1 | //GMG last modified: 04/25/2000 |
---|
2 | ////////////////////////////////////////////////////////////////////////////// |
---|
3 | version="$Id: linalg.lib,v 1.18 2001-08-25 10:51:07 mschulze Exp $"; |
---|
4 | category="Linear Algebra"; |
---|
5 | info=" |
---|
6 | LIBRARY: linalg.lib Algorithmic Linear Algebra |
---|
7 | AUTHORS: Ivor Saynisch (ivs@math.tu-cottbus.de) |
---|
8 | @* Mathias Schulze (mschulze@mathematik.uni-kl.de) |
---|
9 | |
---|
10 | PROCEDURES: |
---|
11 | inverse(A); matrix, the inverse of A |
---|
12 | inverse_B(A); list(matrix Inv,poly p),Inv*A=p*En ( using busadj(A) ) |
---|
13 | inverse_L(A); list(matrix Inv,poly p),Inv*A=p*En ( using lift ) |
---|
14 | sym_gauss(A); symmetric gaussian algorithm |
---|
15 | orthogonalize(A); Gram-Schmidt orthogonalization |
---|
16 | diag_test(A); test whether A can be diagnolized |
---|
17 | busadj(A); coefficients of Adj(E*t-A) and coefficients of det(E*t-A) |
---|
18 | charpoly(A,v); characteristic polynomial of A ( using busadj(A) ) |
---|
19 | adjoint(A); adjoint of A ( using busadj(A) ) |
---|
20 | det_B(A); determinant of A ( using busadj(A) ) |
---|
21 | gaussred(A); gaussian reduction: P*A=U*S, S a row reduced form of A |
---|
22 | gaussred_pivot(A); gaussian reduction: P*A=U*S, uses row pivoting |
---|
23 | gauss_nf(A); gaussian normal form of A |
---|
24 | mat_rk(A); rank of constant matrix A |
---|
25 | U_D_O(A); P*A=U*D*O, P,D,U,O=permutaion,diag,lower-,upper-triang |
---|
26 | pos_def(A,i); test symmetric matrix for positive definiteness |
---|
27 | hessenberg(M); transforms M to Hessenberg form |
---|
28 | eigenval(M); eigenvalues of M with multiplicities |
---|
29 | jordan(M); Jordan data of constant square matrix M |
---|
30 | jordanbasis(M); Jordan basis of constant square matrix M |
---|
31 | jordanmatrix(e,b); Jordan matrix with eigenvalues e and Jordan block sizes b |
---|
32 | jordanform(M); Jordan matrix of constant square matrix M |
---|
33 | commutator(A); matrix of commutator B->[A,B]=AB-BA |
---|
34 | "; |
---|
35 | |
---|
36 | LIB "matrix.lib"; |
---|
37 | LIB "ring.lib"; |
---|
38 | LIB "elim.lib"; |
---|
39 | ////////////////////////////////////////////////////////////////////////////// |
---|
40 | // help functions |
---|
41 | ////////////////////////////////////////////////////////////////////////////// |
---|
42 | static proc abs(poly c) |
---|
43 | "RETURN: absolut value of c, c must be constants" |
---|
44 | { |
---|
45 | if(c>=0){ return(c);} |
---|
46 | else{ return(-c);} |
---|
47 | } |
---|
48 | |
---|
49 | static proc const_mat(matrix A) |
---|
50 | "RETURN: 1 (0) if A is (is not) a constant matrix" |
---|
51 | { |
---|
52 | int i; |
---|
53 | int n=ncols(A); |
---|
54 | def BR=basering; |
---|
55 | changeord("@R","dp,c",BR); |
---|
56 | matrix A=fetch(BR,A); |
---|
57 | for(i=1;i<=n;i=i+1){ |
---|
58 | if(deg(lead(A)[i])>=1){ |
---|
59 | //"input is not a constant matrix"; |
---|
60 | kill @R; |
---|
61 | setring BR; |
---|
62 | return(0); |
---|
63 | } |
---|
64 | } |
---|
65 | kill @R; |
---|
66 | setring BR; |
---|
67 | return(1); |
---|
68 | } |
---|
69 | ////////////////////////////////////////////////////////////////////////////// |
---|
70 | static proc red(matrix A,int i,int j) |
---|
71 | "USAGE: red(A,i,j); A = constant matrix |
---|
72 | reduces column j with respect to A[i,i] and column i |
---|
73 | reduces row j with respect to A[i,i] and row i |
---|
74 | RETURN: matrix |
---|
75 | " |
---|
76 | { |
---|
77 | module m=module(A); |
---|
78 | |
---|
79 | if(A[i,i]==0){ |
---|
80 | m[i]=m[i]+m[j]; |
---|
81 | m=module(transpose(matrix(m))); |
---|
82 | m[i]=m[i]+m[j]; |
---|
83 | m=module(transpose(matrix(m))); |
---|
84 | } |
---|
85 | |
---|
86 | A=matrix(m); |
---|
87 | m[j]=m[j]-(A[i,j]/A[i,i])*m[i]; |
---|
88 | m=module(transpose(matrix(m))); |
---|
89 | m[j]=m[j]-(A[i,j]/A[i,i])*m[i]; |
---|
90 | m=module(transpose(matrix(m))); |
---|
91 | |
---|
92 | return(matrix(m)); |
---|
93 | } |
---|
94 | |
---|
95 | ////////////////////////////////////////////////////////////////////////////// |
---|
96 | proc inner_product(vector v1,vector v2) |
---|
97 | "RETURN: inner product <v1,v2> " |
---|
98 | { |
---|
99 | int k; |
---|
100 | if (nrows(v2)>nrows(v1)) { k=nrows(v2); } else { k=nrows(v1); } |
---|
101 | return ((transpose(matrix(v1,k,1))*matrix(v2,k,1))[1,1]); |
---|
102 | } |
---|
103 | |
---|
104 | ///////////////////////////////////////////////////////////////////////////// |
---|
105 | // user functions |
---|
106 | ///////////////////////////////////////////////////////////////////////////// |
---|
107 | |
---|
108 | proc inverse(matrix A, list #) |
---|
109 | "USAGE: inverse(A [,opt]); A a square matrix, opt integer |
---|
110 | RETURN: |
---|
111 | @format |
---|
112 | a matrix: |
---|
113 | - the inverse matrix of A, if A is invertible; |
---|
114 | - the 1x1 0-matrix if A is not invertible (in the polynomial ring!). |
---|
115 | There are the following options: |
---|
116 | - opt=0 or not given: heuristically best option from below |
---|
117 | - opt=1 : apply std to (transpose(E,A)), ordering (C,dp). |
---|
118 | - opt=2 : apply interred (transpose(E,A)), ordering (C,dp). |
---|
119 | - opt=3 : apply lift(A,E), ordering (C,dp). |
---|
120 | @end format |
---|
121 | NOTE: parameters and minpoly are allowed; opt=2 is only correct for |
---|
122 | matrices with entries in a field |
---|
123 | SEE ALSO: inverse_B, inverse_L |
---|
124 | EXAMPLE: example inverse; shows an example |
---|
125 | " |
---|
126 | { |
---|
127 | //--------------------------- initialization and check ------------------------ |
---|
128 | int ii,u,i,opt; |
---|
129 | matrix invA; |
---|
130 | int db = printlevel-voice+3; //used for comments |
---|
131 | def R=basering; |
---|
132 | string mp = string(minpoly); |
---|
133 | int n = nrows(A); |
---|
134 | module M = A; |
---|
135 | intvec v = option(get); //get options to reset it later |
---|
136 | if ( ncols(A)!=n ) |
---|
137 | { |
---|
138 | ERROR("// ** no square matrix"); |
---|
139 | } |
---|
140 | //----------------------- choose heurisitically best option ------------------ |
---|
141 | // This may change later, depending on improvements of the implemantation |
---|
142 | // at the monent we use if opt=0 or opt not given: |
---|
143 | // opt = 1 (std) for everything |
---|
144 | // opt = 2 (interred) for nothing, NOTE: interred is ok for constant matricea |
---|
145 | // opt = 3 (lift) for nothing |
---|
146 | // NOTE: interred is ok for constant matrices only (Beispiele am Ende der lib) |
---|
147 | if(size(#) != 0) {opt = #[1];} |
---|
148 | if(opt == 0) |
---|
149 | { |
---|
150 | if(npars(R) == 0) //no parameters |
---|
151 | { |
---|
152 | if( size(ideal(A-jet(A,0))) == 0 ) //constant matrix |
---|
153 | {opt = 1;} |
---|
154 | else |
---|
155 | {opt = 1;} |
---|
156 | } |
---|
157 | else {opt = 1;} |
---|
158 | } |
---|
159 | //------------------------- change ring if necessary ------------------------- |
---|
160 | if( ordstr(R) != "C,dp(nvars(R))" ) |
---|
161 | { |
---|
162 | u=1; |
---|
163 | changeord("@R","C,dp",R); |
---|
164 | module M = fetch(R,M); |
---|
165 | execute("minpoly="+mp+";"); |
---|
166 | } |
---|
167 | //----------------------------- opt=3: use lift ------------------------------ |
---|
168 | if( opt==3 ) |
---|
169 | { |
---|
170 | module D2; |
---|
171 | D2 = lift(M,freemodule(n)); |
---|
172 | if (size(ideal(D2))==0) |
---|
173 | { //catch error in lift |
---|
174 | dbprint(db,"// ** matrix is not invertible"); |
---|
175 | setring R; |
---|
176 | if (u==1) { kill @R;} |
---|
177 | return(invA); |
---|
178 | } |
---|
179 | } |
---|
180 | //-------------- opt = 1 resp. opt = 2: use std resp. interred -------------- |
---|
181 | if( opt==1 or opt==2 ) |
---|
182 | { |
---|
183 | option(redSB); |
