source: git/Singular/LIB/makedbm.lib @ 9f50b2

spielwiese
Last change on this file since 9f50b2 was 9f50b2, checked in by Kai Krüger <krueger@…>, 26 years ago
* ein paar DBM - utilities * leichtes erzeugen der Singularitaeten Datenbank. git-svn-id: file:///usr/local/Singular/svn/trunk@625 2c84dea3-7e68-4137-9b89-c4e89433aadc
  • Property mode set to 100644
File size: 8.0 KB
Line 
1proc read_dbm (link l)
2{
3  string s="";
4  s=read(l);
5  while( s != "" )
6  {
7    s,"=",read(l,s);
8    s=read(l);
9  }
10}
11
12proc create_sing_dbm
13{
14  link l="DBM:rw NFlist";
15  write(l, "A[k]", "x^(k+1)");
16write(l, "D[k]", "x2y+y^(k-1)");
17write(l, "E[6k]", "x3+y^(3*k+1)+a*x*(y^(2*k+1))");
18write(l, "E[6k+1]", "x3+x*(y^(2*k+1))+a*(y^(3*k+2))");
19write(l, "E[6k+2]", "x3+y^(3*k+2)+a*x*(y^(2*k+2))");
20write(l, "J[k,0]", "x3+b*x2*y^k+y^(3*k)c*x*y^(2*k+1)");
21write(l, "J[k,r]", "x3+x2*y^k+a*y^(3*k+r)");
22write(l, "X[1,0]", "x4+a*x2y2+y4");
23write(l, "X[1,r]", "x4+x2y2+a*y^(4+r)");
24write(l, "X[k,0]", "x4+b*x3y^k+a*x2y^(2k) + xy^(3k)");
25write(l, "X[k,r]", "x4+a*x3y^k+x2y^(2*k) + b*(y^(4*k+r))");
26write(l, "W[12k]", "x4+y^(4*k+1)+a*x*(y^(3*k+1))+c*x2*(y^(2*k+1))");
27write(l, "W[12k+1]", "x4+x*(y^(3*k+1))+a*x2*(y^(2*k+1))+c*y^(4*k+2)");
28write(l, "W[12k+5]", "x4+x*(y^(3*k+2))+a*x2*(y^(2*k+2))+b*y^(4*k+3)");
29write(l, "W[12k+6]", "x4+y^(4*k+3)+a*x*(y^(3*k+3))+b*x2*(y^(2*k+2))");
30write(l, "W[k,0]", "x4+b*x2*(y^(2*k+1))+a*x*(y^(3*k+2))+y^(4*k+2)");
31write(l, "W[k,r]", "x4+a*x3*(y^(k+1))+x2*(y^(2*k+1))+b*y^(4*k+2+r)");
32write(l, "W#[k,2r-1]", "(x2+y^(2*k+1))^2+b*x*(y^(3*k+1+r))+a*y^(4*k+2+r)");
33write(l, "W#[k,2r]", "(x2+y^(2*k+1))^2+b*x2*(y^(2*k+1+r))+a*x*(y^(3*k+2+r))");
34write(l, "Y[1,r,s]", "x^(4+r)+a*x2*(y2)+y^(4+s)");
35write(l, "Y[k,r,s]", "((x+a*y^k)^2 + b*y^(2*k+s))*( x2 + y^(2*k+r))");
36write(l, "Z[1,0]", "x3y + x2y3 + xy6 +y7");
37write(l, "Z[1,r]", "x3y + x2*(y^3) + a*y^(7+r)");
38write(l, "Z[k,r,s]", "(x2+a*x*(y^k)+b*y^(2*k+r))*(x2+y^(2*k+2*r+s))");
39write(l, "Z[k,r,0]", "(x+a*(y^k))*(x3+d*x2*(y^(k+r))+c*x*(y^(2*k+2*r+1))+y^(3*k+3*r))");
40write(l, "Z[k,12k+6r-1]", "(x+a*(y^k))*(x3+b*x*(y^(2*k+2*r+1))+y^(3*k+3*r+1))");
41write(l, "Z[k,12k+6r]", "(x+a*(y^k))*(x3+x*(y^(2*k+2*r+1))+b*y^(3*k+3*r+2))");
42write(l, "Z[k,12k+6r+1]", "(x+a*(y^k))*(x3+b*x*(y^(2*k+2*r+2))+y^(3*k+3*r+2))");
