contact[lauf,Lauf]; |
---|
1145 | intersectionmatrix[lauf,Lauf]=intersection(hne[lauf],hne[Lauf]); |
---|
1146 | intersectionmatrix[Lauf,lauf]=intersectionmatrix[lauf,Lauf]; |
---|
1147 | } |
---|
1148 | } |
---|
1149 | // Calculate the delta invariant. |
---|
1150 | int inters; |
---|
1151 | int del=Ergebnis[size(hne)][5] div 2; |
---|
1152 | for(lauf=1;lauf<=size(hne)-1;lauf++) { |
---|
1153 | del=del+Ergebnis[lauf][5] div 2; |
---|
1154 | for(Lauf=lauf+1;Lauf<=size(hne);Lauf++) { |
---|
1155 | inters=inters+intersectionmatrix[lauf,Lauf]; |
---|
1156 | } |
---|
1157 | } |
---|
1158 | del=del+inters; |
---|
1159 | list LAST=contact,intersectionmatrix,del; |
---|
1160 | Ergebnis[size(hne)+1]=LAST; |
---|
1161 | return(Ergebnis); |
---|
1162 | } |
---|
1163 | } |
---|
1164 | //-------------------------- Initialisierungen ------------------------------- |
---|
1165 | matrix m=#[1]; |
---|
1166 | intvec v=#[2]; |
---|
1167 | int switch=#[3]; |
---|
1168 | list ergebnis; |
---|
1169 | if (switch==-1) { |
---|
1170 | "An error has occurred in develop, so there is no HNE."; |
---|
1171 | return(ergebnis); |
---|
1172 | } |
---|
1173 | intvec beta,s,svorl,ordnung,multseq,mpuiseux,npuiseux,halbgr; |
---|
1174 | int genus,zeile,i,j,k,summe,conductor,ggT; |
---|
1175 | string Ausgabe; |
---|
1176 | int nc=ncols(m); int nr=nrows(m); |
---|
1177 | ordnung[nr]=1; |
---|
1178 | // alle Indizes muessen (gegenueber [Ca]) um 1 erhoeht werden, |
---|
1179 | // weil 0..r nicht als Wertebereich erlaubt ist (aber nrows(m)==r+1) |
---|
1180 | |
---|
1181 | //---------------- Bestimme den Untergrad der einzelnen Zeilen --------------- |
---|
1182 | for (zeile=nr; zeile>1; zeile--) { |
---|
1183 | if ((size(ideal(m[zeile,1..nc])) > 1) or (zeile==nr)) { // keine Nullzeile |
---|
1184 | k=1; |
---|
1185 | while (m[zeile,k]==0) {k++;} |
---|
1186 | ordnung[zeile-1]=k*ordnung[zeile]; // vgl. auch Def. von untergrad in |
---|
1187 | genus++; // proc param |
---|
1188 | svorl[genus]=zeile;} // werden gerade in umgekehrter Reihenfolge abgelegt |
---|
1189 | else { |
---|
1190 | ordnung[zeile-1]=v[zeile]*ordnung[zeile]+ordnung[zeile+1]; |
---|
1191 | }} |
---|
1192 | //----------------- charakteristische Exponenten (beta) ---------------------- |
---|
1193 | s[1]=1; |
---|
1194 | for (k=1; k <= genus; k++) { s[k+1]=svorl[genus-k+1];} // s[2]==s(1), u.s.w. |
---|
1195 | beta[1]=ordnung[1]; //charakt. Exponenten: Index wieder verschoben |
---|
1196 | for (k=1; k <= genus; k++) { |
---|
1197 | summe=0; |
---|
1198 | for (i=1; i <= s[k]; i++) {summe=summe+v[i]*ordnung[i];} |
---|
1199 | beta[k+1]=summe+ordnung[s[k]]+ordnung[s[k]+1]-ordnung[1]; |
---|
1200 | } |
---|
1201 | //--------------------------- Puiseuxpaare ----------------------------------- |
---|
1202 | int produkt=1; |
---|
1203 | for (i=1; i<=genus; i++) { |
---|
1204 | ggT=gcd(beta[1],beta[i+1]*produkt); |
---|
1205 | mpuiseux[i]=beta[i+1]*produkt div ggT; |
---|
1206 | npuiseux[i]=beta[1] div ggT; |
---|
1207 | produkt=produkt*npuiseux[i]; |
---|
1208 | } |
---|
1209 | //---------------------- Grad des Konduktors --------------------------------- |
---|
1210 | summe=1-ordnung[1]; |
---|
1211 | if (genus > 0) { |
---|
1212 | for (i=2; i <= genus+1; i++) { |
---|
1213 | summe=summe + beta[i] * (ordnung[s[i-1]] - ordnung[s[i]]); |
---|
1214 | } // n.b.: Indizierung wieder um 1 verschoben |
---|
1215 | } |
---|
1216 | conductor=summe; |
---|
1217 | //------------------- Erzeuger der Halbgruppe: ------------------------------- |
---|
1218 | halbgr=puiseux2generators(mpuiseux,npuiseux); |
---|
1219 | |
---|
1220 | //------------------- Multiplizitaetensequenz: ------------------------------- |
---|
1221 | k=1; |
---|
1222 | for (i=1; i<size(v); i++) { |
---|
1223 | for (j=1; j<=v[i]; j++) { |
---|
1224 | multseq[k]=ordnung[i]; |
---|
1225 | k++; |
---|
1226 | }} |
---|
1227 | multseq[k]=1; |
---|
1228 | //--- fuelle die Multipl.seq. mit den notwendigen Einsen auf -- T.Keilen ---- |
---|
1229 | int tester=k; |
---|
1230 | while((multseq[tester]==1) and (tester>1)) |
---|
1231 | { |
---|
1232 | tester=tester-1; |
---|
1233 | } |
---|
1234 | if ((multseq[tester]!=1) and (multseq[tester]!=k-tester)) |
---|
1235 | { |
---|
1236 | for (i=k+1; i<=tester+multseq[tester]; i++) |
---|
1237 | { |
---|
1238 | multseq[i]=1; |
---|
1239 | } |
---|
1240 | } |
---|
1241 | //--- Ende T.Keilen --- 06.05.02 |
---|
1242 | //------------------------- Rueckgabe ---------------------------------------- |
---|
1243 | ergebnis=beta,halbgr,mpuiseux,npuiseux,conductor,multseq; |
---|
1244 | return(ergebnis); |
---|
1245 | } |
---|
1246 | example |
---|
1247 | { "EXAMPLE:"; echo = 2; |
---|
1248 | ring exring=0,(x,y),dp; |
---|
1249 | list Hne=develop(y4+2x3y2+x6+x5y); |
---|
1250 | list INV=invariants(Hne); |
---|
1251 | INV[1]; // the characteristic exponents |
---|
1252 | INV[2]; // the generators of the semigroup of values |
---|
1253 | INV[3],INV[4]; // the Puiseux pairs in packed form |
---|
1254 | INV[5] div 2; // the delta-invariant |
---|
1255 | INV[6]; // the sequence of multiplicities |
---|
1256 | // To display the invariants more 'nicely': |
---|
1257 | displayInvariants(Hne); |
---|
1258 | ///////////////////////////// |
---|
1259 | INV=invariants((x2-y3)*(x3-y5)); |
---|
1260 | INV[1][1]; // the characteristic exponents of the first branch |
---|
1261 | INV[2][6]; // the sequence of multiplicities of the second branch |
---|
1262 | print(INV[size(INV)][1]); // the contact matrix of the branches |
---|
1263 | print(INV[size(INV)][2]); // the intersection numbers of the branches |
---|
1264 | INV[size(INV)][3]; // the delta invariant of the curve |
---|
1265 | } |
---|
1266 | |
---|
1267 | /////////////////////////////////////////////////////////////////////////////// |
---|
1268 | |
---|
1269 | proc displayInvariants |
---|
1270 | "USAGE: displayInvariants(INPUT); INPUT list or poly |
---|
1271 | ASSUME: @code{INPUT} is a bivariate polynomial, or the output of |
---|
1272 | @code{develop(f)}, resp. of @code{extdevelop(develop(f),n)}, or (one |
---|
1273 | entry of) the list of HN data computed by |
---|
1274 | @code{hnexpansion(f[,\"ess\"])}. |
---|
1275 | RETURN: none |
---|
1276 | DISPLAY: invariants of the corresponding branch, resp. of all branches, |
---|
1277 | in a better readable form. |
---|
1278 | NOTE: If the Hamburger-Noether expansion of the curve f is needed |
---|
1279 | for other purposes as well it is better to calculate this first |
---|
1280 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1281 | the polynomial itself. |
---|
1282 | SEE ALSO: invariants, intersection, develop, hnexpansion |
---|
1283 | EXAMPLE: example displayInvariants; shows an example |
---|
1284 | " |
---|
1285 | { |
---|
1286 | // INPUT = polynomial or ring |
---|
1287 | if (typeof(#[1])=="poly") { |
---|
1288 | list L=hnexpansion(#[1]); |
---|
1289 | if (typeof(L[1])=="ring") { |
---|
1290 | def HNring = L[1]; setring HNring; |
---|
1291 | displayInvariants(hne); |
---|
1292 | return(); |
---|
1293 | } |
---|
1294 | else { |
---|
1295 | displayInvariants(L); |
---|
1296 | return(); |
---|
1297 | } |
---|
1298 | } |
---|
1299 | if (typeof(#[1])=="ring") |
---|
1300 | { |
---|
1301 | def HNring = #[1]; setring HNring; |
---|
1302 | displayInvariants(hne); |
---|
1303 | return(); |
---|
1304 | } |
---|
1305 | // INPUT = hne of a plane curve |
---|
1306 | int i,j,k,mul; |
---|
1307 | string Ausgabe; |
---|
1308 | list ergebnis; |
---|
1309 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1310 | #=stripHNE(#); |
---|
1311 | //-------------------- Ausgabe eines Zweiges --------------------------------- |
---|
1312 | if (typeof(#[1])=="matrix") { |
---|
1313 | ergebnis=invariants(#); |
---|
1314 | if (size(ergebnis)!=0) { |
---|
1315 | " characteristic exponents :",ergebnis[1]; |
---|
1316 | " generators of semigroup :",ergebnis[2]; |
---|
1317 | if (size(ergebnis[1])>1) { |
---|
1318 | for (i=1; i<=size(ergebnis[3]); i++) { |
---|
1319 | Ausgabe=Ausgabe+"("+string(ergebnis[3][i])+"," |
---|
1320 | +string(ergebnis[4][i])+")"; |
---|
1321 | }} |
---|
1322 | " Puiseux pairs :",Ausgabe; |
---|
1323 | " degree of the conductor :",ergebnis[5]; |
---|
1324 | " delta invariant :",ergebnis[5] div 2; |
---|
1325 | " sequence of multiplicities:",ergebnis[6]; |
---|
1326 | }} |
---|
1327 | //-------------------- Ausgabe aller Zweige ---------------------------------- |
---|
1328 | else { |
---|
1329 | ergebnis=invariants(#); |
---|
1330 | intmat contact=ergebnis[size(#)+1][1]; |
---|
1331 | intmat intersectionmatrix=ergebnis[size(#)+1][2]; |
---|
1332 | for (j=1; j<=size(#); j++) { |
---|
1333 | " --- invariants of branch number",j,": ---"; |
---|
1334 | " characteristic exponents :",ergebnis[j][1]; |
---|
1335 | " generators of semigroup :",ergebnis[j][2]; |
---|
1336 | Ausgabe=""; |
---|
1337 | if (size(ergebnis[j][1])>1) { |
---|
1338 | for (i=1; i<=size(ergebnis[j][3]); i++) { |
---|
1339 | Ausgabe=Ausgabe+"("+string(ergebnis[j][3][i])+"," |
---|
1340 | +string(ergebnis[j][4][i])+")"; |
---|
1341 | }} |
---|
1342 | " Puiseux pairs :",Ausgabe; |
---|
1343 | " degree of the conductor :",ergebnis[j][5]; |
---|
1344 | " delta invariant :",ergebnis[j][5] div 2; |
---|
1345 | " sequence of multiplicities:",ergebnis[j][6]; |
---|
1346 | ""; |
---|
1347 | } |
---|
1348 | if (size(#)>1) |
---|
1349 | { |
---|
1350 | " -------------- contact numbers : -------------- ";""; |
---|
1351 | Ausgabe="branch | "; |
---|
1352 | for (j=size(#); j>1; j--) |
---|
1353 | { |
---|
1354 | if (size(string(j))==1) { Ausgabe=Ausgabe+" "+string(j)+" "; } |
---|
1355 | else { Ausgabe=Ausgabe+string(j)+" "; } |
---|
1356 | } |
---|
1357 | Ausgabe; |
---|
1358 | Ausgabe="-------+"; |
---|
1359 | for (j=2; j<size(#); j++) { Ausgabe=Ausgabe+"------"; } |
---|
1360 | Ausgabe=Ausgabe+"-----"; |
---|
1361 | Ausgabe; |
---|
1362 | } |
---|
1363 | for (j=1; j<size(#); j++) |
---|
1364 | { |
---|
1365 | if (size(string(j))==1) { Ausgabe=" "+string(j)+" |"; } |
---|
1366 | else { Ausgabe=" " +string(j)+" |"; } |
---|
1367 | for (k=size(#); k>j; k--) |
---|
1368 | { |
---|
1369 | mul=contact[j,k];//separateHNE(#[j],#[k]); |
---|
1370 | for (i=1; i<=5-size(string(mul)); i++) { Ausgabe=Ausgabe+" "; } |
---|
1371 | Ausgabe=Ausgabe+string(mul); |
---|
1372 | if (k>j+1) { Ausgabe=Ausgabe+","; } |
---|
1373 | } |
---|
1374 | Ausgabe; |
---|
1375 | } |
---|
1376 | ""; |
---|
1377 | if (size(#)>1) |
---|
1378 | { |
---|
1379 | " -------------- intersection multiplicities : -------------- ";""; |
---|
1380 | Ausgabe="branch | "; |
---|
1381 | for (j=size(#); j>1; j--) |
---|
1382 | { |
---|
1383 | if (size(string(j))==1) { Ausgabe=Ausgabe+" "+string(j)+" "; } |
---|
1384 | else { Ausgabe=Ausgabe+string(j)+" "; } |
---|
1385 | } |
---|
1386 | Ausgabe; |
---|
1387 | Ausgabe="-------+"; |
---|
1388 | for (j=2; j<size(#); j++) { Ausgabe=Ausgabe+"------"; } |
---|
1389 | Ausgabe=Ausgabe+"-----"; |
---|
1390 | Ausgabe; |
---|
1391 | } |
---|
1392 | for (j=1; j<size(#); j++) |
---|
1393 | { |
---|
1394 | if (size(string(j))==1) { Ausgabe=" "+string(j)+" |"; } |
---|
1395 | else { Ausgabe=" " +string(j)+" |"; } |
---|
1396 | for (k=size(#); k>j; k--) |
---|
1397 | { |
---|
1398 | mul=intersectionmatrix[j,k];//intersection(#[j],#[k]); |
---|
1399 | for (i=1; i<=5-size(string(mul)); i++) { Ausgabe=Ausgabe+" "; } |
---|
1400 | Ausgabe=Ausgabe+string(mul); |
---|
1401 | if (k>j+1) { Ausgabe=Ausgabe+","; } |
---|
1402 | } |
---|
1403 | Ausgabe; |
---|
1404 | } |
---|
1405 | ""; |
---|
1406 | " -------------- delta invariant of the curve : ",ergebnis[size(#)+1][3]; |
---|
1407 | |
---|
1408 | } |
---|
1409 | return(); |
---|
1410 | } |
---|
1411 | example |
---|
1412 | { "EXAMPLE:"; echo = 2; |
---|
1413 | ring exring=0,(x,y),dp; |
---|
1414 | list Hne=develop(y4+2x3y2+x6+x5y); |
---|
1415 | displayInvariants(Hne); |
---|
1416 | } |
---|
1417 | /////////////////////////////////////////////////////////////////////////////// |
---|
1418 | |
---|
1419 | proc multiplicities |
---|
1420 | "USAGE: multiplicities(L); L list |
---|
1421 | ASSUME: L is the output of @code{develop(f)}, or of |
---|
1422 | @code{extdevelop(develop(f),n)}, or one entry in the list @code{hne} |
---|
1423 | in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
1424 | RETURN: intvec of the different multiplicities that occur when successively |
---|
1425 | blowing-up the curve singularity corresponding to f. |
---|
1426 | SEE ALSO: multsequence, develop |
---|
1427 | EXAMPLE: example multiplicities; shows an example |
---|
1428 | " |
---|
1429 | { |
---|
1430 | matrix m=#[1]; |
---|
1431 | intvec v=#[2]; |
---|
1432 | int switch=#[3]; |
---|
1433 | list ergebnis; |
---|
1434 | if (switch==-1) { |
---|
1435 | "An error has occurred in develop, so there is no HNE."; |
---|
1436 | return(intvec(0)); |
---|
1437 | } |
---|
1438 | intvec ordnung; |
---|
1439 | int zeile,k; |
---|
1440 | int nc=ncols(m); int nr=nrows(m); |
---|
1441 | ordnung[nr]=1; |
---|
1442 | //---------------- Bestimme den Untergrad der einzelnen Zeilen --------------- |
---|
1443 | for (zeile=nr; zeile>1; zeile--) { |
---|
1444 | if ((size(ideal(m[zeile,1..nc])) > 1) or (zeile==nr)) { // keine Nullzeile |
---|
1445 | k=1; |
---|
1446 | while (m[zeile,k]==0) {k++;} |
---|
1447 | ordnung[zeile-1]=k*ordnung[zeile]; |
---|
1448 | } |
---|
1449 | else { |
---|
1450 | ordnung[zeile-1]=v[zeile]*ordnung[zeile]+ordnung[zeile+1]; |
---|
1451 | }} |
---|
1452 | return(ordnung); |
---|
1453 | } |
---|
1454 | example |
---|
1455 | { "EXAMPLE:"; echo = 2; |
---|
1456 | int p=printlevel; printlevel=-1; |
---|
1457 | ring r=0,(x,y),dp; |
---|
1458 | multiplicities(develop(x5+y7)); |
---|
1459 | // The first value is the multiplicity of the curve itself, here it's 5 |
---|
1460 | printlevel=p; |
---|
1461 | } |
---|
1462 | /////////////////////////////////////////////////////////////////////////////// |
---|
1463 | |
---|
1464 | proc puiseux2generators (intvec m, intvec n) |
---|
1465 | "USAGE: puiseux2generators(m,n); m,n intvec |
---|
1466 | ASSUME: m, resp. n, represent the 1st, resp. 2nd, components of Puiseux pairs |
---|
1467 | (e.g., @code{m=invariants(L)[3]}, @code{n=invariants(L)[4]}). |
---|
1468 | RETURN: intvec of the generators of the semigroup of values. |
---|
1469 | SEE ALSO: invariants |
---|
1470 | EXAMPLE: example puiseux2generators; shows an example |
---|
1471 | " |
---|
1472 | { |
---|
1473 | intvec beta; |
---|
1474 | int q=1; |
---|
1475 | //------------ glatte Kurve (eigentl. waeren m,n leer): ---------------------- |
---|
1476 | if (m==0) { return(intvec(1)); } |
---|
1477 | //------------------- singulaere Kurve: -------------------------------------- |
---|
1478 | for (int i=1; i<=size(n); i++) { q=q*n[i]; } |
---|
1479 | beta[1]=q; // == q_0 |
---|
1480 | m=1,m; n=1,n; // m[1] ist damit m_0 usw., genau wie beta[1]==beta_0 |
---|
1481 | for (i=2; i<=size(n); i++) { |
---|
1482 | beta[i]=m[i]*q div n[i] - m[i-1]*q + n[i-1]*beta[i-1]; |
---|
1483 | q=q div n[i]; // == q_i |
---|
1484 | } |
---|
1485 | return(beta); |
---|
1486 | } |
---|
1487 | example |
---|
1488 | { "EXAMPLE:"; echo = 2; |
---|
1489 | // take (3,2),(7,2),(15,2),(31,2),(63,2),(127,2) as Puiseux pairs: |
---|
1490 | puiseux2generators(intvec(3,7,15,31,63,127),intvec(2,2,2,2,2,2)); |
---|
1491 | } |
---|
1492 | /////////////////////////////////////////////////////////////////////////////// |
---|
1493 | |
---|
1494 | proc intersection (list hn1, list hn2) |
---|
1495 | "USAGE: intersection(hne1,hne2); hne1, hne2 lists |
---|
1496 | ASSUME: @code{hne1, hne2} represent an HN expansion of an irreducible plane |
---|
1497 | curve singularity (that is, are the output of @code{develop(f)}, or of |
---|
1498 | @code{extdevelop(develop(f),n)}, or one entry of the list of HN data |
---|
1499 | computed by @code{hnexpansion(f[,\"ess\"])}). |
---|
1500 | RETURN: int, the intersection multiplicity of the irreducible plane curve |
---|
1501 | singularities corresponding to @code{hne1} and @code{hne2}. |
---|
1502 | SEE ALSO: hnexpansion, displayInvariants |
---|
1503 | KEYWORDS: intersection multiplicity |
---|
1504 | EXAMPLE: example intersection; shows an example |
---|
1505 | " |
---|
1506 | { |
---|
1507 | //------------------ 'intersect' ist schon reserviert ... -------------------- |
---|
1508 | int i,j,s,sum,schnitt,unterschied; |
---|
1509 | matrix a1=hn1[1]; |
---|
1510 | matrix a2=hn2[1]; |
---|
1511 | intvec h1=hn1[2]; |
---|
1512 | intvec h2=hn2[2]; |
---|
1513 | intvec n1=multiplicities(hn1); |
---|
1514 | intvec n2=multiplicities(hn2); |
---|
1515 | if (hn1[3]!=hn2[3]) { |
---|
1516 | //-- die jeweils erste Zeile von hn1,hn2 gehoert zu verschiedenen Parametern - |
---|
1517 | //---------------- d.h. beide Kurven schneiden sich transversal -------------- |
---|
1518 | schnitt=n1[1]*n2[1]; // = mult(hn1)*mult(hn2) |
---|
1519 | } |
---|
1520 | else { |
---|
1521 | //--------- die jeweils erste Zeile gehoert zum gleichen Parameter ----------- |
---|
1522 | unterschied=0; |
---|
1523 | for (s=1; (h1[s]==h2[s]) && (s<size(h1)) && (s<size(h2)) |
---|
1524 | && (unterschied==0); s++) { |
---|
1525 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]); i++) {;} |
---|
1526 | if (i<=h1[s]) { |
---|
1527 | unterschied=1; |
---|
1528 | s--; // um s++ am Schleifenende wieder auszugleichen |
---|
1529 | } |
---|
1530 | } |
---|
1531 | if (unterschied==0) { |
---|
1532 | if ((s<size(h1)) && (s<size(h2))) { |
---|
1533 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]) && (i<=h2[s]); i++) {;} |
---|
1534 | } |
---|
1535 | else { |
---|
1536 | //-------------- Sonderfall: Unterschied in letzter Zeile suchen ------------- |
