1 | // -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- |
---|
2 | // Vi-modeline: vim: filetype=c:syntax:shiftwidth=2:tabstop=8:textwidth=0:expandtab |
---|
3 | /////////////////////////////////////////////////////////////////// |
---|
4 | version="$Id$"; |
---|
5 | category="Combinatorial Commutative Algebra"; |
---|
6 | info=" |
---|
7 | LIBRARY: multigrading.lib Multigraded Rings |
---|
8 | |
---|
9 | AUTHORS: Benjamin Bechtold, benjamin.bechtold@googlemail.com |
---|
10 | @* Rene Birkner, rbirkner@math.fu-berlin.de |
---|
11 | @* Lars Kastner, lkastner@math.fu-berlin.de |
---|
12 | @* Simon Keicher, keicher@mail.mathematik.uni-tuebingen.de |
---|
13 | @* Oleksandr Motsak, U@D, where U={motsak}, D={mathematik.uni-kl.de} |
---|
14 | @* Anna-Lena Winz, anna-lena.winz@math.fu-berlin.de |
---|
15 | |
---|
16 | OVERVIEW: This library allows one to virtually add multigradings to Singular: |
---|
17 | grade multivariate polynomial rings with arbitrary (fin. gen. Abelian) groups. |
---|
18 | For more see http://code.google.com/p/convex-singular/wiki/Multigrading |
---|
19 | For theoretical references see: |
---|
20 | @* E. Miller, B. Sturmfels: 'Combinatorial Commutative Algebra' |
---|
21 | and |
---|
22 | @* M. Kreuzer, L. Robbiano: 'Computational Commutative Algebra'. |
---|
23 | |
---|
24 | NOTE: 'multiDegBasis' relies on 4ti2 for computing Hilbert Bases. |
---|
25 | All groups are finitely generated Abelian |
---|
26 | |
---|
27 | PROCEDURES: |
---|
28 | setBaseMultigrading(M,L); attach multiweights/grading group matrices to the basering |
---|
29 | getVariableWeights([R]); get matrix of multidegrees of vars attached to a ring |
---|
30 | |
---|
31 | getGradingGroup([R]); get grading group attached to a ring |
---|
32 | getLattice([R[,choice]]); get grading group' lattice attached to a ring (or its NF) |
---|
33 | |
---|
34 | createGroup(S,L); create a group generated by S, with relations L |
---|
35 | createQuotientGroup(L); create a group generated by the unit matrix whith relations L |
---|
36 | createTorsionFreeGroup(S); create a group generated by S which is torsionfree |
---|
37 | printGroup(G); print a group |
---|
38 | |
---|
39 | isGroup(G); test whether G is a valid group |
---|
40 | isGroupHomomorphism(L1,L2,A); test wheter A defines a group homomrphism from L1 to L2 |
---|
41 | |
---|
42 | isGradedRingHomomorphism(R,f,A); test graded ring homomorph |
---|
43 | createGradedRingHomomorphism(R,f,A); create a graded ring homomorph |
---|
44 | |
---|
45 | setModuleGrading(M,v); attach multiweights of units to a module and return it |
---|
46 | getModuleGrading(M); get multiweights of module units (attached to M) |
---|
47 | |
---|
48 | isSublattice(A,B); test whether A is a sublattice of B |
---|
49 | imageLattice(P,L); computes an integral basis for P(L) |
---|
50 | intRank(A); computes the rank of the intmat A |
---|
51 | kernelLattice(P); computes an integral basis for the kernel of the linear map P. |
---|
52 | latticeBasis(B); computes an integral basis of the lattice B |
---|
53 | preimageLattice(P,L); computes an integral basis for the preimage of the lattice L under the linear map P. |
---|
54 | projectLattice(B); computes a linear map of lattices having the primitive span of B as its kernel. |
---|
55 | intersectLattices(A,B); computes an integral basis for the intersection of the lattices A and B. |
---|
56 | isIntegralSurjective(P); test whether the map P of lattices is surjective. |
---|
57 | isPrimitiveSublattice(A); test whether A generates a primitive sublattice. |
---|
58 | intInverse(A); computes the integral inverse matrix of the intmat A |
---|
59 | integralSection(P); for a given linear surjective map P of lattices this procedure returns an integral section of P. |
---|
60 | primitiveSpan(A); computes a basis for the minimal primitive sublattice that contains the given vectors (by A). |
---|
61 | |
---|
62 | factorgroup(G,H); create the group G mod H |
---|
63 | productgroup(G,H); create the group G x H |
---|
64 | |
---|
65 | multiDeg(A); compute the multidegree of A |
---|
66 | multiDegBasis(d); compute all monomials of multidegree d |
---|
67 | multiDegPartition(p); compute the multigraded-homogeneous components of p |
---|
68 | |
---|
69 | isTorsionFree(); test whether the current multigrading is free |
---|
70 | isPositive(); test whether the current multigrading is positive |
---|
71 | isZeroElement(p); test whether p has zero multidegree |
---|
72 | areZeroElements(M); test whether an integer matrix M considered as a collection of columns has zero multidegree |
---|
73 | isHomogeneous(a); test whether 'a' is multigraded-homogeneous |
---|
74 | |
---|
75 | equalMultiDeg(e1,e2[,V]); test whether e1==e2 in the current multigrading |
---|
76 | |
---|
77 | multiDegGroebner(M); compute the multigraded GB/SB of M |
---|
78 | multiDegSyzygy(M); compute the multigraded syzygies of M |
---|
79 | multiDegModulo(I,J); compute the multigraded 'modulo' module of I and J |
---|
80 | multiDegResolution(M,l[,m]); compute the multigraded resolution of M |
---|
81 | multiDegTensor(m,n); compute the tensor product of multigraded modules m,n |
---|
82 | multiDegTor(i,m,n); compute the Tor_i(m,n) for multigraded modules m,n |
---|
83 | |
---|
84 | defineHomogeneous(p); get a grading group wrt which p becomes homogeneous |
---|
85 | pushForward(f); find the finest grading on the image ring, homogenizing f |
---|
86 | gradiator(h); coarsens grading of the ring until h becomes homogeneous |
---|
87 | |
---|
88 | hermiteNormalForm(A); compute the Hermite Normal Form of a matrix |
---|
89 | smithNormalForm(A,#); compute matrices D,P,Q with D=P*A*Q and D is the smith normal form of A |
---|
90 | |
---|
91 | hilbertSeries(M); compute the multigraded Hilbert Series of M |
---|
92 | |
---|
93 | lll(A); applies LLL(.) of lll.lib which only works for lists on a matrix A |
---|
94 | |
---|
95 | (parameters in square brackets [] are optional) |
---|
96 | |
---|
97 | KEYWORDS: multigrading, multidegree, multiweights, multigraded-homogeneous, integral linear algebra |
---|
98 | "; |
---|
99 | |
---|
100 | /// evalHilbertSeries(h,v); evaluate hilberts series h by substituting v[i] for t_(i) (too experimentall) |
---|
101 | |
---|
102 | // finestMDeg(def r) |
---|
103 | // newMap(map F, intmat Q, list #) |
---|
104 | |
---|
105 | LIB "standard.lib"; // for groebner |
---|
106 | // LIB "lll.lib"; // for lll_matrix // no need now, right? |
---|
107 | LIB "matrix.lib"; // for multiDegTor |
---|
108 | |
---|
109 | /******************************************************/ |
---|
110 | |
---|
111 | static proc concatintmat(intmat A, intmat B) |
---|
112 | { |
---|
113 | |
---|
114 | if ( nrows(A) != nrows(B) ) |
---|
115 | { |
---|
116 | ERROR("matrices A and B have different number of rows."); |
---|
117 | } |
---|
118 | |
---|
119 | intmat At = transpose(A); |
---|
120 | intmat Bt = transpose(B); |
---|
121 | |
---|
122 | intmat Ct[nrows(At) + nrows(Bt)][ncols(At)] = At, Bt; |
---|
123 | |
---|
124 | return(transpose(Ct)); |
---|
125 | } |
---|
126 | |
---|
127 | |
---|
128 | /******************************************************/ |
---|
129 | proc createGradedRingHomomorphism(def src, ideal Im, def A) |
---|
130 | "USAGE: createGradedRingHomomorphism(R, f, A); ring R, ideal f, group homomorphism A |
---|
131 | PURPOSE: create a multigraded group ring homomorphism defined by |
---|
132 | a ring map from R to the current ring, given by generators images f |
---|
133 | and a group homomorphism A between grading groups |
---|
134 | RETURN: graded ring homorphism |
---|
135 | EXAMPLE: example createGradedRingHomomorphism; shows an example |
---|
136 | " |
---|
137 | { |
---|
138 | string isGRH = "isGRH"; |
---|
139 | |
---|
140 | if( !isGradedRingHomomorphism(src, Im, A) ) |
---|
141 | { |
---|
142 | ERROR("Input data is wrong"); |
---|
143 | } |
---|
144 | |
---|
145 | list h; |
---|
146 | h[3] = A; |
---|
147 | |
---|
148 | // map f = src, Im; |
---|
149 | h[2] = Im; // f? |
---|
150 | h[1] = src; |
---|
151 | |
---|
152 | attrib(h, isGRH, (1==1)); // mark it "a graded ring homomorphism" |
---|
153 | |
---|
154 | return(h); |
---|
155 | } |
---|
156 | example |
---|
157 | { |
---|
158 | "EXAMPLE:"; echo=2; |
---|
159 | |
---|
160 | ring r = 0, (x, y, z), dp; |
---|
161 | intmat S1[3][3] = |
---|
162 | 1, 0, 0, |
---|
163 | 0, 1, 0, |
---|
164 | 0, 0, 1; |
---|
165 | intmat L1[3][1] = |
---|
166 | 0, |
---|
167 | 0, |
---|
168 | 0; |
---|
169 | |
---|
170 | def G1 = createGroup(S1, L1); // (S1 + L1)/L1 |
---|
171 | printGroup(G1); |
---|
172 | |
---|
173 | setBaseMultigrading(S1, L1); // to change... |
---|
174 | |
---|
175 | ring R = 0, (a, b, c), dp; |
---|
176 | intmat S2[2][3] = |
---|
177 | 1, 0, |
---|
178 | 0, 1; |
---|
179 | intmat L2[2][1] = |
---|
180 | 0, |
---|
181 | 2; |
---|
182 | |
---|
183 | def G2 = createGroup(S2, L2); |
---|
184 | printGroup(G2); |
---|
185 | |
---|
186 | setBaseMultigrading(S2, L2); // to change... |
---|
187 | |
---|
188 | |
---|
189 | map F = r, a, b, c; |
---|
190 | intmat A[nrows(L2)][nrows(L1)] = |
---|
191 | 1, 0, 0, |
---|
192 | 3, 2, -6; |
---|
193 | |
---|
194 | // graded ring homomorphism is given by (compatible): |
---|
195 | print(F); |
---|
196 | print(A); |
---|
197 | |
---|
198 | isGradedRingHomomorphism(r, ideal(F), A); |
---|
199 | def h = createGradedRingHomomorphism(r, ideal(F), A); |
---|
200 | |
---|
201 | print(h); |
---|
202 | } |
---|
203 | |
---|
204 | |
---|
205 | /******************************************************/ |
---|
206 | proc isGradedRingHomomorphism(def src, ideal Im, def A) |
---|
207 | "USAGE: isGradedRingHomomorphism(R, f, A); ring R, ideal f, group homomorphism A |
---|
208 | PURPOSE: test a multigraded group ring homomorphism defined by |
---|
209 | a ring map from R to the current ring, given by generators images f |
---|
210 | and a group homomorphism A between grading groups |
---|
211 | RETURN: int, 1 for TRUE, 0 otherwise |
---|
212 | EXAMPLE: example isGradedRingHomomorphism; shows an example |
---|
213 | " |
---|
214 | { |
---|
215 | def dst = basering; |
---|
216 | |
---|
217 | intmat result_degs = multiDeg(Im); |
---|
218 | // print(result_degs); |
---|
219 | |
---|
220 | setring src; |
---|
221 | |
---|
222 | intmat input_degs = multiDeg(maxideal(1)); |
---|
223 | // print(input_degs); |
---|
224 | |
---|
225 | def image_degs = A * input_degs; |
---|
226 | // print( image_degs ); |
---|
227 | |
---|
228 | def df = image_degs - result_degs; |
---|
229 | // print(df); |
---|
230 | |
---|
231 | setring dst; |
---|
232 | |
---|
233 | return (areZeroElements( df )); |
---|
234 | } |
---|
235 | example |
---|
236 | { |
---|
237 | "EXAMPLE:"; echo=2; |
---|
238 | |
---|
239 | ring r = 0, (x, y, z), dp; |
---|
240 | intmat S1[3][3] = |
---|
241 | 1, 0, 0, |
---|
242 | 0, 1, 0, |
---|
243 | 0, 0, 1; |
---|
244 | intmat L1[3][1] = |
---|
245 | 0, |
---|
246 | 0, |
---|
247 | 0; |
---|
248 | |
---|
249 | def G1 = createGroup(S1, L1); // (S1 + L1)/L1 |
---|
250 | printGroup(G1); |
---|
251 | |
---|
252 | setBaseMultigrading(S1, L1); // to change... |
---|
253 | |
---|
254 | ring R = 0, (a, b, c), dp; |
---|
255 | intmat S2[2][3] = |
---|
256 | 1, 0, |
---|
257 | 0, 1; |
---|
258 | intmat L2[2][1] = |
---|
259 | 0, |
---|
260 | 2; |
---|
261 | |
---|
262 | def G2 = createGroup(S2, L2); |
---|
263 | printGroup(G2); |
---|
264 | |
---|
265 | setBaseMultigrading(S2, L2); // to change... |
---|
266 | |
---|
267 | |
---|
268 | map F = r, a, b, c; |
---|
269 | intmat A[nrows(L2)][nrows(L1)] = |
---|
270 | 1, 0, 0, |
---|
271 | 3, 2, -6; |
---|
272 | |
---|
273 | // graded ring homomorphism is given by (compatible): |
---|
274 | print(F); |
---|
275 | print(A); |
---|
276 | |
---|
277 | isGradedRingHomomorphism(r, ideal(F), A); |
---|
278 | def h = createGradedRingHomomorphism(r, ideal(F), A); |
---|
279 | |
---|
280 | print(h); |
---|
281 | |
---|
282 | // not a homo.. |
---|
283 | intmat B[nrows(L2)][nrows(L1)] = |
---|
284 | 1, 1, 1, |
---|
285 | 0, 0, 0; |
---|
286 | print(B); |
---|
287 | |
---|
288 | isGradedRingHomomorphism(r, ideal(F), B); // FALSE: there is no such homomorphism! |
---|
289 | // Therefore: the following command should return an error |
---|
290 | // createGradedRingHomomorphism(r, ideal(F), B); |
---|
291 | |
---|
292 | } |
---|
293 | |
---|
294 | |
---|
295 | proc createQuotientGroup(intmat L) |
---|
296 | "USAGE: createGroup(L); L is an integer matrix |
---|
297 | PURPOSE: create the group of the form (I+L)/L, |
---|
298 | where I is the square identity matrix of size nrows(L) x nrows(L) |
---|
299 | NOTE: L specifies relations between free generators of Z^nrows(L) |
---|
300 | RETURN: group |
---|
301 | EXAMPLE: example createQuotientGroup; shows an example |
---|
302 | " |
---|
303 | { |
---|
304 | int r = nrows(L); int i; |
---|
305 | intmat S[r][r]; // SQUARE!!! |
---|
306 | for(i = r; i > 0; i--){ S[i, i] = 1; } |
---|
307 | return (createGroup(S,L)); |
---|
308 | } |
---|
309 | example |
---|
310 | { |
---|
311 | "EXAMPLE:"; echo=2; |
---|
312 | |
---|
313 | intmat I[3][3] = |
---|
314 | 1, 0, 0, |
---|
315 | 0, 1, 0, |
---|
316 | 0, 0, 1; |
---|
317 | |
---|
318 | intmat L[3][2] = |
---|
319 | 1, 1, |
---|
320 | 1, 3, |
---|
321 | 1, 5; |
---|
322 | |
---|
323 | |
---|
324 | // The group Z^3 / L can be constructed as follows: |
---|
325 | |
---|
326 | // shortcut: |
---|
327 | def G = createQuotientGroup(L); |
---|
328 | printGroup(G); |
---|
329 | |
---|
330 | // the general way: |
---|
331 | def GG = createGroup(I, L); // (I+L)/L |
---|
332 | printGroup(GG); |
---|
333 | } |
---|
334 | |
---|
335 | proc createTorsionFreeGroup(intmat S) |
---|
336 | "USAGE: createTorsionFreeGroup(S); S is an integer matrix |
---|
337 | PURPOSE: create the free subgroup generated by S within the |
---|
338 | free Abelian group of rank nrows(S) |
---|
339 | RETURN: group |
---|
340 | EXAMPLE: example createTorsionFreeGroup; shows an example |
---|
341 | " |
---|
342 | { |
---|
343 | int r = nrows(S); int i; |
---|
344 | intmat L[r][1] = 0; |
---|
345 | return (createGroup(S,L)); |
---|
346 | } |
---|
347 | example |
---|
348 | { |
---|
349 | "EXAMPLE:"; echo=2; |
---|
350 | |
---|
351 | // ----------- extreme case ------------ // |
---|
352 | intmat S[1][3] = |
---|
353 | 1, -1, 10; |
---|
354 | |
---|
355 | // Torsion: |
---|
356 | intmat L[1][1] = |
---|
357 | 0; |
---|
358 | |
---|
359 | |
---|
360 | // The free subgroup generated by elements of S within Z^1 |
---|
361 | // can be constructed as follows: |
---|
362 | |
---|
363 | // shortcut: |
---|
364 | def G = createTorsionFreeGroup(S); |
---|
365 | printGroup(G); |
---|
366 | |
---|
367 | // the general way: |
---|
368 | def GG = createGroup(S, L); // (S+L)/L |
---|
369 | printGroup(GG); |
---|
370 | } |
---|
371 | |
---|
372 | |
---|
373 | /******************************************************/ |
---|
374 | proc createGroup(intmat S, intmat L) |
---|
375 | "USAGE: createGroup(S, L); S, L are integer matrices |
---|
376 | PURPOSE: create the group of the form (S+L)/L, i.e. |
---|
377 | S specifies generators, L specifies relations. |
---|
378 | RETURN: group |
---|
379 | EXAMPLE: example createGroup; shows an example |
---|
380 | " |
---|
381 | { |
---|
382 | string isGroup = "isGroup"; |
---|
383 | string attrGroupHNF = "hermite"; |
---|
384 | string attrGroupSNF = "smith"; |
---|
385 | |
---|
386 | |
---|
387 | /* |
---|
388 | if( size(#) > 0 ) |
---|
389 | { |
---|
390 | if( typeof(#[1]) == "intmat" ) |
---|
391 | { |
---|
392 | intmat S = #[1]; |
---|
393 | } else { ERROR("Wrong optional argument: 1"); } |
---|
394 | |
---|
395 | if( size(#) > 1 ) |
---|
396 | { |
---|
397 | if( typeof(#[2]) == "intmat" ) |
---|
398 | { |
---|
399 | intmat L = #[2]; |
---|
400 | } else { ERROR("Wrong optional argument: 2"); } |
---|
401 | } |
---|
402 | } |
---|
403 | */ |
---|
404 | |
---|
405 | if( nrows(L) != nrows(S) ) |
---|
406 | { |
---|
407 | ERROR("Incompatible matrices!"); |
---|
408 | } |
---|
409 | |
---|
410 | def H = attrib(L, attrGroupHNF); |
---|
411 | if( typeof(H) != "intmat") |
---|
412 | { |
---|
413 | attrib(L, attrGroupHNF, hermiteNormalForm(L)); |
---|
414 | } else { kill H; } |
---|
415 | |
---|
416 | def HH = attrib(L, attrGroupSNF); |
---|
417 | if( typeof(HH) != "intmat") |
---|
418 | { |
---|
419 | attrib(L, attrGroupSNF, smithNormalForm(L)); |
---|
420 | } else { kill HH; } |
---|
421 | |
---|
422 | list G; // Please, note the order: Generators + Relations: |
---|
423 | G[1] = S; |
---|
424 | G[2] = L; |
---|
425 | // And now a quick-and-dirty fix of Singular inability to handle attribs of attribs: |
---|
426 | // For the use of a group as an attribute for multigraded rings |
---|
427 | G[3] = attrib(L, attrGroupHNF); |
---|
428 | G[4] = attrib(L, attrGroupSNF); |
---|
429 | |
---|
430 | |
---|
431 | attrib(G, isGroup, (1==1)); // mark it "a group" |
---|
432 | |
---|
433 | return (G); |
---|
434 | } |
---|
435 | example |
---|
436 | { |
---|
437 | "EXAMPLE:"; echo=2; |
---|
438 | |
---|
439 | intmat S[3][3] = |
---|
440 | 1, 0, 0, |
---|
441 | 0, 1, 0, |
---|
442 | 0, 0, 1; |
---|
443 | |
---|
444 | intmat L[3][2] = |
---|
445 | 1, 1, |
---|
446 | 1, 3, |
---|
447 | 1, 5; |
---|
448 | |
---|
449 | def G = createGroup(S, L); // (S+L)/L |
---|
450 | |
---|
451 | printGroup(G); |
---|
452 | |
---|
453 | kill S, L, G; |
---|
454 | |
---|
455 | ///////////////////////////////////////////////// |
---|
456 | intmat S[2][3] = |
---|
457 | 1, -2, 1, |
---|
458 | 1, 1, 0; |
---|
459 | |
---|
460 | intmat L[2][1] = |
---|
461 | 0, |
---|
462 | 2; |
---|
463 | |
---|
464 | def G = createGroup(S, L); // (S+L)/L |
---|
465 | |
---|
466 | printGroup(G); |
---|
467 | |
---|
468 | kill S, L, G; |
---|
469 | |
---|
470 | // ----------- extreme case ------------ // |
---|
471 | intmat S[1][3] = |
---|
472 | 1, -1, 10; |
---|
473 | |
---|
474 | // Torsion: |
---|
475 | intmat L[1][1] = |
---|
476 | 0; |
---|
477 | |
---|
478 | def G = createGroup(S, L); // (S+L)/L |
---|
479 | |
---|
480 | printGroup(G); |
---|
481 | } |
---|
482 | |
---|
483 | |
---|
484 | /******************************************************/ |
---|
485 | proc printGroup(def G) |
---|
486 | "USAGE: printGroup(G); G is a group |
---|
487 | PURPOSE: prints the group G |
---|
488 | RETURN: nothing |
---|
489 | EXAMPLE: example printGroup; shows an example |
---|
490 | " |
---|
491 | { |
---|
492 | "Generators: "; |
---|
493 | print(G[1]); |
---|
494 | |
---|
495 | "Relations: "; |
---|
496 | print(G[2]); |
---|
497 | |
---|
498 | // attrib(G[2]); |
---|
499 | } |
---|
500 | example |
---|
501 | { |
---|
502 | "EXAMPLE:"; echo=2; |
---|
503 | |
---|
504 | intmat S[3][3] = |
---|
505 | 1, 0, 0, |
---|
506 | 0, 1, 0, |
---|
507 | 0, 0, 1; |
---|
508 | |
---|
509 | intmat L[3][2] = |
---|
510 | 1, 1, |
---|
511 | 1, 3, |
---|
512 | 1, 5; |
---|
513 | |
---|
514 | def G = createGroup(S, L); // (S+L)/L |
---|
515 | printGroup(G); |
---|
516 | |
---|
517 | } |
---|
518 | |
---|
519 | /******************************************************/ |
---|
520 | static proc areIsomorphicGroups(def G, def H) |
---|
521 | "USAGE: areIsomorphicGroups(G, H); G and H are groups |
---|
522 | PURPOSE: Check whether G and H define isomorphic groups. |
---|
523 | RETURN: int, 1 for TRUE, 0 otherwise |
---|
524 | EXAMPLE: example areIsomorphicGroups; shows an example |
---|
525 | " |
---|
526 | { |
---|
527 | ERROR("areIsomorphicGroups: Not yet implemented!"); |
---|
528 | return (1); // TRUE |
---|
529 | } |
---|
530 | example |
---|
531 | { |
---|
532 | "EXAMPLE:"; echo=2; |
---|
533 | |
---|
534 | // TODO! |
---|
535 | |
---|
536 | } |
---|
537 | |
---|
538 | /******************************************************/ |
---|
539 | proc isGroup(def G) |
---|
540 | "USAGE: isGroup(G); G a list |
---|
541 | PURPOSE: checks whether G is a valid group |
---|
542 | NOTE: G should be created by createGroup |
---|
543 | (or createQuotientGroup, createTorsionFreeGroup) |
---|
544 | RETURN: int, 1 if G is a valid group and 0 otherwise |
---|
545 | EXAMPLE: example isGroup; shows an example |
---|
546 | " |
---|
547 | { |
---|
548 | string isGroup = "isGroup"; |
---|
549 | |
---|
550 | // valid? |
---|
551 | if( typeof(G) != "list" ){ return(0); } |
---|
552 | |
---|
553 | def a = attrib(G, isGroup); |
---|
554 | |
---|
555 | ///// TODO for Hans: fix attr^2 bug in Singular! |
---|
556 | |
---|
557 | // if( !defined(a) ) { return(0); } |
---|
558 | // if( typeof(a) != "int" ) { return(0); } |
---|
559 | if( defined(a) ){ if(typeof(a) == "int") { return(a); } } |
---|
560 | |
---|
561 | |
---|
562 | if( (size(G) != 2) && (size(G) != 4) ){ return(0); } |
---|
563 | if( typeof(G[1]) != "intmat" ){ return(0); } |
---|
564 | if( typeof(G[2]) != "intmat" ){ return(0); } |
---|
565 | if( nrows(G[1]) != nrows(G[2]) ){ return(0); } |
---|
566 | |
---|
567 | return(1); |
---|
568 | } |
---|
569 | example |
---|
570 | { |
---|
571 | "EXAMPLE:"; echo=2; |
---|
572 | |
---|
573 | intmat S[3][3] = |
---|
574 | 1, 0, 0, |
---|
575 | 0, 1, 0, |
---|
576 | 0, 0, 1; |
---|
577 | |
---|
578 | intmat L[3][2] = |
---|
579 | 1, 1, |
---|
580 | 1, 3, |
---|
581 | 1, 5; |
---|
582 | |
---|
583 | def G = createGroup(S, L); // (S+L)/L |
---|
584 | |
---|
585 | isGroup(G); |
---|
586 | |
---|
587 | printGroup(G); |
---|
588 | |
---|
589 | } |
---|
590 | |
---|
591 | |
---|
592 | |
---|
593 | /******************************************************/ |
---|
594 | proc setBaseMultigrading(intmat M, list #) |
---|
595 | "USAGE: setBaseMultigrading(M[, G]); M is an integer matrix, G is a group (or lattice) |
---|
596 | PURPOSE: attaches weights of variables and grading group to the basering. |
---|
597 | NOTE: M encodes the weights of variables column-wise. |
---|
598 | RETURN: nothing |
---|
599 | EXAMPLE: example setBaseMultigrading; shows an example |
---|
600 | " |
---|
601 | { |
---|
602 | string attrMgrad = "mgrad"; |
---|
