1 | version="$Id: hnoether.lib,v 1.36 2004-02-23 10:22:33 Singular Exp $"; |
---|
2 | category="Singularities"; |
---|
3 | info=" |
---|
4 | LIBRARY: hnoether.lib Hamburger-Noether (Puiseux) Development |
---|
5 | AUTHOR: Martin Lamm, lamm@mathematik.uni-kl.de |
---|
6 | |
---|
7 | OVERVIEW: |
---|
8 | A library for computing the Hamburger-Noether, resp. Puiseux, development |
---|
9 | of a plane curve singularity following [Campillo, A.: Algebroid curves |
---|
10 | in positive characteristic, Springer LNM 813 (1980)]. @* |
---|
11 | The library contains also procedures for computing the (topological) |
---|
12 | numerical invariants of plane curve singularities. |
---|
13 | |
---|
14 | MAIN PROCEDURES: |
---|
15 | hnexpansion(f); Hamburger-Noether (H-N) development of f |
---|
16 | sethnering(hn); changes to the hnering created by hnexpansion |
---|
17 | develop(f [,n]); H-N development of irreducible curves |
---|
18 | extdevelop(hne,n); extension of the H-N development hne of f |
---|
19 | parametrisation(f [,x]); a parametrization of f |
---|
20 | displayHNE(hne); display H-N development as an ideal |
---|
21 | invariants(f); invariants of f, e.g. the characteristic exponents |
---|
22 | displayInvariants(f); display invariants of f |
---|
23 | multsequence(f); sequence of multiplicities |
---|
24 | displayMultsequence(f); display sequence of multiplicities |
---|
25 | intersection(hne1,hne2); intersection multiplicity of two curves |
---|
26 | stripHNE(hne); reduce amount of memory consumed by hne |
---|
27 | is_irred(f); test if f is irreducible |
---|
28 | delta(f); delta invariant of f |
---|
29 | newtonpoly(f); (local) Newton polygon of f |
---|
30 | is_NND(f); test if f is Newton non-degenerate |
---|
31 | |
---|
32 | |
---|
33 | AUXILIARY PROCEDURES: |
---|
34 | puiseux2generators(m,n); convert Puiseux pairs to generators of semigroup |
---|
35 | separateHNE(hne1,hne2); number of quadratic transf. needed for separation |
---|
36 | squarefree(f); a squarefree divisor of the poly f |
---|
37 | allsquarefree(f,l); the maximal squarefree divisor of the poly f |
---|
38 | further_hn_proc(); show further procedures useful for interactive use |
---|
39 | |
---|
40 | KEYWORDS: Hamburger-Noether expansion; Puiseux expansion; curve singularities |
---|
41 | "; |
---|
42 | |
---|
43 | // HNdevelop(f); Hamburger-Noether (H-N) development of f |
---|
44 | // reddevelop(f); H-N development of reducible curves |
---|
45 | // essdevelop(f); H-N development of essential branches |
---|
46 | // multiplicities(hne); multiplicities of blowed up curves |
---|
47 | |
---|
48 | |
---|
49 | /////////////////////////////////////////////////////////////////////////////// |
---|
50 | LIB "primitiv.lib"; |
---|
51 | LIB "inout.lib"; |
---|
52 | LIB "sing.lib"; |
---|
53 | |
---|
54 | /////////////////////////////////////////////////////////////////////////////// |
---|
55 | |
---|
56 | proc further_hn_proc() |
---|
57 | "USAGE: further_hn_proc(); |
---|
58 | NOTE: The library @code{hnoether.lib} contains some more procedures which |
---|
59 | are not shown when typing @code{help hnoether.lib;}. They may be useful |
---|
60 | for interactive use (e.g. if you want to do the calculation of an HN |
---|
61 | development \"by hand\" to see the intermediate results), and they |
---|
62 | can be enumerated by calling @code{further_hn_proc()}. @* |
---|
63 | Use @code{help <procedure>;} for detailed information about each of |
---|
64 | them. |
---|
65 | " |
---|
66 | { |
---|
67 | " |
---|
68 | The following procedures are also part of `hnoether.lib': |
---|
69 | |
---|
70 | getnm(f); intersection pts. of Newton polygon with axes |
---|
71 | T_Transform(f,Q,N); returns f(y,xy^Q)/y^NQ (f: poly, Q,N: int) |
---|
72 | T1_Transform(f,d,M); returns f(x,y+d*x^M) (f: poly,d:number,M:int) |
---|
73 | T2_Transform(f,d,M,N,ref); a composition of T1 & T |
---|
74 | koeff(f,I,J); gets coefficient of indicated monomial of poly f |
---|
75 | redleit(f,S,E); restriction of monomials of f to line (S-E) |
---|
76 | leit(f,n,m); special case of redleit (for irred. polynomials) |
---|
77 | testreducible(f,n,m); tests whether f is reducible |
---|
78 | charPoly(f,M,N); characteristic polynomial of f |
---|
79 | find_in_list(L,p); find int p in list L |
---|
80 | get_last_divisor(M,N); last divisor in Euclid's algorithm |
---|
81 | factorfirst(f,M,N); try to factor f without `factorize' |
---|
82 | factorlist(L); factorize a list L of polynomials |
---|
83 | referencepoly(D); a polynomial f s.t. D is the Newton diagram of f"; |
---|
84 | |
---|
85 | // static procedures not useful for interactive use: |
---|
86 | // polytest(f); tests coefficients and exponents of poly f |
---|
87 | // extractHNEs(H,t); extracts output H of HN to output of reddevelop |
---|
88 | // HN(f,grenze); recursive subroutine for reddevelop |
---|
89 | // constructHNEs(...); subroutine for HN |
---|
90 | } |
---|
91 | example |
---|
92 | { echo=2; |
---|
93 | further_hn_proc(); |
---|
94 | } |
---|
95 | /////////////////////////////////////////////////////////////////////////////// |
---|
96 | |
---|
97 | proc getnm (poly f) |
---|
98 | "USAGE: getnm(f); f bivariate polynomial |
---|
99 | RETURN: intvec(n,m) : (0,n) is the intersection point of the Newton |
---|
100 | polygon of f with the y-axis, n=-1 if it doesn't exist |
---|
101 | (m,0) is its intersection point with the x-axis, |
---|
102 | m=-1 if this point doesn't exist |
---|
103 | ASSUME: ring has ordering `ls' or `ds' |
---|
104 | EXAMPLE: example getnm; shows an example |
---|
105 | " |
---|
106 | { |
---|
107 | // assume being called by develop ==> ring ordering is ls (ds would also work) |
---|
108 | return(ord(subst(f,var(1),0)),ord(subst(f,var(2),0))); |
---|
109 | } |
---|
110 | example |
---|
111 | { "EXAMPLE:"; echo = 2; |
---|
112 | ring r = 0,(x,y),ds; |
---|
113 | poly f = x5+x4y3-y2+y4; |
---|
114 | getnm(f); |
---|
115 | } |
---|
116 | /////////////////////////////////////////////////////////////////////////////// |
---|
117 | |
---|
118 | proc leit (poly f, int n, int m) |
---|
119 | "USAGE: leit(f,n,m); poly f, int n,m |
---|
120 | RETURN: all monomials on the line from (0,n) to (m,0) in the Newton diagram |
---|
121 | EXAMPLE: example leit; shows an example |
---|
122 | " |
---|
123 | { |
---|
124 | return(jet(f,m*n,intvec(n,m))-jet(f,m*n-1,intvec(n,m))) |
---|
125 | } |
---|
126 | example |
---|
127 | { "EXAMPLE:"; echo = 2; |
---|
128 | ring r = 0,(x,y),ds; |
---|
129 | poly f = x5+x4y3-y2+y4; |
---|
130 | leit(f,2,5); |
---|
131 | } |
---|
132 | /////////////////////////////////////////////////////////////////////////////// |
---|
133 | proc testreducible (poly f, int n, int m) |
---|
134 | "USAGE: testreducible(f,n,m); f poly, n,m int |
---|
135 | RETURN: 1 if there are points in the Newton diagram below the line (0,n)-(m,0) |
---|
136 | 0 else |
---|
137 | EXAMPLE: example testreducible; shows an example |
---|
138 | " |
---|
139 | { |
---|
140 | return(size(jet(f,m*n-1,intvec(n,m))) != 0) |
---|
141 | } |
---|
142 | example |
---|
143 | { "EXAMPLE:"; echo = 2; |
---|
144 | ring rg=0,(x,y),ls; |
---|
145 | testreducible(x2+y3-xy4,3,2); |
---|
146 | } |
---|
147 | /////////////////////////////////////////////////////////////////////////////// |
---|
148 | proc T_Transform (poly f, int Q, int N) |
---|
149 | "USAGE: T_Transform(f,Q,N); f poly, Q,N int |
---|
150 | RETURN: f(y,xy^Q)/y^NQ if x,y are the ring variables |
---|
151 | NOTE: this is intended for irreducible power series f |
---|
152 | EXAMPLE: example T_Transform; shows an example |
---|
153 | " |
---|
154 | { |
---|
155 | map T = basering,var(2),var(1)*var(2)^Q; |
---|
156 | return(T(f)/var(2)^(N*Q)); |
---|
157 | } |
---|
158 | example |
---|
159 | { "EXAMPLE:"; echo = 2; |
---|
160 | ring exrg=0,(x,y),ls; |
---|
161 | export exrg; |
---|
162 | T_Transform(x3+y2-xy3,1,2); |
---|
163 | kill exrg; |
---|
164 | } |
---|
165 | /////////////////////////////////////////////////////////////////////////////// |
---|
166 | proc T1_Transform (poly f, number d, int Q) |
---|
167 | "USAGE: T1_Transform(f,d,Q); f poly, d number, Q int |
---|
168 | RETURN: f(x,y+d*x^Q) if x,y are the ring variables |
---|
169 | EXAMPLE: example T1_Transform; shows an example |
---|
170 | " |
---|
171 | { |
---|
172 | map T1 = basering,var(1),var(2)+d*var(1)^Q; |
---|
173 | return(T1(f)); |
---|
174 | } |
---|
175 | example |
---|
176 | { "EXAMPLE:"; echo = 2; |
---|
177 | ring exrg=0,(x,y),ls; |
---|
178 | export exrg; |
---|
179 | T1_Transform(y2-2xy+x2+x2y,1,1); |
---|
180 | kill exrg; |
---|
181 | } |
---|
182 | /////////////////////////////////////////////////////////////////////////////// |
---|
183 | |
---|
184 | proc T2_Transform (poly f, number d, int M, int N, poly refpoly) |
---|
185 | "USAGE: T2_Transform(f,d,M,N,ref); f poly, d number; M,N int; ref poly |
---|
186 | RETURN: list: poly T2(f,d',M,N), number d' in \{ d, 1/d \} |
---|
187 | ASSUME: ref has the same Newton polygon as f (but can be simpler) |
---|
188 | for this you can e.g. use the proc `referencepoly' or simply f again |
---|
189 | COMMENT: T2 is a composition of T_Transform and T1_Transform; the exact |
---|
190 | definition can be found in Rybowicz: `Sur le calcul des places ...' |
---|
191 | or in Lamm: `Hamburger-Noether-Entwicklung von Kurvensingularitaeten' |
---|
192 | SEE ALSO: T_Transform, T1_Transform, referencepoly |
---|
193 | EXAMPLE: example T2_Transform; shows an example |
---|
194 | " |
---|
195 | { |
---|
196 | //---------------------- compute gcd and extgcd of N,M ----------------------- |
---|
197 | int ggt=gcd(M,N); |
---|
198 | M=M/ggt; N=N/ggt; |
---|
199 | list ts=extgcd(M,N); |
---|
200 | int tau,sigma=ts[2],-ts[3]; |
---|
201 | int s,t; |
---|
202 | poly xp=var(1); |
---|
203 | poly yp=var(2); |
---|
204 | poly hilf; |
---|
205 | if (sigma<0) { tau=-tau; sigma=-sigma;} |
---|
206 | // es gilt: 0<=tau<=N, 0<=sigma<=M, |N*sigma-M*tau| = 1 = ggT(M,N) |
---|
207 | if (N*sigma < M*tau) { d = 1/d; } |
---|
208 | //--------------------------- euklid. Algorithmus ---------------------------- |
---|
209 | int R; |
---|
210 | int M1,N1=M,N; |
---|
211 | for ( R=M1%N1; R!=0; ) { M1=N1; N1=R; R=M1%N1;} |
---|
212 | int Q=M1 / N1; |
---|
213 | map T1 = basering,xp,yp+d*xp^Q; |
---|
214 | map Tstar=basering,xp^(N-Q*tau)*yp^tau,xp^(M-sigma*Q)*yp^sigma; |
---|
215 | if (defined(HNDebugOn)) { |
---|
216 | "Trafo. T2: x->x^"+string(N-Q*tau)+"*y^"+string(tau)+", y->x^" |
---|
217 | +string(M-sigma*Q)+"*y^"+string(sigma); |
---|
218 | "delt =",d,"Q =",Q,"tau,sigma =",tau,sigma; |
---|
219 | } |
---|
220 | //------------------- Durchfuehrung der Transformation T2 -------------------- |
---|
221 | f=Tstar(f); |
---|
222 | refpoly=Tstar(refpoly); |
---|
223 | //--- dividiere f so lange durch x & y, wie die Div. aufgeht, benutze ein --- |
---|
224 | //--- Referenzpolynom mit gleichem Newtonpolynom wie f zur Beschleunigung: --- |
---|
225 | for (hilf=refpoly/xp; hilf*xp==refpoly; hilf=refpoly/xp) {refpoly=hilf; s++;} |
---|
226 | for (hilf=refpoly/yp; hilf*yp==refpoly; hilf=refpoly/yp) {refpoly=hilf; t++;} |
---|
227 | f=f/(xp^s*yp^t); |
---|
228 | return(list(T1(f),d)); |
---|
229 | } |
---|
230 | example |
---|
231 | { "EXAMPLE:"; echo = 2; |
---|
232 | ring exrg=0,(x,y),ds; |
---|
233 | export exrg; |
---|
234 | poly f=y2-2x2y+x6-x5y+x4y2; |
---|
235 | T2_Transform(f,1/2,4,1,f); |
---|
236 | T2_Transform(f,1/2,4,1,referencepoly(newtonpoly(f,1))); |
---|
237 | // if size(referencepoly) << size(f) the 2nd example would be faster |
---|
238 | referencepoly(newtonpoly(f,1)); |
---|
239 | kill exrg; |
---|
240 | } |
---|
241 | /////////////////////////////////////////////////////////////////////////////// |
---|
242 | |
---|
243 | proc koeff (poly f, int I, int J) |
---|
244 | "USAGE: koeff(f,I,J); f bivariate polynomial, I,J integers |
---|
245 | RETURN: if f = sum(a(i,j)*x^i*y^j), then koeff(f,I,J)= a(I,J) (of type number) |
---|
246 | NOTE: J must be in the range of the exponents of the 2nd ring variable |
---|
247 | EXAMPLE: example koeff; shows an example |
---|
248 | " |
---|
249 | { |
---|
250 | matrix mat = coeffs(coeffs(f,var(2))[J+1,1],var(1)); |
---|
251 | if (size(mat) <= I) { return(0);} |
---|
252 | else { return(leadcoef(mat[I+1,1]));} |
---|
253 | } |
---|
254 | example |
---|
255 | { "EXAMPLE:"; echo = 2; |
---|
256 | ring r=0,(x,y),dp; |
---|
257 | koeff(x2+2xy+3xy2-x2y-2y3,1,2); |
---|
258 | } |
---|
259 | /////////////////////////////////////////////////////////////////////////////// |
---|
260 | |
---|
261 | proc squarefree (poly f) |
---|
262 | "USAGE: squarefree(f); f poly |
---|
263 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables). |
---|
264 | RETURN: poly, a squarefree divisor of f. |
---|
265 | NOTE: Usually, the return value is the greatest squarefree divisor, but |
---|
266 | there is one exception: factors with a p-th root, p the |
---|
267 | characteristic of the basering, are lost. |
---|
268 | SEE ALSO: allsquarefree |
---|
269 | EXAMPLE: example squarefree; shows some examples. |
---|
270 | " |
---|
271 | { |
---|
272 | //----------------- Wechsel in geeigneten Ring & Variablendefinition --------- |
---|
273 | def altring = basering; |
---|
274 | int e; |
---|
275 | int gcd_ok=1; |
---|
276 | string mipl="0"; |
---|
277 | if (size(parstr(altring))==1) { mipl=string(minpoly); } |
---|
278 | //---- test: char = (p^k,a) (-> gcd not implemented) or (p,a) (gcd works) ---- |
---|
279 | if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) { |
---|
280 | string tststr=charstr(basering); |
---|
281 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
282 | gcd_ok=(tststr==string(char(basering))); |
---|
283 | } |
---|
284 | execute("ring rsqrf = ("+charstr(altring)+"),(x,y),dp;"); |
---|
285 | if ((gcd_ok!=0) && (mipl!="0")) { execute("minpoly="+mipl+";"); } |
---|
286 | poly f=fetch(altring,f); |
---|
287 | poly dif,g,l; |
---|
288 | if ((char(basering)==0) and (charstr(basering)!=string(char(basering))) |
---|
289 | and (mipl!="0")) { |
---|
290 | gcd_ok=0; // since Singular 1.2 gcd no longer implemented |
---|
291 | } |
---|
292 | if (gcd_ok!=0) { |
---|
293 | //--------------------- Berechne f/ggT(f,df/dx,df/dy) ------------------------ |
---|
294 | dif=diff(f,x); |
---|
295 | if (dif==0) { g=f; } // zur Beschleunigung |
---|
296 | else { g=gcd(f,dif); } |
---|
297 | if (g!=1) { // sonst schon sicher, dass f quadratfrei |
---|
298 | dif=diff(f,y); |
---|
299 | if (dif!=0) { g=gcd(g,dif); } |
---|
300 | } |
---|
301 | if (g!=1) { |
---|
302 | e=0; |
---|
303 | if (g==f) { l=1; } // zur Beschleunigung |
---|
304 | else { |
---|
305 | module m=syz(ideal(g,f)); |
---|
306 | if (deg(m[2,1])>0) { |
---|
307 | "!! The Singular command 'syz' has returned a wrong result !!"; |
---|
308 | l=1; // Division f/g muss aufgehen |
---|
309 | } |
---|
310 | else { l=m[1,1]; } |
---|
311 | } |
---|
312 | } |
---|
313 | else { e=1; } |
---|
314 | } |
---|
315 | else { |
---|
316 | //------------------- Berechne syz(f,df/dx) oder syz(f,df/dy) ---------------- |
---|
317 | //-- Achtung: Ist f reduzibel, koennen Faktoren mit Ableitung Null verloren -- |
---|
318 | //-- gehen! Ist aber nicht weiter schlimm, weil char (p^k,a) nur im irred. -- |
---|
319 | //-- Fall vorkommen kann. Wenn f nicht g^p ist, wird auf jeden Fall -- |
---|
320 | //------------------------ ein Faktor gefunden. ------------------------------ |
---|
321 | dif=diff(f,x); |
---|
322 | if (dif == 0) { |
---|
323 | dif=diff(f,y); |
---|
324 | if (dif==0) { e=2; l=1; } // f is of power divisible by char of basefield |
---|
325 | else { l=syz(ideal(dif,f))[1,1]; // x^p+y^(p-1) abgedeckt |
---|
326 | if (subst(f,x,0)==0) { l=l*x; } |
---|
327 | if (deg(l)==deg(f)) { e=1;} |
---|
328 | else {e=0;} |
---|
329 | } |
---|
330 | } |
---|
331 | else { l=syz(ideal(dif,f))[1,1]; |
---|
332 | if (subst(f,y,0)==0) { l=l*y; } |
---|
333 | if (deg(l)==deg(f)) { e=1;} |
---|
334 | else {e=0;} |
---|
335 | } |
---|
336 | } |
---|
337 | //--------------- Wechsel in alten Ring und Rueckgabe des Ergebnisses -------- |
---|
338 | setring altring; |
---|
339 | if (e==1) { return(f); } // zur Beschleunigung |
---|
340 | else { |
---|
341 | poly l=fetch(rsqrf,l); |
---|
342 | return(l); |
---|
343 | } |
---|
344 | } |
---|
345 | example |
---|
346 | { "EXAMPLE:"; echo = 2; |
---|
347 | ring exring=3,(x,y),dp; |
---|
348 | squarefree((x3+y)^2); |
---|
349 | squarefree((x+y)^3*(x-y)^2); // Warning: (x+y)^3 is lost |
---|
350 | squarefree((x+y)^4*(x-y)^2); // result is (x+y)*(x-y) |
---|
351 | } |
---|
352 | /////////////////////////////////////////////////////////////////////////////// |
---|
353 | |
---|
354 | proc allsquarefree (poly f, poly l) |
---|
355 | "USAGE : allsquarefree(f,g); f,g poly |
---|
356 | ASSUME: g is the output of @code{squarefree(f)}. |
---|
357 | RETURN: the greatest squarefree divisor of f. |
---|
358 | NOTE : This proc uses factorize to get the missing factors of f not in g and, |
---|
359 | therefore, may be slow. |
---|
360 | SEE ALSO: squarefree |
---|
361 | EXAMPLE: example allsquarefree; shows an example |
---|
362 | " |
---|
363 | { |
---|
364 | //------------------------ Wechsel in geeigneten Ring ------------------------ |
---|
365 | def altring = basering; |
---|
366 | string mipl="0"; |
---|
367 | if (size(parstr(altring))==1) { mipl=string(minpoly); } |
---|
368 | if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) { |
---|
369 | string tststr=charstr(basering); |
---|
370 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
371 | if (tststr!=string(char(basering))) { |
---|
372 | " Sorry -- not implemented for this ring (gcd doesn't work)"; |
---|
373 | return(l); |
---|
374 | } |
---|
375 | } |
---|
376 | execute("ring rsqrf = ("+charstr(altring)+"),(x,y),dp;"); |
---|
377 | if (mipl!="0") { execute("minpoly="+mipl+";"); } |
---|
378 | poly f=fetch(altring,f); |
---|
379 | poly l=fetch(altring,l); |
---|
380 | //---------- eliminiere bereits mit squarefree gefundene Faktoren ------------ |
---|
381 | poly g=l; |
---|
382 | while (deg(g)!=0) { |
---|
383 | f=syz(ideal(g,f))[1,1]; // f=f/g; |
---|
384 | g=gcd(f,l); |
---|
385 | } // jetzt f=h^p |
---|
386 | //--------------- Berechne uebrige Faktoren mit factorize -------------------- |
---|
387 | if (deg(f)>0) { |
---|
388 | g=1; |
---|
389 | //*CL old: ideal factf=factorize(f,1); |
---|
390 | //* for (int i=1; i<=size(factf); i++) { g=g*factf[i]; } |
---|
391 | ideal factf=factorize(f)[1]; |
---|
392 | for (int i=2; i<=size(factf); i++) { g=g*factf[i]; } |
---|
393 | poly testp=squarefree(g); |
---|
394 | if (deg(testp)<deg(g)) { |
---|
395 | "!! factorize has not worked correctly !!"; |
---|
396 | if (testp==1) {" We cannot proceed ..."; g=1;} |
---|
397 | else {" But we could recover some factors..."; g=testp;} |
---|
398 | } |
---|
399 | l=l*g; |
---|
400 | } |
---|
401 | //--------------- Wechsel in alten Ring und Rueckgabe des Ergebnisses -------- |
---|
402 | setring altring; |
---|
403 | l=fetch(rsqrf,l); |
---|
404 | return(l); |
---|
405 | } |
---|
406 | example |
---|
407 | { "EXAMPLE:"; echo = 2; |
---|
408 | ring exring=7,(x,y),dp; |
---|
409 | poly f=(x+y)^7*(x-y)^8; |
---|
410 | poly g=squarefree(f); |
---|
411 | g; // factor x+y lost, since characteristic=7 |
---|
412 | allsquarefree(f,g); // all factors (x+y)*(x-y) found |
---|
413 | } |
---|
414 | /////////////////////////////////////////////////////////////////////////////// |
---|
415 | |
---|
416 | proc is_irred (poly f) |
---|
417 | "USAGE: is_irred(f); f poly |
---|
418 | ASSUME: f is a squarefree bivariate polynomial (in the first 2 ring |
---|
419 | variables). |
---|
420 | RETURN: int (0 or 1): @* |
---|
421 | - @code{is_irred(f)=1} if f is irreducible as a formal power |
---|
422 | series over the algebraic closure of its coefficient field (f |
---|
423 | defines an analytically irreducible curve at zero), @* |
---|
424 | - @code{is_irred(f)=0} otherwise. |
---|
425 | NOTE: 0 and units in the ring of formal power series are considered to be |
---|
426 | not irreducible. |
---|
427 | KEYWORDS: irreducible power series |
---|
428 | EXAMPLE: example is_irred; shows an example |
---|
429 | " |
---|
430 | { |
---|
431 | int pl=printlevel; |
---|
432 | printlevel=-1; |
---|
433 | list hnl=develop(f,-1); |
---|
434 | printlevel=pl; |
---|
435 | return(hnl[5]); |
---|
436 | } |
---|
437 | example |
---|
438 | { "EXAMPLE:"; echo = 2; |
---|
439 | ring exring=0,(x,y),ls; |
---|
440 | is_irred(x2+y3); |
---|
441 | is_irred(x2+y2); |
---|
442 | is_irred(x2+y3+1); |
---|
443 | } |
---|
444 | /////////////////////////////////////////////////////////////////////////////// |
---|
445 | |
---|
446 | static proc polytest(poly f) |
---|
447 | "USAGE : polytest(f); f poly in x and y |
---|
448 | RETURN: a monomial of f with |coefficient| > 16001 |
---|
449 | or exponent divisible by 32003, if there is one |
---|
450 | 0 else (in this case computing a squarefree divisor |
---|
451 | in characteristic 32003 could make sense) |
---|
452 | NOTE: this procedure is only useful in characteristic zero, because otherwise |
---|
453 | there is no appropriate ordering of the leading coefficients |
---|
454 | " |
---|
455 | { |
---|
456 | poly verbrecher=0; |
---|
457 | intvec leitexp; |
---|
458 | for (; (f<>0) and (verbrecher==0); f=f-lead(f)) { |
---|
459 | if ((leadcoef(f)<-16001) or (leadcoef(f)>16001)) {verbrecher=lead(f);} |
---|
460 | leitexp=leadexp(f); |
---|
461 | if (( ((leitexp[1] % 32003) == 0) and (leitexp[1]<>0)) |
---|
462 | or ( ((leitexp[2] % 32003) == 0) and (leitexp[2]<>0)) ) |
---|
463 | {verbrecher=lead(f);} |
---|
464 | } |
---|
465 | return(verbrecher); |
---|
466 | } |
---|
467 | |
---|
468 | ////////////////////////////////////////////////////////////////////////////// |
---|
469 | |
---|
470 | |
---|
471 | proc develop |
---|
472 | "USAGE: develop(f [,n]); f poly, n int |
---|
473 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables) and |
---|
474 | irreducible as power series (for reducible f use @code{hnexpansion}). |
---|
475 | RETURN: list @code{L} with: |
---|
476 | @texinfo |
---|
477 | @table @asis |
---|
478 | @item @code{L[1]}; matrix: |
---|
479 | Each row contains the coefficients of the corresponding line of the |
---|
480 | Hamburger-Noether expansion (HNE). The end of the line is marked in |
---|
481 | the matrix by the first ring variable (usually x). |
---|
482 | @item @code{L[2]}; intvec: |
---|
483 | indicating the length of lines of the HNE |
---|
484 | @item @code{L[3]}; int: |
---|
485 | 0 if the 1st ring variable was transversal (with respect to f), @* |
---|
486 | 1 if the variables were changed at the beginning of the |
---|
487 | computation, @* |
---|
488 | -1 if an error has occurred. |
---|
489 | @item @code{L[4]}; poly: |
---|
490 | the transformed polynomial of f to make it possible to extend the |
---|
491 | Hamburger-Noether development a posteriori without having to do |
---|
492 | all the previous calculation once again (0 if not needed) |
---|
493 | @item @code{L[5]}; int: |
---|
494 | 1 if the curve has exactly one branch (i.e., is irreducible), @* |
---|
495 | 0 else (i.e., the curve has more than one HNE, or f is not valid). |
---|
496 | @end table |
---|
497 | @end texinfo |
---|
498 | DISPLAY: The (non zero) elements of the HNE (if not called by another proc). |
---|
499 | NOTE: The optional parameter @code{n} affects only the computation of |
---|
500 | the LAST line of the HNE. If it is given, the HN-matrix @code{L[1]} |
---|
501 | will have at least @code{n} columns. @* |
---|
502 | Otherwise, the number of columns will be chosen minimal such that the |
---|
503 | matrix contains all necessary information (i.e., all lines of the HNE |
---|
504 | but the last (which is in general infinite) have place). @* |
---|
505 | If @code{n} is negative, the algorithm is stopped as soon as the |
---|
506 | computed information is sufficient for @code{invariants(L)}, but the |
---|
507 | HN-matrix @code{L[1]} may still contain undetermined elements, which |
---|
508 | are marked with the 2nd variable (of the basering). @* |
---|
509 | For time critical computations it is recommended to use |
---|
510 | @code{ring ...,(x,y),ls} as basering - it increases the algorithm's |
---|
511 | speed. @* |
---|
512 | If @code{printlevel>=0} comments are displayed (default is |
---|
513 | @code{printlevel=0}). |
---|
514 | SEE ALSO: hnexpansion, extdevelop, displayHNE |
---|
515 | EXAMPLES: example develop; shows an example |
---|
516 | example paramametrize; shows an example for using the 2nd parameter |
---|
517 | " |
---|
518 | { |
---|
519 | //--------- Abfangen unzulaessiger Ringe: 1) nur eine Unbestimmte ------------ |
---|
520 | poly f=#[1]; |
---|