---|
184 | module B = freemodule(n),M; |
---|
185 | if(opt == 2) |
---|
186 | { |
---|
187 | module D = interred(transpose(B)); |
---|
188 | D = transpose(simplify(D,1)); |
---|
189 | } |
---|
190 | if(opt == 1) |
---|
191 | { |
---|
192 | module D = std(transpose(B)); |
---|
193 | D = transpose(simplify(D,1)); |
---|
194 | } |
---|
195 | module D2 = D[1..n]; |
---|
196 | module D1 = D[n+1..2*n]; |
---|
197 | //----------------------- check if matrix is invertible ---------------------- |
---|
198 | for (ii=1; ii<=n; ii++) |
---|
199 | { |
---|
200 | if ( D1[ii] != gen(ii) ) |
---|
201 | { |
---|
202 | dbprint(db,"// ** matrix is not invertible"); |
---|
203 | i = 1; |
---|
204 | break; |
---|
205 | } |
---|
206 | } |
---|
207 | } |
---|
208 | option(set,v); |
---|
209 | //------------------ return to basering and return result --------------------- |
---|
210 | if ( u==1 ) |
---|
211 | { |
---|
212 | setring R; |
---|
213 | module D2 = fetch(@R,D2); |
---|
214 | if( opt==1 or opt==2 ) |
---|
215 | { module D1 = fetch(@R,D1);} |
---|
216 | kill @R; |
---|
217 | } |
---|
218 | if( i==1 ) { return(invA); } //matrix not invetible |
---|
219 | else { return(matrix(D2)); } //matrix invertible with inverse D2 |
---|
220 | |
---|
221 | } |
---|
222 | example |
---|
223 | { "EXAMPLE:"; echo = 2; |
---|
224 | ring r=0,(x,y,z),lp; |
---|
225 | matrix A[3][3]= |
---|
226 | 1,4,3, |
---|
227 | 1,5,7, |
---|
228 | 0,4,17; |
---|
229 | print(inverse(A));""; |
---|
230 | matrix B[3][3]= |
---|
231 | y+1, x+y, y, |
---|
232 | z, z+1, z, |
---|
233 | y+z+2,x+y+z+2,y+z+1; |
---|
234 | print(inverse(B)); |
---|
235 | print(B*inverse(B)); |
---|
236 | } |
---|
237 | |
---|
238 | ////////////////////////////////////////////////////////////////////////////// |
---|
239 | proc sym_gauss(matrix A) |
---|
240 | "USAGE: sym_gauss(A); A = symmetric matrix |
---|
241 | RETURN: matrix, diagonalisation with symmetric gauss algorithm |
---|
242 | EXAMPLE: example sym_gauss; shows an example" |
---|
243 | { |
---|
244 | int i,j; |
---|
245 | int n=nrows(A); |
---|
246 | |
---|
247 | if (ncols(A)!=n){ |
---|
248 | "// ** input is not a square matrix";; |
---|
249 | return(A); |
---|
250 | } |
---|
251 | |
---|
252 | if(!const_mat(A)){ |
---|
253 | "// ** input is not a constant matrix"; |
---|
254 | return(A); |
---|
255 | } |
---|
256 | |
---|
257 | if(deg(std(A-transpose(A))[1])!=-1){ |
---|
258 | "// ** input is not a symmetric matrix"; |
---|
259 | return(A); |
---|
260 | } |
---|
261 | |
---|
262 | for(i=1; i<n; i++){ |
---|
263 | for(j=i+1; j<=n; j++){ |
---|
264 | if(A[i,j]!=0){ A=red(A,i,j); } |
---|
265 | } |
---|
266 | } |
---|
267 | |
---|
268 | return(A); |
---|
269 | } |
---|
270 | example |
---|
271 | {"EXAMPLE:"; echo = 2; |
---|
272 | ring r=0,(x),lp; |
---|
273 | matrix A[2][2]=1,4,4,15; |
---|
274 | print(A); |
---|
275 | print(sym_gauss(A)); |
---|
276 | } |
---|
277 | |
---|
278 | ////////////////////////////////////////////////////////////////////////////// |
---|
279 | proc orthogonalize(matrix A) |
---|
280 | "USAGE: orthogonalize(A); A = constant matrix |
---|
281 | RETURN: matrix, orthogonal basis of the colum space of A |
---|
282 | EXAMPLE: example orthogonalize; shows an example " |
---|
283 | { |
---|
284 | int i,j; |
---|
285 | int n=ncols(A); |
---|
286 | poly k; |
---|
287 | |
---|
288 | if(!const_mat(A)){ |
---|
289 | "// ** input is not a constant matrix"; |
---|
290 | matrix B; |
---|
291 | return(B); |
---|
292 | } |
---|
293 | |
---|
294 | module B=module(interred(A)); |
---|
295 | |
---|
296 | for(i=1;i<=n;i=i+1) { |
---|
297 | for(j=1;j<i;j=j+1) { |
---|
298 | k=inner_product(B[j],B[j]); |
---|
299 | if (k==0) { "Error: vector of length zero"; return(matrix(B)); } |
---|
300 | B[i]=B[i]-(inner_product(B[i],B[j])/k)*B[j]; |
---|
301 | } |
---|
302 | } |
---|
303 | |
---|
304 | return(matrix(B)); |
---|
305 | } |
---|
306 | example |
---|
307 | { "EXAMPLE:"; echo = 2; |
---|
308 | ring r=0,(x),lp; |
---|
309 | matrix A[4][4]=5,6,12,4,7,3,2,6,12,1,1,2,6,4,2,10; |
---|
310 | print(A); |
---|
311 | print(orthogonalize(A)); |
---|
312 | } |
---|
313 | |
---|
314 | //////////////////////////////////////////////////////////////////////////// |
---|
315 | proc diag_test(matrix A) |
---|
316 | "USAGE: diag_test(A); A = const square matrix |
---|
317 | RETURN: int, 1 if A is diagonalisable, 0 if not |
---|
318 | -1 no statement is possible, since A does not split. |
---|
319 | NOTE: The test works only for split matrices, i.e if eigenvalues of A |
---|
320 | are in the ground field. |
---|
321 | Does not work with parameters (uses factorize,gcd). |
---|
322 | EXAMPLE: example diag_test; shows an example" |
---|
323 | { |
---|
324 | int i,j; |
---|
325 | int n = nrows(A); |
---|
326 | string mp = string(minpoly); |
---|
327 | string cs = charstr(basering); |
---|
328 | int np=0; |
---|
329 | |
---|
330 | if(ncols(A) != n) { |
---|
331 | "// input is not a square matrix"; |
---|
332 | return(-1); |
---|
333 | } |
---|
334 | |
---|
335 | if(!const_mat(A)){ |
---|
336 | "// input is not a constant matrix"; |
---|
337 | return(-1); |
---|
338 | } |
---|
339 | |
---|
340 | //Parameterring wegen factorize nicht erlaubt |
---|
341 | for(i=1;i<size(cs);i=i+1){ |
---|
342 | if(cs[i]==","){np=np+1;} //Anzahl der Parameter |
---|
343 | } |
---|
344 | if(np>0){ |
---|
345 | "// rings with parameters not allowed"; |
---|
346 | return(-1); |
---|
347 | } |
---|
348 | |
---|
349 | //speichern des aktuellen Rings |
---|
350 | def BR=basering; |
---|
351 | //setze R[t] |
---|
352 | execute("ring rt=("+charstr(basering)+"),(@t,"+varstr(basering)+"),lp;"); |
---|
353 | execute("minpoly="+mp+";"); |
---|
354 | matrix A=imap(BR,A); |
---|
355 | |
---|
356 | intvec z; |
---|
357 | intvec s; |
---|
358 | poly X; //characteristisches Polynom |
---|
359 | poly dXdt; //Ableitung von X nach t |
---|
360 | ideal g; //ggT(X,dXdt) |
---|
361 | poly b; //Komponente der Busadjunkten-Matrix |
---|
362 | matrix E[n][n]; //Einheitsmatrix |
---|
363 | |
---|
364 | E=E+1; |
---|
365 | A=E*@t-A; |
---|
366 | X=det(A); |
---|
367 | |
---|
368 | matrix Xfactors=matrix(factorize(X,1)); //zerfaellt die Matrtix ? |
---|
369 | int nf=ncols(Xfactors); |
---|
370 | |
---|
371 | for(i=1;i<=nf;i++){ |
---|
372 | if(lead(Xfactors[1,i])>=@t^2){ |
---|
373 | //" matrix does not split"; |
---|
374 | setring BR; |
---|
375 | return(-1); |
---|
376 | } |
---|
377 | } |
---|
378 | |
---|
379 | dXdt=diff(X,@t); |
---|
380 | g=std(ideal(gcd(X,dXdt))); |
---|
381 | |
---|
382 | //Busadjunkte |
---|
383 | z=2..n; |
---|
384 | for(i=1;i<=n;i++){ |
---|
385 | s=2..n; |
---|
386 | for(j=1;j<=n;j++){ |
---|
387 | b=det(submat(A,z,s)); |
---|
388 | |
---|
389 | if(0!=reduce(b,g)){ |
---|
390 | //" matrix not diagonalizable"; |
---|
391 | setring BR; |
---|
392 | return(0); |
---|
393 | } |
---|
394 | |
---|
395 | s[j]=j; |
---|
396 | } |
---|
397 | z[i]=i; |
---|
398 | } |
---|
399 | |
---|
400 | //"Die Matrix ist diagonalisierbar"; |
---|
401 | setring BR; |
---|
402 | return(1); |
---|
403 | } |
---|
404 | example |
---|
405 | { "EXAMPLE:"; echo = 2; |
---|
406 | ring r=0,(x),dp; |
---|
407 | matrix A[4][4]=6,0,0,0,0,0,6,0,0,6,0,0,0,0,0,6; |
---|
408 | print(A); |
---|
409 | diag_test(A); |
---|
410 | } |
---|
411 | |
---|
412 | ////////////////////////////////////////////////////////////////////////////// |
---|
413 | proc busadj(matrix A) |
---|
414 | "USAGE: busadj(A); A = square matrix (of size nxn) |
---|
415 | RETURN: list L: |
---|
416 | @format |
---|
417 | L[1] contains the (n+1) coefficients of the characteristic |
---|
418 | polynomial X of A, i.e. |
---|
419 | X = L[1][1]+..+L[1][k]*t^(k-1)+..+(L[1][n+1])*t^n |
---|
420 | L[2] contains the n (nxn)-matrices Hk which are the coefficients of |
---|
