1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: jacobson.lib,v 1.7 2009-01-07 16:11:37 Singular Exp $"; |
---|
3 | category="System and Control Theory"; |
---|
4 | info=" |
---|
5 | LIBRARY: jacobson.lib Algorithms for Smith and Jacobson Normal Form |
---|
6 | AUTHOR: Kristina Schindelar, Kristina.Schindelar@math.rwth-aachen.de |
---|
7 | |
---|
8 | THEORY: We work over a ring R, that is a principal ideal domain. |
---|
9 | @* If R is commutative, we suppose R to be a polynomial ring in one variable. |
---|
10 | @* If R is non-commutative, we suppose R to be in two variables, say x and d. |
---|
11 | @* We treat then the basering as principal ideal ring with d a polynomial |
---|
12 | @* variable and x an invertible one. That is, we work in the Ore localization of R |
---|
13 | @* with respect to the mult. closed set S = K[x] without 0. |
---|
14 | @* Note, that in computations no division by x will actually happen. |
---|
15 | @* Given a rectangular matrix M over R, one can compute unimodular (that is invertible) |
---|
16 | @* square matrices U and V, such that U*M*V=D is a diagonal matrix. |
---|
17 | @* Depending on the ring, the diagonal entries of D have certain properties. |
---|
18 | |
---|
19 | REFERENCES: |
---|
20 | @* N. Jacobson, 'The theory of rings', AMS, 1943. |
---|
21 | @* Manuel Avelino Insua Hermo, 'Varias perspectives sobre las bases de Groebner: Forma normal de Smith, Algorithme de Berlekamp y algebras de Leibniz'. PhD thesis, Universidad de Santiago de Compostela, 2005. |
---|
22 | |
---|
23 | |
---|
24 | PROCEDURES: |
---|
25 | smith(M[,eng1,eng2]); compute the Smith Normal Form of M over commutative ring |
---|
26 | jacobson(M[,eng]); compute a weak Jacobson Normal Form of M over non-commutative ring |
---|
27 | |
---|
28 | SEE ALSO: control_lib |
---|
29 | "; |
---|
30 | |
---|
31 | LIB "poly.lib"; |
---|
32 | LIB "involut.lib"; |
---|
33 | |
---|
34 | proc smith(matrix MA, list #) |
---|
35 | "USAGE: smith(M[, eng1, eng2]); M matrix, eng1 and eng2 are optional integers |
---|
36 | RETURN: matrix or list |
---|
37 | ASSUME: The current ring is assumed to be the commutative polynomial ring in |
---|
38 | one variable |
---|
39 | PURPOSE: compute the Smith Normal Form of M with transformation matrices (optionally) |
---|
40 | NOTE: If the optional integer eng1 is non-zero, returns the list {U,D,V}, |
---|
41 | where U*M*V = D and the diagonal field entries of D are not normalized. |
---|
42 | @* Otherwise only the matrix D, that is the Smith Normal Form of M, is returned. |
---|
43 | @* Here, U and V are square unimodular (invertible) matrices. The procedure works for rectangular matrix M. |
---|
44 | @* The optional integer eng2 determines the engine, that computes the Groebner basis: |
---|
45 | @* 0 means 'std' (default), 1 means 'groebner' and 2 means 'slimgb'. |
---|
46 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
47 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
48 | EXAMPLE: example smith; shows examples |
---|
49 | " |
---|
50 | { |
---|
51 | def R = basering; |
---|
52 | // check assume: R must be a polynomial ring in 1 variable |
---|
53 | setring R; |
---|
54 | if (nvars(R) >1 ) |
---|
55 | { |
---|
56 | ERROR("Basering must have exactly one variable"); |
---|
57 | } |
---|
58 | |
---|
59 | int eng = 0; |
---|
60 | int BASIS; |
---|
61 | if ( size(#)>0 ) |
---|
62 | { |
---|
63 | eng=1; |
---|
64 | if (typeof(#[1])=="int") |
---|
65 | { |
---|
66 | eng=int(#[1]); // zero can also happen |
---|
67 | } |
---|
68 | } |
---|
69 | if (size(#)==2) |
---|
70 | { |
---|
71 | BASIS=#[2]; |
---|
72 | } |
---|
73 | else{BASIS=0;} |
---|
74 | |
---|
75 | |
---|
76 | int ROW=ncols(MA); |
---|
77 | int COL=nrows(MA); |
---|
78 | |
---|
79 | //generate a module consisting of the columns of MA |
---|
80 | module m=MA[1]; |
---|
81 | int i; |
---|
82 | for(i=2;i<=ROW;i++) |
---|
83 | { |
---|
84 | m=m,MA[i]; |
---|
85 | } |
---|
86 | |
---|
87 | //if MA eqauls the zero matrix give back MA |
---|
88 | if ( (size(module(m))==0) and (size(transpose(module(m)))==0) ) |
---|
89 | { |
---|
90 | module L=freemodule(COL); |
---|
91 | matrix LM=L; |
---|
92 | L=freemodule(ROW); |
---|
93 | matrix RM=L; |
---|
94 | list RUECK=RM; |
---|
95 | RUECK=insert(RUECK,MA); |