---|
1537 | // Beachte: Es koennen undefinierte Stellen auftreten, bei abbrechender HNE |
---|
1538 | // muss die Ende-Markierung weg, h_[r] ist unendlich, die Matrix muss mit |
---|
1539 | // Nullen fortgesetzt gedacht werden |
---|
1540 | //---------------------------------------------------------------------------- |
---|
1541 | if (ncols(a1)>ncols(a2)) { j=ncols(a1); } |
---|
1542 | else { j=ncols(a2); } |
---|
1543 | unterschied=0; |
---|
1544 | if ((h1[s]>0) && (s==size(h1))) { |
---|
1545 | a1[s,h1[s]+1]=0; |
---|
1546 | if (ncols(a1)<=ncols(a2)) { unterschied=1; } |
---|
1547 | } |
---|
1548 | if ((h2[s]>0) && (s==size(h2))) { |
---|
1549 | a2[s,h2[s]+1]=0; |
---|
1550 | if (ncols(a2)<=ncols(a1)) { unterschied=1; } |
---|
1551 | } |
---|
1552 | if (unterschied==1) { // mind. eine HNE war endlich |
---|
1553 | matrix ma1[1][j]=a1[s,1..ncols(a1)]; // und bedarf der Fortsetzung |
---|
1554 | matrix ma2[1][j]=a2[s,1..ncols(a2)]; // mit Nullen |
---|
1555 | } |
---|
1556 | else { |
---|
1557 | if (ncols(a1)>ncols(a2)) { j=ncols(a2); } |
---|
1558 | else { j=ncols(a1); } |
---|
1559 | matrix ma1[1][j]=a1[s,1..j]; // Beschr. auf vergleichbaren |
---|
1560 | matrix ma2[1][j]=a2[s,1..j]; // Teil (der evtl. y's enth.) |
---|
1561 | } |
---|
1562 | for (i=1; (ma1[1,i]==ma2[1,i]) && (i<j) && (ma1[1,i]!=var(2)); i++) {;} |
---|
1563 | if (ma1[1,i]==ma2[1,i]) { |
---|
1564 | "//** The two HNE's are identical!"; |
---|
1565 | "//** You have either tried to intersect a branch with itself,"; |
---|
1566 | "//** or the two branches have been developed separately."; |
---|
1567 | "// In the latter case use 'extdevelop' to extend the HNE's until", |
---|
1568 | "they differ."; |
---|
1569 | return(-1); |
---|
1570 | } |
---|
1571 | if ((ma1[1,i]==var(2)) || (ma2[1,i]==var(2))) { |
---|
1572 | "//** The two HNE's are (so far) identical. This is because they", |
---|
1573 | "have been"; |
---|
1574 | "//** computed separately. I need more data; use 'extdevelop' to", |
---|
1575 | "extend them,"; |
---|
1576 | if (ma1[1,i]==var(2)) {"//** at least the first one.";} |
---|
1577 | else {"//** at least the second one.";} |
---|
1578 | return(-1); |
---|
1579 | } |
---|
1580 | } |
---|
1581 | } |
---|
1582 | sum=0; |
---|
1583 | h1[size(h1)]=ncols(a1)+42; // Ersatz fuer h1[r]=infinity |
---|
1584 | h2[size(h2)]=ncols(a2)+42; |
---|
1585 | for (j=1; j<s; j++) {sum=sum+h1[j]*n1[j]*n2[j];} |
---|
1586 | if ((i<=h1[s]) && (i<=h2[s])) { schnitt=sum+i*n1[s]*n2[s]; } |
---|
1587 | if (i==h2[s]+1) { schnitt=sum+h2[s]*n1[s]*n2[s]+n2[s+1]*n1[s]; } |
---|
1588 | if (i==h1[s]+1) { schnitt=sum+h1[s]*n2[s]*n1[s]+n1[s+1]*n2[s]; } |
---|
1589 | // "s:",s-1,"i:",i,"S:",sum; |
---|
1590 | } |
---|
1591 | return(schnitt); |
---|
1592 | } |
---|
1593 | example |
---|
1594 | { |
---|
1595 | "EXAMPLE:"; echo = 2; |
---|
1596 | ring r=0,(x,y),dp; |
---|
1597 | list Hne=hnexpansion((x2-y3)*(x2+y3)); |
---|
1598 | intersection(Hne[1],Hne[2]); |
---|
1599 | } |
---|
1600 | /////////////////////////////////////////////////////////////////////////////// |
---|
1601 | |
---|
1602 | proc multsequence |
---|
1603 | "USAGE: multsequence(INPUT); INPUT list or poly |
---|
1604 | ASSUME: @code{INPUT} is the output of @code{develop(f)}, or of |
---|
1605 | @code{extdevelop(develop(f),n)}, or one entry of the list of HN data |
---|
1606 | computed by @code{hnexpansion(f[,\"ess\"])}. |
---|
1607 | RETURN: intvec corresponding to the multiplicity sequence of the irreducible |
---|
1608 | plane curve singularity described by the HN data (return value |
---|
1609 | coincides with @code{invariants(INPUT)[6]}). |
---|
1610 | |
---|
1611 | ASSUME: @code{INPUT} is a bivariate polynomial f, or the output of |
---|
1612 | @code{hnexpansion(f)}, or the list of HN data computed by |
---|
1613 | @code{hnexpansion(f [,\"ess\"])}. |
---|
1614 | RETURN: list of two integer matrices: |
---|
1615 | @texinfo |
---|
1616 | @table @asis |
---|
1617 | @item @code{multsequence(INPUT)[1][i,*]} |
---|
1618 | contains the multiplicities of the branches at their infinitely near point |
---|
1619 | of 0 in its (i-1) order neighbourhood (i.e., i=1: multiplicity of the |
---|
1620 | branches themselves, i=2: multiplicity of their 1st quadratic transform, |
---|
1621 | etc., @* |
---|
1622 | Hence, @code{multsequence(INPUT)[1][*,j]} is the multiplicity sequence |
---|
1623 | of branch j. |
---|
1624 | @item @code{multsequence(INPUT)[2][i,*]}: |
---|
1625 | contains the information which of these infinitely near points coincide. |
---|
1626 | @end table |
---|
1627 | @end texinfo |
---|
1628 | NOTE: The order of the elements of the list of HN data obtained from |
---|
1629 | @code{hnexpansion(f [,\"ess\"])} must not be changed (because otherwise |
---|
1630 | the coincident infinitely near points couldn't be grouped together, |
---|
1631 | see the meaning of the 2nd intmat in the example). |
---|
1632 | Hence, it is not wise to compute the HN expansion of polynomial factors |
---|
1633 | separately, put them into a list INPUT and call |
---|
1634 | @code{multsequence(INPUT)}. @* |
---|
1635 | Use @code{displayMultsequence} to produce a better readable output for |
---|
1636 | reducible curves on the screen. @* |
---|
1637 | In case the Hamburger-Noether expansion of the curve f is needed |
---|
1638 | for other purposes as well it is better to calculate this first |
---|
1639 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1640 | the polynomial itself. |
---|
1641 | SEE ALSO: displayMultsequence, develop, hnexpansion, separateHNE |
---|
1642 | KEYWORDS: multiplicity sequence |
---|
1643 | EXAMPLE: example multsequence; shows an example |
---|
1644 | " |
---|
1645 | { |
---|
1646 | //---- INPUT = poly, or HNEring -------------------- |
---|
1647 | if (typeof(#[1])=="poly") { |
---|
1648 | list L=hnexpansion(#[1]); |
---|
1649 | if (typeof(L[1])=="ring") { |
---|
1650 | def altring = basering; |
---|
1651 | def HNring = L[1]; setring HNring; |
---|
1652 | list Ergebnis = multsequence(hne); |
---|
1653 | setring altring; |
---|
1654 | kill HNring; |
---|
1655 | return(Ergebnis); |
---|
1656 | } |
---|
1657 | else { |
---|
1658 | return(multsequence(L)); |
---|
1659 | } |
---|
1660 | } |
---|
1661 | if (typeof(#[1])=="ring") { |
---|
1662 | def altring = basering; |
---|
1663 | def HNring = #[1]; setring HNring; |
---|
1664 | list Ergebnis = multsequence(hne); |
---|
1665 | setring altring; |
---|
1666 | kill HNring; |
---|
1667 | return(Ergebnis); |
---|
1668 | } |
---|
1669 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1670 | #=stripHNE(#); |
---|
1671 | int k,i,j; |
---|
1672 | //----------------- Multiplizitaetensequenz eines Zweiges -------------------- |
---|
1673 | if (typeof(#[1])=="matrix") { |
---|
1674 | intvec v=#[2]; |
---|
1675 | list ergebnis; |
---|
1676 | if (#[3]==-1) { |
---|
1677 | "An error has occurred in develop, so there is no HNE."; |
---|
1678 | return(intvec(0)); |
---|
1679 | } |
---|
1680 | intvec multips,multseq; |
---|
1681 | multips=multiplicities(#); |
---|
1682 | k=1; |
---|
1683 | for (i=1; i<size(v); i++) { |
---|
1684 | for (j=1; j<=v[i]; j++) { |
---|
1685 | multseq[k]=multips[i]; |
---|
1686 | k++; |
---|
1687 | }} |
---|
1688 | multseq[k]=1; |
---|
1689 | //--- fuelle die Multipl.seq. mit den notwendigen Einsen auf -- T.Keilen ---- |
---|
1690 | int tester=k; |
---|
1691 | while((multseq[tester]==1) and (tester>1)) |
---|
1692 | { |
---|
1693 | tester=tester-1; |
---|
1694 | } |
---|
1695 | if((multseq[tester]!=1) and (multseq[tester]!=k-tester)) |
---|
1696 | { |
---|
1697 | for (i=k+1; i<=tester+multseq[tester]; i++) |
---|
1698 | { |
---|
1699 | multseq[i]=1; |
---|
1700 | } |
---|
1701 | } |
---|
1702 | //--- Ende T.Keilen --- 06.05.02 |
---|
1703 | return(multseq); |
---|
1704 | } |
---|
1705 | //---------------------------- mehrere Zweige -------------------------------- |
---|
1706 | else { |
---|
1707 | list HNEs=#; |
---|
1708 | int anzahl=size(HNEs); |
---|
1709 | int maxlength=0; |
---|
1710 | int bisher; |
---|
1711 | intvec schnitt,ones; |
---|
1712 | ones[anzahl]=0; |
---|
1713 | ones=ones+1; // = 1,1,...,1 |
---|
1714 | for (i=1; i<anzahl; i++) { |
---|
1715 | schnitt[i]=separateHNE(HNEs[i],HNEs[i+1]); |
---|
1716 | j=size(multsequence(HNEs[i])); |
---|
1717 | maxlength=maxlength*(j < maxlength) + j*(j >= maxlength); |
---|
1718 | maxlength=maxlength*(schnitt[i]+1 < maxlength) |
---|
1719 | + (schnitt[i]+1)*(schnitt[i]+1 >= maxlength); |
---|
1720 | } |
---|
1721 | j=size(multsequence(HNEs[anzahl])); |
---|
1722 | maxlength=maxlength*(j < maxlength) + j*(j >= maxlength); |
---|
1723 | |
---|
1724 | //-------------- Konstruktion der ersten zu berechnenden Matrix --------------- |
---|
1725 | intmat allmults[maxlength][anzahl]; |
---|
1726 | for (i=1; i<=maxlength; i++) { allmults[i,1..anzahl]=ones[1..anzahl]; } |
---|
1727 | for (i=1; i<=anzahl; i++) { |
---|
1728 | ones=multsequence(HNEs[i]); |
---|
1729 | allmults[1..size(ones),i]=ones[1..size(ones)]; |
---|
1730 | } |
---|
1731 | //---------------------- Konstruktion der zweiten Matrix ---------------------- |
---|
1732 | intmat separate[maxlength][anzahl]; |
---|
1733 | for (i=1; i<=maxlength; i++) { |
---|
1734 | k=1; |
---|
1735 | bisher=0; |
---|
1736 | if (anzahl==1) { separate[i,1]=1; } |
---|
1737 | for (j=1; j<anzahl; j++) { |
---|
1738 | if (schnitt[j]<i) { |
---|
1739 | separate[i,k]=j-bisher; |
---|
1740 | bisher=j; |
---|
1741 | k++; |
---|
1742 | } |
---|
1743 | separate[i,k]=anzahl-bisher; |
---|
1744 | } |
---|
1745 | } |
---|
1746 | return(list(allmults,separate)); |
---|
1747 | } |
---|
1748 | } |
---|
1749 | example |
---|
1750 | { |
---|
1751 | "EXAMPLE:"; echo = 2; |
---|
1752 | ring r=0,(x,y),dp; |
---|
1753 | list Hne=hnexpansion((x6-y10)*(x+y2-y3)*(x+y2+y3)); |
---|
1754 | multsequence(Hne[1])," | ",multsequence(Hne[2])," | ", |
---|
1755 | multsequence(Hne[3])," | ",multsequence(Hne[4]); |
---|
1756 | multsequence(Hne); |
---|
1757 | // The meaning of the entries of the 2nd matrix is as follows: |
---|
1758 | displayMultsequence(Hne); |
---|
1759 | } |
---|
1760 | /////////////////////////////////////////////////////////////////////////////// |
---|
1761 | |
---|
1762 | proc displayMultsequence |
---|
1763 | "USAGE: displayMultsequence(INPUT); INPUT list or poly |
---|
1764 | ASSUME: @code{INPUT} is a bivariate polynomial, or the output of |
---|
1765 | @code{develop(f)}, resp. of @code{extdevelop(develop(f),n)}, or (one |
---|
1766 | entry of) the list of HN data computed by @code{hnexpansion(f[,\"ess\"])}, |
---|
1767 | or the output of @code{hnexpansion(f)}. |
---|
1768 | RETURN: nothing |
---|
1769 | DISPLAY: the sequence of multiplicities: |
---|
1770 | @format |
---|
1771 | - if @code{INPUT=develop(f)} or @code{INPUT=extdevelop(develop(f),n)} or @code{INPUT=hne[i]}: |
---|
1772 | @code{a , b , c , ....... , 1} |
---|
1773 | - if @code{INPUT=f} or @code{INPUT=hnexpansion(f)} or @code{INPUT=hne}: |
---|
1774 | @code{[(a_1, .... , b_1 , .... , c_1)],} |
---|
1775 | @code{[(a_2, ... ), ... , (... , c_2)],} |
---|
1776 | @code{ ........................................ ,} |
---|
1777 | @code{[(a_n),(b_n), ....., (c_n)]} |
---|
1778 | with: |
---|
1779 | @code{a_1 , ... , a_n} the sequence of multiplicities of the 1st branch, |
---|
1780 | @code{[...]} the multiplicities of the j-th transform of all branches, |
---|
1781 | @code{(...)} indicating branches meeting in an infinitely near point. |
---|
1782 | @end format |
---|
1783 | NOTE: The Same restrictions as in @code{multsequence} apply for the input.@* |
---|
1784 | In case the Hamburger-Noether expansion of the curve f is needed |
---|
1785 | for other purposes as well it is better to calculate this first |
---|
1786 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1787 | the polynomial itself. |
---|
1788 | SEE ALSO: multsequence, develop, hnexpansion, separateHNE |
---|
1789 | EXAMPLE: example displayMultsequence; shows an example |
---|
1790 | " |
---|
1791 | { |
---|
1792 | //---- INPUT = poly, or HNEring -------------------- |
---|
1793 | if (typeof(#[1])=="poly") { |
---|
1794 | list L=hnexpansion(#[1]); |
---|
1795 | if (typeof(L[1])=="ring") { |
---|
1796 | def HNring = L[1]; setring HNring; |
---|
1797 | displayMultsequence(hne); |
---|
1798 | return(); |
---|
1799 | } |
---|
1800 | else { |
---|
1801 | displayMultsequence(L); |
---|
1802 | return(); |
---|
1803 | } |
---|
1804 | } |
---|
1805 | if (typeof(#[1])=="ring") { |
---|
1806 | def HNring = #[1]; setring HNring; |
---|
1807 | displayMultsequence(hne); |
---|
1808 | return(); |
---|
1809 | } |
---|
1810 | |
---|
1811 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1812 | #=stripHNE(#); |
---|
1813 | //----------------- Multiplizitaetensequenz eines Zweiges -------------------- |
---|
1814 | if (typeof(#[1])=="matrix") { |
---|
1815 | if (#[3]==-1) { |
---|
1816 | "An error has occurred in develop, so there is no HNE."; |
---|
1817 | } |
---|
1818 | else { |
---|
1819 | "The sequence of multiplicities is ",multsequence(#); |
---|
1820 | }} |
---|
1821 | //---------------------------- mehrere Zweige -------------------------------- |
---|
1822 | else { |
---|
1823 | list multips=multsequence(#); |
---|
1824 | int i,j,k,l; |
---|
1825 | string output; |
---|
1826 | for (i=1; i<=nrows(multips[1]); i++) { |
---|
1827 | output="["; |
---|
1828 | k=1; |
---|
1829 | for (l=1; k<=ncols(multips[1]); l++) { |
---|
1830 | output=output+"("; |
---|
1831 | for (j=1; j<=multips[2][i,l]; j++) { |
---|
1832 | output=output+string(multips[1][i,k]); |
---|
1833 | k++; |
---|
1834 | if (j<multips[2][i,l]) { output=output+","; } |
---|
1835 | } |
---|
1836 | output=output+")"; |
---|
1837 | if ((k-1) < ncols(multips[1])) { output=output+","; } |
---|
1838 | } |
---|
1839 | output=output+"]"; |
---|
1840 | if (i<nrows(multips[1])) { output=output+","; } |
---|
1841 | output; |
---|
1842 | } |
---|
1843 | } |
---|
1844 | } |
---|
1845 | example |
---|
1846 | { |
---|
1847 | "EXAMPLE:"; echo = 2; |
---|
1848 | ring r=0,(x,y),dp; |
---|
1849 | // Example 1: Input = output of develop |
---|
1850 | displayMultsequence(develop(x3-y5)); |
---|
1851 | |
---|
1852 | // Example 2: Input = bivariate polynomial |
---|
1853 | displayMultsequence((x6-y10)*(x+y2-y3)*(x+y2+y3)); |
---|
1854 | } |
---|
1855 | |
---|
1856 | /////////////////////////////////////////////////////////////////////////////// |
---|
1857 | |
---|
1858 | proc separateHNE (list hn1,list hn2) |
---|
1859 | "USAGE: separateHNE(hne1,hne2); hne1, hne2 lists |
---|
1860 | ASSUME: hne1, hne2 are HNEs (=output of |
---|
1861 | @code{develop(f)}, @code{extdevelop(develop(f),n)}, or |
---|
1862 | one entry in the list @code{hne} in the ring created by |
---|
1863 | @code{hnexpansion(f[,\"ess\"])}. |
---|
1864 | RETURN: number of quadratic transformations needed to separate both curves |
---|
1865 | (branches). |
---|
1866 | SEE ALSO: develop, hnexpansion, multsequence, displayMultsequence |
---|
1867 | EXAMPLE: example separateHNE; shows an example |
---|
1868 | " |
---|
1869 | { |
---|
1870 | int i,j,s,unterschied,separated; |
---|
1871 | matrix a1=hn1[1]; |
---|
1872 | matrix a2=hn2[1]; |
---|
1873 | intvec h1=hn1[2]; |
---|
1874 | intvec h2=hn2[2]; |
---|
1875 | if (hn1[3]!=hn2[3]) { |
---|
1876 | //-- die jeweils erste Zeile von hn1,hn2 gehoert zu verschiedenen Parametern - |
---|
1877 | //---------------- d.h. beide Kurven schneiden sich transversal -------------- |
---|
1878 | separated=1; |
---|
1879 | } |
---|
1880 | else { |
---|
1881 | //--------- die jeweils erste Zeile gehoert zum gleichen Parameter ----------- |
---|
1882 | unterschied=0; |
---|
1883 | for (s=1; (h1[s]==h2[s]) && (s<size(h1)) && (s<size(h2)) |
---|
1884 | && (unterschied==0); s++) { |
---|
1885 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]); i++) {;} |
---|
1886 | if (i<=h1[s]) { |
---|
1887 | unterschied=1; |
---|
1888 | s--; // um s++ am Schleifenende wieder auszugleichen |
---|
1889 | } |
---|
1890 | } |
---|
1891 | if (unterschied==0) { |
---|
1892 | if ((s<size(h1)) && (s<size(h2))) { |
---|
1893 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]) && (i<=h2[s]); i++) {;} |
---|
1894 | } |
---|
1895 | else { |
---|
1896 | //-------------- Sonderfall: Unterschied in letzter Zeile suchen ------------- |
---|
1897 | // Beachte: Es koennen undefinierte Stellen auftreten, bei abbrechender HNE |
---|
1898 | // muss die Ende-Markierung weg, h_[r] ist unendlich, die Matrix muss mit |
---|
1899 | // Nullen fortgesetzt gedacht werden |
---|
1900 | //---------------------------------------------------------------------------- |
---|
1901 | if (ncols(a1)>ncols(a2)) { j=ncols(a1); } |
---|
1902 | else { j=ncols(a2); } |
---|
1903 | unterschied=0; |
---|
1904 | if ((h1[s]>0) && (s==size(h1))) { |
---|
1905 | a1[s,h1[s]+1]=0; |
---|
1906 | if (ncols(a1)<=ncols(a2)) { unterschied=1; } |
---|
1907 | } |
---|
1908 | if ((h2[s]>0) && (s==size(h2))) { |
---|
1909 | a2[s,h2[s]+1]=0; |
---|
1910 | if (ncols(a2)<=ncols(a1)) { unterschied=1; } |
---|
1911 | } |
---|
1912 | if (unterschied==1) { // mind. eine HNE war endlich |
---|
1913 | matrix ma1[1][j]=a1[s,1..ncols(a1)]; // und bedarf der Fortsetzung |
---|
1914 | matrix ma2[1][j]=a2[s,1..ncols(a2)]; // mit Nullen |
---|
1915 | } |
---|
1916 | else { |
---|
1917 | if (ncols(a1)>ncols(a2)) { j=ncols(a2); } |
---|
1918 | else { j=ncols(a1); } |
---|
1919 | matrix ma1[1][j]=a1[s,1..j]; // Beschr. auf vergleichbaren |
---|
1920 | matrix ma2[1][j]=a2[s,1..j]; // Teil (der evtl. y's enth.) |
---|
1921 | } |
---|
1922 | for (i=1; (ma1[1,i]==ma2[1,i]) && (i<j) && (ma1[1,i]!=var(2)); i++) {;} |
