1 | // $Id: matrix.lib,v 1.2 1997-04-28 19:27:22 obachman Exp $ |
---|
2 | // (GMG/BM, last modified 22.06.96) |
---|
3 | /////////////////////////////////////////////////////////////////////////////// |
---|
4 | LIBRARY: matrix.lib PROCEDURES FOR MATRIX OPERATIONS |
---|
5 | |
---|
6 | compress(A); matrix, zero columns from A deleted |
---|
7 | concat(A1,A2,..); matrix, concatenation of matrices A1,A2,... |
---|
8 | diag(p,n); matrix, nxn diagonal matrix with entries poly p |
---|
9 | dsum(A1,A2,..); matrix, direct sum of matrices A1,A2,... |
---|
10 | flatten(A); ideal, generated by entries of matrix A |
---|
11 | genericmat(n,m[,id]); generic nxm matrix [entries from id] |
---|
12 | is_complex(c); 1 if list c is a complex, 0 if not |
---|
13 | outer(A,B); matrix, outer product of matrices A and B |
---|
14 | skewmat(n[,id]); generic skew-symmetric nxn matrix [entries from id] |
---|
15 | submat(A,r,c); submatrix of A with rows/cols specified by intvec r/c |
---|
16 | symmat(n[,id]); generic symmetric nxn matrix [entries from id] |
---|
17 | tensor(A,B); matrix, tensor product of matrices A nd B |
---|
18 | unitmat(n); unit square matrix of size n |
---|
19 | gauss_col(A); transform constant matrix A into col-reduced nf |
---|
20 | gauss_row(A); transform constant matrix A into row-reduced nf |
---|
21 | addcol(A,c1,p,c2); add p*(c1-th col) to c2-th column of matrix A, p poly |
---|
22 | addrow(A,r1,p,r2); add p*(r1-th row) to r2-th row of matrix A, p poly |
---|
23 | multcol(A,c,p); multiply c-th column of A with poly p |
---|
24 | multrow(A,r,p); multiply r-th row of A with poly p |
---|
25 | permcol(A,i,j); permute i-th and j-th columns |
---|
26 | permrow(A,i,j); permute i-th and j-th rows |
---|
27 | (parameters in square brackets [] are optional) |
---|
28 | |
---|
29 | LIB "inout.lib"; |
---|
30 | LIB "ring.lib"; |
---|
31 | LIB "random.lib"; |
---|
32 | /////////////////////////////////////////////////////////////////////////////// |
---|
33 | |
---|
34 | proc compress (A) |
---|
35 | USAGE: compress(A); A matrix/ideal/module/intmat/intvec |
---|
36 | RETURN: same type, zero columns/generators from A deleted |
---|
37 | (in an intvec zero elements are deleted) |
---|
38 | EXAMPLE: example compress; shows an example |
---|
39 | { |
---|
40 | if( typeof(A)=="matrix" ) { return(matrix(simplify(A,2))); } |
---|
41 | if( typeof(A)=="intmat" or typeof(A)=="intvec" ) |
---|
42 | { |
---|
43 | ring r=0,x,lp; |
---|
44 | if( typeof(A)=="intvec" ) { intmat C=transpose(A); kill A; intmat A=C; } |
---|
45 | module m = matrix(A); |
---|
46 | intmat B[nrows(A)][size(m)]; |
---|
47 | int i,j; |
---|
48 | for( i=1; i<=ncols(A); i=i+1 ) |
---|
49 | { |
---|
50 | if( m[i]!=[0] ) |
---|
51 | { |
---|
52 | j=j+1; |
---|
53 | B[1..nrows(A),j]=A[1..nrows(A),i]; |
---|
54 | } |
---|
55 | } |
---|
56 | if( defined(C) ) { return(intvec(B)); } |
---|
57 | return(B); |
---|
58 | } |
---|
59 | return(simplify(A,2)); |
---|
60 | } |
---|
61 | example |
---|
62 | { "EXAMPLE:"; echo = 2; |
---|
63 | ring r=0,(x,y,z),ds; |
---|
64 | matrix A[3][4]=1,0,3,0,x,0,z,0,x2,0,z2,0; |
---|
65 | print(A); |
---|
66 | print(compress(A)); |
---|
67 | module m=module(A); show(m); |