---|
96 | RUECK=insert(RUECK,LM); |
---|
97 | return(RUECK); |
---|
98 | } |
---|
99 | |
---|
100 | if(eng==1) |
---|
101 | { |
---|
102 | list rueckLI=diagonal_with_trafo(R,MA,BASIS); |
---|
103 | list rueckLII=divisibility(rueckLI[2]); |
---|
104 | matrix CON=divideByContent(rueckLII[2]); |
---|
105 | list rueckL=CON*rueckLII[1]*rueckLI[1], CON*rueckLII[2], rueckLI[3]*rueckLII[3]; |
---|
106 | return(rueckL); |
---|
107 | } |
---|
108 | else |
---|
109 | { |
---|
110 | matrix rueckm=diagonal_without_trafo(R,MA,BASIS); |
---|
111 | list rueckL=divisibility(rueckm); |
---|
112 | matrix CON=divideByContent(rueckm); |
---|
113 | rueckm=CON*rueckL[2]; |
---|
114 | return(rueckm); |
---|
115 | } |
---|
116 | } |
---|
117 | example |
---|
118 | { "EXAMPLE:"; echo = 2; |
---|
119 | ring r = 0,x,Dp; |
---|
120 | matrix m[3][2]=x, x^4+x^2+21, x^4+x^2+x, x^3+x, 4*x^2+x, x; |
---|
121 | list s=smith(m,1); |
---|
122 | print(s[2]); // Smith form of m |
---|
123 | print(s[1]*m*s[3] - s[2]); // check U*M*V = D |
---|
124 | } |
---|
125 | |
---|
126 | static proc diagonal_with_trafo( R, matrix MA, int B) |
---|
127 | { |
---|
128 | |
---|
129 | int ppl = printlevel-voice+2; |
---|
130 | |
---|
131 | int BASIS=B; |
---|
132 | int ROW=ncols(MA); |
---|
133 | int COL=nrows(MA); |
---|
134 | module m=MA[1]; |
---|
135 | int i,j,k; |
---|
136 | for(i=2;i<=ROW;i++) |
---|
137 | { |
---|
138 | m=m,MA[i]; |
---|
139 | } |
---|
140 | |
---|
141 | |
---|
142 | //add zero rows or columns |
---|
143 | //add zero rows or columns |
---|
144 | int adrow=0; |
---|
145 | for(i=1;i<=COL;i++) |
---|
146 | { |
---|
147 | k=0; |
---|
148 | for(j=1;j<=ROW;j++) |
---|
149 | { |
---|
150 | if(MA[i,j]!=0){k=1;} |
---|
151 | } |
---|
152 | if(k==0){adrow++;} |
---|
153 | } |
---|
154 | |
---|
155 | m=transpose(m); |
---|
156 | for(i=1;i<=adrow;i++){m=m,0;} |
---|
157 | m=transpose(m); |
---|
158 | |
---|
159 | list RINGLIST=ringlist(R); |
---|
160 | list o="C",0; |
---|
161 | list oo="lp",1; |
---|
162 | list ORD=o,oo; |
---|
163 | RINGLIST[3]=ORD; |
---|
164 | def r=ring(RINGLIST); |
---|
165 | setring r; |
---|
166 | //fix the required ordering |
---|
167 | map MAP=R,var(1); |
---|
168 | module m=MAP(m); |
---|
169 | |
---|
170 | int flag=1; ///////////////counts if the underlying ring is r (flag mod 2 == 1) or ro (flag mod 2 == 0) |
---|
171 | |
---|
172 | module TrafoL=freemodule(COL); |
---|
173 | module TrafoR=freemodule(ROW); |
---|
174 | module EXL=freemodule(COL); //because we start with transpose(m) |
---|
175 | module EXR=freemodule(ROW); |
---|
176 | |
---|
177 | option(redSB); |
---|
178 | option(redTail); |
---|
179 | module STD_EX; |
---|
180 | module Trafo; |
---|
181 | |
---|
182 | int s,st,p,ff; |
---|
183 | |
---|
184 | module LT,TSTD; |
---|
185 | module STD=transpose(m); |
---|
186 | int finish=0; |
---|
187 | int fehlpos; |
---|
188 | list pos; |
---|
189 | matrix END; |
---|
190 | matrix ENDSTD; |
---|
191 | matrix STDFIN; |
---|
192 | STDFIN=STD; |
---|
193 | list COMPARE=STDFIN; |
---|
194 | |
---|
195 | while(finish==0) |
---|
196 | { |
---|
197 | dbprint(ppl,"Going into the while cycle"); |
---|
198 | |
---|
199 | if(flag mod 2==1) |
---|
200 | { |
---|
201 | STD_EX=EXL,transpose(STD); |
---|
202 | } |
---|
203 | else |
---|
204 | { |
---|
205 | STD_EX=EXR,transpose(STD); |
---|
206 | } |
---|
207 | dbprint(ppl,"Computing Groebner basis: start"); |
---|
208 | dbprint(ppl-1,STD); |
---|
209 | STD=engine(STD,BASIS); |
---|
210 | dbprint(ppl,"Computing Groebner basis: finished"); |
---|
211 | dbprint(ppl-1,STD); |
---|
212 | |
---|
213 | if(flag mod 2==1){s=ROW; st=COL;}else{s=COL; st=ROW;} |
---|
214 | dbprint(ppl,"Computing Groebner basis for transformation matrix: start"); |
---|
215 | dbprint(ppl-1,STD_EX); |
---|
216 | STD_EX=transpose(STD_EX); |
---|
217 | STD_EX=engine(STD_EX,BASIS); |
---|
218 | dbprint(ppl,"Computing Groebner basis for transformation matrix: finished"); |
---|
219 | dbprint(ppl-1,STD_EX); |
---|
220 | |
---|
221 | //////// split STD_EX in STD and the transformation matrix |
---|
222 | STD_EX=transpose(STD_EX); |
---|
223 | STD=STD_EX[st+1]; |
---|
224 | LT=STD_EX[1]; |
---|
225 | |
---|
226 | ENDSTD=STD_EX; |
---|
227 | for(i=2; i<=ncols(ENDSTD); i++) |
---|
228 | { |
---|
229 | if (i<=st) |
