1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: homolog.lib,v 1.24 2008-02-22 10:25:06 Singular Exp $"; |
---|
3 | category="Commutative Algebra"; |
---|
4 | info=" |
---|
5 | LIBRARY: homolog.lib Procedures for Homological Algebra |
---|
6 | AUTHORS: Gert-Martin Greuel, greuel@mathematik.uni-kl.de, |
---|
7 | @* Bernd Martin, martin@math.tu-cottbus.de |
---|
8 | @* Christoph Lossen, lossen@mathematik.uni-kl.de |
---|
9 | |
---|
10 | PROCEDURES: |
---|
11 | cup(M); cup: Ext^1(M',M') x Ext^1() --> Ext^2() |
---|
12 | cupproduct(M,N,P,p,q); cup: Ext^p(M',N') x Ext^q(N',P') --> Ext^p+q(M',P') |
---|
13 | depth(I,M); depth(I,M'), I ideal, M module, M'=coker(M) |
---|
14 | Ext_R(k,M); Ext^k(M',R), M module, R basering, M'=coker(M) |
---|
15 | Ext(k,M,N); Ext^k(M',N'), M,N modules, M'=coker(M), N'=coker(N) |
---|
16 | fitting(M,n); n-th Fitting ideal of M'=coker(M), M module, n int |
---|
17 | flatteningStrat(M); Flattening stratification of M'=coker(M), M module |
---|
18 | Hom(M,N); Hom(M',N'), M,N modules, M'=coker(M), N'=coker(N) |
---|
19 | homology(A,B,M,N); ker(B)/im(A), homology of complex R^k--A->M'--B->N' |
---|
20 | isCM(M); test if coker(M) is Cohen-Macaulay, M module |
---|
21 | isFlat(M); test if coker(M) is flat, M module |
---|
22 | isLocallyFree(M,r); test if coker(M) is locally free of constant rank r |
---|
23 | isReg(I,M); test if I is coker(M)-sequence, I ideal, M module |
---|
24 | kernel(A,M,N); ker(M'--A->N') M,N modules, A matrix |
---|
25 | kohom(A,k); Hom(R^k,A), A matrix over basering R |
---|
26 | kontrahom(A,k); Hom(A,R^k), A matrix over basering R |
---|
27 | KoszulHomology(I,M,n); n-th Koszul homology H_n(I,coker(M)), I=ideal |
---|
28 | tensorMod(M,N); Tensor product of modules M'=coker(M), N'=coker(N) |
---|
29 | Tor(k,M,N); Tor_k(M',N'), M,N modules, M'=coker(M), N'=coker(N) |
---|
30 | "; |
---|
31 | |
---|
32 | LIB "general.lib"; |
---|
33 | LIB "deform.lib"; |
---|
34 | LIB "matrix.lib"; |
---|
35 | LIB "poly.lib"; |
---|
36 | LIB "primdec.lib"; |
---|
37 | /////////////////////////////////////////////////////////////////////////////// |
---|
38 | |
---|
39 | proc cup (module M,list #) |
---|
40 | "USAGE: cup(M,[,any,any]); M=module |
---|
41 | COMPUTE: cup-product Ext^1(M',M') x Ext^1(M',M') ---> Ext^2(M',M'), where |
---|
42 | M':=R^m/M, if M in R^m, R basering (i.e. M':=coker(matrix(M))). |
---|
43 | @* If called with >= 2 arguments: compute symmetrized cup-product |
---|
44 | ASSUME: all Ext's are finite dimensional |
---|
45 | RETURN: - if called with 1 argument: matrix, the columns of the output present |
---|
46 | the coordinates of b_i&b_j with respect to a kbase of Ext^2, where |
---|
47 | b_1,b_2,... is a kbase of Ext^1 and & denotes cup product;@* |
---|
48 | - if called with 2 arguments: matrix, the columns of the output |
---|
49 | present the coordinates of (1/2)(b_i&b_j + b_j&b_i) with respect to |
---|
50 | a kbase of Ext^2; |
---|
51 | - if called with 3 arguments: list, |
---|
52 | @format |
---|
53 | L[1] = matrix see above (symmetric case, for >=2 arguments) |
---|
54 | L[2] = matrix of kbase of Ext^1 |
---|
55 | L[3] = matrix of kbase of Ext^2 |
---|
56 | @end format |
---|
57 | NOTE: printlevel >=1; shows what is going on. |
---|
58 | printlevel >=2; shows result in another representation. |
---|
59 | @* For computing cupproduct of M itself, apply proc to syz(M)! |
---|
60 | EXAMPLE: example cup; shows examples |
---|
61 | " |
---|
62 | { |
---|
63 | //---------- initialization --------------------------------------------------- |
---|
64 | int i,j,k,f0,f1,f2,f3,e1,e2; |
---|
65 | module M1,M2,A,B,C,ker,ima,ext1,ext2,ext10,ext20; |
---|
66 | matrix cup[1][0]; |
---|
67 | matrix kb1,lift1,kb2,mA,mB,mC; |
---|
68 | ideal tes1,tes2,null; |
---|
69 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
70 | //----------------------------------------------------------------------------- |
---|
71 | //take a resolution of M<--F(0)<--- ... <---F(3) |
---|
72 | //apply Hom(-,M) and compute the Ext's |
---|
73 | //----------------------------------------------------------------------------- |
---|
74 | list resM = nres(M,3); |
---|
75 | M1 = resM[2]; |
---|
76 | M2 = resM[3]; |
---|
77 | f0 = nrows(M); |
---|
78 | f1 = ncols(M); |
---|
79 | f2 = ncols(M1); |
---|
80 | f3 = ncols(M2); |
---|
81 | tes1 = simplify(ideal(M),10); |
---|
82 | tes2=simplify(ideal(M1),10); |
---|
83 | if ((tes1[1]*tes2[1]==0) or (tes1[1]==1) or (tes2[1]==1)) |
---|
84 | { |
---|
85 | dbprint(p,"// Ext == 0 , hence 'cup' is the zero-map"); |
---|
86 | return(@cup); |
---|
87 | } |
---|
88 | //------ compute Ext^1 -------------------------------------------------------- |
---|
89 | B = kohom(M,f2); |
---|
90 | A = kontrahom(M1,f0); |
---|
91 | C = intersect(A,B); |
---|
92 | C = reduce(C,std(null));C = simplify(C,10); |
---|
93 | ker = lift(A,C)+syz(A); |
---|
94 | ima = kohom(M,f1); |
---|
95 | ima = ima + kontrahom(M,f0); |
---|
96 | ext1 = modulo(ker,ima); |
---|
97 | ext10 = std(ext1); |
---|
98 | e1 = vdim(ext10); |
---|
99 | dbprint(p-1,"// vdim (Ext^1) = "+string(e1)); |
---|
100 | if (e1 < 0) |
---|
101 | { |
---|
102 | "// Ext^1 not of finite dimension"; |
---|
103 | return(cup); |
---|
104 | } |
---|
105 | kb1 = kbase(ext10); |
---|
106 | kb1 = matrix(ker)*kb1; |
---|
107 | dbprint(p-1,"// kbase of Ext^1(M,M)", |
---|
108 | "// - the columns present the kbase elements in Hom(F(1),F(0))", |
---|
109 | "// - F(*) a free resolution of M",kb1); |
---|
110 | |
---|
111 | //------ compute the liftings of Ext^1 ---------------------------------------- |
---|
112 | mC = matrix(A)*kb1; |
---|
113 | lift1 =lift(B,mC); |
---|
114 | dbprint(p-1,"// lift kbase of Ext^1:", |
---|
115 | "// - the columns present liftings of kbase elements into Hom(F(2),F(1))", |
---|
116 | "// - F(*) a free resolution of M ",lift1); |
---|
117 | |
---|
118 | //------ compute Ext^2 ------------------------------------------------------- |
---|
119 | B = kohom(M,f3); |
---|
120 | A = kontrahom(M2,f0); |
---|
121 | C = intersect(A,B); |
---|
122 | C = reduce(C,std(null));C = simplify(C,10); |
---|
123 | ker = lift(A,C)+syz(A); |
---|
124 | ima = kohom(M,f2); |
---|
125 | ima = ima + kontrahom(M1,f0); |
---|
126 | ext2 = modulo(ker,ima); |
---|
127 | ext20= std(ext2); |
---|
128 | e2 = vdim(ext20); |
---|
129 | if (e2<0) |
---|
130 | { |
---|
131 | "// Ext^2 not of finite dimension"; |
---|
132 | return(cup); |
---|
133 | } |
---|
134 | dbprint(p-1,"// vdim (Ext^2) = "+string(e2)); |
---|
135 | kb2 = kbase(ext20); |
---|
136 | kb2 = matrix(ker)*kb2; |
---|
137 | dbprint(p-1,"// kbase of Ext^2(M,M)", |
---|
138 | "// - the columns present the kbase elements in Hom(F(2),F(0))", |
---|
139 | "// - F(*) is a a free resolution of M ",kb2); |
---|
140 | //------- compute: cup-products of base-elements ----------------------------- |
---|
141 | for (i=1;i<=e1;i=i+1) |
---|
142 | { |
---|
143 | for (j=1;j<=e1;j=j+1) |
---|
144 | { |
---|
145 | mA = matrix(ideal(lift1[j]),f1,f2); |
---|
146 | mB = matrix(ideal(kb1[i]),f0,f1); |
---|
147 | mC = mB*mA; |
---|
148 | if (size(#)==0) |
---|
149 | { //non symmestric |
---|
150 | mC = matrix(ideal(mC),f0*f2,1); |
---|
151 | cup= concat(cup,mC); |
---|
152 | } |
---|
153 | else //symmetric version |
---|
154 | { |
---|
155 | if (j>=i) |
---|
156 | { |
---|
157 | if (j>i) |
---|
158 | { |
---|
159 | mA = matrix(ideal(lift1[i]),f1,f2); |
---|
160 | mB = matrix(ideal(kb1[j]),f0,f1); |
---|
161 | mC = mC+mB*mA;mC=(1/2)*mC; |
---|
162 | } |
---|
163 | mC = matrix(ideal(mC),f0*f2,1); |
---|
164 | cup= concat(cup,mC); |
---|
165 | } |
---|
166 | } |
---|
167 | } |
---|
168 | } |
---|
169 | dbprint(p-1,"// matrix of cup-products (in Ext^2)",cup, |
---|
170 | "////// end level 2 //////"); |
---|
171 | //------- compute: presentation of base-elements ----------------------------- |
---|
172 | cup = lift(ker,cup); |
---|
173 | cup = lift_kbase(cup,ext20); |
---|
174 | if( p>2 ) |
---|
175 | { |
---|
176 | "// the associated matrices of the bilinear mapping 'cup' "; |
---|
177 | "// corresponding to the kbase elements of Ext^2(M,M) are shown,"; |
---|
178 | "// i.e. the rows of the final matrix are written as matrix of"; |
---|
179 | "// a bilinear form on Ext^1 x Ext^1"; |
---|
180 | matrix BL[e1][e1]; |
---|
181 | for (k=1;k<=e2;k=k+1) |
---|
182 | { |
---|
183 | "//-----component "+string(k)+":"; |
---|
184 | for (i=1;i<=e1;i=i+1) |
---|
185 | { |
---|
186 | for (j=1;j<=e1;j=j+1) |
---|
187 | { |
---|
188 | if (size(#)==0) { BL[i,j]=cup[k,j+e1*(i-1)]; } |
---|
189 | else |
---|
190 | { |
---|
191 | if (i<=j) |
---|
192 | { |
---|
193 | BL[i,j]=cup[k,j+e1*(i-1)-binomial(i,2)]; |
---|
194 | BL[j,i]=BL[i,j]; |
---|
195 | } |
---|
196 | } |
---|
197 | } |
---|
198 | } |
---|
199 | print(BL); |
---|
200 | } |
---|
201 | "////// end level 3 //////"; |
---|
202 | } |
---|
203 | if (size(#)>2) { return(cup,kb1,kb2);} |
---|
204 | else {return(cup);} |
---|
205 | } |
---|
206 | example |
---|
207 | {"EXAMPLE"; echo=2; |
---|
208 | int p = printlevel; |
---|
209 | ring rr = 32003,(x,y,z),(dp,C); |
---|
210 | ideal I = x4+y3+z2; |
---|
211 | qring o = std(I); |
---|
212 | module M = [x,y,0,z],[y2,-x3,z,0],[z,0,-y,-x3],[0,z,x,-y2]; |
---|
213 | print(cup(M)); |
---|
214 | print(cup(M,1)); |
---|
215 | // 2nd EXAMPLE (shows what is going on) |
---|
216 | printlevel = 3; |
---|