521 | if (size(#) > 1) {int maxspalte=#[2];} |
---|
522 | else {int maxspalte= 1 ; } |
---|
523 | if (nvars(basering) < 2) { |
---|
524 | " Sorry. I need two variables in the ring."; |
---|
525 | return(list(matrix(maxideal(1)[1]),intvec(0),-1,poly(0),0));} |
---|
526 | if (nvars(basering) > 2) { |
---|
527 | dbprint(printlevel-voice+2, |
---|
528 | " Warning! You have defined too many variables! |
---|
529 | All variables except the first two will be ignored!" |
---|
530 | ); |
---|
531 | } |
---|
532 | |
---|
533 | string namex=varstr(1); string namey=varstr(2); |
---|
534 | list return_error=matrix(maxideal(1)[2]),intvec(0),int(-1),poly(0),int(0); |
---|
535 | |
---|
536 | //------------- 2) mehrere Unbestimmte, weitere unzulaessige Ringe ----------- |
---|
537 | // Wir koennen einheitlichen Rueckgabewert benutzen, aus dem ersichtlich ist, |
---|
538 | // dass ein Fehler aufgetreten ist: return_error. |
---|
539 | //---------------------------------------------------------------------------- |
---|
540 | |
---|
541 | if (charstr(basering)=="real") { |
---|
542 | " The algorithm doesn't work with 'real' as coefficient field."; |
---|
543 | // denn : map from characteristic -1 to -1 not implemented |
---|
544 | return(return_error); |
---|
545 | } |
---|
546 | if ((char(basering)!=0) and (charstr(basering)!=string(char(basering)))) { |
---|
547 | //-- teste, ob char = (p^k,a) (-> a primitiv; erlaubt) oder (p,a[,b,...]) ---- |
---|
548 | string tststr=charstr(basering); |
---|
549 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
550 | int primit=(tststr==string(char(basering))); |
---|
551 | if (primit!=0) { |
---|
552 | " Such extensions of Z/p are not implemented."; |
---|
553 | " Please try (p^k,a) as ground field or use `hnexpansion'."; |
---|
554 | return(return_error); |
---|
555 | } |
---|
556 | } |
---|
557 | //---- Ende der unzulaessigen Ringe; Ringwechsel in einen guenstigen Ring: --- |
---|
558 | |
---|
559 | int ringwechsel=(varstr(basering)!="x,y") or (ordstr(basering)!="ls(2),C"); |
---|
560 | |
---|
561 | def altring = basering; |
---|
562 | if (ringwechsel) { |
---|
563 | string mipl=string(minpoly); |
---|
564 | execute("ring guenstig = ("+charstr(altring)+"),(x,y),ls;"); |
---|
565 | if ((char(basering)==0) && (mipl!="0")) { |
---|
566 | execute("minpoly="+mipl+";"); |
---|
567 | }} |
---|
568 | else { def guenstig=basering; } |
---|
569 | export guenstig; |
---|
570 | |
---|
571 | //-------------------------- Initialisierungen ------------------------------- |
---|
572 | map m=altring,x,y; |
---|
573 | if (ringwechsel) { poly f=m(f); } |
---|
574 | if (defined(HNDebugOn)) |
---|
575 | {"received polynomial: ",f,", where x =",namex,", y =",namey;} |
---|
576 | |
---|
577 | int M,N,Q,R,l,e,hilf,eps,getauscht,Abbruch,zeile,exponent,Ausgabe; |
---|
578 | |
---|
579 | // Werte von Ausgabe: 0 : normale HNE-Matrix, |
---|
580 | // 1 : Fehler aufgetreten - Matrix (namey) zurueck |
---|
581 | // 2 : Die HNE ist eine Nullzeile - Matrix (0) zurueck |
---|
582 | // int maxspalte=1; geaendert: wird jetzt am Anfang gesetzt |
---|
583 | |
---|
584 | int minimalHNE=0; // Flag fuer minimale HNE-Berechnung |
---|
585 | int einzweig=1; // Flag fuer Irreduzibilit"at |
---|
586 | intvec hqs; // erhaelt die Werte von h(zeile)=Q; |
---|
587 | |
---|
588 | if (maxspalte<0) { |
---|
589 | minimalHNE=1; |
---|
590 | maxspalte=1; |
---|
591 | } |
---|
592 | |
---|
593 | number c,delt; |
---|
594 | int p = char(basering); |
---|
595 | string ringchar=charstr(basering); |
---|
596 | map xytausch = basering,y,x; |
---|
597 | if ((p!=0) and (ringchar != string(p))) { |
---|
598 | // coefficient field is extension of Z/pZ |
---|
599 | execute("int n_elements="+ |
---|
600 | ringchar[1,size(ringchar)-size(parstr(basering))-1]+";"); |
---|
601 | // number of elements of actual ring |
---|
602 | number generat=par(1); // generator of the coefficient field of the ring |
---|
603 | } |
---|
604 | |
---|
605 | |
---|
606 | //========= Abfangen von unzulaessigen oder trivialen Eingaben =============== |
---|
607 | //------------ Nullpolynom oder Einheit im Potenzreihenring: ----------------- |
---|
608 | if (f == 0) { |
---|
609 | dbprint(printlevel+1,"The given polynomial is the zero-polynomial !"); |
---|
610 | Abbruch=1; Ausgabe=1; |
---|
611 | } |
---|
612 | else { |
---|
613 | intvec nm = getnm(f); |
---|
614 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpolygon mit Achsen |
---|
615 | if (N == 0) { |
---|
616 | dbprint(printlevel+1,"The given polynomial is a unit as power series !"); |
---|
617 | Abbruch=1; Ausgabe=1; |
---|
618 | } |
---|
619 | else { |
---|
620 | if (N == -1) { |
---|
621 | if ((voice==2) && (printlevel > -1)) { "The HNE is x = 0"; } |
---|
622 | Abbruch=1; Ausgabe=2; getauscht=1; |
---|
623 | if (M <> 1) { einzweig=0; } |
---|
624 | } |
---|
625 | else { |
---|
626 | if (M == -1) { |
---|
627 | if ((voice==2) && (printlevel > -1)) { "The HNE is y = 0"; } |
---|
628 | Abbruch=1; Ausgabe=2; |
---|
629 | if (N <> 1) { einzweig=0; } |
---|
630 | }}} |
---|
631 | } |
---|
632 | //--------------------- Test auf Quadratfreiheit ----------------------------- |
---|
633 | if (Abbruch==0) { |
---|
634 | |
---|
635 | //-------- Fall basering==0,... : Wechsel in Ring mit char >0 ---------------- |
---|
636 | // weil squarefree eine Standardbasis berechnen muss (verwendet Syzygien) |
---|
637 | // -- wenn f in diesem Ring quadratfrei ist, dann erst recht im Ring guenstig |
---|
638 | //---------------------------------------------------------------------------- |
---|
639 | |
---|
640 | if ((p==0) and (size(charstr(basering))==1)) { |
---|
641 | int testerg=(polytest(f)==0); |
---|
642 | ring zweitring = 32003,(x,y),dp; |
---|
643 | map polyhinueber=guenstig,x,y; // fetch geht nicht |
---|
644 | poly f=polyhinueber(f); |
---|
645 | poly test_sqr=squarefree(f); |
---|
646 | if (test_sqr != f) { |
---|
647 | if (printlevel>0) { |
---|
648 | "Most probably the given polynomial is not squarefree. But the test was"; |
---|
649 | "made in characteristic 32003 and not 0 to improve speed. You can"; |
---|
650 | "(r) redo the test in char 0 (but this may take some time)"; |
---|
651 | "(c) continue the development, if you're sure that the polynomial", |
---|
652 | "IS squarefree"; |
---|
653 | if (testerg==1) { |
---|
654 | "(s) continue the development with a squarefree factor (*)";} |
---|
655 | "(q) or just quit the algorithm (default action)"; |
---|
656 | "";"Please enter the letter of your choice:"; |
---|
657 | string str=read("")[1]; |
---|
658 | } |
---|
659 | else { string str="r"; } // printlevel <= 0: non-interactive behaviour |
---|
660 | setring guenstig; |
---|
661 | map polyhinueber=zweitring,x,y; |
---|
662 | if (str=="r") { |
---|
663 | poly test_sqr=squarefree(f); |
---|
664 | if (test_sqr != f) { |
---|
665 | if (printlevel>0) { "The given polynomial is in fact not squarefree."; } |
---|
666 | else { "The given polynomial is not squarefree!"; } |
---|
667 | "I'll continue with the radical."; |
---|
668 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
669 | f=test_sqr; |
---|
670 | } |
---|
671 | else { |
---|
672 | dbprint(printlevel, |
---|
673 | "everything is ok -- the polynomial is squarefree in char(k)=0"); |
---|
674 | } |
---|
675 | } |
---|
676 | else { |
---|
677 | if ((str=="s") and (testerg==1)) { |
---|
678 | "(*) attention: it could be that the factor is only one in char 32003!"; |
---|
679 | f=polyhinueber(test_sqr); |
---|
680 | } |
---|
681 | else { |
---|
682 | if (str<>"c") { |
---|
683 | setring altring;kill guenstig;kill zweitring; |
---|
684 | return(return_error);} |
---|
685 | else { "if the algorithm doesn't terminate, you were wrong...";} |
---|
686 | }} |
---|
687 | kill zweitring; |
---|
688 | nm = getnm(f); // N,M haben sich evtl. veraendert |
---|
689 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpoly mit Achsen |
---|
690 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
691 | } |
---|
692 | else { |
---|
693 | setring guenstig; |
---|
694 | kill zweitring; |
---|
695 | } |
---|
696 | } |
---|
697 | // ------------------- Fall Charakteristik > 0 ------------------------------- |
---|
698 | else { |
---|
699 | poly test_sqr=squarefree(f); |
---|
700 | if (test_sqr == 1) { |
---|
701 | "The given polynomial is of the form g^"+string(p)+", therefore", |
---|
702 | "reducible.";"Please try again."; |
---|
703 | setring altring; |
---|
704 | kill guenstig; |
---|
705 | return(return_error);} |
---|
706 | if (test_sqr != f) { |
---|
707 | "The given polynomial is not squarefree. I'll continue with the radical."; |
---|
708 | if (p != 0) |
---|
709 | {"But if the polynomial contains a factor of the form g^"+string(p)+","; |
---|
710 | "this factor will be lost.";} |
---|
711 | if (printlevel>0) { pause("Hit RETURN to continue:"); } |
---|
712 | f=test_sqr; |
---|
713 | nm = getnm(f); // N,M haben sich veraendert |
---|
714 | N = nm[1]; M = nm[2]; // Berechne Schnittpunkte Newtonpoly mit Achsen |
---|
715 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
716 | } |
---|
717 | |
---|
718 | } // endelse(p==0) |
---|
719 | |
---|
720 | if (N==0) { |
---|
721 | " Sorry. The remaining polynomial is a unit in the power series ring..."; |
---|
722 | setring altring;kill guenstig;return(return_error); |
---|
723 | } |
---|
724 | //---------------------- gewaehrleiste, dass x transvers ist ----------------- |
---|
725 | if (M < N) |
---|
726 | { f = xytausch(f); // Variablentausch : x jetzt transvers |
---|
727 | getauscht = 1; // den Tausch merken |
---|
728 | M = M+N; N = M-N; M = M-N; // M, N auch vertauschen |
---|
729 | } |
---|
730 | if (defined(HNDebugOn)) { |
---|
731 | if (getauscht) {"x<->y were exchanged; poly is now ",f;} |
---|
732 | else {"x , y were not exchanged";} |
---|
733 | "M resp. N are now",M,N; |
---|
734 | } |
---|
735 | } // end(if Abbruch==0) |
---|
736 | |
---|
737 | ideal a(0); |
---|
738 | while (Abbruch==0) { |
---|
739 | |
---|
740 | //================= Beginn der Schleife (eigentliche Entwicklung) ============ |
---|
741 | |
---|
742 | //------------------- ist das Newtonpolygon eine gerade Linie? --------------- |
---|
743 | if (testreducible(f,N,M)) { |
---|
744 | dbprint(printlevel+1," The given polynomial is not irreducible"); |
---|
745 | kill guenstig; |
---|
746 | setring altring; |
---|
747 | return(return_error); // Abbruch der Prozedur! |
---|
748 | } |
---|
749 | R = M%N; |
---|
750 | Q = M / N; |
---|
751 | |
---|
752 | //-------------------- Fall Rest der Division R = 0 : ------------------------ |
---|
753 | if (R == 0) { |
---|
754 | c = koeff(f,0,N); |
---|
755 | if (c == 0) {"Something has gone wrong! I didn't get N correctly!"; exit;} |
---|
756 | e = gcd(M,N); |
---|
757 | //----------------- Test, ob leitf = c*(y^N - delta*x^(m/e))^e ist ----------- |
---|
758 | if (p==0) { |
---|
759 | delt = koeff(f,M/ e,N - N/ e) / (-1*e*c); |
---|
760 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
761 | leit(f,N,M)," = ",c,"* (y -",delt,"* x^"+string(M/ e)+")^",e," ?";} |
---|
762 | if (leit(f,N,M) != c*(y^(N/ e) - delt*x^(M/ e))^e) { |
---|
763 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
764 | Abbruch=1; Ausgabe=1; } |
---|
765 | } |
---|
766 | else { // p!=0 |
---|
767 | if (e%p != 0) { |
---|
768 | delt = koeff(f,M/ e,N - N/ e) / (-1*e*c); |
---|
769 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
770 | leit(f,N,M)," = ",c,"* (y -",delt,"* x^"+string(M/ e)+")^",e," ?";} |
---|
771 | if (leit(f,N,M) != c*(y^(N/ e) - delt*x^(M/ e))^e) { |
---|
772 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
773 | Abbruch=1; Ausgabe=1; } |
---|
774 | } |
---|
775 | |
---|
776 | else { // e%p == 0 |
---|
777 | eps = e; |
---|
778 | for (l = 0; eps%p == 0; l=l+1) { eps=eps/ p;} |
---|
779 | if (defined(HNDebugOn)) {e," -> ",eps,"*",p,"^",l;} |
---|
780 | delt = koeff(f,(M/ e)*p^l,(N/ e)*p^l*(eps-1)) / (-1*eps*c); |
---|
781 | |
---|
782 | if ((ringchar != string(p)) and (delt != 0)) { |
---|
783 | //- coeff. field is not Z/pZ => we`ve to correct delta by taking (p^l)th root- |
---|
784 | if (delt == generat) {exponent=1;} |
---|
785 | else { |
---|
786 | if (delt == 1) {exponent=0;} |
---|
787 | else { |
---|
788 | exponent=pardeg(delt); |
---|
789 | |
---|
790 | //-- an dieser Stelle kann ein Fehler auftreten, wenn wir eine transzendente - |
---|
791 | //-- Erweiterung von Z/pZ haben: dann ist das hinzuadjungierte Element kein - |
---|
792 | //-- Erzeuger der mult. Gruppe, d.h. in Z/pZ (a) gibt es i.allg. keinen - |
---|
793 | //-- Exponenten mit z.B. a2+a = a^exp - |
---|
794 | //---------------------------------------------------------------------------- |
---|
795 | }} |
---|
796 | delt = generat^(extgcd(n_elements-1,p^l)[3]*exponent); |
---|
797 | } |
---|
798 | |
---|
799 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:", |
---|
800 | leit(f,N,M)," = ",c,"* (y^"+string(N/ e),"-",delt,"* x^" |
---|
801 | +string(M/ e)+")^",e," ?";} |
---|
802 | if (leit(f,N,M) != c*(y^(N/ e) - delt*x^(M/ e))^e) { |
---|
803 | dbprint(printlevel+1," The given polynomial is reducible !"); |
---|
804 | Abbruch=1; Ausgabe=1; } |
---|
805 | } |
---|
806 | } |
---|
807 | if (Abbruch == 0) { |
---|
808 | f = T1_Transform(f,delt,M/ e); |
---|
809 | dbprint(printlevel-voice+2,"a("+string(zeile)+","+string(Q)+") = "+string(delt)); |
---|
810 | a(zeile)[Q]=delt; |
---|
811 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;}} |
---|
812 | |
---|
813 | nm=getnm(f); N=nm[1]; M=nm[2]; // Neuberechnung des Newtonpolygons |
---|
814 | } |
---|
815 | //--------------------------- Fall R > 0 : ----------------------------------- |
---|
816 | else { |
---|
817 | dbprint(printlevel-voice+2, "h("+string(zeile)+ ") ="+string(Q)); |
---|
818 | hqs[zeile+1]=Q; // denn zeile beginnt mit dem Wert 0 |
---|
819 | a(zeile)[Q+1]=x; // Markierung des Zeilenendes der HNE |
---|
820 | maxspalte=maxspalte*((Q+1) < maxspalte) + (Q+1)*((Q+1) >= maxspalte); |
---|
821 | // Anpassung der Sp.zahl der HNE-Matrix |
---|
822 | f = T_Transform(f,Q,N); |
---|
823 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;} |
---|
824 | zeile=zeile+1; |
---|
825 | //------------ Bereitstellung von Speicherplatz fuer eine neue Zeile: -------- |
---|
826 | ideal a(zeile); |
---|
827 | M=N;N=R; |
---|
828 | } |
---|
829 | |
---|
830 | //--------------- schneidet das Newtonpolygon beide Achsen? ------------------ |
---|
831 | if (M==-1) { |
---|
832 | dbprint(printlevel-voice+2,"The HNE is finite!"); |
---|
833 | a(zeile)[Q+1]=x; // Markiere das Ende der Zeile |
---|
834 | hqs[zeile+1]=Q; |
---|
835 | maxspalte=maxspalte*((Q+1) < maxspalte) + (Q+1)*((Q+1) >= maxspalte); |
---|
836 | if (N <> 1) { einzweig=0; } |
---|
837 | f=0; // transformiertes Polynom wird nicht mehr gebraucht |
---|
838 | Abbruch=1; |
---|
839 | } |
---|
840 | else {if (M<N) {"Something has gone wrong: M<N";}} |
---|
841 | if(defined(HNDebugOn)) {"new M,N:",M,N;} |
---|
842 | |
---|
843 | //----------------- Abbruchbedingungen fuer die Schleife: -------------------- |
---|
844 | if ((N==1) and (Abbruch!=1) and ((M > maxspalte) or (minimalHNE==1)) |
---|
845 | and (size(a(zeile))>0)) |
---|
846 | //---------------------------------------------------------------------------- |
---|
847 | // Abbruch, wenn die Matrix so voll ist, dass eine neue Spalte angefangen |
---|
848 | // werden muesste und die letzte Zeile nicht nur Nullen enthaelt |
---|
849 | // oder wenn die Matrix nicht voll gemacht werden soll (minimale Information) |
---|
850 | //---------------------------------------------------------------------------- |
---|
851 | { Abbruch=1; hqs[zeile+1]=-1; |
---|
852 | if (maxspalte < ncols(a(zeile))) { maxspalte=ncols(a(zeile));} |
---|
853 | if ((minimalHNE==1) and (M <= maxspalte)) { |
---|
854 | // teile param mit, dass Eintraege der letzten Zeile nur teilw. richtig sind:- |
---|
855 | hqs[zeile+1]=-M; |
---|
856 | //------------- markiere den Rest der Zeile als unbekannt: ------------------- |
---|
857 | for (R=M; R <= maxspalte; R++) { a(zeile)[R]=y;} |
---|
858 | } // R wird nicht mehr gebraucht |
---|
859 | } |
---|
860 | //========================= Ende der Schleife ================================ |
---|
861 | |
---|
862 | } |
---|
863 | setring altring; |
---|
864 | if (Ausgabe == 0) { |
---|
865 | //-------------------- Ergebnis in den alten Ring transferieren: ------------- |
---|
866 | map zurueck=guenstig,maxideal(1)[1],maxideal(1)[2]; |
---|
867 | matrix amat[zeile+1][maxspalte]; |
---|
868 | ideal uebergabe; |
---|
869 | for (e=0; e<=zeile; e=e+1) { |
---|
870 | uebergabe=zurueck(a(e)); |
---|
871 | if (ncols(uebergabe) > 1) { |
---|
872 | amat[e+1,1..ncols(uebergabe)]=uebergabe;} |
---|
873 | else {amat[e+1,1]=uebergabe[1];} |
---|
874 | } |
---|
875 | if (ringwechsel) { |
---|
876 | if (nvars(altring)==2) { f=fetch(guenstig,f); } |
---|
877 | else { f=zurueck(f); } |
---|
878 | } |
---|
879 | } |
---|
880 | |
---|
881 | kill guenstig; |
---|
882 | if ((einzweig==0) && (voice==2) && (printlevel > -1)) { |
---|
883 | "// Note: The curve is reducible, but we were able to compute a HNE."; |
---|
884 | "// This means the result is only one of several existing HNE's."; |
---|
885 | } |
---|
886 | if (Ausgabe == 0) { return(list(amat,hqs,getauscht,f,einzweig));} |
---|
887 | if (Ausgabe == 1) { return(return_error);} // error has occurred |
---|
888 | if (Ausgabe == 2) { return(list(matrix(ideal(0,x)),intvec(1),getauscht, |
---|
889 | poly(0),einzweig));} // HNE is x=0 or y=0 |
---|
890 | } |
---|
891 | example |
---|
892 | { "EXAMPLE:"; echo = 2; |
---|
893 | ring exring = 7,(x,y),ds; |
---|
894 | list hne=develop(4x98+2x49y7+x11y14+2y14); |
---|
895 | print(hne[1]); |
---|
896 | // therefore the HNE is: |
---|
897 | // z(-1)= 3*z(0)^7 + z(0)^7*z(1), |
---|
898 | // z(0) = z(1)*z(2), (there is 1 zero in the 2nd row before x) |
---|
899 | // z(1) = z(2)^3*z(3), (there are 3 zeroes in the 3rd row) |
---|
900 | // z(2) = z(3)*z(4), |
---|
901 | // z(3) = -z(4)^2 + 0*z(4)^3 +...+ 0*z(4)^8 + ?*z(4)^9 + ... |
---|
902 | // (the missing x in the last line indicates that it is not complete.) |
---|
903 | hne[2]; |
---|
904 | parametrisation(hne); |
---|
905 | // parametrization: x(t)= -t^14+O(t^21), y(t)= -3t^98+O(t^105) |
---|
906 | // (the term -t^109 in y may have a wrong coefficient) |
---|
907 | displayHNE(hne); |
---|
908 | } |
---|
909 | |
---|
910 | /////////////////////////////////////////////////////////////////////////////// |
---|
911 | // procedures to extract information out of HNE // |
---|
912 | /////////////////////////////////////////////////////////////////////////////// |
---|
913 | |
---|
914 | proc parametrisation |
---|
915 | "USAGE: parametrisation(INPUT [,x]); INPUT list or poly, x int (optional) |
---|
916 | ASSUME: INPUT is either a bivariate polynomial f defining a plane curve |
---|
917 | singularity, or it is the output of @code{hnexpansion(f[,\"ess\"])}, |
---|
918 | or of @code{develop(f)}, or of @code{extdevelop(develop(f),n)}, |
---|
919 | or the list @{hne} in the ring created by @code{hnexpansion(f)} |
---|
920 | respectively one entry thereof. |
---|
921 | RETURN: a list L containing a parametrization L[i] for each branch f[i] of f |
---|
922 | in the following format: @* |
---|
923 | - if only the list INPUT is given, L[i] is an ideal of two polynomials |
---|
924 | p[1],p[2]: if the HNE of was finite then f[i](p[1],p[2])=0; if not, |
---|
925 | the \"real\" parametrization will be two power series and p[1],p[2] are |
---|
926 | truncations of these series.@* |
---|
927 | - if the optional parameter x is given, L[i] is itself a list: |
---|
928 | L[i][1] is the parametrization ideal as above and L[i][2] is an intvec |
---|
929 | with two entries indicating the highest degree up to which the |
---|
930 | coefficients of the monomials in L[i][1] are exact (entry -1 means that |
---|
931 | the corresponding parametrization is exact). |
---|
932 | NOTE: If the basering has only 2 variables, the first variable is chosen |
---|
933 | as indefinite. Otherwise, the 3rd variable is chosen. @* |
---|
934 | In case the Hamburger-Noether expansion of the curve f is needed |
---|
935 | for other purposes as well it is better to calculate this first |
---|
936 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
937 | the polynomial itself. |
---|
938 | SEE ALSO: develop, extdevelop |
---|
939 | KEYWORDS: parametrization |
---|
940 | EXAMPLE: example parametrisation; shows an example |
---|
941 | example develop; shows another example |
---|
942 | " |
---|
943 | { |
---|
944 | //////////////////////////////////////////////////////////////////////// |
---|
945 | // Decide on the type of input |
---|
946 | //////////////////////////////////////////////////////////////////////// |
---|
947 | // Do the case where the input is a polynomial |
---|
948 | if (typeof(#[1])=="poly") |
---|
949 | { |
---|
950 | list HNEXPANSION=hnexpansion(#[1]); |
---|
951 | if (size(#)==1) |
---|
952 | { |
---|
953 | return(parametrisation(HNEXPANSION)); |
---|
954 | } |
---|
955 | else |
---|
956 | { |
---|
957 | return(parametrisation(HNEXPANSION,1)); |
---|
958 | } |
---|
959 | } |
---|
960 | // Do the case where the input is not a polynomial. |
---|
961 | int zusatz; |
---|
962 | if (typeof(#[1])=="list") |
---|
963 | { |
---|
964 | if (typeof(#[1][1])=="ring") |
---|
965 | { // Input is a HNEring and extra input x exists. |
---|
966 | zusatz=1; |
---|
967 | def HNE_RING=#[1][1]; |
---|
968 | } |
---|
969 | else |
---|
970 | { |
---|
971 | if (typeof(#[1][1])=="list") |
---|
972 | { // Input is a reducible HN-expansion and extra input x exists. |
---|
973 | zusatz=1; |
---|
974 | list hne=#[1]; |
---|
975 | } |
---|
976 | else |
---|
977 | { |
---|
978 | if (typeof(#[size(#)])=="list") |
---|
979 | { // Input is a reducible HN-expansion and no extra input exists. |
---|
980 | list hne=#; |
---|
981 | } |
---|
982 | else |
---|
983 | { // Input is an irreducible HN-expansion and extra input x exists |
---|
984 | list hne; |
---|
985 | hne[1]=#[1]; |
---|
986 | zusatz=1; |
---|
987 | } |
---|
988 | } |
---|
989 | } |
---|
990 | } |
---|
991 | if (typeof(#[1])=="matrix") |
---|
992 | { |
---|
993 | list hne; |
---|
994 | hne[1]=#; |
---|
995 | } |
---|
996 | if (typeof(#[1])=="ring") |
---|
997 | { // Input is a HNEring and no extra input exists. |
---|
998 | def HNE_RING=#[1]; |
---|
999 | } |
---|
1000 | //////////////////////////////////////////////////////////////////////////// |
---|
1001 | // Calculate the parametrization. |
---|
1002 | if (defined(HNE_RING)) |
---|
1003 | { |
---|
1004 | def rettering=basering; |
---|
1005 | setring HNE_RING; |
---|
1006 | } |
---|
1007 | int r=size(hne); |
---|
1008 | list ErGeBnIs; |
---|
1009 | // Calculate the parametrization for each branch with the aid of param. |
---|
1010 | for (int lauf=1;lauf<=r;lauf++) |
---|
1011 | { |
---|
1012 | if (zusatz==1) |
---|
1013 | { |
---|
1014 | ErGeBnIs[lauf]=param(hne[lauf],1); |
---|
1015 | } |
---|
1016 | else |
---|
1017 | { |
---|
1018 | ErGeBnIs[lauf]=param(hne[lauf]); |
---|
1019 | } |
---|
1020 | } |
---|
1021 | // Map the parametrization to the basering, if necessary, and return it. |
---|
1022 | if (defined(HNE_RING)) |
---|
1023 | { |
---|
1024 | setring rettering; |
---|
1025 | list erg=fetch(HNE_RING,ErGeBnIs); |
---|
1026 | kill HNE_RING; |
---|
1027 | // If the basering has 3 variables, choose the third variable for the parametrization. |
---|
1028 | if (nvars(rettering)>=3) |
---|
1029 | { |
---|
1030 | for (lauf=1;lauf<=r;lauf++) |
---|
1031 | { |
---|
1032 | if (zusatz==1) |
---|
1033 | { |
---|
1034 | erg[lauf][1]=subst(erg[lauf][1],var(1),var(3)); |
---|
1035 | } |
---|
1036 | else |
---|
1037 | { |
---|
1038 | erg[lauf]=subst(erg[lauf],var(1),var(3)); |
---|
1039 | } |
---|
1040 | } |
---|
1041 | } |
---|
1042 | return(erg); |
---|
1043 | } |
---|
1044 | else |
---|
1045 | { |
---|
1046 | return(ErGeBnIs); |
---|
1047 | } |
---|
1048 | } |
---|
1049 | example |
---|
1050 | { "EXAMPLE:"; echo = 2; |
---|
1051 | ring exring=0,(x,y,t),ds; |
---|
1052 | // 1st Example: input is a polynomial |
---|
1053 | poly g=(x2-y3)*(x3-y5); |
---|
1054 | parametrisation(g); |
---|
1055 | // 2nd Example: input is the ring of a Hamburger-Noether expansion |
---|
1056 | poly h=x2-y2-y3; |
---|
1057 | list hn=hnexpansion(h); |
---|
1058 | parametrisation(h,1); |
---|
1059 | // 3rd Example: input is a Hamburger-Noether expansion |
---|
1060 | poly f=x3+2xy2+y2; |
---|
1061 | list hne=develop(f); |
---|
1062 | list hne_extended=extdevelop(hne,10); |
---|
1063 | // compare the matrices ... |
---|
1064 | print(hne[1]); |
---|
1065 | print(hne_extended[1]); |
---|
1066 | // ... and the resulting parametrizations: |
---|
1067 | parametrisation(hne); |