---|
230 | { |
---|
231 | LT=LT,STD_EX[i]; |
---|
232 | } |
---|
233 | if (i>st+1) |
---|
234 | { |
---|
235 | STD=STD,STD_EX[i]; |
---|
236 | } |
---|
237 | } |
---|
238 | |
---|
239 | STD=transpose(STD); |
---|
240 | LT=transpose(LT); |
---|
241 | |
---|
242 | ////////////////////// compute the transformation matrices |
---|
243 | |
---|
244 | if (flag mod 2 ==1) |
---|
245 | { |
---|
246 | TrafoL=transpose(LT)*TrafoL; |
---|
247 | } |
---|
248 | else |
---|
249 | { |
---|
250 | TrafoR=TrafoR*LT; |
---|
251 | } |
---|
252 | |
---|
253 | |
---|
254 | STDFIN=STD; |
---|
255 | /////////////////////////////////// check if the D-th row is finished /////////////////////////////////// |
---|
256 | COMPARE=insert(COMPARE,STDFIN); |
---|
257 | if(size(COMPARE)>=3) |
---|
258 | { |
---|
259 | if(STD==COMPARE[3]){finish=1;} |
---|
260 | } |
---|
261 | ////////////////////////////////// change to the opposite module |
---|
262 | TSTD=transpose(STD); |
---|
263 | STD=TSTD; |
---|
264 | flag++; |
---|
265 | dbprint(ppl,"Finished one while cycle"); |
---|
266 | } |
---|
267 | |
---|
268 | |
---|
269 | if (flag mod 2!=0) { STD=transpose(STD); } |
---|
270 | |
---|
271 | |
---|
272 | //zero colums to the end |
---|
273 | matrix STDMM=STD; |
---|
274 | pos=list(); |
---|
275 | fehlpos=0; |
---|
276 | while( size(STD)+fehlpos-ncols(STDMM) < 0) |
---|
277 | { |
---|
278 | for(i=1; i<=ncols(STDMM); i++) |
---|
279 | { |
---|
280 | ff=0; |
---|
281 | for(j=1; j<=nrows(STDMM); j++) |
---|
282 | { |
---|
283 | if (STD[j,i]==0) { ff++; } |
---|
284 | } |
---|
285 | if(ff==nrows(STDMM)) |
---|
286 | { |
---|
287 | pos=insert(pos,i); fehlpos++; |
---|
288 | } |
---|
289 | } |
---|
290 | } |
---|
291 | int fehlposc=fehlpos; |
---|
292 | module SORT; |
---|
293 | for(i=1; i<=fehlpos; i++) |
---|
294 | { |
---|
295 | SORT=gen(2); |
---|
296 | for (j=3;j<=ROW;j++) |
---|
297 | { |
---|
298 | SORT=SORT,gen(j); |
---|
299 | } |
---|
300 | SORT=SORT,gen(1); |
---|
301 | STD=STD*SORT; |
---|
302 | TrafoR=TrafoR*SORT; |
---|
303 | } |
---|
304 | |
---|
305 | //zero rows to the end |
---|
306 | STDMM=transpose(STD); |
---|
307 | pos=list(); |
---|
308 | fehlpos=0; |
---|
309 | while( size(transpose(STD))+fehlpos-ncols(STDMM) < 0) |
---|
310 | { |
---|
311 | for(i=1; i<=ncols(STDMM); i++) |
---|
312 | { |
---|
313 | ff=0; for(j=1; j<=nrows(STDMM); j++) |
---|
314 | { |
---|
315 | if(transpose(STD)[j,i]==0){ ff++;}} |
---|
316 | if(ff==nrows(STDMM)) { pos=insert(pos,i); fehlpos++; } |
---|
317 | } |
---|
318 | } |
---|
319 | int fehlposr=fehlpos; |
---|
320 | |
---|
321 | for(i=1; i<=fehlpos; i++) |
---|
322 | { |
---|
323 | SORT=gen(2); |
---|
324 | for(j=3;j<=COL;j++){SORT=SORT,gen(j);} |
---|
325 | SORT=SORT,gen(1); |
---|
326 | SORT=transpose(SORT); |
---|
327 | STD=SORT*STD; |
---|
328 | TrafoL=SORT*TrafoL; |
---|
329 | } |
---|
330 | |
---|
331 | setring R; |
---|
332 | map MAPinv=r,var(1); |
---|
333 | module STD=MAPinv(STD); |
---|
334 | module TrafoL=MAPinv(TrafoL); |
---|
335 | matrix TrafoLM=TrafoL; |
---|
336 | module TrafoR=MAPinv(TrafoR); |
---|
337 | matrix TrafoRM=TrafoR; |
---|
338 | matrix STDM=STD; |
---|
339 | |
---|
340 | //Test |
---|
341 | if(TrafoLM*m*TrafoRM!=STDM){ return(0); } |
---|
342 | |
---|
343 | list RUECK=TrafoRM; |
---|
344 | RUECK=insert(RUECK,STDM); |
---|
345 | RUECK=insert(RUECK,TrafoLM); |
---|
346 | return(RUECK); |
---|
347 | } |
---|
348 | |
---|
349 | |
---|
350 | static proc divisibility(matrix M) |
---|
351 | { |
---|
352 | matrix STDM=M; |
---|
353 | int i,j; |
---|
354 | int ROW=nrows(M); |
---|
355 | int COL=ncols(M); |
---|
356 | module TrafoR=freemodule(COL); |
---|
357 | module TrafoL=freemodule(ROW); |
---|
358 | module SORT; |
---|
359 | matrix TrafoRM=TrafoR; |
---|
360 | matrix TrafoLM=TrafoL; |
---|
361 | list posdeg0; |
---|
362 | int posdeg=0; |
---|
363 | int act; |
---|
364 | int Sort=ROW; |
---|
365 | if(size(std(STDM))!=0) |
---|
366 | { while( size(transpose(STDM)[Sort])==0 ){Sort--;}} |
---|
367 | |
---|
368 | for(i=1;i<=Sort ;i++) |
---|
369 | { |
---|
370 | if(leadexp(STDM[i,i])==0){posdeg0=insert(posdeg0,i);posdeg++;} |
---|
371 | } |
---|
372 | //entries of degree 0 at the beginning |
---|
373 | for(i=1; i<=posdeg; i++) |
---|
374 | { |
---|
375 | act=posdeg0[i]; |
---|