217 | ring r = 0,(x,y),(dp,C); |
---|
218 | ideal i = x2-y3; |
---|
219 | qring q = std(i); |
---|
220 | module M = [-x,y],[-y2,x]; |
---|
221 | print(cup(M)); |
---|
222 | printlevel = p; |
---|
223 | } |
---|
224 | /////////////////////////////////////////////////////////////////////////////// |
---|
225 | |
---|
226 | proc cupproduct (module M,N,P,int p,q,list #) |
---|
227 | "USAGE: cupproduct(M,N,P,p,q[,any]); M,N,P modules, p,q integers |
---|
228 | COMPUTE: cup-product Ext^p(M',N') x Ext^q(N',P') ---> Ext^(p+q)(M',P'), |
---|
229 | where M':=R^m/M, if M in R^m, R basering (i.e. M':=coker(matrix(M))) |
---|
230 | ASSUME: all Ext's are of finite dimension |
---|
231 | RETURN: - if called with 5 arguments: matrix of the associated linear map |
---|
232 | Ext^p (tensor) Ext^q --> Ext^(p+q), i.e. the columns of <matrix> |
---|
233 | present the coordinates of the cup products (b_i & c_j) with respect |
---|
234 | to a kbase of Ext^p+q (b_i resp. c_j are the choosen bases of Ext^p, |
---|
235 | resp. Ext^q).@* |
---|
236 | - if called with 6 arguments: list L, |
---|
237 | @format |
---|
238 | L[1] = matrix (see above) |
---|
239 | L[2] = matrix of kbase of Ext^p(M',N') |
---|
240 | L[3] = matrix of kbase of Ext^q(N',P') |
---|
241 | L[4] = matrix of kbase of Ext^p+q(N',P') |
---|
242 | @end format |
---|
243 | NOTE: printlevel >=1; shows what is going on. |
---|
244 | printlevel >=2; shows the result in another representation.@* |
---|
245 | For computing the cupproduct of M,N itself, apply proc to syz(M), |
---|
246 | syz(N)! |
---|
247 | EXAMPLE: example cupproduct; shows examples |
---|
248 | " |
---|
249 | { |
---|
250 | //---------- initialization --------------------------------------------------- |
---|
251 | int e1,e2,e3,i,j,k,f0,f1,f2; |
---|
252 | module M1,M2,N1,N2,P1,P2,A,B,C,ker,ima,extMN,extMN0,extMP, |
---|
253 | extMP0,extNP,extNP0; |
---|
254 | matrix cup[1][0]; |
---|
255 | matrix kbMN,kbMP,kbNP,lift1,mA,mB,mC; |
---|
256 | ideal test1,test2,null; |
---|
257 | int pp = printlevel-voice+3; // pp=printlevel+1 (default: p=1) |
---|
258 | //----------------------------------------------------------------------------- |
---|
259 | //compute resolutions of M and N |
---|
260 | // M<--F(0)<--- ... <---F(p+q+1) |
---|
261 | // N<--G(0)<--- ... <---G(q+1) |
---|
262 | //----------------------------------------------------------------------------- |
---|
263 | list resM = nres(M,p+q+1); |
---|
264 | M1 = resM[p]; |
---|
265 | M2 = resM[p+1]; |
---|
266 | list resN = nres(N,q+1); |
---|
267 | N1 = resN[q]; |
---|
268 | N2 = resN[q+1]; |
---|
269 | P1 = resM[p+q]; |
---|
270 | P2 = resM[p+q+1]; |
---|
271 | //-------test: Ext==0?--------------------------------------------------------- |
---|
272 | test1 = simplify(ideal(M1),10); |
---|
273 | test2 = simplify(ideal(N),10); |
---|
274 | if (test1[1]==0) { dbprint(pp,"//Ext(M,N)=0");return(cup); } |
---|
275 | test1 = simplify(ideal(N1),10); |
---|
276 | test2 = simplify(ideal(P),10); |
---|
277 | if (test1[1]==0) { dbprint(pp,"//Ext(N,P)=0");return(cup); } |
---|
278 | test1 = simplify(ideal(P1),10); |
---|
279 | if (test1[1]==0) { dbprint(pp,"//Ext(M,P)=0");return(cup); } |
---|
280 | //------ compute kbases of Ext's --------------------------------------------- |
---|
281 | //------ Ext(M,N) |
---|
282 | test1 = simplify(ideal(M2),10); |
---|
283 | if (test1[1]==0) { ker = freemodule(ncols(M1)*nrows(N));} |
---|
284 | else |
---|
285 | { |
---|
286 | A = kontrahom(M2,nrows(N)); |
---|
287 | B = kohom(N,ncols(M2)); |
---|
288 | C = intersect(A,B); |
---|
289 | C = reduce(C,std(ideal(0)));C=simplify(C,10); |
---|
290 | ker = lift(A,C)+syz(A); |
---|
291 | } |
---|
292 | ima = kohom(N,ncols(M1)); |
---|
293 | A = kontrahom(M1,nrows(N)); |
---|
294 | ima = ima+A; |
---|
295 | extMN = modulo(ker,ima); |
---|
296 | extMN0= std(extMN); |
---|
297 | e1 = vdim(extMN0); |
---|
298 | dbprint(pp-1,"// vdim Ext(M,N) = "+string(e1)); |
---|
299 | if (e1 < 0) |
---|
300 | { |
---|
301 | "// Ext(M,N) not of finite dimension"; |
---|
302 | return(cup); |
---|
303 | } |
---|
304 | kbMN = kbase(extMN0); |
---|
305 | kbMN = matrix(ker)*kbMN; |
---|
306 | dbprint(pp-1,"// kbase of Ext^p(M,N)", |
---|
307 | "// - the columns present the kbase elements in Hom(F(p),G(0))", |
---|
308 | "// - F(*),G(*) are free resolutions of M and N",kbMN); |
---|
309 | //------- Ext(N,P) |
---|
310 | test1 = simplify(ideal(N2),10); |
---|
311 | if (test1[1]==0) { ker = freemodule(ncols(N1)*nrows(P)); } |
---|
312 | else |
---|
313 | { |
---|
314 | A = kontrahom(N2,nrows(P)); |
---|
315 | B = kohom(P,ncols(N2)); |
---|
316 | C = intersect(A,B); |
---|
317 | C = reduce(C,std(ideal(0)));C=simplify(C,10); |
---|
318 | ker = lift(A,C)+syz(A); |
---|
319 | } |
---|
320 | ima = kohom(P,ncols(N1)); |
---|
321 | A = kontrahom(N1,nrows(P)); |
---|
322 | ima = ima+A; |
---|
323 | extNP = modulo(ker,ima); |
---|
324 | extNP0= std(extNP); |
---|
325 | e2 = vdim(extNP0); |
---|
326 | dbprint(pp-1,"// vdim Ext(N,P) = "+string(e2)); |
---|
327 | if (e2 < 0) |
---|
328 | { |
---|
329 | "// Ext(N,P) not of finite dimension"; |
---|
330 | return(cup); |
---|
331 | } |
---|
332 | kbNP = kbase(extNP0); |
---|
333 | kbNP = matrix(ker)*kbNP; |
---|
334 | dbprint(pp-1,"// kbase of Ext(N,P):",kbNP, |
---|
335 | "// kbase of Ext^q(N,P)", |
---|
336 | "// - the columns present the kbase elements in Hom(G(q),H(0))", |
---|
337 | "// - G(*),H(*) are free resolutions of N and P",kbNP); |
---|
338 | |
---|
339 | //------ Ext(M,P) |
---|
340 | test1 = simplify(ideal(P2),10); |
---|
341 | if (test1[1]==0) { ker = freemodule(ncols(P1)*nrows(P)); } |
---|
342 | else |
---|
343 | { |
---|
344 | A = kontrahom(P2,nrows(P)); |
---|
345 | B = kohom(P,ncols(P2)); |
---|
346 | C = intersect(A,B); |
---|
347 | C = reduce(C,std(ideal(0)));C=simplify(C,10); |
---|
348 | ker = lift(A,C)+syz(A); |
---|
349 | } |
---|
350 | ima = kohom(P,ncols(P1)); |
---|
351 | A = kontrahom(P1,nrows(P)); |
---|
352 | ima = ima+A; |
---|
353 | extMP = modulo(ker,ima); |
---|
354 | extMP0= std(extMP); |
---|
355 | e3 = vdim(extMP0); |
---|
356 | dbprint(pp-1,"// vdim Ext(M,P) = "+string(e3)); |
---|
357 | if (e3 < 0) |
---|
358 | { |
---|
359 | "// Ext(M,P) not of finite dimension"; |
---|
360 | return(cup); |
---|
361 | } |
---|
362 | kbMP = kbase(extMP0); |
---|
363 | kbMP = matrix(ker)*kbMP; |
---|
364 | dbprint(pp-1,"// kbase of Ext^p+q(M,P)", |
---|
365 | "// - the columns present the kbase elements in Hom(F(p+q),H(0))", |
---|
366 | "// - F(*),H(*) are free resolutions of M and P",kbMP); |
---|
367 | //----- lift kbase of Ext(M,N) ------------------------------------------------ |
---|
368 | lift1 = kbMN; |
---|
369 | for (i=1;i<=q;i=i+1) |
---|
370 | { |
---|
371 | mA = kontrahom(resM[p+i],nrows(resN[i])); |
---|
372 | mB = kohom(resN[i],ncols(resM[p+i])); |
---|
373 | lift1 = lift(mB,mA*lift1); |
---|
374 | } |
---|
375 | dbprint(pp-1,"// lifting of kbase of Ext^p(M,N)", |
---|
376 | "// - the columns present liftings of kbase elements"+ |
---|
377 | " in Hom(F(p+q),G(q))",lift1); |
---|
378 | //------- compute: cup-products of base-elements ----------------------------- |
---|
379 | f0 = nrows(P); |
---|
380 | f1 = ncols(N1); |
---|
381 | f2 = ncols(resM[p+q]); |
---|
382 | for (i=1;i<=e1;i=i+1) |
---|
383 | { |
---|
384 | for (j=1;j<=e2;j=j+1) |
---|
385 | { |
---|
386 | mA = matrix(ideal(lift1[j]),f1,f2); |
---|
387 | mB = matrix(ideal(kbMP[i]),f0,f1); |
---|
388 | mC = mB*mA; |
---|
389 | mC = matrix(ideal(mC),f0*f2,1); |
---|
390 | cup= concat(cup,mC); |
---|
391 | } |
---|
392 | } |
---|
393 | dbprint(pp-1,"// matrix of cup-products (in Ext^p+q)",cup, |
---|
394 | "////// end level 2 //////"); |
---|
395 | //------- compute: presentation of base-elements ----------------------------- |
---|
396 | cup = lift(ker,cup); |
---|
397 | cup = lift_kbase(cup,extMP0); |
---|
398 | //------- special output ------------------------------------------------------ |
---|
399 | if (pp>2) |
---|
400 | { |
---|
401 | "// the associated matrices of the bilinear mapping 'cup' "; |
---|
402 | "// corresponding to the kbase elements of Ext^p+q(M,P) are shown,"; |
---|
403 | "// i.e. the rows of the final matrix are written as matrix of"; |
---|
404 | "// a bilinear form on Ext^p x Ext^q"; |
---|
405 | matrix BL[e1][e2]; |
---|
406 | for (k=1;k<=e3;k=k+1) |
---|
407 | { |
---|
408 | "//----component "+string(k)+":"; |
---|
409 | for (i=1;i<=e1;i=i+1) |
---|
410 | { |
---|
411 | for (j=1;j<=e2;j=j+1) |
---|
412 | { |
---|
413 | BL[i,j]=cup[k,j+e1*(i-1)]; |
---|
414 | } |
---|
415 | } |
---|
416 | print(BL); |
---|
417 | } |
---|
418 | "////// end level 3 //////"; |
---|
419 | } |
---|
420 | if (size(#)) { return(cup,kbMN,kbNP,kbMP);} |
---|
421 | else { return(cup); } |
---|
422 | } |
---|
423 | example |
---|
424 | {"EXAMPLE"; echo=2; |
---|
425 | int p = printlevel; |
---|
426 | ring rr = 32003,(x,y,z),(dp,C); |
---|
427 | ideal I = x4+y3+z2; |
---|
428 | qring o = std(I); |
---|
429 | module M = [x,y,0,z],[y2,-x3,z,0],[z,0,-y,-x3],[0,z,x,-y2]; |
---|
430 | print(cupproduct(M,M,M,1,3)); |
---|
431 | printlevel = 3; |
---|
432 | list l = (cupproduct(M,M,M,1,3,"any")); |
---|
433 | show(l[1]);show(l[2]); |
---|
434 | printlevel = p; |
---|
435 | } |
---|
436 | /////////////////////////////////////////////////////////////////////////////// |
---|
437 | |
---|
