source: git/Singular/LIB/involut.lib @ 3f4e52

fieker-DuValspielwiese
Last change on this file since 3f4e52 was 3754ca, checked in by Frank Seelisch <seelisch@…>, 15 years ago
minor textual changes prior to 3-1-0 git-svn-id: file:///usr/local/Singular/svn/trunk@11714 2c84dea3-7e68-4137-9b89-c4e89433aadc
  • Property mode set to 100644
File size: 23.0 KB
RevLine 
[3754ca]1version="$Id: involut.lib,v 1.18 2009-04-15 11:14:36 seelisch Exp $";
[3c4dcc]2category="Noncommutative";
3info="
[d41540]4LIBRARY:  involut.lib  Computations and operations with involutions
[3c4dcc]5AUTHORS:  Oleksandr Iena,       yena@mathematik.uni-kl.de,
6@*        Markus Becker,        mbecker@mathematik.uni-kl.de,
7@*        Viktor Levandovskyy,  levandov@mathematik.uni-kl.de
8
[d41540]9THEORY: Involution is an anti-isomorphism of a noncommutative algebra with the
[065ddc]10 property that applied an involution twice, one gets an identity. Involution is linear with respect to the ground field. In this library we compute linear involutions, distinguishing the case of a diagonal matrix (such involutions are called homothetic) and a general one.
11
[3c4dcc]12SUPPORT: Forschungsschwerpunkt 'Mathematik und Praxis' (Project of Dr. E. Zerz
13and V. Levandovskyy), Uni Kaiserslautern
14
15NOTE: This library provides algebraic tools for computations and operations
[d41540]16with algebraic involutions and linear automorphisms of non-commutative algebras
[3c4dcc]17
18PROCEDURES:
[1fdee9]19findInvo();          computes linear involutions on a basering;
20findInvoDiag();     computes homothetic (diagonal) involutions on a basering;
21findAuto();          computes linear automorphisms of a basering;
22ncdetection();        computes an ideal, presenting an involution map on some particular noncommutative algebras;
23involution(m,theta);  applies the involution to an object.
[3c4dcc]24";
25
26LIB "ncalg.lib";
27LIB "poly.lib";
28LIB "primdec.lib";
29///////////////////////////////////////////////////////////////////////////////
[065ddc]30proc ncdetection()
31"USAGE:  ncdetection();
32RETURN:  ideal, representing an involution map
33PURPOSE: compute classical involutions (i.e. acting rather on operators than on variables) for some particular noncommutative algebras
[d41540]34ASSUME: the procedure is aimed at non-commutative algebras with differential, shift or advance operators arising in Control Theory.
35It has to be executed in a ring.
[3c4dcc]36EXAMPLE: example ncdetection; shows an example
37"{
38// in this procedure an involution map is generated from the NCRelations
39// that will be used in the function involution
40// in dieser proc. wird eine matrix erzeugt, die in der i-ten zeile die indices
41// der differential-, shift- oder advance-operatoren enthaelt mit denen die i-te
42// variable nicht kommutiert.
