1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: matrix.lib,v 1.30 2005-05-06 16:01:49 Singular Exp $"; |
---|
3 | category="Linear Algebra"; |
---|
4 | info=" |
---|
5 | LIBRARY: matrix.lib Elementary Matrix Operations |
---|
6 | |
---|
7 | PROCEDURES: |
---|
8 | compress(A); matrix, zero columns from A deleted |
---|
9 | concat(A1,A2,..); matrix, concatenation of matrices A1,A2,... |
---|
10 | diag(p,n); matrix, nxn diagonal matrix with entries poly p |
---|
11 | dsum(A1,A2,..); matrix, direct sum of matrices A1,A2,... |
---|
12 | flatten(A); ideal, generated by entries of matrix A |
---|
13 | genericmat(n,m[,id]); generic nxm matrix [entries from id] |
---|
14 | is_complex(c); 1 if list c is a complex, 0 if not |
---|
15 | outer(A,B); matrix, outer product of matrices A and B |
---|
16 | power(A,n); matrix/intmat, n-th power of matrix/intmat A |
---|
17 | skewmat(n[,id]); generic skew-symmetric nxn matrix [entries from id] |
---|
18 | submat(A,r,c); submatrix of A with rows/cols specified by intvec r/c |
---|
19 | symmat(n[,id]); generic symmetric nxn matrix [entries from id] |
---|
20 | tensor(A,B); matrix, tensor product of matrices A nd B |
---|
21 | unitmat(n); unit square matrix of size n |
---|
22 | gauss_col(A); transform a matrix into col-reduced Gauss normal form |
---|
23 | gauss_row(A); transform a matrix into row-reduced Gauss normal form |
---|
24 | addcol(A,c1,p,c2); add p*(c1-th col) to c2-th column of matrix A, p poly |
---|
25 | addrow(A,r1,p,r2); add p*(r1-th row) to r2-th row of matrix A, p poly |
---|
26 | multcol(A,c,p); multiply c-th column of A with poly p |
---|
27 | multrow(A,r,p); multiply r-th row of A with poly p |
---|
28 | permcol(A,i,j); permute i-th and j-th columns |
---|
29 | permrow(A,i,j); permute i-th and j-th rows |
---|
30 | rowred(A[,any]); reduction of matrix A with elementary row-operations |
---|
31 | colred(A[,any]); reduction of matrix A with elementary col-operations |
---|
32 | rm_unitrow(A); remove unit rows and associated columns of A |
---|
33 | rm_unitcol(A); remove unit columns and associated rows of A |
---|
34 | headStand(A); A[n-i+1,m-j+1]=headStand(A[i,j]) |
---|
35 | (parameters in square brackets [] are optional) |
---|
36 | "; |
---|
37 | |
---|
38 | LIB "inout.lib"; |
---|
39 | LIB "ring.lib"; |
---|
40 | LIB "random.lib"; |
---|
41 | /////////////////////////////////////////////////////////////////////////////// |
---|
42 | |
---|
43 | proc compress (A) |
---|
44 | "USAGE: compress(A); A matrix/ideal/module/intmat/intvec |
---|
45 | RETURN: same type, zero columns/generators from A deleted |
---|
46 | (if A=intvec, zero elements are deleted) |
---|
47 | EXAMPLE: example compress; shows an example |
---|
48 | " |
---|
49 | { |
---|
50 | if( typeof(A)=="matrix" ) { return(matrix(simplify(A,2))); } |
---|
51 | if( typeof(A)=="intmat" or typeof(A)=="intvec" ) |
---|
52 | { |
---|
53 | ring r=0,x,lp; |
---|
54 | if( typeof(A)=="intvec" ) { intmat C=transpose(A); kill A; intmat A=C; } |
---|
55 | module m = matrix(A); |
---|
56 | if ( size(m) == 0) |
---|
57 | { intmat B; } |
---|
58 | else |
---|
59 | { intmat B[nrows(A)][size(m)]; } |
---|
60 | int i,j; |
---|
61 | for( i=1; i<=ncols(A); i=i+1 ) |
---|
62 | { |
---|
63 | if( m[i]!=[0] ) |
---|
64 | { |
---|
65 | j=j+1; |
---|
66 | B[1..nrows(A),j]=A[1..nrows(A),i]; |
---|
67 | } |
---|
68 | } |
---|
69 | if( defined(C) ) { return(intvec(B)); } |
---|
70 | return(B); |
---|
71 | } |
---|
72 | return(simplify(A,2)); |
---|
73 | } |
---|
74 | example |
---|
75 | { "EXAMPLE:"; echo = 2; |
---|
76 | ring r=0,(x,y,z),ds; |
---|
77 | matrix A[3][4]=1,0,3,0,x,0,z,0,x2,0,z2,0; |
---|
78 | print(A); |
---|
79 | print(compress(A)); |
---|
80 | module m=module(A); show(m); |
---|
81 | show(compress(m)); |
---|
82 | intmat B[3][4]=1,0,3,0,4,0,5,0,6,0,7,0; |
---|
83 | compress(B); |
---|
84 | intvec C=0,0,1,2,0,3; |
---|
85 | compress(C); |
---|
86 | } |
---|
87 | /////////////////////////////////////////////////////////////////////////////// |
---|
88 | proc concat (list #) |
---|
89 | "USAGE: concat(A1,A2,..); A1,A2,... matrices |
---|
90 | RETURN: matrix, concatenation of A1,A2,.... Number of rows of result matrix |
---|
91 | is max(nrows(A1),nrows(A2),...) |
---|
92 | EXAMPLE: example concat; shows an example |
---|
93 | " |
---|
94 | { |
---|
95 | int i; |
---|
96 | module B=module(#[1]); |
---|
97 | for( i=2; i<=size(#); i=i+1 ) { B=B,module(#[i]); } |
---|
98 | return(matrix(B)); |
---|
99 | } |
---|
100 | example |
---|
101 | { "EXAMPLE:"; echo = 2; |
---|
102 | ring r=0,(x,y,z),ds; |
---|
103 | matrix A[3][3]=1,2,3,x,y,z,x2,y2,z2; |
---|
104 | matrix B[2][2]=1,0,2,0; matrix C[1][4]=4,5,x,y; |
---|
105 | print(A); |
---|
106 | print(B); |
---|
107 | print(C); |
---|
108 | print(concat(A,B,C)); |
---|
109 | } |