376 | SORT=gen(act); |
---|
377 | for(j=1; j<=COL; j++){if(j!=act){SORT=SORT,gen(j);}} |
---|
378 | STDM=STDM*SORT; |
---|
379 | TrafoRM=TrafoRM*SORT; |
---|
380 | SORT=gen(act); |
---|
381 | for(j=1; j<=ROW; j++){if(j!=act){SORT=SORT,gen(j);}} |
---|
382 | STDM=transpose(SORT)*STDM; |
---|
383 | TrafoLM=transpose(SORT)*TrafoLM; |
---|
384 | } |
---|
385 | |
---|
386 | poly G; |
---|
387 | module UNITL=freemodule(ROW); |
---|
388 | matrix GCDL=UNITL; |
---|
389 | module UNITR=freemodule(COL); |
---|
390 | matrix GCDR=UNITR; |
---|
391 | for(i=posdeg+1; i<=Sort; i++) |
---|
392 | { |
---|
393 | for(j=i+1; j<=Sort; j++) |
---|
394 | { |
---|
395 | GCDL=UNITL; |
---|
396 | GCDR=UNITR; |
---|
397 | G=gcd(STDM[i,i],STDM[j,j]); |
---|
398 | ideal Z=STDM[i,i],STDM[j,j]; |
---|
399 | matrix T=lift(Z,G); |
---|
400 | GCDL[i,i]=T[1,1]; |
---|
401 | GCDL[i,j]=T[2,1]; |
---|
402 | GCDL[j,i]=-STDM[j,j]/G; |
---|
403 | GCDL[j,j]=STDM[i,i]/G; |
---|
404 | GCDR[i,j]=T[2,1]*STDM[j,j]/G; |
---|
405 | GCDR[j,j]=T[2,1]*STDM[j,j]/G-1; |
---|
406 | GCDR[j,i]=1; |
---|
407 | STDM=GCDL*STDM*GCDR; |
---|
408 | TrafoLM=GCDL*TrafoLM; |
---|
409 | TrafoRM=TrafoRM*GCDR; |
---|
410 | } |
---|
411 | } |
---|
412 | list RUECK=TrafoRM; |
---|
413 | RUECK=insert(RUECK,STDM); |
---|
414 | RUECK=insert(RUECK,TrafoLM); |
---|
415 | return(RUECK); |
---|
416 | } |
---|
417 | |
---|
418 | static proc diagonal_without_trafo( R, matrix MA, int B) |
---|
419 | { |
---|
420 | int ppl = printlevel-voice+2; |
---|
421 | |
---|
422 | int BASIS=B; |
---|
423 | int ROW=ncols(MA); |
---|
424 | int COL=nrows(MA); |
---|
425 | module m=MA[1]; |
---|
426 | int i; |
---|
427 | for(i=2;i<=ROW;i++) |
---|
428 | {m=m,MA[i];} |
---|
429 | |
---|
430 | |
---|
431 | list RINGLIST=ringlist(R); |
---|
432 | list o="C",0; |
---|
433 | list oo="lp",1; |
---|
434 | list ORD=o,oo; |
---|
435 | RINGLIST[3]=ORD; |
---|
436 | def r=ring(RINGLIST); |
---|
437 | setring r; |
---|
438 | //RICHTIGE ORDNUNG MACHEN |
---|
439 | map MAP=R,var(1); |
---|
440 | module m=MAP(m); |
---|
441 | |
---|
442 | int flag=1; ///////////////counts if the underlying ring is r (flag mod 2 == 1) or ro (flag mod 2 == 0) |
---|
443 | |
---|
444 | |
---|
445 | int act, j, ff; |
---|
446 | option(redSB); |
---|
447 | option(redTail); |
---|
448 | |
---|
449 | |
---|
450 | module STD=transpose(m); |
---|
451 | module TSTD; |
---|
452 | int finish=0; |
---|
453 | matrix STDFIN; |
---|
454 | STDFIN=STD; |
---|
455 | list COMPARE=STDFIN; |
---|
456 | |
---|
457 | while(finish==0) |
---|
458 | { |
---|
459 | dbprint(ppl,"Going into the while cycle"); |
---|
460 | dbprint(ppl,"Computing Groebner basis: start"); |
---|
461 | dbprint(ppl-1,STD); |
---|
462 | STD=engine(STD,BASIS); |
---|
463 | dbprint(ppl,"Computing Groebner basis: finished"); |
---|
464 | dbprint(ppl-1,STD); |
---|
465 | STDFIN=STD; |
---|
466 | /////////////////////////////////// check if the D-th row is finished /////////////////////////////////// |
---|
467 | COMPARE=insert(COMPARE,STDFIN); |
---|
468 | if(size(COMPARE)>=3) |
---|
469 | { |
---|
470 | if(STD==COMPARE[3]){finish=1;} |
---|
471 | } |
---|
472 | ////////////////////////////////// change to the opposite module |
---|
473 | |
---|
474 | TSTD=transpose(STD); |
---|
475 | STD=TSTD; |
---|
476 | flag++; |
---|
477 | dbprint(ppl,"Finished one while cycle"); |
---|
478 | } |
---|
479 | |
---|
480 | matrix STDMM=STD; |
---|
481 | list pos=list(); |
---|
482 | int fehlpos=0; |
---|
483 | while( size(STD)+fehlpos-ncols(STDMM) < 0) |
---|
484 | { |
---|
485 | for(i=1; i<=ncols(STDMM); i++) |
---|
486 | { |
---|
487 | ff=0; |
---|
488 | for(j=1; j<=nrows(STDMM); j++) |
---|
489 | { |
---|
490 | if (STD[j,i]==0) { ff++; } |
---|
491 | } |
---|
492 | if(ff==nrows(STDMM)) |
---|
493 | { |
---|
494 | pos=insert(pos,i); fehlpos++; |
---|
495 | } |
---|
496 | } |
---|
497 | } |
---|
498 | int fehlposc=fehlpos; |
---|
499 | module SORT; |
---|
500 | for(i=1; i<=fehlpos; i++) |
---|
501 | { |
---|
502 | SORT=gen(2); |
---|
503 | for (j=3;j<=ROW;j++) |
---|
504 | { |
---|
505 | SORT=SORT,gen(j); |
---|
506 | } |
---|
507 | SORT=SORT,gen(1); |
---|
508 | STD=STD*SORT; |
---|
509 | } |
---|
510 | |
---|
511 | //zero rows to the end |
---|
512 | STDMM=transpose(STD); |
---|
513 | pos=list(); |