---|
1923 | if (ma1[1,i]==ma2[1,i]) { |
---|
1924 | "//** The two HNE's are identical!"; |
---|
1925 | "//** You have either tried to compare a branch with itself,"; |
---|
1926 | "//** or the two branches have been developed separately."; |
---|
1927 | "// In the latter case use 'extdevelop' to extend the HNE's until", |
---|
1928 | "they differ."; |
---|
1929 | return(-1); |
---|
1930 | } |
---|
1931 | if ((ma1[1,i]==var(2)) || (ma2[1,i]==var(2))) { |
---|
1932 | "//** The two HNE's are (so far) identical. This is because they", |
---|
1933 | "have been"; |
---|
1934 | "//** computed separately. I need more data; use 'extdevelop' to", |
---|
1935 | "extend them,"; |
---|
1936 | if (ma1[1,i]==var(2)) {"//** at least the first one.";} |
---|
1937 | else {"//** at least the second one.";} |
---|
1938 | return(-1); |
---|
1939 | } |
---|
1940 | } |
---|
1941 | } |
---|
1942 | separated=i; |
---|
1943 | for (j=1; j<s; j++) { separated=separated+h1[j]; } |
---|
1944 | } |
---|
1945 | return(separated); |
---|
1946 | } |
---|
1947 | example |
---|
1948 | { "EXAMPLE:"; echo = 2; |
---|
1949 | int p=printlevel; printlevel=-1; |
---|
1950 | ring r=0,(x,y),dp; |
---|
1951 | list hne1=develop(x); |
---|
1952 | list hne2=develop(x+y); |
---|
1953 | list hne3=develop(x+y2); |
---|
1954 | separateHNE(hne1,hne2); // two transversal lines |
---|
1955 | separateHNE(hne1,hne3); // one quadratic transform. gives 1st example |
---|
1956 | printlevel=p; |
---|
1957 | } |
---|
1958 | /////////////////////////////////////////////////////////////////////////////// |
---|
1959 | |
---|
1960 | proc displayHNE(list ldev,list #) |
---|
1961 | "USAGE: displayHNE(L[,n]); L list, n int |
---|
1962 | ASSUME: L is the output of @code{develop(f)}, or of @code{exdevelop(f,n)}, |
---|
1963 | or of @code{hnexpansion(f[,\"ess\"])}, or (one entry in) the list |
---|
1964 | @code{hne} in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
1965 | RETURN: - if only one argument is given and if the input are the HN data |
---|
1966 | of an irreducible plane curve singularity, no return value, but |
---|
1967 | display an ideal HNE of the following form: |
---|
1968 | @example |
---|
1969 | y = []*x^1+[]*x^2 +...+x^<>*z(1) |
---|
1970 | x = []*z(1)^2+...+z(1)^<>*z(2) |
---|
1971 | z(1) = []*z(2)^2+...+z(2)^<>*z(3) |
---|
1972 | ....... .......................... |
---|
1973 | z(r-1) = []*z(r)^2+[]*z(r)^3+...... |
---|
1974 | @end example |
---|
1975 | where @code{x},@code{y} are the first 2 variables of the basering. |
---|
1976 | The values of @code{[]} are the coefficients of the Hamburger-Noether |
---|
1977 | matrix, the values of @code{<>} are represented by @code{x} in the |
---|
1978 | HN matrix.@* |
---|
1979 | - if a second argument is given and if the input are the HN data |
---|
1980 | of an irreducible plane curve singularity, return a ring containing |
---|
1981 | an ideal @code{HNE} as described above.@* |
---|
1982 | - if L corresponds to the output of @code{hnexpansion(f)} |
---|
1983 | or to the list of HN data computed by @code{hnexpansion(f[,\"ess\"])}, |
---|
1984 | @code{displayHNE(L[,n])} shows the HNE's of all branches of f in the |
---|
1985 | format described above. The optional parameter is then ignored. |
---|
1986 | NOTE: The 1st line of the above ideal (i.e., @code{HNE[1]}) means that |
---|
1987 | @code{y=[]*z(0)^1+...}, the 2nd line (@code{HNE[2]}) means that |
---|
1988 | @code{x=[]*z(1)^2+...}, so you can see which indeterminate |
---|
1989 | corresponds to which line (it's also possible that @code{x} corresponds |
---|
1990 | to the 1st line and @code{y} to the 2nd). |
---|
1991 | |
---|
1992 | SEE ALSO: develop, hnexpansion |
---|
1993 | EXAMPLE: example displayHNE; shows an example |
---|
1994 | " |
---|
1995 | { |
---|
1996 | if ((typeof(ldev[1])=="list") || (typeof(ldev[1])=="none")) { |
---|
1997 | for (int i=1; i<=size(ldev); i++) { |
---|
1998 | "// Hamburger-Noether development of branch nr."+string(i)+":"; |
---|
1999 | displayHNE(ldev[i]);""; |
---|
2000 | } |
---|
2001 | return(); |
---|
2002 | } |
---|
2003 | //--------------------- Initialisierungen und Ringwechsel -------------------- |
---|
2004 | matrix m=ldev[1]; |
---|
2005 | intvec v=ldev[2]; |
---|
2006 | int switch=ldev[3]; |
---|
2007 | if (switch==-1) { |
---|
2008 | "An error has occurred throughout the expansion, so there is no HNE."; |
---|
2009 | return(ideal(0)); |
---|
2010 | } |
---|
2011 | def altring=basering; |
---|
2012 | ///////////////////////////////////////////////////////// |
---|
2013 | // Change by T. Keilen 08.06.2002 |
---|
2014 | // ring + ring does not work if one ring is an algebraic extension |
---|
2015 | /* |
---|
2016 | if (parstr(basering)!="") { |
---|
2017 | if (charstr(basering)!=string(char(basering))+","+parstr(basering)) { |
---|
2018 | execute |
---|
2019 | ("ring dazu=("+charstr(basering)+"),z(0.."+string(size(v)-1)+"),ls;"); |
---|
2020 | } |
---|
2021 | else { ring dazu=char(altring),z(0..size(v)-1),ls; } |
---|
2022 | } |
---|
2023 | else { ring dazu=char(altring),z(0..size(v)-1),ls; } |
---|
2024 | def displayring=dazu+altring; |
---|
2025 | */ |
---|
2026 | //execute("ring displayring=("+charstr(basering)+"),(z(0.."+string(size(v)-1)+"),"+varstr(basering)+"),(ls("+string(size(v))+"),"+ordstr(basering)+");"); |
---|
2027 | list l1; |
---|
2028 | for (int zz = 0; zz <= size(v)-1; zz++) |
---|
2029 | { |
---|
2030 | l1[zz+1] = "z("+string(zz)+")"; |
---|
2031 | } |
---|
2032 | l1[size(l1)+1] = ringlist(basering)[2]; |
---|
2033 | ring displayring = create_ring(ringlist(basering)[1], l1, "(ls("+string(size(v))+"),"+ordstr(basering)+")", "no_minpoly"); |
---|
2034 | // End change by T. Keilen |
---|
2035 | ////////////////////////////////////////////////////////////// |
---|
2036 | setring displayring; |
---|
2037 | map holematrix=altring,0; // mappt nur die Monome vom Grad Null |
---|
2038 | matrix m=holematrix(m); |
---|
2039 | int i,j; |
---|
2040 | |
---|
2041 | // lossen: check the last row for finiteness (06/2004) |
---|
2042 | int rowM=nrows(m); |
---|
2043 | int colM=ncols(m); |
---|
2044 | int undef_bd=v[size(v)]; |
---|
2045 | if ( undef_bd<-1 ){ |
---|
2046 | for (j=-undef_bd; j<=colM; j++) { m[rowM,j]=0; } |
---|
2047 | } |
---|
2048 | |
---|
2049 | //--------------------- Erzeuge Matrix n mit n[i,j]=z(j-1)^i ----------------- |
---|
2050 | matrix n[colM][rowM]; |
---|
2051 | for (j=1; j<=rowM; j++) { |
---|
2052 | for (i=1; i<=colM; i++) { n[i,j]=z(j-1)^i; } |
---|
2053 | } |
---|
2054 | matrix displaymat=m*n; |
---|
2055 | ideal HNE; |
---|
2056 | for (i=1; i<rowM; i++) { HNE[i]=displaymat[i,i]+z(i)*z(i-1)^v[i]; } |
---|
2057 | HNE[rowM]=displaymat[rowM,rowM]; |
---|
2058 | |
---|
2059 | // lossen: output modified (06/2004) |
---|
2060 | if (size(#) == 0) |
---|
2061 | { |
---|
2062 | if (switch==0) { |
---|
2063 | HNE=subst(HNE,z(0),var(size(v)+1)); |
---|
2064 | } |
---|
2065 | else { |
---|
2066 | HNE=subst(HNE,z(0),var(size(v)+2)); |
---|
2067 | } |
---|
2068 | |
---|
2069 | for (j=1; j<=ncols(HNE); j++){ |
---|
2070 | string stHNE(j)=string(HNE[j]); |
---|
2071 | } |
---|
2072 | if (undef_bd<-1) |
---|
2073 | { |
---|
2074 | stHNE(size(v))=stHNE(size(v))+" + ..... (terms of degree >=" |
---|
2075 | +string(-undef_bd)+")"; |
---|
2076 | } |
---|
2077 | if (undef_bd==-1) |
---|
2078 | { |
---|
2079 | stHNE(size(v))=stHNE(size(v))+" + ..... (terms of degree >=" |
---|
2080 | +string(colM+1)+")"; |
---|
2081 | } |
---|
2082 | |
---|
2083 | if (switch==0) { |
---|
2084 | stHNE(1) = " "+string(var(size(v)+2))+" = "+stHNE(1); |
---|
2085 | } |
---|
2086 | else { |
---|
2087 | stHNE(1) = " "+string(var(size(v)+1))+" = "+stHNE(1); |
---|
2088 | } |
---|
2089 | stHNE(1); |
---|
2090 | if (ncols(HNE)==1) {return();} |
---|
2091 | |
---|
2092 | if (switch==0) { |
---|
2093 | stHNE(2) = " "+string(var(size(v)+1))+" = "+stHNE(2); |
---|
2094 | } |
---|
2095 | else { |
---|
2096 | stHNE(2) = " "+string(var(size(v)+2))+" = "+stHNE(2); |
---|
2097 | } |
---|
2098 | stHNE(2); |
---|
2099 | |
---|
2100 | for (j=3; j<=ncols(HNE); j++){ |
---|
2101 | stHNE(j)= " "+"z(" +string(j-2)+ ") = "+stHNE(j); |
---|
2102 | stHNE(j); |
---|
2103 | } |
---|
2104 | return(); |
---|
2105 | } |
---|
2106 | |
---|
2107 | if (rowM<2) { HNE[2]=z(0); } |
---|
2108 | |
---|
2109 | if (switch==0) { |
---|
2110 | HNE[1] = HNE[1]-var(size(v)+2); |
---|
2111 | HNE[2] = HNE[2]-var(size(v)+1); |
---|
2112 | } |
---|
2113 | else { |
---|
2114 | HNE[1] = HNE[1]-var(size(v)+1); |
---|
2115 | HNE[2] = HNE[2]-var(size(v)+2); |
---|
2116 | } |
---|
2117 | if (size(#) == 0) { |
---|
2118 | HNE; |
---|
2119 | return(); |
---|
2120 | } |
---|
2121 | if (size(#) != 0) { |
---|
2122 | HNE; |
---|
2123 | export(HNE); |
---|
2124 | return(displayring); |
---|
2125 | } |
---|
2126 | } |
---|
2127 | example |
---|
2128 | { "EXAMPLE:"; echo = 2; |
---|
2129 | ring r=0,(x,y),dp; |
---|
2130 | poly f=x3+2xy2+y2; |
---|
2131 | list hn=develop(f); |
---|
2132 | displayHNE(hn); |
---|
2133 | } |
---|
2134 | /////////////////////////////////////////////////////////////////////////////// |
---|
2135 | // procedures for reducible curves // |
---|
2136 | /////////////////////////////////////////////////////////////////////////////// |
---|
2137 | |
---|
2138 | // proc newtonhoehne (poly f) |
---|
2139 | // USAGE: newtonhoehne(f); f poly |
---|
2140 | // ASSUME: basering = ...,(x,y),ds or ls |
---|
2141 | // RETURN: list of intvec(x,y) of coordinates of the newtonpolygon of f |
---|
2142 | // NOTE: This proc is only available in versions of Singular that know the |
---|
2143 | // command system("newton",f); f poly |
---|
2144 | // { |
---|
2145 | // intvec nm = getnm(f); |
---|
2146 | // if ((nm[1]>0) && (nm[2]>0)) { f=jet(f,nm[1]*nm[2],nm); } |
---|
2147 | // list erg=system("newton",f); |
---|
2148 | // int i; list Ausgabe; |
---|
2149 | // for (i=1; i<=size(erg); i++) { Ausgabe[i]=leadexp(erg[i]); } |
---|
2150 | // return(Ausgabe); |
---|
2151 | // } |
---|
2152 | /////////////////////////////////////////////////////////////////////////////// |
---|
2153 | |
---|
2154 | proc newtonpoly (poly f, int #) |
---|
2155 | "USAGE: newtonpoly(f); f poly |
---|
2156 | ASSUME: basering has exactly two variables; @* |
---|
2157 | f is convenient, that is, f(x,0) != 0 != f(0,y). |
---|
2158 | RETURN: list of intvecs (= coordinates x,y of the Newton polygon of f). |
---|
2159 | NOTE: Procedure uses @code{execute}; this can be avoided by calling |
---|
2160 | @code{newtonpoly(f,1)} if the ordering of the basering is @code{ls}. |
---|
2161 | KEYWORDS: Newton polygon |
---|
2162 | EXAMPLE: example newtonpoly; shows an example |
---|
2163 | " |
---|
2164 | { |
---|
2165 | if (size(#)>=1) |
---|
2166 | { |
---|
2167 | if (typeof(#[1])=="int") |
---|
2168 | { |
---|
2169 | // this is done to avoid the "execute" command for procedures in |
---|
2170 | // hnoether.lib |
---|
2171 | def is_ls=#[1]; |
---|
2172 | } |
---|
2173 | } |
---|
2174 | if (defined(is_ls)<=0) |
---|
2175 | { |
---|
2176 | def @Rold=basering; |
---|
2177 | ring @RR = create_ring(ringlist(basering)[1],"("+varstr(basering)+")","ls","no_minpoly"); |
---|
2178 | poly f=imap(@Rold,f); |
---|
2179 | } |
---|
2180 | intvec A=(0,ord(subst(f,var(1),0))); |
---|
2181 | intvec B=(ord(subst(f,var(2),0)),0); |
---|
2182 | intvec C,H; list L; |
---|
2183 | int abbruch,i; |
---|
2184 | poly hilf; |
---|
2185 | L[1]=A; |
---|
2186 | f=jet(f,A[2]*B[1]-1,intvec(A[2],B[1])); |
---|
2187 | if (defined(is_ls)) |
---|
2188 | { |
---|
2189 | map xytausch=basering,var(2),var(1); |
---|
2190 | } |
---|
2191 | else |
---|
2192 | { |
---|
2193 | map xytausch=@RR,var(2),var(1); |
---|
2194 | } |
---|
2195 | for (i=2; f!=0; i++) |
---|
2196 | { |
---|
2197 | abbruch=0; |
---|
2198 | while (abbruch==0) |
---|
2199 | { |
---|
2200 | C=leadexp(f); |
---|
2201 | if(jet(f,A[2]*C[1]-A[1]*C[2]-1,intvec(A[2]-C[2],C[1]-A[1]))==0) |
---|
2202 | { |
---|
2203 | abbruch=1; |
---|
2204 | } |
---|
2205 | else |
---|
2206 | { |
---|
2207 | f=jet(f,-C[1]-1,intvec(-1,0)); |
---|
2208 | } |
---|
2209 | } |
---|
2210 | hilf=jet(f,A[2]*C[1]-A[1]*C[2],intvec(A[2]-C[2],C[1]-A[1])); |
---|
2211 | H=leadexp(xytausch(hilf)); |
---|
2212 | A=H[2],H[1]; |
---|
2213 | L[i]=A; |
---|
2214 | f=jet(f,A[2]*B[1]-1,intvec(A[2],B[1]-A[1])); |
---|
2215 | } |
---|
2216 | L[i]=B; |
---|
2217 | if (defined(is_ls)) |
---|
2218 | { |
---|
2219 | return(L); |
---|
2220 | } |
---|
2221 | else |
---|
2222 | { |
---|
2223 | setring @Rold; |
---|
2224 | return(L); |
---|
2225 | } |
---|
2226 | } |
---|
2227 | example |
---|
2228 | { |
---|
2229 | "EXAMPLE:"; echo = 2; |
---|
2230 | ring r=0,(x,y),ls; |
---|
2231 | poly f=x5+2x3y-x2y2+3xy5+y6-y7; |
---|
2232 | newtonpoly(f); |
---|
2233 | } |
---|
2234 | /////////////////////////////////////////////////////////////////////////////// |
---|
2235 | |
---|
2236 | proc is_NND (poly f, list #) |
---|
2237 | "USAGE: is_NND(f[,mu,NP]); f poly, mu int, NP list of intvecs |
---|
2238 | ASSUME: f is convenient, that is, f(x,0) != 0 != f(0,y);@* |
---|
2239 | mu (optional) is Milnor number of f.@* |
---|
2240 | NP (optional) is output of @code{newtonpoly(f)}. |
---|
2241 | RETURN: int: 1 if f is Newton non-degenerate, 0 otherwise. |
---|
2242 | SEE ALSO: newtonpoly |
---|
2243 | KEYWORDS: Newton non-degenerate; Newton polygon |
---|
2244 | EXAMPLE: example is_NND; shows examples |
---|
2245 | " |
---|
2246 | { |
---|
2247 | int i; |
---|
2248 | int i_print=printlevel-voice+2; |
---|
2249 | |
---|
2250 | if (size(#)==0) |
---|
2251 | { |
---|
2252 | int mu=milnor(f); |
---|
2253 | list NP=newtonpoly(f); |
---|
2254 | } |
---|
2255 | else |
---|
2256 | { |
---|
2257 | if (typeof(#[1])=="int") |
---|
2258 | { |
---|
2259 | def mu=#[1]; |
---|
2260 | def NP=#[2]; |
---|
2261 | for (i=1;i<=size(NP);i++) |
---|
2262 | { |
---|
2263 | if (typeof(NP[i])!="intvec") |
---|
2264 | { |
---|
2265 | print("third input cannot be Newton polygon ==> ignored ") |
---|
2266 | NP=newtonpoly(f); |
---|
2267 | i=size(NP)+1; |
---|
2268 | } |
---|
2269 | } |
---|
2270 | } |
---|
2271 | else |
---|
2272 | { |
---|
2273 | print("second input cannot be Milnor number ==> ignored ") |
---|
2274 | int mu=milnor(f); |
---|
2275 | NP=newtonpoly(f); |
---|
2276 | } |
---|
2277 | } |
---|
2278 | |
---|
2279 | // computation of the Newton number: |
---|
2280 | int s=size(NP); |
---|
2281 | int nN=-NP[1][2]-NP[s][1]+1; |
---|
2282 | intmat m[2][2]; |
---|
2283 | for(i=1;i<=s-1;i++) |
---|
2284 | { |
---|
2285 | m=NP[i+1],NP[i]; |
---|
2286 | nN=nN+det(m); |
---|
2287 | } |
---|
2288 | |
---|
2289 | if(mu==nN) |
---|
2290 | { // the Newton-polygon is non-degenerate |
---|
2291 | // REFERENCE? (tfuer mehr als 2 Variable gilt nicht, dass mu=nu impliziert, |
---|
2292 | // dass NP nicht ausgeartet ist!, Siehe KOMMENTAR in equising.lib in esIdeal) |
---|
2293 | return(1); |
---|
2294 | } |
---|
2295 | else |
---|
2296 | { |
---|
2297 | return(0); |
---|
2298 | } |
---|
2299 | } |
---|
2300 | example |
---|
2301 | { |
---|
2302 | "EXAMPLE:"; echo = 2; |
---|
2303 | ring r=0,(x,y),ls; |
---|
2304 | poly f=x5+y3; |
---|
2305 | is_NND(f); |
---|
2306 | poly g=(x-y)^5+3xy5+y6-y7; |
---|
2307 | is_NND(g); |
---|
2308 | |
---|
2309 | // if already computed, one should give the Minor number and Newton polygon |
---|
2310 | // as second and third input: |
---|
2311 | int mu=milnor(g); |
---|
2312 | list NP=newtonpoly(g); |
---|
2313 | is_NND(g,mu,NP); |
---|
2314 | } |
---|
2315 | |
---|
2316 | |
---|
2317 | /////////////////////////////////////////////////////////////////////////////// |
---|
2318 | |
---|
2319 | proc charPoly(poly f, int M, int N) |
---|
2320 | "USAGE: charPoly(f,M,N); f bivariate poly, M,N int: length and height |
---|
2321 | of Newton polygon of f, which has to be only one line |
---|
2322 | RETURN: the characteristic polynomial of f |
---|
2323 | EXAMPLE: example charPoly; shows an example |
---|
2324 | " |
---|
2325 | { |
---|
2326 | poly charp; |
---|
2327 | int Np=N div gcd(M,N); |
---|
2328 | f=subst(f,var(1),1); |
---|
2329 | for(charp=0; f<>0; f=f-lead(f)) |
---|
2330 | { charp=charp+leadcoef(f)*var(2)^(leadexp(f)[2] div Np);} |
---|
2331 | return(charp); |
---|
2332 | } |
---|
2333 | example |
---|
2334 | { "EXAMPLE:"; echo = 2; |
---|
2335 | ring exring=0,(x,y),dp; |
---|
2336 | charPoly(y4+2y3x2-yx6+x8,8,4); |
---|
2337 | charPoly(y6+3y3x2-x4,4,6); |
---|
2338 | } |
---|
2339 | /////////////////////////////////////////////////////////////////////////////// |
---|
2340 | |
---|
2341 | proc find_in_list(list L,int p) |
---|
2342 | "USAGE: find_in_list(L,p); L: list of intvec(x,y) |
---|
2343 | (sorted in y: L[1][2]>=L[2][2]), int p >= 0 |
---|
2344 | RETURN: int i: L[i][2]=p if existent; otherwise i with L[i][2]<p if existent; |
---|
2345 | otherwise i = size(L)+1; |
---|
2346 | EXAMPLE: example find_in_list; shows an example |
---|
2347 | " |
---|
2348 | { |
---|
2349 | int i; |
---|
2350 | L[size(L)+1]=intvec(0,-1); // falls p nicht in L[.][2] vorkommt |
---|
2351 | for (i=1; L[i][2]>p; i++) {;} |
---|
2352 | return(i); |
---|
2353 | } |
---|
2354 | example |
---|
2355 | { "EXAMPLE:"; echo = 2; |
---|
2356 | list L = intvec(0,4), intvec(1,2), intvec(2,1), intvec(4,0); |
---|
2357 | find_in_list(L,1); |
---|
2358 | L[find_in_list(L,2)]; |
---|
2359 | } |
---|
2360 | /////////////////////////////////////////////////////////////////////////////// |
---|
2361 | |
---|
2362 | proc get_last_divisor(int M, int N) |
---|
2363 | "USAGE: get_last_divisor(M,N); int M,N |
---|
2364 | RETURN: int Q: M=q1*N+r1, N=q2*r1+r2, ..., ri=Q*r(i+1) (Euclidean alg.) |
---|