---|
110 | /////////////////////////////////////////////////////////////////////////////// |
---|
111 | |
---|
112 | proc diag (list #) |
---|
113 | "USAGE: diag(p,n); p poly, n integer |
---|
114 | diag(A); A matrix |
---|
115 | RETURN: diag(p,n): diagonal matrix, p times unit matrix of size n. |
---|
116 | @* diag(A) : n*m x n*m diagonal matrix with entries all the entries of |
---|
117 | the nxm matrix A, taken from the 1st row, 2nd row etc of A |
---|
118 | EXAMPLE: example diag; shows an example |
---|
119 | " |
---|
120 | { |
---|
121 | if( size(#)==2 ) { return(matrix(#[1]*freemodule(#[2]))); } |
---|
122 | if( size(#)==1 ) |
---|
123 | { |
---|
124 | int i; ideal id=#[1]; |
---|
125 | int n=ncols(id); matrix A[n][n]; |
---|
126 | for( i=1; i<=n; i=i+1 ) { A[i,i]=id[i]; } |
---|
127 | } |
---|
128 | return(A); |
---|
129 | } |
---|
130 | example |
---|
131 | { "EXAMPLE:"; echo = 2; |
---|
132 | ring r = 0,(x,y,z),ds; |
---|
133 | print(diag(xy,4)); |
---|
134 | matrix A[3][2] = 1,2,3,4,5,6; |
---|
135 | print(A); |
---|
136 | print(diag(A)); |
---|
137 | } |
---|
138 | /////////////////////////////////////////////////////////////////////////////// |
---|
139 | |
---|
140 | proc dsum (list #) |
---|
141 | "USAGE: dsum(A1,A2,..); A1,A2,... matrices |
---|
142 | RETURN: matrix, direct sum of A1,A2,... |
---|
143 | EXAMPLE: example dsum; shows an example |
---|
144 | " |
---|
145 | { |
---|
146 | int i,N,a; |
---|
147 | list L; |
---|
148 | for( i=1; i<=size(#); i=i+1 ) { N=N+nrows(#[i]); } |
---|
149 | for( i=1; i<=size(#); i=i+1 ) |
---|
150 | { |
---|
151 | matrix B[N][ncols(#[i])]; |
---|
152 | B[a+1..a+nrows(#[i]),1..ncols(#[i])]=#[i]; |
---|
153 | a=a+nrows(#[i]); |
---|
154 | L[i]=B; kill B; |
---|
155 | } |
---|
156 | return(concat(L)); |
---|
157 | } |
---|
158 | example |
---|
159 | { "EXAMPLE:"; echo = 2; |
---|
160 | ring r = 0,(x,y,z),ds; |
---|
161 | matrix A[3][3] = 1,2,3,4,5,6,7,8,9; |
---|
162 | matrix B[2][2] = 1,x,y,z; |
---|
163 | print(A); |
---|
164 | print(B); |
---|
165 | print(dsum(A,B)); |
---|
166 | } |
---|
167 | /////////////////////////////////////////////////////////////////////////////// |
---|
168 | |
---|
169 | proc flatten (matrix A) |
---|
170 | "USAGE: flatten(A); A matrix |
---|
171 | RETURN: ideal, generated by all entries from A |
---|
172 | EXAMPLE: example flatten; shows an example |
---|
173 | " |
---|
174 | { |
---|
175 | return(ideal(A)); |
---|
176 | } |
---|
177 | example |
---|
178 | { "EXAMPLE:"; echo = 2; |
---|
179 | ring r = 0,(x,y,z),ds; |
---|
180 | matrix A[2][3] = 1,2,x,y,z,7; |
---|
181 | print(A); |
---|
182 | flatten(A); |
---|
183 | } |
---|
184 | /////////////////////////////////////////////////////////////////////////////// |
---|
185 | |
---|
186 | proc genericmat (int n,int m,list #) |
---|
187 | "USAGE: genericmat(n,m[,id]); n,m=integers, id=ideal |
---|
188 | RETURN: nxm matrix, with entries from id. |
---|
189 | NOTE: if id has less than nxm elements, the matrix is filled with 0's, |
---|
190 | (default: id=maxideal(1)). |
---|
191 | genericmat(n,m); creates the generic nxm matrix |
---|
192 | EXAMPLE: example genericmat; shows an example |
---|
193 | " |
---|
194 | { |
---|
195 | if( size(#)==0 ) { ideal id=maxideal(1); } |
---|
196 | if( size(#)==1 ) { ideal id=#[1]; } |
---|
197 | if( size(#)>=2 ) { "// give 3 arguments, 3-rd argument must be an ideal"; } |
---|
198 | matrix B[n][m]=id; |
---|
199 | return(B); |
---|
200 | } |
---|
201 | example |
---|
202 | { "EXAMPLE:"; echo = 2; |
---|
203 | ring R = 0,x(1..16),lp; |
---|
204 | print(genericmat(3,3)); // the generic 3x3 matrix |
---|
205 | ring R1 = 0,(a,b,c,d),dp; |
---|
206 | matrix A = genericmat(3,4,maxideal(1)^3); |
---|
207 | print(A); |
---|
208 | int n,m = 3,2; |
---|
209 | ideal i = ideal(randommat(1,n*m,maxideal(1),9)); |
---|
210 | print(genericmat(n,m,i)); // matrix of generic linear forms |
---|
211 | } |
---|
212 | /////////////////////////////////////////////////////////////////////////////// |
---|
213 | |
---|
214 | proc is_complex (list c) |
---|
215 | "USAGE: is_complex(c); c = list of size-compatible modules or matrices |
---|
216 | RETURN: 1 if c[i]*c[i+1]=0 for all i, 0 if not, hence checking whether the |
---|
217 | list of matrices forms a complex. |
---|
218 | NOTE: Ideals are treated internally as 1-line matrices. |
---|
219 | If printlevel > 0, the position where c is not a complex is shown. |
---|
220 | EXAMPLE: example is_complex; shows an example |
---|
221 | " |
---|
222 | { |
---|
223 | int i; |
---|
224 | module @test; |
---|
225 | for( i=1; i<=size(c)-1; i=i+1 ) |
---|
226 | { |
---|
227 | c[i]=matrix(c[i]); c[i+1]=matrix(c[i+1]); |
---|
228 | @test=c[i]*c[i+1]; |
---|
229 | if (size(@test)!=0) |
---|
230 | { |
---|
231 | dbprint(printlevel-voice+2,"// not a complex at position " +string(i)); |
