1 | // $Id: homolog.lib,v 1.11 2000-12-19 14:41:42 anne Exp $ |
---|
2 | //(BM/GMG) |
---|
3 | /////////////////////////////////////////////////////////////////////////////// |
---|
4 | |
---|
5 | version="$Id: homolog.lib,v 1.11 2000-12-19 14:41:42 anne Exp $"; |
---|
6 | category="Commutative Algebra"; |
---|
7 | info=" |
---|
8 | LIBRARY: homolog.lib PROCEDURES FOR HOMOLOGICAL ALGEBRA |
---|
9 | |
---|
10 | AUTHORS: Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de, |
---|
11 | Bernd Martin, email: martin@math.tu-cottbus.de |
---|
12 | |
---|
13 | PROCEDURES: |
---|
14 | cup(M); cup: Ext^1(M',M') x Ext^1() --> Ext^2() |
---|
15 | cupproduct(M,N,P,p,q); cup: Ext^p(M',N') x Ext^q(N',P') --> Ext^p+q(M',P') |
---|
16 | Ext_R(k,M); Ext^k(M',R), M module, R basering, M'=coker(M) |
---|
17 | Ext(k,M,N); Ext^k(M',N'), M,N modules, M'=coker(M), N'=coker(N) |
---|
18 | Hom(M,N); Hom(M',N'), M,N modules, M'=coker(M), N'=coker(N) |
---|
19 | homology(A,B,M,N) ker(B)/im(A), homology of complex R^k--A->M'--B->N' |
---|
20 | kernel(A,M,N); ker(M'--A->N') M,N modules, A matrix |
---|
21 | kohom(A,k); Hom(R^k,A), A matrix over basering R |
---|
22 | kontrahom(A,k); Hom(A,R^k), A matrix over basering R |
---|
23 | "; |
---|
24 | |
---|
25 | LIB "general.lib"; |
---|
26 | LIB "deform.lib"; |
---|
27 | LIB "matrix.lib"; |
---|
28 | LIB "poly.lib"; |
---|
29 | /////////////////////////////////////////////////////////////////////////////// |
---|
30 | |
---|
31 | proc cup (module M,list #) |
---|
32 | "USAGE: cup(M,[,any,any]); M=module |
---|
33 | COMPUTE: cup-product Ext^1(M',M') x Ext^1(M',M') ---> Ext^2(M',M'), |
---|
34 | where M':=R^m/M, if M in R^m, R basering (i.e. M':=coker(matrix(M))) |
---|
35 | in case of a second argument: symmetrized cup-product |
---|
36 | ASSUME: all Ext's are finite dimensional |
---|
37 | RETURN: matrix of the associated linear map, |
---|
38 | i.e. the columns of <matrix> present the coordinates of b_i & b_j |
---|
39 | (resp. (1/2)(b_i & b_j + b_j & b_i) in the symmetric version) |
---|
40 | with respect to a kbase of Ext^2, |
---|
41 | (where b_1,b_2,... is a kbase of Ext^1 and & denotes cup product) |
---|
42 | in case of a third argument return a list: |
---|
43 | L[1] = matrix see above (and symmetric case) |
---|
44 | L[2] = matrix of kbase of Ext^1 |
---|
45 | L[3] = matrix of kbase of Ext^2 |
---|
46 | NOTE: printlevel >=1; shows what is going on |
---|
47 | printlevel >=2; shows result in another representation |
---|
48 | For computing cupproduct of M itself, apply proc to syz(M)! |
---|
49 | EXAMPLE: example cup; shows examples |
---|
50 | " |
---|
51 | { |
---|
52 | //---------- initialization --------------------------------------------------- |
---|
53 | int i,j,k,f0,f1,f2,f3,e1,e2; |
---|
54 | module M1,M2,A,B,C,ker,ima,ext1,ext2,ext10,ext20; |
---|
55 | matrix cup[1][0]; |
---|
56 | matrix kb1,lift1,kb2,mA,mB,mC; |
---|
57 | ideal tes1,tes2,null; |
---|
58 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
59 | //----------------------------------------------------------------------------- |
---|
60 | //take a resolution of M<--F(0)<--- ... <---F(3) |
---|
61 | //apply Hom(-,M) and compute the Ext's |
---|
62 | //----------------------------------------------------------------------------- |
---|
63 | list resM = nres(M,3); |
---|
64 | M1 = resM[2]; |
---|
65 | M2 = resM[3]; |
---|
66 | f0 = nrows(M); |
---|
67 | f1 = ncols(M); |
---|
68 | f2 = ncols(M1); |
---|
69 | f3 = ncols(M2); |
---|
70 | tes1 = simplify(ideal(M),10); |
---|
71 | tes2=simplify(ideal(M1),10); |
---|
72 | if ((tes1[1]*tes2[1]==0) or (tes1[1]==1) or (tes2[1]==1)) |
---|
73 | { |
---|
74 | dbprint(p,"// Ext == 0 , hence 'cup' is the zero-map"); |
---|
75 | return(@cup); |
---|
76 | } |
---|
77 | //------ compute Ext^1 -------------------------------------------------------- |
---|
78 | B = kohom(M,f2); |
---|
79 | A = kontrahom(M1,f0); |
---|
80 | C = intersect(A,B); |
---|
81 | C = reduce(C,std(null));C = simplify(C,10); |
---|
82 | ker = lift(A,C)+syz(A); |
---|
83 | ima = kohom(M,f1); |
---|
84 | ima = ima + kontrahom(M,f0); |
---|
85 | ext1 = modulo(ker,ima); |
---|
86 | ext10 = std(ext1); |
---|
87 | e1 = vdim(ext10); |
---|
88 | dbprint(p-1,"// vdim (Ext^1) = "+string(e1)); |
---|
89 | if (e1 < 0) |
---|
90 | { |
---|
91 | "// Ext^1 not of finite dimension"; |
---|
92 | return(cup); |
---|
93 | } |
---|
94 | kb1 = kbase(ext10); |
---|
95 | kb1 = matrix(ker)*kb1; |
---|
96 | dbprint(p-1,"// kbase of Ext^1(M,M)", |
---|
97 | "// - the columns present the kbase elements in Hom(F(1),F(0))", |
---|
98 | "// - F(*) a free resolution of M",kb1); |
---|
99 | |
---|
100 | //------ compute the liftings of Ext^1 ---------------------------------------- |
---|
101 | mC = matrix(A)*kb1; |
---|
102 | lift1 =lift(B,mC); |
---|
103 | dbprint(p-1,"// lift kbase of Ext^1:", |
---|