[065ddc]43  if ( nameof(basering)=="basering" )
44  {
45    "No current ring defined.";
46    return(ideal(0));
47  }
48  def r = basering;
49  setring r;
[3c4dcc]50  int i,j,k,LExp;
51  int NVars  = nvars(r);
[1fdee9]52  matrix rel = ncRelations(r)[2];
[3c4dcc]53  intmat M[NVars][3];
54  int NRows = nrows(rel);
55  intvec v,w;
56  poly d,d_lead;
57  ideal I;
58  map theta;
59  for( j=NRows; j>=2; j-- )
60  {
61   if( rel[j] == w )       //the whole column is zero
62    {
63      j--;
64      continue;
65    }
66    for( i=1; i<j; i++ )
67    {
68      if( rel[i,j]==1 )        //relation of type var(j)*var(i) = var(i)*var(j) +1
69      {
70         M[i,1]=j;
71      }
72      if( rel[i,j] == -1 )    //relation of type var(i)*var(j) = var(j)*var(i) -1
73      {
74        M[j,1]=i;
75      }
76      d = rel[i,j];
77      d_lead = lead(d);
78      v = leadexp(d_lead); //in the next lines we check wether we have a  relation of differential or shift type
79      LExp=0;
80      for(k=1; k<=NVars; k++)
81      {
82        LExp = LExp + v[k];
83      }
84      //      if( (d-d_lead != 0) || (LExp > 1) )
85if ( ( (d-d_lead) != 0) || (LExp > 1) || ( (LExp==0) && ((d_lead>1) || (d_lead<-1)) ) )
86      {
87        return(theta);
88      }
89
90      if( v[j] == 1)                   //relation of type var(j)*var(i) = var(i)*var(j) -lambda*var(j)
91      {
92        if (leadcoef(d) < 0)
93        {
94          M[i,2] = j;
95        }
96        else
97        {
98          M[i,3] = j;
99        }
100      }
101      if( v[i]==1 )                    //relation of type var(j)*var(i) = var(i)*var(j) -lambda*var(i)
102      {
103        if (leadcoef(d) > 0)
104        {
105          M[j,2] = i;
106        }
107        else
108        {
109          M[j,3] = i;
110        }
111      }
112    }
113  }
114  // from here on, the map is computed
115  for(i=1;i<=NVars;i++)
116  {
117    I=I+var(i);
118  }
119
120  for(i=1;i<=NVars;i++)
121  {
122    if( M[i,1..3]==(0,0,0) )
123    {
124      i++;
125      continue;
126    }
127    if( M[i,1]!=0 )
128    {
129      if( (M[i,2]!=0) && (M[i,3]!=0) )
130      {
131        I[M[i,1]] = -var(M[i,1]);
132        I[M[i,2]] = var(M[i,3]);
133        I[M[i,3]] = var(M[i,2]);
134      }
135      if( (M[i,2]==0) && (M[i,3]==0) )
136      {
137        I[M[i,1]] = -var(M[i,1]);
138      }
139      if( ( (M[i,2]!=0) && (M[i,3]==0) )|| ( (M[i,2]!=0) && (M[i,3]==0) )
140)
141      {
142        I[i] = -var(i);
143      }
144    }
145    else
146    {
147      if( (M[i,2]!=0) && (M[i,3]!=0) )
148      {
149        I[i] = -var(i);
150        I[M[i,2]] = var(M[i,3]);
151        I[M[i,3]] = var(M[i,2]);
152      }
153      else
154      {
155        I[i] = -var(i);
156      }
157    }
158  }
159  return(I);
160}
161example
162{
163  "EXAMPLE:"; echo = 2;
[7ea9a58]164  ring R = 0,(x,y,z,D(1..3)),dp;
[3c4dcc]165  matrix D[6][6];
166  D[1,4]=1; D[2,5]=1;  D[3,6]=1;
[7ea9a58]167  def r = nc_algebra(1,D); setring r;
[065ddc]168  ncdetection();
[7ea9a58]169  kill r, R;
[3c4dcc]170  //----------------------------------------
[7ea9a58]171  ring R=0,(x,S),dp;
172  def r = nc_algebra(1,-S); setring r;
[065ddc]173  ncdetection();
[7ea9a58]174  kill r, R;
[3c4dcc]175  //----------------------------------------
[7ea9a58]176  ring R=0,(x,D(1),S),dp;
[3c4dcc]177  matrix D[3][3];
178  D[1,2]=1;  D[1,3]=-S;
[7ea9a58]179  def r = nc_algebra(1,D); setring r;
[065ddc]180  ncdetection();
[3c4dcc]181}
182
183static proc In_Poly(poly mm, list l, int NVars)