2365 | EXAMPLE: example get_last_divisor; shows an example |
---|
2366 | " |
---|
2367 | { |
---|
2368 | int R=M%N; int Q=M div N; |
---|
2369 | while (R!=0) {M=N; N=R; R=M%N; Q=M div N;} |
---|
2370 | return(Q) |
---|
2371 | } |
---|
2372 | example |
---|
2373 | { "EXAMPLE"; echo = 2; |
---|
2374 | ring r=0,(x,y),dp; |
---|
2375 | get_last_divisor(12,10); |
---|
2376 | } |
---|
2377 | /////////////////////////////////////////////////////////////////////////////// |
---|
2378 | proc redleit (poly f,intvec S, intvec E) |
---|
2379 | "USAGE: redleit(f,S,E); f poly, S,E intvec(x,y) |
---|
2380 | S,E are two different points on a line in the Newton diagram of f |
---|
2381 | RETURN: poly g: all monomials of f which lie on or below that line |
---|
2382 | NOTE: The main purpose is that if the line defined by S and E is part of the |
---|
2383 | Newton polygon, the result is the quasihomogeneous leading form of f |
---|
2384 | w.r.t. that line. |
---|
2385 | SEE ALSO: newtonpoly |
---|
2386 | EXAMPLE: example redleit; shows an example |
---|
2387 | " |
---|
2388 | { |
---|
2389 | if (E[1]<S[1]) { intvec H=E; E=S; S=H; } // S,E verkehrt herum eingegeben |
---|
2390 | return(jet(f,E[1]*S[2]-E[2]*S[1],intvec(S[2]-E[2],E[1]-S[1]))); |
---|
2391 | } |
---|
2392 | example |
---|
2393 | { "EXAMPLE"; echo = 2; |
---|
2394 | ring exring=0,(x,y),dp; |
---|
2395 | redleit(y6+xy4-2x3y2+x4y+x6,intvec(3,2),intvec(4,1)); |
---|
2396 | } |
---|
2397 | /////////////////////////////////////////////////////////////////////////////// |
---|
2398 | |
---|
2399 | |
---|
2400 | proc extdevelop (list l, int Exaktheit) |
---|
2401 | "USAGE: extdevelop(L,N); list L, int N |
---|
2402 | ASSUME: L is the output of @code{develop(f)}, or of @code{extdevelop(l,n)}, |
---|
2403 | or one entry in the list @code{hne} in the ring created by |
---|
2404 | @code{hnexpansion(f[,\"ess\"])}. |
---|
2405 | RETURN: an extension of the Hamburger-Noether development of f as a list |
---|
2406 | in the same format as L has (up to the last entry in the output |
---|
2407 | of @code{develop(f)}).@* |
---|
2408 | Type @code{help develop;}, resp. @code{help hnexpansion;} for more |
---|
2409 | details. |
---|
2410 | NOTE: The new HN-matrix will have at least N columns (if the HNE is not |
---|
2411 | finite). In particular, if f is irreducible then (in most cases) |
---|
2412 | @code{extdevelop(develop(f),N)} will produce the same result as |
---|
2413 | @code{develop(f,N)}.@* |
---|
2414 | If the matrix M of L has n columns then, compared with |
---|
2415 | @code{parametrization(L)}, @code{paramametrize(extdevelop(L,N))} will increase the |
---|
2416 | exactness by at least (N-n) more significant monomials. |
---|
2417 | SEE ALSO: develop, hnexpansion, param |
---|
2418 | EXAMPLE: example extdevelop; shows an example |
---|
2419 | " |
---|
2420 | { |
---|
2421 | //------------ Initialisierungen und Abfangen unzulaessiger Aufrufe ---------- |
---|
2422 | matrix m=l[1]; |
---|
2423 | intvec v=l[2]; |
---|
2424 | int switch=l[3]; |
---|
2425 | if (nvars(basering) < 2) { |
---|
2426 | " Sorry. I need two variables in the ring."; |
---|
2427 | return(list(matrix(maxideal(1)[1]),intvec(0),-1,poly(0)));} |
---|
2428 | if (switch==-1) { |
---|
2429 | "An error has occurred in develop, so there is no HNE and no extension."; |
---|
2430 | return(l); |
---|
2431 | } |
---|
2432 | poly f=l[4]; |
---|
2433 | if (f==0) { |
---|
2434 | " No extension is possible"; |
---|
2435 | return(l); |
---|
2436 | } |
---|
2437 | int Q=v[size(v)]; |
---|
2438 | if (Q>0) { |
---|
2439 | " The HNE was already exact"; |
---|
2440 | return(l); |
---|
2441 | } |
---|
2442 | else { |
---|
2443 | if (Q==-1) { Q=ncols(m); } |
---|
2444 | else { Q=-Q-1; } |
---|
2445 | } |
---|
2446 | int zeile=nrows(m); |
---|
2447 | int spalten,i,M; |
---|
2448 | ideal lastrow=m[zeile,1..Q]; |
---|
2449 | int ringwechsel=(varstr(basering)!="x,y") or (ordstr(basering)!="ls(2),C"); |
---|
2450 | |
---|
2451 | //------------------------- Ringwechsel, falls noetig ------------------------ |
---|
2452 | if (ringwechsel) { |
---|
2453 | def altring = basering; |
---|
2454 | int p = char(basering); |
---|
2455 | //if (charstr(basering)!=string(p)) |
---|
2456 | if(hasAlgExtensionCoefficient(basering) |
---|
2457 | or hasTransExtensionCoefficient(basering) |
---|
2458 | or hasGFCoefficient(basering)) |
---|
2459 | { |
---|
2460 | string tststr=charstr(basering); |
---|
2461 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
2462 | //if (tststr==string(p)) |
---|
2463 | if (!hasGFCoefficient(basering)) |
---|
2464 | { |
---|
2465 | if (npars(basering)>1) { // ring (p,a,..),... |
---|
2466 | ring extdguenstig = create_ring(ringlist(basering)[1],"(x,y)","ls","no_minpoly"); |
---|
2467 | } |
---|
2468 | else { // ring (p,a),... |
---|
2469 | list rl=ringlist(basering); |
---|
2470 | rl[1][1]=p; |
---|
2471 | ring extdguenstig=ring(rl); |
---|
2472 | } |
---|
2473 | } |
---|
2474 | else { |
---|
2475 | ring extdguenstig = create_ring(ringlist(basering)[1],"(x,y)","ls","no_minpoly"); |
---|
2476 | } |
---|
2477 | } |
---|
2478 | else { // charstr(basering)== p : no parameter |
---|
2479 | ring extdguenstig=p,(x,y),ls; |
---|
2480 | } |
---|
2481 | export extdguenstig; |
---|
2482 | map hole=altring,x,y; |
---|
2483 | //----- map kann sehr zeitaufwendig sein, daher Vermeidung, wo moeglich: ----- |
---|
2484 | if (nvars(altring)==2) { poly f=fetch(altring,f); } |
---|
2485 | else { poly f=hole(f); } |
---|
2486 | ideal a=hole(lastrow); |
---|
2487 | } |
---|
2488 | else { ideal a=lastrow; } |
---|
2489 | list Newton=newtonpoly(f,1); |
---|
2490 | int M1=Newton[size(Newton)-1][1]; // konstant |
---|
2491 | number delt; |
---|
2492 | if (Newton[size(Newton)-1][2]!=1) { |
---|
2493 | " *** The transformed polynomial was not valid!!";} |
---|
2494 | else { |
---|
2495 | //--------------------- Fortsetzung der HNE ---------------------------------- |
---|
2496 | while (Q<Exaktheit) { |
---|
2497 | M=ord(subst(f,y,0)); |
---|
2498 | Q=M-M1; |
---|
2499 | //------ quasihomogene Leitform ist c*x^M1*y+d*x^(M1+Q) => delta=-d/c: ------- |
---|
2500 | delt=-koeff(f,M,0)/koeff(f,M1,1); |
---|
2501 | a[Q]=delt; |
---|
2502 | dbprint(printlevel-voice+2,"a("+string(zeile-1)+","+string(Q)+") = "+string(delt)); |
---|
2503 | if (Q<Exaktheit) { |
---|
2504 | f=T1_Transform(f,delt,Q); |
---|
2505 | if (defined(HNDebugOn)) { "transformed polynomial:",f; } |
---|
2506 | if (subst(f,y,0)==0) { |
---|
2507 | dbprint(printlevel-voice+2,"The HNE is finite!"); |
---|
2508 | a[Q+1]=x; Exaktheit=Q; |
---|
2509 | f=0; // Speicherersparnis: f nicht mehr gebraucht |
---|
2510 | } |
---|
2511 | } |
---|
2512 | } |
---|
2513 | } |
---|
2514 | //------- Wechsel in alten Ring, Zusammensetzung alte HNE + Erweiterung ------ |
---|
2515 | if (ringwechsel) { |
---|
2516 | setring altring; |
---|
2517 | map zurueck=extdguenstig,var(1),var(2); |
---|
2518 | if (nvars(altring)==2) { f=fetch(extdguenstig,f); } |
---|
2519 | else { f=zurueck(f); } |
---|
2520 | lastrow=zurueck(a); |
---|
2521 | } |
---|
2522 | else { lastrow=a; } |
---|
2523 | if (ncols(lastrow)>ncols(m)) { spalten=ncols(lastrow); } |
---|
2524 | else { spalten=ncols(m); } |
---|
2525 | matrix mneu[zeile][spalten]; |
---|
2526 | for (i=1; i<nrows(m); i++) { |
---|
2527 | mneu[i,1..ncols(m)]=m[i,1..ncols(m)]; |
---|
2528 | } |
---|
2529 | mneu[zeile,1..ncols(lastrow)]=lastrow; |
---|
2530 | if (lastrow[ncols(lastrow)]!=var(1)) { |
---|
2531 | if (ncols(lastrow)==spalten) { v[zeile]=-1; } // keine undefinierten Stellen |
---|
2532 | else { |
---|
2533 | v[zeile]=-Q-1; |
---|
2534 | for (i=ncols(lastrow)+1; i<=spalten; i++) { |
---|
2535 | mneu[zeile,i]=var(2); // fuelle nicht def. Stellen der Matrix auf |
---|
2536 | }}} |
---|
2537 | else { v[zeile]=Q; } // HNE war exakt |
---|
2538 | if (ringwechsel) |
---|
2539 | { |
---|
2540 | kill extdguenstig; |
---|
2541 | } |
---|
2542 | |
---|
2543 | return(list(mneu,v,switch,f)); |
---|
2544 | } |
---|
2545 | example |
---|
2546 | { |
---|
2547 | "EXAMPLE:"; echo = 2; |
---|
2548 | ring exring=0,(x,y),dp; |
---|
2549 | list Hne=hnexpansion(x14-3y2x11-y3x10-y2x9+3y4x8+y5x7+3y4x6+x5*(-y6+y5) |
---|
2550 | -3y6x3-y7x2+y8); |
---|
2551 | displayHNE(Hne); // HNE of 1st,3rd branch is finite |
---|
2552 | print(extdevelop(Hne[1],5)[1]); |
---|
2553 | list ehne=extdevelop(Hne[2],5); |
---|
2554 | displayHNE(ehne); |
---|
2555 | param(Hne[2]); |
---|
2556 | param(ehne); |
---|
2557 | |
---|
2558 | } |
---|
2559 | /////////////////////////////////////////////////////////////////////////////// |
---|
2560 | |
---|
2561 | proc stripHNE (list l) |
---|
2562 | "USAGE: stripHNE(L); L list |
---|
2563 | ASSUME: L is the output of @code{develop(f)}, or of |
---|
2564 | @code{extdevelop(develop(f),n)}, or (one entry of) the list |
---|
2565 | @code{hne} in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
2566 | RETURN: list in the same format as L, but all polynomials L[4], resp. |
---|
2567 | L[i][4], are set to zero. |
---|
2568 | NOTE: The purpose of this procedure is to remove huge amounts of data |
---|
2569 | no longer needed. It is useful, if one or more of the polynomials |
---|
2570 | in L consume much memory. It is still possible to compute invariants, |
---|
2571 | parametrizations etc. with the stripped HNE(s), but it is not possible |
---|
2572 | to use @code{extdevelop} with them. |
---|
2573 | SEE ALSO: develop, hnexpansion, extdevelop |
---|
2574 | EXAMPLE: example stripHNE; shows an example |
---|
2575 | " |
---|
2576 | { |
---|
2577 | list h; |
---|
2578 | if (typeof(l[1])=="matrix") { l[4]=poly(0); } |
---|
2579 | else { |
---|
2580 | for (int i=1; i<=size(l); i++) { |
---|
2581 | h=l[i]; |
---|
2582 | h[4]=poly(0); |
---|
2583 | l[i]=h; |
---|
2584 | } |
---|
2585 | } |
---|
2586 | return(l); |
---|
2587 | } |
---|
2588 | example |
---|
2589 | { |
---|
2590 | "EXAMPLE:"; echo = 2; |
---|
2591 | ring r=0,(x,y),dp; |
---|
2592 | list Hne=develop(x2+y3+y4); |
---|
2593 | Hne; |
---|
2594 | stripHNE(Hne); |
---|
2595 | } |
---|
2596 | /////////////////////////////////////////////////////////////////////////////// |
---|
2597 | static proc extractHNEs(list HNEs, int transvers) |
---|
2598 | "USAGE: extractHNEs(HNEs,transvers); list HNEs (output from HN), |
---|
2599 | int transvers: 1 if x,y were exchanged, 0 else |
---|
2600 | RETURN: list of Hamburger-Noether-Extensions in the form of hne in hnexpansion |
---|
2601 | NOTE: This procedure is only for internal purpose; examples don't make sense |
---|
2602 | " |
---|
2603 | { |
---|
2604 | int i,maxspalte,hspalte,hnezaehler; |
---|
2605 | list HNEaktu,Ergebnis; |
---|
2606 | for (hnezaehler=1; hnezaehler<=size(HNEs); hnezaehler++) { |
---|
2607 | maxspalte=0; |
---|
2608 | HNEaktu=HNEs[hnezaehler]; |
---|
2609 | if (defined(HNDebugOn)) {"To process:";HNEaktu;} |
---|
2610 | if (size(HNEaktu)!=size(HNEaktu[1])+2) { |
---|
2611 | "The ideals and the hqs in HNEs[",hnezaehler,"] don't match!!"; |
---|
2612 | HNEs[hnezaehler]; |
---|
2613 | } |
---|
2614 | //------------ ermittle maximale Anzahl benoetigter Spalten: ---------------- |
---|
2615 | for (i=2; i<size(HNEaktu); i++) { |
---|
2616 | hspalte=ncols(HNEaktu[i]); |
---|
2617 | maxspalte=maxspalte*(hspalte < maxspalte)+hspalte*(hspalte >= maxspalte); |
---|
2618 | } |
---|
2619 | //------------- schreibe Ausgabe fuer hnezaehler-ten Zweig: ------------------ |
---|
2620 | matrix ma[size(HNEaktu)-2][maxspalte]; |
---|
2621 | for (i=1; i<=(size(HNEaktu)-2); i++) { |
---|
2622 | if (ncols(HNEaktu[i+1]) > 1) { |
---|
2623 | ma[i,1..ncols(HNEaktu[i+1])]=HNEaktu[i+1]; } |
---|
2624 | else { ma[i,1]=HNEaktu[i+1][1];} |
---|
2625 | } |
---|
2626 | Ergebnis[hnezaehler]=list(ma,HNEaktu[1],transvers,HNEaktu[size(HNEaktu)]); |
---|
2627 | kill ma; |
---|
2628 | } |
---|
2629 | return(Ergebnis); |
---|
2630 | } |
---|
2631 | /////////////////////////////////////////////////////////////////////////////// |
---|
2632 | |
---|
2633 | proc factorfirst(poly f, int M, int N) |
---|
2634 | "USAGE : factorfirst(f,M,N); f poly, M,N int |
---|
2635 | RETURN: number d such that f=const*(y^(N/e) - d*x^(M/e))^e, where e=gcd(M,N), |
---|
2636 | 0 if such a d does not exist |
---|
2637 | EXAMPLE: example factorfirst; shows an example |
---|
2638 | " |
---|
2639 | { |
---|
2640 | number c = koeff(f,0,N); |
---|
2641 | number delt; |
---|
2642 | int eps,l; |
---|
2643 | int p=char(basering); |
---|
2644 | |
---|
2645 | if (c == 0) {"Something has gone wrong! I didn't get N correctly!"; exit;} |
---|
2646 | int e = gcd(M,N); |
---|
2647 | |
---|
2648 | if (p==0) { delt = koeff(f,M div e,N - N div e) / (-1*e*c); } |
---|
2649 | else { |
---|
2650 | if (e%p != 0) { delt = koeff(f,M div e,N - N div e) / (-1*e*c); } |
---|
2651 | else { |
---|
2652 | eps = e; |
---|
2653 | for (l = 0; eps%p == 0; l=l+1) { eps=eps div p;} |
---|
2654 | if (defined(HNDebugOn)) {e," -> ",eps,"*",p,"^",l;} |
---|
2655 | delt = koeff(f,(M div e)*p^l,(N div e)*p^l*(eps-1)) / (-1*eps*c); |
---|
2656 | |
---|
2657 | if ((!hasZpCoefficient(basering)) and (delt != 0)) { |
---|
2658 | //------ coefficient field is not Z/pZ => (p^l)th root is not identity ------- |
---|
2659 | delt=0; |
---|
2660 | if (defined(HNDebugOn)) { |
---|
2661 | "trivial factorization not implemented for", |
---|
2662 | "parameters---I've to use 'factorize'"; |
---|
2663 | } |
---|
2664 | } |
---|
2665 | } |
---|
2666 | } |
---|
2667 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:",f," = ",c, |
---|
2668 | "* (y^"+string(N div e),"-",delt,"* x^"+string(M div e)+")^",e," ?";} |
---|
2669 | if (f != c*(var(2)^(N div e) - delt*var(1)^(M div e))^e) {return(0);} |
---|
2670 | else {return(delt);} |
---|
2671 | } |
---|
2672 | example |
---|
2673 | { "EXAMPLE:"; echo = 2; |
---|
2674 | ring exring=7,(x,y),dp; |
---|
2675 | factorfirst(2*(y3-3x4)^5,20,15); |
---|
2676 | factorfirst(x14+y7,14,7); |
---|
2677 | factorfirst(x14+x8y3+y7,14,7); |
---|
2678 | } |
---|
2679 | |
---|
2680 | /////////////////////////////////////////////////////////////////////////// |
---|
2681 | |
---|
2682 | proc hnexpansion(poly f,list #) |
---|
2683 | "USAGE: hnexpansion(f[,\"ess\"]); f poly |
---|
2684 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables) |
---|
2685 | RETURN: list @code{L}, containing Hamburger-Noether data of @code{f}: |
---|
2686 | If the computation of the HNE required no field extension, @code{L} |
---|
2687 | is a list of lists @code{L[i]} (corresponding to the output of |
---|
2688 | @code{develop}, applied to a branch of @code{f}, but the last entry |
---|
2689 | being omitted): |
---|
2690 | @texinfo |
---|
2691 | @table @asis |
---|
2692 | @item @code{L[i][1]}; matrix: |
---|
2693 | Each row contains the coefficients of the corresponding line of the |
---|
2694 | Hamburger-Noether expansion (HNE) for the i-th branch. The end of |
---|
2695 | the line is marked in the matrix by the first ring variable |
---|
2696 | (usually x). |
---|
2697 | @item @code{L[i][2]}; intvec: |
---|
2698 | indicating the length of lines of the HNE |
---|
2699 | @item @code{L[i][3]}; int: |
---|
2700 | 0 if the 1st ring variable was transversal (with respect to the |
---|
2701 | i-th branch), @* |
---|
2702 | 1 if the variables were changed at the beginning of the |
---|
2703 | computation, @* |
---|
2704 | -1 if an error has occurred. |
---|
2705 | @item @code{L[i][4]}; poly: |
---|
2706 | the transformed equation of the i-th branch to make it possible |
---|
2707 | to extend the Hamburger-Noether data a posteriori without having |
---|
2708 | to do all the previous calculation once again (0 if not needed). |
---|
2709 | @end table |
---|
2710 | @end texinfo |
---|
2711 | If the computation of the HNE required a field extension, the first |
---|
2712 | entry @code{L[1]} of the list is a ring, in which a list @code{hne} |
---|
2713 | of lists (the HN data, as above) and a polynomial @code{f} (image of |
---|
2714 | @code{f} over the new field) are stored. |
---|
2715 | @* |
---|
2716 | If called with an additional input parameter, @code{hnexpansion} |
---|
2717 | computes only one representative for each class of conjugate |
---|
2718 | branches (over the ground field active when calling the procedure). |
---|
2719 | In this case, the returned list @code{L} always has only two |
---|
2720 | entries: @code{L[1]} is either a list of lists (the HN data) or a |
---|
2721 | ring (as above), and @code{L[2]} is an integer vector (the number |
---|
2722 | of branches in the respective conjugacy classes). |
---|
2723 | |
---|
2724 | NOTE: If f is known to be irreducible as a power series, @code{develop(f)} |
---|
2725 | could be chosen instead to avoid a change of basering during the |
---|
2726 | computations. @* |
---|
2727 | Increasing @code{printlevel} leads to more and more comments. @* |
---|
2728 | Having defined a variable @code{HNDebugOn} leads to a maximum |
---|
2729 | number of comments. |
---|
2730 | |
---|
2731 | SEE ALSO: develop, extdevelop, param, displayHNE |
---|
2732 | EXAMPLE: example hnexpansion; shows an example |
---|
2733 | " |
---|
2734 | { |
---|
2735 | int essential; |
---|
2736 | if (size(#)==1) { essential=1; } |
---|
2737 | int field_ext; |
---|
2738 | def altring=basering; |
---|
2739 | |
---|
2740 | //--------- Falls Ring (p^k,a),...: Wechsel in (p,a),... + minpoly ----------- |
---|
2741 | if ( hasGFCoefficient(basering) ) |
---|
2742 | { |
---|
2743 | string strmip=string(minpoly); |
---|
2744 | string strf=string(f); |
---|
2745 | ring tempr = create_ring("("+string(char(basering))+","+parstr(basering)+")", "("+varstr(basering)+")", "dp"); |
---|