104 | "// - the columns present liftings of kbase elements into Hom(F(2),F(1))", |
---|
105 | "// - F(*) a free resolution of M ",lift1); |
---|
106 | |
---|
107 | //------ compute Ext^2 ------------------------------------------------------- |
---|
108 | B = kohom(M,f3); |
---|
109 | A = kontrahom(M2,f0); |
---|
110 | C = intersect(A,B); |
---|
111 | C = reduce(C,std(null));C = simplify(C,10); |
---|
112 | ker = lift(A,C)+syz(A); |
---|
113 | ima = kohom(M,f2); |
---|
114 | ima = ima + kontrahom(M1,f0); |
---|
115 | ext2 = modulo(ker,ima); |
---|
116 | ext20= std(ext2); |
---|
117 | e2 = vdim(ext20); |
---|
118 | if (e2<0) |
---|
119 | { |
---|
120 | "// Ext^2 not of finite dimension"; |
---|
121 | return(cup); |
---|
122 | } |
---|
123 | dbprint(p-1,"// vdim (Ext^2) = "+string(e2)); |
---|
124 | kb2 = kbase(ext20); |
---|
125 | kb2 = matrix(ker)*kb2; |
---|
126 | dbprint(p-1,"// kbase of Ext^2(M,M)", |
---|
127 | "// - the columns present the kbase elements in Hom(F(2),F(0))", |
---|
128 | "// - F(*) is a a free resolution of M ",kb2); |
---|
129 | //------- compute: cup-products of base-elements ----------------------------- |
---|
130 | for (i=1;i<=e1;i=i+1) |
---|
131 | { |
---|
132 | for (j=1;j<=e1;j=j+1) |
---|
133 | { |
---|
134 | mA = matrix(ideal(lift1[j]),f1,f2); |
---|
135 | mB = matrix(ideal(kb1[i]),f0,f1); |
---|
136 | mC = mB*mA; |
---|
137 | if (size(#)==0) |
---|
138 | { //non symmestric |
---|
139 | mC = matrix(ideal(mC),f0*f2,1); |
---|
140 | cup= concat(cup,mC); |
---|
141 | } |
---|
142 | else //symmetric version |
---|
143 | { |
---|
144 | if (j>=i) |
---|
145 | { |
---|
146 | if (j>i) |
---|
147 | { |
---|
148 | mA = matrix(ideal(lift1[i]),f1,f2); |
---|
149 | mB = matrix(ideal(kb1[j]),f0,f1); |
---|
150 | mC = mC+mB*mA;mC=(1/2)*mC; |
---|
151 | } |
---|
152 | mC = matrix(ideal(mC),f0*f2,1); |
---|
153 | cup= concat(cup,mC); |
---|
154 | } |
---|
155 | } |
---|
156 | } |
---|
157 | } |
---|
158 | dbprint(p-1,"// matrix of cup-products (in Ext^2)",cup,"////// end level 2 //////"); |
---|
159 | //------- comptute: presentation of base-elements ----------------------------- |
---|
160 | cup = lift(ker,cup); |
---|
161 | cup = lift_kbase(cup,ext20); |
---|
162 | if( p>2 ) |
---|
163 | { |
---|
164 | "// the associated matrices of the bilinear mapping 'cup' "; |
---|
165 | "// corresponding to the kbase elements of Ext^2(M,M) are shown,"; |
---|
166 | "// i.e. the rows of the final matrix are written as matrix of"; |
---|
167 | "// a bilinear form on Ext^1 x Ext^1"; |
---|
168 | matrix BL[e1][e1]; |
---|
169 | for (k=1;k<=e2;k=k+1) |
---|
170 | { |
---|
171 | "//_____"+string(k)+". component:"; |
---|
172 | for (i=1;i<=e1;i=i+1) |
---|
173 | { |
---|
174 | for (j=1;j<=e1;j=j+1) |
---|
175 | { |
---|
176 | if (size(#)==0) { BL[i,j]=cup[k,j+e1*(i-1)]; } |
---|
177 | else |
---|
178 | { |
---|
179 | if (i<=j) |
---|
180 | { |
---|
181 | BL[i,j]=cup[k,j+e1*(i-1)-binomial(i,2)]; |
---|
182 | BL[j,i]=BL[i,j]; |
---|
183 | } |
---|
184 | } |
---|
185 | } |
---|
186 | } |
---|
187 | print(BL); |
---|
188 | } |
---|
189 | "////// end level 3 //////"; |
---|
190 | } |
---|
191 | if (size(#)>2) { return(cup,kb1,kb2);} |
---|
192 | else {return(cup);} |
---|
193 | } |
---|
194 | example |
---|
195 | {"EXAMPLE"; echo=2; |
---|
196 | int p = printlevel; |
---|
197 | ring rr = 32003,(x,y,z),(dp,C); |
---|
198 | ideal I = x4+y3+z2; |
---|
199 | qring o = std(I); |
---|
200 | module M = [x,y,0,z],[y2,-x3,z,0],[z,0,-y,-x3],[0,z,x,-y2]; |
---|
201 | print(cup(M)); |
---|
202 | print(cup(M,1)); |
---|
203 | // 2nd EXAMPLE (shows what is going on) |
---|
204 | printlevel = 3; |
---|
205 | ring r = 0,(x,y),(dp,C); |
---|
206 | ideal i = x2-y3; |
---|
207 | qring q = std(i); |
---|
208 | module M = [-x,y],[-y2,x]; |
---|
209 | print(cup(M)); |
---|
210 | printlevel = p; |
---|
211 | } |
---|
212 | /////////////////////////////////////////////////////////////////////////////// |
---|
213 | |
---|
214 | proc cupproduct (module M,N,P,int p,q,list #) |
---|
215 | "USAGE: cupproduct(M,N,P,p,q[,any]); M,N,P modules, p,q integers |
---|
216 | COMPUTE: cup-product Ext^p(M',N') x Ext^q(N',P') ---> Ext^p+q(M',P') |
---|
217 | where M':=R^m/M, if M in R^m, R basering (i.e. M':=coker(matrix(M))) |
---|
218 | ASSUME: all Ext's are of finite dimension |
---|
219 | RETURN: matrix of the associated linear map Ext^p(tensor)Ext^q-->Ext^p+q |
---|
220 | i.e. the columnes of <matrix> present the coordinates of |
---|
221 | the cup products (b_i & c_j) with respect to a kbase of Ext^p+q |
---|
222 | (b_i resp. c_j are choosen bases of Ext^p resp. Ext^q) |
---|
223 | in case of a 6th argument: |
---|
224 | return a list |
---|
225 | L[1] = matrix (see above) |
---|
226 | L[2] = matrix of kbase of Ext^p(M',N') |
---|
227 | L[3] = matrix of kbase of Ext^q(N',P') |
---|
228 | L[4] = matrix of kbase of Ext^p+q(N',P') |
---|
229 | NOTE: printlevel >=1; shows what is going on |