603 | string attrGradingGroup = "gradingGroup"; |
---|
604 | |
---|
605 | int i = 1; |
---|
606 | if( size(#) >= i ) |
---|
607 | { |
---|
608 | def a = #[i]; |
---|
609 | if( typeof(a) == "intmat" ) |
---|
610 | { |
---|
611 | def L = createGroup(M, a); |
---|
612 | i++; |
---|
613 | } |
---|
614 | |
---|
615 | if( isGroup(a) ) |
---|
616 | { |
---|
617 | def L = a; |
---|
618 | |
---|
619 | if( !isSublattice(M, L[1]) ) |
---|
620 | { |
---|
621 | ERROR("Multigrading is not contained in the grading group!"); |
---|
622 | } |
---|
623 | i++; |
---|
624 | } |
---|
625 | if( i == 1 ){ ERROR("Wrong arguments: no group given?"); } |
---|
626 | kill a; |
---|
627 | } |
---|
628 | else |
---|
629 | { |
---|
630 | def L = createTorsionFreeGroup(M); |
---|
631 | } |
---|
632 | |
---|
633 | |
---|
634 | attrib(basering, attrMgrad, M); |
---|
635 | attrib(basering, attrGradingGroup, L); |
---|
636 | |
---|
637 | ideal Q = ideal(basering); // quotient ideal is assumed to be a GB! |
---|
638 | if( !isHomogeneous(Q, "checkGens") ) // easy now, but would be hard before setting ring attributes! |
---|
639 | { |
---|
640 | "Warning: your quotient ideal is not homogenous (multigrading was set anyway)!"; |
---|
641 | } |
---|
642 | |
---|
643 | } |
---|
644 | example |
---|
645 | { |
---|
646 | "EXAMPLE:"; echo=2; |
---|
647 | |
---|
648 | ring R = 0, (x, y, z), dp; |
---|
649 | |
---|
650 | // Weights of variables |
---|
651 | intmat M[3][3] = |
---|
652 | 1, 0, 0, |
---|
653 | 0, 1, 0, |
---|
654 | 0, 0, 1; |
---|
655 | |
---|
656 | // GradingGroup: |
---|
657 | intmat L[3][2] = |
---|
658 | 1, 1, |
---|
659 | 1, 3, |
---|
660 | 1, 5; |
---|
661 | |
---|
662 | // attaches M & L to R (==basering): |
---|
663 | setBaseMultigrading(M, L); // Grading: Z^3/L |
---|
664 | |
---|
665 | // Weights are accessible via "getVariableWeights()": |
---|
666 | getVariableWeights(); |
---|
667 | |
---|
668 | // Test all possible usages: |
---|
669 | (getVariableWeights() == M) && (getVariableWeights(R) == M) && (getVariableWeights(basering) == M); |
---|
670 | |
---|
671 | // Grading group is accessible via "getLattice()": |
---|
672 | getLattice(); |
---|
673 | |
---|
674 | // Test all possible usages: |
---|
675 | (getLattice() == L) && (getLattice(R) == L) && (getLattice(basering) == L); |
---|
676 | |
---|
677 | // And its hermite NF via getLattice("hermite"): |
---|
678 | getLattice("hermite"); |
---|
679 | |
---|
680 | // Test all possible usages: |
---|
681 | intmat H = hermiteNormalForm(L); |
---|
682 | (getLattice("hermite") == H) && (getLattice(R, "hermite") == H) && (getLattice(basering, "hermite") == H); |
---|
683 | |
---|
684 | kill L, M; |
---|
685 | |
---|
686 | // ----------- isomorphic multigrading -------- // |
---|
687 | |
---|
688 | // Weights of variables |
---|
689 | intmat M[2][3] = |
---|
690 | 1, -2, 1, |
---|
691 | 1, 1, 0; |
---|
692 | |
---|
693 | // Torsion: |
---|
694 | intmat L[2][1] = |
---|
695 | 0, |
---|
696 | 2; |
---|
697 | |
---|
698 | // attaches M & L to R (==basering): |
---|
699 | setBaseMultigrading(M, L); // Grading: Z + (Z/2Z) |
---|
700 | |
---|
701 | // Weights are accessible via "getVariableWeights()": |
---|
702 | getVariableWeights() == M; |
---|
703 | |
---|
704 | // Torsion is accessible via "getLattice()": |
---|
705 | getLattice() == L; |
---|
706 | |
---|
707 | kill L, M; |
---|
708 | // ----------- extreme case ------------ // |
---|
709 | |
---|
710 | // Weights of variables |
---|
711 | intmat M[1][3] = |
---|
712 | 1, -1, 10; |
---|
713 | |
---|
714 | // Torsion: |
---|
715 | intmat L[1][1] = |
---|
716 | 0; |
---|
717 | |
---|
718 | // attaches M & L to R (==basering): |
---|
719 | setBaseMultigrading(M); // Grading: Z^3 |
---|
720 | |
---|
721 | // Weights are accessible via "getVariableWeights()": |
---|
722 | getVariableWeights() == M; |
---|
723 | |
---|
724 | // Torsion is accessible via "getLattice()": |
---|
725 | getLattice() == L; |
---|
726 | } |
---|
727 | |
---|
728 | |
---|
729 | /******************************************************/ |
---|
730 | proc getVariableWeights(list #) |
---|
731 | "USAGE: getVariableWeights([R]) |
---|
732 | PURPOSE: get associated multigrading matrix for the basering [or R] |
---|
733 | RETURN: intmat, matrix of multidegrees of variables |
---|
734 | EXAMPLE: example getVariableWeights; shows an example |
---|
735 | " |
---|
736 | { |
---|
737 | string attrMgrad = "mgrad"; |
---|
738 | |
---|
739 | |
---|
740 | if( size(#) > 0 ) |
---|
741 | { |
---|
742 | if(( typeof(#[1]) == "ring" ) || ( typeof(#[1]) == "qring" )) |
---|
743 | { |
---|
744 | def R = #[1]; |
---|
745 | } |
---|
746 | else |
---|
747 | { |
---|
748 | ERROR("Optional argument must be a ring!"); |
---|
749 | } |
---|
750 | } |
---|
751 | else |
---|
752 | { |
---|
753 | def R = basering; |
---|
754 | } |
---|
755 | |
---|
756 | def M = attrib(R, attrMgrad); |
---|
757 | if( typeof(M) == "intmat"){ return (M); } |
---|
758 | ERROR( "Sorry no multigrading matrix!" ); |
---|
759 | } |
---|
760 | example |
---|
761 | { |
---|
762 | "EXAMPLE:"; echo=2; |
---|
763 | |
---|
764 | ring R = 0, (x, y, z), dp; |
---|
765 | |
---|
766 | // Weights of variables |
---|
767 | intmat M[3][3] = |
---|
768 | 1, 0, 0, |
---|
769 | 0, 1, 0, |
---|
770 | 0, 0, 1; |
---|
771 | |
---|
772 | // Grading group: |
---|
773 | intmat L[3][2] = |
---|
774 | 1, 1, |
---|
775 | 1, 3, |
---|
776 | 1, 5; |
---|
777 | |
---|
778 | // attaches M & L to R (==basering): |
---|
779 | setBaseMultigrading(M, L); // Grading: Z^3/L |
---|
780 | |
---|
781 | // Weights are accessible via "getVariableWeights()": |
---|
782 | getVariableWeights() == M; |
---|
783 | |
---|
784 | kill L, M; |
---|
785 | |
---|
786 | // ----------- isomorphic multigrading -------- // |
---|
787 | |
---|
788 | // Weights of variables |
---|
789 | intmat M[2][3] = |
---|
790 | 1, -2, 1, |
---|
791 | 1, 1, 0; |
---|
792 | |
---|
793 | // Grading group: |
---|
794 | intmat L[2][1] = |
---|
795 | 0, |
---|
796 | 2; |
---|
797 | |
---|
798 | // attaches M & L to R (==basering): |
---|
799 | setBaseMultigrading(M, L); // Grading: Z + (Z/2Z) |
---|
800 | |
---|
801 | // Weights are accessible via "getVariableWeights()": |
---|
802 | getVariableWeights() == M; |
---|
803 | |
---|
804 | kill L, M; |
---|
805 | |
---|
806 | // ----------- extreme case ------------ // |
---|
807 | |
---|
808 | // Weights of variables |
---|
809 | intmat M[1][3] = |
---|
810 | 1, -1, 10; |
---|
811 | |
---|
812 | // Grading group: |
---|
813 | intmat L[1][1] = |
---|
814 | 0; |
---|
815 | |
---|
816 | // attaches M & L to R (==basering): |
---|
817 | setBaseMultigrading(M); // Grading: Z^3 |
---|
818 | |
---|
819 | // Weights are accessible via "getVariableWeights()": |
---|
820 | getVariableWeights() == M; |
---|
821 | } |
---|
822 | |
---|
823 | |
---|
824 | proc getGradingGroup(list #) |
---|
825 | "USAGE: getGradingGroup([R]) |
---|
826 | PURPOSE: get associated grading group |
---|
827 | RETURN: group, the grading group |
---|
828 | EXAMPLE: example getGradingGroup; shows an example |
---|
829 | " |
---|
830 | { |
---|
831 | string attrGradingGroup = "gradingGroup"; |
---|
832 | |
---|
833 | int i = 1; |
---|
834 | |
---|
835 | if( size(#) >= i ) |
---|
836 | { |
---|
837 | if( ( typeof(#[i]) == "ring" ) or ( typeof(#[i]) == "qring" ) ) |
---|
838 | { |
---|
839 | def R = #[i]; |
---|
840 | i++; |
---|
841 | } |
---|
842 | } |
---|
843 | |
---|
844 | if( i == 1 ) |
---|
845 | { |
---|
846 | def R = basering; |
---|
847 | } |
---|
848 | |
---|
849 | def G = attrib(R, attrGradingGroup); |
---|
850 | |
---|
851 | if( !isGroup(G) ) |
---|
852 | { |
---|
853 | ERROR("Sorry no grading group!"); |
---|
854 | } |
---|
855 | |
---|
856 | return(G); |
---|
857 | } |
---|
858 | example |
---|
859 | { |
---|
860 | "EXAMPLE:"; echo=2; |
---|
861 | |
---|
862 | ring R = 0, (x, y, z), dp; |
---|
863 | |
---|
864 | // Weights of variables |
---|
865 | intmat M[3][3] = |
---|
866 | 1, 0, 0, |
---|
867 | 0, 1, 0, |
---|
868 | 0, 0, 1; |
---|
869 | |
---|
870 | // Torsion: |
---|
871 | intmat L[3][2] = |
---|
872 | 1, 1, |
---|
873 | 1, 3, |
---|
874 | 1, 5; |
---|
875 | |
---|
876 | // attaches M & L to R (==basering): |
---|
877 | setBaseMultigrading(M, L); // Grading: Z^3/L |
---|
878 | |
---|
879 | def G = getGradingGroup(); |
---|
880 | |
---|
881 | printGroup( G ); |
---|
882 | |
---|
883 | G[1] == M; G[2] == L; |
---|
884 | |
---|
885 | kill L, M, G; |
---|
886 | |
---|
887 | // ----------- isomorphic multigrading -------- // |
---|
888 | |
---|
889 | // Weights of variables |
---|
890 | intmat M[2][3] = |
---|
891 | 1, -2, 1, |
---|
892 | 1, 1, 0; |
---|
893 | |
---|
894 | // Torsion: |
---|
895 | intmat L[2][1] = |
---|
896 | 0, |
---|
897 | 2; |
---|
898 | |
---|
899 | // attaches M & L to R (==basering): |
---|
900 | setBaseMultigrading(M, L); // Grading: Z + (Z/2Z) |
---|
901 | |
---|
902 | def G = getGradingGroup(); |
---|
903 | |
---|
904 | printGroup( G ); |
---|
905 | |
---|
906 | G[1] == M; G[2] == L; |
---|
907 | |
---|
908 | kill L, M, G; |
---|
909 | // ----------- extreme case ------------ // |
---|
910 | |
---|
911 | // Weights of variables |
---|
912 | intmat M[1][3] = |
---|
913 | 1, -1, 10; |
---|
914 | |
---|
915 | // Torsion: |
---|
916 | intmat L[1][1] = |
---|
917 | 0; |
---|
918 | |
---|
919 | // attaches M & L to R (==basering): |
---|
920 | setBaseMultigrading(M); // Grading: Z^3 |
---|
921 | |
---|
922 | def G = getGradingGroup(); |
---|
923 | |
---|
924 | printGroup( G ); |
---|
925 | |
---|
926 | G[1] == M; G[2] == L; |
---|
927 | |
---|
928 | kill L, M, G; |
---|
929 | } |
---|
930 | |
---|
931 | |
---|
932 | /******************************************************/ |
---|
933 | proc getLattice(list #) |
---|
934 | "USAGE: getLattice([R[,opt]]) |
---|
935 | PURPOSE: get associated grading group matrix, i.e. generators (cols) of the grading group |
---|
936 | RETURN: intmat, the grading group matrix, or |
---|
937 | its hermite normal form if an optional argument (\"hermiteNormalForm\") is given or |
---|
938 | smith normal form if an optional argument (\"smith\") is given |
---|
939 | EXAMPLE: example getLattice; shows an example |
---|
940 | " |
---|
941 | { |
---|
942 | int i = 1; |
---|
943 | if( size(#) >= i ) |
---|
944 | { |
---|
945 | def a = #[i]; |
---|
946 | if( ( typeof(a) == "ring" ) or ( typeof(a) == "qring" ) ) |
---|
947 | { |
---|
948 | i++; |
---|
949 | } |
---|
950 | kill a; |
---|
951 | } |
---|
952 | |
---|
953 | string attrGradingGroupHNF = "hermite"; |
---|
954 | string attrGradingGroupSNF = "smith"; |
---|
955 | |
---|
956 | def G = getGradingGroup(#); |
---|
957 | |
---|
958 | // printGroup(G); |
---|
959 | |
---|
960 | |
---|
961 | |
---|
962 | def T = G[2]; |
---|
963 | |
---|
964 | if( size(#) >= i ) |
---|
965 | { |
---|
966 | def a = #[i]; |
---|
967 | |
---|
968 | if( typeof(a) != "string" ) |
---|
969 | { |
---|
970 | ERROR("Sorry wrong arguments!"); |
---|
971 | } |
---|
972 | |
---|
973 | if( a == "hermite" ) |
---|
974 | { |
---|
975 | def M = attrib(T, attrGradingGroupHNF); |
---|
976 | if( typeof(M) != "intmat" ) |
---|
977 | { |
---|
978 | if( size(G) > 2 ) |
---|
979 | { |
---|
980 | M = G[3]; |
---|
981 | } else |
---|
982 | { |
---|
983 | M = hermiteNormalForm(T); |
---|
984 | } |
---|
985 | } |
---|
986 | return (M); |
---|
987 | } |
---|
988 | |
---|
989 | if( a == "smith" ) |
---|
990 | { |
---|
991 | def M = attrib(T, attrGradingGroupSNF); |
---|
992 | if( typeof(M) != "intmat" ) |
---|
993 | { |
---|
994 | if( size(G) > 2 ) |
---|
995 | { |
---|
996 | M = G[4]; |
---|
997 | } else |
---|
998 | { |
---|
999 | M = smithNormalForm(T); |
---|
1000 | } |
---|
1001 | } |
---|
1002 | return (M); |
---|
1003 | } |
---|
1004 | } |
---|
1005 | |
---|
1006 | return(T); |
---|
1007 | } |
---|
1008 | example |
---|
1009 | { |
---|
1010 | "EXAMPLE:"; echo=2; |
---|
1011 | |
---|
1012 | ring R = 0, (x, y, z), dp; |
---|
1013 | |
---|
1014 | // Weights of variables |
---|
1015 | intmat M[3][3] = |
---|
1016 | 1, 0, 0, |
---|
1017 | 0, 1, 0, |
---|
1018 | 0, 0, 1; |
---|
1019 | |
---|
1020 | // Torsion: |
---|
1021 | intmat L[3][2] = |
---|
1022 | 1, 1, |
---|
1023 | 1, 3, |
---|
1024 | 1, 5; |
---|
1025 | |
---|
1026 | // attaches M & L to R (==basering): |
---|
1027 | setBaseMultigrading(M, L); // Grading: Z^3/L |
---|
1028 | |
---|
1029 | // Torsion is accessible via "getLattice()": |
---|
1030 | getLattice() == L; |
---|
1031 | |
---|
1032 | // its hermite NF: |
---|
1033 | print(getLattice("hermite")); |
---|
1034 | |
---|
1035 | kill L, M; |
---|
1036 | |
---|
1037 | // ----------- isomorphic multigrading -------- // |
---|
1038 | |
---|
1039 | // Weights of variables |
---|
1040 | intmat M[2][3] = |
---|
1041 | 1, -2, 1, |
---|
1042 | 1, 1, 0; |
---|
1043 | |
---|
1044 | // Torsion: |
---|
1045 | intmat L[2][1] = |
---|
1046 | 0, |
---|
1047 | 2; |
---|
1048 | |
---|
1049 | // attaches M & L to R (==basering): |
---|
1050 | setBaseMultigrading(M, L); // Grading: Z + (Z/2Z) |
---|
1051 | |
---|
1052 | // Torsion is accessible via "getLattice()": |
---|
1053 | getLattice() == L; |
---|
1054 | |
---|
1055 | // its hermite NF: |
---|
1056 | print(getLattice("hermite")); |
---|
1057 | |
---|
1058 | kill L, M; |
---|
1059 | |
---|
1060 | // ----------- extreme case ------------ // |
---|
1061 | |
---|
1062 | // Weights of variables |
---|
1063 | intmat M[1][3] = |
---|
1064 | 1, -1, 10; |
---|
1065 | |
---|
1066 | // Torsion: |
---|
1067 | intmat L[1][1] = |
---|
1068 | 0; |
---|
1069 | |
---|
1070 | // attaches M & L to R (==basering): |
---|
1071 | setBaseMultigrading(M); // Grading: Z^3 |
---|
1072 | |
---|
1073 | // Torsion is accessible via "getLattice()": |
---|
1074 | getLattice() == L; |
---|
1075 | |
---|
1076 | // its hermite NF: |
---|
1077 | print(getLattice("hermite")); |
---|
1078 | } |
---|
1079 | |
---|
1080 | proc getGradedGenerator(def m, int i) |
---|
1081 | "USAGE: getGradedGenerator(M, i), 'M' module/ideal, 'i' int |
---|
1082 | RETURN: returns the i-th generator of M, endowed with the module grading from M |
---|
1083 | EXAMPLE: example getGradedGenerator; shows an example |
---|
1084 | " |
---|
1085 | { |
---|
1086 | if( typeof(m) == "ideal" ) |
---|
1087 | { |
---|
1088 | return (m[i]); |
---|
1089 | } |
---|
1090 | |
---|
1091 | if( typeof(m) == "module" ) |
---|
1092 | { |
---|
1093 | def v = getModuleGrading(m); |
---|
1094 | |
---|
1095 | return ( setModuleGrading(m[i],v) ); |
---|
1096 | } |
---|
1097 | |
---|
1098 | ERROR("m is expected to be an ideal or a module"); |
---|
1099 | } |
---|
1100 | example |
---|
1101 | { |
---|
1102 | "EXAMPLE:"; echo=2; |
---|
1103 | |
---|
1104 | ring r = 0,(x,y,z,w),dp; |
---|
1105 | intmat MM[2][4]= |
---|
1106 | 1,1,1,1, |
---|
1107 | 0,1,3,4; |
---|
1108 | setBaseMultigrading(MM); |
---|
1109 | |
---|
1110 | module M = ideal( xw-yz, x2z-y3, xz2-y2w, yw2-z3); |
---|
1111 | |
---|
1112 | |
---|
1113 | intmat v[2][nrows(M)]= |
---|
1114 | 1, |
---|
1115 | 0; |
---|
1116 | |
---|
1117 | M = setModuleGrading(M, v); |
---|
1118 | |
---|
1119 | isHomogeneous(M); |
---|
1120 | "Multidegrees: "; print(multiDeg(M)); |
---|
1121 | |
---|
1122 | // Let's compute syzygies! |
---|
1123 | def S = multiDegSyzygy(M); S; |
---|
1124 | "Module Units Multigrading: "; print( getModuleGrading(S) ); |
---|
1125 | "Multidegrees: "; print(multiDeg(S)); |
---|
1126 | |
---|
1127 | isHomogeneous(S); |
---|
1128 | |
---|
1129 | // same as S[1] together with the induced module weighting |
---|
1130 | def v = getGradedGenerator(S, 1); |
---|
1131 | print(v); |
---|
1132 | print(setModuleGrading(v)); |
---|
1133 | |
---|
1134 | isHomogeneous(v); |
---|
1135 | |
---|
1136 | isHomogeneous(S[1]); |
---|
1137 | } |
---|
1138 | |
---|
1139 | /******************************************************/ |
---|
1140 | proc getModuleGrading(def m) |
---|
1141 | "USAGE: getModuleGrading(m), 'm' module/vector |
---|
1142 | RETURN: integer matrix of the multiweights of free module generators attached to 'm' |
---|
1143 | EXAMPLE: example getModuleGrading; shows an example |
---|
1144 | " |
---|
1145 | { |
---|
1146 | string attrModuleGrading = "genWeights"; |
---|
1147 | |
---|
1148 | // print(m); typeof(m); attrib(m); |
---|
1149 | |
---|
1150 | def V = attrib(m, attrModuleGrading); |
---|
1151 | |
---|
1152 | if( typeof(V) != "intmat" ) |
---|
1153 | { |
---|
1154 | if( (typeof(m) == "ideal") or (typeof(m) == "poly") ) |
---|
1155 | { |
---|
1156 | intmat M = getVariableWeights(); |
---|
1157 | intmat VV[nrows(M)][1]; |
---|
1158 | return (VV); |
---|
1159 | } |
---|
1160 | |
---|
1161 | ERROR("Sorry: vector or module need module-grading-matrix! See 'getModuleGrading'."); |
---|
1162 | } |
---|
1163 | |
---|
1164 | if( nrows(V) != nrows(getVariableWeights()) ) |
---|
1165 | { |
---|
1166 | ERROR("Sorry wrong height of V: " + string(nrows(V))); |
---|
1167 | } |
---|
1168 | |
---|
1169 | if( ncols(V) < nrows(m) ) |
---|
1170 | { |
---|
1171 | ERROR("Sorry wrong width of V: " + string(ncols(V))); |
---|
1172 | } |
---|
1173 | |
---|
1174 | return (V); |
---|
1175 | } |
---|
1176 | example |
---|
1177 | { |
---|
1178 | "EXAMPLE:"; echo=2; |
---|
1179 | |
---|
1180 | ring R = 0, (x,y), dp; |
---|
1181 | intmat M[2][2]= |
---|
1182 | 1, 1, |
---|
1183 | 0, 2; |
---|
1184 | intmat T[2][5]= |
---|
1185 | 1, 2, 3, 4, 0, |
---|
1186 | 0, 10, 20, 30, 1; |
---|
1187 | |
---|
1188 | setBaseMultigrading(M, T); |
---|
1189 | |
---|
1190 | ideal I = x, y, xy^5; |
---|
1191 | isHomogeneous(I); |
---|
1192 | |
---|
1193 | intmat V = multiDeg(I); print(V); |
---|
1194 | |
---|
1195 | module S = syz(I); print(S); |
---|
1196 | |
---|
1197 | S = setModuleGrading(S, V); |
---|
1198 | |
---|
1199 | getModuleGrading(S) == V; |
---|
1200 | |
---|
1201 | vector v = getGradedGenerator(S, 1); |
---|
1202 | getModuleGrading(v) == V; |
---|
1203 | isHomogeneous(v); |
---|
1204 | print( multiDeg(v) ); |
---|
1205 | |
---|
1206 | isHomogeneous(S); |
---|
1207 | print( multiDeg(S) ); |
---|
1208 | } |
---|
1209 | |
---|
1210 | /******************************************************/ |
---|
1211 | proc setModuleGrading(def m, intmat G) |
---|
1212 | "USAGE: setModuleGrading(m, G), m module/vector, G intmat |
---|
1213 | PURPOSE: attaches the multiweights of free module generators to 'm' |
---|
1214 | WARNING: The method does not verify whether the multigrading makes the |
---|
1215 | module/vector homogeneous. One can do that using isHomogeneous(m). |
---|
1216 | EXAMPLE: example setModuleGrading; shows an example |
---|
1217 | " |
---|
1218 | { |
---|
1219 | string attrModuleGrading = "genWeights"; |
---|
1220 | |
---|
1221 | intmat R = getVariableWeights(); |
---|
1222 | |
---|
1223 | if(nrows(G) != nrows(R)){ ERROR("Incompatible gradings.");} |
---|
1224 | if(ncols(G) < nrows(m)){ ERROR("Multigrading does not fit to module.");} |
---|
1225 | |
---|
1226 | attrib(m, attrModuleGrading, G); |
---|
1227 | return(m); |
---|
1228 | } |
---|
1229 | example |
---|
1230 | { |
---|
1231 | "EXAMPLE:"; echo=2; |
---|
1232 | |
---|
1233 | ring R = 0, (x,y), dp; |
---|
1234 | intmat M[2][2]= |
---|
1235 | 1, 1, |
---|
1236 | 0, 2; |
---|
1237 | intmat T[2][5]= |
---|
1238 | 1, 2, 3, 4, 0, |
---|
1239 | 0, 10, 20, 30, 1; |
---|
1240 | |
---|
1241 | setBaseMultigrading(M, T); |
---|
1242 | |
---|
1243 | ideal I = x, y, xy^5; |
---|
1244 | intmat V = multiDeg(I); |
---|
1245 | |
---|
1246 | // V == M; modulo T |
---|
1247 | print(V); |
---|
1248 | |
---|
1249 | module S = syz(I); |
---|
1250 | |
---|
1251 | S = setModuleGrading(S, V); |
---|
1252 | getModuleGrading(S) == V; |
---|
1253 | |
---|
1254 | print(S); |
---|
1255 | |
---|
1256 | vector v = getGradedGenerator(S, 1); |
---|
1257 | getModuleGrading(v) == V; |
---|
1258 | |
---|
1259 | print( multiDeg(v) ); |
---|
1260 | |
---|
1261 | isHomogeneous(S); |
---|
1262 | |
---|
1263 | print( multiDeg(S) ); |
---|
1264 | } |
---|
1265 | |
---|
1266 | |
---|
1267 | proc multiDegTensor(module m, module n) |
---|
1268 | " |
---|
1269 | USAGE: multiDegTensor(m, n), m,n modules or matrices. |
---|
1270 | PURPOSE: Computes the multigraded tensor product of to multigraded modules. |
---|
1271 | RETURN: A module. |
---|
1272 | EXAMPLE: example multiDegTensor; shows an example |
---|
1273 | " |
---|
1274 | { |
---|
1275 | matrix M = m; |
---|
1276 | matrix N = n; |
---|
1277 | intmat gm = getModuleGrading(m); |
---|
1278 | intmat gn = getModuleGrading(n); |
---|
1279 | int grows = nrows(gm); |
---|
1280 | int mr = nrows(M); |
---|
1281 | int mc = ncols(M); |
---|
1282 | if(rank(M) == 0){ mc = 0;} |
---|
1283 | int nr = nrows(N); |
---|
1284 | int nc = ncols(N); |
---|
1285 | if(rank(N) == 0){ nc = 0;} |
---|
1286 | intmat gresult[nrows(gm)][mr*nr]; |
---|
1287 | matrix result[mr*nr][mr*nc+mc*nr]; |
---|
1288 | int i, j; |
---|
1289 | int column = 1; |
---|
1290 | for(i = 1; i<=mr; i++){ |
---|
1291 | for(j = 1; j<=nr; j++){ |
---|
1292 | gresult[1..grows,(i-1)*nr+j] = gm[1..grows,i]+gn[1..grows,j]; |
---|
1293 | } |
---|
1294 | } |
---|
1295 | //gresult; |
---|
1296 | if( nc!=0 ){ |
---|
1297 | for(i = 1; i<=mr; i++) |
---|
1298 | { |
---|
1299 | result[((i-1)*nr+1)..(i*nr),((i-1)*nc+1)..(i*nc)] = N[1..nr,1..nc]; |
---|
1300 | } |
---|
1301 | } |
---|
1302 | list rownumbers, colnumbers; |
---|
1303 | //print(result); |
---|
1304 | if( mc!=0 ){ |
---|
1305 | for(j = 1; j<=nr; j++) |
---|
1306 | { |
---|
1307 | rownumbers = nr*(0..(mr-1))+j*(1:mr); |
---|
1308 | colnumbers = ((mr*nc+j):mc)+nr*(0..(mc-1)); |
---|
1309 | result[rownumbers[1..mr],colnumbers[1..mc] ] = M[1..mr,1..mc]; |
---|
1310 | } |
---|
1311 | } |
---|
1312 | module res = result; |
---|
1313 | res = setModuleGrading(res, gresult); |
---|
1314 | //getModuleGrading(res); |
---|
1315 | return(res); |
---|
1316 | } |
---|
1317 | example |
---|
1318 | { |
---|
1319 | "EXAMPLE: ";echo=2; |
---|
1320 | ring r = 0,(x),dp; |
---|
1321 | intmat g[2][1]=1,1; |
---|
1322 | setBaseMultigrading(g); |
---|
