1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: ncdecomp.lib,v 1.7 2005-03-25 18:38:46 levandov Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: ncdecomp.lib Central character decomposition of a module |
---|
6 | AUTHORS: Viktor Levandovskyy, levandov@mathematik.uni-kl.de. |
---|
7 | |
---|
8 | OVERVIEW: |
---|
9 | This library presents algorithms for the central character |
---|
10 | decomposition of a module (in other words, a |
---|
11 | decomposition into generalized weight modules with respect to the center). |
---|
12 | Based on ideas of O. Khomenko and V. Levandovskyy. |
---|
13 | |
---|
14 | PROCEDURES: |
---|
15 | CentralQuot(I,G); central quotient I:G, |
---|
16 | CentralSaturation(M,T); central saturation ((M:T):...):T) ( = M:T^{\infty}), |
---|
17 | CenCharDec(I,C); central character decomposition of I w.r.t. C |
---|
18 | IntersectWithSub(M,Z); intersection of M with the subalgebra, generated |
---|
19 | by pairwise commutative elements of Z. |
---|
20 | "; |
---|
21 | |
---|
22 | LIB "ncalg.lib"; |
---|
23 | LIB "primdec.lib"; |
---|
24 | /////////////////////////////////////////////////////////////////////////////// |
---|
25 | static proc CharKernel(list L, int i) |
---|
26 | { |
---|
27 | // compute \cup L[j], j!=i |
---|
28 | int sL = size(L); |
---|
29 | if ( (i<=0) || (i>sL)) { return(0); } |
---|
30 | int j; |
---|
31 | list Li; |
---|
32 | if (i ==1 ) |
---|
33 | { |
---|
34 | Li = L[2..sL]; |
---|
35 | } |
---|
36 | if (i ==sL ) |
---|
37 | { |
---|
38 | Li = L[1..sL-1]; |
---|
39 | } |
---|
40 | if ( (i>1) && (i < sL)) |
---|
41 | { |
---|
42 | Li = L[1..i-1]; |
---|
43 | for (j=i+1; j<=sL; j++) |
---|
44 | { |
---|
45 | Li[j-1] = L[j]; |
---|
46 | } |
---|
47 | } |
---|
48 | // print("intersecting kernels..."); |
---|
49 | module Cres = intersect(Li[1..size(Li)]); |
---|
50 | return(Cres); |
---|
51 | } |
---|
52 | /////////////////////////////////////////////////////////////////////////////// |
---|
53 | static proc CentralQuotPoly(module M, poly g) |
---|
54 | { |
---|
55 | // here an elimination of components should be used ! |
---|
56 | int N=nrows(M); // M = A^N /I_M |
---|
57 | module @M; |
---|
58 | int i,j; |
---|
59 | for(i=1; i<=N; i++) |
---|
60 | { |
---|
61 | @M=@M,g*gen(i); |
---|
62 | } |
---|
63 | @M = simplify(@M,2); |
---|
64 | @M = @M,M; |
---|
65 | module S = syz(@M); |
---|
66 | matrix s = S; |
---|
67 | module T; |
---|
68 | vector t; |
---|
69 | for(i=1; i<=ncols(s); i++) |
---|
70 | { |
---|
71 | t = 0*gen(N); |
---|
72 | for(j=1; j<=N; j++) |
---|
73 | { |
---|
74 | t = t + s[j,i]*gen(j); |
---|
75 | } |
---|
76 | T[i] = t; |
---|
77 | } |
---|
78 | T = simplify(T,2); |
---|
79 | return(T); |
---|
80 | } |
---|
81 | /////////////////////////////////////////////////////////////////////////////// |
---|
82 | static proc MyIsEqual(module A, module B) |
---|
83 | { |
---|
84 | // both A and B are submodules of free module |
---|
85 | option(redSB); |
---|
86 | option(redTail); |
---|
87 | if (attrib(A,"isSB")!=1) |
---|
88 | { |
---|
89 | A = std(A); |
---|
90 | } |
---|
91 | if (attrib(B,"isSB")!=1) |
---|
92 | { |
---|
93 | B = std(B); |
---|
94 | } |
---|
95 | int ANSWER = 1; |
---|
96 | if ( ( ncols(A) == ncols(B) ) && ( nrows(A) == nrows(B) ) ) |
---|
97 | { |
---|
98 | module @AB = A-B; |
---|
99 | @AB = simplify(@AB,2); |
---|
100 | if (@AB[1]!=0) { ANSWER = 0; } |
---|
101 | } |
---|
102 | else { ANSWER = 0; } |
---|
103 | return(ANSWER); |
---|
104 | } |
---|
105 | /////////////////////////////////////////////////////////////////////////////// |
---|
106 | proc CentralQuot(module I, ideal G) |
---|
107 | "USAGE: CentralQuot(M, T), for a module M and an ideal T, |
---|
108 | RETURN: module of the central quotient I:G, |
---|
109 | NOTE: the output module is not necessarily a Groebner basis, |
---|
110 | SEE ALSO: CentralSaturation, CenCharDec |
---|
111 | EXAMPLE: example CentralQuot; shows examples |
---|
112 | "{ |
---|
113 | int i; |
---|
114 | list @L; |
---|
115 | for(i=1; i<=size(G); i++) |
---|
116 | { |
---|
117 | @L[i] = CentralQuotPoly(I,G[i]); |
---|
118 | } |
---|
119 | module @I = intersect(@L[1..size(G)]); |
---|
120 | if (nrows(@I)==1) |
---|
121 | { |
---|
122 | @I = ideal(@I); |
---|
123 | } |
---|
124 | return(@I); |
---|
125 | } |
---|
126 | example |
---|