421 | the busadjoint bA = adjoint(E*t-A) of A, i.e. |
---|
422 | bA = (Hn-1)*t^(n-1)+...+Hk*t^k+...+H0, ( Hk=L[2][k+1] ) |
---|
423 | @end format |
---|
424 | EXAMPLE: example busadj; shows an example" |
---|
425 | { |
---|
426 | int k; |
---|
427 | int n = nrows(A); |
---|
428 | matrix E = unitmat(n); |
---|
429 | matrix H[n][n]; |
---|
430 | matrix B[n][n]; |
---|
431 | list bA, X, L; |
---|
432 | poly a; |
---|
433 | |
---|
434 | if(ncols(A) != n) { |
---|
435 | "input is not a square matrix"; |
---|
436 | return(L); |
---|
437 | } |
---|
438 | |
---|
439 | bA = E; |
---|
440 | X[1] = 1; |
---|
441 | for(k=1; k<n; k++){ |
---|
442 | B = A*bA[1]; //bA[1] is the last H |
---|
443 | a = -trace(B)/k; |
---|
444 | H = B+a*E; |
---|
445 | bA = insert(bA,H); |
---|
446 | X = insert(X,a); |
---|
447 | } |
---|
448 | B = A*bA[1]; |
---|
449 | a = -trace(B)/n; |
---|
450 | X = insert(X,a); |
---|
451 | |
---|
452 | L = insert(L,bA); |
---|
453 | L = insert(L,X); |
---|
454 | return(L); |
---|
455 | } |
---|
456 | example |
---|
457 | { "EXAMPLE"; echo = 2; |
---|
458 | ring r = 0,(t,x),lp; |
---|
459 | matrix A[2][2] = 1,x2,x,x2+3x; |
---|
460 | print(A); |
---|
461 | list L = busadj(A); |
---|
462 | poly X = L[1][1]+L[1][2]*t+L[1][3]*t2; X; |
---|
463 | matrix bA[2][2] = L[2][1]+L[2][2]*t; |
---|
464 | print(bA); //the busadjoint of A; |
---|
465 | print(bA*(t*unitmat(2)-A)); |
---|
466 | } |
---|
467 | |
---|
468 | ////////////////////////////////////////////////////////////////////////////// |
---|
469 | proc charpoly(matrix A, list #) |
---|
470 | "USAGE: charpoly(A[,v]); A square matrix, v string, name of a variable |
---|
471 | RETURN: poly, the characteristic polynomial det(E*v-A) |
---|
472 | (default: v=name of last variable) |
---|
473 | NOTE: A must be independent of the variable v. The computation uses det. |
---|
474 | If printlevel>0, det(E*v-A) is diplayed recursively. |
---|
475 | EXAMPLE: example charpoly; shows an example" |
---|
476 | { |
---|
477 | int n = nrows(A); |
---|
478 | int z = nvars(basering); |
---|
479 | int i,j; |
---|
480 | string v; |
---|
481 | poly X; |
---|
482 | if(ncols(A) != n) |
---|
483 | { |
---|
484 | "// input is not a square matrix"; |
---|
485 | return(X); |
---|
486 | } |
---|
487 | //---------------------- test for correct variable ------------------------- |
---|
488 | if( size(#)==0 ){ |
---|
489 | #[1] = varstr(z); |
---|
490 | } |
---|
491 | if( typeof(#[1]) == "string") { v = #[1]; } |
---|
492 | else |
---|
493 | { |
---|
494 | "// 2nd argument must be a name of a variable not contained in the matrix"; |
---|
495 | return(X); |
---|
496 | } |
---|
497 | j=-1; |
---|
498 | for(i=1; i<=z; i++) |
---|
499 | { |
---|
500 | if(varstr(i)==v){j=i;} |
---|
501 | } |
---|
502 | if(j==-1) |
---|
503 | { |
---|
504 | "// "+v+" is not a variable in the basering"; |
---|
505 | return(X); |
---|
506 | } |
---|
507 | if ( size(select1(module(A),j)) != 0 ) |
---|
508 | { |
---|
509 | "// matrix must not contain the variable "+v; |
---|
510 | "// change to a ring with an extra variable, if necessary." |
---|
511 | return(X); |
---|
512 | } |
---|
513 | //-------------------------- compute charpoly ------------------------------ |
---|
514 | X = det(var(j)*unitmat(n)-A); |
---|
515 | if( printlevel-voice+2 >0) { showrecursive(X,var(j));} |
---|
516 | return(X); |
---|
517 | } |
---|
518 | example |
---|
519 | { "EXAMPLE"; echo=2; |
---|
520 | ring r=0,(x,t),dp; |
---|
521 | matrix A[3][3]=1,x2,x,x2,6,4,x,4,1; |
---|
522 | print(A); |
---|
523 | charpoly(A,"t"); |
---|
524 | } |
---|
525 | |
---|
526 | ////////////////////////////////////////////////////////////////////////////// |
---|
527 | proc charpoly_B(matrix A, list #) |
---|
528 | "USAGE: charpoly_B(A[,v]); A square matrix, v string, name of a variable |
---|
529 | RETURN: poly, the characteristic polynomial det(E*v-A) |
---|
530 | (default: v=name of last variable) |
---|
531 | NOTE: A must be constant in the variable v. The computation uses busadj(A). |
---|
532 | EXAMPLE: example charpoly_B; shows an example" |
---|
533 | { |
---|
534 | int i,j; |
---|
535 | string s,v; |
---|
536 | list L; |
---|
537 | int n = nrows(A); |
---|
538 | poly X = 0; |
---|
539 | def BR = basering; |
---|
540 | string mp = string(minpoly); |
---|
541 | |
---|
542 | if(ncols(A) != n){ |
---|
543 | "// input is not a square matrix"; |
---|
544 | return(X); |
---|
545 | } |
---|
546 | |
---|
547 | //test for correct variable |
---|
548 | if( size(#)==0 ){ |
---|
549 | #[1] = varstr(nvars(BR)); |
---|
550 | } |
---|
551 | if( typeof(#[1]) == "string"){ |
---|
552 | v = #[1]; |
---|
553 | } |
---|
554 | else{ |
---|
555 | "// 2nd argument must be a name of a variable not contained in the matrix"; |
---|
556 | return(X); |
---|
557 | } |
---|
558 | |
---|
559 | j=-1; |
---|
560 | for(i=1; i<=nvars(BR); i++){ |
---|
561 | if(varstr(i)==v){j=i;} |
---|
562 | } |
---|
563 | if(j==-1){ |
---|
564 | "// "+v+" is not a variable in the basering"; |
---|
565 | return(X); |
---|
566 | } |
---|
567 | |
---|
568 | //var can not be in A |
---|
569 | s="Wp("; |
---|
570 | for( i=1; i<=nvars(BR); i++ ){ |
---|
571 | if(i!=j){ s=s+"0";} |
---|
572 | else{ s=s+"1";} |
---|
573 | if( i<nvars(BR)) {s=s+",";} |
---|
574 | } |
---|
575 | s=s+")"; |
---|
576 | |
---|
577 | changeord("@R",s); |
---|
578 | execute("minpoly="+mp+";"); |
---|
579 | matrix A = imap(BR,A); |
---|
580 | for(i=1; i<=n; i++){ |
---|
581 | if(deg(lead(A)[i])>=1){ |
---|
582 | "// matrix must not contain the variable "+v; |
---|
583 | kill @R; |
---|
584 | setring BR; |
---|
585 | return(X); |
---|
586 | } |
---|
587 | } |
---|
588 | |
---|
589 | //get coefficients and build the char. poly |
---|
590 | kill @R; |
---|
591 | setring BR; |
---|
592 | L = busadj(A); |
---|
593 | for(i=1; i<=n+1; i++){ |
---|
594 | execute("X=X+L[1][i]*"+v+"^"+string(i-1)+";"); |
---|
595 | } |
---|
596 | |
---|
597 | return(X); |
---|
598 | } |
---|
599 | example |
---|
600 | { "EXAMPLE"; echo=2; |
---|
601 | ring r=0,(x,t),dp; |
---|
602 | matrix A[3][3]=1,x2,x,x2,6,4,x,4,1; |
---|
603 | print(A); |
---|
604 | charpoly_B(A,"t"); |
---|
605 | } |
---|
606 | |
---|
607 | ////////////////////////////////////////////////////////////////////////////// |
---|
608 | proc adjoint(matrix A) |
---|
609 | "USAGE: adjoint(A); A = square matrix |
---|
610 | RETURN: adjoint matrix of A, i.e. Adj*A=det(A)*E |
---|
611 | NOTE: computation uses busadj(A) |
---|
612 | EXAMPLE: example adjoint; shows an example" |
---|
613 | { |
---|
614 | int n=nrows(A); |
---|
615 | matrix Adj[n][n]; |
---|
616 | list L; |
---|
617 | |
---|
618 | if(ncols(A) != n) { |
---|
619 | "// input is not a square matrix"; |
---|
620 | return(Adj); |
---|
621 | } |
---|
622 | |
---|
623 | L = busadj(A); |
---|
624 | Adj= (-1)^(n-1)*L[2][1]; |
---|
625 | return(Adj); |
---|
626 | |
---|
627 | } |
---|
628 | example |
---|
629 | { "EXAMPLE"; echo=2; |
---|
630 | ring r=0,(t,x),lp; |
---|
631 | matrix A[2][2]=1,x2,x,x2+3x; |
---|
632 | print(A); |
---|
633 | matrix Adj[2][2]=adjoint(A); |
---|
634 | print(Adj); //Adj*A=det(A)*E |
---|
635 | print(Adj*A); |
---|
636 | } |
---|
637 | |
---|
638 | ////////////////////////////////////////////////////////////////////////////// |
---|
639 | proc inverse_B(matrix A) |
---|
640 | "USAGE: inverse_B(A); A = square matrix |
---|
641 | RETURN: list Inv with |
---|
642 | - Inv[1] = matrix I and |
---|
643 | - Inv[2] = poly p |
---|
644 | such that I*A = unitmat(n)*p; |
---|
645 | NOTE: p=1 if 1/det(A) is computable and p=det(A) if not; |
---|
646 | the computation uses busadj. |
---|
647 | SEE ALSO: inverse, inverse_L |
---|
648 | EXAMPLE: example inverse_B; shows an example" |
---|
649 | { |
---|
650 | int i; |
---|
651 | int n=nrows(A); |
---|
652 | matrix I[n][n]; |
---|
653 | poly factor; |
---|