---|
232 | return(0); |
---|
233 | } |
---|
234 | } |
---|
235 | return(1); |
---|
236 | } |
---|
237 | example |
---|
238 | { "EXAMPLE:"; echo = 2; |
---|
239 | ring r = 32003,(x,y,z),ds; |
---|
240 | ideal i = x4+y5+z6,xyz,yx2+xz2+zy7; |
---|
241 | list L = nres(i,0); |
---|
242 | is_complex(L); |
---|
243 | L[4] = matrix(i); |
---|
244 | is_complex(L); |
---|
245 | } |
---|
246 | /////////////////////////////////////////////////////////////////////////////// |
---|
247 | |
---|
248 | proc outer (matrix A, matrix B) |
---|
249 | "USAGE: outer(A,B); A,B matrices |
---|
250 | RETURN: matrix, outer (tensor) product of A and B |
---|
251 | EXAMPLE: example outer; shows an example |
---|
252 | " |
---|
253 | { |
---|
254 | int i,j; list L; |
---|
255 | int triv = nrows(B)*ncols(B); |
---|
256 | if( triv==1 ) |
---|
257 | { |
---|
258 | return(B[1,1]*A); |
---|
259 | } |
---|
260 | else |
---|
261 | { |
---|
262 | int N = nrows(A)*nrows(B); |
---|
263 | matrix C[N][ncols(B)]; |
---|
264 | for( i=1; i<=ncols(A); i=i+1 ) |
---|
265 | { |
---|
266 | for( j=1; j<=nrows(A); j=j+1 ) |
---|
267 | { |
---|
268 | C[(j-1)*nrows(B)+1..j*nrows(B),1..ncols(B)]=A[j,i]*B; |
---|
269 | } |
---|
270 | L[i]=C; |
---|
271 | } |
---|
272 | return(concat(L)); |
---|
273 | } |
---|
274 | } |
---|
275 | example |
---|
276 | { "EXAMPLE:"; echo = 2; |
---|
277 | ring r=32003,(x,y,z),ds; |
---|
278 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
279 | matrix B[2][2]=x,y,0,z; |
---|
280 | print(A); |
---|
281 | print(B); |
---|
282 | print(outer(A,B)); |
---|
283 | } |
---|
284 | /////////////////////////////////////////////////////////////////////////////// |
---|
285 | |
---|
286 | proc power ( A, int n) |
---|
287 | "USAGE: power(A,n); A a square-matrix of type intmat or matrix, n=integer |
---|
288 | RETURN: intmat resp. matrix, the n-th power of A |
---|
289 | NOTE: for A=intmat and big n the result may be wrong because of int overflow |
---|
290 | EXAMPLE: example power; shows an example |
---|
291 | " |
---|
292 | { |
---|
293 | //---------------------------- type checking ---------------------------------- |
---|
294 | if( typeof(A)!="matrix" and typeof(A)!="intmat" ) |
---|
295 | { |
---|
296 | "// no matrix or intmat!"; |
---|
297 | return (A); |
---|
298 | } |
---|
299 | if( ncols(A) != nrows(A) ) |
---|
300 | { |
---|
301 | "// not a suare matrix!"; |
---|
302 | return(); |
---|
303 | } |
---|
304 | //---------------------------- trivial cases ---------------------------------- |
---|
305 | int ii; |
---|
306 | if( n <= 0 ) |
---|
307 | { |
---|
308 | if( typeof(A)=="matrix" ) |
---|
309 | { |
---|
310 | return (unitmat(nrows(A))); |
---|
311 | } |
---|
312 | if( typeof(A)=="intmat" ) |
---|
313 | { |
---|
314 | intmat B[nrows(A)][nrows(A)]; |
---|
315 | for( ii=1; ii<=nrows(A); ii++ ) |
---|
316 | { |
---|
317 | B[ii,ii] = 1; |
---|
318 | } |
---|
319 | return (B); |
---|
320 | } |
---|
321 | } |
---|
322 | if( n == 1 ) { return (A); } |
---|
323 | //---------------------------- sub procedure ---------------------------------- |
---|
324 | proc matpow (A, int n) |
---|
325 | { |
---|
326 | def B = A*A; |
---|
327 | int ii= 2; |
---|
328 | int jj= 4; |
---|
329 | while( jj <= n ) |
---|
330 | { |
---|
331 | B=B*B; |
---|
332 | ii=jj; |
---|
333 | jj=2*jj; |
---|
334 | } |
---|
335 | return(B,n-ii); |
---|
336 | } |
---|
337 | //----------------------------- main program ---------------------------------- |
---|
338 | list L = matpow(A,n); |
---|
339 | def B = L[1]; |
---|
340 | ii = L[2]; |
---|
341 | while( ii>=2 ) |
---|
342 | { |
---|
343 | L = matpow(A,ii); |
---|
344 | B = B*L[1]; |
---|
345 | ii= L[2]; |
---|
346 | } |
---|
347 | if( ii == 0) { return(B); } |
---|
348 | if( ii == 1) { return(A*B); } |
---|
349 | } |
---|
350 | example |
---|
351 | { "EXAMPLE:"; echo = 2; |
---|
352 | intmat A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
353 | print(power(A,3));""; |
---|
354 | ring r=0,(x,y,z),dp; |
---|
355 | matrix B[3][3]=0,x,y,z,0,0,y,z,0; |
---|
356 | print(power(B,3));""; |
---|
357 | } |
---|
358 | /////////////////////////////////////////////////////////////////////////////// |
---|
359 | |
---|
360 | proc skewmat (int n, list #) |
---|
361 | "USAGE: skewmat(n[,id]); n integer, id ideal |
---|
362 | RETURN: skew-symmetric nxn matrix, with entries from id |
---|
363 | (default: id=maxideal(1)) |
---|
364 | skewmat(n); creates the generic skew-symmetric matrix |
---|
365 | NOTE: if id has less than n*(n-1)/2 elements, the matrix is |
---|
366 | filled with 0's, |
---|
367 | EXAMPLE: example skewmat; shows an example |
---|
368 | " |
---|
369 | { |
---|
370 | matrix B[n][n]; |
---|
371 | if( size(#)==0 ) { ideal id=maxideal(1); } |
---|
372 | else { ideal id=#[1]; } |
---|