1323 | matrix m[5][3]=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15; |
---|
1324 | matrix n[3][2]=x,x2,x3,x4,x5,x6; |
---|
1325 | module mm = m; |
---|
1326 | module nn = n; |
---|
1327 | intmat gm[2][5]=1,2,3,4,5,0,0,0,0,0; |
---|
1328 | intmat gn[2][3]=0,0,0,1,2,3; |
---|
1329 | mm = setModuleGrading(mm, gm); |
---|
1330 | nn = setModuleGrading(nn, gn); |
---|
1331 | module mmtnn = multiDegTensor(mm, nn); |
---|
1332 | print(mmtnn); |
---|
1333 | getModuleGrading(mmtnn); |
---|
1334 | LIB "homolog.lib"; |
---|
1335 | module tt = tensorMod(mm,nn); |
---|
1336 | print(tt); |
---|
1337 | |
---|
1338 | kill m, mm, n, nn, gm, gn; |
---|
1339 | |
---|
1340 | matrix m[7][3] = x, x-1,x+2, 3x, 4x, x5, x6, x-7, x-8, 9, 10, 11x, 12 -x, 13x, 14x, x15, (x-4)^2, x17, 18x, 19x, 20x, 21x; |
---|
1341 | matrix n[2][4] = 1, 2, 3, 4, x, x2, x3, x4; |
---|
1342 | module mm = m; |
---|
1343 | module nn = n; |
---|
1344 | print(mm); |
---|
1345 | print(nn); |
---|
1346 | intmat gm[2][7] = 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0; |
---|
1347 | intmat gn[2][2] = 0, 0, 1, 2; |
---|
1348 | mm = setModuleGrading(mm, gm); |
---|
1349 | nn = setModuleGrading(nn, gn); |
---|
1350 | module mmtnn = multiDegTensor(mm, nn); |
---|
1351 | print(mmtnn); |
---|
1352 | getModuleGrading(mmtnn); |
---|
1353 | matrix a = mmtnn; |
---|
1354 | matrix b = tensorMod(mm, nn); |
---|
1355 | print(a-b); |
---|
1356 | |
---|
1357 | } |
---|
1358 | |
---|
1359 | proc multiDegTor(int i, module m, module n) |
---|
1360 | { |
---|
1361 | def res = multiDegResolution(n, 0, 1); |
---|
1362 | //print(res); |
---|
1363 | list l = res; |
---|
1364 | if(size(l)<i){ return(0);} |
---|
1365 | else |
---|
1366 | { |
---|
1367 | |
---|
1368 | matrix fd[nrows(m)][0]; |
---|
1369 | matrix fd2[nrows(l[i+1])][0]; |
---|
1370 | matrix fd3[nrows(l[i])][0]; |
---|
1371 | |
---|
1372 | module freedim = fd; |
---|
1373 | module freedim2 = fd2; |
---|
1374 | module freedim3 = fd3; |
---|
1375 | |
---|
1376 | freedim = setModuleGrading(freedim,getModuleGrading(m)); |
---|
1377 | freedim2 = setModuleGrading(freedim2,getModuleGrading(l[i+1])); |
---|
1378 | freedim3 = setModuleGrading(freedim3, getModuleGrading(l[i])); |
---|
1379 | |
---|
1380 | module mimag = multiDegTensor(freedim3, m); |
---|
1381 | //"mimag ok."; |
---|
1382 | module mf = multiDegTensor(l[i], freedim); |
---|
1383 | //"mf ok."; |
---|
1384 | module mim1 = multiDegTensor(freedim2 ,m); |
---|
1385 | module mim2 = multiDegTensor(l[i+1],freedim); |
---|
1386 | //"mim1+2 ok."; |
---|
1387 | module mker = multiDegModulo(mf,mimag); |
---|
1388 | //"mker ok."; |
---|
1389 | module mim = mim1,mim2; |
---|
1390 | mim = setModuleGrading(mim, getModuleGrading(mim1)); |
---|
1391 | //"mim: r: ",nrows(mim)," c: ",ncols(mim); |
---|
1392 | //"mim1: r: ",nrows(mim1)," c: ",ncols(mim1); |
---|
1393 | //"mim2: r: ",nrows(mim2)," c: ",ncols(mim2); |
---|
1394 | //matrix mimmat = mim; |
---|
1395 | //matrix mimmat1[16][4]=mimmat[1..16,25..28]; |
---|
1396 | //print(mimmat1-matrix(mim2)); |
---|
1397 | return(multiDegModulo(mker,mim)); |
---|
1398 | //return(0); |
---|
1399 | } |
---|
1400 | return(0); |
---|
1401 | } |
---|
1402 | example |
---|
1403 | { |
---|
1404 | "EXAMPLE: ";echo=2; |
---|
1405 | LIB "homolog.lib"; |
---|
1406 | ring r = 0,(x_(1..4)),dp; |
---|
1407 | intmat g[2][4]=1,1,0,0,0,1,1,-1; |
---|
1408 | setBaseMultigrading(g); |
---|
1409 | ideal i = maxideal(1); |
---|
1410 | module m = multiDegSyzygy(i); |
---|
1411 | module rt = Tor(2,m,m); |
---|
1412 | module multiDegT = multiDegTor(2,m,m); |
---|
1413 | print(matrix(rt)-matrix(multiDegT)); |
---|
1414 | /* |
---|
1415 | ring r = 0,(x),dp; |
---|
1416 | intmat g[2][1]=1,1; |
---|
1417 | setBaseMultigrading(g); |
---|
1418 | matrix m[5][3]=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15; |
---|
1419 | matrix n[3][2]=x,x2,x3,x4,x5,x6; |
---|
1420 | module mm = m; |
---|
1421 | module nn = n; |
---|
1422 | intmat gm[2][5]=1,1,1,1,1,1,1,1,1,1,1; |
---|
1423 | intmat gn[2][3]=0,-2,-4,0,-2,-4; |
---|
1424 | mm = setModuleGrading(mm, gm); |
---|
1425 | nn = setModuleGrading(nn, gn); |
---|
1426 | isHomogeneous(mm,"checkGens"); |
---|
1427 | isHomogeneous(nn,"checkGens"); |
---|
1428 | multiDegTor(1,mm, nn); |
---|
1429 | |
---|
1430 | kill m, mm, n, nn, gm, gn; |
---|
1431 | |
---|
1432 | matrix m[7][3] = x, x-1,x+2, 3x, 4x, x5, x6, x-7, x-8, 9, 10, 11x, 12 -x, 13x, 14x, x15, (x-4)^2, x17, 18x, 19x, 20x, 21x; |
---|
1433 | matrix n[2][4] = 1, 2, 3, 4, x, x2, x3, x4; |
---|
1434 | module mm = m; |
---|
1435 | module nn = n; |
---|
1436 | print(mm); |
---|
1437 | print(nn); |
---|
1438 | intmat gm[2][7] = 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0; |
---|
1439 | intmat gn[2][2] = 0, 0, 1, 2; |
---|
1440 | mm = setModuleGrading(mm, gm); |
---|
1441 | nn = setModuleGrading(nn, gn); |
---|
1442 | module mmtnn = multiDegTensor(mm, nn); |
---|
1443 | */ |
---|
1444 | } |
---|
1445 | |
---|
1446 | |
---|
1447 | /******************************************************/ |
---|
1448 | proc isGroupHomomorphism(def L1, def L2, intmat A) |
---|
1449 | "USAGE: isGoupHomomorphism(L1,L2,A); L1 and L2 are groups, A is an integer matrix |
---|
1450 | PURPOSE: checks whether A defines a group homomorphism phi: L1 --> L2 |
---|
1451 | RETURN: int, 1 if A defines the homomorphism and 0 otherwise |
---|
1452 | EXAMPLE: example isGroupHomomorphism; shows an example |
---|
1453 | " |
---|
1454 | { |
---|
1455 | // TODO: L1, L2 |
---|
1456 | if( (ncols(A) != nrows(L1)) or (nrows(A) != nrows(L2)) ) |
---|
1457 | { |
---|
1458 | ERROR("Incompatible sizes!"); |
---|
1459 | } |
---|
1460 | |
---|
1461 | intmat im = A * L1; |
---|
1462 | |
---|
1463 | return (areZeroElements(im, L2)); |
---|
1464 | } |
---|
1465 | example |
---|
1466 | { |
---|
1467 | "EXAMPLE:"; echo=2; |
---|
1468 | |
---|
1469 | intmat L1[4][1]= |
---|
1470 | 0, |
---|
1471 | 0, |
---|
1472 | 0, |
---|
1473 | 2; |
---|
1474 | |
---|
1475 | intmat L2[3][2]= |
---|
1476 | 0, 0, |
---|
1477 | 2, 0, |
---|
1478 | 0, 3; |
---|
1479 | |
---|
1480 | intmat A[3][4] = |
---|
1481 | 1, 2, 3, 0, |
---|
1482 | 7, 0, 0, 0, |
---|
1483 | 1, 2, 0, 3; |
---|
1484 | print( A ); |
---|
1485 | |
---|
1486 | isGroupHomomorphism(L1, L2, A); |
---|
1487 | |
---|
1488 | intmat B[3][4] = |
---|
1489 | 1, 2, 3, 0, |
---|
1490 | 7, 0, 0, 0, |
---|
1491 | 1, 2, 0, 2; |
---|
1492 | print( B ); |
---|
1493 | |
---|
1494 | isGroupHomomorphism(L1, L2, B); // Not a homomorphism! |
---|
1495 | } |
---|
1496 | |
---|
1497 | /******************************************************/ |
---|
1498 | proc isTorsionFree() |
---|
1499 | "USAGE: isTorsionFree() |
---|
1500 | PURPOSE: Determines whether the multigrading attached to the current ring is free. |
---|
1501 | RETURN: boolean, the result of the test |
---|
1502 | EXAMPLE: example isTorsionFree; shows an example |
---|
1503 | " |
---|
1504 | { |
---|
1505 | intmat H = smithNormalForm(getLattice()); // TODO: ?cache it? //****** |
---|
1506 | |
---|
1507 | int i, j; |
---|
1508 | int r = nrows(H); |
---|
1509 | int c = ncols(H); |
---|
1510 | int d = 1; |
---|
1511 | for( i = 1; (i <= c) && (i <= r); i++ ) |
---|
1512 | { |
---|
1513 | for( j = i; (H[j, i] == 0)&&(j < r); j++ ) |
---|
1514 | { |
---|
1515 | } |
---|
1516 | |
---|
1517 | if(H[j, i]!=0) |
---|
1518 | { |
---|
1519 | d=d*H[j, i]; |
---|
1520 | } |
---|
1521 | } |
---|
1522 | |
---|
1523 | if( (d*d)==1 ) |
---|
1524 | { |
---|
1525 | return(1==1); |
---|
1526 | } |
---|
1527 | return(0==1); |
---|
1528 | } |
---|
1529 | example |
---|
1530 | { |
---|
1531 | "EXAMPLE:"; echo=2; |
---|
1532 | |
---|
1533 | ring R = 0,(x,y),dp; |
---|
1534 | intmat M[2][2]= |
---|
1535 | 1,0, |
---|
1536 | 0,1; |
---|
1537 | intmat T[2][5]= |
---|
1538 | 1, 2, 3, 4, 0, |
---|
1539 | 0,10,20,30, 1; |
---|
1540 | |
---|
1541 | setBaseMultigrading(M,T); |
---|
1542 | |
---|
1543 | // Is the resulting group free? |
---|
1544 | isTorsionFree(); |
---|
1545 | |
---|
1546 | kill R, M, T; |
---|
1547 | /////////////////////////////////////////// |
---|
1548 | |
---|
1549 | ring R=0,(x,y,z),dp; |
---|
1550 | intmat A[3][3] = |
---|
1551 | 1,0,0, |
---|
1552 | 0,1,0, |
---|
1553 | 0,0,1; |
---|
1554 | intmat B[3][4]= |
---|
1555 | 3,3,3,3, |
---|
1556 | 2,1,3,0, |
---|
1557 | 1,2,0,3; |
---|
1558 | setBaseMultigrading(A,B); |
---|
1559 | // Is the resulting group free? |
---|
1560 | isTorsionFree(); |
---|
1561 | |
---|
1562 | kill R, A, B; |
---|
1563 | } |
---|
1564 | |
---|
1565 | |
---|
1566 | static proc gcdcomb(int a, int b) |
---|
1567 | { |
---|
1568 | // a; |
---|
1569 | // b; |
---|
1570 | intvec av = a,1,0; |
---|
1571 | intvec bv = b,0,1; |
---|
1572 | intvec save; |
---|
1573 | while(av[1]*bv[1] != 0) |
---|
1574 | { |
---|
1575 | bv = bv - (bv[1] - bv[1]%av[1]) div av[1] * av; |
---|
1576 | save = bv; |
---|
1577 | bv = av; |
---|
1578 | av = save; |
---|
1579 | } |
---|
1580 | if(bv[1] < 0) |
---|
1581 | { |
---|
1582 | bv = -bv; |
---|
1583 | } |
---|
1584 | return(bv); |
---|
1585 | } |
---|
1586 | |
---|
1587 | |
---|
1588 | proc lll(def A) |
---|
1589 | " |
---|
1590 | The lll algorithm of lll.lib only works for lists of vectors. |
---|
1591 | Maybe one should rescript it for matrices. This method will |
---|
1592 | convert a matrix to a list, plug it into lll and make the result |
---|
1593 | a matrix and return it. |
---|
1594 | " |
---|
1595 | { |
---|
1596 | if(typeof(A) == "list") |
---|
1597 | { |
---|
1598 | int sizeA= size (A); |
---|
1599 | if (sizeA == 0) |
---|
1600 | { |
---|
1601 | return (A); |
---|
1602 | } |
---|
1603 | if (typeof (A [1]) != "intvec") |
---|
1604 | { |
---|
1605 | ERROR("Unrecognized type."); |
---|
1606 | } |
---|
1607 | int columns= size (A [1]); |
---|
1608 | int i; |
---|
1609 | for (i= 2; i <= sizeA; i++) |
---|
1610 | { |
---|
1611 | if (typeof (A[i]) != "intvec") |
---|
1612 | { |
---|
1613 | ERROR("Unrecognized type."); |
---|
1614 | } |
---|
1615 | if (size (A [i]) != columns) |
---|
1616 | { |
---|
1617 | ERROR ("expected equal dimension"); |
---|
1618 | } |
---|
1619 | } |
---|
1620 | int j; |
---|
1621 | intmat m [columns] [sizeA]; |
---|
1622 | for (i= 1; i <= sizeA; i++) |
---|
1623 | { |
---|
1624 | for (j= 1; j <= columns; j++) |
---|
1625 | { |
---|
1626 | m[i,j]= A[i] [j]; |
---|
1627 | } |
---|
1628 | } |
---|
1629 | m= system ("LLL", m); |
---|
1630 | list result= list(); |
---|
1631 | intvec buf; |
---|
1632 | |
---|
1633 | for (i= 1; i <= sizeA; i++) |
---|
1634 | { |
---|
1635 | buf = intvec (m[i , 1..columns]); |
---|
1636 | result= result+ list (buf); |
---|
1637 | |
---|
1638 | } |
---|
1639 | return(result); |
---|
1640 | } |
---|
1641 | else |
---|
1642 | { |
---|
1643 | if(typeof(A) == "intmat") |
---|
1644 | { |
---|
1645 | A= system ("LLL", A); |
---|
1646 | return(A); |
---|
1647 | } |
---|
1648 | else |
---|
1649 | { |
---|
1650 | ERROR("Unrecognized type."); |
---|
1651 | } |
---|
1652 | } |
---|
1653 | } |
---|
1654 | example |
---|
1655 | { |
---|
1656 | "EXAMPLE:"; echo=2; |
---|
1657 | |
---|
1658 | ring R = 0,x,dp; |
---|
1659 | intmat m[5][5] = |
---|
1660 | 13,25,37,83,294, |
---|
1661 | 12,-33,9,0,64, |
---|
1662 | 77,12,34,6,1, |
---|
1663 | 43,2,88,91,100, |
---|
1664 | -46,32,37,42,15; |
---|
1665 | lll(m); |
---|
1666 | |
---|
1667 | list l = |
---|
1668 | intvec(13,25,37, 83, 294), |
---|
1669 | intvec(12, -33, 9,0,64), |
---|
1670 | intvec (77,12,34,6,1), |
---|
1671 | intvec (43,2,88,91,100), |
---|
1672 | intvec (-46,32,37,42,15); |
---|
1673 | lll(l); |
---|
1674 | } |
---|
1675 | |
---|
1676 | |
---|
1677 | proc smithNormalForm(intmat A, list #) |
---|
1678 | "USAGE: smithNormalForm(A[,opt]); intmat A |
---|
1679 | PURPOSE: Computes the Smith Normal Form of A |
---|
1680 | RETURN: if no optional argument is given: intmat, the Smith Normal Form of A, |
---|
1681 | otherwise: a list of 3 integer matrices P, D Q, such that D == P*A*Q. |
---|
1682 | EXAMPLE: example smithNormalForm; shows an example |
---|
1683 | " |
---|
1684 | { |
---|
1685 | list l1 = hermiteNormalForm(A, 5); |
---|
1686 | // l1; |
---|
1687 | intmat B = transpose(l1[1]); |
---|
1688 | list l2 = hermiteNormalForm(B, 5); |
---|
1689 | // l2; |
---|
1690 | intmat P = transpose(l2[2]); |
---|
1691 | intmat D = transpose(l2[1]); |
---|
1692 | intmat Q = l1[2]; |
---|
1693 | int cc = ncols(D); |
---|
1694 | int rr = nrows(D); |
---|
1695 | intmat transform; |
---|
1696 | int k = 1; |
---|
1697 | int a, b, c; |
---|
1698 | // D; |
---|
1699 | intvec v; |
---|
1700 | if((cc==1)||(rr==1)){ |
---|
1701 | if(size(#)==0) |
---|
1702 | { |
---|
1703 | return(D); |
---|
1704 | } else |
---|
1705 | { |
---|
1706 | return(list(P,D,Q)); |
---|
1707 | } |
---|
1708 | } |
---|
1709 | while(D[k+1,k+1] !=0){ |
---|
1710 | if(D[k+1,k+1]%D[k,k]!=0){ |
---|
1711 | b = D[k, k]; c = D[k+1, k+1]; |
---|
1712 | v = gcdcomb(D[k,k],D[k+1,k+1]); |
---|
1713 | transform = unitMatrix(cc); |
---|
1714 | transform[k+1,k] = 1; |
---|
1715 | a = -v[3]*D[k+1,k+1] div v[1]; |
---|
1716 | transform[k, k+1] = a; |
---|
1717 | transform[k+1, k+1] = a+1; |
---|
1718 | //det(transform); |
---|
1719 | D = D*transform; |
---|
1720 | Q = Q*transform; |
---|
1721 | //D; |
---|
1722 | transform = unitMatrix(rr); |
---|
1723 | transform[k,k] = v[2]; |
---|
1724 | transform[k,k+1] = v[3]; |
---|
1725 | transform[k+1,k] = -c div v[1]; |
---|
1726 | transform[k+1,k+1] = b div v[1]; |
---|
1727 | D = transform * D; |
---|
1728 | P = transform * P; |
---|
1729 | //" "; |
---|
1730 | //D; |
---|
1731 | //"small transform: ", det(transform); |
---|
1732 | //transform; |
---|
1733 | k=0; |
---|
1734 | } |
---|
1735 | k++; |
---|
1736 | if((k==rr) || (k==cc)){ |
---|
1737 | break; |
---|
1738 | } |
---|
1739 | } |
---|
1740 | //"here is the size ",size(#); |
---|
1741 | if(size(#) == 0){ |
---|
1742 | return(D); |
---|
1743 | } else { |
---|
1744 | return(list(P, D, Q)); |
---|
1745 | } |
---|
1746 | } |
---|
1747 | example |
---|
1748 | { |
---|
1749 | "EXAMPLE:"; echo=2; |
---|
1750 | |
---|
1751 | |
---|
1752 | intmat A[5][7] = |
---|
1753 | 1,0,1,0,-2,9,-71, |
---|
1754 | 0,-24,248,-32,-96,448,-3496, |
---|
1755 | 0,4,-42,4,-8,30,-260, |
---|
1756 | 0,0,0,18,-90,408,-3168, |
---|
1757 | 0,0,0,-32,224,-1008,7872; |
---|
1758 | |
---|
1759 | print( smithNormalForm(A) ); |
---|
1760 | |
---|
1761 | list l = smithNormalForm(A, 5); |
---|
1762 | |
---|
1763 | l; |
---|
1764 | |
---|
1765 | l[1]*A*l[3]; |
---|
1766 | |
---|
1767 | det(l[1]); |
---|
1768 | det(l[3]); |
---|
1769 | } |
---|
1770 | |
---|
1771 | |
---|
1772 | /******************************************************/ |
---|
1773 | proc hermiteNormalForm(intmat A, list #) |
---|
1774 | "USAGE: hermiteNormalForm( A ); |
---|
1775 | PURPOSE: Computes the (lower triangular) Hermite Normal Form |
---|
1776 | of the matrix A by column operations. |
---|
1777 | RETURN: intmat, the Hermite Normal Form of A |
---|
1778 | EXAMPLE: example hermiteNormalForm; shows an example |
---|
1779 | " |
---|
1780 | { |
---|
1781 | |
---|
1782 | int row, column, i, j; |
---|
1783 | int rr = nrows(A); |
---|
1784 | int cc = ncols(A); |
---|
1785 | intvec savev, gcdvec, v1, v2; |
---|
1786 | intmat q = unitMatrix(cc); |
---|
1787 | intmat transform; |
---|
1788 | column = 1; |
---|
1789 | for(row = 1; (row<=rr)&&(column<=cc); row++) |
---|
1790 | { |
---|
1791 | if(A[row,column]==0) |
---|
1792 | { |
---|
1793 | for(j = column; j<=cc; j++) |
---|
1794 | { |
---|
1795 | if(A[row, j]!=0) |
---|
1796 | { |
---|
1797 | transform = unitMatrix(cc); |
---|
1798 | transform[j,j] = 0; |
---|
1799 | transform[column, column] = 0; |
---|
1800 | transform[column,j] = 1; |
---|
1801 | transform[j,column] = 1; |
---|
1802 | q = q*transform; |
---|
1803 | A = A*transform; |
---|
1804 | break; |
---|
1805 | } |
---|
1806 | } |
---|
1807 | } |
---|
1808 | if(A[row,column] == 0) |
---|
1809 | { |
---|
1810 | row++; |
---|
1811 | continue; |
---|
1812 | } |
---|
1813 | for(j = column+1; j<=cc; j++) |
---|
1814 | { |
---|
1815 | if(A[row, j]!=0) |
---|
1816 | { |
---|
1817 | gcdvec = gcdcomb(A[row,column],A[row,j]); |
---|
1818 | // gcdvec; |
---|
1819 | // typeof(A[1..rr,column]); |
---|
1820 | v1 = A[1..rr,column]; |
---|
1821 | v2 = A[1..rr,j]; |
---|
1822 | transform = unitMatrix(cc); |
---|
1823 | transform[j,j] = v1[row] div gcdvec[1]; |
---|
1824 | transform[column, column] = gcdvec[2]; |
---|
1825 | transform[column,j] = -v2[row] div gcdvec[1]; |
---|
1826 | transform[j,column] = gcdvec[3]; |
---|
1827 | q = q*transform; |
---|
1828 | A = A*transform; |
---|
1829 | // A; |
---|
1830 | } |
---|
1831 | } |
---|
1832 | if(A[row,column]<0) |
---|
1833 | { |
---|
1834 | transform = unitMatrix(cc); |
---|
1835 | transform[column,column] = -1; |
---|
1836 | q = q*transform; |
---|
1837 | A = A*transform; |
---|
1838 | } |
---|
1839 | for( j=1; j<column; j++){ |
---|
1840 | if(A[row, j]!=0){ |
---|
1841 | transform = unitMatrix(cc); |
---|
1842 | transform[column, j] = (-A[row,j]+A[row, j]%A[row, column]) div A[row, column]; |
---|
1843 | if(A[row,j]<0){ |
---|
1844 | transform[column,j]=transform[column,j]+1;} |
---|
1845 | q = q*transform; |
---|
1846 | A = A*transform; |
---|
1847 | } |
---|
1848 | } |
---|
1849 | column++; |
---|
1850 | } |
---|
1851 | if(size(#) > 0){ |
---|
1852 | return(list(A, q)); |
---|
1853 | } |
---|
1854 | return(A); |
---|
1855 | } |
---|
1856 | example |
---|
1857 | { |
---|
1858 | "EXAMPLE:"; echo=2; |
---|
1859 | |
---|
1860 | intmat M[2][5] = |
---|
1861 | 1, 2, 3, 4, 0, |
---|
1862 | 0,10,20,30, 1; |
---|
1863 | |
---|
1864 | // Hermite Normal Form of M: |
---|
1865 | print(hermiteNormalForm(M)); |
---|
1866 | |
---|
1867 | intmat T[3][4] = |
---|
1868 | 3,3,3,3, |
---|
1869 | 2,1,3,0, |
---|
1870 | 1,2,0,3; |
---|
1871 | |
---|
1872 | // Hermite Normal Form of T: |
---|
1873 | print(hermiteNormalForm(T)); |
---|
1874 | |
---|
1875 | intmat A[4][5] = |
---|
1876 | 1,2,3,2,2, |
---|
1877 | 1,2,3,4,0, |
---|
1878 | 0,5,4,2,1, |
---|
1879 | 3,2,4,0,2; |
---|
1880 | |
---|
1881 | // Hermite Normal Form of A: |
---|
1882 | print(hermiteNormalForm(A)); |
---|
1883 | } |
---|
1884 | |
---|
1885 | proc areZeroElements(intmat m, list #) |
---|
1886 | "USAGE: areZeroElements(D, [T]); intmat D, group T |
---|
1887 | PURPOSE: For a integer matrix D, considered column-wise as a set of |
---|
1888 | integer vecors representing the multidegree of some polynomial |
---|
1889 | or vector this method checks whether all these multidegrees |
---|
1890 | are contained in the grading group |
---|
1891 | group (either set globally or given as an optional argument), |
---|
1892 | i.e. if they all are zero in the multigrading. |
---|
1893 | EXAMPLE: example areZeroElements; shows an example |
---|
1894 | " |
---|
1895 | { |
---|
1896 | int r = nrows(m); |
---|
1897 | int i = ncols(m); |
---|
1898 | |
---|
1899 | intvec v; |
---|
1900 | |
---|
1901 | for( ; i > 0; i-- ) |
---|
1902 | { |
---|
1903 | v = m[1..r, i]; |
---|
1904 | if( !isZeroElement(v, #) ) |
---|
1905 | { |
---|
1906 | return (0); |
---|
1907 | } |
---|
1908 | } |
---|
1909 | return(1); |
---|
1910 | } |
---|
1911 | example |
---|
1912 | { |
---|
1913 | "EXAMPLE:"; echo=2; |
---|
1914 | |
---|
1915 | ring r = 0,(x,y,z),dp; |
---|
1916 | |
---|
1917 | intmat S[2][3]= |
---|
1918 | 1,0,1, |
---|
1919 | 0,1,1; |
---|
1920 | |
---|
1921 | intmat L[2][1]= |
---|
1922 | 2, |
---|
1923 | 2; |
---|
1924 | |
---|
1925 | setBaseMultigrading(S,L); |
---|
1926 | |
---|
1927 | poly a = 1; |
---|
1928 | poly b = xyz; |
---|
1929 | |
---|
1930 | ideal I = a, b; |
---|
1931 | print(multiDeg(I)); |
---|
1932 | |
---|
1933 | intmat m[5][2]=multiDeg(a),multiDeg(b); m=transpose(m); |
---|
1934 | |
---|
1935 | print(multiDeg(a)); |
---|
1936 | print(multiDeg(b)); |
---|
1937 | |
---|
1938 | print(m); |
---|
1939 | |
---|
1940 | areZeroElements(m); |
---|
1941 | |
---|
1942 | intmat LL[2][1]= |
---|
1943 | 1, |
---|
1944 | -1; |
---|
1945 | |
---|
1946 | areZeroElements(m,LL); |
---|
1947 | } |
---|
1948 | |
---|
1949 | |
---|
1950 | /******************************************************/ |
---|
1951 | proc isZeroElement(intvec mdeg, list #) |
---|
1952 | "USAGE: isZeroElement(d, [T]); intvec d, group T |
---|
1953 | PURPOSE: For a integer vector 'd' representing the multidegree of some polynomial |
---|
1954 | or vector this method computes if the multidegree is contained in the grading group |
---|
1955 | group (either set globally or given as an optional argument), i.e. if it is zero in the multigrading. |
---|
1956 | EXAMPLE: example isZeroElement; shows an example |
---|
1957 | " |
---|
1958 | { |
---|
1959 | int i = 1; |
---|
1960 | if( size(#) >= i ) |
---|
1961 | { |
---|
1962 | def a = #[1]; |
---|
1963 | if( typeof(a) == "intmat" ) |
---|
1964 | { |
---|
1965 | intmat H = hermiteNormalForm(a); |
---|
1966 | i++; |
---|
1967 | } |
---|
1968 | if( typeof(a) == "list" ) |
---|
1969 | { |
---|
1970 | list L = a; |
---|
1971 | intmat H = attrib(L, "hermite"); // todo |
---|
1972 | i++; |
---|
1973 | } |
---|
1974 | kill a; |
---|
1975 | } |
---|
1976 | |
---|
1977 | if( i == 1 ) |
---|
1978 | { |
---|
1979 | intmat H = getLattice("hermite"); |
---|
1980 | } |
---|
1981 | |
---|
1982 | int x, k, row; |
---|
1983 | |
---|
1984 | int r = nrows(H); |
---|
1985 | int c = ncols(H); |
---|
1986 | |
---|
1987 | int rr = nrows(mdeg); |
---|
1988 | row = 1; |
---|
1989 | intvec v; |
---|
1990 | for(i=1; (i<=r)&&(row<=r)&&(i<=c); i++) |
---|
1991 | { |
---|
1992 | while((H[row,i]==0)&&(row<=r)) |
---|
1993 | { |
---|
1994 | row++; |
---|
1995 | if(row == (r+1)){ |
---|
1996 | break; |
---|
1997 | } |
---|
1998 | } |
---|
1999 | if(row<=r){ |
---|
2000 | if(H[row,i]!=0) |
---|
2001 | { |
---|
2002 | v = H[1..r,i]; |
---|
2003 | mdeg = mdeg-(mdeg[row]-mdeg[row]%v[row]) div v[row]*v; |
---|
2004 | } |
---|
2005 | } |
---|
2006 | } |
---|
2007 | return( mdeg == 0 ); |
---|
2008 | |
---|
2009 | } |
---|
2010 | example |
---|
2011 | { |
---|
2012 | "EXAMPLE:"; echo=2; |