---|
514 | fehlpos=0; |
---|
515 | while( size(transpose(STD))+fehlpos-ncols(STDMM) < 0) |
---|
516 | { |
---|
517 | for(i=1; i<=ncols(STDMM); i++) |
---|
518 | { |
---|
519 | ff=0; for(j=1; j<=nrows(STDMM); j++) |
---|
520 | { |
---|
521 | if(transpose(STD)[j,i]==0){ ff++;}} |
---|
522 | if(ff==nrows(STDMM)) { pos=insert(pos,i); fehlpos++; } |
---|
523 | } |
---|
524 | } |
---|
525 | int fehlposr=fehlpos; |
---|
526 | |
---|
527 | for(i=1; i<=fehlpos; i++) |
---|
528 | { |
---|
529 | SORT=gen(2); |
---|
530 | for(j=3;j<=COL;j++){SORT=SORT,gen(j);} |
---|
531 | SORT=SORT,gen(1); |
---|
532 | SORT=transpose(SORT); |
---|
533 | STD=SORT*STD; |
---|
534 | } |
---|
535 | |
---|
536 | //add zero rows or columns |
---|
537 | |
---|
538 | int adrow=COL-size(transpose(STD)); |
---|
539 | int adcol=ROW-size(STD); |
---|
540 | |
---|
541 | for(i=1;i<=adcol;i++){STD=STD,0;} |
---|
542 | STD=transpose(STD); |
---|
543 | for(i=1;i<=adrow;i++){STD=STD,0;} |
---|
544 | STD=transpose(STD); |
---|
545 | |
---|
546 | setring R; |
---|
547 | map MAPinv=r,var(1); |
---|
548 | module STD=MAPinv(STD); |
---|
549 | matrix STDM=STD; |
---|
550 | return(STDM); |
---|
551 | } |
---|
552 | |
---|
553 | |
---|
554 | |
---|
555 | static proc engine(module I, int i) |
---|
556 | { |
---|
557 | module J; |
---|
558 | if (i==0) |
---|
559 | { |
---|
560 | J = std(I); |
---|
561 | } |
---|
562 | if (i==1) |
---|
563 | { |
---|
564 | J = groebner(I); |
---|
565 | } |
---|
566 | if (i==2) |
---|
567 | { |
---|
568 | J = slimgb(I); |
---|
569 | } |
---|
570 | return(J); |
---|
571 | } |
---|
572 | |
---|
573 | proc jacobson(matrix MA, list #) |
---|
574 | "USAGE: jacobson(M, eng); M matrix, eng an optional int |
---|
575 | RETURN: list |
---|
576 | ASSUME: Basering is a noncommutative ring in two variables. |
---|
577 | PURPOSE: compute a weak Jacobson Normal Form of M over a noncommutative ring |
---|
578 | NOTE: A list L of matrices {U,D,V} is returned. That is L[1]*M*L[3]=L[2], where |
---|
579 | @* L[2] is a diagonal matrix and L[1], L[3] square invertible (unimodular) matrices. |
---|
580 | @* Note, that M can be rectangular. |
---|
581 | @* The optional integer @code{eng} determines the engine, that computes the Groebner basis: |
---|
582 | @* 0 means 'std' (default), 1 means 'groebner' and 2 means 'slimgb'. |
---|
583 | DISPLAY: If @code{printlevel}=1, progress debug messages will be printed, |
---|
584 | @* if @code{printlevel}>=2, all the debug messages will be printed. |
---|
585 | EXAMPLE: example jacobson; shows examples |
---|
586 | " |
---|
587 | { |
---|
588 | def R = basering; |
---|
589 | // check assume: R must be a polynomial ring in 2 variables |
---|
590 | setring R; |
---|
591 | if ( (nvars(R) !=2 ) ) |
---|
592 | { |
---|
593 | ERROR("Basering must have exactly two variables"); |
---|
594 | } |
---|
595 | |
---|
596 | // check if MA is zero matrix and return corr. U,V |
---|
597 | if ( (size(module(MA))==0) and (size(transpose(module(MA)))==0) ) |
---|
598 | { |
---|
599 | int nr = nrows(MA); |
---|
600 | int nc = ncols(MA); |
---|
601 | matrix U = matrix(freemodule(nr)); |
---|
602 | matrix V = matrix(freemodule(nc)); |
---|
603 | list L; L[1]=U; L[2] = MA; L[3] = V; |
---|
604 | return(L); |
---|
605 | } |
---|
606 | |
---|
607 | int B=0; |
---|
608 | if ( size(#)>0 ) |
---|
609 | { |
---|
610 | B=1; |
---|
611 | if (typeof(#[1])=="int") |
---|
612 | { |
---|
613 | B=int(#[1]); // zero can also happen |
---|
614 | } |
---|
615 | } |
---|
616 | |
---|
617 | //change ring |
---|
618 | list RINGLIST=ringlist(R); |
---|
619 | list o="C",0; |
---|
620 | intvec v=1,0; |
---|
621 | list oo="a",v; |
---|
622 | v=1,1; |
---|
623 | list ooo="lp",v; |
---|
624 | list ORD=o,oo,ooo; |
---|
625 | RINGLIST[3]=ORD; |
---|
626 | def r=ring(RINGLIST); |
---|
627 | setring r; |
---|
628 | |
---|
629 | //fix the required ordering |
---|
630 | map MAP=R,var(1),var(2); |
---|
631 | matrix M=MAP(MA); |
---|
632 | |
---|
633 | module TrafoL, TrafoR; |
---|
634 | list TRIANGLE; |
---|
635 | TRIANGLE=triangle(M,B); |
---|
636 | TrafoL=TRIANGLE[1]; |
---|
637 | TrafoR=TRIANGLE[3]; |
---|
638 | module m=TRIANGLE[2]; |
---|
639 | |
---|
640 | //back to the ring |
---|
641 | setring R; |
---|
642 | map MAPR=r,var(1),var(2); |
---|