---|
68 | show(compress(m)); |
---|
69 | intmat B[3][4]=1,0,3,0,4,0,5,0,6,0,7,0; |
---|
70 | compress(B); |
---|
71 | intvec C=0,0,1,2,0,3; |
---|
72 | compress(C); |
---|
73 | } |
---|
74 | //////////////////////////////////////////////////////////////////////////////// |
---|
75 | proc concat (list #) |
---|
76 | USAGE: concat(A1,A2,..); A1,A2,... matrices |
---|
77 | RETURN: matrix, concatenation of A1,A2,... . Number of rows of result matrix is |
---|
78 | max(nrows(A1),nrows(A2),...) |
---|
79 | EXAMPLE: example concat; shows an example |
---|
80 | { |
---|
81 | int i; |
---|
82 | module B=module(#[1]); |
---|
83 | for( i=2; i<=size(#); i=i+1 ) { B=B,module(#[i]); } |
---|
84 | return(matrix(B)); |
---|
85 | } |
---|
86 | example |
---|
87 | { "EXAMPLE:"; echo = 2; |
---|
88 | ring r=0,(x,y,z),ds; |
---|
89 | matrix A[3][3]=1,2,3,x,y,z,x2,y2,z2; |
---|
90 | matrix B[2][2]=1,0,2,0; matrix C[1][4]=4,5,x,y; |
---|
91 | print(A); |
---|
92 | print(B); |
---|
93 | print(C); |
---|
94 | print(concat(A,B,C)); |
---|
95 | } |
---|
96 | //////////////////////////////////////////////////////////////////////////////// |
---|
97 | |
---|
98 | proc diag (list #) |
---|
99 | USAGE: diag(p,n); p poly, n integer |
---|
100 | diag(A); A matrix |
---|
101 | RETURN: diag(p,n): diagonal matrix, p times unitmatrix of size n |
---|
102 | diag(A) : n*mxn*m diagonal matrix with entries all the entries of the |
---|
103 | nxm matrix A, taken from the 1st row, 2nd row etc of A |
---|
104 | EXAMPLE: example diag; shows an example |
---|
105 | { |
---|
106 | if( size(#)==2 ) { return(matrix(#[1]*freemodule(#[2]))); } |
---|
107 | if( size(#)==1 ) |
---|
108 | { |
---|
109 | int i; ideal id=#[1]; |
---|
110 | int n=ncols(id); matrix A[n][n]; |
---|
111 | for( i=1; i<=n; i=i+1 ) { A[i,i]=id[i]; } |
---|
112 | } |
---|
113 | return(A); |
---|
114 | } |
---|
115 | example |
---|
116 | { "EXAMPLE:"; echo = 2; |
---|
117 | ring r=0,(x,y,z),ds; |
---|
118 | print(diag(xy,4)); |
---|
119 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
120 | print(A); |
---|
121 | print(diag(A)); |
---|
122 | } |
---|
123 | //////////////////////////////////////////////////////////////////////////////// |
---|
124 | |
---|
125 | proc dsum (list #) |
---|
126 | USAGE: dsum(A1,A2,..); A1,A2,... matrices |
---|
127 | RETURN: matrix, direct sum of A1,A2,... |
---|
128 | EXAMPLE: example dsum; shows an example |
---|
129 | { |
---|
130 | int i,N,a; |
---|
131 | list L; |
---|
132 | for( i=1; i<=size(#); i=i+1 ) { N=N+nrows(#[i]); } |
---|
133 | for( i=1; i<=size(#); i=i+1 ) |
---|
134 | { |
---|
135 | matrix B[N][ncols(#[i])]; |
---|
136 | B[a+1..a+nrows(#[i]),1..ncols(#[i])]=#[i]; |
---|
137 | a=a+nrows(#[i]); |
---|
138 | L[i]=B; kill B; |
---|
139 | } |
---|
140 | return(concat(L)); |
---|
141 | } |
---|
142 | example |
---|
143 | { "EXAMPLE:"; echo = 2; |
---|
144 | ring r=0,(x,y,z),ds; |
---|
145 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
146 | matrix B[2][2]=1,x,y,z; |
---|
147 | matrix C[1][4]=4,5,x,y; |
---|
148 | print(A); |
---|
149 | print(B); |
---|
150 | print(C); |
---|
151 | print(dsum(A,B,C)); |
---|
152 | } |
---|