[3754ca]184// applies the involution to the polynomial mm
[3c4dcc]185// entries of a list l are images of variables under invo
186// more general than invo_poly; used in many rings setting
187{
188  int i,j;
189  intvec v;
190  poly pp, zz;
191  poly nn = 0;
192  i = 1;
193  while(mm[i]!=0)
194  {
195    v  = leadexp(mm[i]);
196    zz = 1;
197    for( j=NVars; j>=1; j--)
198    {
199      if (v[j]!=0)
200      {
201        pp = l[j];
202        zz = zz*(pp^v[j]);
203      }
204    }
205    nn = nn + (leadcoef(mm[i])*zz);
206    i++;
207  }
208  return(nn);
209}
210
211static proc Hom_Poly(poly mm, list l, int NVars)
[3754ca]212// applies the endomorphism to the polynomial mm
[3c4dcc]213// entries of a list l are images of variables under endo
214// should not be replaced by map-based stuff! used in
215// many rings setting
216{
217  int i,j;
218  intvec v;
219  poly pp, zz;
220  poly nn = 0;
221  i = 1;
222  while(mm[i]!=0)
223  {
224    v  = leadexp(mm[i]);
225    zz = 1;
226    for( j=NVars; j>=1; j--)
227    {
228      if (v[j]!=0)
229      {
230        pp = l[j];
231        zz = (pp^v[j])*zz;
232      }
233    }
234    nn = nn + (leadcoef(mm[i])*zz);
235    i++;
236  }
237  return(nn);
238}
239
240static proc invo_poly(poly m, map theta)
241// applies the involution map theta to m, where m=polynomial
242{
243  // compatibility:
244  ideal l = ideal(theta);
245  int i;
246  list L;
247  for (i=1; i<=size(l); i++)
248  {
249    L[i] = l[i];
250  }
251  int nv = nvars(basering);
252  return (In_Poly(m,L,nv));
253//   if (m==0) { return(m); }
254//   int i,j;
255//   intvec v;
256//   poly p,z;
257//   poly n = 0;
258//   i = 1;
259//   while(m[i]!=0)
260//   {
261//     v = leadexp(m[i]);
262//     z =1;
263//     for(j=nvars(basering); j>=1; j--)
264//     {
265//       if (v[j]!=0)
266//       {
267//         p = var(j);
268//         p = theta(p);
269//         z = z*(p^v[j]);
270//       }
271//     }
272//     n = n + (leadcoef(m[i])*z);
273//     i++;
274//   }
275//   return(n);
276}
277///////////////////////////////////////////////////////////////////////////////////
278proc involution(m, map theta)
279"USAGE:  involution(m, theta); m is a poly/vector/ideal/matrix/module, theta is a map
280RETURN:  object of the same type as m
[065ddc]281PURPOSE: applies the involution, presented by theta to the object m
282THEORY: for an involution theta and two polynomials a,b from the algebra, theta(ab) = theta(b) theta(a); theta is linear with respect to the ground field
[d41540]283NOTE: This is generalized ''theta(m)'' for data types unsupported by ''map''.
[3c4dcc]284EXAMPLE: example involution; shows an example
285"{
286  // applies the involution map theta to m,
287  // where m= vector, polynomial, module, matrix, ideal
288  int i,j;
289  intvec v;
290  poly p,z;
291  if (typeof(m)=="poly")
292  {
293    return (invo_poly(m,theta));
294  }
295  if ( typeof(m)=="ideal" )
296  {
297    ideal n;
298    for (i=1; i<=size(m); i++)
299    {
300      n[i] = invo_poly(m[i], theta);
301    }
302    return(n);
303  }
304  if (typeof(m)=="vector")
305  {
306    for(i=1; i<=size(m); i++)
307    {
308      m[i] = invo_poly(m[i], theta);
309    }
310    return (m);
311  }
312  if ( (typeof(m)=="matrix") || (typeof(m)=="module"))
313  {
314    matrix n = matrix(m);
315    int @R=nrows(n);
316    int @C=ncols(n);
317    for(i=1; i<=@R; i++)
318    {
319      for(j=1; j<=@C; j++)
320      {
321        if (m[i,j]!=0)
322        {
323          n[i,j] = invo_poly( m[i,j], theta);
324        }
325      }
326    }