---|
2013 | |
---|
2014 | ring r = 0,(x,y,z),dp; |
---|
2015 | |
---|
2016 | intmat g[2][3]= |
---|
2017 | 1,0,1, |
---|
2018 | 0,1,1; |
---|
2019 | intmat t[2][1]= |
---|
2020 | -2, |
---|
2021 | 1; |
---|
2022 | |
---|
2023 | intmat tt[2][1]= |
---|
2024 | 1, |
---|
2025 | -1; |
---|
2026 | |
---|
2027 | setBaseMultigrading(g,t); |
---|
2028 | |
---|
2029 | poly a = x10yz; |
---|
2030 | poly b = x8y2z; |
---|
2031 | poly c = x4z2; |
---|
2032 | poly d = y5; |
---|
2033 | poly e = x2y2; |
---|
2034 | poly f = z2; |
---|
2035 | |
---|
2036 | intvec v1 = multiDeg(a) - multiDeg(b); |
---|
2037 | v1; |
---|
2038 | isZeroElement(v1); |
---|
2039 | isZeroElement(v1, tt); |
---|
2040 | |
---|
2041 | intvec v2 = multiDeg(a) - multiDeg(c); |
---|
2042 | v2; |
---|
2043 | isZeroElement(v2); |
---|
2044 | isZeroElement(v2, tt); |
---|
2045 | |
---|
2046 | intvec v3 = multiDeg(e) - multiDeg(f); |
---|
2047 | v3; |
---|
2048 | isZeroElement(v3); |
---|
2049 | isZeroElement(v3, tt); |
---|
2050 | |
---|
2051 | intvec v4 = multiDeg(c) - multiDeg(d); |
---|
2052 | v4; |
---|
2053 | isZeroElement(v4); |
---|
2054 | isZeroElement(v4, tt); |
---|
2055 | } |
---|
2056 | |
---|
2057 | |
---|
2058 | /******************************************************/ |
---|
2059 | proc defineHomogeneous(poly f, list #) |
---|
2060 | "USAGE: defineHomogeneous(f[, G]); polynomial f, integer matrix G |
---|
2061 | PURPOSE: Yields a matrix which has to be appended to the grading group matrix to make the |
---|
2062 | polynomial f homogeneous in the grading by grad. |
---|
2063 | EXAMPLE: example defineHomogeneous; shows an example |
---|
2064 | " |
---|
2065 | { |
---|
2066 | int i = 1; |
---|
2067 | if( size(#) >= i ) |
---|
2068 | { |
---|
2069 | def a = #[1]; |
---|
2070 | if( typeof(a) == "intmat" ) |
---|
2071 | { |
---|
2072 | intmat grad = a; |
---|
2073 | i++; |
---|
2074 | } |
---|
2075 | kill a; |
---|
2076 | } |
---|
2077 | |
---|
2078 | if( i == 1 ) |
---|
2079 | { |
---|
2080 | intmat grad = getVariableWeights(); |
---|
2081 | } |
---|
2082 | |
---|
2083 | intmat newgg[nrows(grad)][size(f)-1]; |
---|
2084 | int j; |
---|
2085 | intvec l = grad*leadexp(f); |
---|
2086 | intvec v; |
---|
2087 | for(i=2; i <= size(f); i++) |
---|
2088 | { |
---|
2089 | v = grad * leadexp(f[i]) - l; |
---|
2090 | for( j=1; j<=size(v); j++) |
---|
2091 | { |
---|
2092 | newgg[j,i-1] = v[j]; |
---|
2093 | } |
---|
2094 | } |
---|
2095 | return(newgg); |
---|
2096 | } |
---|
2097 | example |
---|
2098 | { |
---|
2099 | "EXAMPLE:"; echo=2; |
---|
2100 | |
---|
2101 | ring r =0,(x,y,z),dp; |
---|
2102 | intmat grad[2][3] = |
---|
2103 | 1,0,1, |
---|
2104 | 0,1,1; |
---|
2105 | |
---|
2106 | setBaseMultigrading(grad); |
---|
2107 | |
---|
2108 | poly f = x2y3-z5+x-3zx; |
---|
2109 | |
---|
2110 | intmat M = defineHomogeneous(f); |
---|
2111 | M; |
---|
2112 | defineHomogeneous(f, grad) == M; |
---|
2113 | |
---|
2114 | isHomogeneous(f); |
---|
2115 | setBaseMultigrading(grad, M); |
---|
2116 | isHomogeneous(f); |
---|
2117 | } |
---|
2118 | |
---|
2119 | |
---|
2120 | proc gradiator(def h) |
---|
2121 | "PURPOSE: coarsens the grading of the basering until the polynom or ideal h becomes homogeneous." |
---|
2122 | { |
---|
2123 | if(typeof(h)=="poly"){ |
---|
2124 | intmat W = getVariableWeights(); |
---|
2125 | intmat L = getLattice(); |
---|
2126 | intmat toadd = defineHomogeneous(h); |
---|
2127 | //h; |
---|
2128 | //toadd; |
---|
2129 | if(ncols(toadd) == 0) |
---|
2130 | { |
---|
2131 | return(1==1); |
---|
2132 | } |
---|
2133 | int rr = nrows(W); |
---|
2134 | intmat newL[rr][ncols(L)+ncols(toadd)]; |
---|
2135 | newL[1..rr,1..ncols(L)] = L[1..rr,1..ncols(L)]; |
---|
2136 | newL[1..rr,(ncols(L)+1)..(ncols(L)+ncols(toadd))] = toadd[1..rr,1..ncols(toadd)]; |
---|
2137 | setBaseMultigrading(W,newL); |
---|
2138 | return(1==1); |
---|
2139 | } |
---|
2140 | if(typeof(h)=="ideal"){ |
---|
2141 | int i; |
---|
2142 | def s = (1==1); |
---|
2143 | for(i=1;i<=size(h);i++){ |
---|
2144 | s = s && gradiator(h[i]); |
---|
2145 | } |
---|
2146 | return(s); |
---|
2147 | } |
---|
2148 | return(1==0); |
---|
2149 | } |
---|
2150 | example |
---|
2151 | { |
---|
2152 | "EXAMPLE:"; echo=2; |
---|
2153 | |
---|
2154 | ring r = 0,(x,y,z),dp; |
---|
2155 | intmat g[2][3] = 1,0,1,0,1,1; |
---|
2156 | intmat l[2][1] = 3,0; |
---|
2157 | |
---|
2158 | setBaseMultigrading(g,l); |
---|
2159 | |
---|
2160 | getLattice(); |
---|
2161 | |
---|
2162 | ideal i = -y5+x4, |
---|
2163 | y6+xz, |
---|
2164 | x2y; |
---|
2165 | gradiator(i); |
---|
2166 | getLattice(); |
---|
2167 | isHomogeneous(i); |
---|
2168 | } |
---|
2169 | |
---|
2170 | |
---|
2171 | proc pushForward(map f) |
---|
2172 | "USAGE: pushForward(f); |
---|
2173 | PURPOSE: Computes the finest grading of the image ring which makes the map f |
---|
2174 | a map of graded rings. The group map between the two grading groups is given |
---|
2175 | by transpose( (Id, 0) ). Pay attention that the group spanned by the columns of |
---|
2176 | the grading group matrix may not be a subgroup of the grading group. Still all columns |
---|
2177 | are needed to find the correct image of the preimage gradings. |
---|
2178 | EXAMPLE: example pushForward; shows an example |
---|
2179 | " |
---|
2180 | { |
---|
2181 | |
---|
2182 | int k,i,j; |
---|
2183 | // f; |
---|
2184 | |
---|
2185 | // listvar(); |
---|
2186 | def pre = preimage(f); |
---|
2187 | |
---|
2188 | // "pre: "; pre; |
---|
2189 | |
---|
2190 | intmat oldgrad=getVariableWeights(pre); |
---|
2191 | intmat oldlat=getLattice(pre); |
---|
2192 | |
---|
2193 | int n=nvars(pre); |
---|
2194 | int np=nvars(basering); |
---|
2195 | int p=nrows(oldgrad); |
---|
2196 | int pp=p+np; |
---|
2197 | |
---|
2198 | intmat newgrad[pp][np]; |
---|
2199 | |
---|
2200 | //This will set the finest grading on the image ring. We will proceed by coarsening this grading until f becomes homogeneous. |
---|
2201 | for(i=1;i<=np;i++){ newgrad[p+i,i]=1;} |
---|
2202 | |
---|
2203 | //newgrad; |
---|
2204 | |
---|
2205 | |
---|
2206 | |
---|
2207 | list newlat; |
---|
2208 | intmat toadd; |
---|
2209 | int columns=0; |
---|
2210 | |
---|
2211 | intmat toadd1[pp][n]; |
---|
2212 | intvec v; |
---|
2213 | poly im; |
---|
2214 | |
---|
2215 | for(i=1;i<=p;i++){ |
---|
2216 | for(j=1;j<=n;j++){ toadd1[i,j]=oldgrad[i,j];} |
---|
2217 | } |
---|
2218 | |
---|
2219 | // This will make the images of homogeneous elements homogeneous, namely the variables of the preimage ring. |
---|
2220 | for(i=1;i<=n;i++){ |
---|
2221 | im=f[i]; |
---|
2222 | //im; |
---|
2223 | toadd = defineHomogeneous(im, newgrad); |
---|
2224 | newlat=insert(newlat,toadd); |
---|
2225 | columns=columns+ncols(toadd); |
---|
2226 | |
---|
2227 | v=leadexp(f[i]); |
---|
2228 | for(j=p+1;j<=p+np;j++){ toadd1[j,i]=-v[j-p];} |
---|
2229 | } |
---|
2230 | |
---|
2231 | newlat=insert(newlat,toadd1); |
---|
2232 | columns=columns+ncols(toadd1); |
---|
2233 | |
---|
2234 | //If the image ring is a quotient ring by some ideal, we have to coarsen the grading in order to make the ideal homogeneous. |
---|
2235 | if(typeof(basering)=="qring"){ |
---|
2236 | //"Entering qring"; |
---|
2237 | ideal a=ideal(basering); |
---|
2238 | for(i=1;i<=size(a);i++){ |
---|
2239 | toadd = defineHomogeneous(a[i], newgrad); |
---|
2240 | //toadd; |
---|
2241 | columns=columns+ncols(toadd); |
---|
2242 | newlat=insert(newlat,toadd); |
---|
2243 | } |
---|
2244 | } |
---|
2245 | |
---|
2246 | //The grading group of the preimage ring might not have been torsion free. We have to add this torsion to the grading group of the image ring. |
---|
2247 | intmat imofoldlat[pp][ncols(oldlat)]; |
---|
2248 | for(i=1; i<=nrows(oldlat);i++){ |
---|
2249 | for(j=1; j<=ncols(oldlat); j++){ |
---|
2250 | imofoldlat[i,j]=oldlat[i,j]; |
---|
2251 | } |
---|
2252 | } |
---|
2253 | |
---|
2254 | columns=columns+ncols(oldlat); |
---|
2255 | newlat=insert(newlat, imofoldlat); |
---|
2256 | |
---|
2257 | intmat gragr[pp][columns]; |
---|
2258 | columns=0; |
---|
2259 | for(k=1;k<=size(newlat);k++){ |
---|
2260 | for(i=1;i<=pp;i++){ |
---|
2261 | for(j=1;j<=ncols(newlat[k]);j++){gragr[i,j+columns]=newlat[k][i,j];} |
---|
2262 | } |
---|
2263 | columns=columns+ncols(newlat[k]); |
---|
2264 | } |
---|
2265 | |
---|
2266 | //The following is just for reducing the size of the matrices. |
---|
2267 | gragr=hermiteNormalForm(gragr); |
---|
2268 | intmat result[pp][pp]; |
---|
2269 | for(i=1;i<=pp;i++){ |
---|
2270 | for(j=1;j<=pp;j++){result[i,j]=gragr[i,j];} |
---|
2271 | } |
---|
2272 | |
---|
2273 | setBaseMultigrading(newgrad, result); |
---|
2274 | |
---|
2275 | } |
---|
2276 | example |
---|
2277 | { |
---|
2278 | "EXAMPLE:"; echo=2; |
---|
2279 | |
---|
2280 | ring r = 0,(x,y,z),dp; |
---|
2281 | |
---|
2282 | |
---|
2283 | |
---|
2284 | // Setting degrees for preimage ring.; |
---|
2285 | intmat grad[3][3] = |
---|
2286 | 1,0,0, |
---|
2287 | 0,1,0, |
---|
2288 | 0,0,1; |
---|
2289 | |
---|
2290 | setBaseMultigrading(grad); |
---|
2291 | |
---|
2292 | // grading on r: |
---|
2293 | getVariableWeights(); |
---|
2294 | getLattice(); |
---|
2295 | |
---|
2296 | // only for the purpose of this example |
---|
2297 | if( voice > 1 ){ /*keepring(r);*/ export(r); } |
---|
2298 | |
---|
2299 | ring R = 0,(a,b),dp; |
---|
2300 | ideal i = a2-b2+a6-b5+ab3,a7b+b15-ab6+a6b6; |
---|
2301 | |
---|
2302 | // The quotient ring by this ideal will become our image ring.; |
---|
2303 | qring Q = std(i); |
---|
2304 | |
---|
2305 | listvar(); |
---|
2306 | |
---|
2307 | map f = r,-a2b6+b5+a3b+a2+ab,-a2b7-3a2b5+b4+a,a6-b6-b3+a2; f; |
---|
2308 | |
---|
2309 | |
---|
2310 | // TODO: Unfortunately this is not a very spectacular example...: |
---|
2311 | // Pushing forward f: |
---|
2312 | pushForward(f); |
---|
2313 | |
---|
2314 | // due to pushForward we have got new grading on Q |
---|
2315 | getVariableWeights(); |
---|
2316 | getLattice(); |
---|
2317 | |
---|
2318 | |
---|
2319 | // only for the purpose of this example |
---|
2320 | if( voice > 1 ){ kill r; } |
---|
2321 | |
---|
2322 | } |
---|
2323 | |
---|
2324 | |
---|
2325 | /******************************************************/ |
---|
2326 | proc equalMultiDeg(intvec exp1, intvec exp2, list #) |
---|
2327 | "USAGE: equalMultiDeg(exp1, exp2[, V]); intvec exp1, exp2, intmat V |
---|
2328 | PURPOSE: Tests if the exponent vectors of two monomials (given by exp1 and exp2) |
---|
2329 | represent the same multidegree. |
---|
2330 | NOTE: the integer matrix V encodes multidegrees of module components, |
---|
2331 | if module component is present in exp1 and exp2 |
---|
2332 | EXAMPLE: example equalMultiDeg; shows an example |
---|
2333 | " |
---|
2334 | { |
---|
2335 | if( size(exp1) != size(exp2) ) |
---|
2336 | { |
---|
2337 | ERROR("Sorry: we cannot compare exponents comming from a polynomial and a vector yet!"); |
---|
2338 | } |
---|
2339 | |
---|
2340 | if( exp1 == exp2) |
---|
2341 | { |
---|
2342 | return (1==1); |
---|
2343 | } |
---|
2344 | |
---|
2345 | |
---|
2346 | |
---|
2347 | intmat M = getVariableWeights(); |
---|
2348 | |
---|
2349 | if( nrows(exp1) > ncols(M) ) // vectors => last exponent is the module component! |
---|
2350 | { |
---|
2351 | if( (size(#) == 0) or (typeof(#[1])!="intmat") ) |
---|
2352 | { |
---|
2353 | ERROR("Sorry: wrong or missing module-unit-weights-matrix V!"); |
---|
2354 | } |
---|
2355 | intmat V = #[1]; |
---|
2356 | |
---|
2357 | // typeof(V); print(V); |
---|
2358 | |
---|
2359 | int N = ncols(M); |
---|
2360 | int r = nrows(M); |
---|
2361 | |
---|
2362 | intvec d = intvec(exp1[1..N]) - intvec(exp2[1..N]); |
---|
2363 | intvec dm = intvec(V[1..r, exp1[N+1]]) - intvec(V[1..r, exp2[N+1]]); |
---|
2364 | |
---|
2365 | intvec difference = M * d + dm; |
---|
2366 | } |
---|
2367 | else |
---|
2368 | { |
---|
2369 | intvec d = (exp1 - exp2); |
---|
2370 | intvec difference = M * d; |
---|
2371 | } |
---|
2372 | |
---|
2373 | if (isFreeRepresented()) // no grading group!? |
---|
2374 | { |
---|
2375 | return ( difference == 0); |
---|
2376 | } |
---|
2377 | return ( isZeroElement( difference ) ); |
---|
2378 | } |
---|
2379 | example |
---|
2380 | { |
---|
2381 | "EXAMPLE:"; echo=2;printlevel=3; |
---|
2382 | |
---|
2383 | ring r = 0,(x,y,z),dp; |
---|
2384 | |
---|
2385 | intmat g[2][3]= |
---|
2386 | 1,0,1, |
---|
2387 | 0,1,1; |
---|
2388 | |
---|
2389 | intmat t[2][1]= |
---|
2390 | -2, |
---|
2391 | 1; |
---|
2392 | |
---|
2393 | setBaseMultigrading(g,t); |
---|
2394 | |
---|
2395 | poly a = x10yz; |
---|
2396 | poly b = x8y2z; |
---|
2397 | poly c = x4z2; |
---|
2398 | poly d = y5; |
---|
2399 | poly e = x2y2; |
---|
2400 | poly f = z2; |
---|
2401 | |
---|
2402 | |
---|
2403 | equalMultiDeg(leadexp(a), leadexp(b)); |
---|
2404 | equalMultiDeg(leadexp(a), leadexp(c)); |
---|
2405 | equalMultiDeg(leadexp(a), leadexp(d)); |
---|
2406 | equalMultiDeg(leadexp(a), leadexp(e)); |
---|
2407 | equalMultiDeg(leadexp(a), leadexp(f)); |
---|
2408 | |
---|
2409 | equalMultiDeg(leadexp(b), leadexp(c)); |
---|
2410 | equalMultiDeg(leadexp(b), leadexp(d)); |
---|
2411 | equalMultiDeg(leadexp(b), leadexp(e)); |
---|
2412 | equalMultiDeg(leadexp(b), leadexp(f)); |
---|
2413 | |
---|
2414 | equalMultiDeg(leadexp(c), leadexp(d)); |
---|
2415 | equalMultiDeg(leadexp(c), leadexp(e)); |
---|
2416 | equalMultiDeg(leadexp(c), leadexp(f)); |
---|
2417 | |
---|
2418 | equalMultiDeg(leadexp(d), leadexp(e)); |
---|
2419 | equalMultiDeg(leadexp(d), leadexp(f)); |
---|
2420 | |
---|
2421 | equalMultiDeg(leadexp(e), leadexp(f)); |
---|
2422 | |
---|
2423 | } |
---|
2424 | |
---|
2425 | |
---|
2426 | |
---|
2427 | /******************************************************/ |
---|
2428 | static proc isFreeRepresented() |
---|
2429 | "check whether the base muligrading is free (it is zero). |
---|
2430 | " |
---|
2431 | { |
---|
2432 | intmat T = getLattice(); |
---|
2433 | |
---|
2434 | intmat Z[nrows(T)][ncols(T)]; |
---|
2435 | |
---|
2436 | return (T == Z); // no grading group! |
---|
2437 | } |
---|
2438 | |
---|
2439 | |
---|
2440 | /******************************************************/ |
---|
2441 | proc isHomogeneous(def a, list #) |
---|
2442 | "USAGE: isHomogeneous(a[, f]); a polynomial/vector/ideal/module |
---|
2443 | RETURN: boolean, TRUE if a is (multi)homogeneous, and FALSE otherwise |
---|
2444 | EXAMPLE: example isHomogeneous; shows an example |
---|
2445 | " |
---|
2446 | { |
---|
2447 | if( (typeof(a) == "poly") or (typeof(a) == "vector") ) |
---|
2448 | { |
---|
2449 | return ( size(multiDegPartition(a)) <= 1 ) |
---|
2450 | } |
---|
2451 | |
---|
2452 | if( (typeof(a) == "ideal") or (typeof(a) == "module") ) |
---|
2453 | { |
---|
2454 | if(size(#) > 0) |
---|
2455 | { |
---|
2456 | if (#[1] == "checkGens") |
---|
2457 | { |
---|
2458 | def aa; |
---|
2459 | for( int i = ncols(a); i > 0; i-- ) |
---|
2460 | { |
---|
2461 | aa = getGradedGenerator(a, i); |
---|
2462 | |
---|
2463 | if(!isHomogeneous(aa)) |
---|
2464 | { |
---|
2465 | return(0==1); |
---|
2466 | } |
---|
2467 | } |
---|
2468 | return(1==1); |
---|
2469 | } |
---|
2470 | } |
---|
2471 | |
---|
2472 | def g = groebner(a); // !!!! |
---|
2473 | |
---|
2474 | def b, aa; int j; |
---|
2475 | for( int i = ncols(a); i > 0; i-- ) |
---|
2476 | { |
---|
2477 | aa = getGradedGenerator(a, i); |
---|
2478 | |
---|
2479 | b = multiDegPartition(aa); |
---|
2480 | for( j = ncols(b); j > 0; j-- ) |
---|
2481 | { |
---|
2482 | if(NF(b[j],g) != 0) |
---|
2483 | { |
---|
2484 | return(0==1); |
---|
2485 | } |
---|
2486 | } |
---|
2487 | } |
---|
2488 | return(1==1); |
---|
2489 | } |
---|
2490 | } |
---|
2491 | example |
---|
2492 | { |
---|
2493 | "EXAMPLE:"; echo=2; |
---|
2494 | |
---|
2495 | ring r = 0,(x,y,z),dp; |
---|
2496 | |
---|
2497 | //Grading and Torsion matrices: |
---|
2498 | intmat M[3][3] = |
---|
2499 | 1,0,0, |
---|
2500 | 0,1,0, |
---|
2501 | 0,0,1; |
---|
2502 | |
---|
2503 | intmat T[3][1] = |
---|
2504 | 1,2,3; |
---|
2505 | |
---|
2506 | setBaseMultigrading(M,T); |
---|
2507 | |
---|
2508 | attrib(r); |
---|
2509 | |
---|
2510 | poly f = x-yz; |
---|
2511 | |
---|
2512 | multiDegPartition(f); |
---|
2513 | print(multiDeg(_)); |
---|
2514 | |
---|
2515 | isHomogeneous(f); // f: is not homogeneous |
---|
2516 | |
---|
2517 | poly g = 1-xy2z3; |
---|
2518 | isHomogeneous(g); // g: is homogeneous |
---|
2519 | multiDegPartition(g); |
---|
2520 | |
---|
2521 | kill T; |
---|
2522 | ///////////////////////////////////////////////////////// |
---|
2523 | // new Torsion matrix: |
---|
2524 | intmat T[3][4] = |
---|
2525 | 3,3,3,3, |
---|
2526 | 2,1,3,0, |
---|
2527 | 1,2,0,3; |
---|
2528 | |
---|
2529 | setBaseMultigrading(M,T); |
---|
2530 | |
---|
2531 | f; |
---|
2532 | isHomogeneous(f); |
---|
2533 | multiDegPartition(f); |
---|
2534 | |
---|
2535 | // --------------------- |
---|
2536 | g; |
---|
2537 | isHomogeneous(g); |
---|
2538 | multiDegPartition(g); |
---|
2539 | |
---|
2540 | kill r, T, M; |
---|
2541 | |
---|
2542 | ring R = 0, (x,y,z), dp; |
---|
2543 | |
---|
2544 | intmat A[2][3] = |
---|
2545 | 0,0,1, |
---|
2546 | 3,2,1; |
---|
2547 | intmat T[2][1] = |
---|
2548 | -1, |
---|
2549 | 4; |
---|
2550 | setBaseMultigrading(A, T); |
---|
2551 | |
---|
2552 | isHomogeneous(ideal(x2 - y3 -xy +z, x*y-z, x^3 - y^2*z + x^2 -y^3)); // 1 |
---|
2553 | isHomogeneous(ideal(x2 - y3 -xy +z, x*y-z, x^3 - y^2*z + x^2 -y^3), "checkGens"); |
---|
2554 | isHomogeneous(ideal(x+y, x2 - y2)); // 0 |
---|
2555 | |
---|
2556 | // Degree partition: |
---|
2557 | multiDegPartition(x2 - y3 -xy +z); |
---|
2558 | multiDegPartition(x3 -y2z + x2 -y3 + z + 1); |
---|
2559 | |
---|
2560 | |
---|
2561 | module N = gen(1) + (x+y) * gen(2), z*gen(3); |
---|
2562 | |
---|
2563 | intmat V[2][3] = 0; // 1, 2, 3, 4, 5, 6; // column-wise weights of components!!?? |
---|
2564 | |
---|
2565 | vector v1, v2; |
---|
2566 | |
---|
2567 | v1 = setModuleGrading(N[1], V); v1; |
---|
2568 | multiDegPartition(v1); |
---|
2569 | print( multiDeg(_) ); |
---|
2570 | |
---|
2571 | v2 = setModuleGrading(N[2], V); v2; |
---|
2572 | multiDegPartition(v2); |
---|
2573 | print( multiDeg(_) ); |
---|
2574 | |
---|
2575 | N = setModuleGrading(N, V); |
---|
2576 | isHomogeneous(N); |
---|
2577 | print( multiDeg(N) ); |
---|
2578 | |
---|
2579 | /////////////////////////////////////// |
---|
2580 | |
---|
2581 | V = |
---|
2582 | 1, 2, 3, |
---|
2583 | 4, 5, 6; |
---|
2584 | |
---|
2585 | v1 = setModuleGrading(N[1], V); v1; |
---|
2586 | multiDegPartition(v1); |
---|
2587 | print( multiDeg(_) ); |
---|
2588 | |
---|
2589 | v2 = setModuleGrading(N[2], V); v2; |
---|
2590 | multiDegPartition(v2); |
---|
2591 | print( multiDeg(_) ); |
---|
2592 | |
---|
2593 | N = setModuleGrading(N, V); |
---|
2594 | isHomogeneous(N); |
---|
2595 | print( multiDeg(N) ); |
---|
2596 | |
---|
2597 | /////////////////////////////////////// |
---|
2598 | |
---|
2599 | V = |
---|
2600 | 0, 0, 0, |
---|
2601 | 4, 1, 0; |
---|
2602 | |
---|
2603 | N = gen(1) + x * gen(2), z*gen(3); |
---|
2604 | N = setModuleGrading(N, V); print(N); |
---|
2605 | isHomogeneous(N); |
---|
2606 | print( multiDeg(N) ); |
---|
2607 | v1 = getGradedGenerator(N,1); print(v1); |
---|
2608 | multiDegPartition(v1); |
---|
2609 | print( multiDeg(_) ); |
---|
2610 | N = setModuleGrading(N, V); print(N); |
---|
2611 | isHomogeneous(N); |
---|
2612 | print( multiDeg(N) ); |
---|
2613 | } |
---|
2614 | |
---|
2615 | /******************************************************/ |
---|
2616 | proc multiDeg(def A) |
---|
2617 | "USAGE: multiDeg(A); polynomial/vector/ideal/module A |
---|
2618 | PURPOSE: compute multidegree |
---|
2619 | EXAMPLE: example multiDeg; shows an example |
---|
2620 | " |
---|
2621 | { |
---|
2622 | def a = attrib(A, "grad"); |
---|
2623 | if( typeof(a) == "intvec" || typeof(a) == "intmat" ) |
---|
2624 | { |
---|
2625 | return (a); |
---|
2626 | } |
---|
2627 | |
---|
2628 | intmat M = getVariableWeights(); |
---|
2629 | int N = nvars(basering); |
---|
2630 | |
---|
2631 | if( ncols(M) != N ) |
---|
2632 | { |
---|
2633 | ERROR("Sorry wrong mgrad-size of M: " + string(ncols(M))); |
---|
2634 | } |
---|
2635 | |
---|
2636 | int r = nrows(M); |
---|
2637 | |
---|
2638 | if( (typeof(A) == "vector") or (typeof(A) == "module") ) |
---|
2639 | { |
---|
2640 | intmat V = getModuleGrading(A); |
---|
2641 | |
---|
2642 | if( nrows(V) != r ) |
---|
2643 | { |
---|
2644 | ERROR("Sorry wrong mgrad-size of V: " + string(nrows(V))); |
---|
2645 | } |
---|
2646 | } |
---|
2647 | |
---|
2648 | if( A == 0 ) |
---|
2649 | { |
---|
2650 | intvec v; v[r] = 0; |
---|
2651 | return (v); |
---|
2652 | } |
---|
2653 | |
---|
2654 | intvec m; m[r] = 0; |
---|
2655 | |
---|
2656 | if( typeof(A) == "poly" ) |
---|
2657 | { |
---|
2658 | intvec v = leadexp(A); // v; |
---|
2659 | m = M * v; |
---|
2660 | |
---|
2661 | // We assume homogeneous input! |
---|
2662 | return(m); |
---|
2663 | |
---|
2664 | A = A - lead(A); |
---|
2665 | while( size(A) > 0 ) |
---|
2666 | { |
---|
2667 | v = leadexp(A); // v; |
---|
2668 | m = max( m, M * v, r ); // ???? |
---|
2669 | A = A - lead(A); |
---|
2670 | } |
---|
2671 | |
---|
2672 | return(m); |
---|
2673 | } |
---|
2674 | |
---|
2675 | |
---|
2676 | if( typeof(A) == "vector" ) |
---|
2677 | { |
---|
2678 | intvec v; |
---|
2679 | v = leadexp(A); // v; |
---|
2680 | m = intvec(M * intvec(v[1..N])) + intvec(V[1..r, v[N+1]]); |
---|
2681 | |
---|
2682 | // We assume homogeneous input! |
---|
2683 | return(m); |
---|
2684 | |
---|
2685 | A = A - lead(A); |
---|
2686 | while( size(A) > 0 ) |
---|
2687 | { |
---|
2688 | v = leadexp(A); // v; |
---|
2689 | |
---|
2690 | // intvec(M * intvec(v[1..N])) + intvec(V[1..r, v[N+1]]); |
---|
2691 | |
---|
2692 | m = max( m, intvec(M * intvec(v[1..N])) + intvec(V[1..r, v[N+1]]), r ); // ??? |
---|
2693 | |
---|
2694 | A = A - lead(A); |
---|
2695 | } |
---|
2696 | |
---|
2697 | return(m); |
---|
2698 | } |
---|
2699 | |
---|
2700 | int i, j; intvec d; |
---|
2701 | |