654 | list L; |
---|
655 | list Inv; |
---|
656 | |
---|
657 | if(ncols(A) != n) { |
---|
658 | "input is not a square matrix"; |
---|
659 | return(I); |
---|
660 | } |
---|
661 | |
---|
662 | L=busadj(A); |
---|
663 | I=module(-L[2][1]); //+-Adj(A) |
---|
664 | |
---|
665 | if(reduce(1,std(L[1][1]))==0){ |
---|
666 | I=I*lift(L[1][1],1)[1][1]; |
---|
667 | factor=1; |
---|
668 | } |
---|
669 | else{ factor=L[1][1];} //=+-det(A) or 1 |
---|
670 | Inv=insert(Inv,factor); |
---|
671 | Inv=insert(Inv,matrix(I)); |
---|
672 | |
---|
673 | return(Inv); |
---|
674 | } |
---|
675 | example |
---|
676 | { "EXAMPLE"; echo=2; |
---|
677 | ring r=0,(x,y),lp; |
---|
678 | matrix A[3][3]=x,y,1,1,x2,y,x,6,0; |
---|
679 | print(A); |
---|
680 | list Inv=inverse_B(A); |
---|
681 | print(Inv[1]); |
---|
682 | print(Inv[2]); |
---|
683 | print(Inv[1]*A); |
---|
684 | } |
---|
685 | |
---|
686 | ////////////////////////////////////////////////////////////////////////////// |
---|
687 | proc det_B(matrix A) |
---|
688 | "USAGE: det_B(A); A any matrix |
---|
689 | RETURN: returns the determinant of A |
---|
690 | NOTE: the computation uses the busadj algorithm |
---|
691 | EXAMPLE: example det_B; shows an example" |
---|
692 | { |
---|
693 | int n=nrows(A); |
---|
694 | list L; |
---|
695 | |
---|
696 | if(ncols(A) != n){ return(0);} |
---|
697 | |
---|
698 | L=busadj(A); |
---|
699 | return((-1)^n*L[1][1]); |
---|
700 | } |
---|
701 | example |
---|
702 | { "EXAMPLE"; echo=2; |
---|
703 | ring r=0,(x),dp; |
---|
704 | matrix A[10][10]=random(2,10,10)+unitmat(10)*x; |
---|
705 | print(A); |
---|
706 | det_B(A); |
---|
707 | } |
---|
708 | |
---|
709 | ////////////////////////////////////////////////////////////////////////////// |
---|
710 | proc inverse_L(matrix A) |
---|
711 | "USAGE: inverse_L(A); A = square matrix |
---|
712 | RETURN: list Inv representing a left inverse of A, i.e |
---|
713 | - Inv[1] = matrix I and |
---|
714 | - Inv[2] = poly p |
---|
715 | such that I*A = unitmat(n)*p; |
---|
716 | NOTE: p=1 if 1/det(A) is computable and p=det(A) if not; |
---|
717 | the computation computes first det(A) and then uses lift |
---|
718 | SEE ALSO: inverse, inverse_B |
---|
719 | EXAMPLE: example inverse_L; shows an example" |
---|
720 | { |
---|
721 | int n=nrows(A); |
---|
722 | matrix I; |
---|
723 | matrix E[n][n]=unitmat(n); |
---|
724 | poly factor; |
---|
725 | poly d=1; |
---|
726 | list Inv; |
---|
727 | |
---|
728 | if (ncols(A)!=n){ |
---|
729 | "// input is not a square matrix"; |
---|
730 | return(I); |
---|
731 | } |
---|
732 | |
---|
733 | d=det(A); |
---|
734 | if(d==0){ |
---|
735 | "// matrix is not invertible"; |
---|
736 | return(Inv); |
---|
737 | } |
---|
738 | |
---|
739 | // test if 1/det(A) exists |
---|
740 | if(reduce(1,std(d))!=0){ E=E*d;} |
---|
741 | |
---|
742 | I=lift(A,E); |
---|
743 | if(I==unitmat(n)-unitmat(n)){ //catch error in lift |
---|
744 | "// matrix is not invertible"; |
---|
745 | return(Inv); |
---|
746 | } |
---|
747 | |
---|
748 | factor=d; //=det(A) or 1 |
---|
749 | Inv=insert(Inv,factor); |
---|
750 | Inv=insert(Inv,I); |
---|
751 | |
---|
752 | return(Inv); |
---|
753 | } |
---|
754 | example |
---|
755 | { "EXAMPLE"; echo=2; |
---|
756 | ring r=0,(x,y),lp; |
---|
757 | matrix A[3][3]=x,y,1,1,x2,y,x,6,0; |
---|
758 | print(A); |
---|
759 | list Inv=inverse_L(A); |
---|
760 | print(Inv[1]); |
---|
761 | print(Inv[2]); |
---|
762 | print(Inv[1]*A); |
---|
763 | } |
---|
764 | |
---|
765 | ////////////////////////////////////////////////////////////////////////////// |
---|
766 | proc gaussred(matrix A) |
---|
767 | "USAGE: gaussred(A); A any constant matrix |
---|
768 | RETURN: list Z: Z[1]=P , Z[2]=U , Z[3]=S , Z[4]=rank(A) |
---|
769 | gives a row reduced matrix S, a permutation matrix P and a |
---|
770 | normalized lower triangular matrix U, with P*A=U*S |
---|
771 | NOTE: This procedure is designed for teaching purposes mainly. |
---|
772 | The straight forward implementation in the interpreted library |
---|
773 | is not very efficient (no standard basis computation). |
---|
774 | EXAMPLE: example gaussred; shows an example" |
---|
775 | { |
---|
776 | int i,j,l,k,jp,rang; |
---|
777 | poly c,pivo; |
---|
778 | list Z; |
---|
779 | int n = nrows(A); |
---|
780 | int m = ncols(A); |
---|
781 | int mr= n; //max. rang |
---|
782 | matrix P[n][n] = unitmat(n); |
---|
783 | matrix U[n][n] = P; |
---|
784 | |
---|
785 | if(!const_mat(A)){ |
---|
786 | "// input is not a constant matrix"; |
---|
787 | return(Z); |
---|
788 | } |
---|
789 | |
---|
790 | if(n>m){mr=m;} //max. rang |
---|
791 | |
---|
792 | for(i=1;i<=mr;i=i+1){ |
---|
793 | if((i+k)>m){break}; |
---|
794 | |
---|
795 | //Test: Diagonalelement=0 |
---|
796 | if(A[i,i+k]==0){ |
---|
797 | jp=i;pivo=0; |
---|
798 | for(j=i+1;j<=n;j=j+1){ |
---|
799 | c=abs(A[j,i+k]); |
---|
800 | if(pivo<c){ pivo=c;jp=j;} |
---|
801 | } |
---|
802 | if(jp != i){ //Zeilentausch |
---|
803 | for(j=1;j<=m;j=j+1){ //Zeilentausch in A (und U) (i-te mit jp-ter) |
---|
804 | c=A[i,j]; |
---|
805 | A[i,j]=A[jp,j]; |
---|
806 | A[jp,j]=c; |
---|
807 | } |
---|
808 | for(j=1;j<=n;j=j+1){ //Zeilentausch in P |
---|
809 | c=P[i,j]; |
---|
810 | P[i,j]=P[jp,j]; |
---|
811 | P[jp,j]=c; |
---|
812 | } |
---|
813 | } |
---|
814 | if(pivo==0){k++;continue;} //eine von selbst auftauchende Stufe ! |
---|
815 | } //i sollte im naechsten Lauf nicht erhoeht sein |
---|
816 | |
---|
817 | //Eliminationsschritt |
---|
818 | for(j=i+1;j<=n;j=j+1){ |
---|
819 | c=A[j,i+k]/A[i,i+k]; |
---|
820 | for(l=i+k+1;l<=m;l=l+1){ |
---|
821 | A[j,l]=A[j,l]-A[i,l]*c; |
---|
822 | } |
---|
823 | A[j,i+k]=0; // nur wichtig falls k>0 ist |
---|
824 | A[j,i]=c; // bildet U |
---|
825 | } |
---|
826 | rang=i; |
---|
827 | } |
---|
828 | |
---|
829 | for(i=1;i<=mr;i=i+1){ |
---|
830 | for(j=i+1;j<=n;j=j+1){ |
---|
831 | U[j,i]=A[j,i]; |
---|
832 | A[j,i]=0; |
---|
833 | } |
---|
834 | } |
---|
835 | |
---|
836 | Z=insert(Z,rang); |
---|
837 | Z=insert(Z,A); |
---|
838 | Z=insert(Z,U); |
---|
839 | Z=insert(Z,P); |
---|
840 | |
---|
841 | return(Z); |
---|
842 | } |
---|
843 | example |
---|
844 | { "EXAMPLE";echo=2; |
---|
845 | ring r=0,(x),dp; |
---|
846 | matrix A[5][4]=1,3,-1,4,2,5,-1,3,1,3,-1,4,0,4,-3,1,-3,1,-5,-2; |
---|
847 | print(A); |
---|
848 | list Z=gaussred(A); //construct P,U,S s.t. P*A=U*S |
---|
849 | print(Z[1]); //P |
---|
850 | print(Z[2]); //U |
---|
851 | print(Z[3]); //S |
---|
852 | print(Z[4]); //rank |
---|
853 | print(Z[1]*A); //P*A |
---|
854 | print(Z[2]*Z[3]); //U*S |
---|
855 | } |
---|
856 | |
---|
857 | ////////////////////////////////////////////////////////////////////////////// |
---|
858 | proc gaussred_pivot(matrix A) |
---|
859 | "USAGE: gaussred_pivot(A); A any constant matrix |
---|
860 | RETURN: list Z: Z[1]=P , Z[2]=U , Z[3]=S , Z[4]=rank(A) |
---|
861 | gives n row reduced matrix S, a permutation matrix P and a |
---|
862 | normalized lower triangular matrix U, with P*A=U*S |
---|
863 | NOTE: with row pivoting |
---|
864 | EXAMPLE: example gaussred_pivot; shows an example" |
---|
865 | { |
---|
866 | int i,j,l,k,jp,rang; |
---|
867 | poly c,pivo; |
---|
868 | list Z; |
---|
869 | int n=nrows(A); |
---|
870 | int m=ncols(A); |
---|
871 | int mr=n; //max. rang |
---|
872 | matrix P[n][n]=unitmat(n); |
---|
873 | matrix U[n][n]=P; |
---|
874 | |
---|
875 | if(!const_mat(A)){ |
---|
876 | "// input is not a constant matrix"; |
---|
877 | return(Z); |
---|
878 | } |
---|
879 | |
---|
880 | if(n>m){mr=m;} //max. rang |
---|
881 | |
---|
882 | for(i=1;i<=mr;i=i+1){ |
---|
883 | if((i+k)>m){break}; |
---|
884 | |
---|
885 | //Pivotisierung |
---|
886 | pivo=abs(A[i,i+k]);jp=i; |
---|
887 | for(j=i+1;j<=n;j=j+1){ |
---|
888 | c=abs(A[j,i+k]); |
---|
889 | if(pivo<c){ pivo=c;jp=j;} |
---|
890 | } |
---|