327    if (typeof(m)=="module")
328    {
329      return (module(n));
330    }
331    else // matrix
332    {
333      return(n);
334    }
335  }
336  // if m is not of the supported type:
337  "Error: unsupported argument type!";
338  return();
339}
340example
341{
342  "EXAMPLE:";echo = 2;
[7ea9a58]343  ring R = 0,(x,d),dp;
344  def r = nc_algebra(1,1); setring r; // Weyl-Algebra
[3c4dcc]345  map F = r,x,-d;
[d41540]346  F(F);  // should be maxideal(1) for an involution
[3c4dcc]347  poly f =  x*d^2+d;
348  poly If = involution(f,F);
349  f-If;
350  poly g = x^2*d+2*x*d+3*x+7*d;
351  poly tg = -d*x^2-2*d*x+3*x-7*d;
352  poly Ig = involution(g,F);
353  tg-Ig;
354  ideal I = f,g;
355  ideal II = involution(I,F);
356  II;
357  I - involution(II,F);
358  module M  = [f,g,0],[g,0,x^2*d];
359  module IM = involution(M,F);
360  print(IM);
361  print(M - involution(IM,F));
362}
363///////////////////////////////////////////////////////////////////////////////////
364static proc new_var()
365//generates a string of new variables
366{
367
368  int NVars=nvars(basering);
369  int i,j;
[1fdee9]370  //  string s="@_1_1";
371  string s="a11";
[3c4dcc]372  for(i=1; i<=NVars; i++)
373  {
374    for(j=1; j<=NVars; j++)
375    {
376      if(i*j!=1)
377      {
378        s = s+ ","+NVAR(i,j);
379      };
380    };
381  };
382  return(s);
383};
384
385static proc NVAR(int i, int j)
386{
[1fdee9]387  //  return("@_"+string(i)+"_"+string(j));
388  return("a"+string(i)+string(j));
[3c4dcc]389};
390///////////////////////////////////////////////////////////////////////////////////
391static proc new_var_special()
392//generates a string of new variables
393{
394  int NVars=nvars(basering);
395  int i;
[1fdee9]396  //  string s="@_1_1";
397  string s="a11";
[3c4dcc]398  for(i=2; i<=NVars; i++)
399  {
400    s = s+ ","+NVAR(i,i);
401  };
402  return(s);
403};
404///////////////////////////////////////////////////////////////////////////////////
405static proc RelMatr()
406// returns the matrix of relations
407// only Lie-type relations x_j x_i= x_i x_j + .. are taken into account
408{
409  int i,j;
410  int NVars = nvars(basering);
411  matrix Rel[NVars][NVars];
412  for(i=1; i<NVars; i++)
413  {
414    for(j=i+1; j<=NVars; j++)
415    {
416      Rel[i,j]=var(j)*var(i)-var(i)*var(j);
417    };
418  };
419  return(Rel);
420};
421/////////////////////////////////////////////////////////////////
[1fdee9]422proc findInvo()
423"USAGE: findInvo();
[065ddc]424RETURN: a ring containing a list L of pairs, where
[d41540]425@*        L[i][1]  =  ideal; a Groebner Basis of an i-th associated prime,
[3c4dcc]426@*        L[i][2]  =  matrix, defining a linear map, with entries, reduced with respect to L[i][1]
[065ddc]427PURPOSE: computed the ideal of linear involutions of the basering
[3c4dcc]428NOTE: for convenience, the full ideal of relations @code{idJ}
[1fdee9]429and the initial matrix with indeterminates @code{matD} are exported in the output ring
430SEE ALSO: findInvoDiag, involution
431EXAMPLE: example findInvo; shows examples
432
[3c4dcc]433"{
434  def @B    = basering; //save the name of basering
435  int NVars = nvars(@B); //number of variables in basering
436  int i, j;
437
438  matrix Rel = RelMatr(); //the matrix of relations
439
[fa19d3]440  string @ss   = new_var(); //string of new variables
[3c4dcc]441  string Par = parstr(@B); //string of parameters in old ring
442
443  if (Par=="") // if there are no parameters
444  {
[7ea9a58]445    execute("ring @@@KK=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