43write(l, "Z[k,0]", "y*(x3+d*x2*(y^k)+c*x*(y^(2*k+1))+y^(3*k))");
44write(l, "Z[k,r]", "y*(x3+x2y^(k+1)+b*(y^(3*k+r+3)))");
45write(l, "Z[6k+5]", "y*(x3+b*x*(y^(2*k+1))+y^(3*k+1))");
46write(l, "Z[6k+6]", "y*(x3+x*(y^(2*k+1))+b*y^(3*k+2))");
47write(l, "Z[6k+7]", "y*(x3+b*x*(y^(2*k+2))+y^(3*k+2))");
48write(l, "Q[k,0]", "x3+z2y+b*x2*(y^k)+x*(y^(2*k))");
49write(l, "Q[k,r]", "x3+z2y+x2*(y^k)+b*y^(3*k+r)");
50write(l, "Q[6k+4]", "x3+z2y+y^(3*k+1)+b*x*(y^(2*k+1))");
51write(l, "Q[6k+5]", "x3+z2y+x*(y^(2*k+1))+b*y^(3*k+2)");
52write(l, "Q[6k+6]", "x3+z2y+y^(3*k+2)+b*x*(y^(2*k+2))");
53write(l, "S[12k-1]", "x2z+z2y+y^(4*k)+a*x*(y^(3*k))+c*z*(y^(2*k+1))");
54write(l, "S[12k]", "x2z+z2y+x*(y^(3*k))+c*y^(4*k+1)+a*z*(y^(2*k+1))");
55write(l, "S[k,0]", "x2z+z2y+y^(4*k+1)+a*x*(y^(3*k+1))+b*z*(y^(2*k+1))");
56write(l, "S[k,r]", "x2z+z2y+x2*(y^(2*k))+a*x3*(y^k)+b*y^(4*k+r+1)");
57write(l, "S#[k,2r-1]", "x2z+z2y+z*(y^(2*k+1))+b*x*(y^(3*k+r))+a*(y^(4*k+r+1))");
58write(l, "S#[k,2r]", "x2z+z2y+z*(y^(2*k+1))+b*x2*(y^(2*k+r))");
59write(l, "S[12k+4]", "x2z+z2y+x*(y^(3*k+1))+a*z*(y^(2*k+2))+b*y^(4*k+2)");
60write(l, "S[12k+5]", "x2z+z2y+y^(4*k+2)+a*x*(y^(3*k+2))+b*z*(y^(2*k+2))");
61write(l, "U[12k]", "x3+z2x+y^(3*k+1)+a*x*(y^(2*k+1))+b*z*(y^(2*k+1))+d*x2*(y^(k+1))");
62write(l, "U[k,2r-1]", "x3+z2x+x*(y^(2*k+1))+a*x2*(y^(k+1))+b*(y^(3*k+r+2))+c*z*(y^(2*k+r+1))");
63write(l, "U[k,2r]", "x3+z2x+x*(y^(2*k+1))+a*x2*(y^(k+1))+b*z*(y^(2*k+r+1))+c*z2*(y^(k+r))");
64write(l, "U[12k+4]", "x3+z2x+y^(3*k+2)+a*x*(y^(2*k+2))+b*z*(y^(2*k+2))+c*x2*(y^(k+1))");
65write(l, "V[1,0]", "x2y+z4+a*z3y+b*z2y2+y3z");
66write(l, "V[1,r]", "x2y+z4+b*z3y+z2y2+a*(y^(r+4))");
67write(l, "V#[1,2r-1]", "x2y+z3y+a*z2y2+y4+b*x*(z^(r+2))");
68write(l, "V#[1,2r]", "x2y+z3y+a*z2y2+y4+b*(z^(r+4))");
69write(l, "T[k,r,s]", "x^k+y^r+z^s+xyz");
70
71//////////////////////////////////////////////////////////////////
72// DatenFormat: crk=#; Mu=#; MlrCd=#;
73string s;
74s ="crk=1; Mu=k; MlnCd=k;";
75write(l, "I_A[k]", s);
76s = "crk=2; Mu=k; MlnCd=1,1,k-3";
77write(l, "I_D[k]", s);
78s = "crk=2; Mu=6*k; MlnCd=1,2*k,2*k-1";
79write(l, "I_E[6k]", s);
80s = "crk=2; Mu=6*k+1; MlnCd=1,2*k,2*k";
81write(l, "I_E[6k+1]", s);
82//"I_E[6k+1]=", read(l, "I_E[6k+1]");
83s = "crk=2; Mu=6*k+2; MlnCd=1,2*k+1,2*k-1";
84write(l, "I_E[6k+2]", s);