---|
2702 | if( typeof(A) == "ideal" ) |
---|
2703 | { |
---|
2704 | intmat G[ r ] [ ncols(A)]; |
---|
2705 | for( i = ncols(A); i > 0; i-- ) |
---|
2706 | { |
---|
2707 | d = multiDeg( A[i] ); |
---|
2708 | |
---|
2709 | for( j = 1; j <= r; j++ ) // see ticket: 253 |
---|
2710 | { |
---|
2711 | G[j, i] = d[j]; |
---|
2712 | } |
---|
2713 | } |
---|
2714 | return(G); |
---|
2715 | } |
---|
2716 | |
---|
2717 | if( typeof(A) == "module" ) |
---|
2718 | { |
---|
2719 | intmat G[ r ] [ ncols(A)]; |
---|
2720 | vector v; |
---|
2721 | |
---|
2722 | for( i = ncols(A); i > 0; i-- ) |
---|
2723 | { |
---|
2724 | v = getGradedGenerator(A, i); |
---|
2725 | |
---|
2726 | // G[1..r, i] |
---|
2727 | d = multiDeg(v); |
---|
2728 | |
---|
2729 | for( j = 1; j <= r; j++ ) // see ticket: 253 |
---|
2730 | { |
---|
2731 | G[j, i] = d[j]; |
---|
2732 | } |
---|
2733 | |
---|
2734 | } |
---|
2735 | |
---|
2736 | return(G); |
---|
2737 | } |
---|
2738 | |
---|
2739 | } |
---|
2740 | example |
---|
2741 | { |
---|
2742 | "EXAMPLE:"; echo=2; |
---|
2743 | |
---|
2744 | ring r = 0,(x, y), dp; |
---|
2745 | |
---|
2746 | intmat A[2][2] = 1, 0, 0, 1; |
---|
2747 | print(A); |
---|
2748 | |
---|
2749 | intmat Ta[2][1] = 0, 3; |
---|
2750 | print(Ta); |
---|
2751 | |
---|
2752 | // attrib(A, "gradingGroup", Ta); // to think about |
---|
2753 | |
---|
2754 | // "poly:"; |
---|
2755 | setBaseMultigrading(A); |
---|
2756 | |
---|
2757 | |
---|
2758 | multiDeg( x*x, A ); |
---|
2759 | multiDeg( y*y*y, A ); |
---|
2760 | |
---|
2761 | setBaseMultigrading(A, Ta); |
---|
2762 | |
---|
2763 | multiDeg( x*x*y ); |
---|
2764 | |
---|
2765 | multiDeg( y*y*y*x ); |
---|
2766 | |
---|
2767 | multiDeg( x*y + x + 1 ); |
---|
2768 | |
---|
2769 | multiDegPartition(x*y + x + 1); |
---|
2770 | |
---|
2771 | print ( multiDeg(0) ); |
---|
2772 | poly zero = 0; |
---|
2773 | print ( multiDeg(zero) ); |
---|
2774 | |
---|
2775 | // "ideal:"; |
---|
2776 | |
---|
2777 | ideal I = y*x*x, x*y*y*y; |
---|
2778 | print( multiDeg(I) ); |
---|
2779 | |
---|
2780 | print ( multiDeg(ideal(0)) ); |
---|
2781 | print ( multiDeg(ideal(0,0,0)) ); |
---|
2782 | |
---|
2783 | // "vectors:"; |
---|
2784 | |
---|
2785 | intmat B[2][2] = 0, 1, 1, 0; |
---|
2786 | print(B); |
---|
2787 | |
---|
2788 | multiDeg( setModuleGrading(y*y*y*gen(2), B )); |
---|
2789 | multiDeg( setModuleGrading(x*x*gen(1), B )); |
---|
2790 | |
---|
2791 | |
---|
2792 | vector V = x*gen(1) + y*gen(2); |
---|
2793 | V = setModuleGrading(V, B); |
---|
2794 | multiDeg( V ); |
---|
2795 | |
---|
2796 | vector v1 = setModuleGrading([0, 0, 0], B); |
---|
2797 | print( multiDeg( v1 ) ); |
---|
2798 | |
---|
2799 | vector v2 = setModuleGrading([0], B); |
---|
2800 | print( multiDeg( v2 ) ); |
---|
2801 | |
---|
2802 | // "module:"; |
---|
2803 | |
---|
2804 | module D = x*gen(1), y*gen(2); |
---|
2805 | D; |
---|
2806 | D = setModuleGrading(D, B); |
---|
2807 | print( multiDeg( D ) ); |
---|
2808 | |
---|
2809 | |
---|
2810 | module DD = [0, 0],[0, 0, 0]; |
---|
2811 | DD = setModuleGrading(DD, B); |
---|
2812 | print( multiDeg( DD ) ); |
---|
2813 | |
---|
2814 | module DDD = [0, 0]; |
---|
2815 | DDD = setModuleGrading(DDD, B); |
---|
2816 | print( multiDeg( DDD ) ); |
---|
2817 | |
---|
2818 | }; |
---|
2819 | |
---|
2820 | |
---|
2821 | |
---|
2822 | |
---|
2823 | |
---|
2824 | /******************************************************/ |
---|
2825 | proc multiDegPartition(def p) |
---|
2826 | "USAGE: multiDegPartition(def p), p polynomial/vector |
---|
2827 | RETURNS: an ideal/module consisting of multigraded-homogeneous parts of p |
---|
2828 | EXAMPLE: example multiDegPartition; shows an example |
---|
2829 | " |
---|
2830 | { // TODO: What about an ideal or module??? |
---|
2831 | |
---|
2832 | if( typeof(p) == "poly" ) |
---|
2833 | { |
---|
2834 | ideal I; |
---|
2835 | poly mp, t, tt; |
---|
2836 | intmat V; |
---|
2837 | } |
---|
2838 | else |
---|
2839 | { |
---|
2840 | if( typeof(p) == "vector" ) |
---|
2841 | { |
---|
2842 | module I; |
---|
2843 | vector mp, t, tt; |
---|
2844 | intmat V = getModuleGrading(p); |
---|
2845 | } |
---|
2846 | else |
---|
2847 | { |
---|
2848 | ERROR("Wrong ARGUMENT type!"); |
---|
2849 | } |
---|
2850 | } |
---|
2851 | |
---|
2852 | if( size(p) > 1) |
---|
2853 | { |
---|
2854 | intvec m; |
---|
2855 | |
---|
2856 | while( p != 0 ) |
---|
2857 | { |
---|
2858 | m = leadexp(p); |
---|
2859 | mp = lead(p); |
---|
2860 | p = p - lead(p); |
---|
2861 | tt = p; t = 0; |
---|
2862 | |
---|
2863 | while( size(tt) > 0 ) |
---|
2864 | { |
---|
2865 | // TODO: we do not cache matrices (M,T,H,V), which remain the same :( |
---|
2866 | // TODO: we need some low-level procedure with all these arguments...! |
---|
2867 | if( equalMultiDeg( leadexp(tt), m, V ) ) |
---|
2868 | { |
---|
2869 | mp = mp + lead(tt); // "mp", mp; |
---|
2870 | } |
---|
2871 | else |
---|
2872 | { |
---|
2873 | t = t + lead(tt); // "t", t; |
---|
2874 | } |
---|
2875 | |
---|
2876 | tt = tt - lead(tt); |
---|
2877 | } |
---|
2878 | |
---|
2879 | I[size(I)+1] = mp; |
---|
2880 | |
---|
2881 | p = t; |
---|
2882 | } |
---|
2883 | } |
---|
2884 | else |
---|
2885 | { |
---|
2886 | I[1] = p; // single monom |
---|
2887 | } |
---|
2888 | |
---|
2889 | if( typeof(I) == "module" ) |
---|
2890 | { |
---|
2891 | I = setModuleGrading(I, V); |
---|
2892 | } |
---|
2893 | |
---|
2894 | return (I); |
---|
2895 | } |
---|
2896 | example |
---|
2897 | { |
---|
2898 | "EXAMPLE:"; echo=2; |
---|
2899 | |
---|
2900 | ring r = 0,(x,y,z),dp; |
---|
2901 | |
---|
2902 | intmat g[2][3]= |
---|
2903 | 1,0,1, |
---|
2904 | 0,1,1; |
---|
2905 | intmat t[2][1]= |
---|
2906 | -2, |
---|
2907 | 1; |
---|
2908 | |
---|
2909 | setBaseMultigrading(g,t); |
---|
2910 | |
---|
2911 | poly f = x10yz+x8y2z-x4z2+y5+x2y2-z2+x17z3-y6; |
---|
2912 | |
---|
2913 | multiDegPartition(f); |
---|
2914 | |
---|
2915 | vector v = xy*gen(1)-x3y2*gen(2)+x4y*gen(3); |
---|
2916 | intmat B[2][3]=1,-1,-2,0,0,1; |
---|
2917 | v = setModuleGrading(v,B); |
---|
2918 | getModuleGrading(v); |
---|
2919 | |
---|
2920 | multiDegPartition(v, B); |
---|
2921 | } |
---|
2922 | |
---|
2923 | |
---|
2924 | |
---|
2925 | /******************************************************/ |
---|
2926 | static proc unitMatrix(int n) |
---|
2927 | { |
---|
2928 | intmat A[n][n]; |
---|
2929 | |
---|
2930 | for( int i = n; i > 0; i-- ) |
---|
2931 | { |
---|
2932 | A[i,i] = 1; |
---|
2933 | } |
---|
2934 | |
---|
2935 | return (A); |
---|
2936 | } |
---|
2937 | |
---|
2938 | |
---|
2939 | |
---|
2940 | /******************************************************/ |
---|
2941 | static proc finestMDeg(def r) |
---|
2942 | " |
---|
2943 | USAGE: finestMDeg(r); ring r |
---|
2944 | RETURN: ring, r endowed with the finest multigrading |
---|
2945 | TODO: not yet... |
---|
2946 | " |
---|
2947 | { |
---|
2948 | def save = basering; |
---|
2949 | setring (r); |
---|
2950 | |
---|
2951 | // in basering |
---|
2952 | ideal I = ideal(basering); |
---|
2953 | |
---|
2954 | int n = 0; int i; poly p; |
---|
2955 | for( i = ncols(I); i > 0; i-- ) |
---|
2956 | { |
---|
2957 | p = I[i]; |
---|
2958 | if( size(p) > 1 ) |
---|
2959 | { |
---|
2960 | n = n + (size(p) - 1); |
---|
2961 | } |
---|
2962 | else |
---|
2963 | { |
---|
2964 | I[i] = 0; |
---|
2965 | } |
---|
2966 | } |
---|
2967 | |
---|
2968 | int N = nvars(basering); |
---|
2969 | intmat A = unitMatrix(N); |
---|
2970 | |
---|
2971 | |
---|
2972 | |
---|
2973 | if( n > 0) |
---|
2974 | { |
---|
2975 | |
---|
2976 | intmat L[N][n]; |
---|
2977 | // list L; |
---|
2978 | int j = n; |
---|
2979 | |
---|
2980 | for( i = ncols(I); i > 0; i-- ) |
---|
2981 | { |
---|
2982 | p = I[i]; |
---|
2983 | |
---|
2984 | if( size(p) > 1 ) |
---|
2985 | { |
---|
2986 | intvec m0 = leadexp(p); |
---|
2987 | p = p - lead(p); |
---|
2988 | |
---|
2989 | while( size(p) > 0 ) |
---|
2990 | { |
---|
2991 | L[ 1..N, j ] = leadexp(p) - m0; |
---|
2992 | p = p - lead(p); |
---|
2993 | j--; |
---|
2994 | } |
---|
2995 | } |
---|
2996 | } |
---|
2997 | |
---|
2998 | print(L); |
---|
2999 | setBaseMultigrading(A, L); |
---|
3000 | } |
---|
3001 | else |
---|
3002 | { |
---|
3003 | setBaseMultigrading(A); |
---|
3004 | } |
---|
3005 | |
---|
3006 | // ERROR("nope"); |
---|
3007 | |
---|
3008 | // ring T = integer, (x), (C, dp); |
---|
3009 | |
---|
3010 | setring(save); |
---|
3011 | return (r); |
---|
3012 | } |
---|
3013 | example |
---|
3014 | { |
---|
3015 | "EXAMPLE:"; echo=2; |
---|
3016 | |
---|
3017 | ring r = 0,(x, y), dp; |
---|
3018 | qring q = std(x^2 - y); |
---|
3019 | |
---|
3020 | finestMDeg(q); |
---|
3021 | |
---|
3022 | } |
---|
3023 | |
---|
3024 | |
---|
3025 | |
---|
3026 | |
---|
3027 | /******************************************************/ |
---|
3028 | static proc newMap(map F, intmat Q, list #) |
---|
3029 | " |
---|
3030 | USAGE: newMap(F, Q[, P]); map F, intmat Q[, intmat P] |
---|
3031 | PURPOSE: endowe the map F with the integer matrices P [and Q] |
---|
3032 | " |
---|
3033 | { |
---|
3034 | attrib(F, "Q", Q); |
---|
3035 | |
---|
3036 | if( size(#) > 0 and typeof(#[1]) == "intmat" ) |
---|
3037 | { |
---|
3038 | attrib(F, "P", #[1]); |
---|
3039 | } |
---|
3040 | return (F); |
---|
3041 | } |
---|
3042 | |
---|
3043 | /******************************************************/ |
---|
3044 | static proc matrix2intmat( matrix M ) |
---|
3045 | { |
---|
3046 | execute( "intmat A[ "+ string(nrows(M)) + "]["+ string(ncols(M)) + "] = " + string(M) + ";" ); |
---|
3047 | return (A); |
---|
3048 | } |
---|
3049 | |
---|
3050 | |
---|
3051 | /******************************************************/ |
---|
3052 | static proc leftKernelZ(intmat M) |
---|
3053 | "USAGE: leftKernel(M); M a matrix |
---|
3054 | RETURN: module |
---|
3055 | PURPOSE: computes left kernel of matrix M (a module of all elements v such that vM=0) |
---|
3056 | EXAMPLE: example leftKernel; shows an example |
---|
3057 | " |
---|
3058 | { |
---|
3059 | int @bf = 0; |
---|
3060 | if( nameof(basering) != "basering" ) |
---|
3061 | { |
---|
3062 | @bf = 1; |
---|
3063 | def @save@ = basering; |
---|
3064 | } |
---|
3065 | |
---|
3066 | ring r = integer, (x), dp; |
---|
3067 | |
---|
3068 | |
---|
3069 | // basering; |
---|
3070 | module N = matrix((M)); // transpose |
---|
3071 | // print(N); |
---|
3072 | |
---|
3073 | def MM = modulo( N, std(0) ) ; |
---|
3074 | // print(MM); |
---|
3075 | |
---|
3076 | intmat R = ( matrix2intmat( MM ) ); // transpose |
---|
3077 | |
---|
3078 | if( @bf == 1 ) |
---|
3079 | { |
---|
3080 | setring @save@; |
---|
3081 | } |
---|
3082 | |
---|
3083 | kill r; |
---|
3084 | return( R ); |
---|
3085 | } |
---|
3086 | example |
---|
3087 | { |
---|
3088 | "EXAMPLE:"; echo=2; |
---|
3089 | |
---|
3090 | ring r= 0,(x,y,z),dp; |
---|
3091 | matrix M[3][1] = x,y,z; |
---|
3092 | print(M); |
---|
3093 | matrix L = leftKernel(M); |
---|
3094 | print(L); |
---|
3095 | // check: |
---|
3096 | print(L*M); |
---|
3097 | }; |
---|
3098 | |
---|
3099 | |
---|
3100 | |
---|
3101 | /******************************************************/ |
---|
3102 | // the following is taken from "sing4ti2.lib" as we need 'hilbert' from 4ti2 |
---|
3103 | |
---|
3104 | static proc hilbert4ti2intmat(intmat A, list #) |
---|
3105 | "USAGE: hilbert4ti2(A[,i]); |
---|
3106 | @* A=intmat |
---|
3107 | @* i=int |
---|
3108 | ASSUME: - A is a matrix with integer entries which describes the lattice |
---|
3109 | @* as ker(A), if second argument is not present, and |
---|
3110 | @* as the left image Im(A) = {zA : z \in ZZ^k}, if second argument is a positive integer |
---|
3111 | @* - number of variables of basering equals number of columns of A |
---|
3112 | @* (for ker(A)) resp. of rows of A (for Im(A)) |
---|
3113 | CREATE: temporary files sing4ti2.mat, sing4ti2.lat, sing4ti2.mar |
---|
3114 | @* in the current directory (I/O files for communication with 4ti2) |
---|
3115 | NOTE: input rules for 4ti2 also apply to input to this procedure |
---|
3116 | @* hence ker(A)={x|Ax=0} and Im(A)={xA} |
---|
3117 | RETURN: toric ideal specified by Hilbert basis thereof |
---|
3118 | EXAMPLE: example graver4ti2; shows an example |
---|
3119 | " |
---|
3120 | { |
---|
3121 | if( system("sh","which hilbert 2> /dev/null 1> /dev/null") != 0 ) |
---|
3122 | { |
---|
3123 | ERROR("Sorry: cannot find 'hilbert' command from 4ti2. Please install 4ti2!"); |
---|
3124 | } |
---|
3125 | |
---|
3126 | //-------------------------------------------------------------------------- |
---|
3127 | // Initialization and Sanity Checks |
---|
3128 | //-------------------------------------------------------------------------- |
---|
3129 | int i,j; |
---|
3130 | int nr=nrows(A); |
---|
3131 | int nc=ncols(A); |
---|
3132 | string fileending="mat"; |
---|
3133 | if (size(#)!=0) |
---|
3134 | { |
---|
3135 | //--- default behaviour: use ker(A) as lattice |
---|
3136 | //--- if #[1]!=0 use Im(A) as lattice |
---|
3137 | if(typeof(#[1])!="int") |
---|
3138 | { |
---|
3139 | ERROR("optional parameter needs to be integer value"); |
---|
3140 | } |
---|
3141 | if(#[1]!=0) |
---|
3142 | { |
---|
3143 | fileending="lat"; |
---|
3144 | } |
---|
3145 | } |
---|
3146 | //--- we should also be checking whether all entries are indeed integers |
---|
3147 | //--- or whether there are fractions, but in this case the error message |
---|
3148 | //--- of 4ti2 is printed directly |
---|
3149 | |
---|
3150 | //-------------------------------------------------------------------------- |
---|
3151 | // preparing input file for 4ti2 |
---|
3152 | //-------------------------------------------------------------------------- |
---|
3153 | link eing=":w sing4ti2."+fileending; |
---|
3154 | string eingstring=string(nr)+" "+string(nc); |
---|
3155 | write(eing,eingstring); |
---|
3156 | for(i=1;i<=nr;i++) |
---|
3157 | { |
---|
3158 | kill eingstring; |
---|
3159 | string eingstring; |
---|
3160 | for(j=1;j<=nc;j++) |
---|
3161 | { |
---|
3162 | // if(g(A[i,j])>0)||(char(basering)!=0)||(npars(basering)>0)) |
---|
3163 | // { |
---|
3164 | // ERROR("Input to hilbert4ti2 needs to be a matrix with integer entries"); |
---|
3165 | // } |
---|
3166 | eingstring=eingstring+string(A[i,j])+" "; |
---|
3167 | } |
---|
3168 | write(eing, eingstring); |
---|
3169 | } |
---|
3170 | close(eing); |
---|
3171 | |
---|
3172 | //---------------------------------------------------------------------- |
---|
3173 | // calling 4ti2 and converting output |
---|
3174 | // Singular's string is too clumsy for this, hence we first prepare |
---|
3175 | // using standard unix commands |
---|
3176 | //---------------------------------------------------------------------- |
---|
3177 | |
---|
3178 | |
---|
3179 | j=system("sh","hilbert -q -n sing4ti2"); ////////// be quiet + no loggin!!! |
---|
3180 | |
---|
3181 | j=system("sh", "awk \'BEGIN{ORS=\",\";}{print $0;}\' sing4ti2.hil " + |
---|
3182 | "| sed s/[\\\ \\\t\\\v\\\f]/,/g " + |
---|
3183 | "| sed s/,+/,/g|sed s/,,/,/g " + |
---|
3184 | "| sed s/,,/,/g " + |
---|
3185 | "> sing4ti2.converted" ); |
---|
3186 | |
---|
3187 | |
---|
3188 | //---------------------------------------------------------------------- |
---|
3189 | // reading output of 4ti2 |
---|
3190 | //---------------------------------------------------------------------- |
---|
3191 | link ausg=":r sing4ti2.converted"; |
---|
3192 | //--- last entry ideal(0) is used to tie the list to the basering |
---|
3193 | //--- it will not be processed any further |
---|
3194 | |
---|
3195 | string s = read(ausg); |
---|
3196 | |
---|
3197 | if( defined(keepfiles) <= 0) |
---|
3198 | { |
---|
3199 | j=system("sh",("rm -f sing4ti2.hil sing4ti2.converted sing4ti2."+fileending)); |
---|
3200 | } |
---|
3201 | |
---|
3202 | string ergstr = "intvec erglist = " + s + "0;"; |
---|
3203 | execute(ergstr); |
---|
3204 | |
---|
3205 | // print(erglist); |
---|
3206 | |
---|
3207 | int Rnc = erglist[1]; |
---|
3208 | int Rnr = erglist[2]; |
---|
3209 | |
---|
3210 | intmat R[Rnr][Rnc]; |
---|
3211 | |
---|
3212 | int k = 3; |
---|
3213 | |
---|
3214 | for(i=1;i<=Rnc;i++) |
---|
3215 | { |
---|
3216 | for(j=1;j<=Rnr;j++) |
---|
3217 | { |
---|
3218 | // "i: ", i, ", j: ", j, ", v: ", erglist[k]; |
---|
3219 | R[j, i] = erglist[k]; |
---|
3220 | k = k + 1; |
---|
3221 | } |
---|
3222 | } |
---|
3223 | |
---|
3224 | |
---|
3225 | |
---|
3226 | return (R); |
---|
3227 | //--- get rid of leading entry 0; |
---|
3228 | // toric=toric[2..ncols(toric)]; |
---|
3229 | // return(toric); |
---|
3230 | } |
---|
3231 | // A nice example here is the 3x3 Magic Squares |
---|
3232 | example |
---|
3233 | { |
---|
3234 | "EXAMPLE:"; echo=2; |
---|
3235 | |
---|
3236 | ring r=0,(x1,x2,x3,x4,x5,x6,x7,x8,x9),dp; |
---|
3237 | intmat M[7][9]= |
---|
3238 | 1, 1, 1, -1, -1, -1, 0, 0, 0, |
---|
3239 | 1, 1, 1, 0, 0, 0,-1,-1,-1, |
---|
3240 | 0, 1, 1, -1, 0, 0,-1, 0, 0, |
---|
3241 | 1, 0, 1, 0, -1, 0, 0,-1, 0, |
---|
3242 | 1, 1, 0, 0, 0, -1, 0, 0,-1, |
---|
3243 | 0, 1, 1, 0, -1, 0, 0, 0,-1, |
---|
3244 | 1, 1, 0, 0, -1, 0,-1, 0, 0; |
---|
3245 | hilbert4ti2intmat(M); |
---|
3246 | hermiteNormalForm(M); |
---|
3247 | } |
---|
3248 | |
---|
3249 | ///////////////////////////////////////////////////////////////////////////// |
---|
3250 | static proc getMonomByExponent(intvec exp) |
---|
3251 | { |
---|
3252 | int n = nvars(basering); |
---|
3253 | |
---|
3254 | if( nrows(exp) < n ) |
---|
3255 | { |
---|
3256 | n = nrows(exp); |
---|
3257 | } |
---|
3258 | |
---|
3259 | poly m = 1; int e; |
---|
3260 | |
---|
3261 | for( int i = 1; i <= n; i++ ) |
---|
3262 | { |
---|
3263 | e = exp[i]; |
---|
3264 | if( e < 0 ) |
---|
3265 | { |
---|
3266 | ERROR("Negative exponent!!!"); |
---|
3267 | } |
---|
3268 | |
---|
3269 | m = m * (var(i)^e); |
---|
3270 | } |
---|
3271 | |
---|
3272 | return (m); |
---|
3273 | |
---|
3274 | } |
---|
3275 | |
---|
3276 | /******************************************************/ |
---|
3277 | proc multiDegBasis(intvec d) |
---|
3278 | "USAGE: multidegree d |
---|
3279 | ASSUME: current ring is multigraded, monomial ordering is global |
---|
3280 | PURPOSE: compute all monomials of multidegree d |
---|
3281 | EXAMPLE: example multiDegBasis; shows an example |
---|
3282 | " |
---|
3283 | { |
---|
3284 | def R = basering; // setring R; |
---|
3285 | |
---|
3286 | intmat M = getVariableWeights(R); |
---|
3287 | |
---|
3288 | // print(M); |
---|
3289 | |
---|
3290 | int nr = nrows(M); |
---|
3291 | int nc = ncols(M); |
---|
3292 | |
---|
3293 | intmat A[nr][nc+1]; |
---|
3294 | A[1..nr, 1..nc] = M[1..nr, 1..nc]; |
---|
3295 | //typeof(A[1..nr, nc+1]); |
---|
3296 | if( nr==1) |
---|
3297 | { |
---|
3298 | A[1..nr, nc+1]=-d[1]; |
---|
3299 | } |
---|
3300 | else |
---|
3301 | { |
---|
3302 | A[1..nr, nc+1] = -d; |
---|
3303 | } |
---|
3304 | |
---|
3305 | intmat T = getLattice(R); |
---|
3306 | |
---|
3307 | if( isFreeRepresented() ) |
---|
3308 | { |
---|
3309 | intmat B = hilbert4ti2intmat(A); |
---|
3310 | |
---|
3311 | // matrix B = unitMatrix(nrows(T)); |
---|
3312 | } |
---|
3313 | else |
---|
3314 | { |
---|
3315 | int n = ncols(T); |
---|
3316 | |
---|
3317 | nc = ncols(A); |
---|
3318 | |
---|
3319 | intmat AA[nr][nc + 2 * n]; |
---|
3320 | AA[1..nr, 1.. nc] = A[1..nr, 1.. nc]; |
---|
3321 | AA[1..nr, nc + (1.. n)] = T[1..nr, 1.. n]; |
---|
3322 | AA[1..nr, nc + n + (1.. n)] = -T[1..nr, 1.. n]; |
---|
3323 | |
---|
3324 | |
---|
3325 | // print ( AA ); |
---|
3326 | |
---|
3327 | intmat K = leftKernelZ(( AA ) ); // |
---|
3328 | |
---|
3329 | // print(K); |
---|
3330 | |
---|
3331 | intmat KK[nc][ncols(K)] = K[ 1.. nc, 1.. ncols(K) ]; |
---|
3332 | |
---|
3333 | // print(KK); |
---|
3334 | // "!"; |
---|
3335 | |
---|
3336 | intmat B = hilbert4ti2intmat(transpose(KK), 1); |
---|
3337 | |
---|
3338 | // "!"; print(B); |
---|
3339 | |
---|
3340 | } |
---|
3341 | |
---|
3342 | |
---|
3343 | // print(A); |
---|
3344 | |
---|
3345 | |
---|
3346 | |
---|
3347 | int i; |
---|
3348 | int nnr = nrows(B); |
---|
3349 | int nnc = ncols(B); |
---|
3350 | ideal I, J; |
---|
3351 | if(nnc==0){ |
---|
3352 | I=0; |
---|
3353 | return(I); |
---|
3354 | } |
---|
3355 | I[nnc] = 0; |
---|
3356 | J[nnc] = 0; |
---|
3357 | |
---|
3358 | for( i = 1; i <= nnc; i++ ) |
---|
3359 | { |
---|
3360 | // "i: ", i; B[nnr, i]; |
---|
3361 | |
---|
3362 | if( B[nnr, i] == 1) |
---|
3363 | { |
---|
3364 | // intvec(B[1..nnr-1, i]); |
---|
3365 | I[i] = getMonomByExponent(intvec(B[1..nnr-1, i])); |
---|
3366 | } |
---|
3367 | else |
---|
3368 | { |
---|
3369 | if( B[nnr, i] == 0) |
---|
3370 | { |
---|
3371 | // intvec(B[1..nnr-1, i]); |
---|
3372 | J[i] = getMonomByExponent(intvec(B[1..nnr-1, i])); |
---|
3373 | } |
---|
3374 | } |
---|
3375 | // I[i]; |
---|
3376 | } |
---|
3377 | |
---|
3378 | ideal Q = (ideal(basering)); |
---|
3379 | |
---|
3380 | if ( size(Q) > 0 ) |
---|
3381 | { |
---|
3382 | I = NF( I, lead(Q) ); |
---|
3383 | J = NF( J, lead(Q) ); // Global ordering!!! |
---|
3384 | } |
---|
3385 | |
---|
3386 | I = simplify(I, 2); // d |
---|
3387 | J = simplify(J, 2); // d |
---|
3388 | |
---|
3389 | attrib(I, "ZeroPart", J); |
---|
3390 | |
---|
3391 | return (I); |
---|
3392 | |
---|
3393 | // setring ; |
---|
3394 | } |
---|
3395 | example |
---|
3396 | { |
---|
3397 | "EXAMPLE:"; echo=2; |
---|
3398 | |
---|
3399 | ring R = 0, (x, y), dp; |
---|
3400 | |
---|
3401 | intmat g1[2][2]=1,0,0,1; |
---|
3402 | intmat l[2][1]=2,0; |
---|
3403 | intmat g2[2][2]=1,1,1,1; |
---|
3404 | intvec v1=4,0; |
---|
3405 | intvec v2=4,4; |
---|
3406 | |
---|
3407 | intmat g3[1][2]=1,1; |
---|
3408 | setBaseMultigrading(g3); |
---|
3409 | intvec v3=4:1; |
---|
3410 | v3; |
---|
3411 | multiDegBasis(v3); |
---|
3412 | |
---|
3413 | setBaseMultigrading(g1,l); |
---|
3414 | multiDegBasis(v1); |
---|
3415 | setBaseMultigrading(g2); |
---|
3416 | multiDegBasis(v2); |
---|
3417 | |
---|
3418 | intmat M[2][2] = 1, -1, -1, 1; |
---|
3419 | intvec d = -2, 2; |
---|
3420 | |
---|