438 | proc Ext_R (intvec v, module M, list #) |
---|
439 | "USAGE: Ext_R(v,M[,p]); v int resp. intvec , M module, p int |
---|
440 | COMPUTE: A presentation of Ext^k(M',R); for k=v[1],v[2],..., M'=coker(M). |
---|
441 | Let |
---|
442 | @example |
---|
443 | 0 <-- M' <-- F0 <-M-- F1 <-- F2 <-- ... |
---|
444 | @end example |
---|
445 | be a free resolution of M'. If |
---|
446 | @example |
---|
447 | 0 --> F0* -A1-> F1* -A2-> F2* -A3-> ... |
---|
448 | @end example |
---|
449 | is the dual sequence, Fi*=Hom(Fi,R), then Ext^k = ker(Ak+1)/im(Ak) |
---|
450 | is presented as in the following exact sequences: |
---|
451 | @example |
---|
452 | R^p --syz(Ak+1)-> Fk* ---Ak+1----> Fk+1* , |
---|
453 | R^q ----Ext^k---> R^p --syz(Ak+1)-> Fk*/im(Ak). |
---|
454 | @end example |
---|
455 | Hence, Ext^k=modulo(syz(Ak+1),Ak) presents Ext^k(M',R). |
---|
456 | RETURN: - module Ext, a presentation of Ext^k(M',R) if v is of type int@* |
---|
457 | - a list of Ext^k (k=v[1],v[2],...) if v is of type intvec.@* |
---|
458 | - In case of a third argument of type int return a list l: |
---|
459 | @format |
---|
460 | l[1] = module Ext^k resp. list of Ext^k |
---|
461 | l[2] = SB of Ext^k resp. list of SB of Ext^k |
---|
462 | l[3] = matrix resp. list of matrices, each representing a kbase of Ext^k |
---|
463 | (if finite dimensional) |
---|
464 | @end format |
---|
465 | DISPLAY: printlevel >=0: (affine) dimension of Ext^k for each k (default) |
---|
466 | printlevel >=1: Ak, Ak+1 and kbase of Ext^k in Fk* |
---|
467 | NOTE: In order to compute Ext^k(M,R) use the command Ext_R(k,syz(M));@* |
---|
468 | By default, the procedure uses the @code{mres} command. If called |
---|
469 | with the additional parameter @code{\"sres\"}, the @code{sres} command |
---|
470 | is used instead.@* |
---|
471 | If the attribute @code{\"isHomog\"} has been set for the input module, it |
---|
472 | is also set for the returned module (accordingly). |
---|
473 | EXAMPLE: example Ext_R; shows an example |
---|
474 | " |
---|
475 | { |
---|
476 | // In case M is known to be a SB, set attrib(M,"isSB",1); in order to |
---|
477 | // avoid unnecessary SB computations |
---|
478 | |
---|
479 | //------------ check for weight vector (graded case) ----------------------- |
---|
480 | int withWeight; |
---|
481 | intvec weightM,weightR,ww; |
---|
482 | if ( typeof(attrib(M,"isHomog"))!="string" ) |
---|
483 | { |
---|
484 | weightM=attrib(M,"isHomog"); |
---|
485 | withWeight=1; |
---|
486 | } |
---|
487 | |
---|
488 | //------------ initialisation ---------------------------------------------- |
---|
489 | module m1t,m1,m2,m2t,ret,ret0,ker; |
---|
490 | vector leadCol; |
---|
491 | matrix kb; |
---|
492 | module G; |
---|
493 | list L1,L2,L3,L,K; |
---|
494 | resolution resm2; |
---|
495 | int j,k,max,ii,t1,t2,di,leadComp,shift; |
---|
496 | intvec A1,A2,A3; |
---|
497 | int s = size(v); |
---|
498 | intvec v1 = sort(v)[1]; |
---|
499 | max = v1[s]; // the maximum integer occurring in intvec v |
---|
500 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
501 | // --------------- Variante mit sres |
---|
502 | for( ii=1; ii<=size(#); ii++ ) |
---|
503 | { |
---|
504 | if (typeof(#[ii])=="int") { // return a list if t2=1 |
---|
505 | t2=1; |
---|
506 | } |
---|
507 | else { |
---|
508 | if (typeof(#[ii])=="string") { |
---|
509 | // NOTE: at this writing, sres does not return weights |
---|
510 | if ( #[ii]=="sres" ) { t1=1; } // use sres instead of mres if t1=1 |
---|
511 | } |
---|
512 | } |
---|
513 | } |
---|
514 | |
---|
515 | //----------------- compute resolution of coker(M) ---------------------------- |
---|
516 | if( max<0 ) |
---|
517 | { |
---|
518 | dbprint(p,"// Ext^i=0 for i<0!"); |
---|
519 | module Result=[1]; |
---|
520 | if (withWeight==1) { attrib(Result,"isHomog",intvec(0)); } |
---|
521 | if (s==1) { |
---|
522 | if (t2==0) { return(Result); } |
---|
523 | else { return( list(Result,Result,matrix(0)) ); } |
---|
524 | } |
---|
525 | list Out, KBOut; |
---|
526 | for (j=1;j<=s;j++) { |
---|
527 | Out[j] = Result; |
---|
528 | KBOut[j] = matrix(0); |
---|
529 | } |
---|
530 | if (t2==0) { return(Out); } |
---|
531 | else { return( list(Out,Out,KBOut) ); } |
---|
532 | } |
---|
533 | if( t1==1 ) |
---|
534 | { // compute resolution via sres command |
---|
535 | if( attrib(M,"isSB")==0 ) { |
---|
536 | if (size(M)==0) { attrib(M,"isSB")=1; } |
---|
537 | else { M=std(M); } |
---|
538 | } |
---|
539 | list resl = sres(M,max+1); |
---|
540 | if (withWeight) { |
---|
541 | // **** |
---|
542 | // **** at this writing, sres does not return weights, we have to |
---|
543 | // **** go through the resolution to compute them |
---|
544 | // **** |
---|
545 | attrib(resl,"isHomog",weightM); // weightM = weights of M |
---|
546 | G=resl[1]; |
---|
547 | attrib(G,"isHomog",weightM); |
---|
548 | resl[1]=G; |
---|
549 | weightR=weightM; |
---|
550 | |
---|
551 | for (j=2; j<=size(resl); j++) { |
---|
552 | if (size(G)!=0) { |
---|
553 | ww=0; |
---|
554 | for (k=1; k<=ncols(G); k++) { |
---|
555 | if (size(G[k])==0) { ww[k]=0; } |
---|
556 | else { |
---|
557 | leadCol = leadmonom(G[k]); |
---|
558 | leadComp = nrows(leadCol); |
---|
559 | ww[k] = deg(leadCol)+weightR[leadComp]; |
---|
560 | } |
---|
561 | } |
---|
562 | G=resl[j]; |
---|
563 | attrib(G,"isHomog",ww); |
---|
564 | resl[j]=G; |
---|
565 | weightR=ww; |
---|
566 | } |
---|
567 | } |
---|
568 | } |
---|
569 | } |
---|
570 | else { list resl = mres(M,max+1); |
---|
571 | if ((withWeight) and (size(M)==0)) { |
---|
572 | // ***** At this writing: special treatment for zero module needed |
---|
573 | G=resl[1]; |
---|
574 | attrib(G,"isHomog",weightM); |
---|
575 | resl[1]=G; |
---|
576 | } |
---|
577 | } |
---|
578 | for( ii=1; ii<=s; ii++ ) |
---|
579 | { |
---|
580 | //----------------- apply Hom(_,R) at k-th place ----------------------------- |
---|
581 | k=v[ii]; |
---|
582 | dbprint(p-1,"// Computing Ext^"+string(k)+":"); |
---|
583 | if( k<0 ) // Ext^k=0 for negative k |
---|
584 | { |
---|
585 | dbprint(p-1,"// Ext^i=0 for i<0!"); |
---|
586 | ret = gen(1); |
---|
587 | ret0 = std(ret); |
---|
588 | if (withWeight==1) { |
---|
589 | attrib(ret,"isHomog",intvec(0)); |
---|
590 | attrib(ret0,"isHomog",intvec(0)); |
---|
591 | } |
---|
592 | L1[ii] = ret; |
---|
593 | L2[ii] = ret0; |
---|
594 | L3[ii] = matrix(kbase(ret0)); |
---|
595 | di=dim(ret0); |
---|
596 | dbprint(p,"// dimension of Ext^"+string(k)+": "+string(di)); |
---|
597 | if (di==0) |
---|
598 | { |
---|
599 | dbprint(p,"// vdim of Ext^"+string(k)+": "+string(vdim(ret0))); |
---|
600 | } |
---|
601 | dbprint(p,""); |
---|
602 | } |
---|
603 | else |
---|
604 | { |
---|
605 | m2t = resl[k+1]; |
---|
606 | m2 = transpose(m2t); |
---|
607 | if ((typeof(attrib(m2t,"isHomog"))!="string" ) && (withWeight)) |
---|
608 | { |
---|
609 | // ------------- compute weights for dual ----------------------------- |
---|
610 | weightR=attrib(m2t,"isHomog"); |
---|
611 | // -------------------------------------------------------------------- |
---|
612 | // *** set correct weights (at this writing, shift in resolution |
---|
613 | // *** is not considered when defining the weights for the |
---|
614 | // *** modules in the resolution): |
---|
615 | A1=attrib(M,"isHomog"); |
---|
616 | A2=attrib(resl[1],"isHomog"); |
---|
617 | shift=A1[1]-A2[1]; |
---|
618 | for (j=1; j<=size(weightR); j++) { weightR[j]=weightR[j]+shift; } |
---|
619 | attrib(m2t,"isHomog",weightR); |
---|
620 | // -------------------------------------------------------------------- |
---|
621 | ww=0; |
---|
622 | for (j=1; j<=nrows(m2); j++) { |
---|
623 | if (size(m2t[j])==0) { ww[j]=0; } |
---|
624 | else { |
---|
625 | leadCol = leadmonom(m2t[j]); |
---|
626 | leadComp = nrows(leadCol); |
---|
627 | ww[j] = deg(leadCol)+weightR[leadComp]; |
---|
628 | } |
---|
629 | } |
---|
630 | attrib(m2,"isHomog",-ww); // dualize --> negative weights |
---|
631 | // -------------------------------------------------------------------- |
---|
632 | // *** the following should be replaced by the syz command, |
---|
633 | // *** but syz forgets weights..... |
---|
634 | resm2 = nres(m2,2); |
---|
635 | ker = resm2[2]; |
---|
636 | if ((size(ker)>0) and (size(m2)>0)) { |
---|
637 | // ------------------------------------------------------------------ |
---|
638 | // *** set correct weights (at this writing, shift in resolution |
---|
639 | // *** is not considered when defining the weights for the |
---|
640 | // *** modules in the resolution): |
---|
641 | A1=attrib(resm2,"isHomog"); |
---|
642 | A2=attrib(resm2[1],"isHomog"); |
---|
643 | A3=attrib(ker,"isHomog"); |
---|
644 | shift=A1[1]-A2[1]; |
---|
645 | for (j=1; j<=size(A3); j++) { A3[j]=A3[j]+shift; } |
---|
646 | // *** set correct weights where weights are undetermined due to |
---|
647 | // *** zero columns in m2 (read weights from m2t) |
---|
648 | for (j=1; j<=ncols(m2); j++) { |
---|
649 | if (size(m2[j])==0) { A3[j]=-weightR[j]; } |
---|
650 | } |
---|
651 | attrib(ker,"isHomog",A3); |
---|
652 | // ------------------------------------------------------------------ |
---|
653 | } |
---|
654 | } |
---|
655 | else { |
---|
656 | ker = syz(m2); |
---|
657 | } |
---|
658 | |
---|
659 | if( k==0 ) { matrix MMM1[ncols(m2)][1]; |
---|
660 | m1=MMM1; |
---|
661 | } |
---|
662 | else { // k>0 |
---|
663 | m1t = resl[k]; |