---|
230 | printlevel >=2; shows result in another representation |
---|
231 | For computing cupproduct of M,N itself, apply proc to syz(M),syz(N)! |
---|
232 | EXAMPLE: example cupproduct; shows examples |
---|
233 | " |
---|
234 | { |
---|
235 | //---------- initialization --------------------------------------------------- |
---|
236 | int e1,e2,e3,i,j,k,f0,f1,f2; |
---|
237 | module M1,M2,N1,N2,P1,P2,A,B,C,ker,ima,extMN,extMN0,extMP, |
---|
238 | extMP0,extNP,extNP0; |
---|
239 | matrix cup[1][0]; |
---|
240 | matrix kbMN,kbMP,kbNP,lift1,mA,mB,mC; |
---|
241 | ideal test1,test2,null; |
---|
242 | int pp = printlevel-voice+3; // pp=printlevel+1 (default: p=1) |
---|
243 | //----------------------------------------------------------------------------- |
---|
244 | //compute resolutions of M and N |
---|
245 | // M<--F(0)<--- ... <---F(p+q+1) |
---|
246 | // N<--G(0)<--- ... <---G(q+1) |
---|
247 | //----------------------------------------------------------------------------- |
---|
248 | list resM = nres(M,p+q+1); |
---|
249 | M1 = resM[p]; |
---|
250 | M2 = resM[p+1]; |
---|
251 | list resN = nres(N,q+1); |
---|
252 | N1 = resN[q]; |
---|
253 | N2 = resN[q+1]; |
---|
254 | P1 = resM[p+q]; |
---|
255 | P2 = resM[p+q+1]; |
---|
256 | //-------test: Ext==0?--------------------------------------------------------- |
---|
257 | test1 = simplify(ideal(M1),10); |
---|
258 | test2 = simplify(ideal(N),10); |
---|
259 | if (test1[1]==0) { dbprint(pp,"//Ext(M,N)=0");return(cup); } |
---|
260 | test1 = simplify(ideal(N1),10); |
---|
261 | test2 = simplify(ideal(P),10); |
---|
262 | if (test1[1]==0) { dbprint(pp,"//Ext(N,P)=0");return(cup); } |
---|
263 | test1 = simplify(ideal(P1),10); |
---|
264 | if (test1[1]==0) { dbprint(pp,"//Ext(M,P)=0");return(cup); } |
---|
265 | //------ compute kbases of Ext's --------------------------------------------- |
---|
266 | //------ Ext(M,N) |
---|
267 | test1 = simplify(ideal(M2),10); |
---|
268 | if (test1[1]==0) { ker = freemodule(ncols(M1)*nrows(N));} |
---|
269 | else |
---|
270 | { |
---|
271 | A = kontrahom(M2,nrows(N)); |
---|
272 | B = kohom(N,ncols(M2)); |
---|
273 | C = intersect(A,B); |
---|
274 | C = reduce(C,std(ideal(0)));C=simplify(C,10); |
---|
275 | ker = lift(A,C)+syz(A); |
---|
276 | } |
---|
277 | ima = kohom(N,ncols(M1)); |
---|
278 | A = kontrahom(M1,nrows(N)); |
---|
279 | ima = ima+A; |
---|
280 | extMN = modulo(ker,ima); |
---|
281 | extMN0= std(extMN); |
---|
282 | e1 = vdim(extMN0); |
---|
283 | dbprint(pp-1,"// vdim Ext(M,N) = "+string(e1)); |
---|
284 | if (e1 < 0) |
---|
285 | { |
---|
286 | "// Ext(M,N) not of finite dimension"; |
---|
287 | return(cup); |
---|
288 | } |
---|
289 | kbMN = kbase(extMN0); |
---|
290 | kbMN = matrix(ker)*kbMN; |
---|
291 | dbprint(pp-1,"// kbase of Ext^p(M,N)", |
---|
292 | "// - the columns present the kbase elements in Hom(F(p),G(0))", |
---|
293 | "// - F(*),G(*) are free resolutions of M and N",kbMN); |
---|
294 | //------- Ext(N,P) |
---|
295 | test1 = simplify(ideal(N2),10); |
---|
296 | if (test1[1]==0) { ker = freemodule(ncols(N1)*nrows(P)); } |
---|
297 | else |
---|
298 | { |
---|
299 | A = kontrahom(N2,nrows(P)); |
---|
300 | B = kohom(P,ncols(N2)); |
---|
301 | C = intersect(A,B); |
---|
302 | C = reduce(C,std(ideal(0)));C=simplify(C,10); |
---|
303 | ker = lift(A,C)+syz(A); |
---|
304 | } |
---|
305 | ima = kohom(P,ncols(N1)); |
---|
306 | A = kontrahom(N1,nrows(P)); |
---|
307 | ima = ima+A; |
---|
308 | extNP = modulo(ker,ima); |
---|
309 | extNP0= std(extNP); |
---|
310 | e2 = vdim(extNP0); |
---|
311 | dbprint(pp-1,"// vdim Ext(N,P) = "+string(e2)); |
---|
312 | if (e2 < 0) |
---|
313 | { |
---|
314 | "// Ext(N,P) not of finite dimension"; |
---|
315 | return(cup); |
---|
316 | } |
---|
317 | kbNP = kbase(extNP0); |
---|
318 | kbNP = matrix(ker)*kbNP; |
---|
319 | dbprint(pp-1,"// kbase of Ext(N,P):",kbNP, |
---|
320 | "// kbase of Ext^q(N,P)", |
---|
321 | "// - the columns present the kbase elements in Hom(G(q),H(0))", |
---|
322 | "// - G(*),H(*) are free resolutions of N and P",kbNP); |
---|
323 | |
---|
324 | //------ Ext(M,P) |
---|
325 | test1 = simplify(ideal(P2),10); |
---|
326 | if (test1[1]==0) { ker = freemodule(ncols(P1)*nrows(P)); } |
---|
327 | else |
---|
328 | { |
---|
329 | A = kontrahom(P2,nrows(P)); |
---|
330 | B = kohom(P,ncols(P2)); |
---|
331 | C = intersect(A,B); |
---|
332 | C = reduce(C,std(ideal(0)));C=simplify(C,10); |
---|
333 | ker = lift(A,C)+syz(A); |
---|
334 | } |
---|
335 | ima = kohom(P,ncols(P1)); |
---|
336 | A = kontrahom(P1,nrows(P)); |
---|
337 | ima = ima+A; |
---|
338 | extMP = modulo(ker,ima); |
---|
339 | extMP0= std(extMP); |
---|
340 | e3 = vdim(extMP0); |
---|
341 | dbprint(pp-1,"// vdim Ext(M,P) = "+string(e3)); |
---|
342 | if (e3 < 0) |
---|
343 | { |
---|
344 | "// Ext(M,P) not of finite dimension"; |
---|
345 | return(cup); |
---|
346 | } |