3421 | setBaseMultigrading(M); |
---|
3422 | |
---|
3423 | multiDegBasis(d); |
---|
3424 | attrib(_, "ZeroPart"); |
---|
3425 | |
---|
3426 | kill R, M, d; |
---|
3427 | ring R = 0, (x, y, z), dp; |
---|
3428 | |
---|
3429 | intmat M[2][3] = 1, -2, 1, 1, 1, 0; |
---|
3430 | |
---|
3431 | intmat L[2][1] = 0, 2; |
---|
3432 | |
---|
3433 | intvec d = 4, 1; |
---|
3434 | |
---|
3435 | setBaseMultigrading(M, L); |
---|
3436 | |
---|
3437 | multiDegBasis(d); |
---|
3438 | attrib(_, "ZeroPart"); |
---|
3439 | |
---|
3440 | |
---|
3441 | kill R, M, d; |
---|
3442 | |
---|
3443 | ring R = 0, (x, y, z), dp; |
---|
3444 | qring Q = std(ideal( y^6+ x*y^3*z-x^2*z^2 )); |
---|
3445 | |
---|
3446 | |
---|
3447 | intmat M[2][3] = 1, 1, 2, 2, 1, 1; |
---|
3448 | // intmat T[2][1] = 0, 2; |
---|
3449 | |
---|
3450 | setBaseMultigrading(M); // BUG???? |
---|
3451 | |
---|
3452 | intvec d = 6, 6; |
---|
3453 | multiDegBasis(d); |
---|
3454 | attrib(_, "ZeroPart"); |
---|
3455 | |
---|
3456 | |
---|
3457 | |
---|
3458 | kill R, Q, M, d; |
---|
3459 | ring R = 0, (x, y, z), dp; |
---|
3460 | qring Q = std(ideal( x*z^3 - y *z^6, x*y*z - x^4*y^2 )); |
---|
3461 | |
---|
3462 | |
---|
3463 | intmat M[2][3] = 1, -2, 1, 1, 1, 0; |
---|
3464 | intmat T[2][1] = 0, 2; |
---|
3465 | |
---|
3466 | intvec d = 4, 1; |
---|
3467 | |
---|
3468 | setBaseMultigrading(M, T); // BUG???? |
---|
3469 | |
---|
3470 | multiDegBasis(d); |
---|
3471 | attrib(_, "ZeroPart"); |
---|
3472 | } |
---|
3473 | |
---|
3474 | |
---|
3475 | proc multiDegSyzygy(def I) |
---|
3476 | "USAGE: multiDegSyzygy(I); I is a ideal or a module |
---|
3477 | PURPOSE: computes the multigraded syzygy module of I |
---|
3478 | RETURNS: module, the syzygy module of I |
---|
3479 | NOTE: generators of I must be multigraded homogeneous |
---|
3480 | EXAMPLE: example multiDegSyzygy; shows an example |
---|
3481 | " |
---|
3482 | { |
---|
3483 | if( isHomogeneous(I, "checkGens") == 0) |
---|
3484 | { |
---|
3485 | ERROR ("Sorry: inhomogeneous input!"); |
---|
3486 | } |
---|
3487 | module S = syz(I); |
---|
3488 | S = setModuleGrading(S, multiDeg(I)); |
---|
3489 | return (S); |
---|
3490 | } |
---|
3491 | example |
---|
3492 | { |
---|
3493 | "EXAMPLE:"; echo=2; |
---|
3494 | |
---|
3495 | ring r = 0,(x,y,z,w),dp; |
---|
3496 | intmat MM[2][4]= |
---|
3497 | 1,1,1,1, |
---|
3498 | 0,1,3,4; |
---|
3499 | setBaseMultigrading(MM); |
---|
3500 | module M = ideal( xw-yz, x2z-y3, xz2-y2w, yw2-z3); |
---|
3501 | |
---|
3502 | |
---|
3503 | intmat v[2][nrows(M)]= |
---|
3504 | 1, |
---|
3505 | 0; |
---|
3506 | |
---|
3507 | M = setModuleGrading(M, v); |
---|
3508 | |
---|
3509 | isHomogeneous(M); |
---|
3510 | "Multidegrees: "; print(multiDeg(M)); |
---|
3511 | // Let's compute syzygies! |
---|
3512 | def S = multiDegSyzygy(M); S; |
---|
3513 | "Module Units Multigrading: "; print( getModuleGrading(S) ); |
---|
3514 | "Multidegrees: "; print(multiDeg(S)); |
---|
3515 | |
---|
3516 | isHomogeneous(S); |
---|
3517 | } |
---|
3518 | |
---|
3519 | |
---|
3520 | |
---|
3521 | proc multiDegModulo(def I, def J) |
---|
3522 | "USAGE: multiDegModulo(I); I, J are ideals or modules |
---|
3523 | PURPOSE: computes the multigraded 'modulo' module of I and J |
---|
3524 | RETURNS: module, see 'modulo' command |
---|
3525 | NOTE: I and J should have the same multigrading, and their |
---|
3526 | generators must be multigraded homogeneous |
---|
3527 | EXAMPLE: example multiDegModulo; shows an example |
---|
3528 | " |
---|
3529 | { |
---|
3530 | if( (isHomogeneous(I, "checkGens") == 0) or (isHomogeneous(J, "checkGens") == 0) ) |
---|
3531 | { |
---|
3532 | ERROR ("Sorry: inhomogeneous input!"); |
---|
3533 | } |
---|
3534 | module K = modulo(I, J); |
---|
3535 | K = setModuleGrading(K, multiDeg(I)); |
---|
3536 | return (K); |
---|
3537 | } |
---|
3538 | example |
---|
3539 | { |
---|
3540 | "EXAMPLE:"; echo=2; |
---|
3541 | |
---|
3542 | ring r = 0,(x,y,z),dp; |
---|
3543 | intmat MM[2][3]= |
---|
3544 | -1,1,1, |
---|
3545 | 0,1,3; |
---|
3546 | setBaseMultigrading(MM); |
---|
3547 | |
---|
3548 | ideal h1 = x, y, z; |
---|
3549 | ideal h2 = x; |
---|
3550 | |
---|
3551 | "Multidegrees: "; print(multiDeg(h1)); |
---|
3552 | |
---|
3553 | // Let's compute modulo(h1, h2): |
---|
3554 | def K = multiDegModulo(h1, h2); K; |
---|
3555 | |
---|
3556 | "Module Units Multigrading: "; print( getModuleGrading(K) ); |
---|
3557 | "Multidegrees: "; print(multiDeg(K)); |
---|
3558 | |
---|
3559 | isHomogeneous(K); |
---|
3560 | } |
---|
3561 | |
---|
3562 | |
---|
3563 | proc multiDegGroebner(def I) |
---|
3564 | "USAGE: multiDegGroebner(I); I is a poly/vector/ideal/module |
---|
3565 | PURPOSE: computes the multigraded standard/groebner basis of I |
---|
3566 | NOTE: I must be multigraded homogeneous |
---|
3567 | RETURNS: ideal/module, the computed basis |
---|
3568 | EXAMPLE: example multiDegGroebner; shows an example |
---|
3569 | " |
---|
3570 | { |
---|
3571 | if( isHomogeneous(I) == 0) |
---|
3572 | { |
---|
3573 | ERROR ("Sorry: inhomogeneous input!"); |
---|
3574 | } |
---|
3575 | |
---|
3576 | def S = groebner(I); |
---|
3577 | |
---|
3578 | if( typeof(I) == "module" or typeof(I) == "vector" ) |
---|
3579 | { |
---|
3580 | S = setModuleGrading(S, getModuleGrading(I)); |
---|
3581 | } |
---|
3582 | |
---|
3583 | return(S); |
---|
3584 | } |
---|
3585 | example |
---|
3586 | { |
---|
3587 | "EXAMPLE:"; echo=2; |
---|
3588 | |
---|
3589 | ring r = 0,(x,y,z,w),dp; |
---|
3590 | |
---|
3591 | intmat MM[2][4]= |
---|
3592 | 1,1,1,1, |
---|
3593 | 0,1,3,4; |
---|
3594 | |
---|
3595 | setBaseMultigrading(MM); |
---|
3596 | |
---|
3597 | |
---|
3598 | module M = ideal( xw-yz, x2z-y3, xz2-y2w, yw2-z3); |
---|
3599 | |
---|
3600 | |
---|
3601 | intmat v[2][nrows(M)]= |
---|
3602 | 1, |
---|
3603 | 0; |
---|
3604 | |
---|
3605 | M = setModuleGrading(M, v); |
---|
3606 | |
---|
3607 | |
---|
3608 | ///////////////////////////////////////////////////////////////////////////// |
---|
3609 | // GB: |
---|
3610 | M = multiDegGroebner(M); M; |
---|
3611 | "Module Units Multigrading: "; print( getModuleGrading(M) ); |
---|
3612 | "Multidegrees: "; print(multiDeg(M)); |
---|
3613 | |
---|
3614 | isHomogeneous(M); |
---|
3615 | |
---|
3616 | ///////////////////////////////////////////////////////////////////////////// |
---|
3617 | // Let's compute Syzygy! |
---|
3618 | def S = multiDegSyzygy(M); S; |
---|
3619 | "Module Units Multigrading: "; print( getModuleGrading(S) ); |
---|
3620 | "Multidegrees: "; print(multiDeg(S)); |
---|
3621 | |
---|
3622 | isHomogeneous(S); |
---|
3623 | |
---|
3624 | ///////////////////////////////////////////////////////////////////////////// |
---|
3625 | // GB: |
---|
3626 | S = multiDegGroebner(S); S; |
---|
3627 | "Module Units Multigrading: "; print( getModuleGrading(S) ); |
---|
3628 | "Multidegrees: "; print(multiDeg(S)); |
---|
3629 | |
---|
3630 | isHomogeneous(S); |
---|
3631 | } |
---|
3632 | |
---|
3633 | |
---|
3634 | /******************************************************/ |
---|
3635 | proc multiDegResolution(def I, int ll, list #) |
---|
3636 | "USAGE: multiDegResolution(I,l,[f]); I is poly/vector/ideal/module; l,f are integers |
---|
3637 | PURPOSE: computes the multigraded resolution of I of the length l, |
---|
3638 | or the whole resolution if l is zero. Returns minimal resolution if an optional |
---|
3639 | argument 1 is supplied |
---|
3640 | NOTE: input must have multigraded-homogeneous generators. |
---|
3641 | The returned list is truncated beginning with the first zero differential. |
---|
3642 | RETURNS: list, the computed resolution |
---|
3643 | EXAMPLE: example multiDegResolution; shows an example |
---|
3644 | " |
---|
3645 | { |
---|
3646 | if( isHomogeneous(I, "checkGens") == 0) |
---|
3647 | { |
---|
3648 | ERROR ("Sorry: inhomogeneous input!"); |
---|
3649 | } |
---|
3650 | |
---|
3651 | def R = res(I, ll, #); list L = R; int l = size(L); |
---|
3652 | def V = getModuleGrading(I); |
---|
3653 | if( (typeof(I) == "module") or (typeof(I) == "vector") ) |
---|
3654 | { |
---|
3655 | L[1] = setModuleGrading(L[1], V); |
---|
3656 | } |
---|
3657 | |
---|
3658 | int i; |
---|
3659 | for( i = 2; i <= l; i++ ) |
---|
3660 | { |
---|
3661 | if( size(L[i]) > 0 ) |
---|
3662 | { |
---|
3663 | L[i] = setModuleGrading( L[i], multiDeg(L[i-1]) ); |
---|
3664 | } else |
---|
3665 | { |
---|
3666 | return (L[1..(i-1)]); |
---|
3667 | } |
---|
3668 | } |
---|
3669 | |
---|
3670 | return (L); |
---|
3671 | |
---|
3672 | |
---|
3673 | } |
---|
3674 | example |
---|
3675 | { |
---|
3676 | "EXAMPLE:"; echo=2; |
---|
3677 | |
---|
3678 | ring r = 0,(x,y,z,w),dp; |
---|
3679 | |
---|
3680 | intmat M[2][4]= |
---|
3681 | 1,1,1,1, |
---|
3682 | 0,1,3,4; |
---|
3683 | |
---|
3684 | setBaseMultigrading(M); |
---|
3685 | |
---|
3686 | |
---|
3687 | module m= ideal( xw-yz, x2z-y3, xz2-y2w, yw2-z3); |
---|
3688 | |
---|
3689 | isHomogeneous(ideal( xw-yz, x2z-y3, xz2-y2w, yw2-z3), "checkGens"); |
---|
3690 | |
---|
3691 | ideal A = xw-yz, x2z-y3, xz2-y2w, yw2-z3; |
---|
3692 | |
---|
3693 | int j; |
---|
3694 | |
---|
3695 | for(j=1; j<=ncols(A); j++) |
---|
3696 | { |
---|
3697 | multiDegPartition(A[j]); |
---|
3698 | } |
---|
3699 | |
---|
3700 | intmat v[2][1]= |
---|
3701 | 1, |
---|
3702 | 0; |
---|
3703 | |
---|
3704 | m = setModuleGrading(m, v); |
---|
3705 | |
---|
3706 | // Let's compute Syzygy! |
---|
3707 | def S = multiDegSyzygy(m); S; |
---|
3708 | "Module Units Multigrading: "; print( getModuleGrading(S) ); |
---|
3709 | "Multidegrees: "; print(multiDeg(S)); |
---|
3710 | |
---|
3711 | ///////////////////////////////////////////////////////////////////////////// |
---|
3712 | |
---|
3713 | S = multiDegGroebner(S); S; |
---|
3714 | "Module Units Multigrading: "; print( getModuleGrading(S) ); |
---|
3715 | "Multidegrees: "; print(multiDeg(S)); |
---|
3716 | |
---|
3717 | ///////////////////////////////////////////////////////////////////////////// |
---|
3718 | |
---|
3719 | def L = multiDegResolution(m, 0, 1); |
---|
3720 | |
---|
3721 | for( j =1; j<=size(L); j++) |
---|
3722 | { |
---|
3723 | "----------------------------------- ", j, " -----------------------------"; |
---|
3724 | L[j]; |
---|
3725 | "Module Multigrading: "; print( getModuleGrading(L[j]) ); |
---|
3726 | "Multigrading: "; print(multiDeg(L[j])); |
---|
3727 | } |
---|
3728 | |
---|
3729 | ///////////////////////////////////////////////////////////////////////////// |
---|
3730 | |
---|
3731 | L = multiDegResolution(maxideal(1), 0, 1); |
---|
3732 | |
---|
3733 | for( j =1; j<=size(L); j++) |
---|
3734 | { |
---|
3735 | "----------------------------------- ", j, " -----------------------------"; |
---|
3736 | L[j]; |
---|
3737 | "Module Multigrading: "; print( getModuleGrading(L[j]) ); |
---|
3738 | "Multigrading: "; print(multiDeg(L[j])); |
---|
3739 | } |
---|
3740 | |
---|
3741 | kill v; |
---|
3742 | |
---|
3743 | |
---|
3744 | def h = hilbertSeries(m); |
---|
3745 | setring h; |
---|
3746 | |
---|
3747 | numerator1; |
---|
3748 | factorize(numerator1); |
---|
3749 | |
---|
3750 | denominator1; |
---|
3751 | factorize(denominator1); |
---|
3752 | |
---|
3753 | numerator2; |
---|
3754 | factorize(numerator2); |
---|
3755 | |
---|
3756 | denominator2; |
---|
3757 | factorize(denominator2); |
---|
3758 | } |
---|
3759 | |
---|
3760 | /******************************************************/ |
---|
3761 | proc hilbertSeries(def I) |
---|
3762 | "USAGE: hilbertSeries(I); I is poly/vector/ideal/module |
---|
3763 | PURPOSE: computes the multigraded Hilbert Series of I |
---|
3764 | NOTE: input must have multigraded-homogeneous generators. |
---|
3765 | Multigrading should be positive. |
---|
3766 | RETURNS: a ring in variables t_(i), s_(i), with polynomials |
---|
3767 | numerator1 and denominator1 and mutually prime numerator2 |
---|
3768 | and denominator2, quotients of which give the series. |
---|
3769 | EXAMPLE: example hilbertSeries; shows an example |
---|
3770 | " |
---|
3771 | { |
---|
3772 | |
---|
3773 | if( !isFreeRepresented() ) |
---|
3774 | { |
---|
3775 | "Things might happen, since we are not free."; |
---|
3776 | //ERROR("SORRY: ONLY TORSION-FREE CASE (POSITIVE GRADING)"); |
---|
3777 | } |
---|
3778 | |
---|
3779 | int i, j, k, v; |
---|
3780 | |
---|
3781 | intmat M = getVariableWeights(); |
---|
3782 | |
---|
3783 | int cc = ncols(M); |
---|
3784 | int n = nrows(M); |
---|
3785 | |
---|
3786 | if( n == 0 ) |
---|
3787 | { |
---|
3788 | ERROR("Error: wrong Variable Weights?"); |
---|
3789 | } |
---|
3790 | |
---|
3791 | list RES = multiDegResolution(I,0,1); |
---|
3792 | |
---|
3793 | int l = size(RES); |
---|
3794 | |
---|
3795 | list L; L[l + 1] = 0; |
---|
3796 | |
---|
3797 | if(typeof(I) == "ideal") |
---|
3798 | { |
---|
3799 | intmat zeros[n][1]; |
---|
3800 | L[1] = zeros; |
---|
3801 | } |
---|
3802 | else |
---|
3803 | { |
---|
3804 | L[1] = getModuleGrading(RES[1]); |
---|
3805 | } |
---|
3806 | |
---|
3807 | for( j = 1; j <= l; j++) |
---|
3808 | { |
---|
3809 | L[j + 1] = multiDeg(RES[j]); |
---|
3810 | } |
---|
3811 | |
---|
3812 | l++; |
---|
3813 | |
---|
3814 | ring R = 0,(t_(1..n),s_(1..n)),dp; |
---|
3815 | |
---|
3816 | ideal units; |
---|
3817 | for( i=n; i>=1; i--) |
---|
3818 | { |
---|
3819 | units[i] = (var(i) * var(n + i) - 1); |
---|
3820 | } |
---|
3821 | |
---|
3822 | qring Q = std(units); |
---|
3823 | |
---|
3824 | // TODO: should not it be a quotient ring depending on Torsion??? |
---|
3825 | // I am not sure about what to do in the torsion case, but since |
---|
3826 | // we want to evaluate the polynomial at certain points to get |
---|
3827 | // a dimension we need uniqueness for this. I think we would lose |
---|
3828 | // this uniqueness if switching to this torsion ring. |
---|
3829 | |
---|
3830 | poly monom, summand, numerator; |
---|
3831 | poly denominator = 1; |
---|
3832 | |
---|
3833 | for( i = 1; i <= cc; i++) |
---|
3834 | { |
---|
3835 | monom = 1; |
---|
3836 | for( k = 1; k <= n; k++) |
---|
3837 | { |
---|
3838 | v = M[k,i]; |
---|
3839 | |
---|
3840 | if(v >= 0) |
---|
3841 | { |
---|
3842 | monom = monom * (var(k)^(v)); |
---|
3843 | } |
---|
3844 | else |
---|
3845 | { |
---|
3846 | monom = monom * (var(n+k)^(-v)); |
---|
3847 | } |
---|
3848 | } |
---|
3849 | |
---|
3850 | if( monom == 1) |
---|
3851 | { |
---|
3852 | ERROR("Multigrading not positive."); |
---|
3853 | } |
---|
3854 | |
---|
3855 | denominator = denominator * (1 - monom); |
---|
3856 | } |
---|
3857 | |
---|
3858 | for( j = 1; j<= l; j++) |
---|
3859 | { |
---|
3860 | summand = 0; |
---|
3861 | M = L[j]; |
---|
3862 | |
---|
3863 | for( i = 1; i <= ncols(M); i++) |
---|
3864 | { |
---|
3865 | monom = 1; |
---|
3866 | for( k = 1; k <= n; k++) |
---|
3867 | { |
---|
3868 | v = M[k,i]; |
---|
3869 | if( v > 0 ) |
---|
3870 | { |
---|
3871 | monom = monom * (var(k)^v); |
---|
3872 | } |
---|
3873 | else |
---|
3874 | { |
---|
3875 | monom = monom * (var(n+k)^(-v)); |
---|
3876 | } |
---|
3877 | } |
---|
3878 | summand = summand + monom; |
---|
3879 | } |
---|
3880 | numerator = numerator - (-1)^j * summand; |
---|
3881 | } |
---|
3882 | |
---|
3883 | if( denominator == 0 ) |
---|
3884 | { |
---|
3885 | ERROR("Multigrading not positive."); |
---|
3886 | } |
---|
3887 | |
---|
3888 | poly denominator1 = denominator; |
---|
3889 | poly numerator1 = numerator; |
---|
3890 | |
---|
3891 | export denominator1; |
---|
3892 | export numerator1; |
---|
3893 | |
---|
3894 | if( numerator != 0 ) |
---|
3895 | { |
---|
3896 | poly d = gcd(denominator, numerator); |
---|
3897 | |
---|
3898 | poly denominator2 = denominator/d; |
---|
3899 | poly numerator2 = numerator/d; |
---|
3900 | |
---|
3901 | if( gcd(denominator2, numerator2) != 1 ) |
---|
3902 | { |
---|
3903 | ERROR("Sorry: gcd should be 1 (after dividing out gcd)! Something went wrong!"); |
---|
3904 | } |
---|
3905 | } |
---|
3906 | else |
---|
3907 | { |
---|
3908 | poly denominator2 = denominator; |
---|
3909 | poly numerator2 = numerator; |
---|
3910 | } |
---|
3911 | |
---|
3912 | |
---|
3913 | export denominator2; |
---|
3914 | export numerator2; |
---|
3915 | |
---|
3916 | " ------------ "; |
---|
3917 | "This proc returns a ring with polynomials called 'numerator1/2' and 'denominator1/2'!"; |
---|
3918 | "They represent the first and the second Hilbert Series."; |
---|
3919 | "The s_(i)-variables are defined to be the inverse of the t_(i)-variables."; |
---|
3920 | " ------------ "; |
---|
3921 | |
---|
3922 | return(Q); |
---|
3923 | } |
---|
3924 | example |
---|
3925 | { |
---|
3926 | "EXAMPLE:"; echo=2; |
---|
3927 | |
---|
3928 | ring r = 0,(x,y,z,w),dp; |
---|
3929 | intmat g[2][4]= |
---|
3930 | 1,1,1,1, |
---|
3931 | 0,1,3,4; |
---|
3932 | setBaseMultigrading(g); |
---|
3933 | |
---|
3934 | module M = ideal(xw-yz, x2z-y3, xz2-y2w, yw2-z3); |
---|
3935 | intmat V[2][1]= |
---|
3936 | 1, |
---|
3937 | 0; |
---|
3938 | |
---|
3939 | M = setModuleGrading(M, V); |
---|
3940 | |
---|
3941 | def h = hilbertSeries(M); setring h; |
---|
3942 | |
---|
3943 | factorize(numerator2); |
---|
3944 | factorize(denominator2); |
---|
3945 | |
---|
3946 | kill g, h; setring r; |
---|
3947 | |
---|
3948 | intmat g[2][4]= |
---|
3949 | 1,2,3,4, |
---|
3950 | 0,0,5,8; |
---|
3951 | |
---|
3952 | setBaseMultigrading(g); |
---|
3953 | |
---|
3954 | ideal I = x^2, y, z^3; |
---|
3955 | I = std(I); |
---|
3956 | def L = multiDegResolution(I, 0, 1); |
---|
3957 | |
---|
3958 | for( int j = 1; j<=size(L); j++) |
---|
3959 | { |
---|
3960 | "----------------------------------- ", j, " -----------------------------"; |
---|
3961 | L[j]; |
---|
3962 | "Module Multigrading: "; print( getModuleGrading(L[j]) ); |
---|
3963 | "Multigrading: "; print(multiDeg(L[j])); |
---|
3964 | } |
---|
3965 | |
---|
3966 | multiDeg(I); |
---|
3967 | def h = hilbertSeries(I); setring h; |
---|
3968 | |
---|
3969 | factorize(numerator2); |
---|
3970 | factorize(denominator2); |
---|
3971 | |
---|
3972 | kill r, h, g, V; |
---|
3973 | //////////////////////////////////////////////// |
---|
3974 | ring R = 0,(x,y,z),dp; |
---|
3975 | intmat W[2][3] = |
---|
3976 | 1,1, 1, |
---|
3977 | 0,0,-1; |
---|
3978 | setBaseMultigrading(W); |
---|
3979 | ideal I = x3y,yz2,y2z,z4; |
---|
3980 | |
---|
3981 | def h = hilbertSeries(I); setring h; |
---|
3982 | |
---|
3983 | factorize(numerator2); |
---|
3984 | factorize(denominator2); |
---|
3985 | |
---|
3986 | kill R, W, h; |
---|
3987 | //////////////////////////////////////////////// |
---|
3988 | ring R = 0,(x,y,z,a,b,c),dp; |
---|
3989 | intmat W[2][6] = |
---|
3990 | 1,1, 1,1,1,1, |
---|
3991 | 0,0,-1,0,0,0; |
---|
3992 | setBaseMultigrading(W); |
---|
3993 | ideal I = x3y,yz2,y2z,z4; |
---|
3994 | |
---|
3995 | def h = hilbertSeries(I); setring h; |
---|
3996 | |
---|
3997 | factorize(numerator2); |
---|
3998 | factorize(denominator2); |
---|
3999 | |
---|
4000 | kill R, W, h; |
---|
4001 | //////////////////////////////////////////////// |
---|
4002 | // This is example 5.3.9. from Robbianos book. |
---|
4003 | |
---|
4004 | ring R = 0,(x,y,z,w),dp; |
---|
4005 | intmat W[1][4] = |
---|
4006 | 1,1, 1,1; |
---|
4007 | setBaseMultigrading(W); |
---|
4008 | ideal I = z3,y3zw2,x2y4w2xyz2; |
---|
4009 | |
---|
4010 | hilb(std(I)); |
---|
4011 | |
---|
4012 | def h = hilbertSeries(I); setring h; |
---|
4013 | |
---|
4014 | numerator1; |
---|
4015 | denominator1; |
---|
4016 | |
---|
4017 | factorize(numerator2); |
---|
4018 | factorize(denominator2); |
---|
4019 | |
---|
4020 | |
---|
4021 | kill h; |
---|
4022 | //////////////////////////////////////////////// |
---|
4023 | setring R; |
---|
4024 | |
---|
4025 | ideal I2 = x2,y2,z2; I2; |
---|
4026 | |
---|
4027 | hilb(std(I2)); |
---|
4028 | |
---|
4029 | def h = hilbertSeries(I2); setring h; |
---|
4030 | |
---|
4031 | numerator1; |
---|
4032 | denominator1; |
---|
4033 | |
---|
4034 | |
---|
4035 | kill h; |
---|
4036 | //////////////////////////////////////////////// |
---|
4037 | setring R; |
---|
4038 | |
---|
4039 | W = 2,2,2,2; |
---|
4040 | |
---|
4041 | setBaseMultigrading(W); |
---|
4042 | |
---|
4043 | getVariableWeights(); |
---|
4044 | |
---|
4045 | intvec w = 2,2,2,2; |
---|
4046 | |
---|
4047 | hilb(std(I2), 1, w); |
---|
4048 | |
---|
4049 | kill w; |
---|
4050 | |
---|
4051 | |
---|
4052 | def h = hilbertSeries(I2); setring h; |
---|
4053 | |
---|
4054 | |
---|
4055 | numerator1; denominator1; |
---|
4056 | kill h; |
---|
4057 | |
---|
4058 | |
---|
4059 | kill R, W; |
---|
4060 | |
---|
4061 | //////////////////////////////////////////////// |
---|
4062 | ring R = 0,(x),dp; |
---|
4063 | intmat W[1][1] = |
---|
4064 | 1; |
---|
4065 | setBaseMultigrading(W); |
---|
4066 | |
---|
4067 | ideal I; |
---|
4068 | |
---|
4069 | I = 1; I; |
---|
4070 | |
---|
4071 | hilb(std(I)); |
---|
4072 | |
---|
4073 | def h = hilbertSeries(I); setring h; |
---|
4074 | |
---|
4075 | numerator1; denominator1; |
---|
4076 | |
---|
4077 | kill h; |
---|
4078 | //////////////////////////////////////////////// |
---|
4079 | setring R; |
---|
4080 | |
---|
4081 | I = x; I; |
---|
4082 | |
---|
4083 | hilb(std(I)); |
---|
4084 | |
---|
4085 | def h = hilbertSeries(I); setring h; |
---|
4086 | |
---|
4087 | numerator1; denominator1; |
---|
4088 | |
---|
4089 | kill h; |
---|
4090 | //////////////////////////////////////////////// |
---|
4091 | setring R; |
---|
4092 | |
---|
4093 | I = x^5; I; |
---|
4094 | |
---|
4095 | hilb(std(I)); |
---|
4096 | hilb(std(I), 1); |
---|
4097 | |
---|
4098 | def h = hilbertSeries(I); setring h; |
---|
4099 | |
---|
4100 | numerator1; denominator1; |
---|
4101 | |
---|
4102 | |
---|
4103 | kill h; |
---|
4104 | //////////////////////////////////////////////// |
---|
4105 | setring R; |
---|
4106 | |
---|
4107 | I = x^10; I; |
---|
4108 | |
---|
4109 | hilb(std(I)); |
---|
4110 | |
---|
4111 | def h = hilbertSeries(I); setring h; |
---|
4112 | |
---|
4113 | numerator1; denominator1; |
---|
4114 | |
---|
4115 | kill h; |
---|