---|
664 | m1 = transpose(resl[k]); |
---|
665 | if ((typeof(attrib(m1t,"isHomog"))!="string" ) && (withWeight)) { |
---|
666 | // ------------- compute weights for dual ----------------------------- |
---|
667 | weightR=attrib(resl[k],"isHomog"); |
---|
668 | // ------------------------------------------------------------------ |
---|
669 | // *** set correct weights (at this writing, shift in resolution |
---|
670 | // *** is not considered when defining the weights for the |
---|
671 | // *** modules in the resolution): |
---|
672 | A1=attrib(M,"isHomog"); |
---|
673 | A2=attrib(resl[1],"isHomog"); |
---|
674 | shift=A1[1]-A2[1]; |
---|
675 | for (j=1; j<=size(weightR); j++) { weightR[j]=weightR[j]+shift; } |
---|
676 | attrib(m1t,"isHomog",weightR); |
---|
677 | // ------------------------------------------------------------------ |
---|
678 | ww=0; |
---|
679 | for (j=1; j<=nrows(m1); j++) { |
---|
680 | if (size(m1t[j])==0) { ww[j]=0; } |
---|
681 | else { |
---|
682 | leadCol = leadmonom(m1t[j]); |
---|
683 | leadComp = nrows(leadCol); |
---|
684 | ww[j] = deg(leadCol)+weightR[leadComp]; |
---|
685 | } |
---|
686 | } |
---|
687 | attrib(m1,"isHomog",-ww); // dualize --> negative weights |
---|
688 | } |
---|
689 | } |
---|
690 | //----------------- presentation of ker(m2)/im(m1) --------------------- |
---|
691 | if ((k==0) and (size(M)==0)) { |
---|
692 | ret = M; |
---|
693 | if (withWeight) { attrib(ret,"isHomog",-weightM); } |
---|
694 | } |
---|
695 | else { |
---|
696 | ret = modulo(ker,m1); |
---|
697 | } |
---|
698 | dbprint(p-1, |
---|
699 | "// Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of M,", |
---|
700 | "// then F"+string(k)+"*-->F"+string(k+1)+"* is given by:",m2, |
---|
701 | "// and F"+string(k-1)+"*-->F"+string(k)+"* is given by:",m1,""); |
---|
702 | ret0 = std(ret); |
---|
703 | |
---|
704 | di=dim(ret0); |
---|
705 | dbprint(p,"// dimension of Ext^"+string(k)+": "+string(di)); |
---|
706 | if (di==0) |
---|
707 | { |
---|
708 | dbprint(p,"// vdim of Ext^"+string(k)+": "+string(vdim(ret0))); |
---|
709 | } |
---|
710 | dbprint(p,""); |
---|
711 | if( t2 ) |
---|
712 | { |
---|
713 | if( vdim(ret0)>=0 ) |
---|
714 | { |
---|
715 | kb = kbase(ret0); |
---|
716 | if ( size(ker)!=0 ) { kb = matrix(ker)*kb; } |
---|
717 | dbprint(p-1, |
---|
718 | "// columns of matrix are kbase of Ext^"+string(k)+" in F" |
---|
719 | +string(k)+"*:",kb,""); |
---|
720 | L3[ii] = kb; |
---|
721 | } |
---|
722 | L2[ii] = ret0; |
---|
723 | } |
---|
724 | L1[ii] = ret; |
---|
725 | } |
---|
726 | } |
---|
727 | if( t2 ) |
---|
728 | { |
---|
729 | if( s>1 ) { L = L1,L2,L3; return(L); } |
---|
730 | else { L = ret,ret0,kb; return(L); } |
---|
731 | } |
---|
732 | else |
---|
733 | { |
---|
734 | if( s>1 ) { return(L1); } |
---|
735 | else { return(ret); } |
---|
736 | } |
---|
737 | } |
---|
738 | example |
---|
739 | {"EXAMPLE:"; echo=2; |
---|
740 | int p = printlevel; |
---|
741 | printlevel = 1; |
---|
742 | ring r = 0,(x,y,z),dp; |
---|
743 | ideal i = x2y,y2z,z3x; |
---|
744 | module E = Ext_R(1,i); //computes Ext^1(r/i,r) |
---|
745 | is_zero(E); |
---|
746 | |
---|
747 | qring R = std(x2+yz); |
---|
748 | intvec v = 0,2; |
---|
749 | printlevel = 2; //shows what is going on |
---|
750 | ideal i = x,y,z; //computes Ext^i(r/(x,y,z),r/(x2+yz)), i=0,2 |
---|
751 | list L = Ext_R(v,i,1); //over the qring R=r/(x2+yz), std and kbase |
---|
752 | printlevel = p; |
---|
753 | } |
---|
754 | /////////////////////////////////////////////////////////////////////////////// |
---|
755 | |
---|
756 | proc Ext (intvec v, module M, module N, list #) |
---|
757 | "USAGE: Ext(v,M,N[,any]); v int resp. intvec, M,N modules |
---|
758 | COMPUTE: A presentation of Ext^k(M',N'); for k=v[1],v[2],... where |
---|
759 | M'=coker(M) and N'=coker(N). Let |
---|
760 | @example |
---|
761 | 0 <-- M' <-- F0 <-M-- F1 <-- F2 <--... , |
---|
762 | 0 <-- N' <-- G0 <--N- G1 |
---|
763 | @end example |
---|
764 | be a free resolution of M', resp. a presentation of N'. Consider |
---|
765 | the commutative diagram |
---|
766 | @example |
---|
767 | 0 0 0 |
---|
768 | |^ |^ |^ |
---|
769 | --> Hom(Fk-1,N') -Ak-> Hom(Fk,N') -Ak+1-> Hom(Fk+1,N') |
---|
770 | |^ |^ |^ |
---|
771 | --> Hom(Fk-1,G0) -Ak-> Hom(Fk,G0) -Ak+1-> Hom(Fk+1,G0) |
---|
772 | |^ |^ |
---|
773 | |C |B |
---|
774 | Hom(Fk,G1) ------> Hom(Fk+1,G1) |
---|
775 | |
---|
776 | (Ak,Ak+1 induced by M and B,C induced by N). |
---|
777 | @end example |
---|
778 | Let K=modulo(Ak+1,B), J=module(Ak)+module(C) and Ext=modulo(K,J), |
---|
779 | then we have exact sequences |
---|
780 | @example |
---|
781 | R^p --K-> Hom(Fk,G0) --Ak+1-> Hom(Fk+1,G0)/im(B), |
---|
782 | |
---|
783 | R^q -Ext-> R^p --K-> Hom(Fk,G0)/(im(Ak)+im(C)). |
---|
784 | @end example |
---|
785 | Hence, Ext presents Ext^k(M',N'). |
---|
786 | RETURN: - module Ext, a presentation of Ext^k(M',N') if v is of type int@* |
---|
787 | - a list of Ext^k (k=v[1],v[2],...) if v is of type intvec.@* |
---|
788 | - In case of a third argument of any type return a list l: |
---|
789 | @format |
---|
790 | l[1] = module Ext/list of Ext^k |
---|
791 | l[2] = SB of Ext/list of SB of Ext^k |
---|
792 | l[3] = matrix/list of matrices, each representing a kbase of Ext^k |
---|
793 | (if finite dimensional) |
---|
794 | @end format |
---|
795 | DISPLAY: printlevel >=0: dimension, vdim of Ext^k for each k (default). |
---|
796 | @* printlevel >=1: matrices Ak, Ak+1 and kbase of Ext^k in Hom(Fk,G0) |
---|
797 | (if finite dimensional) |
---|
798 | NOTE: In order to compute Ext^k(M,N) use the command Ext(k,syz(M),syz(N)); |
---|
799 | or: list P=mres(M,2); list Q=mres(N,2); Ext(k,P[2],Q[2]); |
---|
800 | EXAMPLE: example Ext; shows an example |
---|
801 | " |
---|
802 | { |
---|
803 | //---------- initialisation --------------------------------------------------- |
---|
804 | int k,max,ii,l,row,col,di; |
---|
805 | module A,B,C,D,M1,M2,N1,ker,imag,extMN,extMN0; |
---|
806 | matrix kb; |
---|
807 | list L1,L2,L3,L,resM,K; |
---|
808 | ideal test1; |
---|
809 | intmat Be; |
---|
810 | int s = size(v); |
---|
811 | intvec v1 = sort(v)[1]; |
---|
812 | max = v1[s]; // the maximum integer occurring in intvec v |
---|
813 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
814 | //---------- test: coker(N)=basering, coker(N)=0 ? ---------------------------- |
---|
815 | if( max<0 ) { dbprint(p,"// Ext^i=0 for i<0!"); return([1]); } |
---|
816 | N1 = std(N); |
---|
817 | if( size(N1)==0 ) //coker(N)=basering, in this case proc Ext_R is faster |
---|
818 | { printlevel=printlevel+1; |
---|
819 | if( size(#)==0 ) |
---|
820 | { def E = Ext_R(v,M); |
---|
821 | printlevel=printlevel-1; |
---|
822 | return(E); |
---|
823 | } |
---|
824 | else |
---|
825 | { def E = Ext_R(v,M,#[1]); |
---|
826 | printlevel=printlevel-1; |
---|
827 | return(E); |
---|
828 | } |
---|
829 | } |
---|
830 | if( dim(N1)==-1 ) //coker(N)=0, all Ext-groups are 0 |
---|
831 | { dbprint(p-1,"2nd module presents 0, hence Ext^k=0, for all k"); |
---|
832 | for( ii=1; ii<=s; ii++ ) |
---|
833 | { k=v[ii]; |
---|
834 | extMN = gen(1); |
---|
835 | extMN0 = std(extMN); |
---|
836 | L1[ii] = extMN; |
---|
837 | L2[ii] = extMN0; |
---|
838 | L3[ii] = matrix(kbase(extMN0)); |
---|
839 | di=dim(extMN0); |
---|
840 | dbprint(p,"// dimension of Ext^"+string(k)+": "+string(di)); |
---|
841 | if (di==0) |
---|
842 | { |
---|
843 | dbprint(p,"// vdim of Ext^"+string(k)+": "+string(vdim(extMN0))); |
---|
844 | } |
---|
845 | dbprint(p,""); |
---|
846 | } |
---|
847 | } |
---|
848 | else |
---|
849 | { |
---|
850 | if( size(N1) < size(N) ) { N=N1;} |
---|
851 | row = nrows(N); |
---|
852 | //---------- resolution of M ------------------------------------------------- |
---|
853 | resM = mres(M,max+1); |
---|
854 | for( ii=1; ii<=s; ii++ ) |
---|
855 | { k=v[ii]; |
---|
856 | if( k<0 ) // Ext^k is 0 for negative k |
---|
857 | { dbprint(p-1,"// Ext^k=0 for k<0!"); |
---|
858 | extMN = gen(1); |
---|
859 | extMN0 = std(extMN); |
---|
860 | L1[ii] = extMN; |
---|
861 | L2[ii] = extMN0; |
---|
862 | L3[ii] = matrix(kbase(extMN0)); |
---|
863 | di=dim(extMN0); |
---|
864 | dbprint(p,"// dimension of Ext^"+string(k)+": "+string(di)); |
---|
865 | if (di==0) |
---|
866 | { |
---|
867 | dbprint(p,"// vdim of Ext^"+string(k)+": " |
---|
868 | +string(vdim(extMN0))); |
---|
869 | } |
---|
870 | dbprint(p,""); |
---|
871 | } |
---|
872 | else |
---|
873 | { M2 = resM[k+1]; |
---|
874 | if( k==0 ) { M1=0; } |
---|
875 | else { M1 = resM[k]; } |
---|
876 | col = nrows(M2); |
---|
877 | D = kohom(N,col); |
---|
878 | //---------- computing homology ---------------------------------------------- |
---|
879 | imag = kontrahom(M1,row); |
---|
880 | A = kontrahom(M2,row); |
---|
881 | B = kohom(N,ncols(M2)); |
---|
882 | ker = modulo(A,B); |
---|
883 | imag = imag,D; |
---|
884 | extMN = modulo(ker,imag); |
---|
885 | dbprint(p-1,"// Computing Ext^"+string(k)+ |
---|
886 | " (help Ext; gives an explanation):", |
---|
887 | "// Let 0<--coker(M)<--F0<--F1<--F2<--... be a resolution of coker(M),", |
---|
888 | "// and 0<--coker(N)<--G0<--G1 a presentation of coker(N),", |
---|
889 | "// then Hom(F"+string(k)+",G0)-->Hom(F"+string(k+1)+ |
---|
890 | ",G0) is given by:",A, |
---|
891 | "// and Hom(F"+string(k-1)+",G0) + Hom(F"+string(k)+",G1)-->Hom(F" |
---|
892 | +string(k)+",G0) is given by:",imag,""); |