153 | //////////////////////////////////////////////////////////////////////////////// |
---|
154 | |
---|
155 | proc flatten (matrix A) |
---|
156 | USAGE: flatten(A); A matrix |
---|
157 | RETURN: ideal, generated by all entries from A |
---|
158 | EXAMPLE: example flatten; shows an example |
---|
159 | { |
---|
160 | return(ideal(A)); |
---|
161 | } |
---|
162 | example |
---|
163 | { "EXAMPLE:"; echo = 2; |
---|
164 | ring r=0,(x,y,z),ds; |
---|
165 | matrix A[3][3]=1,2,3,x,y,z,7,8,9; |
---|
166 | print(A); |
---|
167 | flatten(A); |
---|
168 | } |
---|
169 | //////////////////////////////////////////////////////////////////////////////// |
---|
170 | |
---|
171 | proc genericmat (int n,int m,list #) |
---|
172 | USAGE: genericmat(n,m[,id]); n,m=integers, id=ideal |
---|
173 | RETURN: nxm matrix, with entries from id (default: id=maxideal(1)) |
---|
174 | NOTE: if id has less than nxm elements, the matrix is filled with 0's, |
---|
175 | genericmat(n,m); creates the generic nxm matrix |
---|
176 | EXAMPLE: example genericmat; shows an example |
---|
177 | { |
---|
178 | if( size(#)==0 ) { ideal id=maxideal(1); } |
---|
179 | if( size(#)==1 ) { ideal id=#[1]; } |
---|
180 | if( size(#)>=2 ) { "// give 3 arguments, 3-rd argument must be an ideal"; } |
---|
181 | matrix B[n][m]=id; |
---|
182 | return(B); |
---|
183 | } |
---|
184 | example |
---|
185 | { "EXAMPLE:"; echo = 2; |
---|
186 | ring R=0,x(1..16),lp; |
---|
187 | print(genericmat(4,4)); // the generic 4x4 matrix |
---|
188 | changevar("R1",A_Z("a",4),R); |
---|
189 | matrix A=genericmat(4,5,maxideal(1)^3); |
---|
190 | print(A); |
---|
191 | int n,m=4,3; |
---|
192 | ideal i = ideal(randommat(1,n*m,maxideal(1),9)); |
---|
193 | print(genericmat(n,m,i)); // matrix of generic linear forms |
---|
194 | kill R1; |
---|
195 | } |
---|
196 | /////////////////////////////////////////////////////////////////////////////// |
---|
197 | |
---|
198 | proc is_complex (list c) |
---|
199 | USAGE: is_complex(c); c = list of size-compatible modules or matrices |
---|
200 | RETURN: 1 if c[i]*c[i+1]=0 for all i, 0 if not. |
---|
201 | NOTE: Ideals are treated internally as 1-line matrices |
---|
202 | EXAMPLE: example is_complex; shows an example |
---|
203 | { |
---|
204 | int i; |
---|
205 | module @test; |
---|
206 | for( i=1; i<=size(c)-1; i=i+1 ) |
---|
207 | { |
---|
208 | c[i]=matrix(c[i]); c[i+1]=matrix(c[i+1]); |
---|
209 | @test=c[i]*c[i+1]; |
---|
210 | if (size(@test)!=0) |
---|
211 | { |
---|
212 | if( voice==2 ) { "// argument is not a complex at position",i; } |
---|
213 | return(0); |
---|
214 | } |
---|
215 | } |
---|
216 | if( voice==2 ) { "// argument is a complex"; } |
---|
217 | return(1); |
---|
218 | } |
---|
219 | example |
---|
220 | { "EXAMPLE:"; echo = 2; |
---|
221 | ring r=32003,(x,y,z),ds; |
---|
222 | ideal i=x4+y5+z6,xyz,yx2+xz2+zy7; |
---|
223 | list L=res(i,0); |
---|
224 | is_complex(L); |
---|
225 | L[4]=matrix(i); |
---|
226 | is_complex(L); |
---|
227 | } |
---|
228 | //////////////////////////////////////////////////////////////////////////////// |
---|
229 | |
---|
230 | proc outer (matrix A, matrix B) |
---|
231 | USAGE: outer(A,B); A,B matrices |
---|
232 | RETURN: matrix, outer product of A and B |