643 | module ma=MAPR(m); |
---|
644 | matrix MAA=ma; |
---|
645 | module TL=MAPR(TrafoL); |
---|
646 | module TR=MAPR(TrafoR); |
---|
647 | matrix CON=divideByContent(MAA); |
---|
648 | |
---|
649 | list RUECK=CON*TL, CON*MAA, TR; |
---|
650 | return(RUECK); |
---|
651 | } |
---|
652 | example |
---|
653 | { |
---|
654 | "EXAMPLE:"; echo = 2; |
---|
655 | ring r = 0,(x,d),Dp; |
---|
656 | def R = nc_algebra(1,1); setring R; // the 1st Weyl algebra |
---|
657 | matrix m[2][2] = d,x,0,d; print(m); |
---|
658 | list J = jacobson(m); // returns a list with 3 entries |
---|
659 | print(J[2]); // a Jacobson Form D for m |
---|
660 | print(J[1]*m*J[3] - J[2]); // check that U*M*V = D |
---|
661 | /* now, let us do the same for the shift algebra */ |
---|
662 | ring r2 = 0,(x,s),Dp; |
---|
663 | def R2 = nc_algebra(1,s); setring R2; // the 1st shift algebra |
---|
664 | matrix m[2][2] = s,x,0,s; print(m); // matrix of the same for as above |
---|
665 | list J = jacobson(m); |
---|
666 | print(J[2]); // a Jacobson Form D, quite different from above |
---|
667 | print(J[1]*m*J[3] - J[2]); // check that U*M*V = D |
---|
668 | } |
---|
669 | |
---|
670 | static proc triangle( matrix MA, int B) |
---|
671 | { |
---|
672 | int ppl = printlevel-voice+2; |
---|
673 | |
---|
674 | map inv=ncdetection(); |
---|
675 | int ROW=ncols(MA); |
---|
676 | int COL=nrows(MA); |
---|
677 | |
---|
678 | //generate a module consisting of the columns of MA |
---|
679 | module m=MA[1]; |
---|
680 | int i,j,s,st,p,k,ff,ex, nz, ii,nextp; |
---|
681 | for(i=2;i<=ROW;i++) |
---|
682 | { |
---|
683 | m=m,MA[i]; |
---|
684 | } |
---|
685 | int BASIS=B; |
---|
686 | |
---|
687 | //add zero rows or columns |
---|
688 | int adrow=0; |
---|
689 | for(i=1;i<=COL;i++) |
---|
690 | { |
---|
691 | k=0; |
---|
692 | for(j=1;j<=ROW;j++) |
---|
693 | { |
---|
694 | if(MA[i,j]!=0){k=1;} |
---|
695 | } |
---|
696 | if(k==0){adrow++;} |
---|
697 | } |
---|
698 | |
---|
699 | m=transpose(m); |
---|
700 | for(i=1;i<=adrow;i++){m=m,0;} |
---|
701 | m=transpose(m); |
---|
702 | |
---|
703 | |
---|
704 | int flag=1; ///////////////counts if the underlying ring is r (flag mod 2 == 1) or ro (flag mod 2 == 0) |
---|
705 | |
---|
706 | module TrafoL=freemodule(COL); |
---|
707 | module TrafoR=freemodule(ROW); |
---|
708 | module EXL=freemodule(COL); //because we start with transpose(m) |
---|
709 | module EXR=freemodule(ROW); |
---|
710 | |
---|
711 | option(redSB); |
---|
712 | option(redTail); |
---|
713 | module STD_EX,LT,TSTD, L, Trafo; |
---|
714 | |
---|
715 | |
---|
716 | |
---|
717 | module STD=transpose(m); |
---|
718 | int finish=0; |
---|
719 | list pos, COM, COM_EX; |
---|
720 | matrix END, ENDSTD, STDFIN; |
---|
721 | STDFIN=STD; |
---|
722 | list COMPARE=STDFIN; |
---|
723 | |
---|
724 | |
---|
725 | while(finish==0) |
---|
726 | { |
---|
727 | dbprint(ppl,"Going into the while cycle"); |
---|
728 | if(flag mod 2==1){STD_EX=EXL,transpose(STD); ex=2*COL;} else {STD_EX=EXR,transpose(STD); ex=2*ROW;} |
---|
729 | |
---|
730 | dbprint(ppl,"Computing Groebner basis: start"); |
---|
731 | dbprint(ppl-1,STD); |
---|
732 | STD=engine(STD,BASIS); |
---|
733 | dbprint(ppl,"Computing Groebner basis: finished"); |
---|
734 | dbprint(ppl-1,STD); |
---|
735 | if(flag mod 2==1){s=ROW; st=COL;}else{s=COL; st=ROW;} |
---|
736 | |
---|
737 | STD_EX=transpose(STD_EX); |
---|
738 | dbprint(ppl,"Computing Groebner basis for transformation matrix: start"); |
---|
739 | dbprint(ppl-1,STD_EX); |
---|
740 | STD_EX=engine(STD_EX,BASIS); |
---|
741 | dbprint(ppl,"Computing Groebner basis for transformation matrix: finished"); |
---|
742 | dbprint(ppl-1,STD_EX); |
---|
743 | |
---|
744 | COM=1; |
---|
745 | COM_EX=1; |
---|
746 | for(i=2; i<=size(STD); i++) |
---|
747 | { COM=COM[1..size(COM)],i; COM_EX=COM_EX[1..size(COM_EX)],i; } |
---|
748 | nz=size(STD_EX)-size(STD); |
---|
749 | |
---|
750 | //zero rows in the begining |
---|
751 | |
---|
752 | if(size(STD)!=size(STD_EX) ) |
---|
753 | { |
---|
754 | for(i=1; i<=size(STD_EX)-size(STD); i++) |
---|
755 | { |
---|
756 | COM_EX=0,COM_EX[1..size(COM_EX)]; |
---|
757 | } |
---|
758 | } |
---|
759 | |
---|
760 | |
---|
761 | |
---|
762 | |
---|
763 | for(i=nz+1; i<=size(STD_EX); i++ ) |
---|