---|
347 | kbMP = kbase(extMP0); |
---|
348 | kbMP = matrix(ker)*kbMP; |
---|
349 | dbprint(pp-1,"// kbase of Ext^p+q(M,P)", |
---|
350 | "// - the columns present the kbase elements in Hom(F(p+q),H(0))", |
---|
351 | "// - F(*),H(*) are free resolutions of M and P",kbMP); |
---|
352 | //----- lift kbase of Ext(M,N) ------------------------------------------------ |
---|
353 | lift1 = kbMN; |
---|
354 | for (i=1;i<=q;i=i+1) |
---|
355 | { |
---|
356 | mA = kontrahom(resM[p+i],nrows(resN[i])); |
---|
357 | mB = kohom(resN[i],ncols(resM[p+i])); |
---|
358 | lift1 = lift(mB,mA*lift1); |
---|
359 | } |
---|
360 | dbprint(pp-1,"// lifting of kbase of Ext^p(M,N)", |
---|
361 | "// - the columns present the lifting of kbase elements in Hom(F(p+q),G(q))",lift1); |
---|
362 | //------- compute: cup-products of base-elements ----------------------------- |
---|
363 | f0 = nrows(P); |
---|
364 | f1 = ncols(N1); |
---|
365 | f2 = ncols(resM[p+q]); |
---|
366 | for (i=1;i<=e1;i=i+1) |
---|
367 | { |
---|
368 | for (j=1;j<=e2;j=j+1) |
---|
369 | { |
---|
370 | mA = matrix(ideal(lift1[j]),f1,f2); |
---|
371 | mB = matrix(ideal(kbMP[i]),f0,f1); |
---|
372 | mC = mB*mA; |
---|
373 | mC = matrix(ideal(mC),f0*f2,1); |
---|
374 | cup= concat(cup,mC); |
---|
375 | } |
---|
376 | } |
---|
377 | dbprint(pp-1,"// matrix of cup-products (in Ext^p+q)",cup,"////// end level 2 //////"); |
---|
378 | //------- comptute: presentation of base-elements ----------------------------- |
---|
379 | cup = lift(ker,cup); |
---|
380 | cup = lift_kbase(cup,extMP0); |
---|
381 | //------- special output ------------------------------------------------------ |
---|
382 | if (pp>2) |
---|
383 | { |
---|
384 | "// the associated matrices of the bilinear mapping 'cup' "; |
---|
385 | "// corresponding to the kbase elements of Ext^p+q(M,P) are shown,"; |
---|
386 | "// i.e. the rows of the final matrix are written as matrix of"; |
---|
387 | "// a bilinear form on Ext^p x Ext^q"; |
---|
388 | matrix BL[e1][e2]; |
---|
389 | for (k=1;k<=e3;k=k+1) |
---|
390 | { |
---|
391 | "//----"+string(k)+". component:"; |
---|
392 | for (i=1;i<=e1;i=i+1) |
---|
393 | { |
---|
394 | for (j=1;j<=e2;j=j+1) |
---|
395 | { |
---|
396 | BL[i,j]=cup[k,j+e1*(i-1)]; |
---|
397 | } |
---|
398 | } |
---|
399 | print(BL); |
---|
400 | } |
---|
401 | "////// end level 3 //////"; |
---|
402 | } |
---|
403 | if (size(#)) { return(cup,kbMN,kbNP,kbMP);} |
---|
404 | else { return(cup); } |
---|
405 | } |
---|
406 | example |
---|
407 | {"EXAMPLE"; echo=2; |
---|
408 | int p = printlevel; |
---|
409 | ring rr = 32003,(x,y,z),(dp,C); |
---|
410 | ideal I = x4+y3+z2; |
---|
411 | qring o = std(I); |
---|
412 | module M = [x,y,0,z],[y2,-x3,z,0],[z,0,-y,-x3],[0,z,x,-y2]; |
---|
413 | print(cupproduct(M,M,M,1,3)); |
---|
414 | printlevel = 3; |
---|
415 | list l = (cupproduct(M,M,M,1,3,"any")); |
---|
416 | show(l[1]);show(l[2]); |
---|
417 | printlevel = p; |
---|
418 | } |
---|
419 | /////////////////////////////////////////////////////////////////////////////// |
---|
420 | |
---|
421 | proc Ext_R (intvec v, module M, list #) |
---|
422 | "USAGE: Ext_R(v,M[,p]); v=int/intvec , M=module, p=int |
---|
423 | COMPUTE: A presentation of Ext^k(M',R); for k=v[1],v[2],..., M'=coker(M). |
---|
424 | Let ...--> F2 --> F1 --M-> F0-->M'-->0 be a free resolution of M'. If |
---|
425 | 0 <-- F0* <-A1-- F1* <-A2-- F2* <-A3--... denotes the dual sequence, |
---|
426 | Fi*=Hom(Fi,R), then Ext^k = ker(Ak)/im(Ak+1) is presented as in the |
---|
427 | following exact sequences: |
---|
428 | Fk-1* <-Ak-- Fk* <-syz(Ak)-- R^p |
---|
429 | Fk*/im(Ak+1) <-syz(Ak)-- R^p <-Ext^k-- R^q |
---|
430 | Hence Ext^k=modulo(syz(Ak),Ak+1) presents Ext^k(M',R); |
---|
431 | RETURN: Ext^k, of type module, a presentation of Ext^k(M',R) if v is of type |
---|
432 | int, resp. a list of Ext^k (k=v[1],v[2],...) if v is of type intvec. |
---|
433 | In case of a third argument of type int return a list: |
---|
434 | [1] = module Ext^k/list of Ext^k |
---|
435 | [2] = SB of Ext^k/list of SB of Ext^k |
---|
436 | [3] = matrix/list of matrices, each representing kbase of Ext^k |
---|
437 | (if finite dimensional) |
---|
438 | DISPLAY: printlevel >=0: degree of Ext^k for each k (default) |
---|
439 | printlevel >=1: Ak, Ak+1 and kbase of Ext^k in Fk* |
---|
440 | NOTE: In order to compute Ext^k(M,R) use the command Ext_R(k,syz(M)); |
---|
441 | or the 2 commands: list L=mres(M,2); Ext_R(k,L[2]); |
---|
442 | EXAMPLE: example Ext_R; shows examples |
---|
443 | " |
---|
444 | { |
---|
445 | |
---|
446 | // In case M is known to be a SB, set attrib(M,"isSB",1); in order to |
---|
447 | // avoid unnecessary SB computations |
---|
448 | |
---|
449 | //------------ initialisation ------------------------------------------------- |
---|
450 | module m1,m2,ret,ret0; |
---|
451 | matrix ker,kb; |
---|
452 | list L1,L2,L3,L,resl,K; |
---|