---|
233 | EXAMPLE: example outer; shows an example |
---|
234 | { |
---|
235 | int i,j; list L; |
---|
236 | int triv = nrows(B)*ncols(B); |
---|
237 | if( triv==1 ) |
---|
238 | { |
---|
239 | return(B[1,1]*A); |
---|
240 | } |
---|
241 | else |
---|
242 | { |
---|
243 | int N = nrows(A)*nrows(B); |
---|
244 | matrix C[N][ncols(B)]; |
---|
245 | for( i=1; i<=ncols(A); i=i+1 ) |
---|
246 | { |
---|
247 | for( j=1; j<=nrows(A); j=j+1 ) |
---|
248 | { |
---|
249 | C[(j-1)*nrows(B)+1..j*nrows(B),1..ncols(B)]=A[j,i]*B; |
---|
250 | } |
---|
251 | L[i]=C; |
---|
252 | } |
---|
253 | return(concat(L)); |
---|
254 | } |
---|
255 | } |
---|
256 | example |
---|
257 | { "EXAMPLE:"; echo = 2; |
---|
258 | ring r=32003,(x,y,z),ds; |
---|
259 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
260 | matrix B[2][2]=x,y,0,z; |
---|
261 | print(A); |
---|
262 | print(B); |
---|
263 | print(outer(A,B)); |
---|
264 | } |
---|
265 | //////////////////////////////////////////////////////////////////////////////// |
---|
266 | |
---|
267 | proc skewmat (int n, list #) |
---|
268 | USAGE: skewmat(n[,id]); n integer, id ideal |
---|
269 | RETURN: skew-symmetric nxn matrix, with entries from id |
---|
270 | (default: id=maxideal(1)) |
---|
271 | NOTE: if id has less than n*(n-1)/2 elements, the matrix is filled with 0's, |
---|
272 | skewmat(n); creates the generic skew-symmetric matrix |
---|
273 | EXAMPLE: example skewmat; shows an example |
---|
274 | { |
---|
275 | matrix B[n][n]; |
---|
276 | if( size(#)==0 ) { ideal id=maxideal(1); } |
---|
277 | else { ideal id=#[1]; } |
---|
278 | id = id,B[1..n,1..n]; |
---|
279 | int i,j; |
---|
280 | for( i=0; i<=n-2; i=i+1 ) |
---|
281 | { |
---|
282 | B[i+1,i+2..n]=id[j+1..j+n-i-1]; |
---|
283 | j=j+n-i-1; |
---|
284 | } |
---|
285 | matrix A=transpose(B); |
---|
286 | B=B-A; |
---|
287 | return(B); |
---|
288 | } |
---|
289 | example |
---|
290 | { "EXAMPLE:"; echo = 2; |
---|
291 | ring R=0,x(1..5),lp; |
---|
292 | print(skewmat(4)); // the generic skew-symmetric matrix |
---|
293 | changevar("R1",A_Z("a",5),R); |
---|
294 | matrix A=skewmat(6,maxideal(1)^2); |
---|
295 | print(A); |
---|
296 | int n=4; |
---|
297 | ideal i = ideal(randommat(1,n*(n-1)/2,maxideal(1),9)); |
---|
298 | print(skewmat(n,i)); // skew matrix of generic linear forms |
---|
299 | kill R1; |
---|
300 | } |
---|
301 | //////////////////////////////////////////////////////////////////////////////// |
---|
302 | |
---|
303 | proc submat (matrix A, intvec r, intvec c) |
---|
304 | USAGE: submat(A,r,c); A=matrix, r,c=intvec |
---|
305 | RETURN: matrix, submatrix of A with rows specified by intvec r and columns |
---|
306 | specified by intvec c |
---|
307 | EXAMPLE: example submat; shows an example |
---|
308 | { |
---|
309 | matrix B[size(r)][size(c)]=A[r,c]; |
---|
310 | return(B); |
---|
311 | } |
---|
312 | example |
---|
313 | { "EXAMPLE:"; echo = 2; |
---|
314 | ring R=32003,(x,y,z),lp; |
---|
315 | matrix A[4][4]=x,y,z,0,1,2,3,4,5,6,7,8,9,x2,y2,z2; |
---|
316 | print(A); |
---|
317 | intvec v=1,3,4; |
---|
318 | matrix B=submat(A,v,1..3); |
---|
319 | print(B); |
---|
320 | } |
---|