---|
1068 | parametrisation(hne_extended); |
---|
1069 | parametrisation(hne_extended,0); |
---|
1070 | } |
---|
1071 | |
---|
1072 | |
---|
1073 | proc param |
---|
1074 | "USAGE: param(L [,x]); L list, x any type (optional) |
---|
1075 | ASSUME: L is the output of @code{develop(f)}, or of |
---|
1076 | @code{extdevelop(develop(f),n)}, or one entry in the list @code{hne} |
---|
1077 | in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
1078 | RETURN: a parametrization for f in the following format: @* |
---|
1079 | - if only the list L is given, the result is an ideal of two |
---|
1080 | polynomials p[1],p[2]: if the HNE was finite then f(p[1],p[2])=0}; |
---|
1081 | if not, the \"real\" parametrization will be two power series and |
---|
1082 | p[1],p[2] are truncations of these series.@* |
---|
1083 | - if the optional parameter x is given, the result is a list l: |
---|
1084 | l[1]=param(L) (ideal) and l[2]=intvec with two entries indicating |
---|
1085 | the highest degree up to which the coefficients of the monomials in |
---|
1086 | l[1] are exact (entry -1 means that the corresponding parametrization |
---|
1087 | is exact). |
---|
1088 | NOTE: If the basering has only 2 variables, the first variable is chosen |
---|
1089 | as indefinite. Otherwise, the 3rd variable is chosen. |
---|
1090 | SEE ALSO: parametrization, develop, extdevelop |
---|
1091 | KEYWORDS: parametrization |
---|
1092 | EXAMPLE: example param; shows an example |
---|
1093 | example develop; shows another example |
---|
1094 | " |
---|
1095 | { |
---|
1096 | //-------------------------- Initialisierungen ------------------------------- |
---|
1097 | if (typeof(#[1])=="list") { |
---|
1098 | list Li=#[1]; |
---|
1099 | matrix m=Li[1]; |
---|
1100 | intvec v=Li[2]; |
---|
1101 | int switch=Li[3]; |
---|
1102 | int return_list=1; |
---|
1103 | } |
---|
1104 | else { |
---|
1105 | matrix m=#[1]; |
---|
1106 | intvec v=#[2]; |
---|
1107 | int switch=#[3]; |
---|
1108 | int return_list=0; |
---|
1109 | } |
---|
1110 | if (switch==-1) { |
---|
1111 | "An error has occurred in develop, so there is no HNE."; |
---|
1112 | return(ideal(0,0)); |
---|
1113 | } |
---|
1114 | int fehler,fehlervor,untergrad,untervor,beginn,i,zeile,hilf; |
---|
1115 | |
---|
1116 | if (nvars(basering) > 2) { poly z(size(v)+1)=var(3); } |
---|
1117 | else { poly z(size(v)+1)=var(1); } |
---|
1118 | poly z(size(v)); |
---|
1119 | zeile=size(v); |
---|
1120 | //------------- Parametrisierung der untersten Zeile der HNE ----------------- |
---|
1121 | if (v[zeile] > 0) { |
---|
1122 | fehler=0; // die Parametrisierung wird exakt werden |
---|
1123 | for (i=1; i<=v[zeile]; i++) { |
---|
1124 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
1125 | }} |
---|
1126 | else { |
---|
1127 | untervor=1; // = Untergrad der vorhergehenden Zeile |
---|
1128 | if (v[zeile]==-1) { |
---|
1129 | fehler=ncols(m)+1; |
---|
1130 | for (i=1; i<=ncols(m); i++) { |
---|
1131 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
1132 | if ((untergrad==0) and (m[zeile,i]!=0)) {untergrad=i;} |
---|
1133 | // = Untergrad der aktuellen Zeile |
---|
1134 | }} |
---|
1135 | else { |
---|
1136 | fehler= -v[zeile]; |
---|
1137 | for (i=1; i<-v[zeile]; i++) { |
---|
1138 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
1139 | if ((untergrad==0) and (m[zeile,i]!=0)) {untergrad=i;} |
---|
1140 | }} |
---|
1141 | } |
---|
1142 | //------------- Parametrisierung der restlichen Zeilen der HNE --------------- |
---|
1143 | for (zeile=size(v)-1; zeile>0; zeile--) { |
---|
1144 | poly z(zeile); |
---|
1145 | beginn=0; // Beginn der aktuellen Zeile |
---|
1146 | for (i=1; i<=v[zeile]; i++) { |
---|
1147 | z(zeile)=z(zeile)+m[zeile,i]*z(zeile+1)^i; |
---|
1148 | if ((beginn==0) and (m[zeile,i]!=0)) { beginn=i;} |
---|
1149 | } |
---|
1150 | z(zeile)=z(zeile) + z(zeile+1)^v[zeile] * z(zeile+2); |
---|
1151 | if (beginn==0) { |
---|
1152 | if (fehler>0) { // damit fehler=0 bleibt bei exakter Param. |
---|
1153 | fehlervor=fehler; // Fehler der letzten Zeile |
---|
1154 | fehler=fehler+untergrad*(v[zeile]-1)+untervor; // Fehler dieser Zeile |
---|
1155 | hilf=untergrad; |
---|
1156 | untergrad=untergrad*v[zeile]+untervor; |
---|
1157 | untervor=hilf;}} // untervor = altes untergrad |
---|
1158 | else { |
---|
1159 | fehlervor=fehler; |
---|
1160 | fehler=fehler+untergrad*(beginn-1); |
---|
1161 | untervor=untergrad; |
---|
1162 | untergrad=untergrad*beginn; |
---|
1163 | }} |
---|
1164 | //--------------------- Ausgabe der Fehlerabschaetzung ----------------------- |
---|
1165 | if (switch==0) { |
---|
1166 | if (fehler>0) { |
---|
1167 | if (fehlervor>0) { |
---|
1168 | if ((voice==2) && (printlevel > -1)) { |
---|
1169 | "// ** Warning: result is exact up to order",fehlervor-1,"in", |
---|
1170 | maxideal(1)[1],"and",fehler-1,"in",maxideal(1)[2],"!"; |
---|
1171 | }} |
---|
1172 | else { |
---|
1173 | if ((voice==2) && (printlevel > -1)) { |
---|
1174 | "// ** Warning: result is exact up to order",fehler-1,"in", |
---|
1175 | maxideal(1)[2],"!"; |
---|
1176 | }} |
---|
1177 | } |
---|
1178 | if (return_list==0) { return(ideal(z(2),z(1))); } |
---|
1179 | else { return(list(ideal(z(2),z(1)),intvec(fehlervor-1,fehler-1))); } |
---|
1180 | } |
---|
1181 | else { |
---|
1182 | if (fehler>0) { |
---|
1183 | if (fehlervor>0) { |
---|
1184 | if ((voice==2) && (printlevel > -1)) { |
---|
1185 | "// ** Warning: result is exact up to order",fehler-1,"in", |
---|
1186 | maxideal(1)[1],"and",fehlervor-1,"in",maxideal(1)[2],"!"; |
---|
1187 | }} |
---|
1188 | else { |
---|
1189 | if ((voice==2) && (printlevel > -1)) { |
---|
1190 | "// ** Warning: result is exact up to order",fehler-1,"in", |
---|
1191 | maxideal(1)[1],"!"; |
---|
1192 | }} |
---|
1193 | } |
---|
1194 | if (return_list==0) { return(ideal(z(1),z(2))); } |
---|
1195 | else { return(list(ideal(z(1),z(2)),intvec(fehler-1,fehlervor-1))); } |
---|
1196 | } |
---|
1197 | } |
---|
1198 | example |
---|
1199 | { "EXAMPLE:"; echo = 2; |
---|
1200 | ring exring=0,(x,y,t),ds; |
---|
1201 | poly f=x3+2xy2+y2; |
---|
1202 | list hne=develop(f); |
---|
1203 | list hne_extended=extdevelop(hne,10); |
---|
1204 | // compare the matrices ... |
---|
1205 | print(hne[1]); |
---|
1206 | print(hne_extended[1]); |
---|
1207 | // ... and the resulting parametrizations: |
---|
1208 | param(hne); |
---|
1209 | param(hne_extended); |
---|
1210 | param(hne_extended,0); |
---|
1211 | } |
---|
1212 | /////////////////////////////////////////////////////////////////////////////// |
---|
1213 | |
---|
1214 | proc invariants |
---|
1215 | "USAGE: invariants(INPUT); INPUT list or poly |
---|
1216 | ASSUME: INPUT is the output of @code{develop(f)}, or of |
---|
1217 | @code{extdevelop(develop(f),n)}, or one entry in the list @code{hne} |
---|
1218 | of the HNEring created by @code{hnexpansion}. |
---|
1219 | RETURN: list, if INPUT contains a valid HNE: |
---|
1220 | @format |
---|
1221 | invariants(INPUT)[1]: intvec (characteristic exponents) |
---|
1222 | invariants(INPUT)[2]: intvec (generators of the semigroup) |
---|
1223 | invariants(INPUT)[3]: intvec (Puiseux pairs, 1st components) |
---|
1224 | invariants(INPUT)[4]: intvec (Puiseux pairs, 2nd components) |
---|
1225 | invariants(INPUT)[5]: int (degree of the conductor) |
---|
1226 | invariants(INPUT)[6]: intvec (sequence of multiplicities) |
---|
1227 | @end format |
---|
1228 | an empty list, if INPUT contains no valid HNE. |
---|
1229 | ASSUME: INPUT is bivariate polynomial f or the output of @code{hnexpansion(f[,\"ess\"])}, |
---|
1230 | or the list @code{hne} in the HNEring created by @code{hnexpansion}. |
---|
1231 | RETURN: list INV, such that INV[i] is the output of @code{invariants(develop(f[i]))} |
---|
1232 | as above, where f[i] is the ith branch of the curve f, and the last |
---|
1233 | entry contains further invariants of f in the format: |
---|
1234 | @format |
---|
1235 | INV[i][1] : intvec (characteristic exponents) |
---|
1236 | INV[i][2] : intvec (generators of the semigroup) |
---|
1237 | INV[i][3] : intvec (Puiseux pairs, 1st components) |
---|
1238 | INV[i][4] : intvec (Puiseux pairs, 2nd components) |
---|
1239 | INV[i][5] : int (degree of the conductor) |
---|
1240 | INV[i][6] : intvec (sequence of multiplicities) |
---|
1241 | INV[last][1] : intmat (contact matrix of the branches) |
---|
1242 | INV[last][2] : intmat (intersection multiplicities of the branches) |
---|
1243 | INV[last][3] : int (delta invariant of f) |
---|
1244 | @end format |
---|
1245 | NOTE: In case the Hamburger-Noether expansion of the curve f is needed |
---|
1246 | for other purposes as well it is better to calculate this first |
---|
1247 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1248 | the polynomial itself. |
---|
1249 | SEE ALSO: develop, displayInvariants, multsequence, intersection |
---|
1250 | KEYWORDS: characteristic exponents; semigroup of values; Puiseux pairs; |
---|
1251 | conductor, degree; multiplicities, sequence of |
---|
1252 | EXAMPLE: example invariants; shows an example |
---|
1253 | " |
---|
1254 | { |
---|
1255 | //---- INPUT = poly, or HNEring, or hne of reducible curve -------------------- |
---|
1256 | if (typeof(#[1])!="matrix") |
---|
1257 | { |
---|
1258 | if (typeof(#[1])=="poly") |
---|
1259 | { |
---|
1260 | list HNEXPANSION=hnexpansion(#[1]); |
---|
1261 | return(invariants(HNEXPANSION)); |
---|
1262 | } |
---|
1263 | if (typeof(#[1])=="ring") |
---|
1264 | { |
---|
1265 | def H_N_E_R_I_N_G=#[1]; |
---|
1266 | def rette_ring=basering; |
---|
1267 | setring H_N_E_R_I_N_G; |
---|
1268 | } |
---|
1269 | if (typeof(#[1])=="list") |
---|
1270 | { |
---|
1271 | list hne=#; |
---|
1272 | } |
---|
1273 | list ErGeBnIs; |
---|
1274 | for (int lauf=1;lauf<=size(hne);lauf++) |
---|
1275 | { |
---|
1276 | ErGeBnIs[lauf]=invariants(hne[lauf]); |
---|
1277 | } |
---|
1278 | // Calculate the intersection matrix and the intersection multiplicities. |
---|
1279 | intmat contact[size(hne)][size(hne)]; |
---|
1280 | intmat intersectionmatrix[size(hne)][size(hne)]; |
---|
1281 | int Lauf; |
---|
1282 | for (lauf=1;lauf<=size(hne);lauf++) |
---|
1283 | { |
---|
1284 | for (Lauf=lauf+1;Lauf<=size(hne);Lauf++) |
---|
1285 | { |
---|
1286 | contact[lauf,Lauf]=separateHNE(hne[lauf],hne[Lauf]); |
---|
1287 | contact[Lauf,lauf]=contact[lauf,Lauf]; |
---|
1288 | intersectionmatrix[lauf,Lauf]=intersection(hne[lauf],hne[Lauf]); |
---|
1289 | intersectionmatrix[Lauf,lauf]=intersectionmatrix[lauf,Lauf]; |
---|
1290 | } |
---|
1291 | } |
---|
1292 | // Calculate the delta invariant. |
---|
1293 | int inters; |
---|
1294 | int del=ErGeBnIs[size(hne)][5]/2; |
---|
1295 | for(lauf=1;lauf<=size(hne)-1;lauf++) |
---|
1296 | { |
---|
1297 | del=del+ErGeBnIs[lauf][5]/2; |
---|
1298 | for(Lauf=lauf+1;Lauf<=size(hne);Lauf++) |
---|
1299 | { |
---|
1300 | inters=inters+intersectionmatrix[lauf,Lauf]; |
---|
1301 | } |
---|
1302 | } |
---|
1303 | del=del+inters; |
---|
1304 | list LAST=contact,intersectionmatrix,del; |
---|
1305 | ErGeBnIs[size(hne)+1]=LAST; |
---|
1306 | if (defined(H_N_E_R_I_N_G)) |
---|
1307 | { |
---|
1308 | setring rette_ring; |
---|
1309 | kill H_N_E_R_I_N_G; |
---|
1310 | } |
---|
1311 | return(ErGeBnIs); |
---|
1312 | } |
---|
1313 | //-------------------------- Initialisierungen ------------------------------- |
---|
1314 | matrix m=#[1]; |
---|
1315 | intvec v=#[2]; |
---|
1316 | int switch=#[3]; |
---|
1317 | list ergebnis; |
---|
1318 | if (switch==-1) { |
---|
1319 | "An error has occurred in develop, so there is no HNE."; |
---|
1320 | return(ergebnis); |
---|
1321 | } |
---|
1322 | intvec beta,s,svorl,ordnung,multseq,mpuiseux,npuiseux,halbgr; |
---|
1323 | int genus,zeile,i,j,k,summe,conductor,ggT; |
---|
1324 | string Ausgabe; |
---|
1325 | int nc=ncols(m); int nr=nrows(m); |
---|
1326 | ordnung[nr]=1; |
---|
1327 | // alle Indizes muessen (gegenueber [Ca]) um 1 erhoeht werden, |
---|
1328 | // weil 0..r nicht als Wertebereich erlaubt ist (aber nrows(m)==r+1) |
---|
1329 | |
---|
1330 | //---------------- Bestimme den Untergrad der einzelnen Zeilen --------------- |
---|
1331 | for (zeile=nr; zeile>1; zeile--) { |
---|
1332 | if ((size(ideal(m[zeile,1..nc])) > 1) or (zeile==nr)) { // keine Nullzeile |
---|
1333 | k=1; |
---|
1334 | while (m[zeile,k]==0) {k++;} |
---|
1335 | ordnung[zeile-1]=k*ordnung[zeile]; // vgl. auch Def. von untergrad in |
---|
1336 | genus++; // proc param |
---|
1337 | svorl[genus]=zeile;} // werden gerade in umgekehrter Reihenfolge abgelegt |
---|
1338 | else { |
---|
1339 | ordnung[zeile-1]=v[zeile]*ordnung[zeile]+ordnung[zeile+1]; |
---|
1340 | }} |
---|
1341 | //----------------- charakteristische Exponenten (beta) ---------------------- |
---|
1342 | s[1]=1; |
---|
1343 | for (k=1; k <= genus; k++) { s[k+1]=svorl[genus-k+1];} // s[2]==s(1), u.s.w. |
---|
1344 | beta[1]=ordnung[1]; //charakt. Exponenten: Index wieder verschoben |
---|
1345 | for (k=1; k <= genus; k++) { |
---|
1346 | summe=0; |
---|
1347 | for (i=1; i <= s[k]; i++) {summe=summe+v[i]*ordnung[i];} |
---|
1348 | beta[k+1]=summe+ordnung[s[k]]+ordnung[s[k]+1]-ordnung[1]; |
---|
1349 | } |
---|
1350 | //--------------------------- Puiseuxpaare ----------------------------------- |
---|
1351 | int produkt=1; |
---|
1352 | for (i=1; i<=genus; i++) { |
---|
1353 | ggT=gcd(beta[1],beta[i+1]*produkt); |
---|
1354 | mpuiseux[i]=beta[i+1]*produkt / ggT; |
---|
1355 | npuiseux[i]=beta[1] / ggT; |
---|
1356 | produkt=produkt*npuiseux[i]; |
---|
1357 | } |
---|
1358 | //---------------------- Grad des Konduktors --------------------------------- |
---|
1359 | summe=1-ordnung[1]; |
---|
1360 | if (genus > 0) { |
---|
1361 | for (i=2; i <= genus+1; i++) { |
---|
1362 | summe=summe + beta[i] * (ordnung[s[i-1]] - ordnung[s[i]]); |
---|
1363 | } // n.b.: Indizierung wieder um 1 verschoben |
---|
1364 | } |
---|
1365 | conductor=summe; |
---|
1366 | //------------------- Erzeuger der Halbgruppe: ------------------------------- |
---|
1367 | halbgr=puiseux2generators(mpuiseux,npuiseux); |
---|
1368 | |
---|
1369 | //------------------- Multiplizitaetensequenz: ------------------------------- |
---|
1370 | k=1; |
---|
1371 | for (i=1; i<size(v); i++) { |
---|
1372 | for (j=1; j<=v[i]; j++) { |
---|
1373 | multseq[k]=ordnung[i]; |
---|
1374 | k++; |
---|
1375 | }} |
---|
1376 | multseq[k]=1; |
---|
1377 | //--- fuelle die Multipl.seq. mit den notwendigen Einsen auf -- T.Keilen ---- |
---|
1378 | int tester=k; |
---|
1379 | while((multseq[tester]==1) and (tester>1)) |
---|
1380 | { |
---|
1381 | tester=tester-1; |
---|
1382 | } |
---|
1383 | if ((multseq[tester]!=1) and (multseq[tester]!=k-tester)) |
---|
1384 | { |
---|
1385 | for (i=k+1; i<=tester+multseq[tester]; i++) |
---|
1386 | { |
---|
1387 | multseq[i]=1; |
---|
1388 | } |
---|
1389 | } |
---|
1390 | //--- Ende T.Keilen --- 06.05.02 |
---|
1391 | //------------------------- Rueckgabe ---------------------------------------- |
---|
1392 | ergebnis=beta,halbgr,mpuiseux,npuiseux,conductor,multseq; |
---|
1393 | return(ergebnis); |
---|
1394 | } |
---|
1395 | example |
---|
1396 | { "EXAMPLE:"; echo = 2; |
---|
1397 | ring exring=0,(x,y),dp; |
---|
1398 | list hne=develop(y4+2x3y2+x6+x5y); |
---|
1399 | list INV=invariants(hne); |
---|
1400 | INV[1]; // the characteristic exponents |
---|
1401 | INV[2]; // the generators of the semigroup of values |
---|
1402 | INV[3],INV[4]; // the Puiseux pairs in packed form |
---|
1403 | INV[5] / 2; // the delta-invariant |
---|
1404 | INV[6]; // the sequence of multiplicities |
---|
1405 | // To display the invariants more 'nicely': |
---|
1406 | displayInvariants(hne); |
---|
1407 | ///////////////////////////// |
---|
1408 | INV=invariants((x2-y3)*(x3-y5)); |
---|
1409 | INV[1][1]; // the characteristic exponents of the first branch |
---|
1410 | INV[2][6]; // the sequence of multiplicities of the second branch |
---|
1411 | print(INV[size(INV)][1]); // the contact matrix of the branches |
---|
1412 | print(INV[size(INV)][2]); // the intersection numbers of the branches |
---|
1413 | INV[size(INV)][3]; // the delta invariant of the curve |
---|
1414 | } |
---|
1415 | |
---|
1416 | /////////////////////////////////////////////////////////////////////////////// |
---|
1417 | |
---|
1418 | proc displayInvariants |
---|
1419 | "USAGE: displayInvariants(INPUT); INPUT list or poly |
---|
1420 | ASSUME: INPUT is a bivariate polynomial, or the output of @code{develop(f)}, or of |
---|
1421 | @code{extdevelop(develop(f),n)}, or (one entry of) the list @code{hne} |
---|
1422 | in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
1423 | RETURN: none |
---|
1424 | DISPLAY: invariants of the corresponding branch, resp. of all branches, |
---|
1425 | in a better readable form. |
---|
1426 | NOTE: In case the Hamburger-Noether expansion of the curve f is needed |
---|
1427 | for other purposes as well it is better to calculate this first |
---|
1428 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1429 | the polynomial itself. |
---|
1430 | SEE ALSO: invariants, intersection, develop, hnexpansion |
---|
1431 | EXAMPLE: example displayInvariants; shows an example |
---|
1432 | " |
---|
1433 | { |
---|
1434 | // INPUT = poly or ring |
---|
1435 | if (typeof(#[1])=="poly") |
---|
1436 | { |
---|
1437 | list HNEXPANSION=hnexpansion(#[1]); |
---|
1438 | displayInvariants(HNEXPANSION); |
---|
1439 | return(); |
---|
1440 | } |
---|
1441 | if (typeof(#[1])=="ring") |
---|
1442 | { |
---|
1443 | def H_N_E_RING=#[1]; |
---|
1444 | def rettering=basering; |
---|
1445 | setring H_N_E_RING; |
---|
1446 | displayInvariants(hne); |
---|
1447 | setring rettering; |
---|
1448 | kill H_N_E_RING; |
---|
1449 | return(); |
---|
1450 | } |
---|
1451 | // INPUT = hne of a plane curve |
---|
1452 | int i,j,k,mul; |
---|
1453 | string Ausgabe; |
---|
1454 | list ergebnis; |
---|
1455 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1456 | #=stripHNE(#); |
---|
1457 | //-------------------- Ausgabe eines Zweiges --------------------------------- |
---|
1458 | if (typeof(#[1])=="matrix") { |
---|
1459 | ergebnis=invariants(#); |
---|
1460 | if (size(ergebnis)!=0) { |
---|
1461 | " characteristic exponents :",ergebnis[1]; |
---|
1462 | " generators of semigroup :",ergebnis[2]; |
---|
1463 | if (size(ergebnis[1])>1) { |
---|
1464 | for (i=1; i<=size(ergebnis[3]); i++) { |
---|
1465 | Ausgabe=Ausgabe+"("+string(ergebnis[3][i])+"," |
---|
1466 | +string(ergebnis[4][i])+")"; |
---|
1467 | }} |
---|
1468 | " Puiseux pairs :",Ausgabe; |
---|
1469 | " degree of the conductor :",ergebnis[5]; |
---|
1470 | " delta invariant :",ergebnis[5]/2; |
---|
1471 | " sequence of multiplicities:",ergebnis[6]; |
---|
1472 | }} |
---|
1473 | //-------------------- Ausgabe aller Zweige ---------------------------------- |
---|
1474 | else { |
---|
1475 | ergebnis=invariants(#); |
---|
1476 | intmat contact=ergebnis[size(#)+1][1]; |
---|
1477 | intmat intersectionmatrix=ergebnis[size(#)+1][2]; |
---|
1478 | for (j=1; j<=size(#); j++) { |
---|
1479 | " --- invariants of branch number",j,": ---"; |
---|
1480 | " characteristic exponents :",ergebnis[j][1]; |
---|
1481 | " generators of semigroup :",ergebnis[j][2]; |
---|
1482 | Ausgabe=""; |
---|
1483 | if (size(ergebnis[j][1])>1) { |
---|
1484 | for (i=1; i<=size(ergebnis[j][3]); i++) { |
---|
1485 | Ausgabe=Ausgabe+"("+string(ergebnis[j][3][i])+"," |
---|
1486 | +string(ergebnis[j][4][i])+")"; |
---|
1487 | }} |
---|
1488 | " Puiseux pairs :",Ausgabe; |
---|
1489 | " degree of the conductor :",ergebnis[j][5]; |
---|
1490 | " delta invariant :",ergebnis[j][5]/2; |
---|
1491 | " sequence of multiplicities:",ergebnis[j][6]; |
---|
1492 | ""; |
---|
1493 | } |
---|
1494 | if (size(#)>1) |
---|
1495 | { |
---|
1496 | " -------------- contact numbers : -------------- ";""; |
---|
1497 | Ausgabe="branch | "; |
---|
1498 | for (j=size(#); j>1; j--) |
---|
1499 | { |
---|
1500 | if (size(string(j))==1) { Ausgabe=Ausgabe+" "+string(j)+" "; } |
---|
1501 | else { Ausgabe=Ausgabe+string(j)+" "; } |
---|
1502 | } |
---|
1503 | Ausgabe; |
---|
1504 | Ausgabe="-------+"; |
---|
1505 | for (j=2; j<size(#); j++) { Ausgabe=Ausgabe+"------"; } |
---|
1506 | Ausgabe=Ausgabe+"-----"; |
---|
1507 | Ausgabe; |
---|
1508 | } |
---|
1509 | for (j=1; j<size(#); j++) |
---|
1510 | { |
---|
1511 | if (size(string(j))==1) { Ausgabe=" "+string(j)+" |"; } |
---|
1512 | else { Ausgabe=" " +string(j)+" |"; } |
---|
1513 | for (k=size(#); k>j; k--) |
---|
1514 | { |
---|
1515 | mul=contact[j,k];//separateHNE(#[j],#[k]); |
---|
1516 | for (i=1; i<=5-size(string(mul)); i++) { Ausgabe=Ausgabe+" "; } |
---|
1517 | Ausgabe=Ausgabe+string(mul); |
---|
1518 | if (k>j+1) { Ausgabe=Ausgabe+","; } |
---|
1519 | } |
---|
1520 | Ausgabe; |
---|
1521 | } |
---|
1522 | ""; |
---|
1523 | if (size(#)>1) |
---|
1524 | { |
---|
1525 | " -------------- intersection multiplicities : -------------- ";""; |
---|
1526 | Ausgabe="branch | "; |
---|
1527 | for (j=size(#); j>1; j--) |
---|
1528 | { |
---|
1529 | if (size(string(j))==1) { Ausgabe=Ausgabe+" "+string(j)+" "; } |
---|
1530 | else { Ausgabe=Ausgabe+string(j)+" "; } |
---|
1531 | } |
---|
1532 | Ausgabe; |
---|
1533 | Ausgabe="-------+"; |
---|
1534 | for (j=2; j<size(#); j++) { Ausgabe=Ausgabe+"------"; } |
---|
1535 | Ausgabe=Ausgabe+"-----"; |
---|
1536 | Ausgabe; |
---|
1537 | } |
---|
1538 | for (j=1; j<size(#); j++) |
---|
1539 | { |
---|
1540 | if (size(string(j))==1) { Ausgabe=" "+string(j)+" |"; } |
---|
1541 | else { Ausgabe=" " +string(j)+" |"; } |
---|
1542 | for (k=size(#); k>j; k--) |
---|
1543 | { |
---|
1544 | mul=intersectionmatrix[j,k];//intersection(#[j],#[k]); |
---|
1545 | for (i=1; i<=5-size(string(mul)); i++) { Ausgabe=Ausgabe+" "; } |
---|
1546 | Ausgabe=Ausgabe+string(mul); |
---|
1547 | if (k>j+1) { Ausgabe=Ausgabe+","; } |
---|
1548 | } |
---|
1549 | Ausgabe; |
---|
1550 | } |
---|
1551 | ""; |
---|
1552 | " -------------- delta invariant of the curve : ",ergebnis[size(#)+1][3]; |
---|
1553 | |
---|
1554 | } |
---|
1555 | return(); |
---|
1556 | } |
---|
1557 | example |
---|
1558 | { "EXAMPLE:"; echo = 2; |
---|
1559 | ring exring=0,(x,y),dp; |
---|
1560 | list hne=develop(y4+2x3y2+x6+x5y); |
---|
1561 | displayInvariants(hne); |
---|
1562 | } |
---|
1563 | /////////////////////////////////////////////////////////////////////////////// |
---|
1564 | |
---|
1565 | proc multiplicities |
---|
1566 | "USAGE: multiplicities(L); L list |
---|
1567 | ASSUME: L is the output of @code{develop(f)}, or of |
---|
1568 | @code{extdevelop(develop(f),n)}, or one entry in the list @code{hne} |
---|
1569 | in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
1570 | RETURN: intvec of the different multiplicities that occur when successively |
---|
1571 | blowing-up the curve singularity corresponding to f. |
---|
1572 | SEE ALSO: multsequence, develop |
---|
1573 | EXAMPLE: example multiplicities; shows an example |
---|
1574 | " |
---|
1575 | { |
---|
1576 | matrix m=#[1]; |
---|
1577 | intvec v=#[2]; |
---|
1578 | int switch=#[3]; |
---|
1579 | list ergebnis; |
---|
1580 | if (switch==-1) { |
---|
1581 | "An error has occurred in develop, so there is no HNE."; |
---|
1582 | return(intvec(0)); |
---|
1583 | } |
---|
1584 | intvec ordnung; |
---|
1585 | int zeile,k; |
---|
1586 | int nc=ncols(m); int nr=nrows(m); |
---|
1587 | ordnung[nr]=1; |
---|
1588 | //---------------- Bestimme den Untergrad der einzelnen Zeilen --------------- |
---|
1589 | for (zeile=nr; zeile>1; zeile--) { |
---|
1590 | if ((size(ideal(m[zeile,1..nc])) > 1) or (zeile==nr)) { // keine Nullzeile |
---|
1591 | k=1; |
---|
1592 | while (m[zeile,k]==0) {k++;} |
---|
1593 | ordnung[zeile-1]=k*ordnung[zeile]; |
---|
1594 | } |
---|
1595 | else { |
---|
1596 | ordnung[zeile-1]=v[zeile]*ordnung[zeile]+ordnung[zeile+1]; |
---|
1597 | }} |
---|
1598 | return(ordnung); |
---|
1599 | } |
---|
1600 | example |
---|
1601 | { "EXAMPLE:"; echo = 2; |
---|
1602 | int p=printlevel; printlevel=-1; |
---|
1603 | ring r=0,(x,y),dp; |
---|
1604 | multiplicities(develop(x5+y7)); |
---|
1605 | // The first value is the multiplicity of the curve itself, here it's 5 |
---|
1606 | printlevel=p; |
---|
1607 | } |
---|
1608 | /////////////////////////////////////////////////////////////////////////////// |
---|
1609 | |
---|
1610 | proc puiseux2generators (intvec m, intvec n) |
---|
1611 | "USAGE: puiseux2generators(m,n); m,n intvec |
---|
1612 | ASSUME: m, resp. n, represent the 1st, resp. 2nd, components of Puiseux pairs |
---|
1613 | (e.g., @code{m=invariants(L)[3]}, @code{n=invariants(L)[4]}). |
---|
1614 | RETURN: intvec of the generators of the semigroup of values. |
---|
1615 | SEE ALSO: invariants |
---|
1616 | EXAMPLE: example puiseux2generators; shows an example |
---|