---|
893 | extMN0 = std(extMN); |
---|
894 | di=dim(extMN0); |
---|
895 | dbprint(p,"// dimension of Ext^"+string(k)+": "+string(di)); |
---|
896 | if (di==0) |
---|
897 | { |
---|
898 | dbprint(p,"// vdim of Ext^"+string(k)+": " |
---|
899 | +string(vdim(extMN0))); |
---|
900 | } |
---|
901 | dbprint(p,""); |
---|
902 | |
---|
903 | //---------- more information ------------------------------------------------- |
---|
904 | if( size(#)>0 ) |
---|
905 | { if( vdim(extMN0) >= 0 ) |
---|
906 | { kb = kbase(extMN0); |
---|
907 | if ( size(ker)!=0) { kb = matrix(ker)*kb; } |
---|
908 | dbprint(p-1,"// columns of matrix are kbase of Ext^"+ |
---|
909 | string(k)+" in Hom(F"+string(k)+",G0)",kb,""); |
---|
910 | if( p>0 ) |
---|
911 | { for (l=1;l<=ncols(kb);l=l+1) |
---|
912 | { |
---|
913 | "// element",l,"of kbase of Ext^"+string(k)+" in Hom(F"+string(k)+",G0)"; |
---|
914 | "// as matrix: F"+string(k)+"-->G0"; |
---|
915 | print(matrix(ideal(kb[l]),row,col)); |
---|
916 | } |
---|
917 | ""; |
---|
918 | } |
---|
919 | L3[ii] = matrix(kb); |
---|
920 | } |
---|
921 | L2[ii] = extMN0; |
---|
922 | } |
---|
923 | L1[ii] = extMN; |
---|
924 | } |
---|
925 | } |
---|
926 | } |
---|
927 | if( size(#) ) |
---|
928 | { if( s>1 ) { L = L1,L2,L3; return(L); } |
---|
929 | else { L = extMN,extMN0,matrix(kb); return(L); } |
---|
930 | } |
---|
931 | else |
---|
932 | { if( s>1 ) { return(L1); } |
---|
933 | else { return(extMN); } |
---|
934 | } |
---|
935 | } |
---|
936 | example |
---|
937 | {"EXAMPLE:"; echo=2; |
---|
938 | int p = printlevel; |
---|
939 | printlevel = 1; |
---|
940 | ring r = 0,(x,y),dp; |
---|
941 | ideal i = x2-y3; |
---|
942 | ideal j = x2-y5; |
---|
943 | list E = Ext(0..2,i,j); // Ext^k(r/i,r/j) for k=0,1,2 over r |
---|
944 | qring R = std(i); |
---|
945 | ideal j = fetch(r,j); |
---|
946 | module M = [-x,y],[-y2,x]; |
---|
947 | printlevel = 2; |
---|
948 | module E1 = Ext(1,M,j); // Ext^1(R^2/M,R/j) over R=r/i |
---|
949 | list l = Ext(4,M,M,1); // Ext^4(R^2/M,R^2/M) over R=r/i |
---|
950 | printlevel = p; |
---|
951 | } |
---|
952 | /////////////////////////////////////////////////////////////////////////////// |
---|
953 | |
---|
954 | proc Hom (module M, module N, list #) |
---|
955 | "USAGE: Hom(M,N,[any]); M,N=modules |
---|
956 | COMPUTE: A presentation of Hom(M',N'), M'=coker(M), N'=coker(N) as follows: |
---|
957 | let |
---|
958 | @example |
---|
959 | F1 --M-> F0 -->M' --> 0, G1 --N-> G0 --> N' --> 0 |
---|
960 | @end example |
---|
961 | be presentations of M' and N'. Consider |
---|
962 | @example |
---|
963 | 0 0 |
---|
964 | |^ |^ |
---|
965 | 0 --> Hom(M',N') ----> Hom(F0,N') ----> Hom(F1,N') |
---|
966 | |^ |^ |
---|
967 | (A: induced by M) Hom(F0,G0) --A-> Hom(F1,G0) |
---|
968 | |^ |^ |
---|
969 | (B,C:induced by N) |C |B |
---|
970 | Hom(F0,G1) ----> Hom(F1,G1) |
---|
971 | |
---|
972 | @end example |
---|
973 | Let D=modulo(A,B) and Hom=modulo(D,C), then we have exact sequences |
---|
974 | @example |
---|
975 | R^p --D-> Hom(F0,G0) --A-> Hom(F1,G0)/im(B), |
---|
976 | |
---|
977 | R^q -Hom-> R^p --D-> Hom(F0,G0)/im(C) --A-> Hom(F1,G0)/im(B). |
---|
978 | @end example |
---|
979 | Hence Hom presents Hom(M',N') |
---|
980 | RETURN: module Hom, a presentation of Hom(M',N'), resp., in case of |
---|
981 | 3 arguments, a list l (of size <=3): |
---|
982 | @format |
---|
983 | - l[1] = Hom |
---|
984 | - l[2] = SB of Hom |
---|
985 | - l[3] = kbase of coker(Hom) (if finite dimensional, not 0), |
---|
986 | represented by elements in Hom(F0,G0) via mapping D |
---|
987 | @end format |
---|
988 | DISPLAY: printlevel >=0: (affine) dimension of Hom (default) |
---|
989 | @* printlevel >=1: D and C and kbase of coker(Hom) in Hom(F0,G0) |
---|
990 | @* printlevel >=2: elements of kbase of coker(Hom) as matrix :F0-->G0 |
---|
991 | NOTE: DISPLAY is as described only for a direct call of 'Hom'. Calling 'Hom' |
---|
992 | from another proc has the same effect as decreasing printlevel by 1. |
---|
993 | EXAMPLE: example Hom; shows examples |
---|
994 | " |
---|
995 | { |
---|
996 | //---------- initialisation --------------------------------------------------- |
---|
997 | int l,p,di; |
---|
998 | matrix kb; |
---|
999 | module A,B,C,D,homMN,homMN0; |
---|
1000 | list L; |
---|
1001 | //---------- computation of Hom ----------------------------------------------- |
---|
1002 | B = kohom(N,ncols(M)); |
---|
1003 | A = kontrahom(M,nrows(N)); |
---|
1004 | C = kohom(N,nrows(M)); |
---|
1005 | D = modulo(A,B); |
---|
1006 | homMN = modulo(D,C); |
---|
1007 | homMN0= std(homMN); |
---|
1008 | p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
1009 | di= dim(homMN0); |
---|
1010 | dbprint(p,"// dimension of Hom: "+string(di)); |
---|
1011 | if (di==0) |
---|
1012 | { |
---|
1013 | dbprint(p,"// vdim of Hom: "+string(vdim(homMN0))); |
---|
1014 | } |
---|
1015 | dbprint(p,""); |
---|
1016 | dbprint(p-1, |
---|
1017 | "// given F1 --M-> F0 -->M'--> 0 and G1 --N-> G0 -->N'--> 0,", |
---|
1018 | "// show D = ker( Hom(F0,G0) --> Hom(F1,G0)/im(Hom(F1,G1)->Hom(F1,G0)) )",D, |
---|
1019 | "// show C = im ( Hom(F0,G1) --> Hom(F0,G0) )",C,""); |
---|
1020 | //---------- extra output if size(#)>0 ---------------------------------------- |
---|
1021 | if( size(#)>0 ) |
---|
1022 | { |
---|
1023 | if( vdim(homMN0)>0 ) |
---|
1024 | { |
---|
1025 | kb = kbase(homMN0); |
---|
1026 | kb = matrix(D)*kb; |
---|
1027 | if( p>2 ) |
---|
1028 | { |
---|
1029 | for (l=1;l<=ncols(kb);l=l+1) |
---|
1030 | { |
---|
1031 | "// element",l,"of kbase of Hom in Hom(F0,G0) as matrix: F0-->G0:"; |
---|
1032 | print(matrix(ideal(kb[l]),nrows(N),nrows(M))); |
---|
1033 | } |
---|
1034 | } |
---|
1035 | else |
---|
1036 | { |
---|
1037 | dbprint(p-1,"// columns of matrix are kbase of Hom in Hom(F0,G0)", |
---|
1038 | kb); |
---|
1039 | } |
---|
1040 | L=homMN,homMN0,kb; |
---|
1041 | return(L); |
---|
1042 | } |
---|
1043 | L=homMN,homMN0; |
---|
1044 | return(L); |
---|
1045 | } |
---|
1046 | return(homMN); |
---|
1047 | } |
---|
1048 | example |
---|
1049 | {"EXAMPLE:"; echo = 2; |
---|
1050 | int p = printlevel; |
---|
1051 | printlevel= 1; //in 'example proc' printlevel has to be increased by 1 |
---|
1052 | ring r = 0,(x,y),dp; |
---|
1053 | ideal i = x2-y3,xy; |
---|
1054 | qring q = std(i); |
---|
1055 | ideal i = fetch(r,i); |
---|
1056 | module M = [-x,y],[-y2,x],[x3]; |
---|
1057 | module H = Hom(M,i); |
---|
1058 | print(H); |
---|
1059 | |
---|
1060 | printlevel= 2; |
---|
1061 | list L = Hom(M,i,1);""; |
---|
1062 | |
---|
1063 | printlevel=1; |
---|
1064 | ring s = 3,(x,y,z),(c,dp); |
---|
1065 | ideal i = jacob(ideal(x2+y5+z4)); |
---|
1066 | qring rq=std(i); |
---|
1067 | matrix M[2][2]=xy,x3,5y,4z,x2; |
---|
1068 | matrix N[3][2]=x2,x,y3,3xz,x2z,z; |
---|
1069 | print(M); |
---|
1070 | print(N); |
---|
1071 | list l=Hom(M,N,1); |
---|
1072 | printlevel = p; |
---|
1073 | } |
---|
1074 | /////////////////////////////////////////////////////////////////////////////// |
---|
1075 | |
---|
1076 | proc homology (matrix A,matrix B,module M,module N,list #) |
---|
1077 | "USAGE: homology(A,B,M,N); |
---|
1078 | COMPUTE: Let M and N be submodules of R^m and R^n presenting M'=R^m/M, N'=R^n/N |
---|
1079 | (R=basering) and let A,B matrices inducing maps |
---|
1080 | @example |
---|
1081 | R^k --A--> R^m --B--> R^n. |
---|
1082 | @end example |
---|
1083 | Compute a presentation of the module |
---|
1084 | @example |
---|
1085 | ker(B)/im(A) := ker(M'/im(A) --B--> N'/im(BM)+im(BA)). |
---|
1086 | @end example |
---|
1087 | If B induces a map M'-->N' (i.e BM=0) and if im(A) is contained in |
---|
1088 | ker(B) (that is, BA=0) then ker(B)/im(A) is the homology of the |
---|
1089 | complex |
---|
1090 | @example |
---|
1091 | R^k--A-->M'--B-->N'. |
---|
1092 | @end example |
---|
1093 | RETURN: module H, a presentation of ker(B)/im(A). |
---|
1094 | NOTE: homology returns a free module of rank m if ker(B)=im(A). |
---|
1095 | EXAMPLE: example homology; shows examples |
---|
1096 | " |
---|
1097 | { |
---|
1098 | module ker,ima; |
---|
1099 | ker = modulo(B,N); |
---|
1100 | ima = A,M; |
---|
1101 | return(modulo(ker,ima)); |
---|
1102 | } |
---|
1103 | example |
---|
1104 | {"EXAMPLE"; echo=2; |
---|
1105 | ring r; |
---|
1106 | ideal id=maxideal(4); |
---|
1107 | qring qr=std(id); |
---|
1108 | module N=maxideal(3)*freemodule(2); |
---|
1109 | module M=maxideal(2)*freemodule(2); |
---|
1110 | module B=[2x,0],[x,y],[z2,y]; |
---|
1111 | module A=M; |
---|
1112 | module H=homology(A,B,M,N); |
---|
1113 | H=std(H); |
---|
1114 | // dimension of homology: |
---|
1115 | dim(H); |
---|
1116 | // vector space dimension: |
---|
1117 | vdim(H); |
---|
1118 | |
---|
1119 | ring s=0,x,ds; |
---|
1120 | qring qs=std(x4); |
---|
1121 | module A=[x]; |
---|
1122 | module B=A; |
---|
1123 | module M=[x3]; |
---|
1124 | module N=M; |
---|
1125 | homology(A,B,M,N); |
---|
1126 | } |
---|
1127 | ////////////////////////////////////////////////////////////////////////////// |
---|
1128 | |
---|
1129 | proc kernel (matrix A,module M,module N) |
---|
1130 | "USAGE: kernel(A,M,N); |
---|
1131 | COMPUTE: Let M and N be submodules of R^m and R^n, presenting M'=R^m/M, |
---|
1132 | N'=R^n/N (R=basering), and let A:R^m-->R^n be a matrix inducing a |
---|
1133 | map A':M'-->N'. Then kernel(A,M,N); computes a presentation K of |