[3c4dcc]446  }
447  else //if there exist parameters
448  {
[7ea9a58]449     execute("ring @@@KK=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
[3c4dcc]450  };
451
452  matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring
453
454  int Sz = NVars*NVars+NVars; // number of variables in new ring
455
456  matrix M[Sz][Sz]; //to be the matrix of relations in new ring
457
458  for(i=1; i<NVars; i++) //initialize that matrix of relations
459  {
460    for(j=i+1; j<=NVars; j++)
461    {
462      M[i,j] = Rel[i,j];
463    };
464  };
465
[7ea9a58]466  def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring
[3c4dcc]467
468  list l; //list to define an involution
469  poly @@F;
470  for(i=1; i<=NVars; i++) //initializing list for involution
471  {
472    @@F=0;
473    for(j=1; j<=NVars; j++)
474    {
475      execute( "@@F = @@F+"+NVAR(i,j)+"*"+string( var(j) )+";" );
476    };
477    l=l+list(@@F);
478  };
479
[90dd0db]480  matrix N = imap(@@@KK,Rel);
[3c4dcc]481
482  for(i=1; i<NVars; i++)//get matrix by applying the involution to relations
483  {
484    for(j=i+1; j<=NVars; j++)
485    {
486      N[i,j]= l[j]*l[i] - l[i]*l[j] + In_Poly( N[i,j], l, NVars);
487    };
488  };
489  kill l;
490  //---------------------------------------------
491  //get the ideal of coefficients of N
492  ideal J;
493  ideal idN = simplify(ideal(N),2);
494  J = ideal(coeffs( idN, var(1) ) );
495  for(i=2; i<=NVars; i++)
496  {
497    J = ideal( coeffs( J, var(i) ) );
498  };
499  J = simplify(J,2);
500  //-------------------------------------------------
501  if ( Par=="" ) //initializes the ring of relations
502  {
[fa19d3]503    execute("ring @@KK=0,("+@ss+"), dp;");
[3c4dcc]504  }
505  else
506  {
[fa19d3]507    execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
[3c4dcc]508  };
509  ideal J = imap(@@K,J); // ideal, considered in @@KK now
510  string snv = "["+string(NVars)+"]";
[fa19d3]511  execute("matrix @@D"+snv+snv+"="+@ss+";"); // matrix with entries=new variables
[3c4dcc]512
513  J = J, ideal( @@D*@@D-matrix( freemodule(NVars) ) ); // add the condition that involution to square is just identity
514  J = simplify(J,2); // without extra zeros
515  list mL = minAssGTZ(J); // components not in GB
516  int sL  = size(mL);
517  option(redSB);       // important for reduced GBs
518  option(redTail);
519  matrix IM = @@D;     // involution map
520  list L    = list();  // the answer
521  list TL;
522  ideal tmp = 0;
523  for (i=1; i<=sL; i++) // compute GBs of components
524  {
525    TL    = list();
526    TL[1] = std(mL[i]);
527    tmp   = NF( ideal(IM), TL[1] );
528    TL[2] = matrix(tmp, NVars,NVars);
529    L[i]  = TL;
530  }
531  export(L); // main export
532  ideal idJ = J; // debug-comfortable exports
533  matrix matD = @@D;
534  export(idJ);
535  export(matD);
536  return(@@KK);
537}
538example
539{ "EXAMPLE:"; echo = 2;
[3d7b7f]540  def a = makeWeyl(1);
541  setring a; // this algebra is a first Weyl algebra
[d41540]542  a;
[3d7b7f]543  def X = findInvo();
544  setring X; // ring with new variables, corr. to unknown coefficients
[d41540]545  X;
[3d7b7f]546  L;
547  // look at the matrix in the new variables, defining the linear involution
548  print(L[1][2]);
549  L[1][1];  // where new variables obey these relations
[d41540]550  idJ;
[3c4dcc]551}
552///////////////////////////////////////////////////////////////////////////
[1fdee9]553proc findInvoDiag()
554"USAGE: findInvoDiag();
[3c4dcc]555RETURN: a ring together with a list of pairs L, where