1617 | " |
---|
1618 | { |
---|
1619 | intvec beta; |
---|
1620 | int q=1; |
---|
1621 | //------------ glatte Kurve (eigentl. waeren m,n leer): ---------------------- |
---|
1622 | if (m==0) { return(intvec(1)); } |
---|
1623 | //------------------- singulaere Kurve: -------------------------------------- |
---|
1624 | for (int i=1; i<=size(n); i++) { q=q*n[i]; } |
---|
1625 | beta[1]=q; // == q_0 |
---|
1626 | m=1,m; n=1,n; // m[1] ist damit m_0 usw., genau wie beta[1]==beta_0 |
---|
1627 | for (i=2; i<=size(n); i++) { |
---|
1628 | beta[i]=m[i]*q/n[i] - m[i-1]*q + n[i-1]*beta[i-1]; |
---|
1629 | q=q/n[i]; // == q_i |
---|
1630 | } |
---|
1631 | return(beta); |
---|
1632 | } |
---|
1633 | example |
---|
1634 | { "EXAMPLE:"; echo = 2; |
---|
1635 | // take (3,2),(7,2),(15,2),(31,2),(63,2),(127,2) as Puiseux pairs: |
---|
1636 | puiseux2generators(intvec(3,7,15,31,63,127),intvec(2,2,2,2,2,2)); |
---|
1637 | } |
---|
1638 | /////////////////////////////////////////////////////////////////////////////// |
---|
1639 | |
---|
1640 | proc intersection (list hn1, list hn2) |
---|
1641 | "USAGE: intersection(hne1,hne2); hne1, hne2 lists |
---|
1642 | ASSUME: hne1, hne2 represent a HNE (i.e., are the output of |
---|
1643 | @code{develop(f)}, or of @code{extdevelop(develop(f),n)}, or |
---|
1644 | one entry of the list @code{hne} in the ring created by |
---|
1645 | @code{hnexpansion(f[,\"ess\"])}). |
---|
1646 | RETURN: int, the intersection multiplicity of the branches corresponding to |
---|
1647 | hne1 and hne2. |
---|
1648 | SEE ALSO: hnexpansion, displayInvariants |
---|
1649 | KEYWORDS: intersection multiplicity |
---|
1650 | EXAMPLE: example intersection; shows an example |
---|
1651 | " |
---|
1652 | { |
---|
1653 | //------------------ `intersect' ist schon reserviert ... -------------------- |
---|
1654 | int i,j,s,sum,schnitt,unterschied; |
---|
1655 | matrix a1=hn1[1]; |
---|
1656 | matrix a2=hn2[1]; |
---|
1657 | intvec h1=hn1[2]; |
---|
1658 | intvec h2=hn2[2]; |
---|
1659 | intvec n1=multiplicities(hn1); |
---|
1660 | intvec n2=multiplicities(hn2); |
---|
1661 | if (hn1[3]!=hn2[3]) { |
---|
1662 | //-- die jeweils erste Zeile von hn1,hn2 gehoert zu verschiedenen Parametern - |
---|
1663 | //---------------- d.h. beide Kurven schneiden sich transversal -------------- |
---|
1664 | schnitt=n1[1]*n2[1]; // = mult(hn1)*mult(hn2) |
---|
1665 | } |
---|
1666 | else { |
---|
1667 | //--------- die jeweils erste Zeile gehoert zum gleichen Parameter ----------- |
---|
1668 | unterschied=0; |
---|
1669 | for (s=1; (h1[s]==h2[s]) && (s<size(h1)) && (s<size(h2)) |
---|
1670 | && (unterschied==0); s++) { |
---|
1671 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]); i++) {;} |
---|
1672 | if (i<=h1[s]) { |
---|
1673 | unterschied=1; |
---|
1674 | s--; // um s++ am Schleifenende wieder auszugleichen |
---|
1675 | } |
---|
1676 | } |
---|
1677 | if (unterschied==0) { |
---|
1678 | if ((s<size(h1)) && (s<size(h2))) { |
---|
1679 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]) && (i<=h2[s]); i++) {;} |
---|
1680 | } |
---|
1681 | else { |
---|
1682 | //-------------- Sonderfall: Unterschied in letzter Zeile suchen ------------- |
---|
1683 | // Beachte: Es koennen undefinierte Stellen auftreten, bei abbrechender HNE |
---|
1684 | // muss die Ende-Markierung weg, h_[r] ist unendlich, die Matrix muss mit |
---|
1685 | // Nullen fortgesetzt gedacht werden |
---|
1686 | //---------------------------------------------------------------------------- |
---|
1687 | if (ncols(a1)>ncols(a2)) { j=ncols(a1); } |
---|
1688 | else { j=ncols(a2); } |
---|
1689 | unterschied=0; |
---|
1690 | if ((h1[s]>0) && (s==size(h1))) { |
---|
1691 | a1[s,h1[s]+1]=0; |
---|
1692 | if (ncols(a1)<=ncols(a2)) { unterschied=1; } |
---|
1693 | } |
---|
1694 | if ((h2[s]>0) && (s==size(h2))) { |
---|
1695 | a2[s,h2[s]+1]=0; |
---|
1696 | if (ncols(a2)<=ncols(a1)) { unterschied=1; } |
---|
1697 | } |
---|
1698 | if (unterschied==1) { // mind. eine HNE war endlich |
---|
1699 | matrix ma1[1][j]=a1[s,1..ncols(a1)]; // und bedarf der Fortsetzung |
---|
1700 | matrix ma2[1][j]=a2[s,1..ncols(a2)]; // mit Nullen |
---|
1701 | } |
---|
1702 | else { |
---|
1703 | if (ncols(a1)>ncols(a2)) { j=ncols(a2); } |
---|
1704 | else { j=ncols(a1); } |
---|
1705 | matrix ma1[1][j]=a1[s,1..j]; // Beschr. auf vergleichbaren |
---|
1706 | matrix ma2[1][j]=a2[s,1..j]; // Teil (der evtl. y's enth.) |
---|
1707 | } |
---|
1708 | for (i=1; (ma1[1,i]==ma2[1,i]) && (i<j) && (ma1[1,i]!=var(2)); i++) {;} |
---|
1709 | if (ma1[1,i]==ma2[1,i]) { |
---|
1710 | "//** The two HNE's are identical!"; |
---|
1711 | "//** You have either tried to intersect a branch with itself,"; |
---|
1712 | "//** or the two branches have been developed separately."; |
---|
1713 | "// In the latter case use `extdevelop' to extend the HNE's until", |
---|
1714 | "they differ."; |
---|
1715 | return(-1); |
---|
1716 | } |
---|
1717 | if ((ma1[1,i]==var(2)) || (ma2[1,i]==var(2))) { |
---|
1718 | "//** The two HNE's are (so far) identical. This is because they", |
---|
1719 | "have been"; |
---|
1720 | "//** computed separately. I need more data; use `extdevelop' to", |
---|
1721 | "extend them,"; |
---|
1722 | if (ma1[1,i]==var(2)) {"//** at least the first one.";} |
---|
1723 | else {"//** at least the second one.";} |
---|
1724 | return(-1); |
---|
1725 | } |
---|
1726 | } |
---|
1727 | } |
---|
1728 | sum=0; |
---|
1729 | h1[size(h1)]=ncols(a1)+42; // Ersatz fuer h1[r]=infinity |
---|
1730 | h2[size(h2)]=ncols(a2)+42; |
---|
1731 | for (j=1; j<s; j++) {sum=sum+h1[j]*n1[j]*n2[j];} |
---|
1732 | if ((i<=h1[s]) && (i<=h2[s])) { schnitt=sum+i*n1[s]*n2[s]; } |
---|
1733 | if (i==h2[s]+1) { schnitt=sum+h2[s]*n1[s]*n2[s]+n2[s+1]*n1[s]; } |
---|
1734 | if (i==h1[s]+1) { schnitt=sum+h1[s]*n2[s]*n1[s]+n1[s+1]*n2[s]; } |
---|
1735 | // "s:",s-1,"i:",i,"S:",sum; |
---|
1736 | } |
---|
1737 | return(schnitt); |
---|
1738 | } |
---|
1739 | example |
---|
1740 | { |
---|
1741 | // ------ the example starts here ------- |
---|
1742 | "EXAMPLE:"; echo = 2; |
---|
1743 | ring r=0,(x,y),dp; |
---|
1744 | list hn=hnexpansion((x2-y3)*(x2+y3)); |
---|
1745 | def HNEring=hn[1]; |
---|
1746 | setring HNEring; |
---|
1747 | intersection(hne[1],hne[2]); |
---|
1748 | } |
---|
1749 | /////////////////////////////////////////////////////////////////////////////// |
---|
1750 | |
---|
1751 | proc multsequence |
---|
1752 | "USAGE: multsequence(INPUT); INPUT list or poly |
---|
1753 | ASSUME: INPUT is the output of @code{develop(f)}, or of @code{extdevelop(develop(f),n)}, |
---|
1754 | or one entry in the list @code{hne} of the ring created by @code{hnexpansion(f)}. |
---|
1755 | RETURN: intvec corresponding to the multiplicity sequence of (a branch) |
---|
1756 | of the curve (the same as @code{invariants(INPUT)[6]}). |
---|
1757 | |
---|
1758 | ASSUME: INPUT is a bivariate polynomial, or the output of @code{hnexpansion(f)}, |
---|
1759 | or the list @code{hne} in the ring created by @code{hnexpansion(f)}. |
---|
1760 | RETURN: list of two integer matrices: |
---|
1761 | @texinfo |
---|
1762 | @table @asis |
---|
1763 | @item @code{multsequence(INPUT)[1][i,*]} |
---|
1764 | contains the multiplicities of the branches at their infinitely near point |
---|
1765 | of 0 in its (i-1) order neighbourhood (i.e., i=1: multiplicity of the |
---|
1766 | branches themselves, i=2: multiplicity of their 1st quadratic transformed, |
---|
1767 | etc., @* |
---|
1768 | Hence, @code{multsequence(INPUT)[1][*,j]} is the multiplicity sequence |
---|
1769 | of branch j. |
---|
1770 | @item @code{multsequence(INPUT)[2][i,*]}: |
---|
1771 | contains the information which of these infinitely near points coincide. |
---|
1772 | @end table |
---|
1773 | @end texinfo |
---|
1774 | NOTE: The order of elements of the list @code{hne} obtained from @code{hnexpansion(f[,\"ess\")} |
---|
1775 | must not be changed (because then the coincident infinitely near points |
---|
1776 | couldn't be grouped together, cf. meaning of 2nd intmat in example). |
---|
1777 | Hence, it is not wise to compute the HNE of several polynomials |
---|
1778 | separately, put them into a list INPUT and call @code{multsequence(INPUT)}. @* |
---|
1779 | Use @code{displayMultsequence} to produce a better readable output for |
---|
1780 | reducible curves on the screen. @* |
---|
1781 | In case the Hamburger-Noether expansion of the curve f is needed |
---|
1782 | for other purposes as well it is better to calculate this first |
---|
1783 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1784 | the polynomial itself. |
---|
1785 | SEE ALSO: displayMultsequence, develop, hnexpansion, separateHNE |
---|
1786 | KEYWORDS: multiplicity sequence |
---|
1787 | EXAMPLE: example multsequence; shows an example |
---|
1788 | " |
---|
1789 | { |
---|
1790 | //---- INPUT = poly, or HNEring -------------------- |
---|
1791 | if (typeof(#[1])=="poly") |
---|
1792 | { |
---|
1793 | list HNEXPANSION=hnexpansion(#[1]); |
---|
1794 | return(multsequence(HNEXPANSION)); |
---|
1795 | } |
---|
1796 | if (typeof(#[1])=="ring") |
---|
1797 | { |
---|
1798 | def H_N_ER_I_N_G=#[1]; |
---|
1799 | def ret_te_ring=basering; |
---|
1800 | setring H_N_ER_I_N_G; |
---|
1801 | list ErGeBnIs=multsequence(hne); |
---|
1802 | setring ret_te_ring; |
---|
1803 | kill H_N_ER_I_N_G; |
---|
1804 | return(ErGeBnIs); |
---|
1805 | } |
---|
1806 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1807 | #=stripHNE(#); |
---|
1808 | int k,i,j; |
---|
1809 | //----------------- Multiplizitaetensequenz eines Zweiges -------------------- |
---|
1810 | if (typeof(#[1])=="matrix") { |
---|
1811 | intvec v=#[2]; |
---|
1812 | list ergebnis; |
---|
1813 | if (#[3]==-1) { |
---|
1814 | "An error has occurred in develop, so there is no HNE."; |
---|
1815 | return(intvec(0)); |
---|
1816 | } |
---|
1817 | intvec multips,multseq; |
---|
1818 | multips=multiplicities(#); |
---|
1819 | k=1; |
---|
1820 | for (i=1; i<size(v); i++) { |
---|
1821 | for (j=1; j<=v[i]; j++) { |
---|
1822 | multseq[k]=multips[i]; |
---|
1823 | k++; |
---|
1824 | }} |
---|
1825 | multseq[k]=1; |
---|
1826 | //--- fuelle die Multipl.seq. mit den notwendigen Einsen auf -- T.Keilen ---- |
---|
1827 | int tester=k; |
---|
1828 | while((multseq[tester]==1) and (tester>1)) |
---|
1829 | { |
---|
1830 | tester=tester-1; |
---|
1831 | } |
---|
1832 | if((multseq[tester]!=1) and (multseq[tester]!=k-tester)) |
---|
1833 | { |
---|
1834 | for (i=k+1; i<=tester+multseq[tester]; i++) |
---|
1835 | { |
---|
1836 | multseq[i]=1; |
---|
1837 | } |
---|
1838 | } |
---|
1839 | //--- Ende T.Keilen --- 06.05.02 |
---|
1840 | return(multseq); |
---|
1841 | } |
---|
1842 | //---------------------------- mehrere Zweige -------------------------------- |
---|
1843 | else { |
---|
1844 | list HNEs=#; |
---|
1845 | int anzahl=size(HNEs); |
---|
1846 | int maxlength=0; |
---|
1847 | int bisher; |
---|
1848 | intvec schnitt,ones; |
---|
1849 | ones[anzahl]=0; |
---|
1850 | ones=ones+1; // = 1,1,...,1 |
---|
1851 | for (i=1; i<anzahl; i++) { |
---|
1852 | schnitt[i]=separateHNE(HNEs[i],HNEs[i+1]); |
---|
1853 | j=size(multsequence(HNEs[i])); |
---|
1854 | maxlength=maxlength*(j < maxlength) + j*(j >= maxlength); |
---|
1855 | maxlength=maxlength*(schnitt[i]+1 < maxlength) |
---|
1856 | + (schnitt[i]+1)*(schnitt[i]+1 >= maxlength); |
---|
1857 | } |
---|
1858 | j=size(multsequence(HNEs[anzahl])); |
---|
1859 | maxlength=maxlength*(j < maxlength) + j*(j >= maxlength); |
---|
1860 | |
---|
1861 | //-------------- Konstruktion der ersten zu berechnenden Matrix --------------- |
---|
1862 | intmat allmults[maxlength][anzahl]; |
---|
1863 | for (i=1; i<=maxlength; i++) { allmults[i,1..anzahl]=ones[1..anzahl]; } |
---|
1864 | for (i=1; i<=anzahl; i++) { |
---|
1865 | ones=multsequence(HNEs[i]); |
---|
1866 | allmults[1..size(ones),i]=ones[1..size(ones)]; |
---|
1867 | } |
---|
1868 | //---------------------- Konstruktion der zweiten Matrix ---------------------- |
---|
1869 | intmat separate[maxlength][anzahl]; |
---|
1870 | for (i=1; i<=maxlength; i++) { |
---|
1871 | k=1; |
---|
1872 | bisher=0; |
---|
1873 | if (anzahl==1) { separate[i,1]=1; } |
---|
1874 | for (j=1; j<anzahl; j++) { |
---|
1875 | if (schnitt[j]<i) { |
---|
1876 | separate[i,k]=j-bisher; |
---|
1877 | bisher=j; |
---|
1878 | k++; |
---|
1879 | } |
---|
1880 | separate[i,k]=anzahl-bisher; |
---|
1881 | } |
---|
1882 | } |
---|
1883 | return(list(allmults,separate)); |
---|
1884 | } |
---|
1885 | } |
---|
1886 | example |
---|
1887 | { |
---|
1888 | // -------- prepare for example --------- |
---|
1889 | if (nameof(basering)=="HNEring") { |
---|
1890 | def rettering=HNEring; |
---|
1891 | kill HNEring; |
---|
1892 | } |
---|
1893 | // ------ the example starts here ------- |
---|
1894 | "EXAMPLE:"; echo = 2; |
---|
1895 | ring r=0,(x,y),dp; |
---|
1896 | list hn=hnexpansion((x6-y10)*(x+y2-y3)*(x+y2+y3)); // 4 branches |
---|
1897 | def HNEring=hn[1]; |
---|
1898 | setring HNEring; |
---|
1899 | multsequence(hne[1])," | ",multsequence(hne[2])," | ", |
---|
1900 | multsequence(hne[3])," | ",multsequence(hne[4]); |
---|
1901 | multsequence(hne); |
---|
1902 | // The meaning of the entries of the 2nd matrix is as follows: |
---|
1903 | displayMultsequence(hne); |
---|
1904 | echo = 0; |
---|
1905 | // --- restore HNEring if previously defined --- |
---|
1906 | kill HNEring,r; |
---|
1907 | if (defined(rettering)) { |
---|
1908 | setring rettering; |
---|
1909 | def HNEring=rettering; |
---|
1910 | export HNEring; |
---|
1911 | } |
---|
1912 | } |
---|
1913 | /////////////////////////////////////////////////////////////////////////////// |
---|
1914 | |
---|
1915 | proc displayMultsequence |
---|
1916 | "USAGE: displayMultsequence(INPUT); INPUT list or poly |
---|
1917 | ASSUME: INPUT is a bivariate polynomial, or the output of @code{develop(f)}, |
---|
1918 | or of @code{extdevelop(develop(f),n)}, or of of @code{hnexpansion(f[,\"ess\"])}, |
---|
1919 | or (one entry in) the list @code{hne} of the ring created by @code{hnexpansion(f[,\"ess \"])}. |
---|
1920 | RETURN: nothing |
---|
1921 | DISPLAY: the sequence of multiplicities: |
---|
1922 | @format |
---|
1923 | - if @code{INPUT=develop(f)} or @code{INPUT=extdevelop(develop(f),n)} or @code{INPUT=hne[i]}: |
---|
1924 | @code{a , b , c , ....... , 1} |
---|
1925 | - if @code{INPUT=f} or @code{INPUT=hnexpansion(f[,\"ess\"])} or @code{INPUT=hne}: |
---|
1926 | @code{[(a_1, .... , b_1 , .... , c_1)],} |
---|
1927 | @code{[(a_2, ... ), ... , (... , c_2)],} |
---|
1928 | @code{ ........................................ ,} |
---|
1929 | @code{[(a_n),(b_n), ....., (c_n)]} |
---|
1930 | with: |
---|
1931 | @code{a_1 , ... , a_n} the sequence of multiplicities of the 1st branch, |
---|
1932 | @code{[...]} the multiplicities of the j-th transformed of all branches, |
---|
1933 | @code{(...)} indicating branches meeting in an infinitely near point. |
---|
1934 | @end format |
---|
1935 | NOTE: The same restrictions for INPUT as in @code{multsequence} apply.@* |
---|
1936 | In case the Hamburger-Noether expansion of the curve f is needed |
---|
1937 | for other purposes as well it is better to calculate this first |
---|
1938 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
1939 | the polynomial itself. |
---|
1940 | SEE ALSO: multsequence, develop, hnexpansion, separateHNE |
---|
1941 | EXAMPLE: example displayMultsequence; shows an example |
---|
1942 | " |
---|
1943 | { |
---|
1944 | //---- INPUT = poly, or HNEring -------------------- |
---|
1945 | if (typeof(#[1])=="poly") |
---|
1946 | { |
---|
1947 | list HNEXPANSION=hnexpansion(#[1]); |
---|
1948 | displayMultsequence(HNEXPANSION); |
---|
1949 | return(); |
---|
1950 | } |
---|
1951 | if (typeof(#[1])=="ring") |
---|
1952 | { |
---|
1953 | def H_N_ER_I_N_G=#[1]; |
---|
1954 | def ret_te_ring=basering; |
---|
1955 | setring H_N_ER_I_N_G; |
---|
1956 | displayMultsequence(hne); |
---|
1957 | setring ret_te_ring; |
---|
1958 | kill H_N_ER_I_N_G; |
---|
1959 | return(); |
---|
1960 | } |
---|
1961 | //-- entferne ueberfluessige Daten zur Erhoehung der Rechengeschwindigkeit: -- |
---|
1962 | #=stripHNE(#); |
---|
1963 | //----------------- Multiplizitaetensequenz eines Zweiges -------------------- |
---|
1964 | if (typeof(#[1])=="matrix") { |
---|
1965 | if (#[3]==-1) { |
---|
1966 | "An error has occurred in develop, so there is no HNE."; |
---|
1967 | } |
---|
1968 | else { |
---|
1969 | "The sequence of multiplicities is ",multsequence(#); |
---|
1970 | }} |
---|
1971 | //---------------------------- mehrere Zweige -------------------------------- |
---|
1972 | else { |
---|
1973 | list multips=multsequence(#); |
---|
1974 | int i,j,k,l; |
---|
1975 | string output; |
---|
1976 | for (i=1; i<=nrows(multips[1]); i++) { |
---|
1977 | output="["; |
---|
1978 | k=1; |
---|
1979 | for (l=1; k<=ncols(multips[1]); l++) { |
---|
1980 | output=output+"("; |
---|
1981 | for (j=1; j<=multips[2][i,l]; j++) { |
---|
1982 | output=output+string(multips[1][i,k]); |
---|
1983 | k++; |
---|
1984 | if (j<multips[2][i,l]) { output=output+","; } |
---|
1985 | } |
---|
1986 | output=output+")"; |
---|
1987 | if ((k-1) < ncols(multips[1])) { output=output+","; } |
---|
1988 | } |
---|
1989 | output=output+"]"; |
---|
1990 | if (i<nrows(multips[1])) { output=output+","; } |
---|
1991 | output; |
---|
1992 | } |
---|
1993 | } |
---|
1994 | } // example multsequence; geht wegen echo nicht (muesste auf 3 gesetzt werden) |
---|
1995 | example |
---|
1996 | { |
---|
1997 | // ------ the example starts here ------- |
---|
1998 | "EXAMPLE:"; echo = 2; |
---|
1999 | ring r=0,(x,y),dp; |
---|
2000 | //// Example 1: Input = output of develop |
---|
2001 | displayMultsequence(develop(x3-y5)); |
---|
2002 | //// Example 2: Input = bivariate polynomial |
---|
2003 | displayMultsequence((x6-y10)*(x+y2-y3)*(x+y2+y3)); |
---|
2004 | } |
---|
2005 | /////////////////////////////////////////////////////////////////////////////// |
---|
2006 | |
---|
2007 | proc separateHNE (list hn1,list hn2) |
---|
2008 | "USAGE: separateHNE(hne1,hne2); hne1, hne2 lists |
---|
2009 | ASSUME: hne1, hne2 are HNEs (=output of |
---|
2010 | @code{develop(f)}, @code{extdevelop(develop(f),n)}, or |
---|
2011 | one entry in the list @code{hne} in the ring created by |
---|
2012 | @code{hnexpansion(f[,\"ess\"])}. |
---|
2013 | RETURN: number of quadratic transformations needed to separate both curves |
---|
2014 | (branches). |
---|
2015 | SEE ALSO: develop, hnexpansion, multsequence, displayMultsequence |
---|
2016 | EXAMPLE: example separateHNE; shows an example |
---|
2017 | " |
---|
2018 | { |
---|
2019 | int i,j,s,unterschied,separated; |
---|
2020 | matrix a1=hn1[1]; |
---|
2021 | matrix a2=hn2[1]; |
---|
2022 | intvec h1=hn1[2]; |
---|
2023 | intvec h2=hn2[2]; |
---|
2024 | if (hn1[3]!=hn2[3]) { |
---|
2025 | //-- die jeweils erste Zeile von hn1,hn2 gehoert zu verschiedenen Parametern - |
---|
2026 | //---------------- d.h. beide Kurven schneiden sich transversal -------------- |
---|
2027 | separated=1; |
---|
2028 | } |
---|
2029 | else { |
---|
2030 | //--------- die jeweils erste Zeile gehoert zum gleichen Parameter ----------- |
---|
2031 | unterschied=0; |
---|
2032 | for (s=1; (h1[s]==h2[s]) && (s<size(h1)) && (s<size(h2)) |
---|
2033 | && (unterschied==0); s++) { |
---|
2034 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]); i++) {;} |
---|
2035 | if (i<=h1[s]) { |
---|
2036 | unterschied=1; |
---|
2037 | s--; // um s++ am Schleifenende wieder auszugleichen |
---|
2038 | } |
---|
2039 | } |
---|
2040 | if (unterschied==0) { |
---|
2041 | if ((s<size(h1)) && (s<size(h2))) { |
---|
2042 | for (i=1; (a1[s,i]==a2[s,i]) && (i<=h1[s]) && (i<=h2[s]); i++) {;} |
---|
2043 | } |
---|
2044 | else { |
---|
2045 | //-------------- Sonderfall: Unterschied in letzter Zeile suchen ------------- |
---|
2046 | // Beachte: Es koennen undefinierte Stellen auftreten, bei abbrechender HNE |
---|
2047 | // muss die Ende-Markierung weg, h_[r] ist unendlich, die Matrix muss mit |
---|
2048 | // Nullen fortgesetzt gedacht werden |
---|
2049 | //---------------------------------------------------------------------------- |
---|
2050 | if (ncols(a1)>ncols(a2)) { j=ncols(a1); } |
---|
2051 | else { j=ncols(a2); } |
---|
2052 | unterschied=0; |
---|
2053 | if ((h1[s]>0) && (s==size(h1))) { |
---|
2054 | a1[s,h1[s]+1]=0; |
---|
2055 | if (ncols(a1)<=ncols(a2)) { unterschied=1; } |
---|
2056 | } |
---|
2057 | if ((h2[s]>0) && (s==size(h2))) { |
---|
2058 | a2[s,h2[s]+1]=0; |
---|
2059 | if (ncols(a2)<=ncols(a1)) { unterschied=1; } |
---|
2060 | } |
---|
2061 | if (unterschied==1) { // mind. eine HNE war endlich |
---|
2062 | matrix ma1[1][j]=a1[s,1..ncols(a1)]; // und bedarf der Fortsetzung |
---|
2063 | matrix ma2[1][j]=a2[s,1..ncols(a2)]; // mit Nullen |
---|
2064 | } |
---|
2065 | else { |
---|
2066 | if (ncols(a1)>ncols(a2)) { j=ncols(a2); } |
---|
2067 | else { j=ncols(a1); } |
---|
2068 | matrix ma1[1][j]=a1[s,1..j]; // Beschr. auf vergleichbaren |
---|
2069 | matrix ma2[1][j]=a2[s,1..j]; // Teil (der evtl. y's enth.) |
---|
2070 | } |
---|
2071 | for (i=1; (ma1[1,i]==ma2[1,i]) && (i<j) && (ma1[1,i]!=var(2)); i++) {;} |
---|
2072 | if (ma1[1,i]==ma2[1,i]) { |
---|
2073 | "//** The two HNE's are identical!"; |
---|
2074 | "//** You have either tried to compare a branch with itself,"; |
---|
2075 | "//** or the two branches have been developed separately."; |
---|
2076 | "// In the latter case use `extdevelop' to extend the HNE's until", |
---|
2077 | "they differ."; |
---|
2078 | return(-1); |
---|
2079 | } |
---|
2080 | if ((ma1[1,i]==var(2)) || (ma2[1,i]==var(2))) { |
---|
2081 | "//** The two HNE's are (so far) identical. This is because they", |
---|
2082 | "have been"; |
---|
2083 | "//** computed separately. I need more data; use `extdevelop' to", |
---|
2084 | "extend them,"; |
---|
2085 | if (ma1[1,i]==var(2)) {"//** at least the first one.";} |
---|
2086 | else {"//** at least the second one.";} |
---|
2087 | return(-1); |
---|
2088 | } |
---|
2089 | } |
---|
2090 | } |
---|
2091 | separated=i; |
---|
2092 | for (j=1; j<s; j++) { separated=separated+h1[j]; } |
---|
2093 | } |
---|
2094 | return(separated); |
---|
2095 | } |
---|
2096 | example |
---|
2097 | { "EXAMPLE:"; echo = 2; |
---|
2098 | int p=printlevel; printlevel=-1; |
---|
2099 | ring r=0,(x,y),dp; |
---|
2100 | list hne1=develop(x); |
---|
2101 | list hne2=develop(x+y); |
---|
2102 | list hne3=develop(x+y2); |
---|
2103 | separateHNE(hne1,hne2); // two transversal lines |
---|
2104 | separateHNE(hne1,hne3); // one quadratic transform. gives 1st example |
---|
2105 | printlevel=p; |
---|
2106 | } |
---|
2107 | /////////////////////////////////////////////////////////////////////////////// |
---|
2108 | |
---|
2109 | proc displayHNE(list ldev,list #) |
---|
2110 | "USAGE: displayHNE(L[,n]); L list, n int |
---|
2111 | ASSUME: L is the output of @code{develop(f)}, or of @code{exdevelop(f,n)}, |
---|
2112 | or of @code{hnexpansion(f[,\"ess\"])}, or (one entry in) the list |
---|
2113 | @code{hne} in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
2114 | RETURN: - if only one argument is given, no return value, but |
---|
2115 | display an ideal HNE of the following form: |
---|
2116 | @example |
---|
2117 | HNE[1]=-y+[]*z(0)^1+[]*z(0)^2+...+z(0)^<>*z(1) |
---|
2118 | HNE[2]=-x+ []*z(1)^2+...+z(1)^<>*z(2) |
---|
2119 | HNE[3]= []*z(2)^2+...+z(2)^<>*z(3) |
---|
2120 | ....... .......................... |
---|
2121 | HNE[r+1]= []*z(r)^2+[]*z(r)^3+...... |
---|
2122 | @end example |
---|
2123 | where @code{x},@code{y} are the first 2 variables of the basering. |
---|
2124 | The values of @code{[]} are the coefficients of the Hamburger-Noether |
---|
2125 | matrix, the values of @code{<>} are represented by @code{x} in the |
---|
2126 | HN-matrix.@* |
---|
2127 | - if a second argument is given, create and export a new ring with |
---|
2128 | name @code{displayring} containing an ideal @code{HNE} as described |
---|
2129 | above.@* |
---|
2130 | - if L corresponds to the output of @code{hnexpansion(f[,\"ess\"])} |
---|
2131 | or to the list @code{hne} in the ring created by @code{hnexpansion(f[,\"ess\"])}, |
---|
2132 | @code{displayHNE(L[,n])} shows the HNE's of all branches of f in the form |
---|
2133 | described above. The optional parameter is then ignored. |
---|
2134 | NOTE: The 1st line of the above ideal (i.e., @code{HNE[1]}) means that |
---|
2135 | @code{y=[]*z(0)^1+...}, the 2nd line (@code{HNE[2]}) means that |
---|
2136 | @code{x=[]*z(1)^2+...}, so you can see which indeterminate |
---|
2137 | corresponds to which line (it's also possible that @code{x} corresponds |
---|
2138 | to the 1st line and @code{y} to the 2nd). |
---|
2139 | |
---|