891 | if(jp != i){ //Zeilentausch |
---|
892 | for(j=1;j<=m;j=j+1){ //Zeilentausch in A (und U) (i-te mit jp-ter) |
---|
893 | c=A[i,j]; |
---|
894 | A[i,j]=A[jp,j]; |
---|
895 | A[jp,j]=c; |
---|
896 | } |
---|
897 | for(j=1;j<=n;j=j+1){ //Zeilentausch in P |
---|
898 | c=P[i,j]; |
---|
899 | P[i,j]=P[jp,j]; |
---|
900 | P[jp,j]=c; |
---|
901 | } |
---|
902 | } |
---|
903 | if(pivo==0){k++;continue;} //eine von selbst auftauchende Stufe ! |
---|
904 | //i sollte im naechsten Lauf nicht erhoeht sein |
---|
905 | //Eliminationsschritt |
---|
906 | for(j=i+1;j<=n;j=j+1){ |
---|
907 | c=A[j,i+k]/A[i,i+k]; |
---|
908 | for(l=i+k+1;l<=m;l=l+1){ |
---|
909 | A[j,l]=A[j,l]-A[i,l]*c; |
---|
910 | } |
---|
911 | A[j,i+k]=0; // nur wichtig falls k>0 ist |
---|
912 | A[j,i]=c; // bildet U |
---|
913 | } |
---|
914 | rang=i; |
---|
915 | } |
---|
916 | |
---|
917 | for(i=1;i<=mr;i=i+1){ |
---|
918 | for(j=i+1;j<=n;j=j+1){ |
---|
919 | U[j,i]=A[j,i]; |
---|
920 | A[j,i]=0; |
---|
921 | } |
---|
922 | } |
---|
923 | |
---|
924 | Z=insert(Z,rang); |
---|
925 | Z=insert(Z,A); |
---|
926 | Z=insert(Z,U); |
---|
927 | Z=insert(Z,P); |
---|
928 | |
---|
929 | return(Z); |
---|
930 | } |
---|
931 | example |
---|
932 | { "EXAMPLE";echo=2; |
---|
933 | ring r=0,(x),dp; |
---|
934 | matrix A[5][4] = 1, 3,-1,4, |
---|
935 | 2, 5,-1,3, |
---|
936 | 1, 3,-1,4, |
---|
937 | 0, 4,-3,1, |
---|
938 | -3,1,-5,-2; |
---|
939 | list Z=gaussred_pivot(A); //construct P,U,S s.t. P*A=U*S |
---|
940 | print(Z[1]); //P |
---|
941 | print(Z[2]); //U |
---|
942 | print(Z[3]); //S |
---|
943 | print(Z[4]); //rank |
---|
944 | print(Z[1]*A); //P*A |
---|
945 | print(Z[2]*Z[3]); //U*S |
---|
946 | } |
---|
947 | |
---|
948 | ////////////////////////////////////////////////////////////////////////////// |
---|
949 | proc gauss_nf(matrix A) |
---|
950 | "USAGE: gauss_nf(A); A any constant matrix |
---|
951 | RETURN: matrix; gauss normal form of A (uses gaussred) |
---|
952 | EXAMPLE: example gauss_nf; shows an example" |
---|
953 | { |
---|
954 | list Z; |
---|
955 | if(!const_mat(A)){ |
---|
956 | "// input is not a constant matrix"; |
---|
957 | return(A); |
---|
958 | } |
---|
959 | Z = gaussred(A); |
---|
960 | return(Z[3]); |
---|
961 | } |
---|
962 | example |
---|
963 | { "EXAMPLE";echo=2; |
---|
964 | ring r = 0,(x),dp; |
---|
965 | matrix A[4][4] = 1,4,4,7,2,5,5,4,4,1,1,3,0,2,2,7; |
---|
966 | print(gauss_nf(A)); |
---|
967 | } |
---|
968 | |
---|
969 | ////////////////////////////////////////////////////////////////////////////// |
---|
970 | proc mat_rk(matrix A) |
---|
971 | "USAGE: mat_rk(A); A any constant matrix |
---|
972 | RETURN: int, rank of A |
---|
973 | EXAMPLE: example mat_rk; shows an example" |
---|
974 | { |
---|
975 | list Z; |
---|
976 | if(!const_mat(A)){ |
---|
977 | "// input is not a constant matrix"; |
---|
978 | return(-1); |
---|
979 | } |
---|
980 | Z = gaussred(A); |
---|
981 | return(Z[4]); |
---|
982 | } |
---|
983 | example |
---|
984 | { "EXAMPLE";echo=2; |
---|
985 | ring r = 0,(x),dp; |
---|
986 | matrix A[4][4] = 1,4,4,7,2,5,5,4,4,1,1,3,0,2,2,7; |
---|
987 | mat_rk(A); |
---|
988 | } |
---|
989 | |
---|
990 | ////////////////////////////////////////////////////////////////////////////// |
---|
991 | proc U_D_O(matrix A) |
---|
992 | "USAGE: U_D_O(A); constant invertible matrix A |
---|
993 | RETURN: list Z: Z[1]=P , Z[2]=U , Z[3]=D , Z[4]=O |
---|
994 | gives a permutation matrix P, |
---|
995 | a normalized lower triangular matrix U , |
---|
996 | a diagonal matrix D, and |
---|
997 | a normalized upper triangular matrix O |
---|
998 | with P*A=U*D*O |
---|
999 | NOTE: Z[1]=-1 means that A is not regular (proc uses gaussred) |
---|
1000 | EXAMPLE: example U_D_O; shows an example" |
---|
1001 | { |
---|
1002 | int i,j; |
---|
1003 | list Z,L; |
---|
1004 | int n=nrows(A); |
---|
1005 | matrix O[n][n]=unitmat(n); |
---|
1006 | matrix D[n][n]; |
---|
1007 | |
---|
1008 | if (ncols(A)!=n){ |
---|
1009 | "// input is not a square matrix"; |
---|
1010 | return(Z); |
---|
1011 | } |
---|
1012 | if(!const_mat(A)){ |
---|
1013 | "// input is not a constant matrix"; |
---|
1014 | return(Z); |
---|
1015 | } |
---|
1016 | |
---|
1017 | L=gaussred(A); |
---|
1018 | |
---|
1019 | if(L[4]!=n){ |
---|
1020 | "// input is not an invertible matrix"; |
---|
1021 | Z=insert(Z,-1); //hint for calling procedures |
---|
1022 | return(Z); |
---|
1023 | } |
---|
1024 | |
---|
1025 | D=L[3]; |
---|
1026 | |
---|
1027 | for(i=1; i<=n; i++){ |
---|
1028 | for(j=i+1; j<=n; j++){ |
---|
1029 | O[i,j] = D[i,j]/D[i,i]; |
---|
1030 | D[i,j] = 0; |
---|
1031 | } |
---|
1032 | } |
---|
1033 | |
---|
1034 | Z=insert(Z,O); |
---|
1035 | Z=insert(Z,D); |
---|
1036 | Z=insert(Z,L[2]); |
---|
1037 | Z=insert(Z,L[1]); |
---|
1038 | return(Z); |
---|
1039 | } |
---|
1040 | example |
---|
1041 | { "EXAMPLE";echo=2; |
---|
1042 | ring r = 0,(x),dp; |
---|
1043 | matrix A[5][5] = 10, 4, 0, -9, 8, |
---|
1044 | -3, 6, -6, -4, 9, |
---|
1045 | 0, 3, -1, -9, -8, |
---|
1046 | -4,-2, -6, -10,10, |
---|
1047 | -9, 5, -1, -6, 5; |
---|
1048 | list Z = U_D_O(A); //construct P,U,D,O s.t. P*A=U*D*O |
---|
1049 | print(Z[1]); //P |
---|
1050 | print(Z[2]); //U |
---|
1051 | print(Z[3]); //D |
---|
1052 | print(Z[4]); //O |
---|
1053 | print(Z[1]*A); //P*A |
---|
1054 | print(Z[2]*Z[3]*Z[4]); //U*D*O |
---|
1055 | } |
---|
1056 | |
---|
1057 | ////////////////////////////////////////////////////////////////////////////// |
---|
1058 | proc pos_def(matrix A) |
---|
1059 | "USAGE: pos_def(A); A = constant, symmetric square matrix |
---|
1060 | RETURN: int: |
---|
1061 | 1 if A is positive definit , |
---|
1062 | 0 if not, |
---|
1063 | -1 if unknown |
---|
1064 | EXAMPLE: example pos_def; shows an example" |
---|
1065 | { |
---|
1066 | int j; |
---|
1067 | list Z; |
---|
1068 | int n = nrows(A); |
---|
1069 | matrix H[n][n]; |
---|
1070 | |
---|
1071 | if (ncols(A)!=n){ |
---|
1072 | "// input is not a square matrix"; |
---|
1073 | return(0); |
---|
1074 | } |
---|
1075 | if(!const_mat(A)){ |
---|
1076 | "// input is not a constant matrix"; |
---|
1077 | return(-1); |
---|
1078 | } |
---|
1079 | if(deg(std(A-transpose(A))[1])!=-1){ |
---|
1080 | "// input is not a hermitian (symmetric) matrix"; |
---|
1081 | return(-1); |
---|
1082 | } |
---|
1083 | |
---|
1084 | Z=U_D_O(A); |
---|
1085 | |
---|
1086 | if(Z[1]==-1){ |
---|
1087 | return(0); |
---|
1088 | } //A not regular, therefore not pos. definit |
---|
1089 | |
---|
1090 | H=Z[1]; |
---|
1091 | //es fand Zeilentausch statt: also nicht positiv definit |
---|
1092 | if(deg(std(H-unitmat(n))[1])!=-1){ |
---|
1093 | return(0); |
---|
1094 | } |
---|
1095 | |
---|
1096 | H=Z[3]; |
---|
1097 | |
---|
1098 | for(j=1;j<=n;j=j+1){ |
---|
1099 | if(H[j,j]<=0){ |
---|
1100 | return(0); |
---|
1101 | } //eigenvalue<=0, not pos.definit |
---|
1102 | } |
---|
1103 | |
---|
1104 | return(1); //positiv definit; |
---|
1105 | } |
---|
1106 | example |
---|
1107 | { "EXAMPLE"; echo=2; |
---|
1108 | ring r = 0,(x),dp; |
---|
1109 | matrix A[5][5] = 20, 4, 0, -9, 8, |
---|
1110 | 4, 12, -6, -4, 9, |
---|
1111 | 0, -6, -2, -9, -8, |
---|
1112 | -9, -4, -9, -20, 10, |
---|
1113 | 8, 9, -8, 10, 10; |
---|
1114 | pos_def(A); |
---|
1115 | matrix B[3][3] = 3, 2, 0, |
---|
1116 | 2, 12, 4, |
---|
1117 | 0, 4, 2; |
---|
1118 | pos_def(B); |
---|
1119 | } |
---|
1120 | |
---|
1121 | ////////////////////////////////////////////////////////////////////////////// |
---|
1122 | proc linsolve(matrix A, matrix b) |
---|
1123 | "USAGE: linsolve(A,b); A a constant nxm-matrix, b a constant nx1-matrix |
---|
1124 | RETURN: a 1xm matrix X, solution of inhomogeneous linear system A*X = b |
---|
1125 | return the 0-matrix if system is not solvable |
---|
1126 | NOTE: uses gaussred |
---|
1127 | EXAMPLE: example linsolve; shows an example" |