453 | int k,max,ii,t1,t2; |
---|
454 | int s = size(v); |
---|
455 | intvec v1 = sort(v)[1]; |
---|
456 | max = v1[s]; // the maximum integer occuring in intvec v |
---|
457 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
458 | // --------------- Variante mit sres |
---|
459 | for( ii=1; ii<=size(#); ii++ ) |
---|
460 | { |
---|
461 | t2=1; // return a list if t2=1 |
---|
462 | if( typeof(#[ii])=="string" ) |
---|
463 | { |
---|
464 | if ( #[ii]=="sres" ) { t1=1; t2=0; } // use sres instead of mres if t1=1 |
---|
465 | } |
---|
466 | } |
---|
467 | //----------------- compute resolution of coker(M) ---------------------------- |
---|
468 | if( max<0 ) { dbprint(p,"// Ext^i=0 for i<0!"); return([1]); } |
---|
469 | if( t1==1 ) |
---|
470 | { |
---|
471 | if( attrib(M,"isSB")==0 ) { M=std(M); } |
---|
472 | resl = sres(M,max+1); |
---|
473 | } |
---|
474 | else { resl = mres(M,max+1); } |
---|
475 | for( ii=1; ii<=s; ii++ ) |
---|
476 | { |
---|
477 | //----------------- apply Hom(_,R) at k-th place ----------------------------- |
---|
478 | k=v[ii]; |
---|
479 | if( k<0 ) // Ext^k=0 for negative k |
---|
480 | { |
---|
481 | dbprint(p-1,"// Ext^i=0 for i<0!"); |
---|
482 | ret = gen(1); |
---|
483 | ret0 = std(ret); |
---|
484 | L1[ii] = ret; |
---|
485 | L2[ii] = ret0; |
---|
486 | L3[ii] = matrix(kbase(ret0)); |
---|
487 | dbprint(p,"// degree of Ext^"+string(k)+":"); |
---|
488 | if( p>=0 ) { degree(ret0);"";} |
---|
489 | } |
---|
490 | else |
---|
491 | { |
---|
492 | m2 = transpose(resl[k+1]); |
---|
493 | if( k==0 ) { m1=0*gen(nrows(m2)); } |
---|
494 | else { m1 = transpose(resl[k]); } |
---|
495 | //----------------- presentation of ker(m2)/im(m1) ---------------------------- |
---|
496 | ker = syz(m2); |
---|
497 | ret = modulo(ker,m1); |
---|
498 | dbprint(p-1,"// Computing Ext^"+string(k)+":", |
---|
499 | "// Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of M,", |
---|
500 | "// then F"+string(k)+"*-->F"+string(k+1)+"* is given by:",m2, |
---|
501 | "// and F"+string(k-1)+"*-->F"+string(k)+"* is given by:",m1,""); |
---|
502 | ret0 = std(ret); |
---|
503 | dbprint(p,"// degree of Ext^"+string(k)+":"); |
---|
504 | if( p>0 ) { degree(ret0);"";} |
---|
505 | if( t2 ) |
---|
506 | { |
---|
507 | if( vdim(ret0)>=0 ) |
---|
508 | { |
---|
509 | kb = kbase(ret0); |
---|
510 | if ( size(ker)!=0 ) { kb = matrix(ker)*kb; } |
---|
511 | dbprint(p-1, |
---|
512 | "// columns of matrix are kbase of Ext^"+string(k)+" in F"+string(k)+"*:",kb,""); |
---|
513 | L3[ii] = kb; |
---|
514 | } |
---|
515 | L2[ii] = ret0; |
---|
516 | } |
---|
517 | L1[ii] = ret; |
---|
518 | } |
---|
519 | } |
---|
520 | if( t2 ) |
---|
521 | { |
---|
522 | if( s>1 ) { L = L1,L2,L3; return(L); } |
---|
523 | else { L = ret,ret0,kb; return(L); } |
---|
524 | } |
---|
525 | else |
---|
526 | { |
---|
527 | if( s>1 ) { return(L1); } |
---|
528 | else { return(ret); } |
---|
529 | } |
---|
530 | } |
---|
531 | example |
---|
532 | {"EXAMPLE:"; echo=2; |
---|
533 | int p = printlevel; |
---|
534 | printlevel = 1; |
---|
535 | ring r = 0,(x,y,z),dp; |
---|
536 | ideal i = x2y,y2z,z3x; |
---|
537 | module E = Ext_R(1,i); //computes Ext^1(r/i,r) |
---|
538 | is_zero(E); |
---|
539 | module m = [x],[0,y]; |
---|
540 | list L = Ext_R(2..3,m); //computes Ext^i(r^2/m,r), i=2,3 |
---|
541 | show(L);""; |
---|
542 | qring R = std(x2+yz); |
---|
543 | intvec v = 0,2,4; |
---|
544 | printlevel = 2; //shows what is going on |
---|
545 | ideal i = x,y,z; //computes Ext^i(r/(x,y,z),r/(x2+yz)), i=0,2,4 |
---|
546 | list L = Ext_R(v,i,1); //over the qring R=r/(x2+yz), std and kbase |
---|
547 | printlevel = p; |
---|
548 | } |
---|
549 | /////////////////////////////////////////////////////////////////////////////// |
---|
550 | |
---|
551 | proc Ext (intvec v, module M, module N, list #) |
---|
552 | "USAGE: Ext(v,M,N[,any]); v=int/intvec, M,N=modules |
---|
553 | COMPUTE: A presentation of Ext^k(M',N'); for k=v[1],v[2],... where |
---|
554 | M'=coker(M) and N'=coker(N). Let |
---|
555 | 0<--M'<-- F0 <-M-- F1 <-- F2 <--... resp. 0<--N'<-- G0 <--N- G1 be |
---|
556 | a free resolution of M' resp. a presentations of N'. Consider |
---|
557 | @format |
---|
558 | 0 0 0 |
---|
559 | |^ |^ |^ |
---|
560 | --> Hom(Fk-1,N') -Ak-> Hom(Fk,N') -Ak+1-> Hom(Fk+1,N') |
---|
561 | |^ |^ |^ |
---|
562 | --> Hom(Fk-1,G0) -Ak-> Hom(Fk,G0) -Ak+1-> Hom(Fk+1,G0) |
---|
563 | |^ |^ |
---|
564 | |C |B |
---|
565 | Hom(Fk,G1) -----> Hom(Fk+1,G1) |
---|
566 | @end format |
---|
567 | (Ak,Ak+1 induced by M and B,C induced by N). |
---|
568 | Let K=modulo(Ak+1,B), J=module(Ak)+module(C) and Ext=modulo(K,J), |
---|
569 | then we have exact sequences |
---|
570 | R^p --K-> Hom(Fk,G0) --Ak+1-> Hom(Fk+1,G0)/im(B) |
---|
571 | R^q -Ext-> R^p --K->Hom(Fk,G0)/im(Ak)+im(C) --Ak+1->Hom(Fk+1,G0)/im(B) |
---|
572 | Hence Ext presents Ext^k(M',N') |
---|
573 | RETURN: |
---|