2746 | execute("minpoly="+strmip+";"); |
---|
2747 | execute("poly f="+strf+";"); |
---|
2748 | field_ext=1; |
---|
2749 | def L=pre_HN(f,essential); |
---|
2750 | if (size(L)==0) { return(list()); } |
---|
2751 | def HNEring=L[1]; |
---|
2752 | setring HNEring; |
---|
2753 | if ((typeof(hne[1])=="ideal")) { return(list()); } |
---|
2754 | if ((voice==2) && (printlevel > -1)) { |
---|
2755 | "// Attention: The parameter",par(1),"may have changed its meaning!"; |
---|
2756 | "// It needs no longer be a generator of the cyclic group of unities!"; |
---|
2757 | } |
---|
2758 | dbprint(printlevel-voice+2, |
---|
2759 | "// result: "+string(size(hne))+" branch(es) successfully computed."); |
---|
2760 | } |
---|
2761 | else { |
---|
2762 | def L=pre_HN(f,essential); |
---|
2763 | if (size(L)==0) { return(list()); } |
---|
2764 | if (L[2]==1) { field_ext=1; } |
---|
2765 | intvec hne_conj=L[3]; |
---|
2766 | def HNEring=L[1]; |
---|
2767 | setring HNEring; |
---|
2768 | if ((typeof(hne[1])=="ideal")) { return(list()); } |
---|
2769 | dbprint(printlevel-voice+2, |
---|
2770 | "// result: "+string(size(hne))+" branch(es) successfully computed."); |
---|
2771 | } |
---|
2772 | |
---|
2773 | // ----- Lossen 10/02 : the branches have to be resorted to be able to |
---|
2774 | // ----- display the multsequence in a nice way |
---|
2775 | if (size(hne)>2) |
---|
2776 | { |
---|
2777 | int i,j,k,m; |
---|
2778 | list dummy; |
---|
2779 | int nbsave; |
---|
2780 | int no_br = size(hne); |
---|
2781 | intmat nbhd[no_br][no_br]; |
---|
2782 | for (i=1;i<no_br;i++) |
---|
2783 | { |
---|
2784 | for (j=i+1;j<=no_br;j++) |
---|
2785 | { |
---|
2786 | nbhd[i,j]=separateHNE(hne[i],hne[j]); |
---|
2787 | k=i+1; |
---|
2788 | while ( (nbhd[i,k] >= nbhd[i,j]) and (k<j) ) |
---|
2789 | { |
---|
2790 | k++; |
---|
2791 | } |
---|
2792 | if (k<j) // branches have to be resorted |
---|
2793 | { |
---|
2794 | dummy=hne[j]; |
---|
2795 | nbsave=nbhd[i,j]; |
---|
2796 | for (m=k; m<j; m++) |
---|
2797 | { |
---|
2798 | hne[m+1]=hne[m]; |
---|
2799 | nbhd[i,m+1]=nbhd[i,m]; |
---|
2800 | } |
---|
2801 | hne[k]=dummy; |
---|
2802 | nbhd[i,k]=nbsave; |
---|
2803 | } |
---|
2804 | } |
---|
2805 | } |
---|
2806 | } |
---|
2807 | // ----- |
---|
2808 | |
---|
2809 | if (field_ext==1) { |
---|
2810 | dbprint(printlevel-voice+3," |
---|
2811 | // 'hnexpansion' created a list of one ring. |
---|
2812 | // To see the ring and the data stored in the ring, type (if you assigned |
---|
2813 | // the name L to the list): |
---|
2814 | show(L); |
---|
2815 | // To display the computed HN expansion, type |
---|
2816 | def HNring = L[1]; setring HNring; displayHNE(hne); "); |
---|
2817 | if (essential==1) { |
---|
2818 | dbprint(printlevel-voice+3,""+ |
---|
2819 | "// As second entry of the returned list L, you obtain an integer vector, |
---|
2820 | // indicating the number of conjugates for each of the computed branches."); |
---|
2821 | return(list(HNEring,hne_conj)); |
---|
2822 | } |
---|
2823 | return(list(HNEring)); |
---|
2824 | } |
---|
2825 | else { // no change of basering necessary --> map data to original ring |
---|
2826 | setring altring; |
---|
2827 | if ((npars(altring)==1) and (minpoly!=0)) { |
---|
2828 | ring HNhelpring=char(altring),(a,x,y),ls; |
---|
2829 | list hne=imap(HNEring,hne); |
---|
2830 | setring altring; |
---|
2831 | map mmm=HNhelpring,par(1),var(1),var(2); |
---|
2832 | list hne=mmm(hne); |
---|
2833 | kill mmm,HNhelpring; |
---|
2834 | } |
---|
2835 | else { |
---|
2836 | list hne=fetch(HNEring,hne); |
---|
2837 | } |
---|
2838 | kill HNEring; |
---|
2839 | if (essential==1) { |
---|
2840 | dbprint(printlevel-voice+3,""+ |
---|
2841 | "// No change of ring necessary, return value is a list: |
---|
2842 | // first entry = list : HN expansion of essential branches. |
---|
2843 | // second entry = intvec: numbers of conjugated branches "); |
---|
2844 | return(list(hne,hne_conj)); |
---|
2845 | } |
---|
2846 | else { |
---|
2847 | dbprint(printlevel-voice+3,""+ |
---|
2848 | "// No change of ring necessary, return value is HN expansion."); |
---|
2849 | return(hne); |
---|
2850 | } |
---|
2851 | } |
---|
2852 | } |
---|
2853 | example |
---|
2854 | { |
---|
2855 | "EXAMPLE:"; echo = 2; |
---|
2856 | ring r=0,(x,y),dp; |
---|
2857 | // First, an example which requires no field extension: |
---|
2858 | list Hne=hnexpansion(x4-y6); |
---|
2859 | size(Hne); // number of branches |
---|
2860 | displayHNE(Hne); // HN expansion of branches |
---|
2861 | param(Hne[1]); // parametrization of 1st branch |
---|
2862 | param(Hne[2]); // parametrization of 2nd branch |
---|
2863 | |
---|
2864 | // An example which requires a field extension: |
---|
2865 | list L=hnexpansion((x4-y6)*(y2+x4)); |
---|
2866 | def R=L[1]; setring R; displayHNE(hne); |
---|
2867 | basering; |
---|
2868 | setring r; kill R; |
---|
2869 | |
---|
2870 | // Computing only one representative per conjugacy class: |
---|
2871 | L=hnexpansion((x4-y6)*(y2+x4),"ess"); |
---|
2872 | def R=L[1]; setring R; displayHNE(hne); |
---|
2873 | L[2]; // number of branches in respective conjugacy classes |
---|
2874 | } |
---|
2875 | |
---|
2876 | /////////////////////////////////////////////////////////////////////////////// |
---|
2877 | |
---|
2878 | static proc pre_HN (poly f, int essential) |
---|
2879 | "NOTE: This procedure is only for internal use, it is called via |
---|
2880 | hnexpansion |
---|
2881 | RETURN: list: first entry = HNEring (containing list hne, poly f) |
---|
2882 | second entry = 0 if no change of base ring necessary |
---|
2883 | 1 if change of base ring necessary |
---|
2884 | third entry = numbers of conjugates ( if essential = 1 ) |
---|
2885 | if some error has occurred, the empty list is returned |
---|
2886 | " |
---|
2887 | { |
---|
2888 | def altring = basering; |
---|
2889 | int p = char(basering); |
---|
2890 | int field_ext; |
---|
2891 | intvec hne_conj; |
---|
2892 | |
---|
2893 | //-------------------- Tests auf Zulaessigkeit von basering ------------------ |
---|
2894 | if (hasNumericCoeffs(basering)) { |
---|
2895 | " Singular cannot factorize over 'real' as ground field"; |
---|
2896 | return(list()); |
---|
2897 | } |
---|
2898 | if (nvars(basering)<2) { |
---|
2899 | " A univariate polynomial ring makes no sense !"; |
---|
2900 | return(list()); |
---|
2901 | } |
---|
2902 | if (nvars(basering)>2) { |
---|
2903 | dbprint(printlevel-voice+2, |
---|
2904 | " Warning: all variables except the first two will be ignored!"); |
---|
2905 | } |
---|
2906 | if (hasGFCoefficient(basering)) |
---|
2907 | { |
---|
2908 | ERROR(" ring of type (p^k,a) not implemented"); |
---|
2909 | //---------------------------------------------------------------------------- |
---|
2910 | // weder primitives Element noch factorize noch map "char p^k" -> "char -p" |
---|
2911 | // [(p^k,a)->(p,a) ground field] noch fetch |
---|
2912 | //---------------------------------------------------------------------------- |
---|
2913 | } |
---|
2914 | //----------------- Definition eines neuen Ringes: HNEring ------------------- |
---|
2915 | string namex=varstr(1); string namey=varstr(2); |
---|
2916 | if ((npars(altring)==0)&&(!hasNumericCoeffs(basering))) { // kein Parameter, nicht 'real' |
---|
2917 | ring HNEring = char(altring),(x,y),ls; |
---|
2918 | map m=altring,x,y; |
---|
2919 | poly f=m(f); |
---|
2920 | export f; |
---|
2921 | kill m; |
---|
2922 | } |
---|
2923 | else { |
---|
2924 | string mipl=string(minpoly); |
---|
2925 | if (mipl=="0") { |
---|
2926 | "// ** WARNING: Algebraic extension of given ground field not possible!"; |
---|
2927 | "// ** We try to develop this polynomial, but if the need for a field"; |
---|
2928 | "// ** extension occurs during the calculation, we cannot proceed with"; |
---|
2929 | "// ** the corresponding branches."; |
---|
2930 | ring HNEring = create_ring(ringlist(basering)[1],"(x,y)","ls","no_minpoly"); |
---|
2931 | } |
---|
2932 | else { |
---|
2933 | string pa=parstr(altring); |
---|
2934 | list rl=ringlist(altring); |
---|
2935 | rl=rl[1]; rl[1]=p; |
---|
2936 | ring HNhelpring=ring(rl); |
---|
2937 | execute("poly mipo="+mipl+";"); // Minimalpolynom in Polynom umgewandelt |
---|
2938 | ring HNEring=(p,a),(x,y),ls; |
---|
2939 | map getminpol=HNhelpring,a; |
---|
2940 | mipl=string(getminpol(mipo)); // String umgewandelt mit 'a' als Param. |
---|
2941 | execute("minpoly="+mipl+";"); // "minpoly=poly is not supported" |
---|
2942 | kill HNhelpring; if(defined(getminpol)){ kill getminpol; } |
---|
2943 | } |
---|
2944 | if (nvars(altring)==2) { |
---|
2945 | poly f=fetch(altring,f); |
---|
2946 | export f; |
---|
2947 | } |
---|
2948 | else { |
---|
2949 | if (defined(pa)) { // Parameter hatte vorher anderen Namen als 'a' |
---|
2950 | list rl=ringlist(altring); |
---|
2951 | rl=rl[1]; rl[1]=p; |
---|
2952 | rl[2]=rl[2]+list("x","y"); |
---|
2953 | rl[3]=list(list("ls",1:3),list("C",0)); |
---|
2954 | ring HNhelpring=ring(rl); |
---|
2955 | poly f=imap(altring,f); |
---|
2956 | setring HNEring; |
---|
2957 | map m=HNhelpring,a,x,y; |
---|
2958 | poly f=m(f); |
---|
2959 | kill HNhelpring; |
---|
2960 | } |
---|
2961 | else { |
---|
2962 | map m=altring,x,y; |
---|
2963 | poly f=m(f); |
---|
2964 | } |
---|
2965 | export f; |
---|
2966 | kill m; |
---|
2967 | } |
---|
2968 | } |
---|
2969 | |
---|
2970 | if (defined(HNDebugOn)) |
---|
2971 | {"received polynomial: ",f,", with x =",namex,", y =",namey;} |
---|
2972 | |
---|
2973 | //----------------------- Variablendefinitionen ------------------------------ |
---|
2974 | int Abbruch,i,NullHNEx,NullHNEy; |
---|
2975 | string str; |
---|
2976 | list Newton,hne; |
---|
2977 | |
---|
2978 | // --- changed for SINGULAR 3: --- |
---|
2979 | hne=ideal(0); |
---|
2980 | export hne; |
---|
2981 | |
---|
2982 | //====================== Tests auf Zulaessigkeit des Polynoms ================ |
---|
2983 | |
---|
2984 | //-------------------------- Test, ob Einheit oder Null ---------------------- |
---|
2985 | if (subst(subst(f,x,0),y,0)!=0) { |
---|
2986 | dbprint(printlevel+1, |
---|
2987 | "The given polynomial is a unit in the power series ring!"); |
---|
2988 | setring altring; kill HNEring; |
---|
2989 | return(list()); // there are no HNEs |
---|
2990 | } |
---|
2991 | if (f==0) { |
---|
2992 | dbprint(printlevel+1,"The given polynomial is zero!"); |
---|
2993 | setring altring; kill HNEring; |
---|
2994 | return(list()); // there are no HNEs |
---|
2995 | } |
---|
2996 | |
---|
2997 | //----------------------- Test auf Quadratfreiheit -------------------------- |
---|
2998 | |
---|
2999 | if (hasQQCoefficient(basering)) { |
---|
3000 | |
---|
3001 | //-------- Fall basering==0,... : Wechsel in Ring mit char >0 ---------------- |
---|
3002 | // weil squarefree eine Standardbasis berechnen muss (verwendet Syzygien) |
---|
3003 | // -- wenn f in diesem Ring quadratfrei ist, dann erst recht im Ring HNEring |
---|
3004 | //---------------------------------------------------------------------------- |
---|
3005 | int testerg=(polytest(f)==0); |
---|
3006 | ring zweitring = 32003,(x,y),dp; |
---|
3007 | |
---|
3008 | map polyhinueber=HNEring,x,y; // fetch geht nicht |
---|
3009 | poly f=polyhinueber(f); |
---|
3010 | poly test_sqr=squarefree(f); |
---|
3011 | if (test_sqr != f) { |
---|
3012 | if (printlevel>0) { |
---|
3013 | "Most probably the given polynomial is not squarefree. But the test was"; |
---|
3014 | "made in characteristic 32003 and not 0 to improve speed. You can"; |
---|
3015 | "(r) redo the test in char 0 (but this may take some time)"; |
---|
3016 | "(c) continue the development, if you're sure that the polynomial IS", |
---|
3017 | "squarefree"; |
---|
3018 | if (testerg==1) { |
---|
3019 | "(s) continue the development with a squarefree factor (*)";} |
---|
3020 | "(q) or just quit the algorithm (default action)"; |
---|
3021 | "";"Please enter the letter of your choice:"; |
---|
3022 | str=read("")[1]; // reads one character |
---|
3023 | } |
---|
3024 | else { str="r"; } // printlevel <= 0: non-interactive behaviour |
---|
3025 | setring HNEring; |
---|
3026 | map polyhinueber=zweitring,x,y; |
---|
3027 | if (str=="r") { |
---|
3028 | poly test_sqr=squarefree(f); |
---|
3029 | if (test_sqr != f) { |
---|
3030 | if (printlevel>0) { "The given polynomial is in fact not squarefree."; } |
---|
3031 | else { "The given polynomial is not squarefree!"; } |
---|
3032 | "I'll continue with the radical."; |
---|
3033 | f=test_sqr; |
---|
3034 | } |
---|
3035 | else { |
---|
3036 | dbprint(printlevel, |
---|
3037 | "everything is ok -- the polynomial is squarefree in characteristic 0"); |
---|
3038 | } |
---|
3039 | } |
---|
3040 | else { |
---|
3041 | if ((str=="s") and (testerg==1)) { |
---|
3042 | "(*)attention: it could be that the factor is only one in char 32003!"; |
---|
3043 | f=polyhinueber(test_sqr); |
---|
3044 | } |
---|
3045 | else { |
---|
3046 | if (str<>"c") { |
---|
3047 | setring altring; |
---|
3048 | kill HNEring;kill zweitring; |
---|
3049 | return(list());} |
---|
3050 | else { "if the algorithm doesn't terminate, you were wrong...";} |
---|
3051 | }} |
---|
3052 | kill zweitring; |
---|
3053 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
3054 | } |
---|
3055 | else { |
---|
3056 | setring HNEring; |
---|
3057 | kill zweitring; |
---|
3058 | } |
---|
3059 | } |
---|
3060 | //------------------ Fall Char > 0 oder Ring hat Parameter ------------------- |
---|
3061 | else { |
---|
3062 | poly test_sqr=squarefree(f); |
---|
3063 | if (test_sqr != f) { |
---|
3064 | if (printlevel>0) { |
---|
3065 | if (test_sqr == 1) { |
---|
3066 | "The given polynomial is of the form g^"+string(p)+","; |
---|
3067 | "therefore not squarefree. You can:"; |
---|
3068 | " (q) quit the algorithm (recommended) or"; |
---|
3069 | " (f) continue with the full radical (using a factorization of the"; |
---|
3070 | " pure power part; this could take much time)"; |
---|
3071 | "";"Please enter the letter of your choice:"; |
---|
3072 | str=read("")[1]; |
---|
3073 | if (str<>"f") { str="q"; } |
---|
3074 | } |
---|
3075 | else { |
---|
3076 | "The given polynomial is not squarefree."; |
---|
3077 | if (p != 0) |
---|
3078 | { |
---|
3079 | " You can:"; |
---|
3080 | " (c) continue with a squarefree divisor (but factors of the form g^" |
---|
3081 | +string(p); |
---|
3082 | " are lost; this is recommended, takes no extra time)"; |
---|
3083 | " (f) continue with the full radical (using a factorization of the"; |
---|
3084 | " pure power part; this could take some time)"; |
---|
3085 | " (q) quit the algorithm"; |
---|
3086 | "";"Please enter the letter of your choice:"; |
---|
3087 | str=read("")[1]; |
---|
3088 | if ((str<>"f") && (str<>"q")) { str="c"; } |
---|
3089 | } |
---|
3090 | else { "I'll continue with the radical."; str="c"; } |
---|
3091 | } // endelse (test_sqr!=1) |
---|
3092 | } |
---|
3093 | else { |
---|
3094 | "//** Error: The given polynomial is not squarefree!"; |
---|
3095 | "//** Since the global variable 'printlevel' has the value",printlevel, |
---|
3096 | "we stop here."; |
---|
3097 | "// Either call me again with a squarefree polynomial f or assign"; |
---|
3098 | " printlevel=1;"; |
---|
3099 | "// before calling me with a non-squarefree f."; |
---|
3100 | "// If printlevel > 0, I present some possibilities how to proceed."; |
---|
3101 | str="q"; |
---|
3102 | } |
---|
3103 | if (str=="q") { |
---|
3104 | setring altring;kill HNEring; |
---|
3105 | return(list()); |
---|
3106 | } |
---|
3107 | if (str=="c") { f=test_sqr; } |
---|
3108 | if (str=="f") { f=allsquarefree(f,test_sqr); } |
---|
3109 | } |
---|
3110 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
3111 | |
---|
3112 | } |
---|
3113 | //====================== Ende Test auf Quadratfreiheit ======================= |
---|
3114 | if (subst(subst(f,x,0),y,0)!=0) { |
---|
3115 | "The polynomial is a unit in the power series ring. No HNE computed."; |
---|
3116 | setring altring;kill HNEring; |
---|
3117 | return(list()); |
---|
3118 | } |
---|
3119 | //---------------------- Test, ob f teilbar durch x oder y ------------------- |
---|
3120 | if (subst(f,y,0)==0) { |
---|
3121 | f=f/y; NullHNEy=1; } // y=0 is a solution |
---|
3122 | if (subst(f,x,0)==0) { |
---|
3123 | f=f/x; NullHNEx=1; } // x=0 is a solution |
---|
3124 | |
---|
3125 | Newton=newtonpoly(f,1); |
---|
3126 | i=1; Abbruch=0; |
---|
3127 | //---------------------------------------------------------------------------- |
---|
3128 | // finde Eckpkt. des Newtonpolys, der den Teil abgrenzt, fuer den x transvers: |
---|
3129 | // Annahme: Newton ist sortiert, s.d. Newton[1]=Punkt auf der y-Achse, |
---|
3130 | // Newton[letzt]=Punkt auf der x-Achse |
---|
3131 | //---------------------------------------------------------------------------- |
---|
3132 | while ((i<size(Newton)) and (Abbruch==0)) { |
---|
3133 | if ((Newton[i+1][1]-Newton[i][1])>=(Newton[i][2]-Newton[i+1][2])) |
---|
3134 | {Abbruch=1;} |
---|
3135 | else {i=i+1;} |
---|
3136 | } |
---|
3137 | int grenze1=Newton[i][2]; |
---|
3138 | int grenze2=Newton[i][1]; |
---|
3139 | //---------------------------------------------------------------------------- |
---|
3140 | // Stelle Ring bereit zur Uebertragung der Daten im Fall einer Koerperer- |
---|
3141 | // weiterung. Definiere Objekte, die spaeter uebertragen werden. |
---|
3142 | // Binde die Listen (azeilen,...) an den Ring (um sie nicht zu ueberschreiben |
---|
3143 | // bei Def. in einem anderen Ring). |
---|
3144 | //---------------------------------------------------------------------------- |
---|
3145 | ring HNE_noparam = char(altring),(a,x,y),ls; |