---|
1128 | { |
---|
1129 | int i,j,k,rc,r; |
---|
1130 | poly c; |
---|
1131 | list Z; |
---|
1132 | int n = nrows(A); |
---|
1133 | int m = ncols(A); |
---|
1134 | int n_b= nrows(b); |
---|
1135 | matrix Ab[n][m+1]; |
---|
1136 | matrix X[m][1]; |
---|
1137 | |
---|
1138 | if(ncols(b)!=1){ |
---|
1139 | "// right hand side b is not a nx1 matrix"; |
---|
1140 | return(X); |
---|
1141 | } |
---|
1142 | |
---|
1143 | if(!const_mat(A)){ |
---|
1144 | "// input hand is not a constant matrix"; |
---|
1145 | return(X); |
---|
1146 | } |
---|
1147 | |
---|
1148 | if(n_b>n){ |
---|
1149 | for(i=n; i<=n_b; i++){ |
---|
1150 | if(b[i,1]!=0){ |
---|
1151 | "// right hand side b not in Image(A)"; |
---|
1152 | return X; |
---|
1153 | } |
---|
1154 | } |
---|
1155 | } |
---|
1156 | |
---|
1157 | if(n_b<n){ |
---|
1158 | matrix copy[n_b][1]=b; |
---|
1159 | matrix b[n][1]=0; |
---|
1160 | for(i=1;i<=n_b;i=i+1){ |
---|
1161 | b[i,1]=copy[i,1]; |
---|
1162 | } |
---|
1163 | } |
---|
1164 | |
---|
1165 | r=mat_rk(A); |
---|
1166 | |
---|
1167 | //1. b constant vector |
---|
1168 | if(const_mat(b)){ |
---|
1169 | //extend A with b |
---|
1170 | for(i=1; i<=n; i++){ |
---|
1171 | for(j=1; j<=m; j++){ |
---|
1172 | Ab[i,j]=A[i,j]; |
---|
1173 | } |
---|
1174 | Ab[i,m+1]=b[i,1]; |
---|
1175 | } |
---|
1176 | |
---|
1177 | //Gauss reduction |
---|
1178 | Z = gaussred(Ab); |
---|
1179 | Ab = Z[3]; //normal form |
---|
1180 | rc = Z[4]; //rank(Ab) |
---|
1181 | //print(Ab); |
---|
1182 | |
---|
1183 | if(r<rc){ |
---|
1184 | "// no solution"; |
---|
1185 | return(X); |
---|
1186 | } |
---|
1187 | k=m; |
---|
1188 | for(i=r;i>=1;i=i-1){ |
---|
1189 | |
---|
1190 | j=1; |
---|
1191 | while(Ab[i,j]==0){j=j+1;}// suche Ecke |
---|
1192 | |
---|
1193 | for(;k>j;k=k-1){ X[k]=0;}//springe zur Ecke |
---|
1194 | |
---|
1195 | |
---|
1196 | c=Ab[i,m+1]; //i-te Komponene von b |
---|
1197 | for(j=m;j>k;j=j-1){ |
---|
1198 | c=c-X[j,1]*Ab[i,j]; |
---|
1199 | } |
---|
1200 | if(Ab[i,k]==0){ |
---|
1201 | X[k,1]=1; //willkuerlich |
---|
1202 | } |
---|
1203 | else{ |
---|
1204 | X[k,1]=c/Ab[i,k]; |
---|
1205 | } |
---|
1206 | k=k-1; |
---|
1207 | if(k==0){break;} |
---|
1208 | } |
---|
1209 | |
---|
1210 | |
---|
1211 | }//endif (const b) |
---|
1212 | else{ //b not constant |
---|
1213 | "// !not implemented!"; |
---|
1214 | |
---|
1215 | } |
---|
1216 | |
---|
1217 | return(X); |
---|
1218 | } |
---|
1219 | example |
---|
1220 | { "EXAMPLE";echo=2; |
---|
1221 | ring r=0,(x),dp; |
---|
1222 | matrix A[3][2] = -4,-6, |
---|
1223 | 2, 3, |
---|
1224 | -5, 7; |
---|
1225 | matrix b[3][1] = 10, |
---|
1226 | -5, |
---|
1227 | 2; |
---|
1228 | matrix X = linsolve(A,b); |
---|
1229 | print(X); |
---|
1230 | print(A*X); |
---|
1231 | } |
---|
1232 | ////////////////////////////////////////////////////////////////////////////// |
---|
1233 | |
---|
1234 | /////////////////////////////////////////////////////////////////////////////// |
---|
1235 | // PROCEDURES for Jordan normal form |
---|
1236 | // AUTHOR: Mathias Schulze, email: mschulze@mathematik.uni-kl.de |
---|
1237 | /////////////////////////////////////////////////////////////////////////////// |
---|
1238 | |
---|
1239 | static proc swap(matrix M,int i,int j) |
---|
1240 | { |
---|
1241 | if(i==j) |
---|
1242 | { |
---|
1243 | return(M); |
---|
1244 | } |
---|
1245 | poly p; |
---|
1246 | for(int k=1;k<=nrows(M);k++) |
---|
1247 | { |
---|
1248 | p=M[i,k]; |
---|
1249 | M[i,k]=M[j,k]; |
---|
1250 | M[j,k]=p; |
---|
1251 | } |
---|
1252 | for(k=1;k<=ncols(M);k++) |
---|
1253 | { |
---|
1254 | p=M[k,i]; |
---|
1255 | M[k,i]=M[k,j]; |
---|
1256 | M[k,j]=p; |
---|
1257 | } |
---|
1258 | return(M); |
---|
1259 | } |
---|
1260 | ////////////////////////////////////////////////////////////////////////////// |
---|
1261 | |
---|
1262 | static proc rowelim(matrix M,int i,int j,int k) |
---|
1263 | { |
---|
1264 | if(jet(M[i,k],0)==0||jet(M[j,k],0)==0) |
---|
1265 | { |
---|
1266 | return(M); |
---|
1267 | } |
---|
1268 | number n=number(jet(M[i,k],0))/number(jet(M[j,k],0)); |
---|
1269 | for(int l=1;l<=ncols(M);l++) |
---|
1270 | { |
---|
1271 | M[i,l]=M[i,l]-n*M[j,l]; |
---|
1272 | } |
---|
1273 | for(l=1;l<=nrows(M);l++) |
---|
1274 | { |
---|
1275 | M[l,j]=M[l,j]+n*M[l,i]; |
---|
1276 | } |
---|
1277 | return(M); |
---|
1278 | } |
---|
1279 | /////////////////////////////////////////////////////////////////////////////// |
---|
1280 | |
---|
1281 | static proc colelim(matrix M,int i,int j,int k) |
---|
1282 | { |
---|
1283 | if(jet(M[k,i],0)==0||jet(M[k,j],0)==0) |
---|
1284 | { |
---|
1285 | return(M); |
---|
1286 | } |
---|
1287 | number n=number(jet(M[k,i],0))/number(jet(M[k,j],0)); |
---|
1288 | for(int l=1;l<=nrows(M);l++) |
---|
1289 | { |
---|
1290 | M[l,i]=M[l,i]-m*M[l,j]; |
---|
1291 | } |
---|
1292 | for(l=1;l<=ncols(M);l++) |
---|
1293 | { |
---|
1294 | M[j,l]=M[j,l]-n*M[i,l]; |
---|
1295 | } |
---|
1296 | return(M); |
---|
1297 | } |
---|
1298 | /////////////////////////////////////////////////////////////////////////////// |
---|
1299 | |
---|
1300 | proc hessenberg(matrix M) |
---|
1301 | "USAGE: hessenberg(M); matrix M |
---|
1302 | ASSUME: M constant square matrix |
---|
1303 | RETURN: matrix H in Hessenberg form with H=inverse(U)*M*U for some U |
---|
1304 | EXAMPLE: example hessenberg; shows examples |
---|
1305 | " |
---|
1306 | { |
---|
1307 | int n=ncols(M); |
---|
1308 | int i,j; |
---|
1309 | for(int k=1;k<n-1;k++) |
---|
1310 | { |
---|
1311 | j=k+1; |
---|
1312 | while(j<n&&jet(M[j,k],0)==0) |
---|
1313 | { |
---|
1314 | j++; |
---|
1315 | } |
---|
1316 | if(jet(M[j,k],0)!=0) |
---|
1317 | { |
---|
1318 | M=swap(M,j,k+1); |
---|
1319 | for(i=j+1;i<=n;i++) |
---|
1320 | { |
---|
1321 | M=rowelim(M,i,k+1,k); |
---|
1322 | } |
---|
1323 | } |
---|
1324 | } |
---|
1325 | return(M); |
---|
1326 | } |
---|
1327 | example |
---|
1328 | { "EXAMPLE:"; echo=2; |
---|
1329 | ring R=0,x,dp; |
---|
1330 | matrix M[3][3]=3,2,1,0,2,1,0,0,3; |
---|
1331 | print(M); |
---|
1332 | print(hessenberg(M)); |
---|
1333 | } |
---|
1334 | /////////////////////////////////////////////////////////////////////////////// |
---|
1335 | |
---|
1336 | static proc addval(list l,poly e,int m) |
---|
1337 | { |
---|
1338 | if(size(l)==0) |
---|
1339 | { |
---|
1340 | return(list(ideal(e),intvec(m))); |
---|
1341 | } |
---|
1342 | int n=ncols(l[1]); |
---|
1343 | for(int i=n;i>=1;i--) |
---|
1344 | { |
---|
1345 | if(l[1][i]==e) |
---|
1346 | { |
---|
1347 | l[2][i]=l[2][i]+m; |
---|
1348 | return(l); |
---|
1349 | } |
---|
1350 | } |
---|
1351 | l[1][n+1]=e; |
---|
1352 | l[2][n+1]=m; |
---|
1353 | return(l); |
---|
1354 | } |
---|
1355 | /////////////////////////////////////////////////////////////////////////////// |
---|
1356 | |
---|
1357 | static proc sortval(list l) |
---|
1358 | { |
---|
1359 | def e,m=l[1..2]; |
---|
1360 | int n=ncols(e); |
---|
1361 | poly ee; |
---|
1362 | int mm; |
---|
1363 | int i,j; |
---|
1364 | for(i=n;i>1;i--) |
---|
1365 | { |
---|
1366 | for(j=i-1;j>=1;j--) |
---|
1367 | { |
---|
1368 | if(number(e[j])>number(e[i])) |
---|
1369 | { |
---|
1370 | ee=e[i]; |
---|
1371 | e[i]=e[j]; |
---|
1372 | e[j]=ee; |
---|
1373 | mm=m[i]; |
---|
1374 | m[i]=m[j]; |
---|
1375 | m[j]=mm; |
---|
1376 | } |
---|
1377 | } |
---|
1378 | } |
---|
1379 | return(list(e,m)); |
---|
1380 | } |
---|
1381 | /////////////////////////////////////////////////////////////////////////////// |
---|
1382 | |
---|
1383 | proc eigenvalues(matrix M) |
---|
1384 | "USAGE: eigenvalues(M); matrix M |
---|
1385 | ASSUME: M constant square matrix, eigenvalues of M in coefficient field |
---|
1386 | RETURN: |
---|
1387 | @format |
---|
1388 | list l: |
---|
1389 | ideal l[1]: eigenvalues of M |
---|
1390 | intvec l[2]: |
---|