373 | id = id,B[1..n,1..n]; |
---|
374 | int i,j; |
---|
375 | for( i=0; i<=n-2; i=i+1 ) |
---|
376 | { |
---|
377 | B[i+1,i+2..n]=id[j+1..j+n-i-1]; |
---|
378 | j=j+n-i-1; |
---|
379 | } |
---|
380 | matrix A=transpose(B); |
---|
381 | B=B-A; |
---|
382 | return(B); |
---|
383 | } |
---|
384 | example |
---|
385 | { "EXAMPLE:"; echo = 2; |
---|
386 | ring R=0,x(1..5),lp; |
---|
387 | print(skewmat(4)); // the generic skew-symmetric matrix |
---|
388 | ring R1 = 0,(a,b,c),dp; |
---|
389 | matrix A=skewmat(4,maxideal(1)^2); |
---|
390 | print(A); |
---|
391 | int n=3; |
---|
392 | ideal i = ideal(randommat(1,n*(n-1) div 2,maxideal(1),9)); |
---|
393 | print(skewmat(n,i)); // skew matrix of generic linear forms |
---|
394 | kill R1; |
---|
395 | } |
---|
396 | /////////////////////////////////////////////////////////////////////////////// |
---|
397 | |
---|
398 | proc submat (matrix A, intvec r, intvec c) |
---|
399 | "USAGE: submat(A,r,c); A=matrix, r,c=intvec |
---|
400 | RETURN: matrix, submatrix of A with rows specified by intvec r |
---|
401 | and columns specified by intvec c. |
---|
402 | EXAMPLE: example submat; shows an example |
---|
403 | " |
---|
404 | { |
---|
405 | matrix B[size(r)][size(c)]=A[r,c]; |
---|
406 | return(B); |
---|
407 | } |
---|
408 | example |
---|
409 | { "EXAMPLE:"; echo = 2; |
---|
410 | ring R=32003,(x,y,z),lp; |
---|
411 | matrix A[4][4]=x,y,z,0,1,2,3,4,5,6,7,8,9,x2,y2,z2; |
---|
412 | print(A); |
---|
413 | intvec v=1,3,4; |
---|
414 | matrix B=submat(A,v,1..3); |
---|
415 | print(B); |
---|
416 | } |
---|
417 | /////////////////////////////////////////////////////////////////////////////// |
---|
418 | |
---|
419 | proc symmat (int n, list #) |
---|
420 | "USAGE: symmat(n[,id]); n integer, id ideal |
---|
421 | RETURN: symmetric nxn matrix, with entries from id (default: id=maxideal(1)) |
---|
422 | NOTE: if id has less than n*(n+1)/2 elements, the matrix is filled with 0's, |
---|
423 | symmat(n); creates the generic symmetric matrix |
---|
424 | EXAMPLE: example symmat; shows an example |
---|
425 | " |
---|
426 | { |
---|
427 | matrix B[n][n]; |
---|
428 | if( size(#)==0 ) { ideal id=maxideal(1); } |
---|
429 | else { ideal id=#[1]; } |
---|
430 | id = id,B[1..n,1..n]; |
---|
431 | int i,j; |
---|
432 | for( i=0; i<=n-1; i=i+1 ) |
---|
433 | { |
---|
434 | B[i+1,i+1..n]=id[j+1..j+n-i]; |
---|
435 | j=j+n-i; |
---|
436 | } |
---|
437 | matrix A=transpose(B); |
---|
438 | for( i=1; i<=n; i=i+1 ) { A[i,i]=0; } |
---|
439 | B=A+B; |
---|
440 | return(B); |
---|
441 | } |
---|
442 | example |
---|
443 | { "EXAMPLE:"; echo = 2; |
---|
444 | ring R=0,x(1..10),lp; |
---|
445 | print(symmat(4)); // the generic symmetric matrix |
---|
446 | ring R1 = 0,(a,b,c),dp; |
---|
447 | matrix A=symmat(4,maxideal(1)^3); |
---|
448 | print(A); |
---|
449 | int n=3; |
---|
450 | ideal i = ideal(randommat(1,n*(n+1) div 2,maxideal(1),9)); |
---|
451 | print(symmat(n,i)); // symmetric matrix of generic linear forms |
---|
452 | kill R1; |
---|
453 | } |
---|
454 | /////////////////////////////////////////////////////////////////////////////// |
---|
455 | |
---|
456 | proc tensor (matrix A, matrix B) |
---|
457 | "USAGE: tensor(A,B); A,B matrices |
---|
458 | RETURN: matrix, tensor product of A and B |
---|
459 | EXAMPLE: example tensor; shows an example |
---|
460 | " |
---|
461 | { |
---|
462 | if (ncols(A)==0) |
---|
463 | { |
---|
464 | int q=nrows(A)*nrows(B); |
---|
465 | matrix D[q][0]; |
---|
466 | return(D); |
---|
467 | } |
---|
468 | |
---|
469 | int i,j; |
---|
470 | matrix C,D; |
---|
471 | for( i=1; i<=nrows(A); i++ ) |
---|
472 | { |
---|
473 | C = A[i,1]*B; |
---|
474 | for( j=2; j<=ncols(A); j++ ) |
---|
475 | { |
---|
476 | C = concat(C,A[i,j]*B); |
---|
477 | } |
---|
478 | D = concat(D,transpose(C)); |
---|
479 | } |
---|
480 | D = transpose(D); |
---|
481 | return(submat(D,2..nrows(D),1..ncols(D))); |
---|
482 | } |
---|
483 | example |
---|
484 | { "EXAMPLE:"; echo = 2; |
---|
485 | ring r=32003,(x,y,z),(c,ds); |
---|
486 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
487 | matrix B[2][2]=x,y,0,z; |
---|
488 | print(A); |
---|
489 | print(B); |
---|
490 | print(tensor(A,B)); |
---|
491 | } |
---|
492 | /////////////////////////////////////////////////////////////////////////////// |
---|
493 | |
---|
494 | proc unitmat (int n) |
---|
495 | "USAGE: unitmat(n); n integer >= 0 |
---|
496 | RETURN: nxn unit matrix |
---|
497 | NOTE: needs a basering, diagonal entries are numbers (=1) in the basering |
---|
498 | EXAMPLE: example unitmat; shows an example |
---|
499 | " |
---|
500 | { |
---|
501 | return(matrix(freemodule(n))); |
---|
502 | } |
---|
503 | example |
---|
504 | { "EXAMPLE:"; echo = 2; |
---|
505 | ring r=32003,(x,y,z),lp; |
---|
506 | print(xyz*unitmat(4)); |
---|