2140 | SEE ALSO: develop, hnexpansion |
---|
2141 | EXAMPLE: example displayHNE; shows an example |
---|
2142 | " |
---|
2143 | { |
---|
2144 | if ((typeof(ldev[1])=="list") || (typeof(ldev[1])=="none")) { |
---|
2145 | for (int i=1; i<=size(ldev); i++) { |
---|
2146 | "// Hamburger-Noether development of branch nr."+string(i)+":"; |
---|
2147 | displayHNE(ldev[i]);""; |
---|
2148 | } |
---|
2149 | return(); |
---|
2150 | } |
---|
2151 | //--------------------- Initialisierungen und Ringwechsel -------------------- |
---|
2152 | matrix m=ldev[1]; |
---|
2153 | intvec v=ldev[2]; |
---|
2154 | int switch=ldev[3]; |
---|
2155 | if (switch==-1) { |
---|
2156 | "An error has occurred throughout the expansion, so there is no HNE."; |
---|
2157 | return(ideal(0)); |
---|
2158 | } |
---|
2159 | def altring=basering; |
---|
2160 | ///////////////////////////////////////////////////////// |
---|
2161 | // Change by T. Keilen 08.06.2002 |
---|
2162 | // ring + ring does not work if one ring is an algebraic extension |
---|
2163 | /* |
---|
2164 | if (parstr(basering)!="") { |
---|
2165 | if (charstr(basering)!=string(char(basering))+","+parstr(basering)) { |
---|
2166 | execute |
---|
2167 | ("ring dazu=("+charstr(basering)+"),z(0.."+string(size(v)-1)+"),ls;"); |
---|
2168 | } |
---|
2169 | else { ring dazu=char(altring),z(0..size(v)-1),ls; } |
---|
2170 | } |
---|
2171 | else { ring dazu=char(altring),z(0..size(v)-1),ls; } |
---|
2172 | def displayring=dazu+altring; |
---|
2173 | */ |
---|
2174 | execute("ring displayring=("+charstr(basering)+"),(z(0.."+string(size(v)-1)+"),"+varstr(basering)+"),(ls("+string(size(v))+"),"+ordstr(basering)+");"); |
---|
2175 | // End change by T. Keilen |
---|
2176 | ////////////////////////////////////////////////////////////// |
---|
2177 | setring displayring; |
---|
2178 | if (size(#) != 0) { |
---|
2179 | export displayring; |
---|
2180 | } |
---|
2181 | map holematrix=altring,0; // mappt nur die Monome vom Grad Null |
---|
2182 | matrix m=holematrix(m); |
---|
2183 | //--------------------- Erzeuge Matrix n mit n[i,j]=z(j-1)^i ----------------- |
---|
2184 | int i; |
---|
2185 | matrix n[ncols(m)][nrows(m)]; |
---|
2186 | for (int j=1; j<=nrows(m); j++) { |
---|
2187 | for (i=1; i<=ncols(m); i++) { n[i,j]=z(j-1)^i; } |
---|
2188 | } |
---|
2189 | matrix displaymat=m*n; |
---|
2190 | ideal HNE; |
---|
2191 | for (i=1; i<nrows(m); i++) { HNE[i]=displaymat[i,i]+z(i)*z(i-1)^v[i]; } |
---|
2192 | HNE[nrows(m)]=displaymat[nrows(m),nrows(m)]; |
---|
2193 | if (nrows(m)<2) { HNE[2]=z(0); } |
---|
2194 | if (switch==0) { |
---|
2195 | HNE[1] = HNE[1]-var(size(v)+2); |
---|
2196 | HNE[2] = HNE[2]-var(size(v)+1); |
---|
2197 | } |
---|
2198 | else { |
---|
2199 | HNE[1] = HNE[1]-var(size(v)+1); |
---|
2200 | HNE[2] = HNE[2]-var(size(v)+2); |
---|
2201 | } |
---|
2202 | if (size(#) == 0) { |
---|
2203 | HNE; |
---|
2204 | return(); |
---|
2205 | } |
---|
2206 | if (size(#) != 0) { |
---|
2207 | "// basering is now 'displayring' containing ideal 'HNE'"; |
---|
2208 | keepring(displayring); |
---|
2209 | export(HNE); |
---|
2210 | return(HNE); |
---|
2211 | } |
---|
2212 | } |
---|
2213 | example |
---|
2214 | { "EXAMPLE:"; echo = 2; |
---|
2215 | ring r=0,(x,y),dp; |
---|
2216 | poly f=x3+2xy2+y2; |
---|
2217 | list hn=develop(f); |
---|
2218 | displayHNE(hn); |
---|
2219 | } |
---|
2220 | /////////////////////////////////////////////////////////////////////////////// |
---|
2221 | // procedures for reducible curves // |
---|
2222 | /////////////////////////////////////////////////////////////////////////////// |
---|
2223 | |
---|
2224 | // proc newtonhoehne (poly f) |
---|
2225 | // USAGE: newtonhoehne(f); f poly |
---|
2226 | // ASSUME: basering = ...,(x,y),ds or ls |
---|
2227 | // RETURN: list of intvec(x,y) of coordinates of the newtonpolygon of f |
---|
2228 | // NOTE: This proc is only available in versions of Singular that know the |
---|
2229 | // command system("newton",f); f poly |
---|
2230 | // { |
---|
2231 | // intvec nm = getnm(f); |
---|
2232 | // if ((nm[1]>0) && (nm[2]>0)) { f=jet(f,nm[1]*nm[2],nm); } |
---|
2233 | // list erg=system("newton",f); |
---|
2234 | // int i; list Ausgabe; |
---|
2235 | // for (i=1; i<=size(erg); i++) { Ausgabe[i]=leadexp(erg[i]); } |
---|
2236 | // return(Ausgabe); |
---|
2237 | // } |
---|
2238 | /////////////////////////////////////////////////////////////////////////////// |
---|
2239 | |
---|
2240 | proc newtonpoly (poly f, int #) |
---|
2241 | "USAGE: newtonpoly(f); f poly |
---|
2242 | ASSUME: basering has exactly two variables; @* |
---|
2243 | f is convenient, that is, f(x,0) != 0 != f(0,y). |
---|
2244 | RETURN: list of intvecs (= coordinates x,y of the Newton polygon of f). |
---|
2245 | NOTE: Procedure uses @code{execute}; this can be avoided by calling |
---|
2246 | @code{newtonpoly(f,1)} if the ordering of the basering is @code{ls}. |
---|
2247 | KEYWORDS: Newton polygon |
---|
2248 | EXAMPLE: example newtonpoly; shows an example |
---|
2249 | " |
---|
2250 | { |
---|
2251 | if (size(#)>=1) |
---|
2252 | { |
---|
2253 | if (typeof(#[1])=="int") |
---|
2254 | { |
---|
2255 | // this is done to avoid the "execute" command for procedures in |
---|
2256 | // hnoether.lib |
---|
2257 | def is_ls=#[1]; |
---|
2258 | } |
---|
2259 | } |
---|
2260 | if (defined(is_ls)<=0) |
---|
2261 | { |
---|
2262 | def @Rold=basering; |
---|
2263 | execute("ring @RR=("+charstr(basering)+"),("+varstr(basering)+"),ls;"); |
---|
2264 | poly f=imap(@Rold,f); |
---|
2265 | } |
---|
2266 | intvec A=(0,ord(subst(f,var(1),0))); |
---|
2267 | intvec B=(ord(subst(f,var(2),0)),0); |
---|
2268 | intvec C,H; list L; |
---|
2269 | int abbruch,i; |
---|
2270 | poly hilf; |
---|
2271 | L[1]=A; |
---|
2272 | f=jet(f,A[2]*B[1]-1,intvec(A[2],B[1])); |
---|
2273 | if (defined(is_ls)) |
---|
2274 | { |
---|
2275 | map xytausch=basering,var(2),var(1); |
---|
2276 | } |
---|
2277 | else |
---|
2278 | { |
---|
2279 | map xytausch=@RR,var(2),var(1); |
---|
2280 | } |
---|
2281 | for (i=2; f!=0; i++) |
---|
2282 | { |
---|
2283 | abbruch=0; |
---|
2284 | while (abbruch==0) |
---|
2285 | { |
---|
2286 | C=leadexp(f); |
---|
2287 | if(jet(f,A[2]*C[1]-A[1]*C[2]-1,intvec(A[2]-C[2],C[1]-A[1]))==0) |
---|
2288 | { |
---|
2289 | abbruch=1; |
---|
2290 | } |
---|
2291 | else |
---|
2292 | { |
---|
2293 | f=jet(f,-C[1]-1,intvec(-1,0)); |
---|
2294 | } |
---|
2295 | } |
---|
2296 | hilf=jet(f,A[2]*C[1]-A[1]*C[2],intvec(A[2]-C[2],C[1]-A[1])); |
---|
2297 | H=leadexp(xytausch(hilf)); |
---|
2298 | A=H[2],H[1]; |
---|
2299 | L[i]=A; |
---|
2300 | f=jet(f,A[2]*B[1]-1,intvec(A[2],B[1]-A[1])); |
---|
2301 | } |
---|
2302 | L[i]=B; |
---|
2303 | if (defined(is_ls)) |
---|
2304 | { |
---|
2305 | return(L); |
---|
2306 | } |
---|
2307 | else |
---|
2308 | { |
---|
2309 | setring @Rold; |
---|
2310 | return(L); |
---|
2311 | } |
---|
2312 | } |
---|
2313 | example |
---|
2314 | { |
---|
2315 | "EXAMPLE:"; echo = 2; |
---|
2316 | ring r=0,(x,y),ls; |
---|
2317 | poly f=x5+2x3y-x2y2+3xy5+y6-y7; |
---|
2318 | newtonpoly(f); |
---|
2319 | } |
---|
2320 | /////////////////////////////////////////////////////////////////////////////// |
---|
2321 | |
---|
2322 | proc is_NND (poly f, list #) |
---|
2323 | "USAGE: is_NND(f[,mu,NP]); f poly, mu int, NP list of intvecs |
---|
2324 | ASSUME: f is convenient, that is, f(x,0) != 0 != f(0,y);@* |
---|
2325 | mu (optional) is Milnor number of f.@* |
---|
2326 | NP (optional) is output of @code{newtonpoly(f)}. |
---|
2327 | RETURN: int: 1 if f in Newton non-degenerate, 0 otherwise. |
---|
2328 | SEE ALSO: newtonpoly |
---|
2329 | KEYWORDS: Newton non-degenerate; Newton polygon |
---|
2330 | EXAMPLE: example is_NND; shows examples |
---|
2331 | " |
---|
2332 | { |
---|
2333 | int i; |
---|
2334 | int i_print=printlevel-voice+2; |
---|
2335 | |
---|
2336 | if (size(#)==0) |
---|
2337 | { |
---|
2338 | int mu=milnor(f); |
---|
2339 | list NP=newtonpoly(f); |
---|
2340 | } |
---|
2341 | else |
---|
2342 | { |
---|
2343 | if (typeof(#[1])=="int") |
---|
2344 | { |
---|
2345 | def mu=#[1]; |
---|
2346 | def NP=#[2]; |
---|
2347 | for (i=1;i<=size(NP);i++) |
---|
2348 | { |
---|
2349 | if (typeof(NP[i])!="intvec") |
---|
2350 | { |
---|
2351 | print("third input cannot be Newton polygon ==> ignored ") |
---|
2352 | NP=newtonpoly(f); |
---|
2353 | i=size(NP)+1; |
---|
2354 | } |
---|
2355 | } |
---|
2356 | } |
---|
2357 | else |
---|
2358 | { |
---|
2359 | print("second input cannot be Milnor number ==> ignored ") |
---|
2360 | int mu=milnor(f); |
---|
2361 | NP=newtonpoly(f); |
---|
2362 | } |
---|
2363 | } |
---|
2364 | |
---|
2365 | // computation of the Newton number: |
---|
2366 | int s=size(NP); |
---|
2367 | int nN=-NP[1][2]-NP[s][1]+1; |
---|
2368 | intmat m[2][2]; |
---|
2369 | for(i=1;i<=s-1;i++) |
---|
2370 | { |
---|
2371 | m=NP[i+1],NP[i]; |
---|
2372 | nN=nN+det(m); |
---|
2373 | } |
---|
2374 | |
---|
2375 | if(mu==nN) |
---|
2376 | { // the Newton-polygon is non-degenerate |
---|
2377 | return(1); |
---|
2378 | } |
---|
2379 | else |
---|
2380 | { |
---|
2381 | return(0); |
---|
2382 | } |
---|
2383 | } |
---|
2384 | example |
---|
2385 | { |
---|
2386 | "EXAMPLE:"; echo = 2; |
---|
2387 | ring r=0,(x,y),ls; |
---|
2388 | poly f=x5+y3; |
---|
2389 | is_NND(f); |
---|
2390 | poly g=(x-y)^5+3xy5+y6-y7; |
---|
2391 | is_NND(g); |
---|
2392 | |
---|
2393 | // if already computed, one should give the Minor number and Newton polygon |
---|
2394 | // as second and third input: |
---|
2395 | int mu=milnor(g); |
---|
2396 | list NP=newtonpoly(g); |
---|
2397 | is_NND(g,mu,NP); |
---|
2398 | } |
---|
2399 | |
---|
2400 | |
---|
2401 | /////////////////////////////////////////////////////////////////////////////// |
---|
2402 | |
---|
2403 | proc charPoly(poly f, int M, int N) |
---|
2404 | "USAGE: charPoly(f,M,N); f bivariate poly, M,N int: length and height |
---|
2405 | of Newton polygon of f, which has to be only one line |
---|
2406 | RETURN: the characteristic polynomial of f |
---|
2407 | EXAMPLE: example charPoly; shows an example |
---|
2408 | " |
---|
2409 | { |
---|
2410 | poly charp; |
---|
2411 | int Np=N/ gcd(M,N); |
---|
2412 | f=subst(f,var(1),1); |
---|
2413 | for(charp=0; f<>0; f=f-lead(f)) |
---|
2414 | { charp=charp+leadcoef(f)*var(2)^(leadexp(f)[2]/ Np);} |
---|
2415 | return(charp); |
---|
2416 | } |
---|
2417 | example |
---|
2418 | { "EXAMPLE:"; echo = 2; |
---|
2419 | ring exring=0,(x,y),dp; |
---|
2420 | charPoly(y4+2y3x2-yx6+x8,8,4); |
---|
2421 | charPoly(y6+3y3x2-x4,4,6); |
---|
2422 | } |
---|
2423 | /////////////////////////////////////////////////////////////////////////////// |
---|
2424 | |
---|
2425 | proc find_in_list(list L,int p) |
---|
2426 | "USAGE: find_in_list(L,p); L: list of intvec(x,y) |
---|
2427 | (sorted in y: L[1][2]>=L[2][2]), int p >= 0 |
---|
2428 | RETURN: int i: L[i][2]=p if existent; otherwise i with L[i][2]<p if existent; |
---|
2429 | otherwise i = size(L)+1; |
---|
2430 | EXAMPLE: example find_in_list; shows an example |
---|
2431 | " |
---|
2432 | { |
---|
2433 | int i; |
---|
2434 | L[size(L)+1]=intvec(0,-1); // falls p nicht in L[.][2] vorkommt |
---|
2435 | for (i=1; L[i][2]>p; i++) {;} |
---|
2436 | return(i); |
---|
2437 | } |
---|
2438 | example |
---|
2439 | { "EXAMPLE:"; echo = 2; |
---|
2440 | list L = intvec(0,4), intvec(1,2), intvec(2,1), intvec(4,0); |
---|
2441 | find_in_list(L,1); |
---|
2442 | L[find_in_list(L,2)]; |
---|
2443 | } |
---|
2444 | /////////////////////////////////////////////////////////////////////////////// |
---|
2445 | |
---|
2446 | proc get_last_divisor(int M, int N) |
---|
2447 | "USAGE: get_last_divisor(M,N); int M,N |
---|
2448 | RETURN: int Q: M=q1*N+r1, N=q2*r1+r2, ..., ri=Q*r(i+1) (Euclidean alg.) |
---|
2449 | EXAMPLE: example get_last_divisor; shows an example |
---|
2450 | " |
---|
2451 | { |
---|
2452 | int R=M%N; int Q=M / N; |
---|
2453 | while (R!=0) {M=N; N=R; R=M%N; Q=M / N;} |
---|
2454 | return(Q) |
---|
2455 | } |
---|
2456 | example |
---|
2457 | { "EXAMPLE"; echo = 2; |
---|
2458 | ring r=0,(x,y),dp; |
---|
2459 | get_last_divisor(12,10); |
---|
2460 | } |
---|
2461 | /////////////////////////////////////////////////////////////////////////////// |
---|
2462 | proc redleit (poly f,intvec S, intvec E) |
---|
2463 | "USAGE: redleit(f,S,E); f poly, S,E intvec(x,y) |
---|
2464 | S,E are two different points on a line in the Newton diagram of f |
---|
2465 | RETURN: poly g: all monomials of f which lie on or below that line |
---|
2466 | NOTE: The main purpose is that if the line defined by S and E is part of the |
---|
2467 | Newton polygon, the result is the quasihomogeneous leading form of f |
---|
2468 | wrt. that line. |
---|
2469 | SEE ALSO: newtonpoly |
---|
2470 | EXAMPLE: example redleit; shows an example |
---|
2471 | " |
---|
2472 | { |
---|
2473 | if (E[1]<S[1]) { intvec H=E; E=S; S=H; } // S,E verkehrt herum eingegeben |
---|
2474 | return(jet(f,E[1]*S[2]-E[2]*S[1],intvec(S[2]-E[2],E[1]-S[1]))); |
---|
2475 | } |
---|
2476 | example |
---|
2477 | { "EXAMPLE"; echo = 2; |
---|
2478 | ring exring=0,(x,y),dp; |
---|
2479 | redleit(y6+xy4-2x3y2+x4y+x6,intvec(3,2),intvec(4,1)); |
---|
2480 | } |
---|
2481 | /////////////////////////////////////////////////////////////////////////////// |
---|
2482 | |
---|
2483 | |
---|
2484 | proc extdevelop (list l, int Exaktheit) |
---|
2485 | "USAGE: extdevelop(L,N); list L, int N |
---|
2486 | ASSUME: L is the output of @code{develop(f)}, or of @code{extdevelop(l,n)}, |
---|
2487 | or one entry in the list @code{hne} in the ring created by |
---|
2488 | @code{hnexpansion(f[,\"ess\"])}. |
---|
2489 | RETURN: an extension of the Hamburger-Noether development of f as a list |
---|
2490 | in the same format as L has (up to the last entry in the output |
---|
2491 | of @code{develop(f)}).@* |
---|
2492 | Type @code{help develop;}, resp. @code{help hnexpansion;} for more |
---|
2493 | details. |
---|
2494 | NOTE: The new HN-matrix will have at least N columns (if the HNE is not |
---|
2495 | finite). In particular, if f is irreducible then (in most cases) |
---|
2496 | @code{extdevelop(develop(f),N)} will produce the same result as |
---|
2497 | @code{develop(f,N)}.@* |
---|
2498 | If the matrix M of L has n columns then, compared with |
---|
2499 | @code{parametrisation(L)}, @code{paramametrize(extdevelop(L,N))} will increase the |
---|
2500 | exactness by at least (N-n) more significant monomials. |
---|
2501 | SEE ALSO: develop, hnexpansion, parametrisation |
---|
2502 | EXAMPLE: example extdevelop; shows an example |
---|
2503 | " |
---|
2504 | { |
---|
2505 | //------------ Initialisierungen und Abfangen unzulaessiger Aufrufe ---------- |
---|
2506 | matrix m=l[1]; |
---|
2507 | intvec v=l[2]; |
---|
2508 | int switch=l[3]; |
---|
2509 | if (nvars(basering) < 2) { |
---|
2510 | " Sorry. I need two variables in the ring."; |
---|
2511 | return(list(matrix(maxideal(1)[1]),intvec(0),-1,poly(0)));} |
---|
2512 | if (switch==-1) { |
---|
2513 | "An error has occurred in develop, so there is no HNE and no extension."; |
---|
2514 | return(l); |
---|
2515 | } |
---|
2516 | poly f=l[4]; |
---|
2517 | if (f==0) { |
---|
2518 | " No extension is possible"; |
---|
2519 | return(l); |
---|
2520 | } |
---|
2521 | int Q=v[size(v)]; |
---|
2522 | if (Q>0) { |
---|
2523 | " The HNE was already exact"; |
---|
2524 | return(l); |
---|
2525 | } |
---|
2526 | else { |
---|
2527 | if (Q==-1) { Q=ncols(m); } |
---|
2528 | else { Q=-Q-1; } |
---|
2529 | } |
---|
2530 | int zeile=nrows(m); |
---|
2531 | int spalten,i,M; |
---|
2532 | ideal lastrow=m[zeile,1..Q]; |
---|
2533 | int ringwechsel=(varstr(basering)!="x,y") or (ordstr(basering)!="ls(2),C"); |
---|
2534 | |
---|
2535 | //------------------------- Ringwechsel, falls noetig ------------------------ |
---|
2536 | if (ringwechsel) { |
---|
2537 | def altring = basering; |
---|
2538 | int p = char(basering); |
---|
2539 | if (charstr(basering)!=string(p)) { |
---|
2540 | string tststr=charstr(basering); |
---|
2541 | tststr=tststr[1..find(tststr,",")-1]; //-> "p^k" bzw. "p" |
---|
2542 | if (tststr==string(p)) { |
---|
2543 | if (size(parstr(basering))>1) { // ring (p,a,..),... |
---|
2544 | execute("ring extdguenstig=("+charstr(basering)+"),(x,y),ls;"); |
---|
2545 | } |
---|
2546 | else { // ring (p,a),... |
---|
2547 | string mipl=string(minpoly); |
---|
2548 | ring extdguenstig=(p,`parstr(basering)`),(x,y),ls; |
---|
2549 | if (mipl!="0") { execute("minpoly="+mipl+";"); } |
---|
2550 | } |
---|
2551 | } |
---|
2552 | else { |
---|
2553 | execute("ring extdguenstig=("+charstr(basering)+"),(x,y),ls;"); |
---|
2554 | } |
---|
2555 | } |
---|
2556 | else { // charstr(basering)== p : no parameter |
---|
2557 | ring extdguenstig=p,(x,y),ls; |
---|
2558 | } |
---|
2559 | export extdguenstig; |
---|
2560 | map hole=altring,x,y; |
---|
2561 | //----- map kann sehr zeitaufwendig sein, daher Vermeidung, wo moeglich: ----- |
---|
2562 | if (nvars(altring)==2) { poly f=fetch(altring,f); } |
---|
2563 | else { poly f=hole(f); } |
---|
2564 | ideal a=hole(lastrow); |
---|
2565 | } |
---|
2566 | else { ideal a=lastrow; } |
---|
2567 | list Newton=newtonpoly(f,1); |
---|
2568 | int M1=Newton[size(Newton)-1][1]; // konstant |
---|
2569 | number delt; |
---|
2570 | if (Newton[size(Newton)-1][2]!=1) { |
---|
2571 | " *** The transformed polynomial was not valid!!";} |
---|
2572 | else { |
---|
2573 | //--------------------- Fortsetzung der HNE ---------------------------------- |
---|
2574 | while (Q<Exaktheit) { |
---|
2575 | M=ord(subst(f,y,0)); |
---|
2576 | Q=M-M1; |
---|
2577 | //------ quasihomogene Leitform ist c*x^M1*y+d*x^(M1+Q) => delta=-d/c: ------- |
---|
2578 | delt=-koeff(f,M,0)/koeff(f,M1,1); |
---|
2579 | a[Q]=delt; |
---|
2580 | dbprint(printlevel-voice+2,"a("+string(zeile-1)+","+string(Q)+") = "+string(delt)); |
---|
2581 | if (Q<Exaktheit) { |
---|
2582 | f=T1_Transform(f,delt,Q); |
---|
2583 | if (defined(HNDebugOn)) { "transformed polynomial:",f; } |
---|
2584 | if (subst(f,y,0)==0) { |
---|
2585 | dbprint(printlevel-voice+2,"The HNE is finite!"); |
---|
2586 | a[Q+1]=x; Exaktheit=Q; |
---|
2587 | f=0; // Speicherersparnis: f nicht mehr gebraucht |
---|
2588 | } |
---|
2589 | } |
---|
2590 | } |
---|
2591 | } |
---|
2592 | //------- Wechsel in alten Ring, Zusammensetzung alte HNE + Erweiterung ------ |
---|
2593 | if (ringwechsel) { |
---|
2594 | setring altring; |
---|
2595 | map zurueck=extdguenstig,var(1),var(2); |
---|
2596 | if (nvars(altring)==2) { f=fetch(extdguenstig,f); } |
---|
2597 | else { f=zurueck(f); } |
---|
2598 | lastrow=zurueck(a); |
---|
2599 | } |
---|
2600 | else { lastrow=a; } |
---|
2601 | if (ncols(lastrow)>ncols(m)) { spalten=ncols(lastrow); } |
---|
2602 | else { spalten=ncols(m); } |
---|
2603 | matrix mneu[zeile][spalten]; |
---|
2604 | for (i=1; i<nrows(m); i++) { |
---|
2605 | mneu[i,1..ncols(m)]=m[i,1..ncols(m)]; |
---|
2606 | } |
---|
2607 | mneu[zeile,1..ncols(lastrow)]=lastrow; |
---|
2608 | if (lastrow[ncols(lastrow)]!=var(1)) { |
---|
2609 | if (ncols(lastrow)==spalten) { v[zeile]=-1; } // keine undefinierten Stellen |
---|
2610 | else { |
---|
2611 | v[zeile]=-Q-1; |
---|
2612 | for (i=ncols(lastrow)+1; i<=spalten; i++) { |
---|
2613 | mneu[zeile,i]=var(2); // fuelle nicht def. Stellen der Matrix auf |
---|
2614 | }}} |
---|
2615 | else { v[zeile]=Q; } // HNE war exakt |
---|
2616 | if (ringwechsel) |
---|
2617 | { |
---|
2618 | if(system("with","Namespaces")) { kill Top::extdguenstig; } |
---|
2619 | kill extdguenstig; |
---|
2620 | } |
---|
2621 | |
---|
2622 | return(list(mneu,v,switch,f)); |
---|
2623 | } |
---|
2624 | example |
---|
2625 | { |
---|
2626 | if (defined(HNEring)) |
---|
2627 | { |
---|
2628 | def save_r_i_n_g=HNEring; |
---|
2629 | kill HNEring; |
---|
2630 | } |
---|
2631 | // ------ the example starts here ------- |
---|
2632 | "EXAMPLE:"; echo = 2; |
---|
2633 | ring exring=0,(x,y),dp; |
---|
2634 | list hn=hnexpansion(x14-3y2x11-y3x10-y2x9+3y4x8+y5x7+3y4x6+x5*(-y6+y5) |
---|
2635 | -3y6x3-y7x2+y8); |
---|
2636 | def HNEring=hn[1]; |
---|
2637 | setring HNEring; echo=0; |
---|
2638 | export(HNEring); echo=2; |
---|
2639 | print(hne[1][1]); // HNE of 1st branch is finite |
---|
2640 | print(extdevelop(hne[1],5)[1]); |
---|
2641 | print(hne[2][1]); // HNE of 2nd branch can be extended |
---|
2642 | list ehne=extdevelop(hne[2],5); |
---|
2643 | print(ehne[1]); // new HN-matrix has 5 columns |
---|
2644 | parametrisation(hne[2]); |
---|
2645 | parametrisation(ehne); |
---|
2646 | echo=0; |
---|
2647 | if (defined(save_r_i_n_g)) |
---|
2648 | { |
---|
2649 | kill HNEring; |
---|
2650 | def HNEring=save_r_i_n_g; |
---|
2651 | } |
---|
2652 | } |
---|
2653 | /////////////////////////////////////////////////////////////////////////////// |
---|
2654 | |
---|
2655 | proc stripHNE (list l) |
---|
2656 | "USAGE: stripHNE(L); L list |
---|
2657 | ASSUME: L is the output of @code{develop(f)}, or of |
---|
2658 | @code{extdevelop(develop(f),n)}, or (one entry of) the list |
---|
2659 | @code{hne} in the ring created by @code{hnexpansion(f[,\"ess\"])}. |
---|
2660 | RETURN: list in the same format as L, but all polynomials L[4], resp. |
---|
2661 | L[i][4], are set to zero. |
---|
2662 | NOTE: The purpose of this procedure is to remove huge amounts of data |
---|
2663 | no longer needed. It is useful, if one or more of the polynomials |
---|
2664 | in L consume much memory. It is still possible to compute invariants, |
---|
2665 | parametrizations etc. with the stripped HNE(s), but it is not possible |
---|
2666 | to use @code{extdevelop} with them. |
---|
2667 | SEE ALSO: develop, hnexpansion, extdevelop |
---|
2668 | EXAMPLE: example stripHNE; shows an example |
---|
2669 | " |
---|
2670 | { |
---|
2671 | list h; |
---|
2672 | if (typeof(l[1])=="matrix") { l[4]=poly(0); } |
---|
2673 | else { |
---|
2674 | for (int i=1; i<=size(l); i++) { |
---|
2675 | h=l[i]; |
---|
2676 | h[4]=poly(0); |
---|
2677 | l[i]=h; |
---|
2678 | } |
---|
2679 | } |
---|
2680 | return(l); |
---|
2681 | } |
---|
2682 | example |
---|
2683 | { |
---|
2684 | "EXAMPLE:"; echo = 2; |
---|
2685 | ring r=0,(x,y),dp; |
---|
2686 | list hne=develop(x2+y3+y4); |
---|
2687 | hne; |
---|
2688 | stripHNE(hne); |
---|
2689 | } |
---|
2690 | /////////////////////////////////////////////////////////////////////////////// |
---|
2691 | static proc extractHNEs(list HNEs, int transvers) |
---|
2692 | "USAGE: extractHNEs(HNEs,transvers); list HNEs (output from HN), |
---|
2693 | int transvers: 1 if x,y were exchanged, 0 else |
---|
2694 | RETURN: list of Hamburger-Noether-Extensions in the form of hne in hnexpansion |
---|
2695 | NOTE: This procedure is only for internal purpose; examples don't make sense |
---|
2696 | " |
---|
2697 | { |
---|
2698 | int i,maxspalte,hspalte,hnezaehler; |
---|
2699 | list HNEaktu,Ergebnis; |
---|
2700 | for (hnezaehler=1; hnezaehler<=size(HNEs); hnezaehler++) { |
---|
2701 | maxspalte=0; |
---|
2702 | HNEaktu=HNEs[hnezaehler]; |
---|
2703 | if (defined(HNDebugOn)) {"To process:";HNEaktu;} |
---|
2704 | if (size(HNEaktu)!=size(HNEaktu[1])+2) { |
---|
2705 | "The ideals and the hqs in HNEs[",hnezaehler,"] don't match!!"; |
---|
2706 | HNEs[hnezaehler]; |
---|
2707 | } |
---|
2708 | //------------ ermittle maximale Anzahl benoetigter Spalten: ---------------- |
---|
2709 | for (i=2; i<size(HNEaktu); i++) { |
---|
2710 | hspalte=ncols(HNEaktu[i]); |
---|
2711 | maxspalte=maxspalte*(hspalte < maxspalte)+hspalte*(hspalte >= maxspalte); |
---|
2712 | } |
---|
2713 | //------------- schreibe Ausgabe fuer hnezaehler-ten Zweig: ------------------ |
---|
2714 | matrix ma[size(HNEaktu)-2][maxspalte]; |
---|
2715 | for (i=1; i<=(size(HNEaktu)-2); i++) { |
---|
2716 | if (ncols(HNEaktu[i+1]) > 1) { |
---|
2717 | ma[i,1..ncols(HNEaktu[i+1])]=HNEaktu[i+1]; } |
---|
2718 | else { ma[i,1]=HNEaktu[i+1][1];} |
---|
2719 | } |
---|
2720 | Ergebnis[hnezaehler]=list(ma,HNEaktu[1],transvers,HNEaktu[size(HNEaktu)]); |
---|
2721 | kill ma; |
---|
2722 | } |
---|
2723 | return(Ergebnis); |
---|
2724 | } |
---|
2725 | /////////////////////////////////////////////////////////////////////////////// |
---|
2726 | |
---|
2727 | proc factorfirst(poly f, int M, int N) |
---|
2728 | "USAGE : factorfirst(f,M,N); f poly, M,N int |
---|
2729 | RETURN: number d: f=c*(y^(N/e) - d*x^(M/e))^e with e=gcd(M,N), number c fitting |
---|
2730 | 0 if d does not exist |
---|
2731 | EXAMPLE: example factorfirst; shows an example |
---|
2732 | " |
---|
2733 | { |
---|
2734 | number c = koeff(f,0,N); |
---|
2735 | number delt; |
---|
2736 | int eps,l; |
---|
2737 | int p=char(basering); |
---|
2738 | string ringchar=charstr(basering); |
---|
2739 | |
---|
2740 | if (c == 0) {"Something has gone wrong! I didn't get N correctly!"; exit;} |