85s = "crk=2; Mu=6*k-2; MlnCd=1,2*k-1,2*k-1";
86write(l, "I_J[k,0]", s);
87//"I_J[k,0]=", read(l, "I_J[k,0]");
88s = "crk=2; Mu=6*k-2+r; MlnCd=1,2*k-1,2*k-1+r";
89write(l, "I_J[k,r]", s);
90//"I_J[k,r]=", read(l, "I_J[k,r]");
91s = "crk=2; Mu=9; MlnCd=1,1,1,1,1";
92write(l, "I_X[1,0]", s);
93s = "crk=2; Mu=9+r; MlnCd=1,1,1,1,1+r";
94write(l, "I_X[1,r]", s);
95s = "crk=2; Mu=12*k-3; MlnCd=1,1,2*k-1,2*k-1,2*k-1";
96write(l, "I_X[k,0]", s);
97s = "crk=2; Mu=12*k-3+r; MlnCd=1,1,2*k-1,2*k-1,2*k-1+r";
98write(l, "I_X[k,r]", s);
99s = "crk=2; Mu=12*k;";
100write(l, "I_W[12k]", s);
101s = "crk=2; Mu=12*k+1;";
102write(l, "I_W[12k+1]", s);
103s = "crk=2; Mu=12*k+5;";
104write(l, "I_W[12k+5]", s);
105s = "crk=2; Mu=12*k+6;";
106write(l, "I_W[12k+6]", s);
107s = "crk=2; Mu=12*k+3;";
108write(l, "I_W[k,0]", s);
109s = "crk=2; Mu=12*k+3+r;";
110write(l, "I_W[k,r]", s);
111s = "crk=2; Mu=12*k+2+2*r;";
112write(l, "I_W#[k,2r-1]", s);
113s = "crk=2; Mu=12*k+3+2*r;";
114write(l, "I_W#[k,2r]", s);
115s = "crk=2; Mu=9+r+s;";
116write(l, "I_Y[1,r,s]", s);
117s = "crk=2; Mu=12*k-3+r+s;";
118write(l, "I_Y[k,r,s]", s);
119s = "crk=2; Mu=15;";
120write(l, "I_Z[1,0]", s);
121s = "crk=2; Mu=15+r;";
122write(l, "I_Z[1,r]", s);
123s = "crk=2; Mu=9+6*k+r;";
124write(l, "I_Z[k,r]", s);
125s = "crk=2; Mu=12*k+6*r-3;";
126write(l, "I_Z[k,r,0]", s);
127s = "crk=2; Mu=12*k+6*r+s-3;";
128write(l, "I_Z[k,r,s]", s);
129s = "crk=2; Mu=12*k+6*r-1;";
130write(l, "I_Z[k,12k+6r-1]", s);
131s = "crk=2; Mu=12*k+6*r;";
132write(l, "I_Z[k,12k+6r]", s);
133s = "crk=2; Mu=12*k+6*r+1;";
134write(l, "I_Z[k,12k+6r+1]", s);
135s = "crk=2; Mu=9+6*k;";
136write(l, "I_Z[k,0]", s);
137s = "crk=2; Mu=6*(r+1)-1;";
138write(l, "I_Z[6k+5]", s);
139s = "crk=2; Mu=6*(r+1);";
140write(l, "I_Z[6k+6]", s);
141s = "crk=2; Mu=6*(r+1)+1;";
142write(l, "I_Z[6k+7]", s);
143s = "crk=3; Mu=6*k+2;";
144write(l, "I_Q[k,0]", s);
145s = "crk=3; Mu=6*k+2+r;";
146write(l, "I_Q[k,r]", s);
147s = "crk=3; Mu=6*k+4;";
148write(l, "I_Q[6k+4]", s);
149s = "crk=3; Mu=6*k+5;";
150write(l, "I_Q[6k+5]", s);
151s = "crk=3; Mu=6*k+6;";
152write(l, "I_Q[6k+6]", s);
153s = "crk=3; Mu=12*k-1;";
154write(l, "I_S[12k-1]", s);
155s = "crk=3; Mu=12*k;";
156write(l, "I_S[12k]", s);
157s = "crk=3; Mu=12*k+2;";
158write(l, "I_S[k,0]", s);
159s = "crk=3; Mu=12*k+2+r;";