507 | print(unitmat(5)); |
---|
508 | } |
---|
509 | /////////////////////////////////////////////////////////////////////////////// |
---|
510 | |
---|
511 | proc gauss_col (matrix A, list #) |
---|
512 | "USAGE: gauss_col(A[,e]); A a matrix, e any type |
---|
513 | RETURN: - a matrix B, if called with one argument; B is the complete column- |
---|
514 | reduced upper-triangular normal form of A if A is constant, |
---|
515 | (resp. as far as this is possible if A is a polynomial matrix; |
---|
516 | no division by polynomials). |
---|
517 | @* - a list L of two matrices, if called with two arguments; |
---|
518 | L satisfies L[1] = A * L[2] with L[1] the column-reduced form of A |
---|
519 | and L[2] the transformation matrix. |
---|
520 | NOTE: * The procedure just applies interred to A with ordering (C,dp). |
---|
521 | The transformation matrix is obtained by applying 'lift'. |
---|
522 | This should be faster than the procedure colred. |
---|
523 | @* * It should only be used with exact coefficient field (there is no |
---|
524 | pivoting and rounding error treatment). |
---|
525 | @* * Parameters are allowed. Hence, if the entries of A are parameters, |
---|
526 | B is the column-reduced form of A over the rational function field. |
---|
527 | SEE ALSO: colred |
---|
528 | EXAMPLE: example gauss_col; shows an example |
---|
529 | " |
---|
530 | { |
---|
531 | def R=basering; int u; |
---|
532 | string mp = string(minpoly); |
---|
533 | int n = nrows(A); |
---|
534 | int m = ncols(A); |
---|
535 | module M = A; |
---|
536 | intvec v = option(get); |
---|
537 | //------------------------ change ordering if necessary ---------------------- |
---|
538 | if( ordstr(R) != ("C,dp("+string(nvars(R))+")") ) |
---|
539 | { |
---|
540 | def @R=changeord("C,dp",R); setring @R; u=1; |
---|
541 | execute("minpoly="+mp+";"); |
---|
542 | matrix A = imap(R,A); |
---|
543 | module M = A; |
---|
544 | } |
---|
545 | //------------------------------ start computation --------------------------- |
---|
546 | option(redSB); |
---|
547 | M = simplify(interred(M),1); |
---|
548 | if(size(#) != 0) |
---|
549 | { |
---|
550 | module N = lift(A,M); |
---|
551 | } |
---|
552 | //--------------- reset ring and options and return -------------------------- |
---|
553 | if ( u==1 ) |
---|
554 | { |
---|
555 | setring R; |
---|
556 | M=imap(@R,M); |
---|
557 | if (size(#) != 0) |
---|
558 | { |
---|
559 | module N = imap(@R,N); |
---|
560 | } |
---|
561 | kill @R; |
---|
562 | } |
---|
563 | option(set,v); |
---|
564 | // M = sort(M,size(M)..1)[1]; |
---|
565 | A = matrix(M,n,m); |
---|
566 | if (size(#) != 0) |
---|
567 | { |
---|
568 | list L= A,matrix(N,m,m); |
---|
569 | return(L); |
---|
570 | } |
---|
571 | return(matrix(M,n,m)); |
---|
572 | } |
---|
573 | example |
---|
574 | { "EXAMPLE:"; echo = 2; |
---|
575 | ring r=(0,a,b),(A,B,C),dp; |
---|
576 | matrix m[8][6]= |
---|
577 | 0, 2*C, 0, 0, 0, 0, |
---|
578 | 0, -4*C,a*A, 0, 0, 0, |
---|
579 | b*B, -A, 0, 0, 0, 0, |
---|
580 | -A, B, 0, 0, 0, 0, |
---|
581 | -4*C, 0, B, 2, 0, 0, |
---|
582 | 2*A, B, 0, 0, 0, 0, |
---|
583 | 0, 3*B, 0, 0, 2b, 0, |
---|
584 | 0, AB, 0, 2*A,A, 2a;""; |
---|
585 | list L=gauss_col(m,1); |
---|
586 | print(L[1]); |
---|
587 | print(L[2]); |
---|
588 | |
---|
589 | ring S=0,x,(c,dp); |
---|
590 | matrix A[5][4] = |
---|
591 | 3, 1, 1, 1, |
---|
592 | 13, 8, 6,-7, |
---|
593 | 14,10, 6,-7, |
---|
594 | 7, 4, 3,-3, |
---|
595 | 2, 1, 0, 3; |
---|
596 | print(gauss_col(A)); |
---|
597 | } |
---|
598 | /////////////////////////////////////////////////////////////////////////////// |
---|
599 | |
---|
600 | proc gauss_row (matrix A, list #) |
---|
601 | "USAGE: gauss_row(A [,e]); A matrix, e any type |
---|
602 | RETURN: - a matrix B, if called with one argument; B is the complete row- |
---|
603 | reduced lower-triangular normal form of A if A is constant, |
---|
604 | (resp. as far as this is possible if A is a polynomial matrix; |
---|
605 | no division by polynomials). |
---|
606 | @* - a list L of two matrices, if called with two arguments; |
---|
607 | L satisfies transpose(L[2])*A=transpose(L[1]) |
---|
608 | with L[1] the row-reduced form of A |
---|
609 | and L[2] the transformation matrix. |
---|
610 | NOTE: * This procedure just applies gauss_col to the transposed matrix. |
---|
611 | The transformation matrix is obtained by applying lift. |
---|
612 | This should be faster than the procedure rowred. |
---|
613 | @* * It should only be used with exact coefficient field (there is no |
---|
614 | pivoting and rounding error treatment). |
---|
615 | @* * Parameters are allowed. Hence, if the entries of A are parameters, |
---|
616 | B is the row-reduced form of A over the rational function field. |
---|
617 | SEE ALSO: rowred |
---|
618 | EXAMPLE: example gauss_row; shows an example |