---|
1134 | ker(A') as in the commutative diagram: |
---|
1135 | @example |
---|
1136 | ker(A') ---> M' --A'--> N' |
---|
1137 | |^ |^ |^ |
---|
1138 | | | | |
---|
1139 | R^r ---> R^m --A--> R^n |
---|
1140 | |^ |^ |^ |
---|
1141 | |K |M |N |
---|
1142 | | | | |
---|
1143 | R^s ---> R^p -----> R^q |
---|
1144 | @end example |
---|
1145 | RETURN: module K, a presentation of ker(A':coker(M)->coker(N)). |
---|
1146 | EXAMPLE: example kernel; shows examples. |
---|
1147 | " |
---|
1148 | { |
---|
1149 | module M1 = modulo(A,N); |
---|
1150 | return(modulo(M1,M)); |
---|
1151 | } |
---|
1152 | example |
---|
1153 | {"EXAMPLE"; echo=2; |
---|
1154 | ring r; |
---|
1155 | module N=[2x,x],[0,y]; |
---|
1156 | module M=maxideal(1)*freemodule(2); |
---|
1157 | matrix A[2][3]=2x,0,x,y,z2,y; |
---|
1158 | module K=kernel(A,M,N); |
---|
1159 | // dimension of kernel: |
---|
1160 | dim(std(K)); |
---|
1161 | // vector space dimension of kernel: |
---|
1162 | vdim(std(K)); |
---|
1163 | print(K); |
---|
1164 | } |
---|
1165 | /////////////////////////////////////////////////////////////////////////////// |
---|
1166 | |
---|
1167 | proc kohom (matrix M, int j) |
---|
1168 | "USAGE: kohom(A,k); A=matrix, k=integer |
---|
1169 | RETURN: matrix Hom(R^k,A), i.e. let A be a matrix defining a map F1-->F2 |
---|
1170 | of free R-modules, then the matrix of Hom(R^k,F1)-->Hom(R^k,F2) |
---|
1171 | is computed (R=basering). |
---|
1172 | EXAMPLE: example kohom; shows an example. |
---|
1173 | " |
---|
1174 | { |
---|
1175 | if (j==1) |
---|
1176 | { return(M);} |
---|
1177 | if (j>1) |
---|
1178 | { return(tensor(M,diag(1,j))); } |
---|
1179 | else { return(0);} |
---|
1180 | } |
---|
1181 | example |
---|
1182 | {"EXAMPLE:"; echo=2; |
---|
1183 | ring r; |
---|
1184 | matrix n[2][3]=x,y,5,z,77,33; |
---|
1185 | print(kohom(n,3)); |
---|
1186 | } |
---|
1187 | /////////////////////////////////////////////////////////////////////////////// |
---|
1188 | |
---|
1189 | proc kontrahom (matrix M, int j) |
---|
1190 | "USAGE: kontrahom(A,k); A=matrix, k=integer |
---|
1191 | RETURN: matrix Hom(A,R^k), i.e. let A be a matrix defining a map F1-->F2 of |
---|
1192 | free R-modules, then the matrix of Hom(F2,R^k)-->Hom(F1,R^k) is |
---|
1193 | computed (R=basering). |
---|
1194 | EXAMPLE: example kontrahom; shows an example. |
---|
1195 | " |
---|
1196 | { |
---|
1197 | if (j==1) |
---|
1198 | { return(transpose(M));} |
---|
1199 | if (j>1) |
---|
1200 | { return(transpose(tensor(diag(1,j),M)));} |
---|
1201 | else { return(0);} |
---|
1202 | } |
---|
1203 | example |
---|
1204 | {"EXAMPLE:"; echo=2; |
---|
1205 | ring r; |
---|
1206 | matrix n[2][3]=x,y,5,z,77,33; |
---|
1207 | print(kontrahom(n,3)); |
---|
1208 | } |
---|
1209 | /////////////////////////////////////////////////////////////////////////////// |
---|
1210 | /////////////////////////////////////////////////////////////////////////////// |
---|
1211 | |
---|
1212 | proc tensorMod(module Phi, module Psi) |
---|
1213 | "USAGE: tensorMod(M,N); M,N modules |
---|
1214 | COMPUTE: presentation matrix A of the tensor product T of the modules |
---|
1215 | M'=coker(M), N'=coker(N): if matrix(M) defines a map M: R^r-->R^s and |
---|
1216 | matrix(N) defines a map N: R^p-->R^q, then A defines a presentation |
---|
1217 | @example |
---|
1218 | R^(sp+rq) --A-> R^(sq) --> T --> 0 . |
---|
1219 | @end example |
---|
1220 | RETURN: matrix A satisfying coker(A) = tensorprod(coker(M),coker(N)) . |
---|
1221 | EXAMPLE: example tensorMod; shows an example. |
---|
1222 | " |
---|
1223 | { |
---|
1224 | int s=nrows(Phi); |
---|
1225 | int q=nrows(Psi); |
---|
1226 | matrix A=tensor(unitmat(s),Psi); |
---|
1227 | matrix B=tensor(Phi,unitmat(q)); |
---|
1228 | matrix R=concat(A,B); |
---|
1229 | return(R); |
---|
1230 | } |
---|
1231 | example |
---|
1232 | {"EXAMPLE:"; echo=2; |
---|
1233 | ring A=0,(x,y,z),dp; |
---|
1234 | matrix M[3][3]=1,2,3,4,5,6,7,8,9; |
---|
1235 | matrix N[2][2]=x,y,0,z; |
---|
1236 | print(M); |
---|
1237 | print(N); |
---|
1238 | print(tensorMod(M,N)); |
---|
1239 | } |
---|
1240 | /////////////////////////////////////////////////////////////////////////////// |
---|
1241 | proc Tor(intvec v, module M, module N, list #) |
---|
1242 | "USAGE: Tor(v,M,N[,any]); v int resp. intvec, M,N modules |
---|
1243 | COMPUTE: a presentation of Tor_k(M',N'), for k=v[1],v[2],... , where |
---|
1244 | M'=coker(M) and N'=coker(N): let |
---|
1245 | @example |
---|
1246 | 0 <-- M' <-- G0 <-M-- G1 |
---|
1247 | 0 <-- N' <-- F0 <--N- F1 <-- F2 <--... |
---|
1248 | @end example |
---|
1249 | be a presentation of M', resp. a free resolution of N', and consider |
---|
1250 | the commutative diagram |
---|
1251 | @example |
---|
1252 | 0 0 0 |
---|
1253 | |^ |^ |^ |
---|
1254 | Tensor(M',Fk+1) -Ak+1-> Tensor(M',Fk) -Ak-> Tensor(M',Fk-1) |
---|
1255 | |^ |^ |^ |
---|
1256 | Tensor(G0,Fk+1) -Ak+1-> Tensor(G0,Fk) -Ak-> Tensor(G0,Fk-1) |
---|
1257 | |^ |^ |
---|
1258 | |C |B |
---|
1259 | Tensor(G1,Fk) ----> Tensor(G1,Fk-1) |
---|
1260 | |
---|
1261 | (Ak,Ak+1 induced by N and B,C induced by M). |
---|
1262 | @end example |
---|
1263 | Let K=modulo(Ak,B), J=module(C)+module(Ak+1) and Tor=modulo(K,J), |
---|
1264 | then we have exact sequences |
---|
1265 | @example |
---|
1266 | R^p --K-> Tensor(G0,Fk) --Ak-> Tensor(G0,Fk-1)/im(B), |
---|
1267 | |
---|
1268 | R^q -Tor-> R^p --K-> Tensor(G0,Fk)/(im(C)+im(Ak+1)). |
---|
1269 | @end example |
---|
1270 | Hence, Tor presents Tor_k(M',N'). |
---|
1271 | RETURN: - if v is of type int: module Tor, a presentation of Tor_k(M',N');@* |
---|
1272 | - if v is of type intvec: a list of Tor_k(M',N') (k=v[1],v[2],...);@* |
---|
1273 | - in case of a third argument of any type: list l with |
---|
1274 | @format |
---|
1275 | l[1] = module Tor/list of Tor_k(M',N'), |
---|
1276 | l[2] = SB of Tor/list of SB of Tor_k(M',N'), |
---|
1277 | l[3] = matrix/list of matrices, each representing a kbase of Tor_k(M',N') |
---|
1278 | (if finite dimensional), or 0. |
---|
1279 | @end format |
---|
1280 | DISPLAY: printlevel >=0: (affine) dimension of Tor_k for each k (default). |
---|
1281 | @* printlevel >=1: matrices Ak, Ak+1 and kbase of Tor_k in Tensor(G0,Fk) |
---|
1282 | (if finite dimensional). |
---|
1283 | NOTE: In order to compute Tor_k(M,N) use the command Tor(k,syz(M),syz(N)); |
---|
1284 | or: list P=mres(M,2); list Q=mres(N,2); Tor(k,P[2],Q[2]); |
---|
1285 | EXAMPLE: example Tor; shows an example |
---|
1286 | { |
---|
1287 | //---------- initialisation --------------------------------------------------- |
---|
1288 | int k,max,ii,l,row,col,di; |
---|
1289 | module A,B,C,D,N1,N2,M1,ker,imag,Im,Im1,Im2,f,torMN,torMN0; |
---|
1290 | matrix kb; |
---|
1291 | list L1,L2,L3,L,resN,K; |
---|
1292 | ideal test1; |
---|
1293 | intmat Be; |
---|
1294 | int s = size(v); |
---|
1295 | intvec v1 = sort(v)[1]; |
---|
1296 | max = v1[s]; // maximum integer occurring in intvec v |
---|
1297 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
1298 | |
---|
1299 | //---------- test: coker(M)=basering, coker(M)=0 ? ---------------------------- |
---|
1300 | if( max<0 ) { dbprint(p,"// Tor_i=0 for i<0!"); return([1]); } |
---|
1301 | M1 = std(M); |
---|
1302 | |
---|
1303 | if( size(M1)==0 or size(N)==0 ) // coker(M)=basering ==> Tor_i=0 for i>0 |
---|
1304 | { |
---|
1305 | dbprint(p-1,"// one of the modules M',N' is free, hence Tor_i=0 for i<>0"); |
---|
1306 | for( ii=1; ii<=s; ii++ ) |
---|
1307 | { |
---|
1308 | k=v[ii]; |
---|
1309 | if (k==0) { torMN=module(tensorMod(M1,N)); } |
---|
1310 | else { torMN = gen(1); } |
---|
1311 | torMN0 = std(torMN); |
---|
1312 | L1[ii] = torMN; |
---|
1313 | L2[ii] = torMN0; |
---|
1314 | L3[ii] = matrix(kbase(torMN0)); |
---|
1315 | di=dim(torMN0); |
---|
1316 | dbprint(p,"// dimension of Tor_"+string(k)+": "+string(di)); |
---|
1317 | if (di==0) |
---|
1318 | { |
---|
1319 | dbprint(p,"// vdim of Tor_"+string(k)+": " |
---|
1320 | +string(vdim(torMN0))); |
---|
1321 | } |
---|
1322 | dbprint(p,""); |
---|
1323 | } |
---|
1324 | |
---|
1325 | if( size(#) ) |
---|
1326 | { if( s>1 ) { L = L1,L2,L3; return(L); } |
---|
1327 | else { L = torMN,torMN0,L3[1]; return(L); } |
---|
1328 | } |
---|
1329 | else |
---|
1330 | { if( s>1 ) { return(L1); } |
---|
1331 | else { return(torMN); } |
---|
1332 | } |
---|
1333 | } |
---|
1334 | |
---|
1335 | if( dim(M1)==-1 ) // coker(M)=0, all Tor's are 0 |
---|
1336 | { dbprint(p-1,"2nd module presents 0, hence Tor_k=0, for all k"); |
---|
1337 | for( ii=1; ii<=s; ii++ ) |
---|
1338 | { k=v[ii]; |
---|
1339 | torMN = gen(1); |
---|
1340 | torMN0 = std(torMN); |
---|
1341 | L1[ii] = torMN; |
---|
1342 | L2[ii] = torMN0; |
---|
1343 | L3[ii] = matrix(kbase(torMN0)); |
---|
1344 | di=dim(torMN0); |
---|
1345 | dbprint(p,"// dimension of Tor_"+string(k)+": "+string(di)); |
---|
1346 | if (di==0) |
---|
1347 | { |
---|
1348 | dbprint(p,"// vdim of Tor_"+string(k)+": " |
---|
1349 | +string(vdim(torMN0))); |
---|
1350 | } |
---|
1351 | dbprint(p,""); |
---|
1352 | } |
---|
1353 | } |
---|
1354 | else |
---|
1355 | { |
---|
1356 | if( size(M1) < size(M) ) { M=M1;} |
---|
1357 | row = nrows(M); |
---|
1358 | //---------- resolution of N ------------------------------------------------- |
---|
1359 | resN = mres(N,max+1); |
---|
1360 | for( ii=1; ii<=s; ii++ ) |
---|
1361 | { k=v[ii]; |
---|