---|
3146 | poly f; |
---|
3147 | list azeilen=ideal(0); |
---|
3148 | list HNEs=ideal(0); |
---|
3149 | list aneu=ideal(0); |
---|
3150 | list faktoren=ideal(0); |
---|
3151 | |
---|
3152 | ideal deltais; |
---|
3153 | poly delt; |
---|
3154 | |
---|
3155 | //----- hier steht die Anzahl bisher benoetigter Ringerweiterungen drin: ----- |
---|
3156 | int EXTHNEnumber=0; |
---|
3157 | |
---|
3158 | list EXTHNEring; |
---|
3159 | list HNE_RingDATA; |
---|
3160 | int number_of_letztring; |
---|
3161 | setring HNEring; |
---|
3162 | number_of_letztring=0; |
---|
3163 | |
---|
3164 | // ================= Die eigentliche Berechnung der HNE: ===================== |
---|
3165 | |
---|
3166 | // ------- Berechne HNE von allen Zweigen, fuer die x transversal ist: ------- |
---|
3167 | if (defined(HNDebugOn)) |
---|
3168 | {"1st step: Treat Newton polygon until height",grenze1;} |
---|
3169 | if (grenze1>0) { |
---|
3170 | if (EXTHNEnumber>0){ EXTHNEring = EXTHNEring(1..EXTHNEnumber); } |
---|
3171 | HNE_RingDATA = list(HNEring, HNE_noparam, EXTHNEnumber, EXTHNEring, |
---|
3172 | number_of_letztring); |
---|
3173 | |
---|
3174 | list hilflist=HN(HNE_RingDATA,f,grenze1,1,essential,0,hne_conj,1); |
---|
3175 | kill HNEring, HNE_noparam; |
---|
3176 | if (EXTHNEnumber>0) { kill EXTHNEring(1..EXTHNEnumber);} |
---|
3177 | def HNEring = hilflist[1][1]; |
---|
3178 | def HNE_noparam = hilflist[1][2]; |
---|
3179 | EXTHNEnumber = hilflist[1][3]; |
---|
3180 | for (i=1; i<=EXTHNEnumber; i++) { def EXTHNEring(i)=hilflist[1][4][i]; } |
---|
3181 | if (hilflist[2]==0) { setring HNEring; number_of_letztring=0; } |
---|
3182 | else { setring EXTHNEring(hilflist[2]);} |
---|
3183 | if (hilflist[3]==1){field_ext=1;} |
---|
3184 | hne_conj=hilflist[5]; |
---|
3185 | |
---|
3186 | if (number_of_letztring != hilflist[2]) |
---|
3187 | { // Ringwechsel in Prozedur HN |
---|
3188 | map hole=HNE_noparam,transfproc,x,y; |
---|
3189 | setring HNE_noparam; |
---|
3190 | if (not(defined(f))) {poly f;} |
---|
3191 | f=imap(HNEring,f); |
---|
3192 | setring EXTHNEring(EXTHNEnumber); |
---|
3193 | if (not(defined(f))) {poly f; f=hole(f); export f;} |
---|
3194 | else {f=hole(f);} |
---|
3195 | } |
---|
3196 | number_of_letztring = hilflist[2]; |
---|
3197 | kill hilflist; |
---|
3198 | } |
---|
3199 | |
---|
3200 | if (NullHNEy==1) { |
---|
3201 | if ((typeof(hne[1])=="ideal")) { hne=list(); } |
---|
3202 | hne=hne+list(list(matrix(ideal(0,x)),intvec(1),int(0),poly(0))); |
---|
3203 | if (hne_conj==0) { hne_conj=1; } |
---|
3204 | else { hne_conj = hne_conj, 1; } |
---|
3205 | } |
---|
3206 | // --------------- Berechne HNE von allen verbliebenen Zweigen: -------------- |
---|
3207 | if (defined(HNDebugOn)) |
---|
3208 | {"2nd step: Treat Newton polygon until height",grenze2;} |
---|
3209 | if (grenze2>0) { |
---|
3210 | |
---|
3211 | if (EXTHNEnumber>0){ EXTHNEring = EXTHNEring(1..EXTHNEnumber); } |
---|
3212 | |
---|
3213 | if (essential==1) { number_of_letztring=0; } |
---|
3214 | if (number_of_letztring==0) { setring HNEring; } |
---|
3215 | else { setring EXTHNEring(number_of_letztring); } |
---|
3216 | map xytausch=basering,y,x; |
---|
3217 | |
---|
3218 | HNE_RingDATA = list(HNEring, HNE_noparam, EXTHNEnumber, EXTHNEring, |
---|
3219 | number_of_letztring); |
---|
3220 | list hilflist=HN(HNE_RingDATA,xytausch(f),grenze2,1,essential,1,hne_conj,1); |
---|
3221 | kill HNEring, HNE_noparam; |
---|
3222 | if (EXTHNEnumber>0){ kill EXTHNEring(1..EXTHNEnumber); } |
---|
3223 | def HNEring = hilflist[1][1]; |
---|
3224 | def HNE_noparam = hilflist[1][2]; |
---|
3225 | EXTHNEnumber = hilflist[1][3]; |
---|
3226 | for (i=1; i<=EXTHNEnumber; i++) { def EXTHNEring(i)=hilflist[1][4][i]; } |
---|
3227 | if (hilflist[2]==0) { setring HNEring; number_of_letztring=0; } |
---|
3228 | else { setring EXTHNEring(hilflist[2]); |
---|
3229 | number_of_letztring=hilflist[2]; } |
---|
3230 | if (hilflist[3]==1){field_ext=1;} |
---|
3231 | hne_conj=hilflist[5]; |
---|
3232 | kill hilflist; |
---|
3233 | } |
---|
3234 | if (NullHNEx==1) { |
---|
3235 | if ((typeof(hne[1])=="ideal")) { hne=list(); } |
---|
3236 | hne=hne+list(list(matrix(ideal(0,x)),intvec(1),int(1),poly(0))); |
---|
3237 | if (hne_conj==0) { hne_conj=1; } |
---|
3238 | else { hne_conj = hne_conj, 1; } |
---|
3239 | } |
---|
3240 | |
---|
3241 | |
---|
3242 | // --- aufraeumen --- |
---|
3243 | if (defined(HNEakut)){ |
---|
3244 | kill HNEakut,faktoren,deltais,transformiert,teiler,leitf; |
---|
3245 | } |
---|
3246 | if (defined(hilflist)) {kill hilflist;} |
---|
3247 | if (defined(erg)) {kill erg;} |
---|
3248 | if (defined(delt)) {kill delt;} |
---|
3249 | if (defined(azeilen)) { kill azeilen;} |
---|
3250 | if (defined(aneu)) { kill aneu;} |
---|
3251 | if (defined(transfproc)) { kill transfproc;} |
---|
3252 | if (defined(transf)) { kill transf;} |
---|
3253 | if (not(defined(f))) { poly f = imap(HNEring,f); export f; } |
---|
3254 | |
---|
3255 | return(list(basering,field_ext,hne_conj)); |
---|
3256 | } |
---|
3257 | |
---|
3258 | ////////////////////////////////////////////////////////////////////////////// |
---|
3259 | proc essdevelop (poly f) |
---|
3260 | "USAGE: essdevelop(f); f poly |
---|
3261 | NOTE: command is obsolete, use hnexpansion(f,\"ess\") instead. |
---|
3262 | SEE ALSO: hnexpansion, develop, extdevelop, param |
---|
3263 | " |
---|
3264 | { |
---|
3265 | printlevel=printlevel+1; |
---|
3266 | list Ergebnis=hnexpansion(f,1); |
---|
3267 | printlevel=printlevel-1; |
---|
3268 | return(Ergebnis); |
---|
3269 | } |
---|
3270 | |
---|
3271 | /////////////////////////////////////////////////////////////////////////////// |
---|
3272 | static proc HN (list HNE_RingDATA,poly fneu,int grenze,def Aufruf_Ebene, |
---|
3273 | def essential,def getauscht,intvec hne_conj,int conj_factor) |
---|
3274 | "NOTE: This procedure is only for internal use, it is called via pre_HN |
---|
3275 | RETURN: list: first entry = list of HNErings, |
---|
3276 | second entry = number of new base ring (0 for HNEring, |
---|
3277 | -1 for HNE_noparam, |
---|
3278 | i for EXTHNEring(i)) |
---|
3279 | third entry = 0 if no field extension necessary |
---|
3280 | 1 if field extension necessary |
---|
3281 | forth entry = HNEs (only if no change of basering) |
---|
3282 | " |
---|
3283 | { |
---|
3284 | //---------- Variablendefinitionen fuer den unverzweigten Teil: -------------- |
---|
3285 | if (defined(HNDebugOn)) {"procedure HN",Aufruf_Ebene;} |
---|
3286 | int Abbruch,ende,i,j,k,e,M,N,Q,R,zeiger,zeile,zeilevorher,dd,ii; |
---|
3287 | intvec hqs; |
---|
3288 | int field_ext; |
---|
3289 | int ring_changed, hneshift; |
---|
3290 | intvec conjugates,conj2,conj1; |
---|
3291 | |
---|
3292 | list EXTHNEring; |
---|
3293 | def HNEring = HNE_RingDATA[1]; |
---|
3294 | def HNE_noparam = HNE_RingDATA[2]; |
---|
3295 | int EXTHNEnumber = HNE_RingDATA[3]; |
---|
3296 | for (i=1; i<=EXTHNEnumber; i++) { def EXTHNEring(i)=HNE_RingDATA[4][i]; } |
---|
3297 | int number_of_letztring = HNE_RingDATA[5]; |
---|
3298 | if (defined(basering)) |
---|
3299 | { |
---|
3300 | if (number_of_letztring==0) { kill HNEring; def HNEring=basering; } |
---|
3301 | else { kill EXTHNEring(number_of_letztring); |
---|
3302 | def EXTHNEring(number_of_letztring)=basering; } |
---|
3303 | } |
---|
3304 | else |
---|
3305 | { |
---|
3306 | if ( number_of_letztring==0) { setring HNEring; } |
---|
3307 | else { setring EXTHNEring(number_of_letztring); } |
---|
3308 | } |
---|
3309 | if (not(defined(hne))) {list hne;} |
---|
3310 | poly fvorher; |
---|
3311 | list erg=ideal(0); list HNEs=ideal(0); // um die Listen an den Ring zu binden |
---|
3312 | |
---|
3313 | //-------------------- Bedeutung von Abbruch: -------------------------------- |
---|
3314 | //------- 0:keine Verzweigung | 1:Verzweigung,nicht fertig | 2:fertig -------- |
---|
3315 | // |
---|
3316 | // Struktur von HNEs : Liste von Listen L (fuer jeden Zweig) der Form |
---|
3317 | // L[1]=intvec (hqs), L[2],L[3],... ideal (die Zeilen (0,1,...) der HNE) |
---|
3318 | // L[letztes]=poly (transformiertes f) |
---|
3319 | //---------------------------------------------------------------------------- |
---|
3320 | list Newton; |
---|
3321 | number delt; |
---|
3322 | int p = char(basering); // Ringcharakteristik |
---|
3323 | list azeilen=ideal(0); |
---|
3324 | |
---|
3325 | ideal hilfid; intvec hilfvec; |
---|
3326 | |
---|
3327 | // ======================= der unverzweigte Teil: ============================ |
---|
3328 | while (Abbruch==0) { |
---|
3329 | Newton=newtonpoly(fneu,1); |
---|
3330 | zeiger=find_in_list(Newton,grenze); |
---|
3331 | if (Newton[zeiger][2] != grenze) |
---|
3332 | {"Didn't find an edge in the Newton polygon!";} |
---|
3333 | if (zeiger==size(Newton)-1) { |
---|
3334 | if (defined(HNDebugOn)) {"only one relevant side in Newton polygon";} |
---|
3335 | M=Newton[zeiger+1][1]-Newton[zeiger][1]; |
---|
3336 | N=Newton[zeiger][2]-Newton[zeiger+1][2]; |
---|
3337 | R = M%N; |
---|
3338 | Q = M div N; |
---|
3339 | |
---|
3340 | //-------- 1. Versuch: ist der quasihomogene Leitterm reine Potenz ? ------ |
---|
3341 | // (dann geht alles wie im irreduziblen Fall) |
---|
3342 | //------------------------------------------------------------------------- |
---|
3343 | e = gcd(M,N); |
---|
3344 | delt=factorfirst(redleit(fneu,Newton[zeiger],Newton[zeiger+1]) |
---|
3345 | /x^Newton[zeiger][1],M,N); |
---|
3346 | if (delt==0) { |
---|
3347 | if (defined(HNDebugOn)) {" The given polynomial is reducible !";} |
---|
3348 | Abbruch=1; |
---|
3349 | } |
---|
3350 | if (Abbruch==0) { |
---|
3351 | //----------- fneu,zeile retten fuer den Spezialfall (###): ------------- |
---|
3352 | fvorher=fneu;zeilevorher=zeile; |
---|
3353 | if (R==0) { |
---|
3354 | //-------- transformiere fneu mit T1, wenn kein Abbruch nachher: ------ |
---|
3355 | if (N>1) { fneu = T1_Transform(fneu,delt,M div e); } |
---|
3356 | else { ende=1; } |
---|
3357 | if (defined(HNDebugOn)) {"a("+string(zeile)+","+string(Q)+") =",delt;} |
---|
3358 | azeilen[zeile+1][Q]=delt; |
---|
3359 | } |
---|
3360 | else { |
---|
3361 | //------------- R > 0 : transformiere fneu mit T2 --------------------- |
---|
3362 | erg=T2_Transform(fneu,delt,M,N,referencepoly(Newton)); |
---|
3363 | fneu=erg[1];delt=erg[2]; |
---|
3364 | //----- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ---- |
---|
3365 | while (R!=0) { |
---|
3366 | if (defined(HNDebugOn)) { "h("+string(zeile)+") =",Q; } |
---|
3367 | hqs[zeile+1]=Q; // denn zeile beginnt mit dem Wert 0 |
---|
3368 | //--------------- markiere das Zeilenende der HNE: ------------------- |
---|
3369 | azeilen[zeile+1][Q+1]=x; |
---|
3370 | zeile=zeile+1; |
---|
3371 | //-------- Bereitstellung von Speicherplatz fuer eine neue Zeile: ---- |
---|
3372 | azeilen[zeile+1]=ideal(0); |
---|
3373 | M=N; N=R; R=M%N; Q=M div N; |
---|
3374 | } |
---|
3375 | if (defined(HNDebugOn)) {"a("+string(zeile)+","+string(Q)+") =",delt;} |
---|
3376 | azeilen[zeile+1][Q]=delt; |
---|
3377 | } |
---|
3378 | if (defined(HNDebugOn)) {"transformed polynomial: ",fneu;} |
---|
3379 | grenze=e; |
---|
3380 | //----------------------- teste Abbruchbedingungen: --------------------- |
---|
3381 | if (subst(fneu,y,0)==0) { // <==> y|fneu |
---|
3382 | dbprint(printlevel-voice+3,"finite HNE of one branch found"); |
---|
3383 | // voice abzufragen macht bei rekursiven procs keinen Sinn |
---|
3384 | azeilen[zeile+1][Q+1]=x; |
---|
3385 | //----- Q wird nur in hqs eingetragen, wenn der Spezialfall nicht |
---|
3386 | // eintritt (siehe unten) ----- |
---|
3387 | Abbruch=2; |
---|
3388 | if (grenze>1) { |
---|
3389 | if (jet(fneu,1,intvec(0,1))==0) { |
---|
3390 | //- jet(...)=alle Monome von fneu, die nicht durch y2 teilbar sind - |
---|
3391 | "THE TEST FOR SQUAREFREENESS WAS BAD!!"; |
---|
3392 | " The polynomial was NOT squarefree!!!";} |
---|
3393 | else { |
---|
3394 | //----------------------- Spezialfall (###): ----------------------- |
---|
3395 | // Wir haben das Problem, dass die HNE eines Zweiges hier abbricht, |
---|
3396 | // aber ein anderer Zweig bis hierher genau die gleiche HNE hat, die |
---|
3397 | // noch weiter geht |
---|
3398 | // Loesung: mache Transform. rueckgaengig und behandle fneu im |
---|
3399 | // Verzweigungsteil |
---|
3400 | //------------------------------------------------------------------ |
---|
3401 | Abbruch=1; |
---|
3402 | fneu=fvorher;zeile=zeilevorher;grenze=Newton[zeiger][2]; |
---|
3403 | }} |
---|
3404 | else {fneu=0;} // fneu nicht mehr gebraucht - spare Speicher |
---|
3405 | if (Abbruch==2) { hqs[zeile+1]=Q; } |
---|
3406 | } // Spezialfall nicht eingetreten |
---|
3407 | else { |
---|
3408 | if (ende==1) { |
---|
3409 | dbprint(printlevel-voice+2,"HNE of one branch found"); |
---|
3410 | Abbruch=2; hqs[zeile+1]=-Q-1;} |
---|
3411 | } |
---|
3412 | } // end(if Abbruch==0) |
---|
3413 | } // end(if zeiger...) |
---|
3414 | else { Abbruch=1;} |
---|
3415 | } // end(while Abbruch==0) |
---|
3416 | |
---|
3417 | // ===================== der Teil bei Verzweigung: =========================== |
---|
3418 | if (Abbruch==1) { |
---|
3419 | //---------- Variablendefinitionen fuer den verzweigten Teil: --------------- |
---|
3420 | poly leitf,teiler,transformiert; |
---|
3421 | list aneu=ideal(0); |
---|
3422 | list faktoren; |
---|
3423 | ideal deltais; |
---|
3424 | list HNEakut=ideal(0); |
---|
3425 | intvec eis; |
---|
3426 | int zaehler,hnezaehler,zl,zl1,M1,N1,R1,Q1,needext; |
---|
3427 | int numberofRingchanges,lastRingnumber,ringischanged,flag; |
---|
3428 | string letztringname; |
---|
3429 | |
---|
3430 | zeiger=find_in_list(Newton,grenze); |
---|
3431 | if (defined(HNDebugOn)) { |
---|
3432 | "Branching part reached---Newton polygon :",Newton; |
---|
3433 | "relevant part until height",grenze,", from",Newton[zeiger],"on"; |
---|
3434 | } |
---|
3435 | azeilen=list(hqs)+azeilen; // hat jetzt Struktur von HNEs: hqs in der 1.Zeile |
---|
3436 | |
---|
3437 | //======= Schleife fuer jede zu betrachtende Seite des Newtonpolygons: ====== |
---|
3438 | for(i=zeiger; i<size(Newton); i++) { |
---|
3439 | if ((essential==1) and (EXTHNEnumber>number_of_letztring)) { |
---|
3440 | // ----- setze ring zurueck fuer neue Kante ----- |
---|
3441 | // ---- (damit konjugierte Zweige erkennbar) ----- |
---|
3442 | hneshift=hneshift+hnezaehler; |
---|
3443 | hnezaehler=0; |
---|
3444 | ring_changed=0; |
---|
3445 | def SaveRing = EXTHNEring(EXTHNEnumber); |
---|
3446 | setring SaveRing; |
---|
3447 | if (not(defined(HNEs))) { // HN wurde zum 2.Mal von pre_HN aufgerufen |
---|
3448 | list HNEs=ideal(0); |
---|
3449 | } |
---|
3450 | for (k=number_of_letztring+1; k<=EXTHNEnumber; k++) { kill EXTHNEring(k);} |
---|
3451 | EXTHNEnumber=number_of_letztring; |
---|
3452 | if (EXTHNEnumber==0) { setring HNEring; } |
---|
3453 | else { setring EXTHNEring(EXTHNEnumber); } |
---|
3454 | if (not(defined(HNEs))) { list HNEs; } |
---|
3455 | HNEs=ideal(0); |
---|
3456 | deltais=0; |
---|
3457 | delt=0; |
---|
3458 | if (defined(zerlege)) { kill zerlege; } |
---|
3459 | } |
---|
3460 | |
---|
3461 | if (defined(HNDebugOn)) { "we consider side",Newton[i],Newton[i+1]; } |
---|
3462 | M=Newton[i+1][1]-Newton[i][1]; |
---|
3463 | N=Newton[i][2]-Newton[i+1][2]; |
---|
3464 | R = M%N; |
---|
3465 | Q = M div N; |
---|
3466 | e=gcd(M,N); |
---|
3467 | needext=1; |
---|
3468 | letztringname=nameof(basering); |
---|
3469 | lastRingnumber=EXTHNEnumber; |
---|
3470 | faktoren=list(ideal(charPoly(redleit(fneu,Newton[i],Newton[i+1]) |
---|
3471 | /(x^Newton[i][1]*y^Newton[i+1][2]),M,N) ), |
---|
3472 | intvec(1)); // = (zu faktoriserendes Poly, 1) |
---|
3473 | conjugates=conj_factor; |
---|
3474 | |
---|
3475 | //-- wechsle so lange in Ringerweiterungen, bis Leitform vollstaendig |
---|
3476 | // in Linearfaktoren zerfaellt ----- |
---|
3477 | for (numberofRingchanges=1; needext==1; numberofRingchanges++) { |
---|
3478 | leitf=redleit(fneu,Newton[i],Newton[i+1])/ |
---|
3479 | (x^Newton[i][1]*y^Newton[i+1][2]); |
---|
3480 | delt=factorfirst(leitf,M,N); |
---|
3481 | needext=0; |
---|
3482 | if (delt==0) { |
---|
3483 | //---------- Sonderbehandlung: faktorisiere einige Polynome ueber Q(a): -- |
---|
3484 | if ((char(basering)==0) and (hasAlgExtensionCoefficient(basering)) and (essential==0)) { |
---|
3485 | // ==================================================== |
---|
3486 | // neu CL: 06.10.05 |
---|
3487 | poly CHPOLY=charPoly(leitf,M,N); |
---|
3488 | poly tstpoly; |
---|
3489 | if (defined(faktoren)!=0) { |
---|
3490 | // Test, damit kein Fehler eingebaut (vermutlich nicht notwendig) |
---|
3491 | tstpoly = faktoren[1][1]^faktoren[2][1]; |
---|
3492 | for (k=2; k<=size(faktoren[1]); k++) { |
---|
3493 | tstpoly = tstpoly * faktoren[1][k]^faktoren[2][k]; |
---|
3494 | } |
---|
3495 | tstpoly = CHPOLY-tstpoly*(CHPOLY/tstpoly); |
---|
3496 | kill CHPOLY; |
---|
3497 | } |
---|
3498 | if ((numberofRingchanges>1) and (defined(faktoren)!=0) and (tstpoly==0)) { |
---|
3499 | def L_help=factorlist(faktoren,conjugates); |
---|
3500 | faktoren=L_help[1]; |
---|
3501 | conjugates=L_help[2]; |
---|
3502 | kill L_help; |
---|
3503 | } |
---|
3504 | else { |
---|
3505 | faktoren=factorize(charPoly(leitf,M,N)); |
---|
3506 | conjugates=conj_factor; |
---|
3507 | for (k=2;k<=size(faktoren[2]);k++) {conjugates=conjugates,conj_factor;} |
---|
3508 | } |
---|
3509 | kill tstpoly; |
---|
3510 | // Ende neu (vorher nur else Fall) |
---|
3511 | // ==================================================== |
---|
3512 | } |
---|
3513 | else { |
---|
3514 | //------------------ faktorisiere das charakt. Polynom: ---------------- |