[d41540]556@*        L[i][1]  =  ideal; a Groebner Basis of an i-th associated prime,
[3c4dcc]557@*        L[i][2]  =  matrix, defining a linear map, with entries, reduced with respect to L[i][1]
[d41540]558PURPOSE: compute homothetic (diagonal) involutions of the basering
[3c4dcc]559NOTE: for convenience, the full ideal of relations @code{idJ}
[1fdee9]560and the initial matrix with indeterminates @code{matD} are exported in the output ring
561SEE ALSO: findInvo, involution
562EXAMPLE: example findInvoDiag; shows examples
[3c4dcc]563"{
564  def @B    = basering; //save the name of basering
565  int NVars = nvars(@B); //number of variables in basering
566  int i, j;
567
568  matrix Rel = RelMatr(); //the matrix of relations
569
[fa19d3]570  string @ss   = new_var_special(); //string of new variables
[3c4dcc]571  string Par = parstr(@B); //string of parameters in old ring
572
573  if (Par=="") // if there are no parameters
574  {
[7ea9a58]575    execute("ring @@@KK=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
[3c4dcc]576  }
577  else //if there exist parameters
578  {
[7ea9a58]579    execute("ring @@@KK=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
[3c4dcc]580  };
581
582  matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring
583
584  int Sz = 2*NVars; // number of variables in new ring
585
586  matrix M[Sz][Sz]; //to be the matrix of relations in new ring
587  for(i=1; i<NVars; i++) //initialize that matrix of relations
588  {
589    for(j=i+1; j<=NVars; j++)
590    {
591      M[i,j] = Rel[i,j];
592    };
593  };
594
[7ea9a58]595  def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring
[3c4dcc]596
597  list l; //list to define an involution
598
599  for(i=1; i<=NVars; i++) //initializing list for involution
600  {
601    execute( "l["+string(i)+"]="+NVAR(i,i)+"*"+string( var(i) )+";" );
602
603  };
[90dd0db]604  matrix N = imap(@@@KK,Rel);
[3c4dcc]605
606  for(i=1; i<NVars; i++)//get matrix by applying the involution to relations
607  {
608    for(j=i+1; j<=NVars; j++)
609    {
610      N[i,j]= l[j]*l[i] - l[i]*l[j] + In_Poly( N[i,j], l, NVars);
611    };
612  };
613  kill l;
614  //---------------------------------------------
615  //get the ideal of coefficients of N
616
617  ideal J;
618  ideal idN = simplify(ideal(N),2);
619  J = ideal(coeffs( idN, var(1) ) );
620  for(i=2; i<=NVars; i++)
621  {
622    J = ideal( coeffs( J, var(i) ) );
623  };
624  J = simplify(J,2);
625  //-------------------------------------------------
626
627  if ( Par=="" ) //initializes the ring of relations
628  {
[fa19d3]629    execute("ring @@KK=0,("+@ss+"), dp;");
[3c4dcc]630  }
631  else
632  {
[fa19d3]633    execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
[3c4dcc]634  };
635
636  ideal J = imap(@@K,J); // ideal, considered in @@KK now
637
638  matrix @@D[NVars][NVars]; // matrix with entries=new variables to square i.e. @@D=@@D^2
639  for(i=1;i<=NVars;i++)
640  {
641    execute("@@D["+string(i)+","+string(i)+"]="+NVAR(i,i)+";");
642  };
643  J = J, ideal( @@D*@@D - matrix( freemodule(NVars) ) ); // add the condition that involution to square is just identity
644  J = simplify(J,2); // without extra zeros
645
646  list mL = minAssGTZ(J); // components not in GB
647  int sL  = size(mL);
648  option(redSB); // important for reduced GBs
649  option(redTail);
650  matrix IM = @@D; // involution map
651  list L = list(); // the answer
652  list TL;
653  ideal tmp = 0;
654  for (i=1; i<=sL; i++) // compute GBs of components
655  {
656    TL    = list();