---|
619 | " |
---|
620 | { |
---|
621 | if(size(#) > 0) |
---|
622 | { |
---|
623 | list L = gauss_col(transpose(A),1); |
---|
624 | return(L); |
---|
625 | } |
---|
626 | A = gauss_col(transpose(A)); |
---|
627 | return(transpose(A)); |
---|
628 | } |
---|
629 | example |
---|
630 | { "EXAMPLE:"; echo = 2; |
---|
631 | ring r=(0,a,b),(A,B,C),dp; |
---|
632 | matrix m[6][8]= |
---|
633 | 0, 0, b*B, -A,-4C,2A,0, 0, |
---|
634 | 2C,-4C,-A,B, 0, B, 3B,AB, |
---|
635 | 0,a*A, 0, 0, B, 0, 0, 0, |
---|
636 | 0, 0, 0, 0, 2, 0, 0, 2A, |
---|
637 | 0, 0, 0, 0, 0, 0, 2b, A, |
---|
638 | 0, 0, 0, 0, 0, 0, 0, 2a;""; |
---|
639 | print(gauss_row(m));""; |
---|
640 | ring S=0,x,dp; |
---|
641 | matrix A[4][5] = 3, 1,1,-1,2, |
---|
642 | 13, 8,6,-7,1, |
---|
643 | 14,10,6,-7,1, |
---|
644 | 7, 4,3,-3,3; |
---|
645 | list L=gauss_row(A,1); |
---|
646 | print(L[1]); |
---|
647 | print(L[2]); |
---|
648 | } |
---|
649 | /////////////////////////////////////////////////////////////////////////////// |
---|
650 | |
---|
651 | proc addcol (matrix A, int c1, poly p, int c2) |
---|
652 | "USAGE: addcol(A,c1,p,c2); A matrix, p poly, c1, c2 positive integers |
---|
653 | RETURN: matrix, A being modified by adding p times column c1 to column c2 |
---|
654 | EXAMPLE: example addcol; shows an example |
---|
655 | " |
---|
656 | { |
---|
657 | A[1..nrows(A),c2]=A[1..nrows(A),c2]+p*A[1..nrows(A),c1]; |
---|
658 | return(A); |
---|
659 | } |
---|
660 | example |
---|
661 | { "EXAMPLE:"; echo = 2; |
---|
662 | ring r=32003,(x,y,z),lp; |
---|
663 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
664 | print(A); |
---|
665 | print(addcol(A,1,xy,2)); |
---|
666 | } |
---|
667 | /////////////////////////////////////////////////////////////////////////////// |
---|
668 | |
---|
669 | proc addrow (matrix A, int r1, poly p, int r2) |
---|
670 | "USAGE: addcol(A,r1,p,r2); A matrix, p poly, r1, r2 positive integers |
---|
671 | RETURN: matrix, A being modified by adding p times row r1 to row r2 |
---|
672 | EXAMPLE: example addrow; shows an example |
---|
673 | " |
---|
674 | { |
---|
675 | A[r2,1..ncols(A)]=A[r2,1..ncols(A)]+p*A[r1,1..ncols(A)]; |
---|
676 | return(A); |
---|
677 | } |
---|
678 | example |
---|
679 | { "EXAMPLE:"; echo = 2; |
---|
680 | ring r=32003,(x,y,z),lp; |
---|
681 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
682 | print(A); |
---|
683 | print(addrow(A,1,xy,3)); |
---|
684 | } |
---|
685 | /////////////////////////////////////////////////////////////////////////////// |
---|
686 | |
---|
687 | proc multcol (matrix A, int c, poly p) |
---|
688 | "USAGE: addcol(A,c,p); A matrix, p poly, c positive integer |
---|
689 | RETURN: matrix, A being modified by multiplying column c with p |
---|
690 | EXAMPLE: example multcol; shows an example |
---|
691 | " |
---|
692 | { |
---|
693 | A[1..nrows(A),c]=p*A[1..nrows(A),c]; |
---|
694 | return(A); |
---|
695 | } |
---|
696 | example |
---|
697 | { "EXAMPLE:"; echo = 2; |
---|
698 | ring r=32003,(x,y,z),lp; |
---|
699 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
700 | print(A); |
---|
701 | print(multcol(A,2,xy)); |
---|
702 | } |
---|
703 | /////////////////////////////////////////////////////////////////////////////// |
---|
704 | |
---|
705 | proc multrow (matrix A, int r, poly p) |
---|
706 | "USAGE: multrow(A,r,p); A matrix, p poly, r positive integer |
---|
707 | RETURN: matrix, A being modified by multiplying row r with p |
---|
708 | EXAMPLE: example multrow; shows an example |
---|
709 | " |
---|
710 | { |
---|
711 | A[r,1..ncols(A)]=p*A[r,1..ncols(A)]; |
---|
712 | return(A); |
---|
713 | } |
---|
714 | example |
---|
715 | { "EXAMPLE:"; echo = 2; |
---|
716 | ring r=32003,(x,y,z),lp; |
---|
717 | matrix A[3][3]=1,2,3,4,5,6,7,8,9; |
---|
718 | print(A); |
---|
719 | print(multrow(A,2,xy)); |
---|
720 | } |
---|
721 | /////////////////////////////////////////////////////////////////////////////// |
---|
722 | |
---|
723 | proc permcol (matrix A, int c1, int c2) |
---|
724 | "USAGE: permcol(A,c1,c2); A matrix, c1,c2 positive integers |
---|
725 | RETURN: matrix, A being modified by permuting column c1 and c2 |
---|
726 | EXAMPLE: example permcol; shows an example |
---|
727 | " |
---|
728 | { |
---|
729 | matrix B=A; |
---|
730 | B[1..nrows(B),c1]=A[1..nrows(A),c2]; |
---|
731 | B[1..nrows(B),c2]=A[1..nrows(A),c1]; |
---|
732 | return(B); |
---|
733 | } |
---|
734 | example |
---|
735 | { "EXAMPLE:"; echo = 2; |
---|
736 | ring r=32003,(x,y,z),lp; |
---|
737 | matrix A[3][3]=1,x,3,4,y,6,7,z,9; |
---|
738 | print(A); |
---|
739 | print(permcol(A,2,3)); |
---|
740 | } |
---|
741 | /////////////////////////////////////////////////////////////////////////////// |
---|
742 | |
---|
743 | proc permrow (matrix A, int r1, int r2) |
---|