---|
3515 | if ((numberofRingchanges==1) or (essential==0)) { |
---|
3516 | def L_help=factorlist(faktoren,conjugates); |
---|
3517 | faktoren=L_help[1]; |
---|
3518 | conjugates=L_help[2]; |
---|
3519 | kill L_help; |
---|
3520 | } |
---|
3521 | else { // eliminiere alle konjugierten Nullstellen bis auf eine: |
---|
3522 | ideal hilf_id; |
---|
3523 | for (zaehler=1; zaehler<=size(faktoren[1]); zaehler++) { |
---|
3524 | hilf_id=factorize(faktoren[1][zaehler],1); |
---|
3525 | if (size(hilf_id)>1) { |
---|
3526 | poly fac=hilf_id[1]; |
---|
3527 | dd=deg(fac); |
---|
3528 | // Zur Sicherheit: |
---|
3529 | if (deg(fac)==0) { fac=hilf_id[2]; } |
---|
3530 | for (k=2;k<=size(hilf_id);k++) { |
---|
3531 | dd=dd+deg(hilf_id[k]); |
---|
3532 | if (deg(hilf_id[k])<deg(fac)) { fac=hilf_id[k]; } |
---|
3533 | } |
---|
3534 | faktoren[1][zaehler]=fac; |
---|
3535 | kill fac; |
---|
3536 | if (conjugates[zaehler]==conj_factor) { |
---|
3537 | // number of conjugates not yet determined for this factor |
---|
3538 | conjugates[zaehler]=conjugates[zaehler]*dd; |
---|
3539 | } |
---|
3540 | } |
---|
3541 | else { |
---|
3542 | faktoren[1][zaehler]=hilf_id[1]; |
---|
3543 | } |
---|
3544 | } |
---|
3545 | } |
---|
3546 | } |
---|
3547 | |
---|
3548 | zaehler=1; eis=0; |
---|
3549 | for (j=1; j<=size(faktoren[2]); j++) { |
---|
3550 | teiler=faktoren[1][j]; |
---|
3551 | if (teiler/y != 0) { // sonst war's eine Konstante --> wegwerfen! |
---|
3552 | if (defined(HNDebugOn)) {"factor of leading form found:",teiler;} |
---|
3553 | if (teiler/y2 == 0) { // --> Faktor hat die Form cy+d |
---|
3554 | deltais[zaehler]=-subst(teiler,y,0)/koeff(teiler,0,1); //=-d/c |
---|
3555 | eis[zaehler]=faktoren[2][j]; |
---|
3556 | conj2[zaehler]=conjugates[j]; |
---|
3557 | zaehler++; |
---|
3558 | } |
---|
3559 | else { |
---|
3560 | dbprint(printlevel-voice+2, |
---|
3561 | " Change of basering (field extension) necessary!"); |
---|
3562 | if (defined(HNDebugOn)) { teiler,"is not yet properly factorized!"; } |
---|
3563 | if (needext==0) { poly zerlege=teiler; } |
---|
3564 | needext=1; |
---|
3565 | field_ext=1; |
---|
3566 | } |
---|
3567 | } |
---|
3568 | } // end(for j) |
---|
3569 | } |
---|
3570 | else { deltais=ideal(delt); eis=e; conj2=conj_factor; } |
---|
3571 | if (defined(HNDebugOn)) {"roots of char. poly:";deltais; |
---|
3572 | "with multiplicities:",eis;} |
---|
3573 | if (needext==1) { |
---|
3574 | //--------------------- fuehre den Ringwechsel aus: --------------------- |
---|
3575 | ringischanged=1; |
---|
3576 | if ((size(parstr(basering))>0) && string(minpoly)=="0") { |
---|
3577 | " ** We've had bad luck! The HNE cannot be calculated completely!"; |
---|
3578 | // HNE in transzendenter Erweiterung fehlgeschlagen |
---|
3579 | kill zerlege; |
---|
3580 | ringischanged=0; break; // weiter mit gefundenen Faktoren |
---|
3581 | } |
---|
3582 | if (parstr(basering)=="") { |
---|
3583 | EXTHNEnumber++; |
---|
3584 | def EXTHNEring(EXTHNEnumber) = splitring(zerlege); |
---|
3585 | setring EXTHNEring(EXTHNEnumber); |
---|
3586 | |
---|
3587 | poly transf=0; |
---|
3588 | poly transfproc=0; |
---|
3589 | ring_changed=1; |
---|
3590 | export transfproc; |
---|
3591 | } |
---|
3592 | else { |
---|
3593 | if (numberofRingchanges>1) { // ein Ringwechsel hat nicht gereicht |
---|
3594 | def helpring = splitring(zerlege,list(transf,transfproc,faktoren)); |
---|
3595 | kill EXTHNEring(EXTHNEnumber); |
---|
3596 | def EXTHNEring(EXTHNEnumber)=helpring; |
---|
3597 | setring EXTHNEring(EXTHNEnumber); |
---|
3598 | kill helpring; |
---|
3599 | |
---|
3600 | poly transf=erg[1]; |
---|
3601 | poly transfproc=erg[2]; |
---|
3602 | ring_changed=1; |
---|
3603 | list faktoren=erg[3]; |
---|
3604 | export transfproc; |
---|
3605 | kill erg; |
---|
3606 | } |
---|
3607 | else { |
---|
3608 | if (ring_changed==1) { // in dieser proc geschah schon Ringwechsel |
---|
3609 | EXTHNEnumber++; |
---|
3610 | def EXTHNEring(EXTHNEnumber) = splitring(zerlege,list(a,transfproc)); |
---|
3611 | setring EXTHNEring(EXTHNEnumber); |
---|
3612 | poly transf=erg[1]; |
---|
3613 | poly transfproc=erg[2]; |
---|
3614 | export transfproc; |
---|
3615 | kill erg; |
---|
3616 | } |
---|
3617 | else { // parameter war vorher da |
---|
3618 | EXTHNEnumber++; |
---|
3619 | def EXTHNEring(EXTHNEnumber) = splitring(zerlege,a); |
---|
3620 | setring EXTHNEring(EXTHNEnumber); |
---|
3621 | poly transf=erg[1]; |
---|
3622 | poly transfproc=transf; |
---|
3623 | ring_changed=1; |
---|
3624 | export transfproc; |
---|
3625 | kill erg; |
---|
3626 | }} |
---|
3627 | } |
---|
3628 | //----------------------------------------------------------------------- |
---|
3629 | // transf enthaelt jetzt den alten Parameter des Ringes, der aktiv war |
---|
3630 | // vor Beginn der Schleife (evtl. also ueber mehrere Ringwechsel |
---|
3631 | // weitergereicht), |
---|
3632 | // transfproc enthaelt den alten Parameter des Ringes, der aktiv war zu |
---|
3633 | // Beginn der Prozedur, und der an die aufrufende Prozedur zurueckgegeben |
---|
3634 | // werden muss |
---|
3635 | // transf ist Null, falls der alte Ring keinen Parameter hatte, |
---|
3636 | // das gleiche gilt fuer transfproc |
---|
3637 | //----------------------------------------------------------------------- |
---|
3638 | |
---|
3639 | //---- Neudef. von Variablen, Uebertragung bisher errechneter Daten: ---- |
---|
3640 | poly leitf,teiler,transformiert; |
---|
3641 | list aneu=ideal(0); |
---|
3642 | ideal deltais; |
---|
3643 | number delt; |
---|
3644 | setring HNE_noparam; |
---|
3645 | if (defined(letztring)) { kill letztring; } |
---|
3646 | if (EXTHNEnumber>1) { def letztring=EXTHNEring(EXTHNEnumber-1); } |
---|
3647 | else { def letztring=HNEring; } |
---|
3648 | if (not defined(fneu)) {poly fneu;} |
---|
3649 | fneu=imap(letztring,fneu); |
---|
3650 | if (not defined(f)) {poly f;} |
---|
3651 | f=imap(letztring,f); |
---|
3652 | if (not defined(hne)) {list hne;} |
---|
3653 | hne=imap(letztring,hne); |
---|
3654 | |
---|
3655 | if (not defined(faktoren)) {list faktoren; } |
---|
3656 | faktoren=imap(letztring,faktoren); |
---|
3657 | |
---|
3658 | if (not(defined(azeilen))){list azeilen,HNEs;} |
---|
3659 | azeilen=imap(letztring,azeilen); |
---|
3660 | HNEs=imap(letztring,HNEs); |
---|
3661 | |
---|
3662 | setring EXTHNEring(EXTHNEnumber); |
---|
3663 | if (not(defined(hole))) { map hole; } |
---|
3664 | hole=HNE_noparam,transf,x,y; |
---|
3665 | poly fneu=hole(fneu); |
---|
3666 | if (not defined(faktoren)) { |
---|
3667 | list faktoren; |
---|
3668 | faktoren=hole(faktoren); |
---|
3669 | } |
---|
3670 | if (not(defined(f))) |
---|
3671 | { |
---|
3672 | poly f=hole(f); |
---|
3673 | list hne=hole(hne); |
---|
3674 | export f,hne; |
---|
3675 | } |
---|
3676 | } |
---|
3677 | } // end (while needext==1) bzw. for (numberofRingchanges) |
---|
3678 | |
---|
3679 | if (eis==0) { i++; continue; } |
---|
3680 | if (ringischanged==1) { |
---|
3681 | list erg,HNEakut; // dienen nur zum Sp. von Zwi.erg. |
---|
3682 | |
---|
3683 | ideal hilfid; |
---|
3684 | erg=ideal(0); HNEakut=erg; |
---|
3685 | |
---|
3686 | hole=HNE_noparam,transf,x,y; |
---|
3687 | setring HNE_noparam; |
---|
3688 | if (not(defined(azeilen))){list azeilen,HNEs;} |
---|
3689 | azeilen=imap(letztring,azeilen); |
---|
3690 | HNEs=imap(letztring,HNEs); |
---|
3691 | |
---|
3692 | setring EXTHNEring(EXTHNEnumber); |
---|
3693 | list azeilen=hole(azeilen); |
---|
3694 | list HNEs=hole(HNEs); |
---|
3695 | kill letztring; |
---|
3696 | ringischanged=0; |
---|
3697 | } |
---|
3698 | |
---|
3699 | //============ Schleife fuer jeden gefundenen Faktor der Leitform: ========= |
---|
3700 | for (j=1; j<=size(eis); j++) { |
---|
3701 | //---- Mache Transformation T1 oder T2, trage Daten in HNEs ein, |
---|
3702 | // falls HNE abbricht: ---- |
---|
3703 | |
---|
3704 | //------------------------ Fall R==0: ------------------------------------- |
---|
3705 | if (R==0) { |
---|
3706 | transformiert = T1_Transform(fneu,number(deltais[j]),M div e); |
---|
3707 | if (defined(HNDebugOn)) { |
---|
3708 | "a("+string(zeile)+","+string(Q)+") =",deltais[j]; |
---|
3709 | "transformed polynomial: ",transformiert; |
---|
3710 | } |
---|
3711 | if (subst(transformiert,y,0)==0) { |
---|
3712 | dbprint(printlevel-voice+3,"finite HNE found"); |
---|
3713 | hnezaehler++; |
---|
3714 | //-------- trage deltais[j],x ein in letzte Zeile, fertig: ------------- |
---|
3715 | HNEakut=azeilen+list(poly(0)); // =HNEs[hnezaehler]; |
---|
3716 | hilfid=HNEakut[zeile+2]; hilfid[Q]=deltais[j]; hilfid[Q+1]=x; |
---|
3717 | HNEakut[zeile+2]=hilfid; |
---|
3718 | HNEakut[1][zeile+1]=Q; // aktualisiere Vektor mit den hqs |
---|
3719 | HNEs[hnezaehler]=HNEakut; |
---|
3720 | conj1[hneshift+hnezaehler]=conj2[j]; |
---|
3721 | if (eis[j]>1) { |
---|
3722 | transformiert=transformiert/y; |
---|
3723 | if (subst(transformiert,y,0)==0){"THE TEST FOR SQUAREFREENESS WAS BAD!" |
---|
3724 | +"! The polynomial was NOT squarefree!!!";} |
---|
3725 | else { |
---|
3726 | //--- Spezialfall (###) eingetreten: Noch weitere Zweige vorhanden -- |
---|
3727 | eis[j]=eis[j]-1; |
---|
3728 | } |
---|
3729 | } |
---|
3730 | } |
---|
3731 | } |
---|
3732 | else { |
---|
3733 | //------------------------ Fall R <> 0: --------------------------------- |
---|
3734 | erg=T2_Transform(fneu,number(deltais[j]),M,N,referencepoly(Newton)); |
---|
3735 | transformiert=erg[1];delt=erg[2]; |
---|
3736 | if (defined(HNDebugOn)) {"transformed polynomial: ",transformiert;} |
---|
3737 | if (subst(transformiert,y,0)==0) { |
---|
3738 | dbprint(printlevel-voice+3,"finite HNE found"); |
---|
3739 | hnezaehler++; |
---|
3740 | //---------------- trage endliche HNE in HNEs ein: --------------------- |
---|
3741 | HNEakut=azeilen; // dupliziere den gemeins. Anfang der HNE's |
---|
3742 | zl=2; // (kommt schliesslich nach HNEs[hnezaehler]) |
---|
3743 | //---------------------------------------------------------------------- |
---|
3744 | // Werte von: zeile: aktuelle Zeilennummer der HNE (gemeinsamer Teil) |
---|
3745 | // zl : die HNE spaltet auf; zeile+zl ist der Index fuer die |
---|
3746 | // Zeile des aktuellen Zweigs; (zeile+zl-2) ist die |
---|
3747 | // tatsaechl. Zeilennr. (bei 0 angefangen) der HNE |
---|
3748 | // ([1] <- intvec(hqs), [2] <- 0. Zeile usw.) |
---|
3749 | //---------------------------------------------------------------------- |
---|
3750 | |
---|
3751 | //----- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ----- |
---|
3752 | M1=M;N1=N;R1=R;Q1=M1 div N1; |
---|
3753 | while (R1!=0) { |
---|
3754 | if (defined(HNDebugOn)) { "h("+string(zeile+zl-2)+") =",Q1; } |
---|
3755 | HNEakut[1][zeile+zl-1]=Q1; |
---|
3756 | HNEakut[zeile+zl][Q1+1]=x; |
---|
3757 | // markiere das Zeilenende der HNE |
---|
3758 | zl=zl+1; |
---|
3759 | //----- Bereitstellung von Speicherplatz fuer eine neue Zeile: -------- |
---|
3760 | HNEakut[zeile+zl]=ideal(0); |
---|
3761 | |
---|
3762 | M1=N1; N1=R1; R1=M1%N1; Q1=M1 div N1; |
---|
3763 | } |
---|
3764 | if (defined(HNDebugOn)) { |
---|
3765 | "a("+string(zeile+zl-2)+","+string(Q1)+") =",delt; |
---|
3766 | } |
---|
3767 | HNEakut[zeile+zl][Q1] =delt; |
---|
3768 | HNEakut[zeile+zl][Q1+1]=x; |
---|
3769 | HNEakut[1][zeile+zl-1] =Q1; // aktualisiere Vektor mit hqs |
---|
3770 | HNEakut[zeile+zl+1]=poly(0); |
---|
3771 | HNEs[hnezaehler]=HNEakut; |
---|
3772 | conj1[hneshift+hnezaehler]=conj2[j]; |
---|
3773 | |
---|
3774 | //-------------------- Ende der Eintragungen in HNEs ------------------- |
---|
3775 | |
---|
3776 | if (eis[j]>1) { |
---|
3777 | transformiert=transformiert/y; |
---|
3778 | if (subst(transformiert,y,0)==0){"THE TEST FOR SQUAREFREENESS WAS BAD!" |
---|
3779 | +" The polynomial was NOT squarefree!!!";} |
---|
3780 | else { |
---|
3781 | //--- Spezialfall (###) eingetreten: Noch weitere Zweige vorhanden -- |
---|
3782 | eis[j]=eis[j]-1; |
---|
3783 | }} |
---|
3784 | } // endif (subst()==0) |
---|
3785 | } // endelse (R<>0) |
---|
3786 | |
---|
3787 | //========== Falls HNE nicht abbricht: Rekursiver Aufruf von HN: ========== |
---|
3788 | //------------------- Berechne HNE von transformiert ---------------------- |
---|
3789 | if (subst(transformiert,y,0)!=0) { |
---|
3790 | lastRingnumber=EXTHNEnumber; |
---|
3791 | |
---|
3792 | if (EXTHNEnumber>0){ EXTHNEring = EXTHNEring(1..EXTHNEnumber); } |
---|
3793 | HNE_RingDATA = list( HNEring, HNE_noparam, EXTHNEnumber, EXTHNEring, |
---|
3794 | lastRingnumber); |
---|
3795 | if (defined(HNerg)) {kill HNerg;} |
---|
3796 | list HNerg=HN(HNE_RingDATA,transformiert,eis[j],Aufruf_Ebene+1, |
---|
3797 | essential,getauscht,hne_conj,conj2[j]); |
---|
3798 | HNE_RingDATA = HNerg[1]; |
---|
3799 | if (conj1==0) { conj1=HNerg[5]; } |
---|
3800 | else { conj1 = conj1,HNerg[5]; } |
---|
3801 | |
---|
3802 | if (HNerg[3]==1) { field_ext=1; } |
---|
3803 | if (HNerg[2]==lastRingnumber) { // kein Ringwechsel in HN aufgetreten |
---|
3804 | if (not(defined(aneu))) { list aneu; } |
---|
3805 | aneu = HNerg[4]; |
---|
3806 | } |
---|
3807 | else { // Ringwechsel aufgetreten |
---|
3808 | if (defined(HNDebugOn)) |
---|
3809 | {" ring change in HN(",Aufruf_Ebene+1,") detected";} |
---|
3810 | EXTHNEnumber = HNerg[1][3]; |
---|
3811 | for (ii=lastRingnumber+1; ii<=EXTHNEnumber; ii++) { |
---|
3812 | def EXTHNEring(ii)=HNerg[1][4][ii]; |
---|
3813 | } |
---|
3814 | if (HNerg[2]==0) { setring HNEring; } |
---|
3815 | else { setring EXTHNEring(HNerg[2]); } |
---|
3816 | def tempRing=HNerg[4]; |
---|
3817 | def aneu=imap(tempRing,HNEs); |
---|
3818 | kill tempRing; |
---|
3819 | |
---|
3820 | //--- stelle lokale Variablen im neuen Ring wieder her, und rette |
---|
3821 | // gegebenenfalls ihren Inhalt: ---- |
---|
3822 | list erg,faktoren,HNEakut; |
---|
3823 | ideal hilfid; |
---|
3824 | erg=ideal(0); faktoren=erg; HNEakut=erg; |
---|
3825 | poly leitf,teiler,transformiert; |
---|
3826 | map hole=HNE_noparam,transfproc,x,y; |
---|
3827 | setring HNE_noparam; |
---|
3828 | if (lastRingnumber>0) { def letztring=EXTHNEring(lastRingnumber); } |
---|
3829 | else { def letztring=HNEring; } |
---|
3830 | if (not defined(HNEs)) {list HNEs;} |
---|
3831 | HNEs=imap(letztring,HNEs); |
---|
3832 | if (not defined(azeilen)) {list azeilen;} |
---|
3833 | azeilen=imap(letztring,azeilen); |
---|
3834 | if (not defined(deltais)) {ideal deltais;} |
---|
3835 | deltais=imap(letztring,deltais); |
---|
3836 | if (not defined(delt)) {poly delt;} |
---|
3837 | delt=imap(letztring,delt); |
---|
3838 | if (not defined(fneu)) {poly fneu;} |
---|
3839 | fneu=imap(letztring,fneu); |
---|
3840 | if (not defined(f)) {poly f;} |
---|
3841 | f=imap(letztring,f); |
---|
3842 | if (not defined(hne)) {list hne;} |
---|
3843 | hne=imap(letztring,hne); |
---|
3844 | |
---|
3845 | setring EXTHNEring(EXTHNEnumber); |
---|
3846 | list HNEs=hole(HNEs); |
---|
3847 | list azeilen=hole(azeilen); |
---|
3848 | ideal deltais=hole(deltais); |
---|
3849 | number delt=number(hole(delt)); |
---|
3850 | poly fneu=hole(fneu); |
---|
3851 | if (not(defined(f))) |
---|
3852 | { |
---|
3853 | poly f=hole(f); |
---|
3854 | list hne=hole(hne); |
---|
3855 | export f,hne; |
---|
3856 | } |
---|
3857 | } |
---|
3858 | |
---|
3859 | //========== Verknuepfe bisherige HNE mit von HN gelieferten HNEs: ====== |
---|
3860 | if (R==0) { |
---|
3861 | HNEs,hnezaehler=constructHNEs(HNEs,hnezaehler,aneu,azeilen,zeile, |
---|
3862 | deltais,Q,j); |
---|
3863 | kill aneu; |
---|
3864 | } |
---|
3865 | else { |
---|
3866 | for (zaehler=1; zaehler<=size(aneu); zaehler++) { |
---|
3867 | hnezaehler++; |
---|
3868 | HNEakut=azeilen; // dupliziere den gemeinsamen Anfang der HNE's |
---|
3869 | zl=2; // (kommt schliesslich nach HNEs[hnezaehler]) |
---|
3870 | //------------ Trage Beitrag dieser Transformation T2 ein: ------------- |
---|
3871 | //------ Zur Bedeutung von zeile, zl: siehe Kommentar weiter oben ------ |
---|
3872 | |
---|
3873 | //----- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ----- |
---|
3874 | M1=M;N1=N;R1=R;Q1=M1 div N1; |
---|
3875 | while (R1!=0) { |
---|
3876 | if (defined(HNDebugOn)) { "h("+string(zeile+zl-2)+") =",Q1; } |
---|
3877 | HNEakut[1][zeile+zl-1]=Q1; |
---|
3878 | HNEakut[zeile+zl][Q1+1]=x; // Markierung des Zeilenendes der HNE |
---|
3879 | zl=zl+1; |
---|
3880 | //----- Bereitstellung von Speicherplatz fuer eine neue Zeile: -------- |
---|
3881 | HNEakut[zeile+zl]=ideal(0); |
---|
3882 | M1=N1; N1=R1; R1=M1%N1; Q1=M1 div N1; |
---|
3883 | } |
---|
3884 | if (defined(HNDebugOn)) { |
---|
3885 | "a("+string(zeile+zl-2)+","+string(Q1)+") =",delt; |
---|
3886 | } |
---|
3887 | HNEakut[zeile+zl][Q1]=delt; |
---|
3888 | |
---|
3889 | //-- Daten aus T2_Transform sind eingetragen; haenge Daten von HN an: -- |
---|
3890 | hilfid=HNEakut[zeile+zl]; |
---|
3891 | for (zl1=Q1+1; zl1<=ncols(aneu[zaehler][2]); zl1++) { |
---|
3892 | hilfid[zl1]=aneu[zaehler][2][zl1]; |
---|
3893 | } |
---|
3894 | HNEakut[zeile+zl]=hilfid; |
---|
3895 | // ------ vorher HNEs[.][zeile+zl]<-aneu[.][2], |
---|
3896 | // jetzt [zeile+zl+1] <- [3] usw.: -------- |
---|
3897 | for (zl1=3; zl1<=size(aneu[zaehler]); zl1++) { |
---|
3898 | HNEakut[zeile+zl+zl1-2]=aneu[zaehler][zl1]; |
---|
3899 | } |
---|
3900 | //--- setze hqs zusammen: HNEs[hnezaehler][1]=HNEs[..][1],aneu[..][1] -- |
---|
3901 | hilfvec=HNEakut[1],aneu[zaehler][1]; |
---|
3902 | HNEakut[1]=hilfvec; |
---|
3903 | //-------- weil nicht geht: liste[1]=liste[1],aneu[zaehler][1] --------- |
---|
3904 | HNEs[hnezaehler]=HNEakut; |
---|
3905 | } // end(for zaehler) |
---|
3906 | kill aneu; |
---|
3907 | } // endelse (R<>0) |
---|
3908 | } // endif (subst()!=0) (weiteres Aufblasen mit HN) |