1362 | if( k<0 ) // Tor_k is 0 for negative k |
---|
1363 | { dbprint(p-1,"// Tor_k=0 for k<0!"); |
---|
1364 | torMN = gen(1); |
---|
1365 | torMN0 = std(torMN); |
---|
1366 | L1[ii] = torMN; |
---|
1367 | L2[ii] = torMN0; |
---|
1368 | L3[ii] = matrix(kbase(torMN0)); |
---|
1369 | di=dim(torMN0); |
---|
1370 | dbprint(p,"// dimension of Tor_"+string(k)+": "+string(di)); |
---|
1371 | if (di==0) |
---|
1372 | { |
---|
1373 | dbprint(p,"// vdim of Tor_"+string(k)+": " |
---|
1374 | +string(vdim(torMN0))); |
---|
1375 | } |
---|
1376 | dbprint(p,""); |
---|
1377 | } |
---|
1378 | else |
---|
1379 | { |
---|
1380 | N2 = resN[k+1]; |
---|
1381 | if( k==0 ) { torMN=module(tensorMod(M,N)); } |
---|
1382 | else |
---|
1383 | { |
---|
1384 | N1 = resN[k]; |
---|
1385 | col = ncols(N1); |
---|
1386 | |
---|
1387 | //---------- computing homology ---------------------------------------------- |
---|
1388 | imag = tensor(unitmat(nrows(N1)),M); |
---|
1389 | f = tensor(matrix(N1),unitmat(row)); |
---|
1390 | Im1 = tensor(unitmat(col),M); |
---|
1391 | Im2 = tensor(matrix(N2),unitmat(row)); |
---|
1392 | ker = modulo(f,imag); |
---|
1393 | Im = Im2,Im1; |
---|
1394 | torMN = modulo(ker,Im); |
---|
1395 | dbprint(p-1,"// Computing Tor_"+string(k)+ |
---|
1396 | " (help Tor; gives an explanation):", |
---|
1397 | "// Let 0 <- coker(M) <- G0 <-M- G1 be the present. of coker(M),", |
---|
1398 | "// and 0 <- coker(N) <- F0 <-N- F1 <- F2 <- ... a resolution of", |
---|
1399 | "// coker(N), then Tensor(G0,F"+string(k)+")-->Tensor(G0,F"+ |
---|
1400 | string(k-1)+") is given by:",f, |
---|
1401 | "// and Tensor(G0,F"+string(k+1)+") + Tensor(G1,F"+string(k)+ |
---|
1402 | ")-->Tensor(G0,F"+string(k)+") is given by:",Im,""); |
---|
1403 | } |
---|
1404 | |
---|
1405 | torMN0 = std(torMN); |
---|
1406 | di=dim(torMN0); |
---|
1407 | dbprint(p,"// dimension of Tor_"+string(k)+": "+string(di)); |
---|
1408 | if (di==0) |
---|
1409 | { |
---|
1410 | dbprint(p,"// vdim of Tor_"+string(k)+": " |
---|
1411 | +string(vdim(torMN0))); |
---|
1412 | } |
---|
1413 | dbprint(p,""); |
---|
1414 | |
---|
1415 | //---------- more information ------------------------------------------------- |
---|
1416 | if( size(#)>0 ) |
---|
1417 | { if( vdim(torMN0) >= 0 ) |
---|
1418 | { kb = kbase(torMN0); |
---|
1419 | if ( size(ker)!=0) { kb = matrix(ker)*kb; } |
---|
1420 | dbprint(p-1,"// columns of matrix are kbase of Tor_"+ |
---|
1421 | string(k)+" in Tensor(G0,F"+string(k)+")",kb,""); |
---|
1422 | L3[ii] = matrix(kb); |
---|
1423 | } |
---|
1424 | L2[ii] = torMN0; |
---|
1425 | } |
---|
1426 | L1[ii] = torMN; |
---|
1427 | } |
---|
1428 | } |
---|
1429 | } |
---|
1430 | if( size(#) ) |
---|
1431 | { if( s>1 ) { L = L1,L2,L3; return(L); } |
---|
1432 | else { L = torMN,torMN0,matrix(kb); return(L); } |
---|
1433 | } |
---|
1434 | else |
---|
1435 | { if( s>1 ) { return(L1); } |
---|
1436 | else { return(torMN); } |
---|
1437 | } |
---|
1438 | } |
---|
1439 | example |
---|
1440 | {"EXAMPLE:"; echo=2; |
---|
1441 | int p = printlevel; |
---|
1442 | printlevel = 1; |
---|
1443 | ring r = 0,(x,y),dp; |
---|
1444 | ideal i = x2,y; |
---|
1445 | ideal j = x; |
---|
1446 | list E = Tor(0..2,i,j); // Tor_k(r/i,r/j) for k=0,1,2 over r |
---|
1447 | |
---|
1448 | qring R = std(i); |
---|
1449 | ideal j = fetch(r,j); |
---|
1450 | module M = [x,0],[0,x]; |
---|
1451 | printlevel = 2; |
---|
1452 | module E1 = Tor(1,M,j); // Tor_1(R^2/M,R/j) over R=r/i |
---|
1453 | |
---|
1454 | list l = Tor(3,M,M,1); // Tor_3(R^2/M,R^2/M) over R=r/i |
---|
1455 | printlevel = p; |
---|
1456 | } |
---|
1457 | /////////////////////////////////////////////////////////////////////////////// |
---|
1458 | proc fitting(module M, int n) |
---|
1459 | "USAGE: fitting (M,n); M module, n int |
---|
1460 | RETURN: ideal, (standard basis of) n-th Fitting ideal of M'=coker(M). |
---|
1461 | EXAMPLE: example fitting; shows an example |
---|
1462 | " |
---|
1463 | { |
---|
1464 | n=nrows(M)-n; |
---|
1465 | if(n<=0){return(ideal(1));} |
---|
1466 | if((n>nrows(M))||(n>ncols(M))){return(ideal(0));} |
---|
1467 | return(std(minor(M,n))); |
---|
1468 | } |
---|
1469 | example |
---|
1470 | {"EXAMPLE:"; echo=2; |
---|
1471 | ring R=0,x(0..4),dp; |
---|
1472 | matrix M[2][4]=x(0),x(1),x(2),x(3),x(1),x(2),x(3),x(4); |
---|
1473 | print(M); |
---|
1474 | fitting(M,-1); |
---|
1475 | fitting(M,0); |
---|
1476 | fitting(M,1); |
---|
1477 | fitting(M,2); |
---|
1478 | } |
---|
1479 | /////////////////////////////////////////////////////////////////////////////// |
---|
1480 | proc isLocallyFree(matrix S, int r) |
---|
1481 | "USAGE: isLocallyFree(M,r); M module, r int |
---|
1482 | RETURN: 1 if M'=coker(M) is locally free of constant rank r;@* |
---|
1483 | 0 if this is not the case. |
---|
1484 | EXAMPLE: example isLocallyFree; shows an example. |
---|
1485 | " |
---|
1486 | { |
---|
1487 | ideal F=fitting(S,r); |
---|
1488 | ideal G=fitting(S,r-1); |
---|
1489 | if((deg(F[1])==0)&&(size(G)==0)){return(1);} |
---|
1490 | return(0); |
---|
1491 | } |
---|
1492 | example |
---|
1493 | {"EXAMPLE:"; echo=2; |
---|
1494 | ring R=0,(x,y,z),dp; |
---|
1495 | matrix M[2][3]; // the presentation matrix |
---|
1496 | M=x-1,y-1,z,y-1,x-2,x; |
---|
1497 | ideal I=fitting(M,0); // 0-th Fitting ideal of coker(M) |
---|
1498 | qring Q=I; |
---|
1499 | matrix M=fetch(R,M); |
---|
1500 | isLocallyFree(M,1); // as R/I-module, coker(M) is locally free of rk 1 |
---|
1501 | isLocallyFree(M,0); |
---|
1502 | } |
---|
1503 | /////////////////////////////////////////////////////////////////////////////// |
---|
1504 | proc flatteningStrat (module M) |
---|
1505 | "USAGE: flatteningStrat(M); M module |
---|
1506 | RETURN: list of ideals. |
---|
1507 | The list entries L[1],...,L[r] describe the flattening stratification |
---|
1508 | of M'=coker(M): setting L[0]=0, L[r+1]=1, the flattening |
---|
1509 | stratification is given by the open sets Spec(A/V(L[i-1])) \ V(L[i]), |
---|
1510 | i=1,...,r+1 (A = basering). |
---|
1511 | NOTE: for more information see the book 'A Singular Introduction to |
---|
1512 | Commutative Algebra' (by Greuel/Pfister, Springer 2002). |
---|
1513 | EXAMPLE: example flatteningStrat; shows an example |
---|
1514 | " |
---|
1515 | { |
---|
1516 | list l; |
---|
1517 | int v,w; |
---|
1518 | ideal F; |
---|
1519 | while(1) |
---|
1520 | { |
---|
1521 | F=interred(fitting(M,w)); |
---|
1522 | if(F[1]==1){return(l);} |
---|
1523 | if(size(F)!=0){v++;l[v]=F;} |
---|
1524 | w++; |
---|
1525 | } |
---|
1526 | return(l); |
---|
1527 | } |
---|
1528 | example |
---|
1529 | {"EXAMPLE:"; echo=2; |
---|
1530 | ring A = 0,x(0..4),dp; |
---|
1531 | // presentation matrix: |
---|
1532 | matrix M[2][4] = x(0),x(1),x(2),x(3),x(1),x(2),x(3),x(4); |
---|
1533 | list L = flatteningStrat(M); |
---|
1534 | L; |
---|
1535 | } |
---|
1536 | /////////////////////////////////////////////////////////////////////////////// |
---|
1537 | proc isFlat(module M) |
---|
1538 | "USAGE: isFlat(M); M module |
---|
1539 | RETURN: 1 if M'=coker(M) is flat;@* |
---|
1540 | 0 if this is not the case. |
---|
1541 | EXAMPLE: example isFlat; shows an example. |
---|
1542 | " |
---|
1543 | { |
---|
1544 | if (size(ideal(M))==0) {return(1);} |
---|
1545 | int w; |
---|
1546 | ideal F=fitting(M,0); |
---|
1547 | while(size(F)==0) |
---|
1548 | { |
---|
1549 | w++; |
---|
1550 | F=fitting(M,w); |
---|
1551 | } |
---|
1552 | if (deg(std(F)[1])==0) {return(1);} |
---|
1553 | return(0); |
---|
1554 | } |
---|
1555 | example |
---|
1556 | {"EXAMPLE:"; echo=2; |
---|
1557 | ring A = 0,(x,y),dp; |
---|
1558 | matrix M[3][3] = x-1,y,x,x,x+1,y,x2,xy+x+1,x2+y; |
---|
1559 | print(M); |
---|
1560 | isFlat(M); // coker(M) is not flat over A=Q[x,y] |
---|
1561 | |
---|
1562 | qring B = std(x2+x-y); // the ring B=Q[x,y]/<x2+x-y> |
---|
1563 | matrix M = fetch(A,M); |
---|
1564 | isFlat(M); // coker(M) is flat over B |
---|
1565 | |
---|
1566 | setring A; |
---|
1567 | qring C = std(x2+x+y); // the ring C=Q[x,y]/<x2+x+y> |
---|
1568 | matrix M = fetch(A,M); |
---|
1569 | isFlat(M); // coker(M) is not flat over C |
---|
1570 | } |
---|
1571 | /////////////////////////////////////////////////////////////////////////////// |
---|
1572 | proc flatLocus(module M) |
---|
1573 | "USAGE: flatLocus(M); M module |
---|
1574 | RETURN: ideal I, s.th. complement of V(I) is flat locus of coker(M). |
---|
1575 | NOTE: computation is based on Fitting ideals;@* |
---|
1576 | output is not radical (in general) |
---|
1577 | EXAMPLE: example flatLocus; shows an example |
---|
1578 | " |
---|
1579 | { |
---|
1580 | if (size(ideal(M))==0) {return(ideal(1));} |
---|
1581 | int v,w; |
---|
1582 | ideal F=fitting(M,0); |
---|
1583 | while(size(F)==0) |
---|
1584 | { |
---|
1585 | w++; |
---|
1586 | F=fitting(M,w); |
---|
1587 | } |
---|
1588 | if(typeof(basering)=="qring") |
---|
1589 | { |
---|
1590 | for(v=w+1;v<=nrows(M);v++) |
---|
1591 | { |
---|
1592 | F=F+intersect(fitting(M,v),quotient(ideal(0),fitting(M,v-1))); |
---|
1593 | } |
---|
1594 | } |
---|
1595 | return(interred(F)); |
---|
1596 | } |
---|
1597 | example |
---|
1598 | {"EXAMPLE:"; echo=2; |
---|
1599 | ring R=0,(x,y,z),dp; |
---|
1600 | matrix M[2][3]=x,y,z,0,x3,z3; |
---|
1601 | ideal I=flatLocus(M); // coker(M) is flat outside V(x,yz) |
---|
1602 | I; // computed ideal not radical |
---|
1603 | ideal J=radical(I); |