574 | Ext, of type module, a presentation of Ext^k(M',N') if v is of type |
---|
575 | int, resp. a list of Ext^k (k=v[1],v[2],...) if v is of type intvec. |
---|
576 | In case of a third argument of any type return a list: |
---|
577 | [1] = module Ext/list of Ext^k |
---|
578 | [2] = SB of Ext/list of SB of Ext^k |
---|
579 | [3] = matrix/list of matrices, each representing a kbase of Ext^k |
---|
580 | (if finite dimensional) |
---|
581 | DISPLAY: printlevel >=0: degree of Ext^k for each k (default) |
---|
582 | printlevel >=1: matrices Ak, Ak+1 and kbase of Ext^k in Hom(Fk,G0) |
---|
583 | (if finite dimensional) |
---|
584 | NOTE: In order to compute Ext^k(M,N) use the command Ext(k,syz(M),syz(N)); |
---|
585 | or: list P=mres(M,2); list Q=mres(N,2); Ext(k,P[2],Q[2]); |
---|
586 | EXAMPLE: example Ext; shows examples |
---|
587 | " |
---|
588 | { |
---|
589 | //---------- initialisation --------------------------------------------------- |
---|
590 | int k,max,ii,l,row,col; |
---|
591 | module A,B,C,D,M1,M2,N1,ker,imag,extMN,extMN0; |
---|
592 | matrix kb; |
---|
593 | list L1,L2,L3,L,resM,K; |
---|
594 | ideal test1; |
---|
595 | intmat Be; |
---|
596 | int s = size(v); |
---|
597 | intvec v1 = sort(v)[1]; |
---|
598 | max = v1[s]; // the maximum integer occuring in intvec v |
---|
599 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
600 | //---------- test: coker(N)=basering, coker(N)=0 ? ---------------------------- |
---|
601 | if( max<0 ) { dbprint(p,"// Ext^i=0 for i<0!"); return([1]); } |
---|
602 | N1 = std(N); |
---|
603 | if( size(N1)==0 ) //coker(N)=basering, in this case proc Ext_R is faster |
---|
604 | { printlevel=printlevel+1; |
---|
605 | if( size(#)==0 ) |
---|
606 | { def E = Ext_R(v,M); |
---|
607 | printlevel=printlevel-1; |
---|
608 | return(E); |
---|
609 | } |
---|
610 | else |
---|
611 | { def E = Ext_R(v,M,#[1]); |
---|
612 | printlevel=printlevel-1; |
---|
613 | return(E); |
---|
614 | } |
---|
615 | } |
---|
616 | if( dim(N1)==-1 ) //coker(N)=0, all Ext-groups are 0 |
---|
617 | { dbprint(p-1,"2nd module presents 0, hence Ext^k=0, for all k"); |
---|
618 | for( ii=1; ii<=s; ii++ ) |
---|
619 | { k=v[ii]; |
---|
620 | extMN = gen(1); |
---|
621 | extMN0 = std(extMN); |
---|
622 | L1[ii] = extMN; |
---|
623 | L2[ii] = extMN0; |
---|
624 | L3[ii] = matrix(kbase(extMN0)); |
---|
625 | if( p>0 ) { "// degree of Ext^"+string(k)+":"; degree(extMN0);""; } |
---|
626 | } |
---|
627 | } |
---|
628 | else |
---|
629 | { |
---|
630 | if( size(N1) < size(N) ) { N=N1;} |
---|
631 | row = nrows(N); |
---|
632 | //---------- resolution of M ------------------------------------------------- |
---|
633 | resM = mres(M,max+1); |
---|
634 | for( ii=1; ii<=s; ii++ ) |
---|
635 | { k=v[ii]; |
---|
636 | if( k<0 ) // Ext^k is 0 for negative k |
---|
637 | { dbprint(p-1,"// Ext^k=0 for k<0!"); |
---|
638 | extMN = gen(1); |
---|
639 | extMN0 = std(extMN); |
---|
640 | L1[ii] = extMN; |
---|
641 | L2[ii] = extMN0; |
---|
642 | L3[ii] = matrix(kbase(extMN0)); |
---|
643 | if( p>0 ) { "// degree of Ext^"+string(k)+":"; degree(extMN0);""; } |
---|
644 | } |
---|
645 | else |
---|
646 | { M2 = resM[k+1]; |
---|
647 | if( k==0 ) { M1=0*gen(nrows(M2)); } |
---|
648 | else { M1 = resM[k]; } |
---|
649 | col = ncols(M1); |
---|
650 | D = kohom(N,col); |
---|
651 | //---------- computing homology ---------------------------------------------- |
---|
652 | imag = kontrahom(M1,row); |
---|
653 | A = kontrahom(M2,row); |
---|
654 | B = kohom(N,ncols(M2)); |
---|
655 | ker = modulo(A,B); |
---|
656 | imag = imag,D; |
---|
657 | extMN = modulo(ker,imag); |
---|
658 | dbprint(p-1,"// Computing Ext^"+string(k)+" (help Ext; gives an explanation):", |
---|
659 | "// Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),", |
---|
660 | "// and 0<--coker(N)<--G0<--G1 a presentation of coker(N),", |
---|
661 | "// then Hom(F"+string(k)+",G0)-->Hom(F"+string(k+1)+",G0) is given by:",A, |
---|
662 | "// and Hom(F"+string(k-1)+",G0) + Hom(F"+string(k)+",G1)-->Hom(F"+string(k)+",G0) is given by:",imag,""); |
---|
663 | extMN0 = std(extMN); |
---|
664 | if( p>0 ) { "// degree of Ext^"+string(k)+":"; degree(extMN0);""; } |
---|
665 | //---------- more information ------------------------------------------------- |
---|
666 | if( size(#)>0 ) |
---|
667 | { if( vdim(extMN0) >= 0 ) |
---|
668 | { kb = kbase(extMN0); |
---|
669 | if ( size(ker)!=0) { kb = matrix(ker)*kb; } |
---|
670 | dbpri(p-1,"// columns of matrix are kbase of Ext^"+ |
---|
671 | string(k)+" in Hom(F"+string(k)+",G0)",kb,""); |
---|
672 | if( p>0 ) |
---|
673 | { for (l=1;l<=ncols(kb);l=l+1) |
---|
674 | { |
---|
675 | "// element",l,"of kbase of Ext^"+string(k)+" in Hom(F"+string(k)+",G0)"; |
---|
676 | "// as matrix: F"+string(k)+"-->G0"; |
---|
677 | print(matrix(ideal(kb[l]),row,col)); |
---|
678 | } |
---|
679 | ""; |
---|
680 | } |
---|
681 | L3[ii] = matrix(kb); |