---|
3909 | |
---|
3910 | } // end(for j) (Behandlung der einzelnen delta_i) |
---|
3911 | |
---|
3912 | |
---|
3913 | // ------------------------- new for essdevelop ---------------------------- |
---|
3914 | if ((essential==1) and (defined(SaveRing))) { |
---|
3915 | // ----- uebertrage Daten in gemeinsame Koerpererweiterung --------------- |
---|
3916 | if (EXTHNEnumber>number_of_letztring) { |
---|
3917 | // ----- fuer aktuelle Kante war Koerpererweiterung erforderlich ------- |
---|
3918 | EXTHNEnumber++; |
---|
3919 | string @miniPol_EXTHNEring(EXTHNEnumber-1) = string(minpoly); |
---|
3920 | setring SaveRing; |
---|
3921 | string @miniPol_SaveRing = string(minpoly); |
---|
3922 | setring HNE_noparam; |
---|
3923 | if (not(defined(a_x))){ map a_x,a_y; poly mp_save, mp_new; } |
---|
3924 | execute("mp_save= " + @miniPol_SaveRing + ";"); |
---|
3925 | execute("mp_new = " + @miniPol_EXTHNEring(EXTHNEnumber-1) + ";" );; |
---|
3926 | if (mp_save==mp_new) { // Sonderfall: wieder gleicher Ring |
---|
3927 | def EXTHNEring(EXTHNEnumber)=SaveRing; |
---|
3928 | setring EXTHNEring(EXTHNEnumber); |
---|
3929 | if (not(defined(f))) {poly f; f=hole(f); export f;} |
---|
3930 | list dummyL=imap(EXTHNEring(EXTHNEnumber-1),HNEs); |
---|
3931 | if (not(defined(HNEs))) { def HNEs=list(); } |
---|
3932 | if ((size(HNEs)==1) and (typeof(HNEs[1])=="ideal")) {HNEs=list();} |
---|
3933 | HNEs[size(HNEs)+1..size(HNEs)+size(dummyL)]=dummyL[1..size(dummyL)]; |
---|
3934 | kill dummyL,SaveRing; |
---|
3935 | } |
---|
3936 | else { // verschiedene Ringe |
---|
3937 | a_x=HNE_noparam,x,0,0; |
---|
3938 | a_y=HNE_noparam,y,0,0; |
---|
3939 | mp_save=a_x(mp_save); // minpoly aus SaveRing mit a --> x |
---|
3940 | mp_new=a_y(mp_new); // minpoly aus SaveRing mit a --> y |
---|
3941 | setring SaveRing; |
---|
3942 | poly mp_new=imap(HNE_noparam,mp_new); |
---|
3943 | list Lfac=factorize(mp_new,1); |
---|
3944 | poly fac=Lfac[1][1]; |
---|
3945 | for (k=2;k<=size(Lfac[1]);k++) { |
---|
3946 | if (deg(Lfac[1][k])<deg(fac)) { fac=Lfac[1][k]; } |
---|
3947 | } |
---|
3948 | |
---|
3949 | if (deg(fac)==1) { // keine Erweiterung noetig |
---|
3950 | def EXTHNEring(EXTHNEnumber)=SaveRing; |
---|
3951 | setring HNE_noparam; |
---|
3952 | HNEs=imap(EXTHNEring(EXTHNEnumber-1),HNEs); |
---|
3953 | setring EXTHNEring(EXTHNEnumber); |
---|
3954 | if (not(defined(f))) {poly f; f=hole(f); export f;} |
---|
3955 | map phi=HNE_noparam,-subst(fac,y,0)/koeff(fac,0,1),x,y; |
---|
3956 | list dummyL=phi(HNEs); |
---|
3957 | if (not(defined(HNEs))) { def HNEs=list(); } |
---|
3958 | if ((size(HNEs)==1) and (typeof(HNEs[1])=="ideal")) {HNEs=list();} |
---|
3959 | HNEs[size(HNEs)+1..size(HNEs)+size(dummyL)]=dummyL[1..size(dummyL)]; |
---|
3960 | kill dummyL,phi,SaveRing; |
---|
3961 | } |
---|
3962 | else { // Koerpererweiterung noetig |
---|
3963 | def EXTHNEring(EXTHNEnumber) = splitring(fac,list(a,transfproc)); |
---|
3964 | setring EXTHNEring(EXTHNEnumber); |
---|
3965 | poly transf=erg[1]; // image of parameter from SaveRing |
---|
3966 | poly transfproc=erg[2]; |
---|
3967 | poly transb=erg[3]; // image of parameter from EXTHNEring(..) |
---|
3968 | export transfproc; |
---|
3969 | kill erg; |
---|
3970 | setring HNE_noparam; |
---|
3971 | if (not(defined(HNEs1))) { list HNEs1=ideal(0); } |
---|
3972 | HNEs1=imap(EXTHNEring(EXTHNEnumber-1),HNEs); |
---|
3973 | if (not(defined(hne))) { list hne=ideal(0); } |
---|
3974 | hne=imap(SaveRing,hne); |
---|
3975 | HNEs=imap(SaveRing,HNEs); |
---|
3976 | setring EXTHNEring(EXTHNEnumber); |
---|
3977 | map hole=HNE_noparam,transf,x,y; |
---|
3978 | poly fneu=hole(fneu); |
---|
3979 | poly f=hole(f); |
---|
3980 | map phi=HNE_noparam,transb,x,y; |
---|
3981 | list HNEs=hole(HNEs); |
---|
3982 | list hne=hole(hne); |
---|
3983 | export f,hne; |
---|
3984 | if ((size(HNEs)==1) and (typeof(HNEs[1])=="ideal")) {HNEs=list();} |
---|
3985 | list dummyL=phi(HNEs1); |
---|
3986 | HNEs[size(HNEs)+1..size(HNEs)+size(dummyL)]=dummyL[1..size(dummyL)]; |
---|
3987 | kill dummyL,phi,SaveRing; |
---|
3988 | } |
---|
3989 | } |
---|
3990 | } |
---|
3991 | else { // nur bei letzter Kante muss was getan werden |
---|
3992 | if (i==size(Newton)-1) { |
---|
3993 | EXTHNEnumber++; |
---|
3994 | if (number_of_letztring==0) { def letztring=HNEring; } |
---|
3995 | else { def letztring=EXTHNEring(EXTHNEnumber); } |
---|
3996 | if (minpoly==0) { |
---|
3997 | def EXTHNEring(EXTHNEnumber)=SaveRing; |
---|
3998 | setring EXTHNEring(EXTHNEnumber); |
---|
3999 | if (not(defined(f))) {poly f; f=hole(f); export f;} |
---|
4000 | if ((size(HNEs)==1) and (typeof(HNEs[1])=="ideal")) {HNEs=list();} |
---|
4001 | list dummyL=imap(letztring,HNEs); |
---|
4002 | HNEs[size(HNEs)+1..size(HNEs)+size(dummyL)]=dummyL[1..size(dummyL)]; |
---|
4003 | kill dummyL,letztring,SaveRing; |
---|
4004 | } |
---|
4005 | else { // muessen Daten nach SaveRing uebertragen; |
---|
4006 | setring HNE_noparam; |
---|
4007 | if (not(defined(HNEs))) { list HNEs; } |
---|
4008 | HNEs=imap(letztring,HNEs); |
---|
4009 | def EXTHNEring(EXTHNEnumber)=SaveRing; |
---|
4010 | setring EXTHNEring(EXTHNEnumber); |
---|
4011 | if (not(defined(hole))) { map hole; } |
---|
4012 | hole=HNE_noparam,transfproc,x,y; |
---|
4013 | list dummyL=hole(HNEs); |
---|
4014 | if (not(defined(HNEs))) { def HNEs=list(); } |
---|
4015 | if ((size(HNEs)==1) and (typeof(HNEs[1])=="ideal")) {HNEs=list();} |
---|
4016 | HNEs[size(HNEs)+1..size(HNEs)+size(dummyL)]=dummyL[1..size(dummyL)]; |
---|
4017 | kill dummyL, letztring,SaveRing; |
---|
4018 | } |
---|
4019 | } |
---|
4020 | } |
---|
4021 | } |
---|
4022 | // -----------------end of new part (loop for essential=1) ---------------- |
---|
4023 | } // end (Loop uber Kanten) |
---|
4024 | if (defined(SaveRing)) { kill SaveRing; } |
---|
4025 | } |
---|
4026 | else { |
---|
4027 | HNEs[1]=list(hqs)+azeilen+list(fneu); // fneu ist transform. Polynom oder Null |
---|
4028 | conj1[1]=conj_factor; |
---|
4029 | } |
---|
4030 | |
---|
4031 | if (Aufruf_Ebene == 1) |
---|
4032 | { |
---|
4033 | if ((number_of_letztring!=EXTHNEnumber) and (not(defined(hne)))) |
---|
4034 | { |
---|
4035 | //----- falls Zweige in transz. Erw. berechnet werden konnten --------- |
---|
4036 | if (defined(transfproc)) |
---|
4037 | { // --- Ringwechsel hat stattgefunden --- |
---|
4038 | if (defined(HNDebugOn)) {" ring change in HN(",1,") detected";} |
---|
4039 | if (not(defined(hole))) { map hole; } |
---|
4040 | hole=HNE_noparam,transfproc,x,y; |
---|
4041 | setring HNE_noparam; |
---|
4042 | f=imap(HNEring,f); |
---|
4043 | if (number_of_letztring==0) { def letztring=HNEring; } |
---|
4044 | else { def letztring=EXTHNEring(EXTHNEnumber); } |
---|
4045 | if (not(defined(hne))) { list hne; } |
---|
4046 | hne=imap(letztring,hne); |
---|
4047 | setring EXTHNEring(EXTHNEnumber); |
---|
4048 | if (not(defined(f))) { poly f=hole(f); export f; } |
---|
4049 | list hne=hole(hne); |
---|
4050 | export hne; |
---|
4051 | } |
---|
4052 | } |
---|
4053 | if (size(HNEs)>0) { |
---|
4054 | if ((size(HNEs)>1) or (typeof(HNEs[1])!="ideal") or (size(HNEs[1])>0)) { |
---|
4055 | if ((typeof(hne[1])=="ideal")) { hne=list(); } |
---|
4056 | hne=hne+extractHNEs(HNEs,getauscht); |
---|
4057 | if (hne_conj==0) { hne_conj=conj1; } |
---|
4058 | else { hne_conj = hne_conj, conj1; } |
---|
4059 | } |
---|
4060 | } |
---|
4061 | } |
---|
4062 | else |
---|
4063 | { // HN wurde rekursiv aufgerufen |
---|
4064 | if (number_of_letztring!=EXTHNEnumber) |
---|
4065 | { // Ringwechsel hatte stattgefunden |
---|
4066 | string mipl_alt = string(minpoly); |
---|
4067 | ring tempRing = create_ring(ringlist(basering)[1],"("+varstr(basering)+")","("+ordstr(basering)+")","no_minpoly"); |
---|
4068 | execute("minpoly="+ mipl_alt +";"); |
---|
4069 | list HNEs=imap(EXTHNEring(EXTHNEnumber),HNEs); |
---|
4070 | export HNEs; |
---|
4071 | if (defined(HNDebugOn)) {" ! tempRing defined ! ";} |
---|
4072 | } |
---|
4073 | if (conj1!=0) { hne_conj=conj1; } |
---|
4074 | else { hne_conj=conj_factor; } |
---|
4075 | } |
---|
4076 | if (EXTHNEnumber>0){ EXTHNEring = EXTHNEring(1..EXTHNEnumber); } |
---|
4077 | HNE_RingDATA = list(HNEring, HNE_noparam, EXTHNEnumber, EXTHNEring); |
---|
4078 | if (number_of_letztring==EXTHNEnumber) { |
---|
4079 | return(list(HNE_RingDATA,EXTHNEnumber,field_ext,HNEs,hne_conj)); |
---|
4080 | } |
---|
4081 | else { |
---|
4082 | if (defined(tempRing)) { |
---|
4083 | return(list(HNE_RingDATA,EXTHNEnumber,field_ext,tempRing,hne_conj)); |
---|
4084 | } |
---|
4085 | return(list(HNE_RingDATA,EXTHNEnumber,field_ext,0,hne_conj)); |
---|
4086 | } |
---|
4087 | } |
---|
4088 | |
---|
4089 | /////////////////////////////////////////////////////////////////////////////// |
---|
4090 | |
---|
4091 | static proc constructHNEs (list HNEs,int hnezaehler,list aneu,list azeilen, |
---|
4092 | int zeile,ideal deltais,int Q,int j) |
---|
4093 | "NOTE: This procedure is only for internal use, it is called via HN" |
---|
4094 | { |
---|
4095 | int zaehler,zl; |
---|
4096 | ideal hilfid; |
---|
4097 | list hilflist; |
---|
4098 | intvec hilfvec; |
---|
4099 | for (zaehler=1; zaehler<=size(aneu); zaehler++) { |
---|
4100 | hnezaehler++; |
---|
4101 | // HNEs[hnezaehler]=azeilen; // dupliziere gemeins. Anfang |
---|
4102 | //----------------------- trage neu berechnete Daten ein --------------------- |
---|
4103 | hilfid=azeilen[zeile+2]; |
---|
4104 | hilfid[Q]=deltais[j]; |
---|
4105 | for (zl=Q+1; zl<=ncols(aneu[zaehler][2]); zl++) { |
---|
4106 | hilfid[zl]=aneu[zaehler][2][zl]; |
---|
4107 | } |
---|
4108 | hilflist=azeilen; hilflist[zeile+2]=hilfid; |
---|
4109 | //------------------ haenge uebrige Zeilen von aneu[] an: -------------------- |
---|
4110 | for (zl=3; zl<=size(aneu[zaehler]); zl++) { |
---|
4111 | hilflist[zeile+zl]=aneu[zaehler][zl]; |
---|
4112 | } |
---|
4113 | //--- setze die hqs zusammen: HNEs[hnezaehler][1]=HNEs[..][1],aneu[..][1] ---- |
---|
4114 | if (hilflist[1]==0) { hilflist[1]=aneu[zaehler][1]; } |
---|
4115 | else { hilfvec=hilflist[1],aneu[zaehler][1]; hilflist[1]=hilfvec; } |
---|
4116 | HNEs[hnezaehler]=hilflist; |
---|
4117 | } |
---|
4118 | return(HNEs,hnezaehler); |
---|
4119 | } |
---|
4120 | /////////////////////////////////////////////////////////////////////////////// |
---|
4121 | |
---|
4122 | proc referencepoly (list newton) |
---|
4123 | "USAGE: referencepoly(newton); |
---|
4124 | newton is list of intvec(x,y) which represents points in the Newton |
---|
4125 | diagram (e.g. output of the proc newtonpoly) |
---|
4126 | RETURN: a polynomial which has newton as Newton diagram |
---|
4127 | SEE ALSO: newtonpoly |
---|
4128 | EXAMPLE: example referencepoly; shows an example |
---|
4129 | " |
---|
4130 | { |
---|
4131 | poly f; |
---|
4132 | for (int i=1; i<=size(newton); i++) { |
---|
4133 | f=f+var(1)^newton[i][1]*var(2)^newton[i][2]; |
---|
4134 | } |
---|
4135 | return(f); |
---|
4136 | } |
---|
4137 | example |
---|
4138 | { "EXAMPLE:"; echo = 2; |
---|
4139 | ring exring=0,(x,y),ds; |
---|
4140 | referencepoly(list(intvec(0,4),intvec(2,3),intvec(5,1),intvec(7,0))); |
---|
4141 | } |
---|
4142 | /////////////////////////////////////////////////////////////////////////////// |
---|
4143 | |
---|
4144 | proc factorlist (list L, list #) |
---|
4145 | "USAGE: factorlist(L); L a list in the format of 'factorize' |
---|
4146 | RETURN: the nonconstant irreducible factors of |
---|
4147 | L[1][1]^L[2][1] * L[1][2]^L[2][2] *...* L[1][size(L[1])]^... |
---|
4148 | with multiplicities (same format as factorize) |
---|
4149 | SEE ALSO: factorize |
---|
4150 | EXAMPLE: example factorlist; shows an example |
---|
4151 | " |
---|
4152 | { |
---|
4153 | int k; |
---|
4154 | if ((size(#)>=1) and ((typeof(#[1])=="intvec") or (typeof(#[1])=="int"))) { |
---|
4155 | int with_conj = 1; intvec C = #[1]; |
---|
4156 | } |
---|
4157 | else { |
---|
4158 | int with_conj = 0; intvec C = L[2]; |
---|
4159 | } |
---|
4160 | // eine Sortierung der Faktoren eruebrigt sich, weil keine zwei versch. |
---|
4161 | // red.Fakt. einen gleichen irred. Fakt. haben koennen (I.3.27 Diplarb.) |
---|
4162 | int i,gross; |
---|
4163 | list faktoren,hilf; |
---|
4164 | intvec conjugates; |
---|
4165 | ideal hil1,hil2; |
---|
4166 | intvec v,w,hilf_conj; |
---|
4167 | for (i=1; (L[1][i] == jet(L[1][i],0)) && (i<size(L[1])); i++) {;} |
---|
4168 | if (L[1][i] != jet(L[1][i],0)) { |
---|
4169 | hilf=factorize(L[1][i]); |
---|
4170 | // Achtung!!! factorize(..,2) wirft entgegen der Beschreibung nicht nur |
---|
4171 | // konstante Faktoren raus, sondern alle Einheiten in der LOKALISIERUNG nach |
---|
4172 | // der Monomordnung!!! Im Beispiel unten verschwindet der Faktor x+y+1, wenn |
---|
4173 | // man ds statt dp als Ordnung nimmt! |
---|
4174 | hilf_conj=C[i]; |
---|
4175 | for (k=2;k<=size(hilf[2]);k++){ hilf_conj=hilf_conj,C[i]; } |
---|
4176 | hilf[2]=hilf[2]*L[2][i]; |
---|
4177 | hil1=hilf[1]; |
---|
4178 | gross=size(hil1); |
---|
4179 | if (gross>1) { |
---|
4180 | v=hilf[2]; |
---|
4181 | faktoren=list(ideal(hil1[2..gross]),intvec(v[2..gross])); |
---|
4182 | conjugates=intvec(hilf_conj[2..gross]); |
---|
4183 | } |
---|
4184 | else { faktoren=hilf; conjugates=hilf_conj; } |
---|
4185 | } |
---|
4186 | else { |
---|
4187 | faktoren=L; |
---|
4188 | conjugates=C; |
---|
4189 | } |
---|
4190 | |
---|
4191 | for (i++; i<=size(L[2]); i++) { |
---|
4192 | //------------------------- linearer Term -- irreduzibel --------------------- |
---|
4193 | if (L[1][i] == jet(L[1][i],1)) { |
---|
4194 | if (L[1][i] != jet(L[1][i],0)) { // konst. Faktoren eliminieren |
---|
4195 | hil1=faktoren[1]; |
---|
4196 | hil1[size(hil1)+1]=L[1][i]; |
---|
4197 | faktoren[1]=hil1; |
---|
4198 | v=faktoren[2],L[2][i]; |
---|
4199 | conjugates=conjugates,C[i]; |
---|
4200 | faktoren[2]=v; |
---|
4201 | } |
---|
4202 | } |
---|
4203 | //----------------------- nichtlinearer Term -- faktorisiere ----------------- |
---|
4204 | else { |
---|
4205 | hilf=factorize(L[1][i]); |
---|
4206 | hilf_conj=C[i]; |
---|
4207 | for (k=2;k<=size(hilf[2]);k++){ hilf_conj=hilf_conj,C[i]; } |
---|
4208 | hilf[2]=hilf[2]*L[2][i]; |
---|
4209 | hil1=faktoren[1]; |
---|
4210 | hil2=hilf[1]; |
---|
4211 | gross=size(hil2); |
---|
4212 | // hil2[1] ist konstant, wird weggelassen: |
---|
4213 | hil1[(size(hil1)+1)..(size(hil1)+gross-1)]=hil2[2..gross]; |
---|
4214 | // ideal+ideal does not work due to simplification; |
---|
4215 | // ideal,ideal not allowed |
---|
4216 | faktoren[1]=hil1; |
---|
4217 | w=hilf[2]; |
---|
4218 | v=faktoren[2],w[2..gross]; |
---|
4219 | conjugates=conjugates,hilf_conj[2..gross]; |
---|
4220 | faktoren[2]=v; |
---|
4221 | } |
---|
4222 | } |
---|
4223 | if (with_conj==0) { return(faktoren); } |
---|
4224 | else { return(list(faktoren,conjugates)); } // for essential development |
---|
4225 | } |
---|
4226 | example |
---|
4227 | { "EXAMPLE:"; echo = 2; |
---|
4228 | ring exring=0,(x,y),ds; |
---|
4229 | list L=list(ideal(x,(x-y)^2*(x+y+1),x+y),intvec(2,2,1)); |
---|
4230 | L; |
---|
4231 | factorlist(L); |
---|
4232 | } |
---|
4233 | |
---|
4234 | /////////////////////////////////////////////////////////////////////////////// |
---|
4235 | |
---|
4236 | proc delta |
---|
4237 | "USAGE: delta(INPUT); INPUT a polynomial defining an isolated plane curve |
---|
4238 | singularity at 0, or the Hamburger-Noether expansion thereof, i.e. |
---|
4239 | the output of @code{develop(f)}, or the output of @code{hnexpansion(f)}, |
---|
4240 | or the list of HN data computed by @code{hnexpansion(f)}. |
---|
4241 | RETURN: int, the delta invariant of the singularity at 0, that is, the vector |
---|
4242 | space dimension of R~/R, (R~ the normalization of the local ring of |
---|
4243 | the singularity). |
---|
4244 | NOTE: In case the Hamburger-Noether expansion of the curve f is needed |
---|
4245 | for other purposes as well it is better to calculate this first |
---|
4246 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
4247 | the polynomial itself. |
---|
4248 | SEE ALSO: deltaLoc, invariants |
---|
4249 | KEYWORDS: delta invariant |
---|
4250 | EXAMPLE: example delta; shows an example |
---|
4251 | " |
---|
4252 | { |
---|
4253 | if (typeof(#[1])=="poly") { // INPUT = polynomial defining the singularity |
---|
4254 | list L=hnexpansion(#[1]); |
---|
4255 | if (typeof(L[1])=="ring") { |
---|
4256 | def altring = basering; |
---|
4257 | def HNring = L[1]; setring HNring; |
---|
4258 | return(delta(hne)); |
---|
4259 | } |
---|
4260 | else { |
---|
4261 | return(delta(L)); |
---|
4262 | } |
---|
4263 | } |
---|
4264 | if (typeof(#[1])=="ring") { // INPUT = HNEring of curve |
---|
4265 | def HNring = #[1]; setring HNring; |
---|
4266 | return(delta(hne)); |
---|
4267 | } |
---|
4268 | if (typeof(#[1])=="matrix") |
---|
4269 | { // INPUT = hne of an irreducible curve |
---|
4270 | return(invariants(#)[5] div 2); |
---|
4271 | } |
---|
4272 | else |
---|
4273 | { // INPUT = hne of a reducible curve |
---|
4274 | list INV=invariants(#); |
---|
4275 | return(INV[size(INV)][3]); |
---|
4276 | } |
---|
4277 | } |
---|
4278 | example |
---|
4279 | { "EXAMPLE:"; echo = 2; |
---|
4280 | ring r = 32003,(x,y),ds; |
---|
4281 | poly f = x25+x24-4x23-1x22y+4x22+8x21y-2x21-12x20y-4x19y2+4x20+10x19y |
---|
4282 | +12x18y2-24x18y-20x17y2-4x16y3+x18+60x16y2+20x15y3-9x16y |
---|
4283 | -80x14y3-10x13y4+36x14y2+60x12y4+2x11y5-84x12y3-24x10y5 |
---|
4284 | +126x10y4+4x8y6-126x8y5+84x6y6-36x4y7+9x2y8-1y9; |
---|
4285 | delta(f); |
---|
4286 | } |
---|
4287 | |
---|
4288 | /////////////////////////////////////////////////////////////////////////////// |
---|