160write(l, "I_S[k,r]", s);
161s = "crk=3; Mu=12*k+2*r+1;";
162write(l, "I_S#[k,2r-1]", s);
163s = "crk=3; Mu=12*k+2*r+2;";
164write(l, "I_S#[k,2r]", s);
165s = "crk=3; Mu=12*k+4;";
166write(l, "I_S[12k+4]", s);
167s = "crk=3; Mu=12*k+5;";
168write(l, "I_S[12k+5]", s);
169s = "crk=3; Mu=12*k;";
170write(l, "I_U[12k]", s);
171s = "crk=3; Mu=12*k+4;";
172write(l, "I_U[12k+4]", s);
173s = "crk=3; Mu=12*k+1+2*r;";
174write(l, "I_U[k,2r-1]", s);
175s = "crk=3; Mu=12*k+2+2*r;";
176write(l, "I_U[k,2r]", s);
177s = "crk=3; Mu=15;";
178write(l, "I_V[1,0]", s);
179s = "crk=3; Mu=15+r;";
180write(l, "I_V[1,r]", s);
181s = "crk=3; Mu=14+2*r;";
182write(l, "I_V#[1,2r-1]", s);
183s = "crk=3; Mu=15+2*r;";
184write(l, "I_V#[1,2r]", s);
185s = "crk=3; Mu=0;";
186write(l, "I_T[k,r,s]", s);
187read_sing_dbm();
188close(l);
189}
190
191proc read_sing_dbm
192{
193  link l="DBM:rw NFlist";
194  read(l, "A[k]");
195  read(l, "D[k]");
196  read(l, "E[6k]");
197  read(l, "E[6k+1]");
198  read(l, "E[6k+2]");
199  read(l, "J[k,0]");
200  read(l, "J[k,r]");
201  read(l, "X[1,0]");
202  read(l, "X[1,r]");
203  read(l, "X[k,0]");
204  read(l, "X[k,r]");
205  read(l, "W[12k]");
206  read(l, "W[12k+1]");
207  read(l, "W[12k+5]");
208  read(l, "W[12k+6]");
209  read(l, "W[k,0]");
210  read(l, "W[k,r]");
211  read(l, "W#[k,2r-1]");
212  read(l, "W#[k,2r]");
213  read(l, "Y[1,r,s]");
214  read(l, "Y[k,r,s]");
215  read(l, "Z[1,0]");
216  read(l, "Z[1,r]");
217  read(l, "Z[k,r,s]");
218  read(l, "Z[k,r,0]");
219  read(l, "Z[k,12k+6r-1]");
220  read(l, "Z[k,12k+6r]");
221  read(l, "Z[k,12k+6r+1]");
222  read(l, "Z[k,0]");
223  read(l, "Z[k,r]");
224  read(l, "Z[6k+5]");
225  read(l, "Z[6k+6]");
226  read(l, "Z[6k+7]");
227  read(l, "Q[k,0]");
228  read(l, "Q[k,r]");
229  read(l, "Q[6k+4]");
230  read(l, "Q[6k+5]");
231  read(l, "Q[6k+6]");
232  read(l, "S[12k-1]");
233  read(l, "S[12k]");
234  read(l, "S[k,0]");
235  read(l, "S[k,r]");
236  read(l, "S#[k,2r-1]");
237  read(l, "S#[k,2r]");
238  read(l, "S[12k+4]");
239  read(l, "S[12k+5]");
240  read(l, "U[12k]");
241  read(l, "U[k,2r-1]");
242  read(l, "U[k,2r]");
243  read(l, "U[12k+4]");
244  read(l, "V[1,0]");
245  read(l, "V[1,r]");
246  read(l, "V#[1,2r-1]");
247  read(l, "V#[1,2r]");
248  read(l, "T[k,r,s]");
249}
Note: See TracBrowser for help on using the repository browser.