---|
682 | } |
---|
683 | L2[ii] = extMN0; |
---|
684 | } |
---|
685 | L1[ii] = extMN; |
---|
686 | } |
---|
687 | } |
---|
688 | } |
---|
689 | if( size(#) ) |
---|
690 | { if( s>1 ) { L = L1,L2,L3; return(L); } |
---|
691 | else { L = extMN,extMN0,matrix(kb); return(L); } |
---|
692 | } |
---|
693 | else |
---|
694 | { if( s>1 ) { return(L1); } |
---|
695 | else { return(extMN); } |
---|
696 | } |
---|
697 | } |
---|
698 | example |
---|
699 | {"EXAMPLE:"; echo=2; |
---|
700 | int p = printlevel; |
---|
701 | printlevel = 1; |
---|
702 | ring r = 0,(x,y),dp; |
---|
703 | ideal i = x2-y3; |
---|
704 | ideal j = x2-y5; |
---|
705 | list E = Ext(0..2,i,j); // Ext^k(r/i,r/j) for k=0,1,2 over r |
---|
706 | qring R = std(i); |
---|
707 | ideal j = fetch(r,j); |
---|
708 | module M = [-x,y],[-y2,x]; |
---|
709 | printlevel = 2; |
---|
710 | module E1 = Ext(1,M,j); // Ext^1(R^2/M,R/j) over R=r/i |
---|
711 | list l = Ext(4,M,M,1); // Ext^4(R^2/M,R^2/M) over R=r/i |
---|
712 | printlevel = p; |
---|
713 | } |
---|
714 | //////////////////////////////////////////////////////////////////////////////// |
---|
715 | |
---|
716 | proc Hom (module M, module N, list #) |
---|
717 | "USAGE: Hom(M,N,[any]); M,N=modules |
---|
718 | COMPUTE: A presentation of Hom(M',N'), M'=coker(M), N'=coker(N) as follows: |
---|
719 | Let ...-->F1 --M-> F0-->M'-->0 and ...-->G1 --N-> G0-->N'-->0 be |
---|
720 | presentations of M' and N'. Consider |
---|
721 | @format |
---|
722 | 0 0 |
---|
723 | |^ |^ |
---|
724 | 0 --> Hom(M',N') ----> Hom(F0,N') ----> Hom(F1,N') |
---|
725 | |^ |^ |
---|
726 | (A: induced by M) Hom(F0,G0) --A-> Hom(F1,G0) |
---|
727 | |^ |^ |
---|
728 | (B,C:induced by N) |C |B |
---|
729 | Hom(F0,G1) ----> Hom(F1,G1) |
---|
730 | |
---|
731 | Let D=modulo(A,B) and Hom=modulo(D,C), then we have exact sequences |
---|
732 | R^p --D-> Hom(F0,G0) --A-> Hom(F1,G0)/im(B) |
---|
733 | R^q -Hom-> R^p --D-> Hom(F0,G0)/im(C) --A-> Hom(F1,G0)/im(B). |
---|
734 | Hence Hom presents Hom(M',N') |
---|
735 | @end format |
---|
736 | RETURN: Hom, of type module, presentation of Hom(M',N') or, |
---|
737 | in case of 3 arguments, a list: |
---|
738 | [1] = Hom |
---|
739 | [2] = SB of Hom |
---|
740 | [3] = kbase of coker(Hom) (if finite dimensional), represented by |
---|
741 | elements in Hom(F0,G0) via mapping D |
---|
742 | DISPLAY: printlevel >=0: degree of Hom (default) |
---|
743 | printlevel >=1: D and C and kbase of coker(Hom) in Hom(F0,G0) |
---|
744 | printlevel >=2: elements of kbase of coker(Hom) as matrix :F0-->G0 |
---|
745 | NOTE: DISPLAY is as described only for a direct call of 'Hom'. Calling 'Hom' |
---|
746 | from another proc has the same effect as decreasing printlevel by 1. |
---|
747 | EXAMPLE: example Hom; shows examples |
---|
748 | " |
---|
749 | { |
---|
750 | //---------- initialisation --------------------------------------------------- |
---|
751 | int l,p; |
---|
752 | matrix kb; |
---|
753 | module A,B,C,D,homMN,homMN0; |
---|
754 | list L; |
---|
755 | //---------- computation of Hom ----------------------------------------------- |
---|
756 | B = kohom(N,ncols(M)); |
---|
757 | A = kontrahom(M,nrows(N)); |
---|
758 | C = kohom(N,nrows(M)); |
---|
759 | D = modulo(A,B); |
---|
760 | homMN = modulo(D,C); |
---|
761 | homMN0= std(homMN); |
---|
762 | p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
763 | if( p>=0 ) { "// degree of Hom:"; degree(homMN0); ""; } |
---|
764 | dbprint(p-1,"// given ...--> F1 --M-> F0 -->M'--> 0 and ...--> G1 --N-> G0 -->N'--> 0,", |
---|
765 | "// show D=ker(Hom(F0,G0) --> Hom(F1,G0)/im(Hom(F1,G1) --> Hom(F1,G0)))",D, |
---|
766 | "// show C=im(Hom(F0,G1) --> Hom(F0,G0))",C,""); |
---|
767 | //---------- extra output if size(#)>0 ---------------------------------------- |
---|
768 | if( size(#)>0 ) |
---|
769 | { if( vdim(homMN0)>0 ) |
---|
770 | { kb = kbase(homMN0); |
---|
771 | kb = matrix(D)*kb; |
---|
772 | if( p>2 ) |
---|
773 | { for (l=1;l<=ncols(kb);l=l+1) |
---|
774 | { |
---|
775 | "// element",l,"of kbase of Hom in Hom(F0,G0) as matrix: F0-->G0:"; |
---|
776 | print(matrix(ideal(kb[l]),nrows(N),nrows(M))); |
---|
777 | } |
---|
778 | } |
---|
779 | else |
---|
780 | { dbprint(p-1,"// columns of matrix are kbase of Hom in Hom(F0,G0)",kb); } |
---|
781 | L=homMN,homMN0,kb; return(L); |
---|
782 | } |
---|
783 | L=homMN,homMN0; return(L); |
---|
784 | } |
---|
785 | return(homMN); |
---|
786 | } |
---|
787 | example |
---|
788 | {"EXAMPLE:"; echo = 2; |
---|
789 | int p = printlevel; |
---|
790 | printlevel= 1; //in 'example proc' printlevel has to be increased by 1 |
---|
791 | ring r = 0,(x,y),dp; |
---|
792 | ideal i = x2-y3,xy; |
---|
793 | qring q = std(i); |
---|
794 | ideal i = fetch(r,i); |
---|
795 | module M = [-x,y],[-y2,x],[x3]; |
---|
796 | module H = Hom(M,i); |
---|
797 | print(H); |
---|
798 | printlevel= 2; |
---|
799 | list L = Hom(M,i,1);""; |