---|
2741 | int e = gcd(M,N); |
---|
2742 | |
---|
2743 | if (p==0) { delt = koeff(f,M/ e,N - N/ e) / (-1*e*c); } |
---|
2744 | else { |
---|
2745 | if (e%p != 0) { delt = koeff(f,M/ e,N - N/ e) / (-1*e*c); } |
---|
2746 | else { |
---|
2747 | eps = e; |
---|
2748 | for (l = 0; eps%p == 0; l=l+1) { eps=eps/ p;} |
---|
2749 | if (defined(HNDebugOn)) {e," -> ",eps,"*",p,"^",l;} |
---|
2750 | delt = koeff(f,(M/ e)*p^l,(N/ e)*p^l*(eps-1)) / (-1*eps*c); |
---|
2751 | |
---|
2752 | if ((charstr(basering) != string(p)) and (delt != 0)) { |
---|
2753 | //------ coefficient field is not Z/pZ => (p^l)th root is not identity ------- |
---|
2754 | delt=0; |
---|
2755 | if (defined(HNDebugOn)) { |
---|
2756 | "trivial factorization not implemented for", |
---|
2757 | "parameters---I've to use 'factorize'"; |
---|
2758 | } |
---|
2759 | } |
---|
2760 | } |
---|
2761 | } |
---|
2762 | if (defined(HNDebugOn)) {"quasihomogeneous leading form:",f," = ",c, |
---|
2763 | "* (y^"+string(N/ e),"-",delt,"* x^"+string(M/ e)+")^",e," ?";} |
---|
2764 | if (f != c*(var(2)^(N/ e) - delt*var(1)^(M/ e))^e) {return(0);} |
---|
2765 | else {return(delt);} |
---|
2766 | } |
---|
2767 | example |
---|
2768 | { "EXAMPLE:"; echo = 2; |
---|
2769 | ring exring=7,(x,y),dp; |
---|
2770 | factorfirst(2*(y3-3x4)^5,20,15); |
---|
2771 | factorfirst(x14+y7,14,7); |
---|
2772 | factorfirst(x14+x8y3+y7,14,7); |
---|
2773 | } |
---|
2774 | |
---|
2775 | /////////////////////////////////////////////////////////////////////////////// |
---|
2776 | // |
---|
2777 | // the command HNdevelop is obsolete --> here is the former help string: |
---|
2778 | // |
---|
2779 | /////////////////////////////////////////////////////////////////////////////// |
---|
2780 | // |
---|
2781 | //ASSUME: f is a bivariate polynomial (in the first 2 ring variables) |
---|
2782 | //CREATE: ring with name @code{HNEring}, variables @code{x,y} and ordering |
---|
2783 | // @code{ls} over a field extension of the current basering's ground |
---|
2784 | // field. @* |
---|
2785 | // Since the Hamburger-Noether development usually does not exist |
---|
2786 | // in the originally given basering, @code{HNdevelop} always defines |
---|
2787 | // @code{HNEring} and CHANGES to it. The field extension is chosen |
---|
2788 | // minimally. |
---|
2789 | //RETURN: list @code{L} of lists @code{L[i]} (corresponding to the output of |
---|
2790 | // @code{develop(f[i])}, f[i] a branch of f, but the last entry being |
---|
2791 | // omitted). |
---|
2792 | //@texinfo |
---|
2793 | //@table @asis |
---|
2794 | //@item @code{L[i][1]}; matrix: |
---|
2795 | // Each row contains the coefficients of the corresponding line of the |
---|
2796 | // Hamburger-Noether expansion (HNE) for f[i]. The end of the line is |
---|
2797 | // marked in the matrix by the first ring variable (usually x). |
---|
2798 | //@item @code{L[i][2]}; intvec: |
---|
2799 | // indicating the length of lines of the HNE |
---|
2800 | //@item @code{L[i][3]}; int: |
---|
2801 | // 0 if the 1st ring variable was transversal (with respect to f[i]), @* |
---|
2802 | // 1 if the variables were changed at the beginning of the |
---|
2803 | // computation, @* |
---|
2804 | // -1 if an error has occurred. |
---|
2805 | //@item @code{L[i][4]}; poly: |
---|
2806 | // the transformed polynomial of f[i] to make it possible to extend the |
---|
2807 | // Hamburger-Noether development a posteriori without having to do |
---|
2808 | // all the previous calculation once again (0 if not needed) |
---|
2809 | //@end table |
---|
2810 | //@end texinfo |
---|
2811 | //NOTE: @code{HNdevelop} decides which procedure (@code{develop} or |
---|
2812 | // @code{reddevelop}) applies best to the given problem and calls it. @* |
---|
2813 | // If f is known to be irreducible as a power series, @code{develop(f)} |
---|
2814 | // should be chosen instead to avoid the change of basering. @* |
---|
2815 | // If @code{printlevel>=2} comments are displayed (default is |
---|
2816 | // @code{printlevel=0}). |
---|
2817 | // |
---|
2818 | //EXAMPLE: example HNdevelop; shows an example |
---|
2819 | // |
---|
2820 | proc HNdevelop (poly f) |
---|
2821 | "USAGE: HNdevelop(f); f poly |
---|
2822 | NOTE: command is obsolete, use hnexpansion(f) instead. |
---|
2823 | SEE ALSO: hnexpansion, develop, extdevelop, param, displayHNE |
---|
2824 | " |
---|
2825 | { |
---|
2826 | int irred=0; |
---|
2827 | //--------- Falls Ring (p^k,a),...: Wechsel in (p,a),... + minpoly ----------- |
---|
2828 | if ((find(charstr(basering),string(char(basering)))!=1) && |
---|
2829 | (charstr(basering)<>"real")) { |
---|
2830 | string strmip=string(minpoly); |
---|
2831 | string strf=string(f); |
---|
2832 | execute("ring tempr=("+string(char(basering))+","+parstr(basering)+"),(" |
---|
2833 | +varstr(basering)+"),dp;"); |
---|
2834 | execute("minpoly="+strmip+";"); |
---|
2835 | execute("poly f="+strf+";"); |
---|
2836 | list hne=reddevelop(f); |
---|
2837 | if ((voice==2) && (printlevel > -1)) { |
---|
2838 | "// Attention: The parameter",par(1),"has changed its meaning!"; |
---|
2839 | "// It need no longer be a generator of the cyclic group of unities!"; |
---|
2840 | } |
---|
2841 | } |
---|
2842 | else { |
---|
2843 | //--- Falls Ring (0,a),... + minpoly : solange factorize nicht in Singular --- |
---|
2844 | //------- implementiert ist, develop aufrufen (kann spaeter entfallen) ------- |
---|
2845 | if ((char(basering)==0) && (npars(basering)==1)) { |
---|
2846 | if (string(minpoly)<>"0") { irred=1; } |
---|
2847 | } |
---|
2848 | //------------------ Aufruf der geeigneten Prozedur -------------------------- |
---|
2849 | if (irred==0) { |
---|
2850 | list hne=pre_HN(f,0); // = reddevelop(f); |
---|
2851 | dbprint(printlevel-voice+2, |
---|
2852 | "// result: "+string(size(hne))+" branch(es) successfully computed,", |
---|
2853 | "// basering has changed to HNEring"); |
---|
2854 | } |
---|
2855 | else { |
---|
2856 | def altring=basering; |
---|
2857 | string strmip=string(minpoly); |
---|
2858 | ring HNEring=(char(altring),`parstr(altring)`),(x,y),ls; |
---|
2859 | execute("minpoly="+strmip+";"); |
---|
2860 | export HNEring; |
---|
2861 | poly f=fetch(altring,f); |
---|
2862 | list hn=develop(f,-1); |
---|
2863 | list hne; |
---|
2864 | if (hn[3] <> -1) { |
---|
2865 | hne[1]=list(hn[1],hn[2],hn[3],hn[4]); |
---|
2866 | if (hn[5] <> 1) { |
---|
2867 | " ** WARNING : The curve is reducible, but only one branch could be found!"; |
---|
2868 | } |
---|
2869 | } |
---|
2870 | else { " ** Sorry -- could not find a HNE."; } |
---|
2871 | dbprint(printlevel-voice+2,"// note: basering has changed to HNEring"); |
---|
2872 | } |
---|
2873 | } |
---|
2874 | keepring basering; |
---|
2875 | return(hne); |
---|
2876 | } |
---|
2877 | example |
---|
2878 | { |
---|
2879 | // -------- prepare for example --------- |
---|
2880 | if (nameof(basering)=="HNEring") { |
---|
2881 | def rettering=HNEring; |
---|
2882 | kill HNEring; |
---|
2883 | } |
---|
2884 | // ------ the example starts here ------- |
---|
2885 | "EXAMPLE:"; echo = 2; |
---|
2886 | ring r=0,(x,y),dp; |
---|
2887 | list hne=HNdevelop(x4-y6); |
---|
2888 | nameof(basering); |
---|
2889 | size(hne); // number of branches |
---|
2890 | print(hne[1][1]); // HN-matrix of 1st branch |
---|
2891 | param(hne[1]); // parametrization of 1st branch |
---|
2892 | param(hne[2]); // parametrization of 2nd branch |
---|
2893 | kill HNEring,r; |
---|
2894 | echo = 0; |
---|
2895 | // --- restore HNEring if previously defined --- |
---|
2896 | if (defined(rettering)) { |
---|
2897 | setring rettering; |
---|
2898 | def HNEring=rettering; |
---|
2899 | export HNEring; |
---|
2900 | } |
---|
2901 | } |
---|
2902 | |
---|
2903 | /////////////////////////////////////////////////////////////////////////////// |
---|
2904 | // |
---|
2905 | // the command reddevelop is obsolete --> here is the former help string: |
---|
2906 | // |
---|
2907 | /////////////////////////////////////////////////////////////////////////////// |
---|
2908 | //ASSUME: f is a bivariate polynomial (in the first 2 ring variables) |
---|
2909 | //CREATE: ring with name @code{HNEring}, variables @code{x,y} and ordering |
---|
2910 | // @code{ls} over a field extension of the current basering's ground |
---|
2911 | // field. @* |
---|
2912 | // Since the Hamburger-Noether development of a reducible curve |
---|
2913 | // singularity usually does not exist in the originally given basering, |
---|
2914 | // @code{reddevelop} always defines @code{HNEring} and CHANGES to it. |
---|
2915 | // The field extension is chosen minimally. |
---|
2916 | //RETURN: list @code{L} of lists @code{L[i]} (corresponding to the output of |
---|
2917 | // @code{develop(f[i])}, f[i] a branch of f, but the last entry being |
---|
2918 | // omitted). |
---|
2919 | //@texinfo |
---|
2920 | //@table @asis |
---|
2921 | //@item @code{L[i][1]}; matrix: |
---|
2922 | // Each row contains the coefficients of the corresponding line of the |
---|
2923 | // Hamburger-Noether expansion (HNE) for f[i]. The end of the line is |
---|
2924 | // marked in the matrix by the first ring variable (usually x). |
---|
2925 | //@item @code{L[i][2]}; intvec: |
---|
2926 | // indicating the length of lines of the HNE |
---|
2927 | //@item @code{L[i][3]}; int: |
---|
2928 | // 0 if the 1st ring variable was transversal (with respect to f[i]), @* |
---|
2929 | // 1 if the variables were changed at the beginning of the |
---|
2930 | // computation, @* |
---|
2931 | // -1 if an error has occurred. |
---|
2932 | //@item @code{L[i][4]}; poly: |
---|
2933 | // the transformed polynomial of f[i] to make it possible to extend the |
---|
2934 | // Hamburger-Noether development a posteriori without having to do |
---|
2935 | // all the previous calculation once again (0 if not needed) |
---|
2936 | //@end table |
---|
2937 | //@end texinfo |
---|
2938 | //NOTE: If @code{printlevel>=0} comments are displayed (default is |
---|
2939 | // @code{printlevel=0}). |
---|
2940 | // |
---|
2941 | //EXAMPLE: example reddevelop; shows an example |
---|
2942 | // |
---|
2943 | proc reddevelop (poly f) |
---|
2944 | "USAGE: reddevelop(f); f poly |
---|
2945 | NOTE: command is obsolete, use hnexpansion(f) instead. |
---|
2946 | SEE ALSO: hnexpansion, develop, extdevelop, param, displayHNE |
---|
2947 | " |
---|
2948 | { |
---|
2949 | list Ergebnis=pre_HN(f,0); |
---|
2950 | if (size(Ergebnis)>0) { // otherwise an error may have occurred |
---|
2951 | dbprint(printlevel-voice+2, |
---|
2952 | "// result: "+string(size(Ergebnis))+" branch(es) successfully computed,", |
---|
2953 | "// basering has changed to HNEring"); |
---|
2954 | } |
---|
2955 | |
---|
2956 | // ----- Lossen 10/02 : the branches have to be resorted to be able to |
---|
2957 | // ----- display the multsequence in a nice way |
---|
2958 | if (size(Ergebnis)>2) |
---|
2959 | { |
---|
2960 | int i,j,k,m; |
---|
2961 | list dummy; |
---|
2962 | int nbsave; |
---|
2963 | int no_br = size(Ergebnis); |
---|
2964 | intmat nbhd[no_br][no_br]; |
---|
2965 | for (i=1;i<no_br;i++) |
---|
2966 | { |
---|
2967 | for (j=i+1;j<=no_br;j++) |
---|
2968 | { |
---|
2969 | nbhd[i,j]=separateHNE(Ergebnis[i],Ergebnis[j]); |
---|
2970 | k=i+1; |
---|
2971 | while ( (nbhd[i,k] >= nbhd[i,j]) and (k<j) ) |
---|
2972 | { |
---|
2973 | k++; |
---|
2974 | } |
---|
2975 | if (k<j) // branches have to be resorted |
---|
2976 | { |
---|
2977 | dummy=Ergebnis[j]; |
---|
2978 | nbsave=nbhd[i,j]; |
---|
2979 | for (m=k; m<j; m++) |
---|
2980 | { |
---|
2981 | Ergebnis[m+1]=Ergebnis[m]; |
---|
2982 | nbhd[i,m+1]=nbhd[i,m]; |
---|
2983 | } |
---|
2984 | Ergebnis[k]=dummy; |
---|
2985 | nbhd[i,k]=nbsave; |
---|
2986 | } |
---|
2987 | } |
---|
2988 | } |
---|
2989 | } |
---|
2990 | // ----- |
---|
2991 | |
---|
2992 | keepring basering; |
---|
2993 | return(Ergebnis); |
---|
2994 | } |
---|
2995 | example |
---|
2996 | { |
---|
2997 | // -------- prepare for example --------- |
---|
2998 | if (nameof(basering)=="HNEring") |
---|
2999 | { |
---|
3000 | def rettering=HNEring; |
---|
3001 | kill HNEring; |
---|
3002 | } |
---|
3003 | // ------ the example starts here ------- |
---|
3004 | "EXAMPLE:"; echo = 2; |
---|
3005 | ring r = 32003,(x,y),dp; |
---|
3006 | poly f = x25+x24-4x23-1x22y+4x22+8x21y-2x21-12x20y-4x19y2+4x20+10x19y |
---|
3007 | +12x18y2-24x18y-20x17y2-4x16y3+x18+60x16y2+20x15y3-9x16y |
---|
3008 | -80x14y3-10x13y4+36x14y2+60x12y4+2x11y5-84x12y3-24x10y5 |
---|
3009 | +126x10y4+4x8y6-126x8y5+84x6y6-36x4y7+9x2y8-1y9; |
---|
3010 | list hne=reddevelop(f); |
---|
3011 | size(hne); // number of branches |
---|
3012 | print(hne[1][1]); // HN-matrix of 1st branch |
---|
3013 | print(hne[4][1]); // HN-matrix of 4th branch |
---|
3014 | // a ring change was necessary, a is a parameter |
---|
3015 | HNEring; |
---|
3016 | kill HNEring,r; |
---|
3017 | echo = 0; |
---|
3018 | // --- restore HNEring if previously defined --- |
---|
3019 | if (defined(rettering)) { |
---|
3020 | setring rettering; |
---|
3021 | def HNEring=rettering; |
---|
3022 | export HNEring; |
---|
3023 | } |
---|
3024 | } |
---|
3025 | /////////////////////////////////////////////////////////////////////////////// |
---|
3026 | |
---|
3027 | static proc pre_HN (poly f, int essential) |
---|
3028 | "NOTE: This procedure is only for internal use, it is called via |
---|
3029 | reddevelop or essdevelop" |
---|
3030 | { |
---|
3031 | def altring = basering; |
---|
3032 | int p = char(basering); // Ringcharakteristik |
---|
3033 | |
---|
3034 | //-------------------- Tests auf Zulaessigkeit von basering ------------------ |
---|
3035 | if (charstr(basering)=="real") { |
---|
3036 | " Singular cannot factorize over 'real' as ground field"; |
---|
3037 | return(list()); |
---|
3038 | } |
---|
3039 | if (size(maxideal(1))<2) { |
---|
3040 | " A univariate polynomial ring makes no sense !"; |
---|
3041 | return(list()); |
---|
3042 | } |
---|
3043 | if (size(maxideal(1))>2) { |
---|
3044 | dbprint(printlevel-voice+2, |
---|
3045 | " Warning: all variables except the first two will be ignored!"); |
---|
3046 | } |
---|
3047 | if (find(charstr(basering),string(char(basering)))!=1) { |
---|
3048 | " ring of type (p^k,a) not implemented"; |
---|
3049 | //---------------------------------------------------------------------------- |
---|
3050 | // weder primitives Element noch factorize noch map "char p^k" -> "char -p" |
---|
3051 | // [(p^k,a)->(p,a) ground field] noch fetch |
---|
3052 | //---------------------------------------------------------------------------- |
---|
3053 | return(list()); |
---|
3054 | } |
---|
3055 | //----------------- Definition eines neuen Ringes: HNEring ------------------- |
---|
3056 | string namex=varstr(1); string namey=varstr(2); |
---|
3057 | if (string(char(altring))==charstr(altring)) { // kein Parameter |
---|
3058 | ring HNEring = char(altring),(x,y),ls; |
---|
3059 | map m=altring,x,y; |
---|
3060 | poly f=m(f); |
---|
3061 | kill m; |
---|
3062 | } |
---|
3063 | else { |
---|
3064 | string mipl=string(minpoly); |
---|
3065 | if (mipl=="0") { |
---|
3066 | " ** WARNING: No algebraic extension of this ground field is possible!"; |
---|
3067 | " ** We try to develop this polynomial, but if the need for an extension"; |
---|
3068 | " ** occurs during the calculation, we cannot proceed with the"; |
---|
3069 | " ** corresponding branches ..."; |
---|
3070 | execute("ring HNEring=("+charstr(basering)+"),(x,y),ls;"); |
---|
3071 | //--- ring ...=(char(.),`parstr()`),... geht nicht, wenn mehr als 1 Param. --- |
---|
3072 | } |
---|
3073 | else { |
---|
3074 | string pa=parstr(altring); |
---|
3075 | ring HNhelpring=p,`pa`,dp; |
---|
3076 | execute("poly mipo="+mipl+";"); // Minimalpolynom in Polynom umgewandelt |
---|
3077 | ring HNEring=(p,a),(x,y),ls; |
---|
3078 | map getminpol=HNhelpring,a; |
---|
3079 | mipl=string(getminpol(mipo)); // String umgewandelt mit 'a' als Param. |
---|
3080 | execute("minpoly="+mipl+";"); // "minpoly=poly is not supported" |
---|
3081 | kill HNhelpring, getminpol; |
---|
3082 | } |
---|
3083 | if (nvars(altring)==2) { poly f=fetch(altring,f); } |
---|
3084 | else { |
---|
3085 | map m=altring,x,y; |
---|
3086 | poly f=m(f); |
---|
3087 | kill m; |
---|
3088 | } |
---|
3089 | } |
---|
3090 | export HNEring; |
---|
3091 | |
---|
3092 | if (defined(HNDebugOn)) |
---|
3093 | {"received polynomial: ",f,", with x =",namex,", y =",namey;} |
---|
3094 | |
---|
3095 | //----------------------- Variablendefinitionen ------------------------------ |
---|
3096 | int Abbruch,i,NullHNEx,NullHNEy; |
---|
3097 | string str; |
---|
3098 | list Newton,Ergebnis,hilflist; |
---|
3099 | |
---|
3100 | //====================== Tests auf Zulaessigkeit des Polynoms ================ |
---|
3101 | |
---|
3102 | //-------------------------- Test, ob Einheit oder Null ---------------------- |
---|
3103 | if (subst(subst(f,x,0),y,0)!=0) { |
---|
3104 | dbprint(printlevel+1, |
---|
3105 | "The given polynomial is a unit in the power series ring!"); |
---|
3106 | keepring HNEring; |
---|
3107 | return(list()); // there are no HNEs |
---|
3108 | } |
---|
3109 | if (f==0) { |
---|
3110 | dbprint(printlevel+1,"The given polynomial is zero!"); |
---|
3111 | keepring HNEring; |
---|
3112 | return(list()); // there are no HNEs |
---|
3113 | } |
---|
3114 | |
---|
3115 | //----------------------- Test auf Quadratfreiheit -------------------------- |
---|
3116 | |
---|
3117 | if ((p==0) and (size(charstr(basering))==1)) { |
---|
3118 | |
---|
3119 | //-------- Fall basering==0,... : Wechsel in Ring mit char >0 ---------------- |
---|
3120 | // weil squarefree eine Standardbasis berechnen muss (verwendet Syzygien) |
---|
3121 | // -- wenn f in diesem Ring quadratfrei ist, dann erst recht im Ring HNEring |
---|
3122 | //---------------------------------------------------------------------------- |
---|
3123 | int testerg=(polytest(f)==0); |
---|
3124 | ring zweitring = 32003,(x,y),dp; |
---|
3125 | |
---|
3126 | map polyhinueber=HNEring,x,y; // fetch geht nicht |
---|
3127 | poly f=polyhinueber(f); |
---|
3128 | poly test_sqr=squarefree(f); |
---|
3129 | if (test_sqr != f) { |
---|
3130 | if (printlevel>0) { |
---|
3131 | "Most probably the given polynomial is not squarefree. But the test was"; |
---|
3132 | "made in characteristic 32003 and not 0 to improve speed. You can"; |
---|
3133 | "(r) redo the test in char 0 (but this may take some time)"; |
---|
3134 | "(c) continue the development, if you're sure that the polynomial IS", |
---|
3135 | "squarefree"; |
---|
3136 | if (testerg==1) { |
---|
3137 | "(s) continue the development with a squarefree factor (*)";} |
---|
3138 | "(q) or just quit the algorithm (default action)"; |
---|
3139 | "";"Please enter the letter of your choice:"; |
---|
3140 | str=read("")[1]; // reads one character |
---|
3141 | } |
---|
3142 | else { str="r"; } // printlevel <= 0: non-interactive behaviour |
---|
3143 | setring HNEring; |
---|
3144 | map polyhinueber=zweitring,x,y; |
---|
3145 | if (str=="r") { |
---|
3146 | poly test_sqr=squarefree(f); |
---|
3147 | if (test_sqr != f) { |
---|
3148 | if (printlevel>0) { "The given polynomial is in fact not squarefree."; } |
---|
3149 | else { "The given polynomial is not squarefree!"; } |
---|
3150 | "I'll continue with the radical."; |
---|
3151 | f=test_sqr; |
---|
3152 | } |
---|
3153 | else { |
---|
3154 | dbprint(printlevel, |
---|
3155 | "everything is ok -- the polynomial is squarefree in characteristic 0"); |
---|
3156 | } |
---|
3157 | } |
---|
3158 | else { |
---|
3159 | if ((str=="s") and (testerg==1)) { |
---|
3160 | "(*)attention: it could be that the factor is only one in char 32003!"; |
---|
3161 | f=polyhinueber(test_sqr); |
---|
3162 | } |
---|
3163 | else { |
---|
3164 | if (str<>"c") { |
---|
3165 | setring altring; |
---|
3166 | if(system("with","Namespaces")) { kill Top::HNEring; } |
---|
3167 | kill HNEring;kill zweitring; |
---|
3168 | return(list());} |
---|
3169 | else { "if the algorithm doesn't terminate, you were wrong...";} |
---|
3170 | }} |
---|
3171 | kill zweitring; |
---|
3172 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
3173 | } |
---|
3174 | else { |
---|
3175 | setring HNEring; |
---|
3176 | kill zweitring; |
---|
3177 | } |
---|
3178 | } |
---|
3179 | //------------------ Fall Char > 0 oder Ring hat Parameter ------------------- |
---|
3180 | else { |
---|
3181 | poly test_sqr=squarefree(f); |
---|
3182 | if (test_sqr != f) { |
---|
3183 | if (printlevel>0) { |
---|
3184 | if (test_sqr == 1) { |
---|
3185 | "The given polynomial is of the form g^"+string(p)+","; |
---|
3186 | "therefore not squarefree. You can:"; |
---|
3187 | " (q) quit the algorithm (recommended) or"; |
---|
3188 | " (f) continue with the full radical (using a factorization of the"; |
---|
3189 | " pure power part; this could take much time)"; |
---|
3190 | "";"Please enter the letter of your choice:"; |
---|
3191 | str=read("")[1]; |
---|
3192 | if (str<>"f") { str="q"; } |
---|
3193 | } |
---|
3194 | else { |
---|
3195 | "The given polynomial is not squarefree."; |
---|
3196 | if (p != 0) |
---|
3197 | { |
---|
3198 | " You can:"; |
---|
3199 | " (c) continue with a squarefree divisor (but factors of the form g^" |
---|
3200 | +string(p); |
---|
3201 | " are lost; this is recommended, takes no more time)"; |
---|
3202 | " (f) continue with the full radical (using a factorization of the"; |
---|
3203 | " pure power part; this could take much time)"; |
---|
3204 | " (q) quit the algorithm"; |
---|
3205 | "";"Please enter the letter of your choice:"; |
---|
3206 | str=read("")[1]; |
---|
3207 | if ((str<>"f") && (str<>"q")) { str="c"; } |
---|
3208 | } |
---|
3209 | else { "I'll continue with the radical."; str="c"; } |
---|
3210 | } // endelse (test_sqr!=1) |
---|
3211 | } |
---|
3212 | else { |
---|
3213 | "//** Error: The given polynomial is not squarefree!"; |
---|
3214 | "//** Since the global variable `printlevel' has the value",printlevel, |
---|
3215 | "we stop here."; |
---|
3216 | "// Either call me again with a squarefree polynomial f or assign"; |
---|
3217 | " printlevel=1;"; |
---|
3218 | "// before calling me with a non-squarefree f."; |
---|
3219 | "// If printlevel > 0, I will present to you some possibilities how to", |
---|
3220 | "proceed."; |
---|
3221 | str="q"; |
---|
3222 | } |
---|
3223 | if (str=="q") { |
---|
3224 | if(system("with","Namespaces")) { kill Top::HNEring; } |
---|
3225 | setring altring;kill HNEring; |
---|
3226 | return(list()); |
---|
3227 | } |
---|
3228 | if (str=="c") { f=test_sqr; } |
---|
3229 | if (str=="f") { f=allsquarefree(f,test_sqr); } |
---|
3230 | } |
---|
3231 | if (defined(HNDebugOn)) {"I continue with the polynomial",f; } |
---|
3232 | |
---|
3233 | } |
---|
3234 | //====================== Ende Test auf Quadratfreiheit ======================= |
---|
3235 | if (subst(subst(f,x,0),y,0)!=0) { |
---|
3236 | "Sorry. The remaining polynomial is a unit in the power series ring..."; |
---|
3237 | keepring HNEring; |
---|
3238 | return(list()); |
---|
3239 | } |
---|
3240 | //---------------------- Test, ob f teilbar durch x oder y ------------------- |
---|
3241 | if (subst(f,y,0)==0) { |
---|
3242 | f=f/y; NullHNEy=1; } // y=0 is a solution |
---|
3243 | if (subst(f,x,0)==0) { |
---|
3244 | f=f/x; NullHNEx=1; } // x=0 is a solution |
---|
3245 | |
---|
3246 | Newton=newtonpoly(f,1); |
---|
3247 | i=1; Abbruch=0; |
---|
3248 | //---------------------------------------------------------------------------- |
---|
3249 | // finde Eckpkt. des Newtonpolys, der den Teil abgrenzt, fuer den x transvers: |
---|
3250 | // Annahme: Newton ist sortiert, s.d. Newton[1]=Punkt auf der y-Achse, |
---|
3251 | // Newton[letzt]=Punkt auf der x-Achse |
---|
3252 | //---------------------------------------------------------------------------- |
---|
3253 | while ((i<size(Newton)) and (Abbruch==0)) { |
---|
3254 | if ((Newton[i+1][1]-Newton[i][1])>=(Newton[i][2]-Newton[i+1][2])) |
---|
3255 | {Abbruch=1;} |
---|
3256 | else {i=i+1;} |
---|
3257 | } |
---|
3258 | int grenze1=Newton[i][2]; |
---|
3259 | int grenze2=Newton[i][1]; |
---|
3260 | //---------------------------------------------------------------------------- |
---|
3261 | // Stelle Ring bereit zur Uebertragung der Daten im Fall einer Koerperer- |
---|
3262 | // weiterung. Definiere Objekte, die spaeter uebertragen werden. |
---|
3263 | // Binde die Listen (azeilen,...) an den Ring (um sie nicht zu ueberschreiben |
---|
3264 | // bei Def. in einem anderen Ring). |
---|
3265 | // Exportiere Objekte, damit sie auch in der proc HN noch da sind |
---|
3266 | //---------------------------------------------------------------------------- |
---|
3267 | ring HNE_noparam = char(altring),(a,x,y),ls; |