744 | "USAGE: permrow(A,r1,r2); A matrix, r1,r2 positive integers |
---|
745 | RETURN: matrix, A being modified by permuting row r1 and r2 |
---|
746 | EXAMPLE: example permrow; shows an example |
---|
747 | " |
---|
748 | { |
---|
749 | matrix B=A; |
---|
750 | B[r1,1..ncols(B)]=A[r2,1..ncols(A)]; |
---|
751 | B[r2,1..ncols(B)]=A[r1,1..ncols(A)]; |
---|
752 | return(B); |
---|
753 | } |
---|
754 | example |
---|
755 | { "EXAMPLE:"; echo = 2; |
---|
756 | ring r=32003,(x,y,z),lp; |
---|
757 | matrix A[3][3]=1,2,3,x,y,z,7,8,9; |
---|
758 | print(A); |
---|
759 | print(permrow(A,2,1)); |
---|
760 | } |
---|
761 | /////////////////////////////////////////////////////////////////////////////// |
---|
762 | |
---|
763 | proc rowred (matrix A,list #) |
---|
764 | "USAGE: rowred(A[,e]); A matrix, e any type |
---|
765 | RETURN: - a matrix B, being the row reduced form of A, if rowred is called |
---|
766 | with one argument. |
---|
767 | (as far as this is possible over the polynomial ring; no division |
---|
768 | by polynomials) |
---|
769 | @* - a list L of two matrices, such that L[1] = L[2] * A with L[1] |
---|
770 | the row-reduced form of A and L[2] the transformation matrix |
---|
771 | (if rowred is called with two arguments). |
---|
772 | NOTE: * This procedure is designed for teaching purposes mainly. |
---|
773 | @* * The straight forward Gaussian algorithm is implemented in the |
---|
774 | library (no standard basis computation). |
---|
775 | The transformation matrix is obtained by concatenating a unit |
---|
776 | matrix to A. proc gauss_row should be faster. |
---|
777 | @* * It should only be used with exact coefficient field (there is no |
---|
778 | pivoting) over the polynomial ring (ordering lp or dp). |
---|
779 | @* * Parameters are allowed. Hence, if the entries of A are parameters |
---|
780 | the computation takes place over the field of rational functions. |
---|
781 | SEE ALSO: gauss_row |
---|
782 | EXAMPLE: example rowred; shows an example |
---|
783 | " |
---|
784 | { |
---|
785 | int m,n=nrows(A),ncols(A); |
---|
786 | int i,j,k,l,rk; |
---|
787 | poly p; |
---|
788 | matrix d[m][n]; |
---|
789 | for (i=1;i<=m;i=i+1) |
---|
790 | { for (j=1;j<=n;j=j+1) |
---|
791 | { p = A[i,j]; |
---|
792 | if (ord(p)==0) |
---|
793 | { if (deg(p)==0) { d[i,j]=p; } |
---|
794 | } |
---|
795 | } |
---|
796 | } |
---|
797 | matrix b = A; |
---|
798 | if (size(#) != 0) { b = concat(b,unitmat(m)); } |
---|
799 | for (l=1;l<=n;l=l+1) |
---|
800 | { |
---|
801 | k = findfirst(ideal(d[l]),rk+1); |
---|
802 | if (k) |
---|
803 | { rk = rk+1; |
---|
804 | b = permrow(b,rk,k); |
---|
805 | p = b[rk,l]; p = 1/p; |
---|
806 | b = multrow(b,rk,p); |
---|
807 | for (i=1;i<=m;i=i+1) |
---|
808 | { |
---|
809 | if (rk-i) { b = addrow(b,rk,-b[i,l],i);} |
---|
810 | } |
---|
811 | d = 0; |
---|
812 | for (i=rk+1;i<=m;i=i+1) |
---|
813 | { for (j=l+1;j<=n;j=j+1) |
---|
814 | { p = b[i,j]; |
---|
815 | if (ord(p)==0) |
---|
816 | { if (deg(p)==0) { d[i,j]=p; } |
---|
817 | } |
---|
818 | } |
---|
819 | } |
---|
820 | |
---|
821 | } |
---|
822 | } |
---|
823 | d = submat(b,1..m,1..n); |
---|
824 | if (size(#)) |
---|
825 | { |
---|
826 | list L=d,submat(b,1..m,n+1..n+m); |
---|
827 | return(L); |
---|
828 | } |
---|
829 | return(d); |
---|
830 | } |
---|
831 | example |
---|
832 | { "EXAMPLE:"; echo = 2; |
---|
833 | ring r=(0,a,b),(A,B,C),dp; |
---|
834 | matrix m[6][8]= |
---|
835 | 0, 0, b*B, -A,-4C,2A,0, 0, |
---|
836 | 2C,-4C,-A,B, 0, B, 3B,AB, |
---|
837 | 0,a*A, 0, 0, B, 0, 0, 0, |
---|
838 | 0, 0, 0, 0, 2, 0, 0, 2A, |
---|
839 | 0, 0, 0, 0, 0, 0, 2b, A, |
---|
840 | 0, 0, 0, 0, 0, 0, 0, 2a;""; |
---|
841 | print(rowred(m));""; |
---|
842 | list L=rowred(m,1); |
---|
843 | print(L[1]); |
---|
844 | print(L[2]); |
---|
845 | } |
---|
846 | /////////////////////////////////////////////////////////////////////////////// |
---|
847 | |
---|
848 | proc colred (matrix A,list #) |
---|
849 | "USAGE: colred(A[,e]); A matrix, e any type |
---|
850 | RETURN: - a matrix B, being the column reduced form of A, if colred is |
---|
851 | called with one argument. |
---|
852 | (as far as this is possible over the polynomial ring; |
---|
853 | no division by polynomials) |
---|
854 | @* - a list L of two matrices, such that L[1] = A * L[2] with L[1] |
---|
855 | the column-reduced form of A and L[2] the transformation matrix |
---|
856 | (if colred is called with two arguments). |
---|
857 | NOTE: * This procedure is designed for teaching purposes mainly. |
---|
858 | @* * It applies rowred to the transposed matrix. |
---|
859 | proc gauss_col should be faster. |
---|
860 | @* * It should only be used with exact coefficient field (there is no |
---|
861 | pivoting) over the polynomial ring (ordering lp or dp). |
---|
862 | @* * Parameters are allowed. Hence, if the entries of A are parameters |