---|
1604 | J; |
---|
1605 | |
---|
1606 | qring r=std(J); |
---|
1607 | matrix M=fetch(r,M); |
---|
1608 | flatLocus(M); // coker(M) is flat over Spec(Q[x,y,z]/<x,yz>) |
---|
1609 | |
---|
1610 | isFlat(M); // flatness test |
---|
1611 | } |
---|
1612 | /////////////////////////////////////////////////////////////////////////////// |
---|
1613 | proc isReg(ideal I, module N) |
---|
1614 | "USAGE: isReg(I,M); I ideal, M module |
---|
1615 | RETURN: 1 if given (ordered) list of generators for I is coker(M)-sequence;@* |
---|
1616 | 0 if this is not the case. |
---|
1617 | EXAMPLE: example isReg; shows an example. |
---|
1618 | " |
---|
1619 | { |
---|
1620 | int n=nrows(N); |
---|
1621 | int i; |
---|
1622 | while(i<ncols(I)) |
---|
1623 | { |
---|
1624 | i++; |
---|
1625 | N=std(N); |
---|
1626 | if(size(reduce(quotient(N,I[i]),N))!=0){return(0);} |
---|
1627 | N=N+I[i]*freemodule(n); |
---|
1628 | } |
---|
1629 | if (size(reduce(freemodule(n),std(N)))==0){return(0);} |
---|
1630 | return(1); |
---|
1631 | } |
---|
1632 | example |
---|
1633 | {"EXAMPLE:"; echo=2; |
---|
1634 | ring R = 0,(x,y,z),dp; |
---|
1635 | ideal I = x*(y-1),y,z*(y-1); |
---|
1636 | isReg(I,0); // given list of generators is Q[x,y,z]-sequence |
---|
1637 | |
---|
1638 | I = x*(y-1),z*(y-1),y; // change sorting of generators |
---|
1639 | isReg(I,0); |
---|
1640 | |
---|
1641 | ring r = 0,(x,y,z),ds; // local ring |
---|
1642 | ideal I=fetch(R,I); |
---|
1643 | isReg(I,0); // result independent of sorting of generators |
---|
1644 | } |
---|
1645 | |
---|
1646 | /////////////////////////////////////////////////////////////////////////////// |
---|
1647 | // the following static procedures are used by KoszulHomology: |
---|
1648 | // * binom_int (binomial coeff. as integer, or -1 if too large) |
---|
1649 | // * basisNumber |
---|
1650 | // * basisElement |
---|
1651 | // * KoszulMap |
---|
1652 | // for details, see 'A Singular Introduction to Commutative Algebra' (by |
---|
1653 | // Greuel/Pfister, Springer 2002), Chapter 7 |
---|
1654 | |
---|
1655 | static proc binom_int(int n, int p) |
---|
1656 | { |
---|
1657 | bigint s = binomial(n,p); |
---|
1658 | int a=int(s); |
---|
1659 | if ((s!=0)&&(a==0)) { return(-1); } |
---|
1660 | return(a); |
---|
1661 | } |
---|
1662 | |
---|
1663 | static proc basisNumber(int n,intvec v) |
---|
1664 | { |
---|
1665 | int p=size(v); |
---|
1666 | if(p==1){return(v[1]);} |
---|
1667 | int j=n-1; |
---|
1668 | int b; |
---|
1669 | while(j>=n-v[1]+1) |
---|
1670 | { |
---|
1671 | b=b+binom_int(j,p-1); |
---|
1672 | j--; |
---|
1673 | } |
---|
1674 | intvec w=v-v[1]; |
---|
1675 | w=w[2..size(w)]; |
---|
1676 | b=b+basisNumber(n-v[1],w); |
---|
1677 | return(b); |
---|
1678 | } |
---|
1679 | |
---|
1680 | static proc basisElement(int n,int p,int N) |
---|
1681 | { |
---|
1682 | if(p==1){return(N);} |
---|
1683 | int s,R; |
---|
1684 | while(R<N) |
---|
1685 | { |
---|
1686 | s++; |
---|
1687 | R=R+binom_int(n-s,p-1); |
---|
1688 | } |
---|
1689 | R=N-R+binom_int(n-s,p-1); |
---|
1690 | intvec v=basisElement(n-s,p-1,R); |
---|
1691 | intvec w=s,v+s; |
---|
1692 | return(w); |
---|
1693 | } |
---|
1694 | |
---|
1695 | proc KoszulMap(ideal x,int p) |
---|
1696 | { |
---|
1697 | int n=size(x); |
---|
1698 | int a=binom_int(n,p-1); |
---|
1699 | int b=binom_int(n,p); |
---|
1700 | |
---|
1701 | matrix M[a][b]; |
---|
1702 | |
---|
1703 | if(p==1){M=x;return(M);} |
---|
1704 | int j,k; |
---|
1705 | intvec v,w; |
---|
1706 | for(j=1;j<=b;j++) |
---|
1707 | { |
---|
1708 | v=basisElement(n,p,j); |
---|
1709 | w=v[2..p]; |
---|
1710 | M[basisNumber(n,w),j]=x[v[1]]; |
---|
1711 | for(k=2;k<p;k++) |
---|
1712 | { |
---|
1713 | w=v[1..k-1],v[k+1..p]; |
---|
1714 | M[basisNumber(n,w),j]=(-1)^(k-1)*x[v[k]]; |
---|
1715 | } |
---|
1716 | w=v[1..p-1]; |
---|
1717 | M[basisNumber(n,w),j]=(-1)^(p-1)*x[v[p]]; |
---|
1718 | } |
---|
1719 | return(M); |
---|
1720 | } |
---|
1721 | /////////////////////////////////////////////////////////////////////////////// |
---|
1722 | |
---|
1723 | proc KoszulHomology(ideal x, module M, int p) |
---|
1724 | "USAGE: KoszulHomology(I,M,p); I ideal, M module, p int |
---|
1725 | COMPUTE: A presentation of the p-th Koszul homology module H_p(f_1,...,f_k;M'), |
---|
1726 | where M'=coker(M) and f_1,...,f_k are the given (ordered list |
---|
1727 | of non-zero generators of the) ideal I. |
---|
1728 | The computed presentation is minimized via prune. |
---|
1729 | In particular, if H_p(f_1,...,f_k;M')=0 then the return value is 0. |
---|
1730 | RETURN: module H, s.th. coker(H) = H_p(f_1,...,f_k;M'). |
---|
1731 | NOTE: size of input ideal has to be <= 20. |
---|
1732 | EXAMPLE: example KoszulHomology; shows an example. |
---|
1733 | { |
---|
1734 | x=simplify(x,2); |
---|
1735 | int n = size(x); |
---|
1736 | if (n==0) |
---|
1737 | { |
---|
1738 | ERROR("// KoszulHomology only for non-zero ideals"); |
---|
1739 | } |
---|
1740 | if (n>20) |
---|
1741 | { |
---|
1742 | ERROR("// too many generators in input ideal"); |
---|
1743 | } |
---|
1744 | if (p>n) |
---|
1745 | { |
---|
1746 | module hom=0; |
---|
1747 | return(hom); |
---|
1748 | } |
---|
1749 | |
---|
1750 | int a = binom_int(n,p-1); // n over p-1 independent of char(basering) |
---|
1751 | int b = binom_int(n,p); |
---|
1752 | |
---|
1753 | matrix N = matrix(M); |
---|
1754 | module ker= freemodule(nrows(N)); |
---|
1755 | if(p!=0) |
---|
1756 | { |
---|
1757 | module im= tensor(unitmat(a),N); |
---|
1758 | module f = tensor(KoszulMap(x,p),unitmat(nrows(N))); |
---|
1759 | ker = modulo(f,im); |
---|
1760 | } |
---|
1761 | module im1 = tensor(unitmat(b),N); |
---|
1762 | module im2 = tensor(KoszulMap(x,p+1),unitmat(nrows(N))); |
---|
1763 | module hom = modulo(ker,im1+im2); |
---|
1764 | hom = prune(hom); |
---|
1765 | return(hom); |
---|
1766 | } |
---|
1767 | example |
---|
1768 | {"EXAMPLE:"; echo=2; |
---|
1769 | ring R=0,x(1..3),dp; |
---|
1770 | ideal x=maxideal(1); |
---|
1771 | module M=0; |
---|
1772 | KoszulHomology(x,M,0); // H_0(x,R), x=(x_1,x_2,x_3) |
---|
1773 | |
---|
1774 | KoszulHomology(x,M,1); // H_1(x,R), x=(x_1,x_2,x_3) |
---|
1775 | |
---|
1776 | qring S=std(x(1)*x(2)); |
---|
1777 | module M=0; |
---|
1778 | ideal x=maxideal(1); |
---|
1779 | KoszulHomology(x,M,1); |
---|
1780 | |
---|
1781 | KoszulHomology(x,M,2); |
---|
1782 | } |
---|
1783 | /////////////////////////////////////////////////////////////////////////////// |
---|
1784 | proc depth(module M,ideal #) |
---|
1785 | "USAGE: depth(M,[I]); M module, I ideal |
---|
1786 | RETURN: int, |
---|
1787 | - if called with 1 argument: the depth of M'=coker(M) w.r.t. the |
---|
1788 | maxideal in the basering (which is then assumed to be local)@* |
---|
1789 | - if called with 2 arguments: the depth of M'=coker(M) w.r.t. the |
---|
1790 | ideal I. |
---|
1791 | NOTE: procedure makes use of KoszulHomology. |
---|
1792 | EXAMPLE: example depth; shows an example. |
---|
1793 | " |
---|
1794 | { |
---|
1795 | ideal m=maxideal(1); |
---|
1796 | int n=size(m); |
---|
1797 | int i; |
---|
1798 | |
---|
1799 | if (size(#)==0) |
---|
1800 | { |
---|
1801 | // depth(M') over local basering |
---|
1802 | while(i<n) |
---|
1803 | { |
---|
1804 | i++; |
---|
1805 | if(size(KoszulHomology(m,M,i))==0){return(n-i+1);} |
---|
1806 | } |
---|
1807 | return(0); |
---|
1808 | } |
---|
1809 | |
---|
1810 | ideal I=simplify(#,2); |
---|
1811 | while(i<size(I)) |
---|
1812 | { |
---|
1813 | i++; |
---|
1814 | if(size(KoszulHomology(I,M,i))==0){return(size(I)-i+1);} |
---|
1815 | } |
---|
1816 | return(0); |
---|
1817 | } |
---|
1818 | example |
---|
1819 | {"EXAMPLE:"; echo=2; |
---|
1820 | ring R=0,(x,y,z),dp; |
---|
1821 | ideal I=x2,xy,yz; |
---|
1822 | module M=0; |
---|
1823 | depth(M,I); // depth(<x2,xy,yz>,Q[x,y,z]) |
---|
1824 | ring r=0,(x,y,z),ds; // local ring |
---|
1825 | matrix M[2][2]=x,xy,1+yz,0; |
---|
1826 | print(M); |
---|
1827 | depth(M); // depth(maxideal,coker(M)) |
---|
1828 | ideal I=x; |
---|
1829 | depth(M,I); // depth(<x>,coker(M)) |
---|
1830 | I=x+z; |
---|
1831 | depth(M,I); // depth(<x+z>,coker(M)) |
---|
1832 | } |
---|
1833 | |
---|
1834 | /////////////////////////////////////////////////////////////////////////////// |
---|
1835 | proc isCM(module M) |
---|
1836 | "USAGE: isCM(M); M module |
---|
1837 | RETURN: 1 if M'=coker(M) is Cohen-Macaulay;@* |
---|
1838 | 0 if this is not the case. |
---|
1839 | ASSUME: basering is local. |
---|
1840 | EXAMPLE: example isCM; shows an example |
---|
1841 | " |
---|
1842 | { |
---|
1843 | // test if basering is local: |
---|
1844 | ideal m=maxideal(1); |
---|
1845 | int i; |
---|
1846 | poly f=1; |
---|
1847 | for (i=1; i<=size(m); i++) |
---|
1848 | { |
---|
1849 | f=f+m[i]; |
---|
1850 | } |
---|
1851 | if (ord(f)>0) |
---|
1852 | { |
---|
1853 | print("// basering must be local -- result has no meaning"); |
---|
1854 | return(0); |
---|
1855 | } |
---|
1856 | |
---|
1857 | return(depth(M)==dim(std(Ann(M)))); |
---|
1858 | } |
---|
1859 | example |
---|
1860 | {"EXAMPLE:"; echo=2; |
---|
1861 | ring R=0,(x,y,z),ds; // local ring R = Q[x,y,z]_<x,y,z> |
---|
1862 | module M=xz,yz,z2; |
---|
1863 | isCM(M); // test if R/<xz,yz,z2> is Cohen-Macaulay |
---|
1864 | |
---|
1865 | M=x2+y2,z7; // test if R/<x2+y2,z7> is Cohen-Macaulay |
---|
1866 | isCM(M); |
---|
1867 | } |
---|
1868 | |
---|