---|
3268 | export HNE_noparam; |
---|
3269 | poly f; |
---|
3270 | list azeilen=ideal(0); |
---|
3271 | list HNEs=ideal(0); |
---|
3272 | list aneu=ideal(0); |
---|
3273 | list faktoren=ideal(0); |
---|
3274 | ideal deltais; |
---|
3275 | poly delt; // nicht number, weil delta von a abhaengen kann |
---|
3276 | export f,azeilen,HNEs,aneu,faktoren,deltais,delt; |
---|
3277 | //----- hier steht die Anzahl bisher benoetigter Ringerweiterungen drin: ----- |
---|
3278 | int EXTHNEnumber=0; export EXTHNEnumber; |
---|
3279 | setring HNEring; |
---|
3280 | |
---|
3281 | // ================= Die eigentliche Berechnung der HNE: ===================== |
---|
3282 | |
---|
3283 | // ------- Berechne HNE von allen Zweigen, fuer die x transversal ist: ------- |
---|
3284 | if (defined(HNDebugOn)) |
---|
3285 | {"1st step: Treat Newton polygon until height",grenze1;} |
---|
3286 | if (grenze1>0) { |
---|
3287 | hilflist=HN(f,grenze1,1,essential); |
---|
3288 | if (typeof(hilflist[1][1])=="ideal") { hilflist[1]=list(); } |
---|
3289 | //- fuer den Fall, dass keine Zweige in transz. Erw. berechnet werden konnten- |
---|
3290 | Ergebnis=extractHNEs(hilflist[1],0); |
---|
3291 | if (hilflist[2]!=-1) { |
---|
3292 | if (defined(HNDebugOn)) {" ring change in HN(",1,") detected";} |
---|
3293 | poly transfproc=hilflist[2]; |
---|
3294 | map hole=HNE_noparam,transfproc,x,y; |
---|
3295 | setring HNE_noparam; |
---|
3296 | f=imap(HNEring,f); |
---|
3297 | setring EXTHNEring(EXTHNEnumber); |
---|
3298 | poly f=hole(f); |
---|
3299 | } |
---|
3300 | } |
---|
3301 | if (NullHNEy==1) { |
---|
3302 | Ergebnis=Ergebnis+list(list(matrix(ideal(0,x)),intvec(1),int(0),poly(0))); |
---|
3303 | } |
---|
3304 | // --------------- Berechne HNE von allen verbliebenen Zweigen: -------------- |
---|
3305 | if (defined(HNDebugOn)) |
---|
3306 | {"2nd step: Treat Newton polygon until height",grenze2;} |
---|
3307 | if (grenze2>0) { |
---|
3308 | map xytausch=basering,y,x; |
---|
3309 | kill hilflist; |
---|
3310 | def letztring=basering; |
---|
3311 | if (EXTHNEnumber==0) { setring HNEring; } |
---|
3312 | else { setring EXTHNEring(EXTHNEnumber); } |
---|
3313 | list hilflist=HN(xytausch(f),grenze2,1,essential); |
---|
3314 | if (typeof(hilflist[1][1])=="ideal") { hilflist[1]=list(); } |
---|
3315 | if (not defined(Ergebnis)) { |
---|
3316 | //-- HN wurde schon mal ausgefuehrt; Ringwechsel beim zweiten Aufruf von HN -- |
---|
3317 | if (defined(HNDebugOn)) {" ring change in HN(",1,") detected";} |
---|
3318 | poly transfproc=hilflist[2]; |
---|
3319 | map hole=HNE_noparam,transfproc,x,y; |
---|
3320 | setring HNE_noparam; |
---|
3321 | list Ergebnis=imap(letztring,Ergebnis); |
---|
3322 | setring EXTHNEring(EXTHNEnumber); |
---|
3323 | list Ergebnis=hole(Ergebnis); |
---|
3324 | } |
---|
3325 | Ergebnis=Ergebnis+extractHNEs(hilflist[1],1); |
---|
3326 | } |
---|
3327 | if (NullHNEx==1) { |
---|
3328 | Ergebnis=Ergebnis+list(list(matrix(ideal(0,x)),intvec(1),int(1),poly(0))); |
---|
3329 | } |
---|
3330 | //------------------- Loesche globale, nicht mehr benoetigte Objekte: -------- |
---|
3331 | if (EXTHNEnumber>0) { |
---|
3332 | if(system("with","Namespaces")) { kill Top::HNEring; } |
---|
3333 | kill HNEring; |
---|
3334 | def HNEring=EXTHNEring(EXTHNEnumber); |
---|
3335 | setring HNEring; |
---|
3336 | export HNEring; |
---|
3337 | kill EXTHNEring(1..EXTHNEnumber); |
---|
3338 | } |
---|
3339 | kill HNE_noparam; |
---|
3340 | kill EXTHNEnumber; |
---|
3341 | keepring basering; |
---|
3342 | |
---|
3343 | return(Ergebnis); |
---|
3344 | } |
---|
3345 | |
---|
3346 | /////////////////////////////////////////////////////////////////////////////// |
---|
3347 | // |
---|
3348 | // the command essdevelop is obsolete --> here is the former help string: |
---|
3349 | // |
---|
3350 | /////////////////////////////////////////////////////////////////////////////// |
---|
3351 | //ASSUME: f is a bivariate polynomial (in the first 2 ring variables) |
---|
3352 | //CREATE: ring with name @code{HNEring}, variables @code{x,y} and ordering |
---|
3353 | // @code{ls} over a field extension of the current basering's ground |
---|
3354 | // field. @* |
---|
3355 | // Since the Hamburger-Noether development of a reducible curve |
---|
3356 | // singularity usually does not exist in the originally given basering, |
---|
3357 | // @code{essdevelop} always defines @code{HNEring} and CHANGES to it. |
---|
3358 | // The field extension is chosen minimally. |
---|
3359 | //RETURN: list @code{L} of lists @code{L[i]} (corresponding to the output of |
---|
3360 | // @code{develop(f[i])}, f[i] an \"essential\" branch of f, but the |
---|
3361 | // last entry being omitted).@* |
---|
3362 | // For more details type @code{help reddevelop;}. |
---|
3363 | //NOTE: If the HNE needs a field extension, some of the branches will be |
---|
3364 | // conjugate. In this case @code{essdevelop} reduces the computation to |
---|
3365 | // one representative for each group of conjugate branches.@* |
---|
3366 | // Note that the degree of each branch is in general less than the |
---|
3367 | // degree of the field extension in which all HNEs can be put.@* |
---|
3368 | // Use @code{reddevelop} or @code{HNdevelop} to compute a complete HNE, |
---|
3369 | // i.e., a HNE for all branches.@* |
---|
3370 | // If @code{printlevel>=0} comments are displayed (default is |
---|
3371 | // @code{printlevel=0}). |
---|
3372 | //SEE ALSO: hnexpansion, develop, reddevelop, HNdevelop, extdevelop |
---|
3373 | //EXAMPLE: example essdevelop; shows an example |
---|
3374 | proc essdevelop (poly f) |
---|
3375 | "USAGE: essdevelop(f); f poly |
---|
3376 | NOTE: command is obsolete, use hnexpansion(f,\"ess\") instead. |
---|
3377 | SEE ALSO: hnexpansion, develop, extdevelop, param |
---|
3378 | " |
---|
3379 | { |
---|
3380 | list Ergebnis=pre_HN(f,1); |
---|
3381 | dbprint(printlevel-voice+2, |
---|
3382 | "// result: "+string(size(Ergebnis))+" branch(es) successfully computed;"); |
---|
3383 | if (string(minpoly) <> "0") { |
---|
3384 | dbprint(printlevel-voice+2, |
---|
3385 | "// note that conjugate branches are omitted and that the number", |
---|
3386 | "// of branches represented by each remaining one may vary!"); |
---|
3387 | } |
---|
3388 | dbprint(printlevel-voice+2, |
---|
3389 | "// basering has changed to HNEring"); |
---|
3390 | keepring basering; |
---|
3391 | return(Ergebnis); |
---|
3392 | } |
---|
3393 | example |
---|
3394 | { |
---|
3395 | // -------- prepare for example --------- |
---|
3396 | if (nameof(basering)=="HNEring") { |
---|
3397 | def rettering=HNEring; |
---|
3398 | kill HNEring; |
---|
3399 | } |
---|
3400 | // ------ the example starts here ------- |
---|
3401 | "EXAMPLE:"; echo = 2; |
---|
3402 | ring r=2,(x,y),dp; |
---|
3403 | poly f=(x4+x2y+y2)*(x3+xy2+y3); |
---|
3404 | // --------- compute all branches: --------- |
---|
3405 | list hne=reddevelop(f); |
---|
3406 | displayHNE(hne[1]); // HN-matrix of 1st branch |
---|
3407 | displayHNE(hne[4]); // HN-matrix of 4th branch |
---|
3408 | setring r; |
---|
3409 | kill HNEring; |
---|
3410 | // --- compute only one of conjugate branches: --- |
---|
3411 | list hne=essdevelop(f); |
---|
3412 | displayHNE(hne); |
---|
3413 | // no. 1 of essdevelop represents no. 1 - 3 of reddevelop and |
---|
3414 | // no. 2 of essdevelop represents no. 4 + 5 of reddevelop |
---|
3415 | kill HNEring,r; |
---|
3416 | echo = 0; |
---|
3417 | // --- restore HNEring if previously defined --- |
---|
3418 | if (defined(rettering)) { |
---|
3419 | setring rettering; |
---|
3420 | def HNEring=rettering; |
---|
3421 | export HNEring; |
---|
3422 | } |
---|
3423 | } |
---|
3424 | |
---|
3425 | /////////////////////////////////////////////////////////////////////////////// |
---|
3426 | static proc HN (poly f,int grenze, int Aufruf_Ebene, int essential) |
---|
3427 | "NOTE: This procedure is only for internal use, it is called via pre_HN" |
---|
3428 | { |
---|
3429 | //---------- Variablendefinitionen fuer den unverzweigten Teil: -------------- |
---|
3430 | if (defined(HNDebugOn)) {"procedure HN",Aufruf_Ebene;} |
---|
3431 | int Abbruch,ende,i,j,e,M,N,Q,R,zeiger,zeile,zeilevorher; |
---|
3432 | intvec hqs; |
---|
3433 | poly fvorher; |
---|
3434 | list erg=ideal(0); list HNEs=ideal(0); // um die Listen an den Ring zu binden |
---|
3435 | |
---|
3436 | //-------------------- Bedeutung von Abbruch: -------------------------------- |
---|
3437 | //------- 0:keine Verzweigung | 1:Verzweigung,nicht fertig | 2:fertig -------- |
---|
3438 | // |
---|
3439 | // Struktur von HNEs : Liste von Listen L (fuer jeden Zweig) der Form |
---|
3440 | // L[1]=intvec (hqs), L[2],L[3],... ideal (die Zeilen (0,1,...) der HNE) |
---|
3441 | // L[letztes]=poly (transformiertes f) |
---|
3442 | //---------------------------------------------------------------------------- |
---|
3443 | list Newton; |
---|
3444 | number delt; |
---|
3445 | int p = char(basering); // Ringcharakteristik |
---|
3446 | list azeilen=ideal(0); |
---|
3447 | ideal hilfid; list hilflist=ideal(0); intvec hilfvec; |
---|
3448 | |
---|
3449 | // ======================= der unverzweigte Teil: ============================ |
---|
3450 | while (Abbruch==0) { |
---|
3451 | Newton=newtonpoly(f,1); |
---|
3452 | zeiger=find_in_list(Newton,grenze); |
---|
3453 | if (Newton[zeiger][2] != grenze) |
---|
3454 | {"Didn't find an edge in the Newton polygon!";} |
---|
3455 | if (zeiger==size(Newton)-1) { |
---|
3456 | if (defined(HNDebugOn)) {"only one relevant side in Newton polygon";} |
---|
3457 | M=Newton[zeiger+1][1]-Newton[zeiger][1]; |
---|
3458 | N=Newton[zeiger][2]-Newton[zeiger+1][2]; |
---|
3459 | R = M%N; |
---|
3460 | Q = M / N; |
---|
3461 | |
---|
3462 | //-------- 1. Versuch: ist der quasihomogene Leitterm reine Potenz ? --------- |
---|
3463 | // (dann geht alles wie im irreduziblen Fall) |
---|
3464 | //---------------------------------------------------------------------------- |
---|
3465 | e = gcd(M,N); |
---|
3466 | delt=factorfirst(redleit(f,Newton[zeiger],Newton[zeiger+1]) |
---|
3467 | /x^Newton[zeiger][1],M,N); |
---|
3468 | if (delt==0) { |
---|
3469 | if (defined(HNDebugOn)) {" The given polynomial is reducible !";} |
---|
3470 | Abbruch=1; |
---|
3471 | } |
---|
3472 | if (Abbruch==0) { |
---|
3473 | //-------------- f,zeile retten fuer den Spezialfall (###): ------------------ |
---|
3474 | fvorher=f;zeilevorher=zeile; |
---|
3475 | if (R==0) { |
---|
3476 | //------------- transformiere f mit T1, wenn kein Abbruch nachher: ----------- |
---|
3477 | if (N>1) { f = T1_Transform(f,delt,M/ e); } |
---|
3478 | else { ende=1; } |
---|
3479 | if (defined(HNDebugOn)) {"a("+string(zeile)+","+string(Q)+") =",delt;} |
---|
3480 | azeilen[zeile+1][Q]=delt; |
---|
3481 | } |
---|
3482 | else { |
---|
3483 | //------------- R > 0 : transformiere f mit T2 ------------------------------- |
---|
3484 | erg=T2_Transform(f,delt,M,N,referencepoly(Newton)); |
---|
3485 | f=erg[1];delt=erg[2]; |
---|
3486 | //------- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: --------- |
---|
3487 | while (R!=0) { |
---|
3488 | if (defined(HNDebugOn)) { "h("+string(zeile)+") =",Q; } |
---|
3489 | hqs[zeile+1]=Q; // denn zeile beginnt mit dem Wert 0 |
---|
3490 | //------------------ markiere das Zeilenende der HNE: ------------------------ |
---|
3491 | azeilen[zeile+1][Q+1]=x; |
---|
3492 | zeile=zeile+1; |
---|
3493 | //----------- Bereitstellung von Speicherplatz fuer eine neue Zeile: --------- |
---|
3494 | azeilen[zeile+1]=ideal(0); |
---|
3495 | M=N; N=R; R=M%N; Q=M / N; |
---|
3496 | } |
---|
3497 | if (defined(HNDebugOn)) {"a("+string(zeile)+","+string(Q)+") =",delt;} |
---|
3498 | azeilen[zeile+1][Q]=delt; |
---|
3499 | } |
---|
3500 | if (defined(HNDebugOn)) {"transformed polynomial: ",f;} |
---|
3501 | grenze=e; |
---|
3502 | //----------------------- teste Abbruchbedingungen: -------------------------- |
---|
3503 | if (subst(f,y,0)==0) { // <==> y|f |
---|
3504 | dbprint(printlevel-voice+3,"finite HNE of one branch found"); |
---|
3505 | // voice abzufragen macht bei rekursiven procs keinen Sinn |
---|
3506 | azeilen[zeile+1][Q+1]=x; |
---|
3507 | //- Q wird nur in hqs eingetragen, wenn der Spezialfall nicht eintritt (s.u.)- |
---|
3508 | Abbruch=2; |
---|
3509 | if (grenze>1) { |
---|
3510 | if (jet(f,1,intvec(0,1))==0) { |
---|
3511 | //------ jet(...)=alle Monome von f, die nicht durch y2 teilbar sind --------- |
---|
3512 | "THE TEST FOR SQUAREFREENESS WAS BAD!! The polynomial was NOT squarefree!!!";} |
---|
3513 | else { |
---|
3514 | //-------------------------- Spezialfall (###): ------------------------------ |
---|
3515 | // Wir haben das Problem, dass die HNE eines Zweiges hier abbricht, aber ein |
---|
3516 | // anderer Zweig bis hierher genau die gleiche HNE hat, die noch weiter geht |
---|
3517 | // Loesung: mache Transform. rueckgaengig und behandle f im Verzweigungsteil |
---|
3518 | //---------------------------------------------------------------------------- |
---|
3519 | Abbruch=1; |
---|
3520 | f=fvorher;zeile=zeilevorher;grenze=Newton[zeiger][2]; |
---|
3521 | }} |
---|
3522 | else {f=0;} // f nicht mehr gebraucht - spare Speicher |
---|
3523 | if (Abbruch==2) { hqs[zeile+1]=Q; } |
---|
3524 | } // Spezialfall nicht eingetreten |
---|
3525 | else { |
---|
3526 | if (ende==1) { |
---|
3527 | dbprint(printlevel-voice+2,"HNE of one branch found"); |
---|
3528 | Abbruch=2; hqs[zeile+1]=-Q-1;} |
---|
3529 | } |
---|
3530 | } // end(if Abbruch==0) |
---|
3531 | } // end(if zeiger...) |
---|
3532 | else { Abbruch=1;} |
---|
3533 | } // end(while Abbruch==0) |
---|
3534 | |
---|
3535 | // ===================== der Teil bei Verzweigung: =========================== |
---|
3536 | |
---|
3537 | if (Abbruch==1) { |
---|
3538 | //---------- Variablendefinitionen fuer den verzweigten Teil: ---------------- |
---|
3539 | poly leitf,teiler,transformiert; |
---|
3540 | list aneu=ideal(0); |
---|
3541 | list faktoren; |
---|
3542 | list HNEakut=ideal(0); |
---|
3543 | ideal deltais; |
---|
3544 | intvec eis; |
---|
3545 | int zaehler,hnezaehler,zl,zl1,M1,N1,R1,Q1,needext; |
---|
3546 | int numberofRingchanges,lastRingnumber,ringischanged,flag; |
---|
3547 | string letztringname; |
---|
3548 | |
---|
3549 | zeiger=find_in_list(Newton,grenze); |
---|
3550 | if (defined(HNDebugOn)) { |
---|
3551 | "Branching part reached---Newton polygon :",Newton; |
---|
3552 | "relevant part until height",grenze,", from",Newton[zeiger],"on"; |
---|
3553 | } |
---|
3554 | azeilen=list(hqs)+azeilen; // hat jetzt Struktur von HNEs: hqs in der 1.Zeile |
---|
3555 | |
---|
3556 | //======= Schleife fuer jede zu betrachtende Seite des Newtonpolygons: ======= |
---|
3557 | for(i=zeiger; i<size(Newton); i++) { |
---|
3558 | if (defined(HNDebugOn)) { "we consider side",Newton[i],Newton[i+1]; } |
---|
3559 | M=Newton[i+1][1]-Newton[i][1]; |
---|
3560 | N=Newton[i][2]-Newton[i+1][2]; |
---|
3561 | R = M%N; |
---|
3562 | Q = M / N; |
---|
3563 | e=gcd(M,N); |
---|
3564 | needext=1; |
---|
3565 | letztringname=nameof(basering); |
---|
3566 | lastRingnumber=EXTHNEnumber; |
---|
3567 | faktoren=list(ideal(charPoly(redleit(f,Newton[i],Newton[i+1]) |
---|
3568 | /(x^Newton[i][1]*y^Newton[i+1][2]),M,N) ), |
---|
3569 | intvec(1)); // = (zu faktoriserendes Poly, 1) |
---|
3570 | |
---|
3571 | //-- wechsle so lange in Ringerw., bis Leitform vollst. in Linearfakt. zerf.:- |
---|
3572 | for (numberofRingchanges=1; needext==1; numberofRingchanges++) { |
---|
3573 | leitf=redleit(f,Newton[i],Newton[i+1])/(x^Newton[i][1]*y^Newton[i+1][2]); |
---|
3574 | delt=factorfirst(leitf,M,N); |
---|
3575 | needext=0; |
---|
3576 | if (delt==0) { |
---|
3577 | |
---|
3578 | //---------- Sonderbehandlung: faktorisiere einige Polynome ueber Q(a): ------- |
---|
3579 | if (charstr(basering)=="0,a") { |
---|
3580 | //*CL old: faktoren=factorize(charPoly(leitf,M,N),2); // damit funktion. Bsp. Baladi 5 |
---|
3581 | faktoren=factorize(charPoly(leitf,M,N)); |
---|
3582 | } |
---|
3583 | else { |
---|
3584 | //------------------ faktorisiere das charakt. Polynom: ---------------------- |
---|
3585 | if ((numberofRingchanges==1) or (essential==0)) { |
---|
3586 | faktoren=factorlist(faktoren); |
---|
3587 | } |
---|
3588 | else { // eliminiere alle konjugierten Nullstellen bis auf eine: |
---|
3589 | ideal hilf_id; |
---|
3590 | for (zaehler=1; zaehler<=size(faktoren[1]); zaehler++) { |
---|
3591 | hilf_id=factorize(faktoren[1][zaehler])[1]; |
---|
3592 | if (size(hilf_id)>1) { faktoren[1][zaehler]=hilf_id[2]; } |
---|
3593 | else { faktoren[1][zaehler]=hilf_id[1]; } |
---|
3594 | } |
---|
3595 | } |
---|
3596 | } |
---|
3597 | |
---|
3598 | zaehler=1; eis=0; |
---|
3599 | for (j=1; j<=size(faktoren[2]); j++) { |
---|
3600 | teiler=faktoren[1][j]; |
---|
3601 | if (teiler/y != 0) { // sonst war's eine Einheit --> wegwerfen! |
---|
3602 | if (defined(HNDebugOn)) {"factor of leading form found:",teiler;} |
---|
3603 | if (teiler/y2 == 0) { // --> Faktor hat die Form cy+d |
---|
3604 | deltais[zaehler]=-subst(teiler,y,0)/koeff(teiler,0,1); //=-d/c |
---|
3605 | eis[zaehler]=faktoren[2][j]; |
---|
3606 | zaehler++; |
---|
3607 | } |
---|
3608 | else { |
---|
3609 | dbprint(printlevel-voice+2, |
---|
3610 | " Change of basering (field extension) necessary!"); |
---|
3611 | if (defined(HNDebugOn)) { teiler,"is not properly factored!"; } |
---|
3612 | if (needext==0) { poly zerlege=teiler; } |
---|
3613 | needext=1; |
---|
3614 | } |
---|
3615 | } |
---|
3616 | } // end(for j) |
---|
3617 | } |
---|
3618 | else { deltais=ideal(delt); eis=e;} |
---|
3619 | if (defined(HNDebugOn)) {"roots of char. poly:";deltais; |
---|
3620 | "with multiplicities:",eis;} |
---|
3621 | if (needext==1) { |
---|
3622 | //--------------------- fuehre den Ringwechsel aus: -------------------------- |
---|
3623 | ringischanged=1; |
---|
3624 | if ((size(parstr(basering))>0) && string(minpoly)=="0") { |
---|
3625 | " ** We've had bad luck! The HNE cannot completely be calculated!"; |
---|
3626 | // HNE in transzendenter Erw. fehlgeschlagen |
---|
3627 | kill zerlege; |
---|
3628 | ringischanged=0; break; // weiter mit gefundenen Faktoren |
---|
3629 | } |
---|
3630 | if (parstr(basering)=="") { |
---|
3631 | EXTHNEnumber++; |
---|
3632 | splitring(zerlege,"EXTHNEring("+string(EXTHNEnumber)+")"); |
---|
3633 | poly transf=0; |
---|
3634 | poly transfproc=0; |
---|
3635 | } |
---|
3636 | else { |
---|
3637 | if (defined(translist)) { kill translist; } // Vermeidung einer Warnung |
---|
3638 | if (numberofRingchanges>1) { // ein Ringwechsel hat nicht gereicht |
---|
3639 | list translist=splitring(zerlege,"",list(transf,transfproc,faktoren)); |
---|
3640 | poly transf=translist[1]; |
---|
3641 | poly transfproc=translist[2]; |
---|
3642 | list faktoren=translist[3]; |
---|
3643 | } |
---|
3644 | else { |
---|
3645 | if (defined(transfproc)) { // in dieser proc geschah schon Ringwechsel |
---|
3646 | EXTHNEnumber++; |
---|
3647 | list translist=splitring(zerlege,"EXTHNEring(" |
---|
3648 | +string(EXTHNEnumber)+")",list(a,transfproc)); |
---|
3649 | poly transf=translist[1]; |
---|
3650 | poly transfproc=translist[2]; |
---|
3651 | } |
---|
3652 | else { |
---|
3653 | EXTHNEnumber++; |
---|
3654 | list translist=splitring(zerlege,"EXTHNEring(" |
---|
3655 | +string(EXTHNEnumber)+")",a); |
---|
3656 | poly transf=translist[1]; |
---|
3657 | poly transfproc=transf; |
---|
3658 | }} |
---|
3659 | } |
---|
3660 | //---------------------------------------------------------------------------- |
---|
3661 | // transf enthaelt jetzt den alten Parameter des Ringes, der aktiv war vor |
---|
3662 | // Beginn der Schleife (evtl. also ueber mehrere Ringwechsel weitergereicht), |
---|
3663 | // transfproc enthaelt den alten Parm. des R., der aktiv war zu Beginn der |
---|
3664 | // Prozedur, und der an die aufrufende Prozedur zurueckgegeben werden muss |
---|
3665 | // transf ist Null, falls der alte Ring keinen Parameter hatte, |
---|
3666 | // das gleiche gilt fuer transfproc |
---|
3667 | //---------------------------------------------------------------------------- |
---|
3668 | |
---|
3669 | //------ Neudef. von Variablen, Uebertragung bisher errechneter Daten: ------- |
---|
3670 | poly leitf,teiler,transformiert; |
---|
3671 | list aneu=ideal(0); |
---|
3672 | ideal deltais; |
---|
3673 | number delt; |
---|
3674 | setring HNE_noparam; |
---|
3675 | if (defined(letztring)) { kill letztring; } |
---|
3676 | if (lastRingnumber>0) { def letztring=EXTHNEring(lastRingnumber); } |
---|
3677 | else { def letztring=HNEring; } |
---|
3678 | f=imap(letztring,f); |
---|
3679 | faktoren=imap(letztring,faktoren); |
---|
3680 | setring EXTHNEring(EXTHNEnumber); |
---|
3681 | map hole=HNE_noparam,transf,x,y; |
---|
3682 | poly f=hole(f); |
---|
3683 | if (not defined(faktoren)) { |
---|
3684 | list faktoren=hole(faktoren); |
---|
3685 | } |
---|
3686 | } |
---|
3687 | } // end (while needext==1) bzw. for (numberofRingchanges) |
---|
3688 | |
---|
3689 | if (eis==0) { i++; continue; } |
---|
3690 | if (ringischanged==1) { |
---|
3691 | list erg,hilflist,HNEakut; // dienen nur zum Sp. von Zwi.erg. |
---|
3692 | ideal hilfid; |
---|
3693 | erg=ideal(0); hilflist=erg; HNEakut=erg; |
---|
3694 | |
---|
3695 | hole=HNE_noparam,transf,x,y; |
---|
3696 | setring HNE_noparam; |
---|
3697 | azeilen=imap(letztring,azeilen); |
---|
3698 | HNEs=imap(letztring,HNEs); |
---|
3699 | |
---|
3700 | setring EXTHNEring(EXTHNEnumber); |
---|
3701 | list azeilen=hole(azeilen); |
---|
3702 | list HNEs=hole(HNEs); |
---|
3703 | kill letztring; |
---|
3704 | ringischanged=0; |
---|
3705 | } |
---|
3706 | |
---|
3707 | //============ Schleife fuer jeden gefundenen Faktor der Leitform: =========== |
---|
3708 | for (j=1; j<=size(eis); j++) { |
---|
3709 | //-- Mache Transf. T1 oder T2, trage Daten in HNEs ein, falls HNE abbricht: -- |
---|
3710 | |
---|
3711 | //------------------------ Fall R==0: ---------------------------------------- |
---|
3712 | if (R==0) { |
---|
3713 | transformiert = T1_Transform(f,number(deltais[j]),M/ e); |
---|
3714 | if (defined(HNDebugOn)) { |
---|
3715 | "a("+string(zeile)+","+string(Q)+") =",deltais[j]; |
---|
3716 | "transformed polynomial: ",transformiert; |
---|
3717 | } |
---|
3718 | if (subst(transformiert,y,0)==0) { |
---|
3719 | dbprint(printlevel-voice+3,"finite HNE found"); |
---|
3720 | hnezaehler++; |
---|
3721 | //------------ trage deltais[j],x ein in letzte Zeile, fertig: --------------- |
---|
3722 | HNEakut=azeilen+list(poly(0)); // =HNEs[hnezaehler]; |
---|
3723 | hilfid=HNEakut[zeile+2]; hilfid[Q]=deltais[j]; hilfid[Q+1]=x; |
---|
3724 | HNEakut[zeile+2]=hilfid; |
---|
3725 | HNEakut[1][zeile+1]=Q; // aktualisiere Vektor mit den hqs |
---|
3726 | HNEs[hnezaehler]=HNEakut; |
---|
3727 | if (eis[j]>1) { |
---|
3728 | transformiert=transformiert/y; |
---|
3729 | if (subst(transformiert,y,0)==0) { |
---|
3730 | "THE TEST FOR SQUAREFREENESS WAS BAD!! The polynomial was NOT squarefree!!!";} |
---|
3731 | else { |
---|
3732 | //------ Spezialfall (###) eingetreten: Noch weitere Zweige vorhanden -------- |
---|
3733 | eis[j]=eis[j]-1; |
---|
3734 | } |
---|
3735 | } |
---|
3736 | } |
---|
3737 | } |
---|
3738 | else { |
---|
3739 | //------------------------ Fall R <> 0: -------------------------------------- |
---|
3740 | erg=T2_Transform(f,number(deltais[j]),M,N,referencepoly(Newton)); |
---|
3741 | transformiert=erg[1];delt=erg[2]; |
---|
3742 | if (defined(HNDebugOn)) {"transformed polynomial: ",transformiert;} |
---|
3743 | if (subst(transformiert,y,0)==0) { |
---|
3744 | dbprint(printlevel-voice+3,"finite HNE found"); |
---|
3745 | hnezaehler++; |
---|
3746 | //---------------- trage endliche HNE in HNEs ein: --------------------------- |
---|
3747 | HNEakut=azeilen; // dupliziere den gemeins. Anfang der HNE's |
---|
3748 | zl=2; // (kommt schliesslich nach HNEs[hnezaehler]) |
---|
3749 | //---------------------------------------------------------------------------- |
---|
3750 | // Werte von: zeile: aktuelle Zeilennummer der HNE (gemeinsamer Teil) |
---|
3751 | // zl : die HNE spaltet auf; zeile+zl ist der Index fuer die |
---|
3752 | // Zeile des aktuellen Zweigs; (zeile+zl-2) ist die tatsaechl. Zeilennr. |
---|
3753 | // (bei 0 angefangen) der HNE ([1] <- intvec(hqs), [2] <- 0. Zeile usw.) |
---|
3754 | //---------------------------------------------------------------------------- |
---|
3755 | |
---|
3756 | //---------- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ------ |
---|
3757 | M1=M;N1=N;R1=R;Q1=M1/ N1; |
---|
3758 | while (R1!=0) { |
---|
3759 | if (defined(HNDebugOn)) { "h("+string(zeile+zl-2)+") =",Q1; } |
---|
3760 | HNEakut[1][zeile+zl-1]=Q1; |
---|
3761 | HNEakut[zeile+zl][Q1+1]=x; |