657    TL[1] = std(mL[i]);
658    tmp   = NF( ideal(IM), TL[1] );
659    TL[2] = matrix(tmp, NVars,NVars);
660    L[i]  = TL;
661  }
662  export(L);
663  ideal idJ = J; // debug-comfortable exports
664  matrix matD = @@D;
665  export(idJ);
666  export(matD);
667  return(@@KK);
668}
669example
670{ "EXAMPLE:"; echo = 2;
[3d7b7f]671  def a = makeWeyl(1);
672  setring a; // this algebra is a first Weyl algebra
[d41540]673  a;
[3d7b7f]674  def X = findInvoDiag();
675  setring X; // ring with new variables, corresponding to unknown coefficients
[d41540]676  X;
[3d7b7f]677  // print matrices, defining linear involutions
678  print(L[1][2]);  // a first matrix: we see it is constant
679  print(L[2][2]);  // and a second possible matrix; it is constant too
680  L; // let us take a look on the whole list
[d41540]681  idJ;
[3c4dcc]682}
683/////////////////////////////////////////////////////////////////////
[f620218]684proc findAuto(int n)
685"USAGE: findAuto(n); n an integer
[3c4dcc]686RETURN: a ring together with a list of pairs L, where
[d41540]687@*        L[i][1]  =  ideal; a Groebner Basis of an i-th associated prime,
[3c4dcc]688@*        L[i][2]  =  matrix, defining a linear map, with entries, reduced with respect to L[i][1]
[d41540]689PURPOSE: compute the ideal of linear automorphisms of the basering, given by a matrix, n-th power of which gives identity (i.e. unipotent matrix)
[7e6727c]690NOTE: if n=0, a matrix, defining an automorphism is not assumed to be unipotent but just non-degenerate. A nonzero parameter @code{@@p} is introduced as the value of the determinant of the matrix above.
[3d7b7f]691@* For convenience, the full ideal of relations @code{idJ} and the initial matrix with indeterminates @code{matD} are mutually exported in the output ring
[1fdee9]692SEE ALSO: findInvo
693EXAMPLE: example findAuto; shows examples
[3c4dcc]694"{
[f620218]695  if ((n<0 ) || (n==1))
696  {
697    "The index of unipotency is too small.";
698    return(0);
699  }
[3c4dcc]700  def @B    = basering; //save the name of basering
701  int NVars = nvars(@B); //number of variables in basering
702  int i, j;
703
704  matrix Rel = RelMatr(); //the matrix of relations
705
[3d7b7f]706  string @ss = new_var(); //string of new variables
[3c4dcc]707  string Par = parstr(@B); //string of parameters in old ring
708
709  if (Par=="") // if there are no parameters
710  {
[7ea9a58]711    execute("ring @@@K=0,("+varstr(@B)+","+@ss+"), dp;"); //new ring with new variables
[3c4dcc]712  }
713  else //if there exist parameters
714  {
[7ea9a58]715     execute("ring @@@K=(0,"+Par+") ,("+varstr(@B)+","+@ss+"), dp;");//new ring with new variables
[3c4dcc]716  };
717
718  matrix Rel = imap(@B, Rel); //consider the matrix of relations in new ring
719
720  int Sz = NVars*NVars+NVars; // number of variables in new ring
721
722  matrix M[Sz][Sz]; //to be the matrix of relations in new ring
723
724  for(i=1; i<NVars; i++) //initialize that matrix of relations
725  {
726    for(j=i+1; j<=NVars; j++)
727    {
728      M[i,j] = Rel[i,j];
729    };
730  };
731
[7ea9a58]732  def @@K = nc_algebra(1, M); setring @@K; //now new ring @@K become a noncommutative ring
[3c4dcc]733
734  list l; //list to define a homomorphism(isomorphism)
735  poly @@F;
736  for(i=1; i<=NVars; i++) //initializing list for involution
737  {
738    @@F=0;
739    for(j=1; j<=NVars; j++)
740    {
741      execute( "@@F = @@F+"+NVAR(i,j)+"*"+string( var(j) )+";" );
742    };
743    l=l+list(@@F);
744  };
745
[90dd0db]746  matrix N = imap(@@@K,Rel);