764 | {if( leadcoef(STD[i-nz])!=leadcoef(STD_EX[i]) ) {STD[i-nz]=leadcoef(STD_EX[i])*STD[i-nz];} |
---|
765 | } |
---|
766 | |
---|
767 | //assign the zero rows in STD_EX |
---|
768 | |
---|
769 | for (j=2; j<=nz; j++) |
---|
770 | { |
---|
771 | p=0; |
---|
772 | i=1; |
---|
773 | while(STD_EX[j-1][i]==0){i++;}; |
---|
774 | p=i-1; |
---|
775 | nextp=1; |
---|
776 | k=0; |
---|
777 | i=1; |
---|
778 | while(STD_EX[j][i]==0 and i<=p) |
---|
779 | { k++; i++;} |
---|
780 | if (k==p){ COM_EX[j]=-1; } |
---|
781 | } |
---|
782 | |
---|
783 | //assign the zero rows in STD |
---|
784 | for (j=2; j<=size(STD); j++) |
---|
785 | { |
---|
786 | i=size(transpose(STD)); |
---|
787 | while(STD[j-1][i]==0){i--;} |
---|
788 | p=i; |
---|
789 | i=size(transpose(STD[j])); |
---|
790 | while(STD[j][i]==0){i--;} |
---|
791 | if (i==p){ COM[j]=-1; } |
---|
792 | } |
---|
793 | |
---|
794 | for(j=1; j<=size(COM); j++) |
---|
795 | { |
---|
796 | if(COM[j]<0){COM=delete(COM,j);} |
---|
797 | } |
---|
798 | |
---|
799 | for(i=1; i<=size(COM_EX); i++) |
---|
800 | {ff=0; |
---|
801 | if(COM_EX[i]==0){ff=1;} |
---|
802 | else |
---|
803 | { for(j=1; j<=size(COM); j++) |
---|
804 | { if(COM_EX[i]==COM[j]){ff=1;} } |
---|
805 | } |
---|
806 | if(ff==0){COM_EX[i]=-1;} |
---|
807 | } |
---|
808 | |
---|
809 | L=STD_EX[1]; |
---|
810 | for(i=2; i<=size(COM_EX); i++) |
---|
811 | { |
---|
812 | if(COM_EX[i]!=-1){L=L,STD_EX[i];} |
---|
813 | } |
---|
814 | |
---|
815 | //////// split STD_EX in STD and the transformation matrix |
---|
816 | |
---|
817 | L=transpose(L); |
---|
818 | STD=L[st+1]; |
---|
819 | LT=L[1]; |
---|
820 | |
---|
821 | |
---|
822 | for(i=2; i<=s+st; i++) |
---|
823 | { |
---|
824 | if (i<=st) |
---|
825 | { |
---|
826 | LT=LT,L[i]; |
---|
827 | } |
---|
828 | if (i>st+1) |
---|
829 | { |
---|
830 | STD=STD,L[i]; |
---|
831 | } |
---|
832 | } |
---|
833 | |
---|
834 | STD=transpose(STD); |
---|
835 | STDFIN=matrix(STD); |
---|
836 | COMPARE=insert(COMPARE,STDFIN); |
---|
837 | LT=transpose(LT); |
---|
838 | |
---|
839 | ////////////////////// compute the transformation matrices |
---|
840 | |
---|
841 | if (flag mod 2 ==1) |
---|
842 | { |
---|
843 | TrafoL=transpose(LT)*TrafoL; |
---|
844 | } |
---|
845 | else |
---|
846 | { |
---|
847 | TrafoR=TrafoR*involution(LT,inv); |
---|
848 | } |
---|
849 | |
---|
850 | |
---|
851 | ///////////////////////// check whether the alg termined ///////////////// |
---|
852 | if(size(COMPARE)>=3) |
---|
853 | { |
---|
854 | if(STD==COMPARE[3]){finish=1;} |
---|
855 | } |
---|
856 | ////////////////////////////////// change to the opposite module |
---|
857 | TSTD=transpose(STD); |
---|
858 | STD=involution(TSTD,inv); |
---|
859 | flag++; |
---|
860 | dbprint(ppl,"Finished one while cycle"); |
---|
861 | } |
---|
862 | |
---|
863 | if (flag mod 2 ==0){ STD = involution(STD,inv);} else { STD = transpose(STD); } |
---|
864 | |
---|
865 | list REVERSE=TrafoL,STD,TrafoR; |
---|
866 | return(REVERSE); |
---|
867 | } |
---|
868 | |
---|
869 | static proc divideByContent(matrix M) |
---|
870 | { |
---|
871 | //find first entrie not equal to zero |
---|
872 | int i,k; |
---|
873 | k=1; |
---|
874 | vector CON; |
---|
875 | for(i=1;i<=ncols(M);i++) |
---|
876 | { |
---|
877 | if(leadcoef(M[i])!=0){CON=CON+leadcoef(M[i])*gen(k); k++;} |
---|
878 | } |
---|
879 | poly con=content(CON); |
---|
880 | matrix TL=1/con*freemodule(nrows(M)); |
---|
881 | return(TL); |
---|
882 | } |
---|
883 | |
---|
884 | |
---|
885 | /////interesting examples for smith//////////////// |
---|
886 | |
---|
887 | /* |
---|
888 | |
---|
889 | //static proc Ex_One_wheeled_bicycle() |
---|
890 | { |
---|
891 | ring RA=(0,m), D, lp; |
---|
892 | matrix bicycle[2][3]=(1+m)*D^2, D^2, 1, D^2, D^2-1, 0; |
---|
893 | list s=smith(bicycle, 1,0); |
---|
894 | print(s[2]); |
---|
895 | print(s[1]*bicycle*s[3]-s[2]); |
---|
896 | } |
---|
897 | |
---|
898 | |
---|
899 | //static proc Ex_RLC-circuit() |
---|
900 | { |
---|
901 | ring RA=(0,m,R1,R2,L,C), D, lp; |
---|
902 | matrix circuit[2][3]=D+1/(R1*C), 0, -1/(R1*C), 0, D+R2/L, -1/L; |
---|
903 | list s=smith(circuit, 1,0); |
---|
904 | print(s[2]); |
---|
905 | print(s[1]*circuit*s[3]-s[2]); |
---|
906 | } |
---|
907 | |
---|
908 | |
---|
909 | //static proc Ex_two_pendula() |
---|
910 | { |
---|