---|
3762 | // markiere das Zeilenende der HNE |
---|
3763 | zl=zl+1; |
---|
3764 | //-------- Bereitstellung von Speicherplatz fuer eine neue Zeile: ------------ |
---|
3765 | HNEakut[zeile+zl]=ideal(0); |
---|
3766 | |
---|
3767 | M1=N1; N1=R1; R1=M1%N1; Q1=M1 / N1; |
---|
3768 | } |
---|
3769 | if (defined(HNDebugOn)) { |
---|
3770 | "a("+string(zeile+zl-2)+","+string(Q1)+") =",delt; |
---|
3771 | } |
---|
3772 | HNEakut[zeile+zl][Q1] =delt; |
---|
3773 | HNEakut[zeile+zl][Q1+1]=x; |
---|
3774 | HNEakut[1][zeile+zl-1] =Q1; // aktualisiere Vektor mit hqs |
---|
3775 | HNEakut[zeile+zl+1]=poly(0); |
---|
3776 | HNEs[hnezaehler]=HNEakut; |
---|
3777 | //-------------------- Ende der Eintragungen in HNEs ------------------------- |
---|
3778 | |
---|
3779 | if (eis[j]>1) { |
---|
3780 | transformiert=transformiert/y; |
---|
3781 | if (subst(transformiert,y,0)==0) { |
---|
3782 | "THE TEST FOR SQUAREFREENESS WAS BAD!! The polynomial was NOT squarefree!!!";} |
---|
3783 | else { |
---|
3784 | //--------- Spezialfall (###) eingetreten: Noch weitere Zweige vorhanden ----- |
---|
3785 | eis[j]=eis[j]-1; |
---|
3786 | }} |
---|
3787 | } // endif (subst()==0) |
---|
3788 | } // endelse (R<>0) |
---|
3789 | |
---|
3790 | //========== Falls HNE nicht abbricht: Rekursiver Aufruf von HN: ============= |
---|
3791 | //------------------- Berechne HNE von transformiert ------------------------- |
---|
3792 | if (subst(transformiert,y,0)!=0) { |
---|
3793 | lastRingnumber=EXTHNEnumber; |
---|
3794 | list HNerg=HN(transformiert,eis[j],Aufruf_Ebene+1,essential); |
---|
3795 | if (HNerg[2]==-1) { // kein Ringwechsel in HN aufgetreten |
---|
3796 | aneu=HNerg[1]; } |
---|
3797 | else { |
---|
3798 | if (defined(HNDebugOn)) |
---|
3799 | {" ring change in HN(",Aufruf_Ebene+1,") detected";} |
---|
3800 | list aneu=HNerg[1]; |
---|
3801 | poly transfproc=HNerg[2]; |
---|
3802 | |
---|
3803 | //- stelle lokale Var. im neuen Ring wieder her und rette ggf. ihren Inhalt: - |
---|
3804 | list erg,hilflist,faktoren,HNEakut; |
---|
3805 | ideal hilfid; |
---|
3806 | erg=ideal(0); hilflist=erg; faktoren=erg; HNEakut=erg; |
---|
3807 | poly leitf,teiler,transformiert; |
---|
3808 | |
---|
3809 | map hole=HNE_noparam,transfproc,x,y; |
---|
3810 | setring HNE_noparam; |
---|
3811 | if (lastRingnumber>0) { def letztring=EXTHNEring(lastRingnumber); } |
---|
3812 | else { def letztring=HNEring; } |
---|
3813 | HNEs=imap(letztring,HNEs); |
---|
3814 | azeilen=imap(letztring,azeilen); |
---|
3815 | deltais=imap(letztring,deltais); |
---|
3816 | delt=imap(letztring,delt); |
---|
3817 | f=imap(letztring,f); |
---|
3818 | |
---|
3819 | setring EXTHNEring(EXTHNEnumber); |
---|
3820 | list HNEs=hole(HNEs); |
---|
3821 | list azeilen=hole(azeilen); |
---|
3822 | ideal deltais=hole(deltais); |
---|
3823 | number delt=number(hole(delt)); |
---|
3824 | poly f=hole(f); |
---|
3825 | } |
---|
3826 | kill HNerg; |
---|
3827 | //---------------------------------------------------------------------------- |
---|
3828 | // HNerg muss jedesmal mit "list" neu definiert werden, weil vorher noch nicht |
---|
3829 | // ------- klar ist, ob der Ring nach Aufruf von HN noch derselbe ist -------- |
---|
3830 | |
---|
3831 | //============= Verknuepfe bisherige HNE mit von HN gelieferten HNEs: ======== |
---|
3832 | if (R==0) { |
---|
3833 | HNEs,hnezaehler=constructHNEs(HNEs,hnezaehler,aneu,azeilen,zeile, |
---|
3834 | deltais,Q,j); |
---|
3835 | } |
---|
3836 | else { |
---|
3837 | for (zaehler=1; zaehler<=size(aneu); zaehler++) { |
---|
3838 | hnezaehler++; |
---|
3839 | HNEakut=azeilen; // dupliziere den gemeinsamen Anfang der HNE's |
---|
3840 | zl=2; // (kommt schliesslich nach HNEs[hnezaehler]) |
---|
3841 | //---------------- Trage Beitrag dieser Transformation T2 ein: --------------- |
---|
3842 | //--------- Zur Bedeutung von zeile, zl: siehe Kommentar weiter oben --------- |
---|
3843 | |
---|
3844 | //--------- vollziehe Euklid.Alg. nach, um die HN-Matrix zu berechnen: ------- |
---|
3845 | M1=M;N1=N;R1=R;Q1=M1/ N1; |
---|
3846 | while (R1!=0) { |
---|
3847 | if (defined(HNDebugOn)) { "h("+string(zeile+zl-2)+") =",Q1; } |
---|
3848 | HNEakut[1][zeile+zl-1]=Q1; |
---|
3849 | HNEakut[zeile+zl][Q1+1]=x; // Markierung des Zeilenendes der HNE |
---|
3850 | zl=zl+1; |
---|
3851 | //-------- Bereitstellung von Speicherplatz fuer eine neue Zeile: ------------ |
---|
3852 | HNEakut[zeile+zl]=ideal(0); |
---|
3853 | M1=N1; N1=R1; R1=M1%N1; Q1=M1 / N1; |
---|
3854 | } |
---|
3855 | if (defined(HNDebugOn)) { |
---|
3856 | "a("+string(zeile+zl-2)+","+string(Q1)+") =",delt; |
---|
3857 | } |
---|
3858 | HNEakut[zeile+zl][Q1]=delt; |
---|
3859 | |
---|
3860 | //--- Daten aus T2_Transform sind eingetragen; haenge Daten von HN an: ------- |
---|
3861 | hilfid=HNEakut[zeile+zl]; |
---|
3862 | for (zl1=Q1+1; zl1<=ncols(aneu[zaehler][2]); zl1++) { |
---|
3863 | hilfid[zl1]=aneu[zaehler][2][zl1]; |
---|
3864 | } |
---|
3865 | HNEakut[zeile+zl]=hilfid; |
---|
3866 | //--- vorher HNEs[.][zeile+zl]<-aneu[.][2], jetzt [zeile+zl+1] <- [3] usw.: -- |
---|
3867 | for (zl1=3; zl1<=size(aneu[zaehler]); zl1++) { |
---|
3868 | HNEakut[zeile+zl+zl1-2]=aneu[zaehler][zl1]; |
---|
3869 | } |
---|
3870 | //--- setze die hqs zusammen: HNEs[hnezaehler][1]=HNEs[..][1],aneu[..][1] ---- |
---|
3871 | hilfvec=HNEakut[1],aneu[zaehler][1]; |
---|
3872 | HNEakut[1]=hilfvec; |
---|
3873 | //----------- weil nicht geht: liste[1]=liste[1],aneu[zaehler][1] ------------ |
---|
3874 | HNEs[hnezaehler]=HNEakut; |
---|
3875 | } // end(for zaehler) |
---|
3876 | } // endelse (R<>0) |
---|
3877 | } // endif (subst()!=0) (weiteres Aufblasen mit HN) |
---|
3878 | |
---|
3879 | } // end(for j) (Behandlung der einzelnen delta_i) |
---|
3880 | |
---|
3881 | } |
---|
3882 | keepring basering; |
---|
3883 | if (defined(transfproc)) { return(list(HNEs,transfproc)); } |
---|
3884 | else { return(list(HNEs,poly(-1))); } |
---|
3885 | // -1 als 2. Rueckgabewert zeigt an, dass kein Ringwechsel stattgefunden hat - |
---|
3886 | } |
---|
3887 | else { |
---|
3888 | HNEs[1]=list(hqs)+azeilen+list(f); // f ist das transform. Poly oder Null |
---|
3889 | keepring basering; |
---|
3890 | return(list(HNEs,poly(-1))); |
---|
3891 | //-- in dieser proc trat keine Verzweigung auf, also auch kein Ringwechsel --- |
---|
3892 | } |
---|
3893 | } |
---|
3894 | /////////////////////////////////////////////////////////////////////////////// |
---|
3895 | |
---|
3896 | static proc constructHNEs (list HNEs,int hnezaehler,list aneu,list azeilen, |
---|
3897 | int zeile,ideal deltais,int Q,int j) |
---|
3898 | "NOTE: This procedure is only for internal use, it is called via HN" |
---|
3899 | { |
---|
3900 | int zaehler,zl; |
---|
3901 | ideal hilfid; |
---|
3902 | list hilflist; |
---|
3903 | intvec hilfvec; |
---|
3904 | for (zaehler=1; zaehler<=size(aneu); zaehler++) { |
---|
3905 | hnezaehler++; |
---|
3906 | // HNEs[hnezaehler]=azeilen; // dupliziere gemeins. Anfang |
---|
3907 | //----------------------- trage neu berechnete Daten ein --------------------- |
---|
3908 | hilfid=azeilen[zeile+2]; |
---|
3909 | hilfid[Q]=deltais[j]; |
---|
3910 | for (zl=Q+1; zl<=ncols(aneu[zaehler][2]); zl++) { |
---|
3911 | hilfid[zl]=aneu[zaehler][2][zl]; |
---|
3912 | } |
---|
3913 | hilflist=azeilen; hilflist[zeile+2]=hilfid; |
---|
3914 | //------------------ haenge uebrige Zeilen von aneu[] an: -------------------- |
---|
3915 | for (zl=3; zl<=size(aneu[zaehler]); zl++) { |
---|
3916 | hilflist[zeile+zl]=aneu[zaehler][zl]; |
---|
3917 | } |
---|
3918 | //--- setze die hqs zusammen: HNEs[hnezaehler][1]=HNEs[..][1],aneu[..][1] ---- |
---|
3919 | if (hilflist[1]==0) { hilflist[1]=aneu[zaehler][1]; } |
---|
3920 | else { hilfvec=hilflist[1],aneu[zaehler][1]; hilflist[1]=hilfvec; } |
---|
3921 | HNEs[hnezaehler]=hilflist; |
---|
3922 | } |
---|
3923 | return(HNEs,hnezaehler); |
---|
3924 | } |
---|
3925 | /////////////////////////////////////////////////////////////////////////////// |
---|
3926 | |
---|
3927 | proc referencepoly (list newton) |
---|
3928 | "USAGE: referencepoly(newton); |
---|
3929 | newton is list of intvec(x,y) which represents points in the Newton |
---|
3930 | diagram (e.g. output of the proc newtonpoly) |
---|
3931 | RETURN: a polynomial which has newton as Newton diagram |
---|
3932 | SEE ALSO: newtonpoly |
---|
3933 | EXAMPLE: example referencepoly; shows an example |
---|
3934 | " |
---|
3935 | { |
---|
3936 | poly f; |
---|
3937 | for (int i=1; i<=size(newton); i++) { |
---|
3938 | f=f+var(1)^newton[i][1]*var(2)^newton[i][2]; |
---|
3939 | } |
---|
3940 | return(f); |
---|
3941 | } |
---|
3942 | example |
---|
3943 | { "EXAMPLE:"; echo = 2; |
---|
3944 | ring exring=0,(x,y),ds; |
---|
3945 | referencepoly(list(intvec(0,4),intvec(2,3),intvec(5,1),intvec(7,0))); |
---|
3946 | } |
---|
3947 | /////////////////////////////////////////////////////////////////////////////// |
---|
3948 | |
---|
3949 | proc factorlist (list L) |
---|
3950 | "USAGE: factorlist(L); L a list in the format of `factorize' |
---|
3951 | RETURN: the nonconstant irreducible factors of |
---|
3952 | L[1][1]^L[2][1] * L[1][2]^L[2][2] *...* L[1][size(L[1])]^... |
---|
3953 | with multiplicities (same format as factorize) |
---|
3954 | SEE ALSO: factorize |
---|
3955 | EXAMPLE: example factorlist; shows an example |
---|
3956 | " |
---|
3957 | { |
---|
3958 | // eine Sortierung der Faktoren eruebrigt sich, weil keine zwei versch. |
---|
3959 | // red.Fakt. einen gleichen irred. Fakt. haben koennen (I.3.27 Diplarb.) |
---|
3960 | int i,gross; |
---|
3961 | list faktoren,hilf; |
---|
3962 | ideal hil1,hil2; |
---|
3963 | intvec v,w; |
---|
3964 | for (i=1; (L[1][i] == jet(L[1][i],0)) && (i<size(L[1])); i++) {;} |
---|
3965 | if (L[1][i] != jet(L[1][i],0)) { |
---|
3966 | hilf=factorize(L[1][i]); |
---|
3967 | // Achtung!!! factorize(..,2) wirft entgegen der Beschreibung nicht nur |
---|
3968 | // konstante Faktoren raus, sondern alle Einheiten in der LOKALISIERUNG nach |
---|
3969 | // der Monomordnung!!! Im Beispiel unten verschwindet der Faktor x+y+1, wenn |
---|
3970 | // man ds statt dp als Ordnung nimmt! |
---|
3971 | hilf[2]=hilf[2]*L[2][i]; |
---|
3972 | hil1=hilf[1]; |
---|
3973 | gross=size(hil1); |
---|
3974 | if (gross>1) { |
---|
3975 | // faktoren=list(hilf[1][2..gross],hilf[2][2..gross]); |
---|
3976 | // --> `? indexed object must have a name' |
---|
3977 | v=hilf[2]; |
---|
3978 | faktoren=list(ideal(hil1[2..gross]),intvec(v[2..gross])); |
---|
3979 | } |
---|
3980 | else { faktoren=hilf; } |
---|
3981 | } |
---|
3982 | else { |
---|
3983 | faktoren=L; |
---|
3984 | } |
---|
3985 | |
---|
3986 | for (i++; i<=size(L[2]); i++) { |
---|
3987 | //------------------------- linearer Term -- irreduzibel --------------------- |
---|
3988 | if (L[1][i] == jet(L[1][i],1)) { |
---|
3989 | if (L[1][i] != jet(L[1][i],0)) { // konst. Faktoren eliminieren |
---|
3990 | hil1=faktoren[1]; |
---|
3991 | hil1[size(hil1)+1]=L[1][i]; |
---|
3992 | faktoren[1]=hil1; |
---|
3993 | v=faktoren[2],L[2][i]; |
---|
3994 | faktoren[2]=v; |
---|
3995 | } |
---|
3996 | } |
---|
3997 | //----------------------- nichtlinearer Term -- faktorisiere ----------------- |
---|
3998 | else { |
---|
3999 | hilf=factorize(L[1][i]); |
---|
4000 | hilf[2]=hilf[2]*L[2][i]; |
---|
4001 | hil1=faktoren[1]; |
---|
4002 | hil2=hilf[1]; |
---|
4003 | gross=size(hil2); |
---|
4004 | // hil2[1] ist konstant, wird weggelassen: |
---|
4005 | hil1[(size(hil1)+1)..(size(hil1)+gross-1)]=hil2[2..gross]; |
---|
4006 | // ideal+ideal does not work due to simplification; |
---|
4007 | // ideal,ideal not allowed |
---|
4008 | faktoren[1]=hil1; |
---|
4009 | w=hilf[2]; |
---|
4010 | v=faktoren[2],w[2..gross]; |
---|
4011 | faktoren[2]=v; |
---|
4012 | } |
---|
4013 | } |
---|
4014 | return(faktoren); |
---|
4015 | } |
---|
4016 | example |
---|
4017 | { "EXAMPLE:"; echo = 2; |
---|
4018 | ring exring=0,(x,y),ds; |
---|
4019 | list L=ideal(x,(x-y)^2*(x+y+1),x+y),intvec(2,2,1); |
---|
4020 | L; |
---|
4021 | factorlist(L); |
---|
4022 | } |
---|
4023 | /////////////////////////////////////////////////////////////////////////////// |
---|
4024 | |
---|
4025 | proc deltaHNE(list hne) |
---|
4026 | "USAGE: deltaHNE(L); L list |
---|
4027 | NOTE: command is obsolete, use hnexpansion(f,\"ess\") instead. |
---|
4028 | SEE ALSO: delta, deltaLoc |
---|
4029 | " |
---|
4030 | { |
---|
4031 | int i,j,inters; |
---|
4032 | int n=size(hne); |
---|
4033 | list INV; |
---|
4034 | for (i=1;i<=n;i++) |
---|
4035 | { |
---|
4036 | INV[i]=invariants(hne[i]); |
---|
4037 | } |
---|
4038 | int del=INV[n][5]/2; |
---|
4039 | for(i=1;i<=n-1;i++) |
---|
4040 | { |
---|
4041 | del=del+INV[i][5]/2; |
---|
4042 | for(j=i+1;j<=n;j++) |
---|
4043 | { |
---|
4044 | inters=inters+intersection(hne[i],hne[j]); |
---|
4045 | } |
---|
4046 | } |
---|
4047 | return(del+inters); |
---|
4048 | } |
---|
4049 | |
---|
4050 | /////////////////////////////////////////////////////////////////////////////// |
---|
4051 | |
---|
4052 | proc delta |
---|
4053 | "USAGE: delta(INPUT); INPUT a polynomial defining an isolated plane curve |
---|
4054 | singularity at 0, or the Hamburger-Noether expansion thereof, i.e. |
---|
4055 | the output of @code{develop(f)}, or the output of @code{hnexpansion(f[,\"ess\"])}, |
---|
4056 | or (one of the entries of) the list @code{hne} in the ring created |
---|
4057 | by @code{hnexpansion(f[,\"ess\"])}. |
---|
4058 | RETURN: the delta invariant of the singularity at 0, the vector space |
---|
4059 | dimension of R~/R, where R~ is the normalization of the |
---|
4060 | singularity R=basering/f |
---|
4061 | NOTE: In case the Hamburger-Noether expansion of the curve f is needed |
---|
4062 | for other purposes as well it is better to calculate this first |
---|
4063 | with the aid of @code{hnexpansion} and use it as input instead of |
---|
4064 | the polynomial itself. |
---|
4065 | SEE ALSO: deltaLoc, invariants |
---|
4066 | KEYWORDS: delta invariant |
---|
4067 | EXAMPLE: example delta; shows an example |
---|
4068 | " |
---|
4069 | { |
---|
4070 | if (typeof(#[1])=="poly") |
---|
4071 | { // INPUT = polynomial defining the curve |
---|
4072 | list HNEXPANSION=hnexpansion(#[1]); |
---|
4073 | return(delta(HNEXPANSION)); |
---|
4074 | } |
---|
4075 | if (typeof(#[1])=="ring") |
---|
4076 | { // INPUT = HNEring of curve |
---|
4077 | def r_e_t_t_e_r_i_n_g=basering; |
---|
4078 | def H_N_E_RING=#[1]; |
---|
4079 | setring H_N_E_RING; |
---|
4080 | int del=delta(hne); |
---|
4081 | setring r_e_t_t_e_r_i_n_g; |
---|
4082 | kill H_N_E_RING; |
---|
4083 | return(del); |
---|
4084 | } |
---|
4085 | if (typeof(#[1])=="matrix") |
---|
4086 | { // INPUT = hne of an irreducible curve |
---|
4087 | return(invariants(#)[5]/2); |
---|
4088 | } |
---|
4089 | else |
---|
4090 | { // INPUT = hne of a reducible curve |
---|
4091 | list INV=invariants(#); |
---|
4092 | return(INV[size(INV)][3]); |
---|
4093 | } |
---|
4094 | } |
---|
4095 | example |
---|
4096 | { "EXAMPLE:"; echo = 2; |
---|
4097 | ring r = 32003,(x,y),ds; |
---|
4098 | poly f = x25+x24-4x23-1x22y+4x22+8x21y-2x21-12x20y-4x19y2+4x20+10x19y |
---|
4099 | +12x18y2-24x18y-20x17y2-4x16y3+x18+60x16y2+20x15y3-9x16y |
---|
4100 | -80x14y3-10x13y4+36x14y2+60x12y4+2x11y5-84x12y3-24x10y5 |
---|
4101 | +126x10y4+4x8y6-126x8y5+84x6y6-36x4y7+9x2y8-1y9; |
---|
4102 | delta(f); |
---|
4103 | } |
---|
4104 | |
---|
4105 | /////////////////////////////////////////////////////////////////////////////// |
---|
4106 | |
---|
4107 | |
---|
4108 | proc hnexpansion(poly f,list #) |
---|
4109 | "USAGE: hnexpansion(f); or hnexpansion(f,\"ess\"); f poly |
---|
4110 | |
---|
4111 | USAGE: hnexpansion(f); f poly |
---|
4112 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables) |
---|
4113 | CREATE: ring with variables @code{x,y} and ordering @code{ls} over a |
---|
4114 | field extension of the current basering's ground field, |
---|
4115 | since the Hamburger-Noether development usually does not exist |
---|
4116 | in the originally given basering. The field extension is chosen |
---|
4117 | minimally.@* |
---|
4118 | Moreover, in the ring a list @code{hne} of lists @code{hne[i]} is |
---|
4119 | created (corresponding to the output of @code{develop(f[i])}, |
---|
4120 | f[i] a branch of f, but the last entry being omitted). |
---|
4121 | @texinfo |
---|
4122 | @table @asis |
---|
4123 | @item @code{hne[i][1]}; matrix: |
---|
4124 | Each row contains the coefficients of the corresponding line of the |
---|
4125 | Hamburger-Noether expansion (HNE) for f[i]. The end of the line is |
---|
4126 | marked in the matrix by the first ring variable (usually x). |
---|
4127 | @item @code{hne[i][2]}; intvec: |
---|
4128 | indicating the length of lines of the HNE |
---|
4129 | @item @code{hne[i][3]}; int: |
---|
4130 | 0 if the 1st ring variable was transversal (with respect to f[i]), @* |
---|
4131 | 1 if the variables were changed at the beginning of the |
---|
4132 | computation, @* |
---|
4133 | -1 if an error has occurred. |
---|
4134 | @item @code{hne[i][4]}; poly: |
---|
4135 | the transformed polynomial of f[i] to make it possible to extend the |
---|
4136 | Hamburger-Noether development a posteriori without having to do |
---|
4137 | all the previous calculation once again (0 if not needed) |
---|
4138 | @end table |
---|
4139 | @end texinfo |
---|
4140 | RETURN: a list, say @code{hn}, containing the created ring |
---|
4141 | NOTE: to use the ring type: @code{def HNEring=hn[i]; setring HNEring;}. |
---|
4142 | @* |
---|
4143 | If f is known to be irreducible as a power series, @code{develop(f)} |
---|
4144 | could be chosen instead to avoid the change of basering. @* |
---|
4145 | Increasing @code{printlevel} leads to more and more comments. |
---|
4146 | |
---|
4147 | USAGE: hnexpansion(f,\"ess\"); f poly |
---|
4148 | ASSUME: f is a bivariate polynomial (in the first 2 ring variables) |
---|
4149 | CREATE: ring with variables @code{x,y} and ordering @code{ls} over a |
---|
4150 | field extension of the current basering's ground field, |
---|
4151 | since the Hamburger-Noether development usually does not exist |
---|
4152 | in the originally given basering. The field extension is chosen |
---|
4153 | minimally. |
---|
4154 | @* |
---|
4155 | Moreover, in the ring a list @code{hne} of lists @code{hne[i]} is |
---|
4156 | created (corresponding to the output of @code{develop(f[i])}, f[i] an |
---|
4157 | \"essential\" branch of f, but the last entry being omitted). See |
---|
4158 | @code{hnexpansion} above for more details. |
---|
4159 | RETURN: a list, say @code{hn}, containing the created ring |
---|
4160 | NOTE: to use the ring type: @code{def hnering=hn[i]; setring hnering;}. |
---|
4161 | @* |
---|
4162 | Alternatively you may use the procedure sethnering and type: |
---|
4163 | @code{sethnering(hn);} |
---|
4164 | @* |
---|
4165 | If the HNE needs a field extension, some of the branches will be |
---|
4166 | conjugate. In this case @code{hnexpansion(f,\"ess\")} reduces the |
---|
4167 | computation to one representative for each group of conjugate |
---|
4168 | branches.@* |
---|
4169 | Note that the degree of each branch is in general less than the degree |
---|
4170 | of the field extension in which all HNEs can be put.@* |
---|
4171 | Use @code{hnexpansion(f)} to compute a complete HNE, i.e., a HNE for |
---|
4172 | all branches.@* |
---|
4173 | Increasing @code{printlevel} leads to more and more comments. |
---|
4174 | SEE ALSO: develop, extdevelop, parametrisation, displayHNE |
---|
4175 | EXAMPLE: example hnexpansion; shows an example |
---|
4176 | " |
---|
4177 | { |
---|
4178 | def rettering=basering; |
---|
4179 | if (defined(HNEring)) |
---|
4180 | { |
---|
4181 | def @HNEring = HNEring; |
---|
4182 | kill HNEring; |
---|
4183 | } |
---|
4184 | if (size(#)==1) |
---|
4185 | { |
---|
4186 | list hne=essdevelop(f); |
---|
4187 | } |
---|
4188 | else |
---|
4189 | { |
---|
4190 | list hne=HNdevelop(f); |
---|
4191 | } |
---|
4192 | export hne; |
---|
4193 | list hnereturn=HNEring; |
---|
4194 | setring rettering; |
---|
4195 | kill HNEring; |
---|
4196 | if (defined(@HNEring)) |
---|
4197 | { |
---|
4198 | def HNEring=@HNEring; |
---|
4199 | export(HNEring); |
---|
4200 | } |
---|
4201 | dbprint(printlevel-voice+2," |
---|
4202 | // 'hnexpansion' created a list containing a ring, which |
---|
4203 | // contains the Hamburger-Noether expansion as a list hne. |
---|
4204 | // To see the ring, type (if the name of your list is hn): |
---|
4205 | show(hn); |
---|
4206 | // To access the ring and list, type: |
---|
4207 | def hnering = hn[1]; |
---|
4208 | setring hnering; |
---|
4209 | hne; |
---|
4210 | ////////////////////////////////////////////////"); |
---|
4211 | |
---|
4212 | return(hnereturn); |
---|
4213 | } |
---|
4214 | example |
---|
4215 | { |
---|
4216 | "EXAMPLE:"; echo = 2; |
---|
4217 | ring r=0,(x,y),ls; |
---|
4218 | list hn=hnexpansion(x4-y6); |
---|
4219 | show(hn); |
---|
4220 | |
---|
4221 | def hnering=hn[1]; |
---|
4222 | setring hnering; |
---|
4223 | size(hne); // number of branches |
---|
4224 | print(hne[1][1]); // HN-matrix of 1st branch |
---|
4225 | parametrisation(hne); // parametrization of the two branches |
---|
4226 | ///////////////////////////////////////////////////////// |
---|
4227 | ring s=2,(x,y),ls; |
---|
4228 | poly f=(x4+x2y+y2)*(x3+xy2+y3); |
---|
4229 | // --------- compute all branches: --------- |
---|
4230 | hn=hnexpansion(f); |
---|
4231 | hnering=hn[1]; |
---|
4232 | setring hnering; |
---|
4233 | displayHNE(hne[1]); // HN-matrix of 1st branch |
---|
4234 | displayHNE(hne[4]); // HN-matrix of 4th branch |
---|
4235 | setring s; |
---|
4236 | // --- compute only one of conjugate branches: --- |
---|
4237 | hn=hnexpansion(f,"ess"); |
---|
4238 | hnering=hn[1]; |
---|
4239 | setring hnering; |
---|
4240 | displayHNE(hne); |
---|
4241 | // no. 1 of hnexpansion(f,"ess") represents no. 1 - 3 of hnexpansion(f) and |
---|
4242 | // no. 2 of hnexpansion(f,"ess") represents no. 4 + 5 of hnexpansion(f) |
---|
4243 | } |
---|
4244 | /////////////////////////////////////////////////////////////////////////////// |
---|
4245 | |
---|
4246 | proc sethnering (list L,list #) |
---|
4247 | "USAGE: sethnering(L[,s]); L list, s string (optional) |
---|
4248 | ASSUME: L is a list containing a ring (e.g. the output of @code{hnexpansion}). |
---|
4249 | CREATE: The procedure creates a ring with name given by the optional parameter |
---|
4250 | s resp. with name hnering, if no optional parameter is given, and |
---|
4251 | changes your ring to this ring. The new ring will be the ring given |
---|
4252 | as the first entry in the list L. |
---|
4253 | RETURN: nothing. |
---|
4254 | SEE ALSO: hnexpansion |
---|
4255 | EXAMPLE: example sethnering; shows some examples. |
---|
4256 | " |
---|
4257 | |
---|
4258 | { |
---|
4259 | if (typeof(L[1])=="ring") |
---|
4260 | { |
---|
4261 | if (size(#)>0) |
---|
4262 | { |
---|
4263 | if (typeof(#[1])=="string") |
---|
4264 | { |
---|
4265 | execute("def "+#[1]+"=L[1];"); |
---|
4266 | execute("export "+#[1]+";"); |
---|
4267 | execute("setring "+#[1]+";"); |
---|
4268 | execute("keepring "+#[1]+";"); |
---|
4269 | } |
---|
4270 | else |
---|
4271 | { |
---|
4272 | ERROR("Optional Input was no string."); |
---|
4273 | return(); |
---|
4274 | } |
---|
4275 | } |
---|
4276 | else |
---|
4277 | { |
---|
4278 | def hnering=L[1]; |
---|
4279 | export hnering; |
---|
4280 | setring hnering; |
---|
4281 | keepring hnering; |
---|
4282 | } |
---|
4283 | return(); |
---|
4284 | } |
---|
4285 | else |
---|
4286 | { |
---|
4287 | ERROR("Input was no hnering."); |
---|
4288 | return(); |
---|
4289 | } |
---|
4290 | } |
---|
4291 | example |
---|
4292 | { |
---|
4293 | // -------- prepare for example --------- |
---|
4294 | if (defined(hnering)) |
---|
4295 | { |
---|
4296 | def rette@ring=hnering; |
---|
4297 | if (nameof(basering)=="hnering") |
---|
4298 | { |
---|
4299 | int wechsel=1; |
---|
4300 | } |
---|
4301 | else |
---|
4302 | { |
---|
4303 | int wechsel; |
---|
4304 | } |
---|
4305 | kill hnering; |
---|
4306 | } |
---|
4307 | // ------ the example starts here ------- |
---|
4308 | "EXAMPLE:"; echo = 2; |
---|
4309 | ring r=0,(x,y),ls; |
---|
4310 | nameof(basering); |
---|
4311 | sethnering(hnexpansion(x4-y6)); // Creates hnering and changes to it! |
---|
4312 | nameof(basering); |
---|
4313 | echo = 0; |
---|
4314 | // --- restore HNEring if previously defined --- |
---|
4315 | kill hnering; |
---|
4316 | if (defined(rette@ring)) { |
---|
4317 | def hnering=rette@ring; |
---|
4318 | export hnering; |
---|
4319 | if (wechsel==1) |
---|
4320 | { |
---|
4321 | setring hnering; |
---|
4322 | } |
---|
4323 | } |
---|
4324 | } |
---|