1391 | int l[2][i]: multiplicity of eigenvalue l[1][i] |
---|
1392 | @end format |
---|
1393 | EXAMPLE: example eigenval; shows examples |
---|
1394 | " |
---|
1395 | { |
---|
1396 | M=jet(hessenberg(M),0); |
---|
1397 | int n=ncols(M); |
---|
1398 | number e; |
---|
1399 | intvec v; |
---|
1400 | list l,f; |
---|
1401 | int i; |
---|
1402 | int j=1; |
---|
1403 | while(j<=n) |
---|
1404 | { |
---|
1405 | v=j; |
---|
1406 | j++; |
---|
1407 | if(j<=n) |
---|
1408 | { |
---|
1409 | while(j<n&&M[j,j-1]!=0) |
---|
1410 | { |
---|
1411 | v=v,j; |
---|
1412 | j++; |
---|
1413 | } |
---|
1414 | if(M[j,j-1]!=0) |
---|
1415 | { |
---|
1416 | v=v,j; |
---|
1417 | j++; |
---|
1418 | } |
---|
1419 | } |
---|
1420 | if(size(v)==1) |
---|
1421 | { |
---|
1422 | l=addval(l,M[v,v],1); |
---|
1423 | } |
---|
1424 | else |
---|
1425 | { |
---|
1426 | f=factorize(det(submat(M,v,v)-var(1))); |
---|
1427 | for(i=size(f[1]);i>=1;i--) |
---|
1428 | { |
---|
1429 | e=number(jet(f[1][i]/var(1),0)); |
---|
1430 | if(e!=0) |
---|
1431 | { |
---|
1432 | l=addval(l,(e*var(1)-f[1][i])/e,f[2][i]); |
---|
1433 | } |
---|
1434 | } |
---|
1435 | } |
---|
1436 | } |
---|
1437 | return(sortval(l)); |
---|
1438 | } |
---|
1439 | example |
---|
1440 | { "EXAMPLE:"; echo=2; |
---|
1441 | ring R=0,x,dp; |
---|
1442 | matrix M[3][3]=3,2,1,0,2,1,0,0,3; |
---|
1443 | print(M); |
---|
1444 | eigenvalues(M); |
---|
1445 | } |
---|
1446 | /////////////////////////////////////////////////////////////////////////////// |
---|
1447 | |
---|
1448 | proc jordan(matrix M) |
---|
1449 | "USAGE: jordan(M); matrix M |
---|
1450 | ASSUME: M constant square matrix, eigenvalues of M in coefficient field |
---|
1451 | RETURN: |
---|
1452 | @format |
---|
1453 | list l: |
---|
1454 | ideal l[1]: eigenvalues of M in increasing order |
---|
1455 | intvec l[2]: corresponding Jordan block sizes |
---|
1456 | intvec l[3]: corresponding multiplicities |
---|
1457 | @end format |
---|
1458 | EXAMPLE: example jordan; shows examples |
---|
1459 | " |
---|
1460 | { |
---|
1461 | if(nrows(M)==0) |
---|
1462 | { |
---|
1463 | ERROR("non empty expected"); |
---|
1464 | } |
---|
1465 | if(ncols(M)!=nrows(M)) |
---|
1466 | { |
---|
1467 | ERROR("square matrix expected"); |
---|
1468 | } |
---|
1469 | |
---|
1470 | M=jet(M,0); |
---|
1471 | |
---|
1472 | list l=eigenvalues(M); |
---|
1473 | def e0,m0=l[1..2]; |
---|
1474 | kill l; |
---|
1475 | |
---|
1476 | int i; |
---|
1477 | for(i=1;i<=ncols(e0);i++) |
---|
1478 | { |
---|
1479 | if(deg(e0[i]>0)) |
---|
1480 | { |
---|
1481 | ERROR("eigenvalues in coefficient field expected"); |
---|
1482 | return(list()); |
---|
1483 | } |
---|
1484 | } |
---|
1485 | |
---|
1486 | int j,k; |
---|
1487 | matrix N0,N1; |
---|
1488 | module K0; |
---|
1489 | list K; |
---|
1490 | ideal e; |
---|
1491 | intvec s,m; |
---|
1492 | |
---|
1493 | for(i=1;i<=ncols(e0);i++) |
---|
1494 | { |
---|
1495 | N0=M-e0[i]*freemodule(ncols(M)); |
---|
1496 | |
---|
1497 | N1=N0; |
---|
1498 | K0=0; |
---|
1499 | K=module(); |
---|
1500 | while(size(K0)<m0[i]) |
---|
1501 | { |
---|
1502 | K0=syz(N1); |
---|
1503 | K=K+list(K0); |
---|
1504 | N1=N1*N0; |
---|
1505 | } |
---|
1506 | |
---|
1507 | for(j=2;j<size(K);j++) |
---|
1508 | { |
---|
1509 | if(2*size(K[j])-size(K[j-1])-size(K[j+1])>0) |
---|
1510 | { |
---|
1511 | k++; |
---|
1512 | e[k]=e0[i]; |
---|
1513 | s[k]=j-1; |
---|
1514 | m[k]=2*size(K[j])-size(K[j-1])-size(K[j+1]); |
---|
1515 | } |
---|
1516 | } |
---|
1517 | if(size(K[j])-size(K[j-1])>0) |
---|
1518 | { |
---|
1519 | k++; |
---|
1520 | e[k]=e0[i]; |
---|
1521 | s[k]=j-1; |
---|
1522 | m[k]=size(K[j])-size(K[j-1]); |
---|
1523 | } |
---|
1524 | } |
---|
1525 | |
---|
1526 | return(list(e,s,m)); |
---|
1527 | } |
---|
1528 | example |
---|
1529 | { "EXAMPLE:"; echo=2; |
---|
1530 | ring R=0,x,dp; |
---|
1531 | matrix M[3][3]=3,2,1,0,2,1,0,0,3; |
---|
1532 | print(M); |
---|
1533 | jordan(M); |
---|
1534 | } |
---|
1535 | /////////////////////////////////////////////////////////////////////////////// |
---|
1536 | |
---|
1537 | proc jordanbasis(matrix M) |
---|
1538 | "USAGE: jordanbasis(M); matrix M |
---|
1539 | ASSUME: M constant square matrix, eigenvalues of M in coefficient field |
---|
1540 | RETURN: |
---|
1541 | @format |
---|
1542 | list l: |
---|
1543 | module l[1]: inverse(l[1])*M*l[1] has Jordan normal form |
---|
1544 | intvec l[2]: weight filtration indices of l[1] with center 0 |
---|
1545 | @end format |
---|
1546 | EXAMPLE: example jordanbasis; shows examples |
---|
1547 | " |
---|
1548 | { |
---|
1549 | if(nrows(M)==0) |
---|
1550 | { |
---|
1551 | ERROR("non empty matrix expected"); |
---|
1552 | } |
---|
1553 | if(ncols(M)!=nrows(M)) |
---|
1554 | { |
---|
1555 | ERROR("square matrix expected"); |
---|
1556 | } |
---|
1557 | |
---|
1558 | M=jet(M,0); |
---|
1559 | |
---|
1560 | list l=eigenvalues(M); |
---|
1561 | def e,m=l[1..2]; |
---|
1562 | kill l; |
---|
1563 | |
---|
1564 | int i; |
---|
1565 | for(i=1;i<=ncols(e);i++) |
---|
1566 | { |
---|
1567 | if(deg(e[i]>0)) |
---|
1568 | { |
---|
1569 | ERROR("eigenvalues in coefficient field expected"); |
---|
1570 | return(freemodule(ncols(M))); |
---|
1571 | } |
---|
1572 | } |
---|
1573 | |
---|
1574 | int j,k,l; |
---|
1575 | matrix N0,N1; |
---|
1576 | module K0,K1; |
---|
1577 | list K; |
---|
1578 | matrix u[ncols(M)][1]; |
---|
1579 | module U; |
---|
1580 | intvec w; |
---|
1581 | |
---|
1582 | for(i=ncols(e);i>=1;i--) |
---|
1583 | { |
---|
1584 | N0=M-e[i]*freemodule(ncols(M)); |
---|
1585 | |
---|
1586 | N1=N0; |
---|
1587 | K0=0; |
---|
1588 | K=list(); |
---|
1589 | while(size(K0)<m[i]) |
---|
1590 | { |
---|
1591 | K0=syz(N1); |
---|
1592 | K=K+list(K0); |
---|
1593 | N1=N1*N0; |
---|
1594 | } |
---|
1595 | |
---|
1596 | K1=0; |
---|
1597 | for(j=1;j<size(K);j++) |
---|
1598 | { |
---|
1599 | K0=K[j]; |
---|
1600 | K[j]=interred(reduce(K[j],std(K1+module(N0*K[j+1])))); |
---|
1601 | K1=K0; |
---|
1602 | } |
---|
1603 | K[j]=interred(reduce(K[j],std(K1))); |
---|
1604 | |
---|
1605 | for(l=size(K);l>=1;l--) |
---|
1606 | { |
---|
1607 | for(k=size(K[l]);k>0;k--) |
---|
1608 | { |
---|
1609 | u=K[l][k]; |
---|
1610 | for(j=l;j>=1;j--) |
---|
1611 | { |
---|
1612 | U=module(u)+U; |
---|
1613 | w=2*j-l-1,w; |
---|
1614 | u=N0*u; |
---|
1615 | } |
---|
1616 | } |
---|
1617 | } |
---|
1618 | } |
---|
1619 | w=w[1..size(w)-1]; |
---|
1620 | return(list(U,w)); |
---|
1621 | } |
---|
1622 | example |
---|
1623 | { "EXAMPLE:"; echo=2; |
---|
1624 | ring R=0,x,dp; |
---|
1625 | matrix M[3][3]=3,2,1,0,2,1,0,0,3; |
---|
1626 | print(M); |
---|
1627 | list l=jordanbasis(M); |
---|
1628 | print(l[1]); |
---|
1629 | print(l[2]); |
---|
1630 | print(inverse(l[1])*M*l[1]); |
---|
1631 | } |
---|
1632 | /////////////////////////////////////////////////////////////////////////////// |
---|
1633 | |
---|
1634 | proc jordanmatrix(ideal e,intvec s,intvec m) |
---|
1635 | "USAGE: jordanmatrix(e,s,m); ideal e, intvec s, intvec m |
---|
1636 | RETURN: |
---|
1637 | @format |
---|
1638 | matrix J: Jordan normal form with eigenvalues e and Jordan block sizes s |
---|
1639 | with multiplicities m |
---|
1640 | @end format |
---|
1641 | EXAMPLE: example jordanmatrix; shows examples |
---|
1642 | " |
---|
1643 | { |
---|
1644 | if(ncols(e)!=size(s)||size(e)!=size(m)) |
---|
1645 | { |
---|
1646 | ERROR("arguments of equal size expected"); |
---|
1647 | } |
---|
1648 | |
---|
1649 | int i,j,k,l; |
---|
1650 | int n=int((transpose(matrix(s))*matrix(m))[1,1]); |
---|
1651 | matrix J[n][n]; |
---|
1652 | for(k=1;k<=ncols(e);k++) |
---|
1653 | { |
---|
1654 | for(l=1;l<=m[k];l++) |
---|
1655 | { |
---|
1656 | j++; |
---|
1657 | J[j,j]=e[k]; |
---|
1658 | for(i=s[k];i>=2;i--) |
---|
1659 | { |
---|
1660 | J[j,j+1]=1; |
---|
1661 | j++; |
---|
1662 | J[j,j]=e[k]; |
---|
1663 | } |
---|