---|
863 | the computation takes place over the field of rational functions. |
---|
864 | SEE ALSO: gauss_col |
---|
865 | EXAMPLE: example colred; shows an example |
---|
866 | " |
---|
867 | { |
---|
868 | A = transpose(A); |
---|
869 | if (size(#)) |
---|
870 | { list L = rowred(A,1); return(transpose(L[1]),transpose(L[2]));} |
---|
871 | else |
---|
872 | { return(transpose(rowred(A)));} |
---|
873 | } |
---|
874 | example |
---|
875 | { "EXAMPLE:"; echo = 2; |
---|
876 | ring r=(0,a,b),(A,B,C),dp; |
---|
877 | matrix m[8][6]= |
---|
878 | 0, 2*C, 0, 0, 0, 0, |
---|
879 | 0, -4*C,a*A, 0, 0, 0, |
---|
880 | b*B, -A, 0, 0, 0, 0, |
---|
881 | -A, B, 0, 0, 0, 0, |
---|
882 | -4*C, 0, B, 2, 0, 0, |
---|
883 | 2*A, B, 0, 0, 0, 0, |
---|
884 | 0, 3*B, 0, 0, 2b, 0, |
---|
885 | 0, AB, 0, 2*A,A, 2a;""; |
---|
886 | print(colred(m));""; |
---|
887 | list L=colred(m,1); |
---|
888 | print(L[1]); |
---|
889 | print(L[2]); |
---|
890 | } |
---|
891 | ////////////////////////////////////////////////////////////////////////////// |
---|
892 | |
---|
893 | static proc findfirst (ideal i,int t) |
---|
894 | { |
---|
895 | int n,k; |
---|
896 | for (n=t;n<=ncols(i);n=n+1) |
---|
897 | { |
---|
898 | if (i[n]!=0) { k=n;break;} |
---|
899 | } |
---|
900 | return(k); |
---|
901 | } |
---|
902 | ////////////////////////////////////////////////////////////////////////////// |
---|
903 | |
---|
904 | proc rm_unitcol(matrix A) |
---|
905 | "USAGE: rm_unitcol(A); A matrix (being row-reduced) |
---|
906 | RETURN: matrix, obtained from A by deleting unit columns (having just one 1 |
---|
907 | and else 0 as entries) and associated rows |
---|
908 | EXAMPLE: example rm_unitcol; shows an example |
---|
909 | " |
---|
910 | { |
---|
911 | int l,j; |
---|
912 | intvec v; |
---|
913 | for (j=1;j<=ncols(A);j=j+1) |
---|
914 | { |
---|
915 | if (gen(l+1)==module(A)[j]) {l=l+1;} |
---|
916 | else { v=v,j;} |
---|
917 | } |
---|
918 | if (size(v)>1) |
---|
919 | { v = v[2..size(v)]; |
---|
920 | return(submat(A,l+1..nrows(A),v)); |
---|
921 | } |
---|
922 | else |
---|
923 | { return(0);} |
---|
924 | } |
---|
925 | example |
---|
926 | { "EXAMPLE:"; echo = 2; |
---|
927 | ring r=0,(A,B,C),dp; |
---|
928 | matrix m[6][8]= |
---|
929 | 0, 0, A, 0, 1,0, 0,0, |
---|
930 | 0, 0, -C2, 0, 0,0, 1,0, |
---|
931 | 0, 0, 0,1/2B, 0,0, 0,1, |
---|
932 | 0, 0, B, -A, 0,2A, 0,0, |
---|
933 | 2C,-4C, -A, B, 0,B, 0,0, |
---|
934 | 0, A, 0, 0, 0,0, 0,0; |
---|
935 | print(rm_unitcol(m)); |
---|
936 | } |
---|
937 | ////////////////////////////////////////////////////////////////////////////// |
---|
938 | |
---|
939 | proc rm_unitrow (matrix A) |
---|
940 | "USAGE: rm_unitrow(A); A matrix (being col-reduced) |
---|
941 | RETURN: matrix, obtained from A by deleting unit rows (having just one 1 |
---|
942 | and else 0 as entries) and associated columns |
---|
943 | EXAMPLE: example rm_unitrow; shows an example |
---|
944 | " |
---|
945 | { |
---|
946 | int l,j; |
---|
947 | intvec v; |
---|
948 | module M = transpose(A); |
---|
949 | for (j=1; j <= nrows(A); j=j+1) |
---|
950 | { |
---|
951 | if (gen(l+1) == M[j]) { l=l+1; } |
---|
952 | else { v=v,j; } |
---|
953 | } |
---|
954 | if (size(v) > 1) |
---|
955 | { v = v[2..size(v)]; |
---|
956 | return(submat(A,v,l+1..ncols(A))); |
---|
957 | } |
---|
958 | else |
---|
959 | { return(0);} |
---|
960 | } |
---|
961 | example |
---|
962 | { "EXAMPLE:"; echo = 2; |
---|
963 | ring r=0,(A,B,C),dp; |
---|
964 | matrix m[8][6]= |
---|
965 | 0,0, 0, 0, 2C, 0, |
---|
966 | 0,0, 0, 0, -4C,A, |
---|
967 | A,-C2,0, B, -A, 0, |
---|
968 | 0,0, 1/2B,-A,B, 0, |
---|
969 | 1,0, 0, 0, 0, 0, |
---|
970 | 0,0, 0, 2A,B, 0, |
---|
971 | 0,1, 0, 0, 0, 0, |
---|
972 | 0,0, 1, 0, 0, 0; |
---|
973 | print(rm_unitrow(m)); |
---|
974 | } |
---|
975 | ////////////////////////////////////////////////////////////////////////////// |
---|
976 | proc headStand(matrix M) |
---|
977 | "USAGE: headStand(M); M matrix |
---|
978 | RETURN: matrix B such that B[i][j]=M[n-i+1,m-j+1], n=nrows(M), m=ncols(M) |
---|
979 | EXAMPLE: example headStand; shows an example |
---|
980 | " |
---|
981 | { |
---|
982 | int i,j; |
---|
983 | int n=nrows(M); |
---|
984 | int m=ncols(M); |
---|
985 | matrix B[n][m]; |
---|
986 | for(i=1;i<=n;i++) |
---|
987 | { |
---|
988 | for(j=1;j<=m;j++) |
---|
989 | { |
---|
990 | B[n-i+1,m-j+1]=M[i,j]; |
---|
991 | } |
---|
992 | } |
---|
993 | return(B); |
---|
994 | } |
---|
995 | example |
---|
996 | { "EXAMPLE:"; echo = 2; |
---|
997 | ring r=0,(A,B,C),dp; |
---|
998 | matrix M[2][3]= |
---|
999 | 0,A, B, |
---|
1000 | A2, B2, C; |
---|
1001 | print(M); |
---|
1002 | print(headStand(M)); |
---|
1003 | } |
---|
1004 | ////////////////////////////////////////////////////////////////////////////// |
---|