4116 | //////////////////////////////////////////////// |
---|
4117 | setring R; |
---|
4118 | |
---|
4119 | module M = 1; |
---|
4120 | |
---|
4121 | M = setModuleGrading(M, W); |
---|
4122 | |
---|
4123 | |
---|
4124 | hilb(std(M)); |
---|
4125 | |
---|
4126 | def h = hilbertSeries(M); setring h; |
---|
4127 | |
---|
4128 | numerator1; denominator1; |
---|
4129 | |
---|
4130 | kill h; |
---|
4131 | //////////////////////////////////////////////// |
---|
4132 | setring R; |
---|
4133 | |
---|
4134 | kill M; module M = x^5*gen(1); |
---|
4135 | // intmat V[1][3] = 0; // TODO: this would lead to a wrong result!!!? |
---|
4136 | intmat V[1][1] = 0; // all gen(i) of degree 0! |
---|
4137 | |
---|
4138 | M = setModuleGrading(M, V); |
---|
4139 | |
---|
4140 | hilb(std(M)); |
---|
4141 | |
---|
4142 | def h = hilbertSeries(M); setring h; |
---|
4143 | |
---|
4144 | numerator1; denominator1; |
---|
4145 | |
---|
4146 | kill h; |
---|
4147 | //////////////////////////////////////////////// |
---|
4148 | setring R; |
---|
4149 | |
---|
4150 | module N = x^5*gen(3); |
---|
4151 | |
---|
4152 | kill V; |
---|
4153 | |
---|
4154 | intmat V[1][3] = 0; // all gen(i) of degree 0! |
---|
4155 | |
---|
4156 | N = setModuleGrading(N, V); |
---|
4157 | |
---|
4158 | hilb(std(N)); |
---|
4159 | |
---|
4160 | def h = hilbertSeries(N); setring h; |
---|
4161 | |
---|
4162 | numerator1; denominator1; |
---|
4163 | |
---|
4164 | kill h; |
---|
4165 | //////////////////////////////////////////////// |
---|
4166 | setring R; |
---|
4167 | |
---|
4168 | |
---|
4169 | module S = M + N; |
---|
4170 | |
---|
4171 | S = setModuleGrading(S, V); |
---|
4172 | |
---|
4173 | hilb(std(S)); |
---|
4174 | |
---|
4175 | def h = hilbertSeries(S); setring h; |
---|
4176 | |
---|
4177 | numerator1; denominator1; |
---|
4178 | |
---|
4179 | kill h; |
---|
4180 | |
---|
4181 | kill V; |
---|
4182 | kill R, W; |
---|
4183 | |
---|
4184 | } |
---|
4185 | |
---|
4186 | static proc evalHilbertSeries(def h, intvec v) |
---|
4187 | " |
---|
4188 | TODO |
---|
4189 | evaluate hilbert series h by substibuting v[i] for t_(i) (1/v[i] for s_(i)) |
---|
4190 | return: int (h(v)) |
---|
4191 | " |
---|
4192 | { |
---|
4193 | if( 2*size(v) != nvars(h) ) |
---|
4194 | { |
---|
4195 | ERROR("Wrong input/size!"); |
---|
4196 | } |
---|
4197 | |
---|
4198 | setring h; |
---|
4199 | |
---|
4200 | if( defined(numerator2) and defined(denominator2) ) |
---|
4201 | { |
---|
4202 | poly n = numerator2; poly d = denominator2; |
---|
4203 | } else |
---|
4204 | { |
---|
4205 | poly n = numerator1; poly d = denominator1; |
---|
4206 | } |
---|
4207 | |
---|
4208 | int N = size(v); |
---|
4209 | int i; number k; |
---|
4210 | ideal V; |
---|
4211 | |
---|
4212 | for( i = N; i > 0; i -- ) |
---|
4213 | { |
---|
4214 | k = v[i]; |
---|
4215 | V[i] = var(i) - k; |
---|
4216 | } |
---|
4217 | |
---|
4218 | V = groebner(V); |
---|
4219 | |
---|
4220 | n = NF(n, V); |
---|
4221 | d = NF(d, V); |
---|
4222 | |
---|
4223 | n; |
---|
4224 | d; |
---|
4225 | |
---|
4226 | if( d == 0 ) |
---|
4227 | { |
---|
4228 | ERROR("Sorry: denominator is zero!"); |
---|
4229 | } |
---|
4230 | |
---|
4231 | if( n == 0 ) |
---|
4232 | { |
---|
4233 | return (0); |
---|
4234 | } |
---|
4235 | |
---|
4236 | poly g = gcd(n, d); |
---|
4237 | |
---|
4238 | if( g != leadcoef(g) ) |
---|
4239 | { |
---|
4240 | n = n / g; |
---|
4241 | d = d / g; |
---|
4242 | } |
---|
4243 | |
---|
4244 | n; |
---|
4245 | d; |
---|
4246 | |
---|
4247 | |
---|
4248 | for( i = N; i > 0; i -- ) |
---|
4249 | { |
---|
4250 | "i: ", i; |
---|
4251 | n; |
---|
4252 | d; |
---|
4253 | |
---|
4254 | k = v[i]; |
---|
4255 | k; |
---|
4256 | |
---|
4257 | n = subst(n, var(i), k); |
---|
4258 | d = subst(d, var(i), k); |
---|
4259 | |
---|
4260 | if( k != 0 ) |
---|
4261 | { |
---|
4262 | k = 1/k; |
---|
4263 | n = subst(n, var(N+i), k); |
---|
4264 | d = subst(d, var(N+i), k); |
---|
4265 | } |
---|
4266 | } |
---|
4267 | |
---|
4268 | n; |
---|
4269 | d; |
---|
4270 | |
---|
4271 | if( d == 0 ) |
---|
4272 | { |
---|
4273 | ERROR("Sorry: denominator is zero!"); |
---|
4274 | } |
---|
4275 | |
---|
4276 | if( n == 0 ) |
---|
4277 | { |
---|
4278 | return (0); |
---|
4279 | } |
---|
4280 | |
---|
4281 | poly g = gcd(n, d); |
---|
4282 | |
---|
4283 | if( g != leadcoef(g) ) |
---|
4284 | { |
---|
4285 | n = n / g; |
---|
4286 | d = d / g; |
---|
4287 | } |
---|
4288 | |
---|
4289 | n; |
---|
4290 | d; |
---|
4291 | |
---|
4292 | if( n != leadcoef(n) || d != leadcoef(d) ) |
---|
4293 | { |
---|
4294 | ERROR("Sorry cannot completely evaluate. Partial result: (" + string(n) + ")/(" + string(d) + ")"); |
---|
4295 | } |
---|
4296 | |
---|
4297 | n; |
---|
4298 | d; |
---|
4299 | |
---|
4300 | return (leadcoef(n)/leadcoef(d)); |
---|
4301 | } |
---|
4302 | example |
---|
4303 | { |
---|
4304 | "EXAMPLE:"; echo=2; |
---|
4305 | |
---|
4306 | // TODO! |
---|
4307 | |
---|
4308 | } |
---|
4309 | |
---|
4310 | |
---|
4311 | proc isPositive() |
---|
4312 | "USAGE: isPositive() |
---|
4313 | PURPOSE: Computes whether the multigrading of the ring is positive. |
---|
4314 | For computation theorem 8.6 of the Miller/Sturmfels book is used. |
---|
4315 | RETURNS: true if the multigrading is positive |
---|
4316 | EXAMPLE: example isPositive; shows an example |
---|
4317 | " |
---|
4318 | { |
---|
4319 | ideal I = multiDegBasis(0); |
---|
4320 | ideal J = attrib(I,"ZeroPart"); |
---|
4321 | /* |
---|
4322 | I am not quite sure what this ZeroPart is anymore. I thought it |
---|
4323 | should contain all monomials of degree 0, but then apparently 1 should |
---|
4324 | be contained. It makes sense to exclude 1, but was this also the intention? |
---|
4325 | */ |
---|
4326 | return(J==0); |
---|
4327 | } |
---|
4328 | example |
---|
4329 | { |
---|
4330 | echo = 2; printlevel = 3; |
---|
4331 | ring r = 0,(x,y),dp; |
---|
4332 | intmat A[1][2]=-1,1; |
---|
4333 | setBaseMultigrading(A); |
---|
4334 | isPositive(); |
---|
4335 | |
---|
4336 | intmat B[1][2]=1,1; |
---|
4337 | setBaseMultigrading(B); |
---|
4338 | isPositive(B); |
---|
4339 | } |
---|
4340 | |
---|
4341 | /////////////////////////////////////////////////////////////////////////////// |
---|
4342 | // testing for consistency of the library: |
---|
4343 | proc testMultigradingLib () |
---|
4344 | { |
---|
4345 | example setBaseMultigrading; |
---|
4346 | example setModuleGrading; |
---|
4347 | |
---|
4348 | example getVariableWeights; |
---|
4349 | example getLattice; |
---|
4350 | example getGradingGroup; |
---|
4351 | example getModuleGrading; |
---|
4352 | |
---|
4353 | |
---|
4354 | example multiDeg; |
---|
4355 | example multiDegPartition; |
---|
4356 | |
---|
4357 | |
---|
4358 | example hermiteNormalForm; |
---|
4359 | example isHomogeneous; |
---|
4360 | example isTorsionFree; |
---|
4361 | example pushForward; |
---|
4362 | example defineHomogeneous; |
---|
4363 | |
---|
4364 | example equalMultiDeg; |
---|
4365 | example isZeroElement; |
---|
4366 | |
---|
4367 | example multiDegResolution; |
---|
4368 | |
---|
4369 | "// ******************* example hilbertSeries ************************//"; |
---|
4370 | example hilbertSeries; |
---|
4371 | |
---|
4372 | |
---|
4373 | // example multiDegBasis; // needs 4ti2! |
---|
4374 | |
---|
4375 | "The End!"; |
---|
4376 | } |
---|
4377 | |
---|
4378 | |
---|
4379 | static proc multiDegTruncate(def M, intvec md) |
---|
4380 | { |
---|
4381 | "d: "; |
---|
4382 | print(md); |
---|
4383 | |
---|
4384 | "M: "; |
---|
4385 | module LL = M; // + L for d+1 |
---|
4386 | LL; |
---|
4387 | print(multiDeg(LL)); |
---|
4388 | |
---|
4389 | |
---|
4390 | intmat V = getModuleGrading(M); |
---|
4391 | intvec vi; |
---|
4392 | int s = nrows(M); |
---|
4393 | int r = nrows(V); |
---|
4394 | int i; |
---|
4395 | module L; def B; |
---|
4396 | for (i=s; i>0; i--) |
---|
4397 | { |
---|
4398 | "comp: ", i; |
---|
4399 | vi = V[1..r, i]; |
---|
4400 | "v[i]: "; vi; |
---|
4401 | |
---|
4402 | B = multiDegBasis(md - vi); // ZeroPart is always the same... |
---|
4403 | "B: "; B; |
---|
4404 | |
---|
4405 | L = L, B*gen(i); |
---|
4406 | } |
---|
4407 | L = simplify(L, 2); |
---|
4408 | L = setModuleGrading(L,V); |
---|
4409 | |
---|
4410 | "L: "; L; |
---|
4411 | print(multiDeg(L)); |
---|
4412 | |
---|
4413 | L = multiDegModulo(L, LL); |
---|
4414 | L = multiDegGroebner(L); |
---|
4415 | // L = minbase(prune(L)); |
---|
4416 | |
---|
4417 | "??????????"; |
---|
4418 | print(L); |
---|
4419 | print(multiDeg(L)); |
---|
4420 | |
---|
4421 | V = getModuleGrading(L); |
---|
4422 | |
---|
4423 | // take out other degrees |
---|
4424 | for(i = ncols(L); i > 0; i-- ) |
---|
4425 | { |
---|
4426 | if( !equalMultiDeg( multiDeg(getGradedGenerator(L, i)), md ) ) |
---|
4427 | { |
---|
4428 | L[i] = 0; |
---|
4429 | } |
---|
4430 | } |
---|
4431 | |
---|
4432 | L = simplify(L, 2); |
---|
4433 | L = setModuleGrading(L, V); |
---|
4434 | print(L); |
---|
4435 | print(multiDeg(L)); |
---|
4436 | |
---|
4437 | return(L); |
---|
4438 | } |
---|
4439 | example |
---|
4440 | { |
---|
4441 | "EXAMPLE:"; echo=2; |
---|
4442 | |
---|
4443 | // TODO! |
---|
4444 | ring r = 32003, (x,y), dp; |
---|
4445 | |
---|
4446 | intmat M[2][2] = |
---|
4447 | 1, 0, |
---|
4448 | 0, 1; |
---|
4449 | |
---|
4450 | setBaseMultigrading(M); |
---|
4451 | |
---|
4452 | intmat V[2][1] = |
---|
4453 | 0, |
---|
4454 | 0; |
---|
4455 | |
---|
4456 | "X:"; |
---|
4457 | module h1 = x; |
---|
4458 | h1 = setModuleGrading(h1, V); |
---|
4459 | multiDegTruncate(h1, multiDeg(x)); |
---|
4460 | multiDegTruncate(h1, multiDeg(y)); |
---|
4461 | |
---|
4462 | "XY:"; |
---|
4463 | module h2 = ideal(x, y); |
---|
4464 | h2 = setModuleGrading(h2, V); |
---|
4465 | multiDegTruncate(h2, multiDeg(x)); |
---|
4466 | multiDegTruncate(h2, multiDeg(y)); |
---|
4467 | multiDegTruncate(h2, multiDeg(xy)); |
---|
4468 | } |
---|
4469 | |
---|
4470 | |
---|
4471 | /******************************************************/ |
---|
4472 | /* Some functions on lattices. |
---|
4473 | TODO Tuebingen: - add functionality (see wiki) and |
---|
4474 | - adjust them to work for groups as well.*/ |
---|
4475 | /******************************************************/ |
---|
4476 | |
---|
4477 | |
---|
4478 | |
---|
4479 | /******************************************************/ |
---|
4480 | proc imageLattice(intmat Q, intmat L) |
---|
4481 | "USAGE: imageLattice(Q,L); Q and L are of type intmat |
---|
4482 | PURPOSE: compute an integral basis for the image of the |
---|
4483 | lattice L under the homomorphism of lattices Q. |
---|
4484 | RETURN: intmat |
---|
4485 | EXAMPLE: example imageLattice; shows an example |
---|
4486 | " |
---|
4487 | { |
---|
4488 | intmat Mul = Q*L; |
---|
4489 | intmat LL = latticeBasis(Mul); |
---|
4490 | |
---|
4491 | return(LL); |
---|
4492 | } |
---|
4493 | example |
---|
4494 | { |
---|
4495 | "EXAMPLE:"; echo=2; |
---|
4496 | |
---|
4497 | intmat Q[2][3] = |
---|
4498 | 1,2,3, |
---|
4499 | 3,2,1; |
---|
4500 | |
---|
4501 | intmat L[3][2] = |
---|
4502 | 1,4, |
---|
4503 | 2,5, |
---|
4504 | 3,6; |
---|
4505 | |
---|
4506 | // should be a 2x2 matrix with columns |
---|
4507 | // [2,-14], [0,36] |
---|
4508 | imageLattice(Q,L); |
---|
4509 | |
---|
4510 | } |
---|
4511 | |
---|
4512 | /******************************************************/ |
---|
4513 | proc intRank(intmat A) |
---|
4514 | "USAGE: intRank(A); intmat A |
---|
4515 | PURPOSE: compute the rank of the integral matrix A |
---|
4516 | by computing a hermite normalform. |
---|
4517 | RETURNS: int |
---|
4518 | EXAMPLE: example intRank; shows an example |
---|
4519 | " |
---|
4520 | { |
---|
4521 | intmat B = hermiteNormalForm(A); |
---|
4522 | |
---|
4523 | // get number of zero columns |
---|
4524 | int nzerocols = 0; |
---|
4525 | int j; |
---|
4526 | int i; |
---|
4527 | int iszero; |
---|
4528 | for ( j = 1; j <= ncols(B); j++ ) |
---|
4529 | { |
---|
4530 | iszero = 1; |
---|
4531 | |
---|
4532 | for ( i = 1; i <= nrows(B); i++ ) |
---|
4533 | { |
---|
4534 | if ( B[i,j] != 0 ) |
---|
4535 | { |
---|
4536 | iszero = 0; |
---|
4537 | break; |
---|
4538 | } |
---|
4539 | } |
---|
4540 | |
---|
4541 | if ( iszero == 1 ) |
---|
4542 | { |
---|
4543 | nzerocols++; |
---|
4544 | } |
---|
4545 | } |
---|
4546 | |
---|
4547 | // get number of zero rows |
---|
4548 | int nzerorows = 0; |
---|
4549 | |
---|
4550 | for ( i = 1; i <= nrows(B); i++ ) |
---|
4551 | { |
---|
4552 | iszero = 1; |
---|
4553 | |
---|
4554 | for ( j = 1; j <= ncols(B); j++ ) |
---|
4555 | { |
---|
4556 | if ( B[i,j] != 0 ) |
---|
4557 | { |
---|
4558 | iszero = 0; |
---|
4559 | break; |
---|
4560 | } |
---|
4561 | } |
---|
4562 | |
---|
4563 | if ( iszero == 1 ) |
---|
4564 | { |
---|
4565 | nzerorows++; |
---|
4566 | } |
---|
4567 | } |
---|
4568 | |
---|
4569 | int r = nrows(B) - nzerorows; |
---|
4570 | |
---|
4571 | if ( ncols(B) - nzerocols < r ) |
---|
4572 | { |
---|
4573 | r = ncols(B) - nzerocols; |
---|
4574 | } |
---|
4575 | |
---|
4576 | return(r); |
---|
4577 | } |
---|
4578 | example |
---|
4579 | { |
---|
4580 | "EXAMPLE:"; echo=2; |
---|
4581 | |
---|
4582 | intmat A[3][4] = |
---|
4583 | 1,0,1,0, |
---|
4584 | 1,2,0,0, |
---|
4585 | 0,0,0,0; |
---|
4586 | |
---|
4587 | int r = intRank(A); |
---|
4588 | |
---|
4589 | print(A); |
---|
4590 | print(r); // Should be 2 |
---|
4591 | |
---|
4592 | // another example |
---|
4593 | intmat B[2][2] = |
---|
4594 | 1,2, |
---|
4595 | 1,2; |
---|
4596 | |
---|
4597 | int d = intRank(B); |
---|
4598 | |
---|
4599 | print(B); |
---|
4600 | print(d); // Should be 1 |
---|
4601 | |
---|
4602 | kill A, B, r, d; |
---|
4603 | |
---|
4604 | } |
---|
4605 | |
---|
4606 | /*****************************************************/ |
---|
4607 | |
---|
4608 | proc isSublattice(intmat L, intmat S) |
---|
4609 | "USAGE: isSublattice(L, S); L, S are of tpye intmat |
---|
4610 | PURPOSE: checks whether the lattice created by L is a |
---|
4611 | sublattice of the lattice created by S. |
---|
4612 | The procedure checks whether each generator of L is |
---|
4613 | contained in S. |
---|
4614 | RETURN: integer, 0 if false, 1 if true |
---|
4615 | EXAMPLE: example isSublattice; shows an example |
---|
4616 | " |
---|
4617 | { |
---|
4618 | int a,b,g,i,j,k; |
---|
4619 | intmat Ker; |
---|
4620 | |
---|
4621 | // check whether each column v of L is contained in |
---|
4622 | // the lattice generated by S |
---|
4623 | for ( i = 1; i <= ncols(L); i++ ) |
---|
4624 | { |
---|
4625 | |
---|
4626 | // v is the i-th column of L |
---|
4627 | intvec v; |
---|
4628 | for ( j = 1; j <= nrows(L); j++ ) |
---|
4629 | { |
---|
4630 | v[j] = L[j,i]; |
---|
4631 | } |
---|
4632 | |
---|
4633 | // concatenate B = [S,v] |
---|
4634 | intmat B[nrows(L)][ncols(S) + 1]; |
---|
4635 | |
---|
4636 | for ( a = 1; a <= nrows(S); a++ ) |
---|
4637 | { |
---|
4638 | for ( b = 1; b <= ncols(S); b++ ) |
---|
4639 | { |
---|
4640 | B[a,b] = S[a,b]; |
---|
4641 | } |
---|
4642 | } |
---|
4643 | |
---|
4644 | for ( a = 1; a <= size(v); a++ ) |
---|
4645 | { |
---|
4646 | B[a,ncols(B)] = v[a]; |
---|
4647 | } |
---|
4648 | |
---|
4649 | |
---|
4650 | // check gcd |
---|
4651 | Ker = kernelLattice(B); |
---|
4652 | k = nrows(Ker); |
---|
4653 | list R; // R is the last row |
---|
4654 | |
---|
4655 | for ( j = 1; j <= ncols(Ker); j++ ) |
---|
4656 | { |
---|
4657 | R[j] = Ker[k,j]; |
---|
4658 | } |
---|
4659 | |
---|
4660 | g = R[1]; |
---|
4661 | |
---|
4662 | for ( j = 2; j <= size(R); j++ ) |
---|
4663 | { |
---|
4664 | g = gcd(g,R[j]); |
---|
4665 | } |
---|
4666 | |
---|
4667 | if ( g != 1 and g != -1 ) |
---|
4668 | { |
---|
4669 | return(0); |
---|
4670 | } |
---|
4671 | |
---|
4672 | kill B, v, R; |
---|
4673 | |
---|
4674 | } |
---|
4675 | |
---|
4676 | return(1); |
---|
4677 | } |
---|
4678 | example |
---|
4679 | { |
---|
4680 | "EXAMPLE:"; echo=2; |
---|
4681 | |
---|
4682 | //ring R = 0,(x,y),dp; |
---|
4683 | intmat S2[3][3]= |
---|
4684 | 0, 2, 3, |
---|
4685 | 0, 1, 1, |
---|
4686 | 3, 0, 2; |
---|
4687 | |
---|
4688 | intmat S1[3][2]= |
---|
4689 | 0, 6, |
---|
4690 | 0, 2, |
---|
4691 | 3, 4; |
---|
4692 | |
---|
4693 | isSublattice(S1,S2); // Yes! |
---|
4694 | |
---|
4695 | intmat S3[3][1] = |
---|
4696 | 0, |
---|
4697 | 0, |
---|
4698 | 1; |
---|
4699 | |
---|
4700 | not(isSublattice(S3,S2)); // Yes! |
---|
4701 | |
---|
4702 | } |
---|
4703 | |
---|
4704 | /******************************************************/ |
---|
4705 | |
---|
4706 | proc latticeBasis(intmat B) |
---|
4707 | "USAGE: latticeBasis(B); intmat B |
---|
4708 | PURPOSE: compute an integral basis for the lattice defined by |
---|
4709 | the columns of B. |
---|
4710 | RETURNS: intmat |
---|
4711 | EXAMPLE: example latticeBasis; shows an example |
---|
4712 | " |
---|
4713 | { |
---|
4714 | int n = ncols(B); |
---|
4715 | int r = intRank(B); |
---|
4716 | |
---|
4717 | if ( r == 0 ) |
---|
4718 | { |
---|
4719 | intmat H[nrows(B)][1]; |
---|
4720 | int j; |
---|
4721 | |
---|
4722 | for ( j = 1; j <= nrows(B); j++ ) |
---|
4723 | { |
---|
4724 | H[j,1] = 0; |
---|
4725 | } |
---|
4726 | } |
---|
4727 | else |
---|
4728 | { |
---|
4729 | intmat H = hermiteNormalForm(B);; |
---|
4730 | |
---|
4731 | if (r < n) |
---|
4732 | { |
---|
4733 | // delete columns r+1 to n |
---|
4734 | // should be identical with the function |
---|
4735 | // H = submat(H,1..nrows(H),1..r); |
---|
4736 | // for matrices |
---|
4737 | intmat Hdel[nrows(H)][r]; |
---|
4738 | int k; |
---|
4739 | int m; |
---|
4740 | |
---|
4741 | for ( k = 1; k <= nrows(H); k++ ) |
---|
4742 | { |
---|
4743 | for ( m = 1; m <= r; m++ ) |
---|
4744 | { |
---|
4745 | Hdel[k,m] = H[k,m]; |
---|
4746 | } |
---|
4747 | } |
---|
4748 | |
---|
4749 | H = Hdel; |
---|
4750 | } |
---|
4751 | } |
---|
4752 | |
---|
4753 | return(H); |
---|
4754 | } |
---|
4755 | example |
---|
4756 | { |
---|
4757 | "EXAMPLE:"; echo=2; |
---|
4758 | |
---|
4759 | intmat L[3][3] = |
---|
4760 | 1,4,8, |
---|
4761 | 2,5,10, |
---|
4762 | 3,6,12; |
---|
4763 | |
---|
4764 | intmat B = latticeBasis(L); |
---|
4765 | print(B); // should result in a matrix whose columns generate the same lattice as [1,2,3] and [0,3,6]: |
---|
4766 | |
---|
4767 | // another example |
---|
4768 | intmat C[2][4] = |
---|
4769 | 1,1,2,0, |
---|
4770 | 2,3,4,0; |
---|
4771 | |
---|
4772 | // should result in a matrix whose |
---|
4773 | // colums create the same lattice as |
---|
4774 | // [0,1],[1,0] |
---|
4775 | intmat D = latticeBasis(C); |
---|
4776 | |
---|
4777 | print(D); |
---|
4778 | |
---|
4779 | kill B,L; |
---|
4780 | } |
---|
4781 | |
---|
4782 | /******************************************************/ |
---|
4783 | |
---|
4784 | proc kernelLattice(def P) |
---|
4785 | "USAGE: kernelLattice(P); intmat P |
---|
4786 | PURPOSE: compute a integral basis for the kernel of the |
---|
4787 | homomorphism of lattices defined by the intmat P. |
---|
4788 | RETURNS: intmat |
---|
4789 | EXAMPLE: example kernelLattice; shows an example |
---|
4790 | " |
---|
4791 | { |
---|
4792 | int n = ncols(P); |
---|
4793 | int r = intRank(P); |
---|
4794 | |
---|
4795 | if ( r == 0 ) |
---|
4796 | { |
---|
4797 | intmat U = unitMatrix(n); |
---|
4798 | } |
---|
4799 | else |
---|
4800 | { |
---|
4801 | if ( r == n ) |
---|
4802 | { |
---|
4803 | intmat U[n][1]; // now all entries are zero. |
---|
4804 | } |
---|
4805 | else |
---|
4806 | { |
---|
4807 | list L = hermiteNormalForm(P, "transform"); //hermite(P, "transform"); // now, Hermite = L[1] = A*L[2] |
---|
4808 | intmat U = L[2]; |
---|
4809 | |
---|
4810 | // delete columns 1 to r |
---|
4811 | // should be identical with the function |
---|
4812 | // U = submat(U,1..nrows(U),r+1..); |
---|
4813 | // for matrices |
---|
4814 | intmat Udel[nrows(U)][ncols(U) - r]; |
---|
4815 | int k; |
---|
4816 | int m; |
---|
4817 | |
---|
4818 | for ( k = 1; k <= nrows(U); k++ ) |
---|
4819 | { |
---|
4820 | for ( m = r + 1; m <= ncols(U); m++ ) |
---|
4821 | { |
---|
4822 | Udel[k,m - r] = U[k,m]; |
---|
4823 | } |
---|
4824 | } |
---|
4825 | |
---|
4826 | U = Udel; |
---|
4827 | |
---|
4828 | } |
---|
4829 | } |
---|
4830 | |
---|
4831 | return(U); |
---|
4832 | } |
---|
4833 | example |
---|
4834 | { |
---|
4835 | "EXAMPLE"; echo = 2; |
---|
4836 | |
---|
4837 | intmat LL[3][4] = |
---|
4838 | 1,4,7,10, |
---|
4839 | 2,5,8,11, |
---|
4840 | 3,6,9,12; |
---|
4841 | |
---|
4842 | // should be a 4x2 matrix whose columns |
---|
4843 | // generate the same lattice as [-1,2,-1,0],[2,-3,0,1] |
---|
4844 | intmat B = kernelLattice(LL); |
---|
4845 | |
---|
4846 | print(B); |
---|
4847 | |
---|
4848 | // another example |
---|
4849 | intmat C[2][4] = |
---|
4850 | 1,0,2,0, |
---|
4851 | 0,1,2,0; |
---|
4852 | |
---|
4853 | // should result in a matrix whose |
---|
4854 | // colums create the same lattice as |
---|
4855 | // [-2,-2,1,0], [0,0,0,1] |
---|
4856 | intmat D = kernelLattice(C); |
---|
4857 | |
---|
4858 | print(D); |
---|
4859 | |
---|
4860 | kill B; |
---|
4861 | |
---|
4862 | } |
---|
4863 | |
---|
4864 | /*****************************************************/ |
---|
4865 | |
---|
4866 | proc preimageLattice(def P, def B) |
---|
4867 | " |
---|
4868 | USAGE: preimageLattice(P, B); intmat P, intmat B |
---|
4869 | PURPOSE: compute an integral basis for the preimage of B under |
---|
4870 | the homomorphism of lattices defined by the intmat P. |
---|
4871 | RETURNS: intmat |
---|
4872 | EXAMPLE: example preimageLattice; shows an example |
---|
4873 | " |
---|
4874 | { |
---|
4875 | // concatenate matrices: Con = [P,-B] |
---|
4876 | intmat Con[nrows(P)][ncols(P) + ncols(B)]; |
---|
4877 | int i; |
---|
4878 | int j; |
---|
4879 | |
---|
4880 | for ( i = 1; i <= nrows(Con); i++ ) |
---|
4881 | { |
---|
4882 | for ( j = 1; j <= ncols(P); j++ ) // P first |
---|
4883 | { |
---|
4884 | Con[i,j] = P[i,j]; |
---|
4885 | } |
---|
4886 | } |
---|
4887 | |
---|
4888 | for ( i = 1; i <= nrows(Con); i++ ) |
---|
4889 | { |
---|