1664 | } |
---|
1665 | } |
---|
1666 | |
---|
1667 | return(J); |
---|
1668 | } |
---|
1669 | example |
---|
1670 | { "EXAMPLE:"; echo=2; |
---|
1671 | ring R=0,x,dp; |
---|
1672 | ideal e=ideal(2,3); |
---|
1673 | intvec s=1,2; |
---|
1674 | intvec m=1,1; |
---|
1675 | print(jordanmatrix(e,s,m)); |
---|
1676 | } |
---|
1677 | /////////////////////////////////////////////////////////////////////////////// |
---|
1678 | |
---|
1679 | proc jordanform(matrix M) |
---|
1680 | "USAGE: jordanform(M); matrix M |
---|
1681 | ASSUME: M constant square matrix, eigenvalues of M in coefficient field |
---|
1682 | RETURN: matrix J in Jordan normal form with J=inverse(U)*M*U for some U |
---|
1683 | EXAMPLE: example jordanform; shows examples |
---|
1684 | " |
---|
1685 | { |
---|
1686 | list l=jordan(M); |
---|
1687 | return(jordanmatrix(l[1],l[2])); |
---|
1688 | } |
---|
1689 | example |
---|
1690 | { "EXAMPLE:"; echo=2; |
---|
1691 | ring R=0,x,dp; |
---|
1692 | matrix M[3][3]=3,2,1,0,2,1,0,0,3; |
---|
1693 | print(M); |
---|
1694 | print(jordanform(M)); |
---|
1695 | } |
---|
1696 | /////////////////////////////////////////////////////////////////////////////// |
---|
1697 | |
---|
1698 | proc commutator(matrix A) |
---|
1699 | "USAGE: (A); matrix A |
---|
1700 | ASSUME: A is a square matrix |
---|
1701 | RETURN: matrix C of the commutator B->[A,B]=AB-BA w.r.t. rowwise ordered basis |
---|
1702 | EXAMPLE: example commutator; shows examples |
---|
1703 | " |
---|
1704 | { |
---|
1705 | int n=ncols(A); |
---|
1706 | if(n!=nrows(A)) |
---|
1707 | { |
---|
1708 | ERROR("square matrix expected"); |
---|
1709 | } |
---|
1710 | int i,j,k; |
---|
1711 | matrix C[n^2][n^2]; |
---|
1712 | for(i=0;i<n;i++) |
---|
1713 | { |
---|
1714 | for(j=0;j<n;j++) |
---|
1715 | { |
---|
1716 | for(k=0;k<n;k++) |
---|
1717 | { |
---|
1718 | C[i*n+j+1,k*n+j+1]=C[i*n+j+1,k*n+j+1]+A[i+1,k+1]; |
---|
1719 | C[i*n+j+1,i*n+k+1]=C[i*n+j+1,i*n+k+1]-A[k+1,j+1]; |
---|
1720 | } |
---|
1721 | } |
---|
1722 | } |
---|
1723 | return(C); |
---|
1724 | } |
---|
1725 | example |
---|
1726 | { "EXAMPLE:"; echo=2; |
---|
1727 | ring R; |
---|
1728 | matrix A[2][2]=1,2,3,4; |
---|
1729 | print(A); |
---|
1730 | print(commutator(A)); |
---|
1731 | } |
---|
1732 | |
---|
1733 | /////////////////////////////////////////////////////////////////////////////// |
---|
1734 | |
---|
1735 | /* |
---|
1736 | /////////////////////////////////////////////////////////////////////////////// |
---|
1737 | // Auskommentierte zusaetzliche Beispiele |
---|
1738 | // |
---|
1739 | /////////////////////////////////////////////////////////////////////////////// |
---|
1740 | // Singular for ix86-Linux version 1-3-10 (2000121517) Dec 15 2000 17:55:12 |
---|
1741 | // Rechnungen auf AMD700 mit 632 MB |
---|
1742 | |
---|
1743 | LIB "linalg.lib"; |
---|
1744 | |
---|
1745 | 1. Sparse integer Matrizen |
---|
1746 | -------------------------- |
---|
1747 | ring r1=0,(x),dp; |
---|
1748 | system("--random", 12345678); |
---|
1749 | int n = 70; |
---|
1750 | matrix m = sparsemat(n,n,50,100); |
---|
1751 | option(prot,mem); |
---|
1752 | |
---|
1753 | int t=timer; |
---|
1754 | matrix im = inverse(m,1)[1]; |
---|
1755 | timer-t; |
---|
1756 | print(im*m); |
---|
1757 | //list l0 = watchdog(100,"inverse("+"m"+",3)"); |
---|
1758 | //bricht bei 100 sec ab und gibt l0[1]: string Killed zurueck |
---|
1759 | |
---|
1760 | //inverse(m,1): std 5sec 5,5 MB |
---|
1761 | //inverse(m,2): interred 12sec |
---|
1762 | //inverse(m,2): lift nach 180 sec 13MB abgebrochen |
---|
1763 | //n=60: linalgorig: 3 linalg: 5 |
---|
1764 | //n=70: linalgorig: 6,7 linalg: 11,12 |
---|
1765 | // aber linalgorig rechnet falsch! |
---|
1766 | |
---|
1767 | 2. Sparse poly Matrizen |
---|
1768 | ----------------------- |
---|
1769 | ring r=(0),(a,b,c),dp; |
---|
1770 | system("--random", 12345678); |
---|
1771 | int n=6; |
---|
1772 | matrix m = sparsematrix(n,n,2,0,50,50,9); //matrix of polys of deg <=2 |
---|
1773 | option(prot,mem); |
---|
1774 | |
---|
1775 | int t=timer; |
---|
1776 | matrix im = inverse(m); |
---|
1777 | timer-t; |
---|
1778 | print(im*m); |
---|
1779 | //inverse(m,1): std 0sec 1MB |
---|
1780 | //inverse(m,2): interred 0sec 1MB |
---|
1781 | //inverse(m,2): lift nach 2000 sec 33MB abgebrochen |
---|
1782 | |
---|
1783 | 3. Sparse Matrizen mit Parametern |
---|
1784 | --------------------------------- |
---|
1785 | //liborig rechnet hier falsch! |
---|
1786 | ring r=(0),(a,b),dp; |
---|
1787 | system("--random", 12345678); |
---|
1788 | int n=7; |
---|
1789 | matrix m = sparsematrix(n,n,1,0,40,50,9); |
---|
1790 | ring r1 = (0,a,b),(x),dp; |
---|
1791 | matrix m = imap(r,m); |
---|
1792 | option(prot,mem); |
---|
1793 | |
---|
1794 | int t=timer; |
---|
1795 | matrix im = inverse(m); |
---|
1796 | timer-t; |
---|
1797 | print(im*m); |
---|
1798 | //inverse(m)=inverse(m,3):15 sec inverse(m,1)=1sec inverse(m,2):>120sec |
---|
1799 | //Bei Parametern vergeht die Zeit beim Normieren! |
---|
1800 | |
---|
1801 | 3. Sparse Matrizen mit Variablen und Parametern |
---|
1802 | ----------------------------------------------- |
---|
1803 | ring r=(0),(a,b),dp; |
---|
1804 | system("--random", 12345678); |
---|
1805 | int n=6; |
---|
1806 | matrix m = sparsematrix(n,n,1,0,35,50,9); |
---|
1807 | ring r1 = (0,a),(b),dp; |
---|
1808 | matrix m = imap(r,m); |
---|
1809 | option(prot,mem); |
---|
1810 | |
---|
1811 | int t=timer; |
---|
1812 | matrix im = inverse(m,3); |
---|
1813 | timer-t; |
---|
1814 | print(im*m); |
---|
1815 | //n=7: inverse(m,3):lange sec inverse(m,1)=1sec inverse(m,2):1sec |
---|
1816 | |
---|
1817 | 4. Ueber Polynomring invertierbare Matrizen |
---|
1818 | ------------------------------------------- |
---|
1819 | LIB"random.lib"; LIB"linalg.lib"; |
---|
1820 | system("--random", 12345678); |
---|
1821 | int n =3; |
---|
1822 | ring r= 0,(x,y,z),(C,dp); |
---|
1823 | matrix A=triagmatrix(n,n,1,0,0,50,2); |
---|
1824 | intmat B=sparsetriag(n,n,20,1); |
---|
1825 | matrix M = A*transpose(B); |
---|
1826 | M=M*transpose(M); |
---|
1827 | M[1,1..ncols(M)]=M[1,1..n]+xyz*M[n,1..ncols(M)]; |
---|
1828 | print(M); |
---|
1829 | //M hat det=1 nach Konstruktion |
---|
1830 | |
---|
1831 | int t=timer; |
---|
1832 | matrix iM=inverse(M); |
---|
1833 | timer-t; |
---|
1834 | print(iM*M); //test |
---|
1835 | |
---|
1836 | //ACHTUNG: Interred liefert i.A. keine Inverse, Gegenbeispiel z.B. |
---|
1837 | //mit n=3 |
---|
1838 | //eifacheres Gegenbeispiel: |
---|
1839 | matrix M = |
---|
1840 | 9yz+3y+3z+2, 9y2+6y+1, |
---|
1841 | 9xyz+3xy+3xz-9z2+2x-6z-1,9xy2+6xy-9yz+x-3y-3z |
---|
1842 | //det M=1, inverse(M,2); ->// ** matrix is not invertible |
---|
1843 | //lead(M); 9xyz*gen(2) 9xy2*gen(2) nicht teilbar! |
---|
1844 | |
---|
1845 | 5. charpoly: |
---|
1846 | ----------- |
---|
1847 | //ring rp=(0,A,B,C),(x),dp; |
---|
1848 | ring r=0,(A,B,C,x),dp; |
---|
1849 | matrix m[12][12]= |
---|
1850 | AC,BC,-3BC,0,-A2+B2,-3AC+1,B2, B2, 1, 0, -C2+1,0, |
---|
1851 | 1, 1, 2C, 0,0, B, -A, -4C, 2A+1,0, 0, 0, |
---|
1852 | 0, 0, 0, 1,0, 2C+1, -4C+1,-A, B+1, 0, B+1, 3B, |
---|
1853 | AB,B2,0, 1,0, 1, 0, 1, A, 0, 1, B+1, |
---|
1854 | 1, 0, 1, 0,0, 1, 0, -C2, 0, 1, 0, 1, |
---|
1855 | 0, 0, 2, 1,2A, 1, 0, 0, 0, 0, 1, 1, |
---|
1856 | 0, 1, 0, 1,1, 2, A, 3B+1,1, B2,1, 1, |
---|
1857 | 0, 1, 0, 1,1, 1, 1, 1, 2, 0, 0, 0, |
---|
1858 | 1, 0, 1, 0,0, 0, 1, 0, 1, 1, 0, 3, |
---|
1859 | 1, 3B,B2+1,0,0, 1, 0, 1, 0, 0, 1, 0, |
---|
1860 | 0, 0, 1, 0,0, 0, 0, 1, 0, 0, 0, 0, |
---|
1861 | 0, 1, 0, 1,1, 3, 3B+1, 0, 1, 1, 1, 0; |
---|
1862 | option(prot,mem); |
---|
1863 | |
---|
1864 | int t=timer; |
---|
1865 | poly q=charpoly(m,"x"); //1sec, charpoly_B 1sec, 16MB |
---|
1866 | timer-t; |
---|
1867 | //1sec, charpoly_B 1sec, 16MB (gleich in r und rp) |
---|
1868 | |
---|
1869 | */ |
---|