[3c4dcc]747
748  for(i=1; i<NVars; i++)//get matrix by applying the homomorphism  to relations
749  {
750    for(j=i+1; j<=NVars; j++)
751    {
752      N[i,j]= l[j]*l[i] - l[i]*l[j] - Hom_Poly( N[i,j], l, NVars);
753    };
754  };
755  kill l;
756  //---------------------------------------------
757  //get the ideal of coefficients of N
758  ideal J;
759  ideal idN = simplify(ideal(N),2);
760  J = ideal(coeffs( idN, var(1) ) );
761  for(i=2; i<=NVars; i++)
762  {
763    J = ideal( coeffs( J, var(i) ) );
764  };
765  J = simplify(J,2);
766  //-------------------------------------------------
[3d7b7f]767  if (( Par=="" ) && (n!=0)) //initializes the ring of relations
[3c4dcc]768  {
[3d7b7f]769    execute("ring @@KK=0,("+@ss+"), dp;");
[3c4dcc]770  }
[3d7b7f]771  if (( Par=="" ) && (n==0)) //initializes the ring of relations
[3c4dcc]772  {
[3d7b7f]773    execute("ring @@KK=(0,@p),("+@ss+"), dp;");
774  }
775  if ( Par!="" )
776  {
777    execute("ring @@KK=(0,"+Par+"),("+@ss+"), dp;");
[3c4dcc]778  };
[3d7b7f]779  //  execute("setring @@KK;");
780  //  basering;
[3c4dcc]781  ideal J = imap(@@K,J); // ideal, considered in @@KK now
782  string snv = "["+string(NVars)+"]";
[3d7b7f]783  execute("matrix @@D"+snv+snv+"="+@ss+";"); // matrix with entries=new variables
[3c4dcc]784
[f620218]785  if (n>=2)
786  {
787    J = J, ideal( @@D*@@D-matrix( freemodule(NVars) ) ); // add the condition that homomorphism to square is just identity
788  }
[3d7b7f]789  if (n==0)
790  {
791    J = J, det(@@D)-@p; // det of non-unipotent matrix is nonzero
792  }
[3c4dcc]793  J       = simplify(J,2); // without extra zeros
794  list mL = minAssGTZ(J); // components not in GB
795  int sL  = size(mL);
796  option(redSB); // important for reduced GBs
797  option(redTail);
798  matrix IM = @@D; //  map
799  list L = list(); // the answer
800  list TL;
801  ideal tmp = 0;
802  for (i=1; i<=sL; i++)// compute GBs of components
803  {
804    TL    = list();
805    TL[1] = std(mL[i]);
806    tmp   = NF( ideal(IM), TL[1] );
807    TL[2] = matrix(tmp,NVars, NVars);
808    L[i]  = TL;
809  }
810  export(L);
811  ideal idJ = J; // debug-comfortable exports
812  matrix matD = @@D;
813  export(idJ);
814  export(matD);
815  return(@@KK);
816}
817example
818{ "EXAMPLE:"; echo = 2;
[3d7b7f]819  def a = makeWeyl(1);
820  setring a; // this algebra is a first Weyl algebra
[d41540]821  a;
822  def X = findAuto(2);  // in contrast to findInvo look for automorphisms
[3d7b7f]823  setring X; // ring with new variables - unknown coefficients
[d41540]824  X;
[3d7b7f]825  size(L); // we have (size(L)) families in the answer
826  // look at matrices, defining linear automorphisms:
827  print(L[1][2]);  // a first one: we see it is the identity
828  print(L[2][2]);  // and a second possible matrix; it is diagonal
829  // L; // we can take a look on the whole list, too
[d41540]830  idJ;
[3d7b7f]831  kill X; kill a;
832  //----------- find all the linear automorphisms --------------------
833  //----------- use the call findAuto(0)          --------------------
[7ea9a58]834  ring R = 0,(x,s),dp;
835  def r = nc_algebra(1,s); setring r; // the shift algebra
[3d7b7f]836  s*x; // the only relation in the algebra is:
[a2c2031]837  def Y = findAuto(0);
[3d7b7f]838  setring Y;
839  size(L); // here, we have 1 parametrized family
840  print(L[1][2]); // here, @p is a nonzero parameter
[d41540]841  det(L[1][2]-@p);  // check whether determinante is zero
[3c4dcc]842}
Note: See TracBrowser for help on using the repository browser.