4890 | for ( j = 1; j <= ncols(B); j++ ) // now -B |
---|
4891 | { |
---|
4892 | Con[i,ncols(P) + j] = - B[i,j]; |
---|
4893 | } |
---|
4894 | } |
---|
4895 | |
---|
4896 | intmat L = kernelLattice(Con); |
---|
4897 | |
---|
4898 | // delete rows ncols(P)+1 to nrows(L) out of L |
---|
4899 | intmat Del[ncols(P)][ncols(L)]; |
---|
4900 | int k; |
---|
4901 | int m; |
---|
4902 | |
---|
4903 | for ( k = 1; k <= nrows(Del); k++ ) |
---|
4904 | { |
---|
4905 | for ( m = 1; m <= ncols(Del); m++ ) |
---|
4906 | { |
---|
4907 | Del[k,m] = L[k,m]; |
---|
4908 | } |
---|
4909 | } |
---|
4910 | |
---|
4911 | L = latticeBasis(Del); |
---|
4912 | |
---|
4913 | return(L); |
---|
4914 | |
---|
4915 | } |
---|
4916 | example |
---|
4917 | { |
---|
4918 | "EXAMPLE"; echo = 2; |
---|
4919 | |
---|
4920 | intmat P[2][3] = |
---|
4921 | 2,6,10, |
---|
4922 | 4,8,12; |
---|
4923 | |
---|
4924 | intmat B[2][1] = |
---|
4925 | 1, |
---|
4926 | 0; |
---|
4927 | |
---|
4928 | // should be a (3x2)-matrix with columns e.g. [1,1,-1] and [0,3,-2] (the generated lattice should be identical) |
---|
4929 | print(preimageLattice(P,B)); |
---|
4930 | |
---|
4931 | // another example |
---|
4932 | intmat W[3][3] = |
---|
4933 | 1,0,0, |
---|
4934 | 0,1,1, |
---|
4935 | 0,2,0; |
---|
4936 | |
---|
4937 | intmat Z[3][2] = |
---|
4938 | 1,0, |
---|
4939 | 0,1, |
---|
4940 | 0,0; |
---|
4941 | |
---|
4942 | // should be a (3x2)-matrix with columns e.g. [1,0,0] and [0,0,-1] (the generated lattice should be identical) |
---|
4943 | print(preimageLattice(W,Z)); |
---|
4944 | |
---|
4945 | } |
---|
4946 | |
---|
4947 | /******************************************************/ |
---|
4948 | proc isPrimitiveSublattice(intmat A); |
---|
4949 | "USAGE: isPrimitiveSublattice(A); intmat A |
---|
4950 | PURPOSE: check whether the given set of integral vectors in ZZ^m, |
---|
4951 | i.e. the columns of A, generate a primitive sublattice in ZZ^m |
---|
4952 | (a direct summand of ZZ^m). |
---|
4953 | RETURNS: int, where 0 is false and 1 is true. |
---|
4954 | EXAMPLE: example isPrimitiveSublattice; shows an example |
---|
4955 | " |
---|
4956 | { |
---|
4957 | intmat B = smithNormalForm(A); |
---|
4958 | int r = intRank(B); |
---|
4959 | |
---|
4960 | if ( r == 0 ) |
---|
4961 | { |
---|
4962 | return(1); |
---|
4963 | } |
---|
4964 | |
---|
4965 | if ( 1 < B[r,r] ) |
---|
4966 | { |
---|
4967 | return(0); |
---|
4968 | } |
---|
4969 | |
---|
4970 | return(1); |
---|
4971 | } |
---|
4972 | example |
---|
4973 | { |
---|
4974 | "EXAMPLE"; echo = 2; |
---|
4975 | |
---|
4976 | intmat A[3][2] = |
---|
4977 | 1,4, |
---|
4978 | 2,5, |
---|
4979 | 3,6; |
---|
4980 | |
---|
4981 | // should be 0 |
---|
4982 | int b = isPrimitiveSublattice(A); |
---|
4983 | print(b); |
---|
4984 | |
---|
4985 | // another example |
---|
4986 | |
---|
4987 | intmat B[2][2] = |
---|
4988 | 1,0, |
---|
4989 | 0,1; |
---|
4990 | |
---|
4991 | // should be 1 |
---|
4992 | int c = isPrimitiveSublattice(B); |
---|
4993 | print(c); |
---|
4994 | |
---|
4995 | kill A, b, B, c; |
---|
4996 | } |
---|
4997 | |
---|
4998 | /******************************************************/ |
---|
4999 | proc isIntegralSurjective(intmat P); |
---|
5000 | "USAGE: isIntegralSurjective(P); intmat P |
---|
5001 | PURPOSE: test whether the given linear map P of lattices is |
---|
5002 | surjective. |
---|
5003 | RETURNS: int, where 0 is false and 1 is true. |
---|
5004 | EXAMPLE: example isIntegralSurjective; shows an example |
---|
5005 | " |
---|
5006 | { |
---|
5007 | int r = intRank(P); |
---|
5008 | |
---|
5009 | if ( r < nrows(P) ) |
---|
5010 | { |
---|
5011 | return(0); |
---|
5012 | } |
---|
5013 | |
---|
5014 | |
---|
5015 | if ( isPrimitiveSublattice(P) == 1 ) |
---|
5016 | { |
---|
5017 | return(1); |
---|
5018 | } |
---|
5019 | |
---|
5020 | return(0); |
---|
5021 | } |
---|
5022 | example |
---|
5023 | { |
---|
5024 | "EXAMPLE"; echo = 2; |
---|
5025 | |
---|
5026 | intmat A[2][3] = |
---|
5027 | 1,3,5, |
---|
5028 | 2,4,6; |
---|
5029 | |
---|
5030 | // should be 0 |
---|
5031 | int b = isIntegralSurjective(A); |
---|
5032 | print(b); |
---|
5033 | |
---|
5034 | // another example |
---|
5035 | intmat B[2][3] = |
---|
5036 | 1,1,5, |
---|
5037 | 2,3,6; |
---|
5038 | |
---|
5039 | // should be 1 |
---|
5040 | int c = isIntegralSurjective(B); |
---|
5041 | print(c); |
---|
5042 | |
---|
5043 | kill A, b, B, c; |
---|
5044 | } |
---|
5045 | |
---|
5046 | /******************************************************/ |
---|
5047 | proc projectLattice(intmat B) |
---|
5048 | "USAGE: projectLattice(B); intmat B |
---|
5049 | PURPOSE: A set of vectors in ZZ^m is given as the columns of B. |
---|
5050 | Then this function provides a linear map ZZ^m --> ZZ^n |
---|
5051 | having the primitive span of B its kernel. |
---|
5052 | RETURNS: intmat |
---|
5053 | EXAMPLE: example projectLattice; shows an example |
---|
5054 | " |
---|
5055 | { |
---|
5056 | int n = nrows(B); |
---|
5057 | int r = intRank(B); |
---|
5058 | |
---|
5059 | if ( r == 0 ) |
---|
5060 | { |
---|
5061 | intmat U = unitMatrix(n); |
---|
5062 | } |
---|
5063 | else |
---|
5064 | { |
---|
5065 | if ( r == n ) |
---|
5066 | { |
---|
5067 | intmat U[1][n]; // U now is the n-dim zero-vector |
---|
5068 | } |
---|
5069 | else |
---|
5070 | { |
---|
5071 | // we want a matrix with column operations so we transpose |
---|
5072 | intmat BB = transpose(B); |
---|
5073 | list L = hermiteNormalForm(BB, "transform"); |
---|
5074 | intmat U = transpose(L[2]); |
---|
5075 | |
---|
5076 | |
---|
5077 | // delete rows 1 to r |
---|
5078 | intmat Udel[nrows(U) - r][ncols(U)]; |
---|
5079 | int k; |
---|
5080 | int m; |
---|
5081 | |
---|
5082 | for ( k = 1; k <= nrows(U) - r ; k++ ) |
---|
5083 | { |
---|
5084 | for ( m = 1; m <= ncols(U); m++ ) |
---|
5085 | { |
---|
5086 | Udel[k,m] = U[k + r,m]; |
---|
5087 | } |
---|
5088 | } |
---|
5089 | |
---|
5090 | U = Udel; |
---|
5091 | |
---|
5092 | } |
---|
5093 | } |
---|
5094 | |
---|
5095 | return(U); |
---|
5096 | } |
---|
5097 | example |
---|
5098 | { |
---|
5099 | "EXAMPLE"; echo = 2; |
---|
5100 | |
---|
5101 | intmat B[4][2] = |
---|
5102 | 1,5, |
---|
5103 | 2,6, |
---|
5104 | 3,7, |
---|
5105 | 4,8; |
---|
5106 | |
---|
5107 | // should result in a (2x4)-matrix such that the corresponding lattice is created by |
---|
5108 | // [-1, 2], [-2, 3], [-1, 0] and [0, 1] |
---|
5109 | print(projectLattice(B)); |
---|
5110 | |
---|
5111 | // another example |
---|
5112 | |
---|
5113 | intmat BB[4][2] = |
---|
5114 | 1,0, |
---|
5115 | 0,1, |
---|
5116 | 0,0, |
---|
5117 | 0,0; |
---|
5118 | |
---|
5119 | // should result in a (2x4)-matrix such that the corresponding lattice is created by |
---|
5120 | // [0,0],[0,0],[1,0],[0,1] |
---|
5121 | print(projectLattice(BB)); |
---|
5122 | |
---|
5123 | // another example |
---|
5124 | |
---|
5125 | intmat BBB[3][4] = |
---|
5126 | 1,0,1,2, |
---|
5127 | 1,1,0,0, |
---|
5128 | 3,0,0,3; |
---|
5129 | |
---|
5130 | // should result in the (1x3)-matrix that consists of just zeros |
---|
5131 | print(projectLattice(BBB)); |
---|
5132 | |
---|
5133 | } |
---|
5134 | |
---|
5135 | /******************************************************/ |
---|
5136 | proc intersectLattices(intmat A, intmat B) |
---|
5137 | "USAGE: intersectLattices(A, B); intmat A, intmat B |
---|
5138 | PURPOSE: compute an integral basis for the intersection of the |
---|
5139 | lattices A and B. |
---|
5140 | RETURNS: intmat |
---|
5141 | EXAMPLE: example intersectLattices; shows an example |
---|
5142 | " |
---|
5143 | { |
---|
5144 | // concatenate matrices: Con = [A,-B] |
---|
5145 | intmat Con[nrows(A)][ncols(A) + ncols(B)]; |
---|
5146 | int i; |
---|
5147 | int j; |
---|
5148 | |
---|
5149 | for ( i = 1; i <= nrows(Con); i++ ) |
---|
5150 | { |
---|
5151 | for ( j = 1; j <= ncols(A); j++ ) // A first |
---|
5152 | { |
---|
5153 | Con[i,j] = A[i,j]; |
---|
5154 | } |
---|
5155 | } |
---|
5156 | |
---|
5157 | for ( i = 1; i <= nrows(Con); i++ ) |
---|
5158 | { |
---|
5159 | for ( j = 1; j <= ncols(B); j++ ) // now -B |
---|
5160 | { |
---|
5161 | Con[i,ncols(A) + j] = - B[i,j]; |
---|
5162 | } |
---|
5163 | } |
---|
5164 | |
---|
5165 | intmat K = kernelLattice(Con); |
---|
5166 | |
---|
5167 | // delete all rows in K from ncols(A)+1 onwards |
---|
5168 | intmat Bas[ncols(A)][ncols(K)]; |
---|
5169 | |
---|
5170 | for ( i = 1; i <= nrows(Bas); i++ ) |
---|
5171 | { |
---|
5172 | for ( j = 1; j <= ncols(Bas); j++ ) |
---|
5173 | { |
---|
5174 | Bas[i,j] = K[i,j]; |
---|
5175 | } |
---|
5176 | } |
---|
5177 | |
---|
5178 | // take product in order to obtain the intersection |
---|
5179 | intmat S = A * Bas; |
---|
5180 | intmat Cut = hermiteNormalForm(S); //hermite(S); |
---|
5181 | int r = intRank(Cut); |
---|
5182 | |
---|
5183 | if ( r == 0 ) |
---|
5184 | { |
---|
5185 | intmat Cutdel[nrows(Cut)][1]; // is now the zero-vector |
---|
5186 | |
---|
5187 | Cut = Cutdel; |
---|
5188 | } |
---|
5189 | else |
---|
5190 | { |
---|
5191 | // delte columns from r+1 onwards |
---|
5192 | intmat Cutdel[nrows(Cut)][r]; |
---|
5193 | |
---|
5194 | for ( i = 1; i <= nrows(Cutdel); i++ ) |
---|
5195 | { |
---|
5196 | for ( j = 1; j <= r; j++ ) |
---|
5197 | { |
---|
5198 | Cutdel[i,j] = Cut[i,j]; |
---|
5199 | } |
---|
5200 | } |
---|
5201 | |
---|
5202 | Cut = Cutdel; |
---|
5203 | } |
---|
5204 | |
---|
5205 | return(Cut); |
---|
5206 | } |
---|
5207 | example |
---|
5208 | { |
---|
5209 | "EXAMPLE"; echo = 2; |
---|
5210 | |
---|
5211 | intmat A[3][2] = |
---|
5212 | 1,4, |
---|
5213 | 2,5, |
---|
5214 | 3,6; |
---|
5215 | |
---|
5216 | intmat B[3][2] = |
---|
5217 | 6,9, |
---|
5218 | 7,10, |
---|
5219 | 8,11; |
---|
5220 | |
---|
5221 | // should result in a (3x2)-matrix with columns |
---|
5222 | // e.g. [0, 3, 6], [-3, 0, 3] (the lattice should be the same) |
---|
5223 | print(intersectLattices(A,B)); |
---|
5224 | |
---|
5225 | // another example |
---|
5226 | intmat C[2][3] = |
---|
5227 | 1,0,0, |
---|
5228 | 3,2,5; |
---|
5229 | |
---|
5230 | intmat D[2][3] = |
---|
5231 | 4,5,0, |
---|
5232 | 0,5,0; |
---|
5233 | |
---|
5234 | // should result in a (3x2)-matrix whose columns generate the |
---|
5235 | // same lattice as [1,5], [0, 20] |
---|
5236 | print(intersectLattices(C,D)); |
---|
5237 | } |
---|
5238 | |
---|
5239 | //////////////////////////////////// |
---|
5240 | |
---|
5241 | proc intInverse(intmat A); |
---|
5242 | "USAGE: intInverse(A); intmat A |
---|
5243 | PURPOSE: compute the integral inverse of the intmat A. |
---|
5244 | If det(A) is neither 1 nor -1 an error is returned. |
---|
5245 | RETURNS: intmat |
---|
5246 | EXAMPLE: example intInverse; shows an example |
---|
5247 | " |
---|
5248 | { |
---|
5249 | int d = det(A); |
---|
5250 | |
---|
5251 | if ( d * d != 1 ) // is d = 1 or -1? Else: error |
---|
5252 | { |
---|
5253 | ERROR("determinant of the given intmat has to be 1 or -1."); |
---|
5254 | } |
---|
5255 | |
---|
5256 | int c; |
---|
5257 | int i,j; |
---|
5258 | intmat C[nrows(A)][ncols(A)]; |
---|
5259 | intmat Ad; |
---|
5260 | int s; |
---|
5261 | |
---|
5262 | for ( i = 1; i <= nrows(C); i++ ) |
---|
5263 | { |
---|
5264 | for ( j = 1; j <= ncols(C); j++ ) |
---|
5265 | { |
---|
5266 | Ad = intAdjoint(A,i,j); |
---|
5267 | s = 1; |
---|
5268 | |
---|
5269 | if ( ((i + j) % 2) > 0 ) |
---|
5270 | { |
---|
5271 | s = -1; |
---|
5272 | } |
---|
5273 | |
---|
5274 | C[i,j] = d * s * det(Ad); // mult by d is equal to div by det |
---|
5275 | } |
---|
5276 | } |
---|
5277 | |
---|
5278 | C = transpose(C); |
---|
5279 | |
---|
5280 | return(C); |
---|
5281 | } |
---|
5282 | example |
---|
5283 | { |
---|
5284 | "EXAMPLE"; echo = 2; |
---|
5285 | |
---|
5286 | intmat A[3][3] = |
---|
5287 | 1,1,3, |
---|
5288 | 3,2,0, |
---|
5289 | 0,0,1; |
---|
5290 | |
---|
5291 | intmat B = intInverse(A); |
---|
5292 | |
---|
5293 | // should be the unit matrix |
---|
5294 | print(A * B); |
---|
5295 | |
---|
5296 | // another example |
---|
5297 | intmat C[2][2] = |
---|
5298 | 2,1, |
---|
5299 | 3,2; |
---|
5300 | |
---|
5301 | intmat D = intInverse(C); |
---|
5302 | |
---|
5303 | // should be the unit matrix |
---|
5304 | print(C * D); |
---|
5305 | |
---|
5306 | kill A, B, C, D; |
---|
5307 | } |
---|
5308 | |
---|
5309 | |
---|
5310 | /******************************************************/ |
---|
5311 | static proc intAdjoint(intmat A, int indrow, int indcol) |
---|
5312 | "USAGE: intAdjoint(A); intmat A |
---|
5313 | PURPOSE: return the matrix where the given row and column are deleted. |
---|
5314 | RETURNS: intmat |
---|
5315 | EXAMPLE: example intAdjoint; shows an example |
---|
5316 | " |
---|
5317 | { |
---|
5318 | int n = nrows(A); |
---|
5319 | int m = ncols(A); |
---|
5320 | int i, j; |
---|
5321 | intmat B[n - 1][m - 1]; |
---|
5322 | int a, b; |
---|
5323 | |
---|
5324 | for ( i = 1; i < indrow; i++ ) |
---|
5325 | { |
---|
5326 | for ( j = 1; j < indcol; j++ ) |
---|
5327 | { |
---|
5328 | B[i,j] = A[i,j]; |
---|
5329 | } |
---|
5330 | for ( j = indcol + 1; j <= ncols(A); j++ ) |
---|
5331 | { |
---|
5332 | B[i,j - 1] = A[i,j]; |
---|
5333 | } |
---|
5334 | } |
---|
5335 | |
---|
5336 | for ( i = indrow + 1; i <= nrows(A); i++ ) |
---|
5337 | { |
---|
5338 | for ( j = 1; j < indcol; j++ ) |
---|
5339 | { |
---|
5340 | B[i - 1,j] = A[i,j]; |
---|
5341 | } |
---|
5342 | for ( j = indcol+1; j <= ncols(A); j++ ) |
---|
5343 | { |
---|
5344 | B[i - 1,j - 1] = A[i,j]; |
---|
5345 | } |
---|
5346 | } |
---|
5347 | |
---|
5348 | return(B); |
---|
5349 | } |
---|
5350 | example |
---|
5351 | { |
---|
5352 | "EXAMPLE"; echo = 2; |
---|
5353 | |
---|
5354 | intmat A[2][3] = |
---|
5355 | 1,3,5, |
---|
5356 | 2,4,6; |
---|
5357 | |
---|
5358 | intmat B = intAdjoint(A,2,2); |
---|
5359 | print(B); |
---|
5360 | |
---|
5361 | kill A,B; |
---|
5362 | } |
---|
5363 | |
---|
5364 | /******************************************************/ |
---|
5365 | proc integralSection(intmat P); |
---|
5366 | "USAGE: integralSection(P); intmat P |
---|
5367 | PURPOSE: for a given linear surjective map P of lattices |
---|
5368 | this procedure returns an integral section of P. |
---|
5369 | RETURNS: intmat |
---|
5370 | EXAMPLE: example integralSection; shows an example |
---|
5371 | " |
---|
5372 | { |
---|
5373 | int m = nrows(P); |
---|
5374 | int n = ncols(P); |
---|
5375 | |
---|
5376 | if ( m == n ) |
---|
5377 | { |
---|
5378 | intmat U = intInverse(P); |
---|
5379 | } |
---|
5380 | else |
---|
5381 | { |
---|
5382 | intmat U = (hermiteNormalForm(P, "transform"))[2]; |
---|
5383 | |
---|
5384 | // delete columns m+1 to n |
---|
5385 | intmat Udel[nrows(U)][ncols(U) - (n - m)]; |
---|
5386 | int k; |
---|
5387 | int z; |
---|
5388 | |
---|
5389 | for ( k = 1; k <= nrows(U); k++ ) |
---|
5390 | { |
---|
5391 | for ( z = 1; z <= m; z++ ) |
---|
5392 | { |
---|
5393 | Udel[k,z] = U[k,z]; |
---|
5394 | } |
---|
5395 | } |
---|
5396 | |
---|
5397 | U = Udel; |
---|
5398 | } |
---|
5399 | |
---|
5400 | return(U); |
---|
5401 | } |
---|
5402 | example |
---|
5403 | { |
---|
5404 | "EXAMPLE"; echo = 2; |
---|
5405 | |
---|
5406 | intmat P[2][4] = |
---|
5407 | 1,3,4,6, |
---|
5408 | 2,4,5,7; |
---|
5409 | |
---|
5410 | // should be a matrix with two columns |
---|
5411 | // for example: [-2, 1, 0, 0], [3, -3, 0, 1] |
---|
5412 | intmat U = integralSection(P); |
---|
5413 | |
---|
5414 | print(U); |
---|
5415 | print(P * U); |
---|
5416 | |
---|
5417 | kill U; |
---|
5418 | } |
---|
5419 | |
---|
5420 | |
---|
5421 | |
---|
5422 | /******************************************************/ |
---|
5423 | proc factorgroup(G,H) |
---|
5424 | "USAGE: factorgroup(G,H); list G, list H |
---|
5425 | PURPOSE: returns a representation of the factor group G mod H using the first isomorphism thm |
---|
5426 | RETURNS: list |
---|
5427 | EXAMPLE: example factorgroup(G,H); shows an example |
---|
5428 | " |
---|
5429 | { |
---|
5430 | intmat S1 = G[1]; |
---|
5431 | intmat L1 = G[2]; |
---|
5432 | intmat S2 = H[1]; |
---|
5433 | intmat L2 = H[2]; |
---|
5434 | |
---|
5435 | // check whether G,H are subgroups of a common group, i.e. whether L1 and L2 span the same lattice |
---|
5436 | if ( !isSublattice(L1,L2) || !isSublattice(L2,L1)) |
---|
5437 | { |
---|
5438 | ERROR("G and H are not subgroups of a common group."); |
---|
5439 | } |
---|
5440 | |
---|
5441 | // check whether H is a subgroup of G, i.e. whether S2 is a sublattice of S1+L1 |
---|
5442 | intmat B = concatintmat(S1,L1); // check whether this gives the concatinated matrix |
---|
5443 | if ( !isSublattice(S2,B) ) |
---|
5444 | { |
---|
5445 | ERROR("H is not a subgroup of G"); |
---|
5446 | } |
---|
5447 | // use first isomorphism thm to get the factor group |
---|
5448 | intmat L = concatintmat(L1,S2); // check whether this gives the concatinated matrix |
---|
5449 | list GmodH; |
---|
5450 | GmodH[1]=S1; |
---|
5451 | GmodH[2]=L; |
---|
5452 | return(GmodH); |
---|
5453 | } |
---|
5454 | example |
---|
5455 | { |
---|
5456 | "EXAMPLE"; echo = 2; |
---|
5457 | |
---|
5458 | intmat S1[2][2] = |
---|
5459 | 1,0, |
---|
5460 | 0,1; |
---|
5461 | intmat L1[2][1] = |
---|
5462 | 2, |
---|
5463 | 0; |
---|
5464 | |
---|
5465 | intmat S2[2][1] = |
---|
5466 | 1, |
---|
5467 | 0; |
---|
5468 | intmat L2[2][1] = |
---|
5469 | 2, |
---|
5470 | 0; |
---|
5471 | |
---|
5472 | list G = createGroup(S1,L1); |
---|
5473 | list H = createGroup(S2,L2); |
---|
5474 | |
---|
5475 | list N = factorgroup(G,H); |
---|
5476 | print(N); |
---|
5477 | |
---|
5478 | kill G,H,N,S1,L1,S2,L2; |
---|
5479 | |
---|
5480 | } |
---|
5481 | |
---|
5482 | /******************************************************/ |
---|
5483 | proc productgroup(G,H) |
---|
5484 | "USAGE: productgroup(G,H); list G, list H |
---|
5485 | PURPOSE: Returns a representation of the group G x H |
---|
5486 | RETURNS: list |
---|
5487 | EXAMPLE: example productgroup(G,H); shows an example |
---|
5488 | " |
---|
5489 | { |
---|
5490 | intmat S1 = G[1]; |
---|
5491 | intmat L1 = G[2]; |
---|
5492 | intmat S2 = H[1]; |
---|
5493 | intmat L2 = H[2]; |
---|
5494 | intmat OS1[nrows(S1)][ncols(S2)]; |
---|
5495 | intmat OS2[nrows(S2)][ncols(S1)]; |
---|
5496 | intmat OL1[nrows(L1)][ncols(L2)]; |
---|
5497 | intmat OL2[nrows(L2)][ncols(L1)]; |
---|
5498 | |
---|
5499 | // concatinate matrices to get S |
---|
5500 | intmat A = concatintmat(S1,OS1); |
---|
5501 | intmat B = concatintmat(OS2,S2); |
---|
5502 | intmat At = transpose(A); |
---|
5503 | intmat Bt = transpose(B); |
---|
5504 | intmat St = concatintmat(At,Bt); |
---|
5505 | intmat S = transpose(St); |
---|
5506 | |
---|
5507 | // concatinate matrices to get L |
---|
5508 | intmat C = concatintmat(L1,OL1); |
---|
5509 | intmat D = concatintmat(OL2,L2); |
---|
5510 | intmat Ct = transpose(C); |
---|
5511 | intmat Dt = transpose(D); |
---|
5512 | intmat Lt = concatintmat(Ct,Dt); |
---|
5513 | intmat L = transpose(Lt); |
---|
5514 | |
---|
5515 | list GxH; |
---|
5516 | GxH[1]=S; |
---|
5517 | GxH[2]=L; |
---|
5518 | return(GxH); |
---|
5519 | } |
---|
5520 | example |
---|
5521 | { |
---|
5522 | "EXAMPLE"; echo = 2; |
---|
5523 | |
---|
5524 | intmat S1[2][2] = |
---|
5525 | 1,0, |
---|
5526 | 0,1; |
---|
5527 | intmat L1[2][1] = |
---|
5528 | 2, |
---|
5529 | 0; |
---|
5530 | |
---|
5531 | intmat S2[2][2] = |
---|
5532 | 1,0, |
---|
5533 | 0,2; |
---|
5534 | intmat L2[2][1] = |
---|
5535 | 0, |
---|
5536 | 3; |
---|
5537 | |
---|
5538 | list G = createGroup(S1,L1); |
---|
5539 | list H = createGroup(S2,L2); |
---|
5540 | |
---|
5541 | list N = productgroup(G,H); |
---|
5542 | print(N); |
---|
5543 | |
---|
5544 | kill G,H,N,S1,L1,S2,L2; |
---|
5545 | |
---|
5546 | } |
---|
5547 | |
---|
5548 | /******************************************************/ |
---|
5549 | proc primitiveSpan(intmat V); |
---|
5550 | "USAGE: primitiveSpan(V); intmat V |
---|
5551 | PURPOSE: compute an integral basis for the minimal primitive |
---|
5552 | sublattice that contains the given vectors, i.e. the columns of V. |
---|
5553 | RETURNS: int, where 0 is false and 1 is true. |
---|
5554 | EXAMPLE: example primitiveSpan; shows an example |
---|
5555 | " |
---|
5556 | { |
---|
5557 | int n = ncols(V); |
---|
5558 | int m = nrows(V); |
---|
5559 | int r = intRank(V); |
---|
5560 | |
---|
5561 | |
---|
5562 | if ( r == 0 ) |
---|
5563 | { |
---|
5564 | intmat P[m][1]; // this is the m-zero-vector now |
---|
5565 | } |
---|
5566 | else |
---|
5567 | { |
---|
5568 | list L = smithNormalForm(V, "transform"); // L = [A,S,B] where S is the smith-NF and S = A*S*B |
---|
5569 | intmat P = intInverse(L[1]); |
---|
5570 | |
---|
5571 | // print(L); |
---|
5572 | |
---|
5573 | if ( r < m ) |
---|
5574 | { |
---|
5575 | // delete columns r+1 to m in P: |
---|
5576 | intmat Pdel[nrows(P)][r]; |
---|
5577 | int i,j; |
---|
5578 | |
---|
5579 | for ( i = 1; i <= nrows(Pdel); i++ ) |
---|
5580 | { |
---|
5581 | for ( j = 1; j <= ncols(Pdel); j++ ) |
---|
5582 | { |
---|
5583 | Pdel[i,j] = P[i,j]; |
---|
5584 | } |
---|
5585 | } |
---|
5586 | |
---|
5587 | P = Pdel; |
---|
5588 | } |
---|
5589 | } |
---|
5590 | |
---|
5591 | return(P); |
---|
5592 | } |
---|
5593 | example |
---|
5594 | { |
---|
5595 | "EXAMPLE"; echo = 2; |
---|
5596 | |
---|
5597 | intmat V[3][2] = |
---|
5598 | 1,4, |
---|
5599 | 2,5, |
---|
5600 | 3,6; |
---|
5601 | |
---|
5602 | // should return a (3x2)-matrix whose columns |
---|
5603 | // generate the same lattice as [1, 2, 3] and [0, 1, 2] |
---|
5604 | intmat R = primitiveSpan(V); |
---|
5605 | print(R); |
---|
5606 | |
---|
5607 | // another example |
---|
5608 | intmat W[2][2] = |
---|
5609 | 1,0, |
---|
5610 | 0,1; |
---|
5611 | |
---|
5612 | // should return a (2x2)-matrix whose columns |
---|
5613 | // generate the same lattice as [1, 0] and [0, 1] |
---|
5614 | intmat S = primitiveSpan(W); |
---|
5615 | print(S); |
---|
5616 | |
---|
5617 | kill V, R, S, W; |
---|
5618 | } |
---|
5619 | |
---|
5620 | /***********************************************************/ |
---|