321 | //////////////////////////////////////////////////////////////////////////////// |
---|
322 | |
---|
323 | proc symmat (int n, list #) |
---|
324 | USAGE: symmat(n[,id]); n integer, id ideal |
---|
325 | RETURN: symmetric nxn matrix, with entries from id (default: id=maxideal(1)) |
---|
326 | NOTE: if id has less than n*(n+1)/2 elements, the matrix is filled with 0's, |
---|
327 | symmat(n); creates the generic symmetric matrix |
---|
328 | EXAMPLE: example symmat; shows an example |
---|
329 | { |
---|
330 | matrix B[n][n]; |
---|
331 | if( size(#)==0 ) { ideal id=maxideal(1); } |
---|
332 | else { ideal id=#[1]; } |
---|
333 | id = id,B[1..n,1..n]; |
---|
334 | int i,j; |
---|
335 | for( i=0; i<=n-1; i=i+1 ) |
---|
336 | { |
---|
337 | B[i+1,i+1..n]=id[j+1..j+n-i]; |
---|
338 | j=j+n-i; |
---|
339 | } |
---|
340 | matrix A=transpose(B); |
---|
341 | for( i=1; i<=n; i=i+1 ) { A[i,i]=0; } |
---|
342 | B=A+B; |
---|
343 | return(B); |
---|
344 | } |
---|
345 | example |
---|
346 | { "EXAMPLE:"; echo = 2; |
---|
347 | ring R=0,x(1..10),lp; |
---|
348 | print(symmat(4)); // the generic symmetric matrix |
---|
349 | changevar("R1",A_Z("a",5),R); |
---|
350 | matrix A=symmat(5,maxideal(1)^2); |
---|
351 | print(A); |
---|
352 | int n=3; |
---|
353 | ideal i = ideal(randommat(1,n*(n+1)/2,maxideal(1),9)); |
---|
354 | print(symmat(n,i)); // symmetric matrix of generic linear forms |
---|
355 | kill R1; |
---|
356 | } |
---|
357 | //////////////////////////////////////////////////////////////////////////////// |
---|
358 | |
---|
359 | proc tensor (matrix A, matrix B) |
---|
360 | USAGE: tensor(A,B); A,B matrices |
---|
361 | RETURN: matrix, tensor product of A and B |
---|
362 | EXAMPLE: example tensor; shows an example |
---|
363 | { |
---|
364 | int i,j; |
---|
365 | matrix C=B; |
---|
366 | for( i=2; i<=nrows(A); i=i+1 ) { C=dsum(C,B); } |
---|
367 | matrix D[nrows(C)][ncols(A)*nrows(B)]; |
---|
368 | for( j=1; j<=nrows(B); j=j+1 ) |
---|
369 | { |
---|
370 | for( i=1; i<=nrows(A); i=i+1 ) |
---|
371 | { |
---|
372 | D[(i-1)*nrows(B)+j,(j-1)*ncols(A)+1..j*ncols(A)]=A[i,1..ncols(A)]; |
---|
373 | } |
---|
374 | } |
---|
375 | return(concat(C,D)); |
---|
376 | } |
---|
377 | example |
---|
378 | { "EXAMPLE:"; echo = 2; |
---|
379 | ring r=32003,(x,y,z),(c,ds); |
---|
380 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
381 | matrix B[2][2]=x,y,0,z; |
---|
382 | print(A); |
---|
383 | print(B); |
---|
384 | print(tensor(A,B)); |
---|
385 | } |
---|
386 | //////////////////////////////////////////////////////////////////////////////// |
---|
387 | |
---|
388 | proc unitmat (int n) |
---|
389 | USAGE: unitmat(n); n integer >= 0 |
---|
390 | RETURN: nxn unit matrix |
---|
391 | NOTE: needs a basering, diagonal entries are numbers (=1) in the basering |
---|
392 | EXAMPLE: example unitmat; shows an example |
---|
393 | { |
---|
394 | return(matrix(freemodule(n))); |
---|
395 | } |
---|
396 | example |
---|
397 | { "EXAMPLE:"; echo = 2; |
---|
398 | ring r=32003,(x,y,z),lp; |
---|
399 | print(xyz*unitmat(4)); |
---|
400 | print(unitmat(5)); |
---|
401 | } |
---|
402 | /////////////////////////////////////////////////////////////////////////////// |
---|
403 | |