911 | ring RA=(0,m,M,L1,L2,m1,m2,g), D, lp; |
---|
912 | matrix pendula[3][4]=m1*L1*D^2,m2*L2*D^2,(M+m1+m2)*D^2,-1,m1*L1^2*D^2-m1*L1*g,0,m1*L1*D^2,0,0, |
---|
913 | m2*L2^2*D^2-m2*L2*g,m2*L2*D^2,0; |
---|
914 | list s=smith(pendula, 1,0); |
---|
915 | print(s[2]); |
---|
916 | print(s[1]*pendula*s[3]-s[2]); |
---|
917 | } |
---|
918 | |
---|
919 | //static proc Ex_linerized_satellite_in_a_circular_equatorial_orbit() |
---|
920 | { |
---|
921 | ring RA=(0,m,omega,r,a,b), D, lp; |
---|
922 | matrix satellite[4][6]= |
---|
923 | D,-1,0,0,0,0, |
---|
924 | -3*omega^2,D,0,-2*omega*r,-a/m,0, |
---|
925 | 0,0,D,-1,0,0, |
---|
926 | 0,2*omega/r,0,D,0,-b/(m*r); |
---|
927 | list s=smith(satellite, 1,0); |
---|
928 | print(s[2]); |
---|
929 | print(s[1]*satellite*s[3]-s[2]); |
---|
930 | } |
---|
931 | |
---|
932 | //static proc Ex_flexible_one_link_robot() |
---|
933 | { |
---|
934 | ring RA=(0,M11,M12,M13,M21,M22,M31,M33,K1,K2), D, lp; |
---|
935 | matrix robot[3][4]=M11*D^2,M12*D^2,M13*D^2,-1,M21*D^2,M22*D^2+K1,0,0,M31*D^2,0,M33*D^2+K2,0; |
---|
936 | list s=smith(robot, 1,0); |
---|
937 | print(s[2]); |
---|
938 | print(s[1]*robot*s[3]-s[2]); |
---|
939 | } |
---|
940 | |
---|
941 | */ |
---|
942 | |
---|
943 | |
---|
944 | /////interesting examples for jacobson//////////////// |
---|
945 | |
---|
946 | /* |
---|
947 | |
---|
948 | //static proc Ex_compare_output_with_maple_package_JanetOre() |
---|
949 | { |
---|
950 | ring w = 0,(x,d),Dp; |
---|
951 | def W=nc_algebra(1,1); |
---|
952 | setring W; |
---|
953 | matrix m[3][3]=[d2,d+1,0],[d+1,0,d3-x2*d],[2d+1, d3+d2, d2]; |
---|
954 | list J=jacobson(m,0); |
---|
955 | print(J[1]*m*J[3]); |
---|
956 | print(J[2]); |
---|
957 | print(J[1]); |
---|
958 | print(J[3]); |
---|
959 | print(J[1]*m*J[3]-J[2]); |
---|
960 | } |
---|
961 | |
---|
962 | // modification for shift algebra |
---|
963 | { |
---|
964 | ring w = 0,(x,s),Dp; |
---|
965 | def W=nc_algebra(1,s); |
---|
966 | setring W; |
---|
967 | matrix m[3][3]=[s^2,s+1,0],[s+1,0,s^3-x^2*s],[2*s+1, s^3+s^2, s^2]; |
---|
968 | list J=jacobson(m,0); |
---|
969 | print(J[1]*m*J[3]); |
---|
970 | print(J[2]); |
---|
971 | print(J[1]); |
---|
972 | print(J[3]); |
---|
973 | print(J[1]*m*J[3]-J[2]); |
---|
974 | } |
---|
975 | |
---|
976 | //static proc Ex_cyclic() |
---|
977 | { |
---|
978 | ring w = 0,(x,d),Dp; |
---|
979 | def W=nc_algebra(1,1); |
---|
980 | setring W; |
---|
981 | matrix m[3][3]=d,0,0,x*d+1,d,0,0,x*d,d; |
---|
982 | list J=jacobson(m,0); |
---|
983 | print(J[1]*m*J[3]); |
---|
984 | print(J[2]); |
---|
985 | print(J[1]); |
---|
986 | print(J[3]); |
---|
987 | print(J[1]*m*J[3]-J[2]); |
---|
988 | } |
---|
989 | |
---|
990 | // modification for shift algebra: gives a module with ann = s^2 |
---|
991 | { |
---|
992 | ring w = 0,(x,s),Dp; |
---|
993 | def W=nc_algebra(1,s); |
---|
994 | setring W; |
---|
995 | matrix m[3][3]=s,0,0,x*s+1,s,0,0,x*s,s; |
---|
996 | list J=jacobson(m,0); |
---|
997 | print(J[1]*m*J[3]); |
---|
998 | print(J[2]); |
---|
999 | print(J[1]); |
---|
1000 | print(J[3]); |
---|
1001 | print(J[1]*m*J[3]-J[2]); |
---|
1002 | } |
---|
1003 | |
---|
1004 | // yet another modification for shift algebra: gives a module with ann = s |
---|
1005 | // xs+1 is replaced by x*s+s |
---|
1006 | { |
---|
1007 | ring w = 0,(x,s),Dp; |
---|
1008 | def W=nc_algebra(1,s); |
---|
1009 | setring W; |
---|
1010 | matrix m[3][3]=s,0,0,x*s+s,s,0,0,x*s,s; |
---|
1011 | list J=jacobson(m,0); |
---|
1012 | print(J[1]*m*J[3]); |
---|
1013 | print(J[2]); |
---|
1014 | print(J[1]); |
---|
1015 | print(J[3]); |
---|
1016 | print(J[1]*m*J[3]-J[2]); |
---|
1017 | } |
---|
1018 | |
---|
1019 | // variations for above setup with shift algebra: |
---|
1020 | |
---|
1021 | // easy but instructive one: see the difference to Weyl case! |
---|
1022 | matrix m[2][2]=s,x,0,s; print(m); |
---|
1023 | |
---|
1024 | // more interesting: |
---|
1025 | matrix n[3][3]=s,x,0,0,s,x,s,0,x; |
---|
1026 | |
---|
1027 | // things blow up |
---|
1028 | matrix m[3][4] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+1)^3, (x+s)^2, x*s; |
---|
1029 | |
---|
1030 | // this one is quite nasty and time consuming |
---|
1031 | matrix m[3][4] = s,x^2*s,x^3*s,s*x^2,s*x+1,(x+1)^3, (x+s)^2, x*s,x,x^2,x^3,s; |
---|
1032 | |
---|
1033 | */ |
---|