---|
800 | ring s = 3,(x,y,z),(c,dp); |
---|
801 | ideal i = jacob(ideal(x2+y5+z4)); |
---|
802 | qring rq=std(i); |
---|
803 | matrix M[2][2]=xy,x3,5y,4z,x2; |
---|
804 | matrix N[3][2]=x2,x,y3,3xz,x2z,z; |
---|
805 | print(M); |
---|
806 | print(N); |
---|
807 | list l=Hom(M,N,1); |
---|
808 | printlevel = p; |
---|
809 | } |
---|
810 | //////////////////////////////////////////////////////////////////////////////// |
---|
811 | |
---|
812 | proc homology (matrix A,matrix B,module M,module N,list #) |
---|
813 | "USAGE: homology(A,B,M,N); |
---|
814 | COMPUTE: Let M and N be submodules of R^m and R^n presenting M'=R^m/M, N'=R^n/N |
---|
815 | (R=basering) and let A,B matrices inducing maps R^k--A-->R^m--B-->R^n. |
---|
816 | Compute a presentation R^q --H-> R^m of the module |
---|
817 | ker(B)/im(A) := ker(M'/im(A) --B--> N'/im(BM)+im(BA)). |
---|
818 | If B induces a map M'--B-->N' (i.e BM=0) and if R^k--A-->M'--B-->N' is |
---|
819 | a complex (i.e. BA=0) then ker(B)/im(A) is the homology of this complex |
---|
820 | RETURN: module H, a presentation of ker(B)/im(A) |
---|
821 | NOTE: homology returns a free module of rank m if ker(B)=im(A) |
---|
822 | EXAMPLE: example homology; shows examples |
---|
823 | " |
---|
824 | { |
---|
825 | module ker,ima; |
---|
826 | ker = modulo(B,N); |
---|
827 | ima = A,M; |
---|
828 | return(modulo(ker,ima)); |
---|
829 | } |
---|
830 | example |
---|
831 | {"EXAMPLE"; echo=2; |
---|
832 | ring r; |
---|
833 | ideal id=maxideal(4); |
---|
834 | qring qr=std(id); |
---|
835 | module N=maxideal(3)*freemodule(2); |
---|
836 | module M=maxideal(2)*freemodule(2); |
---|
837 | module B=[2x,0],[x,y],[z2,y]; |
---|
838 | module A=M; |
---|
839 | degree(std(homology(A,B,M,N)));""; |
---|
840 | ring s=0,x,ds; |
---|
841 | qring qs=std(x4); |
---|
842 | module A=[x];module B=A; |
---|
843 | module M=[x3];module N=M; |
---|
844 | homology(A,B,M,N); |
---|
845 | } |
---|
846 | ////////////////////////////////////////////////////////////////////////////// |
---|
847 | |
---|
848 | proc kernel (matrix A,module M,module N) |
---|
849 | "USAGE: kernel(A,M,N); |
---|
850 | COMPUTE: Let M and N be submodules of R^m and R^n presenting M'=R^m/M, N'=R^n/N |
---|
851 | (R=basering) and let A:R^m-->R^n a matrix inducing a map A':M'-->N'. |
---|
852 | Compute a presentation K of ker(A') as in the commutative diagram: |
---|
853 | @format |
---|
854 | ker(A') ---> M' --A'--> N' |
---|
855 | |^ |^ |^ |
---|
856 | | | | |
---|
857 | R^r ---> R^m --A--> R^n |
---|
858 | |^ |^ |^ |
---|
859 | |K |M |N |
---|
860 | | | | |
---|
861 | R^s ---> R^p -----> R^q |
---|
862 | @end format |
---|
863 | RETURN: module K, a presentation of ker(A') |
---|
864 | EXAMPLE: example kernel; shows examples |
---|
865 | " |
---|
866 | { |
---|
867 | module M1 = modulo(A,N); |
---|
868 | return(modulo(M1,M)); |
---|
869 | } |
---|
870 | example |
---|
871 | {"EXAMPLE"; echo=2; |
---|
872 | ring r; |
---|
873 | module N=[2x,x],[0,y]; |
---|
874 | module M=maxideal(1)*freemodule(2); |
---|
875 | matrix A[2][2]=2x,0,x,y,z2,y; |
---|
876 | module K=kernel(A,M,N); |
---|
877 | degree(std(K)); |
---|
878 | print(K); |
---|
879 | } |
---|
880 | //////////////////////////////////////////////////////////////////////////////// |
---|
881 | |
---|
882 | proc kohom (matrix M, int j) |
---|
883 | "USAGE: kohom(A,k); A=matrix, k=integer |
---|
884 | RETURN: matrix Hom(R^k,A) i.e. let A be a matrix defining a map: F1 --> F2 of |
---|
885 | free R-modules, the matrix of Hom(R^k,F1)-->Hom(R^k,F2) is computed |
---|
886 | EXAMPLE: example kohom; shows an example |
---|
887 | " |
---|
888 | { |
---|
889 | if (j==1) |
---|
890 | { return(M);} |
---|
891 | if (j>1) |
---|
892 | { return(outer(M,diag(1,j))); } |
---|
893 | else { return(0);} |
---|
894 | } |
---|
895 | example |
---|
896 | {"EXAMPLE:"; echo=2; |
---|
897 | ring r; |
---|
898 | matrix n[2][3]=x,y,5,z,77,33; |
---|
899 | print(kohom(n,3)); |
---|
900 | } |
---|
901 | ///////////////////////////////////////////////////////////////////////////////// |
---|
902 | |
---|
903 | proc kontrahom (matrix M, int j) |
---|
904 | "USAGE: kontrahom(A,k); A=matrix, k=integer |
---|
905 | RETURN: matrix Hom(A,R^k), i.e. let A be a matrix defining a map: F1 --> F2 of |
---|
906 | free R-modules, the matrix of Hom(F2,R^k)-->Hom(F1,R^k) is computed |
---|
907 | EXAMPLE: example kontrahom; shows an example |
---|
908 | " |
---|
909 | { |
---|
910 | if (j==1) |
---|
911 | { return(transpose(M));} |
---|
912 | if (j>1) |
---|
913 | { return(transpose(outer(diag(1,j),M)));} |
---|
914 | else { return(0);} |
---|
915 | } |
---|
916 | example |
---|
917 | {"EXAMPLE:"; echo=2; |
---|
918 | ring r; |
---|
919 | matrix n[2][3]=x,y,5,z,77,33; |
---|
920 | print(kontrahom(n,3)); |
---|
921 | } |
---|
922 | /////////////////////////////////////////////////////////////////////////////// |
---|