---|
404 | proc gauss_col (matrix A) |
---|
405 | USAGE: gauss_col(A); A=matrix with constant coefficients |
---|
406 | RETURN: matrix = col-reduced lower-triagonal normal form of A |
---|
407 | NOTE: the procedure sets the global option-command: option(noredSB); |
---|
408 | EXAMPLE: example gauss_col; shows an example |
---|
409 | { |
---|
410 | def R=basering; |
---|
411 | changeord("@R","ds,c",R); |
---|
412 | option(redSB); option(nointStrategy); |
---|
413 | matrix A = imap(R,A); |
---|
414 | A = matrix(std(A),nrows(A),ncols(A)); |
---|
415 | setring R; |
---|
416 | A=imap(@R,A); |
---|
417 | option(noredSB); |
---|
418 | kill @R; |
---|
419 | return(A); |
---|
420 | } |
---|
421 | example |
---|
422 | { "EXAMPLE:"; echo = 2; |
---|
423 | ring S=0,x,dp; |
---|
424 | matrix A[5][4] = 3, 1,1,-1, |
---|
425 | 13, 8,6,-7, |
---|
426 | 14,10,6,-7, |
---|
427 | 7, 4,3,-3, |
---|
428 | 2, 1,0, 3; |
---|
429 | print(gauss_col(A)); |
---|
430 | } |
---|
431 | /////////////////////////////////////////////////////////////////////////////// |
---|
432 | |
---|
433 | proc gauss_row (matrix A) |
---|
434 | USAGE: gauss_row(A); A=matrix with constant coefficients |
---|
435 | RETURN: matrix = row-reduced upper-triangular normal form of A |
---|
436 | NOTE: may be used to solve a system of linear equations |
---|
437 | see proc 'linearsolve' from 'solve.lib' for a different method |
---|
438 | the procedure sets the global option-command: option(noredSB); |
---|
439 | EXAMPLE: example gauss_row; shows an example |
---|
440 | { |
---|
441 | A = gauss_col(transpose(A)); |
---|
442 | return(transpose(A)); |
---|
443 | } |
---|
444 | example |
---|
445 | { "EXAMPLE:"; echo = 2; |
---|
446 | ring S=0,x,dp; |
---|
447 | matrix A[4][5] = 3, 1,1,-1,2, |
---|
448 | 13, 8,6,-7,1, |
---|
449 | 14,10,6,-7,1, |
---|
450 | 7, 4,3,-3,3; |
---|
451 | print(gauss_row(A)); |
---|
452 | } |
---|
453 | //////////////////////////////////////////////////////////////////////////////// |
---|
454 | |
---|
455 | proc addcol (matrix A, int c1, poly p, int c2) |
---|
456 | USAGE: addcol(A,c1,p,c2); A matrix, p poly, c1, c2 positive integers |
---|
457 | RETURN: matrix, A being modified by adding p times column c1 to column c2 |
---|
458 | EXAMPLE: example addcol; shows an example |
---|
459 | { |
---|
460 | A[1..nrows(A),c2]=A[1..nrows(A),c2]+p*A[1..nrows(A),c1]; |
---|
461 | return(A); |
---|
462 | } |
---|
463 | example |
---|
464 | { "EXAMPLE:"; echo = 2; |
---|
465 | ring r=32003,(x,y,z),lp; |
---|
466 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
467 | print(A); |
---|
468 | print(addcol(A,1,xy,2)); |
---|
469 | } |
---|
470 | //////////////////////////////////////////////////////////////////////////////// |
---|
471 | |
---|
472 | proc addrow (matrix A, int r1, poly p, int r2) |
---|
473 | USAGE: addcol(A,r1,p,r2); A matrix, p poly, r1, r2 positive integers |
---|
474 | RETURN: matrix, A being modified by adding p times row r1 to row r2 |
---|
475 | EXAMPLE: example addrow; shows an example |
---|
476 | { |
---|
477 | A[r2,1..ncols(A)]=A[r2,1..ncols(A)]+p*A[r1,1..ncols(A)]; |
---|
478 | return(A); |
---|
479 | } |
---|
480 | example |
---|
481 | { "EXAMPLE:"; echo = 2; |
---|
482 | ring r=32003,(x,y,z),lp; |
---|
483 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
484 | print(A); |
---|
485 | print(addrow(A,1,xy,3)); |
---|
486 | } |
---|
487 | //////////////////////////////////////////////////////////////////////////////// |
---|
488 | |
---|
489 | proc multcol (matrix A, int c, poly p) |
---|
490 | USAGE: addcol(A,c,p); A matrix, p poly, c positive integer |
---|
491 | RETURN: matrix, A being modified by multiplying column c with p |
---|
492 | EXAMPLE: example multcol; shows an example |
---|
493 | { |
---|
494 | A[1..nrows(A),c]=p*A[1..nrows(A),c]; |
---|
495 | return(A); |
---|
496 | } |
---|
497 | example |
---|
498 | { "EXAMPLE:"; echo = 2; |
---|
499 | ring r=32003,(x,y,z),lp; |
---|
500 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
501 | print(A); |
---|
502 | print(multcol(A,2,xy)); |
---|
503 | } |
---|
504 | //////////////////////////////////////////////////////////////////////////////// |
---|
505 | |
---|
506 | proc multrow (matrix A, int r, poly p) |
---|
507 | USAGE: addcol(A,r,p); A matrix, p poly, r positive integer |
---|
508 | RETURN: matrix, A being modified by multiplying row r with p |
---|
509 | EXAMPLE: example multrow; shows an example |
---|
510 | { |
---|
511 | A[r,1..ncols(A)]=p*A[r,1..ncols(A)]; |
---|
512 | return(A); |
---|
513 | } |
---|
514 | example |
---|
515 | { "EXAMPLE:"; echo = 2; |
---|
516 | ring r=32003,(x,y,z),lp; |
---|
517 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
518 | print(A); |
---|
519 | print(multrow(A,2,xy)); |
---|
520 | } |
---|
521 | //////////////////////////////////////////////////////////////////////////////// |
---|
522 | |
---|
523 | proc permcol (matrix A, int c1, int c2) |
---|
524 | USAGE: permcol(A,c1,c2); A matrix, c1,c2 positive integers |
---|
525 | RETURN: matrix, A being modified by permuting column c1 and c2 |
---|
526 | EXAMPLE: example permcol; shows an example |
---|
527 | { |
---|
528 | matrix B=A; |
---|
529 | B[1..nrows(B),c1]=A[1..nrows(A),c2]; |
---|
530 | B[1..nrows(B),c2]=A[1..nrows(A),c1]; |
---|
531 | return(B); |
---|
532 | } |
---|
533 | example |
---|
534 | { "EXAMPLE:"; echo = 2; |
---|
535 | ring r=32003,(x,y,z),lp; |
---|
536 | matrix A[3][3]=1,x,3,4,y,6,7,z,9; |
---|
537 | print(A); |
---|
538 | print(permcol(A,2,3)); |
---|
539 | } |
---|
540 | //////////////////////////////////////////////////////////////////////////////// |
---|
541 | |
---|
542 | proc permrow (matrix A, int r1, int r2) |
---|
543 | USAGE: permrow(A,r1,r2); A matrix, r1,r2 positive integers |
---|
544 | RETURN: matrix, A being modified by permuting row r1 and r2 |
---|
545 | EXAMPLE: example permrow; shows an example |
---|
546 | { |
---|
547 | matrix B=A; |
---|
548 | B[r1,1..ncols(B)]=A[r2,1..ncols(A)]; |
---|
549 | B[r2,1..ncols(B)]=A[r1,1..ncols(A)]; |
---|
550 | return(B); |
---|
551 | } |
---|
552 | example |
---|
553 | { "EXAMPLE:"; echo = 2; |
---|
554 | ring r=32003,(x,y,z),lp; |
---|
555 | matrix A[3][3]=1,2,3,x,y,z,7,8,9; |
---|
556 | print(A); |
---|
557 | print(permrow(A,2,1)); |
---|
558 | } |
---|
559 | //////////////////////////////////////////////////////////////////////////////// |
---|