127 | { "EXAMPLE:"; echo = 2; |
---|
128 | option(returnSB); |
---|
129 | def a = sl2(); |
---|
130 | setring a; |
---|
131 | ideal I = e3,f3,h3-4*h; |
---|
132 | I = std(I); |
---|
133 | poly C=4*e*f+h^2-2*h; |
---|
134 | ideal G = (C-8)*(C-24); |
---|
135 | ideal R = CentralQuot(I,G); |
---|
136 | R; |
---|
137 | } |
---|
138 | /////////////////////////////////////////////////////////////////////////////// |
---|
139 | proc CentralSaturation(module M, ideal T) |
---|
140 | "USAGE: CentralSaturation(M, T), for a module M and an ideal T, |
---|
141 | RETURN: module of the central saturation of M by T (also denoted by M:T^{\infty}), |
---|
142 | NOTE: the output module is not necessarily a Groebner basis, |
---|
143 | SEE ALSO: CentralQuot, CenCharDec |
---|
144 | EXAMPLE: example CentralSaturation; shows examples |
---|
145 | "{ |
---|
146 | option(redSB); |
---|
147 | option(redTail); |
---|
148 | option(returnSB); |
---|
149 | module Q=0; |
---|
150 | module S=M; |
---|
151 | while ( !MyIsEqual(Q,S) ) |
---|
152 | { |
---|
153 | Q = CentralQuot(S, T); |
---|
154 | S = CentralQuot(Q, T); |
---|
155 | } |
---|
156 | if (nrows(Q)==1) |
---|
157 | { |
---|
158 | Q = ideal(Q); |
---|
159 | } |
---|
160 | // Q = std(Q); |
---|
161 | return(Q); |
---|
162 | } |
---|
163 | example |
---|
164 | { "EXAMPLE:"; echo = 2; |
---|
165 | option(returnSB); |
---|
166 | def a = sl2(); |
---|
167 | setring a; |
---|
168 | ideal I = e3,f3,h3-4*h; |
---|
169 | I = std(I); |
---|
170 | poly C=4*e*f+h^2-2*h; |
---|
171 | ideal G = C*(C-8); |
---|
172 | ideal R = CentralSaturation(I,G); |
---|
173 | R=std(R); |
---|
174 | vdim(R); |
---|
175 | R; |
---|
176 | } |
---|
177 | /////////////////////////////////////////////////////////////////////////////// |
---|
178 | proc CenCharDec(module I, def #) |
---|
179 | "USAGE: CenCharDec(I, C); I a module, C an ideal/list of generators of the center; |
---|
180 | PURPOSE: compute a finite central character decomposition (or point out that there is no finite one), |
---|
181 | RETURN: a list L, where each entry consists of three records: |
---|
182 | @* L[*][1] ('ideal' type), the central character as the maximal ideal in the center, |
---|
183 | @* L[*][2] ('module' type), the Groebner basis of the weight module, corresponding to the character, |
---|
184 | @* L[*][3] ('int' type) is the K-dimension of the weight module (-1 is returned for an infinite dimension); |
---|
185 | NOTE: some modules have no finite decomposition (in such case one |
---|
186 | gets warning message) |
---|
187 | SEE ALSO: CentralQuot, CentralSaturation |
---|
188 | EXAMPLE: example CenCharDec; shows examples |
---|
189 | " |
---|
190 | { |
---|
191 | list Center; |
---|
192 | if (typeof(#) == "ideal") |
---|
193 | { |
---|
194 | int cc; |
---|
195 | ideal tmp = ideal(#); |
---|
196 | for (cc=1; cc<=size(tmp); cc++) |
---|
197 | { |
---|
198 | Center[cc] = tmp[cc]; |
---|
199 | } |
---|
200 | kill tmp; |
---|
201 | } |
---|
202 | if (typeof(#) == "list") |
---|
203 | { |
---|
204 | Center = #; |
---|
205 | } |
---|
206 | // M = A/I |
---|
207 | //1. Find the Zariski closure of Supp_Z M |
---|
208 | // J = Ann_M 1 == I |
---|
209 | // J \cap Z: |
---|
210 | option(redSB); |
---|
211 | option(redTail); |
---|
212 | option(returnSB); |
---|
213 | def @A = basering; |
---|
214 | setring @A; |
---|
215 | int sZ=size(Center); |
---|
216 | int i,j; |
---|
217 | poly t=1; |
---|
218 | for(i=1; i<=nvars(@A); i++) |
---|
219 | { |
---|
220 | t=t*var(i); |
---|
221 | } |
---|
222 | ring @Z=0,(@z(1..sZ)),dp; |
---|
223 | // @Z; |
---|
224 | def @ZplusA = @A+@Z; |
---|
225 | setring @ZplusA; |
---|
226 | // @ZplusA; |
---|
227 | ideal I = imap(@A,I); |
---|
228 | list Center = imap(@A,Center); |
---|
229 | poly t = imap(@A,t); |
---|
230 | ideal @Ker; |
---|
231 | for(i=1; i<=sZ; i++) |
---|
232 | { |
---|
233 | @Ker[i]=@z(i) - Center[i]; |
---|
234 | } |
---|
235 | @Ker = @Ker,I; |
---|
236 | ideal @JcapZ = eliminate(@Ker,t); |
---|
237 | // do not forget parameters of a basering! |
---|
238 | string strZ="ring @@Z=("+charstr(@A)+"),(@z(1.."+string(sZ)+")),dp;"; |
---|
239 | // print(strZ); |
---|
240 | execute(strZ); |
---|
241 | setring @@Z; |
---|
242 | ideal @JcapZ = imap(@ZplusA,@JcapZ); |
---|
243 | @JcapZ = std(@JcapZ); |
---|
244 | // @JcapZ; |
---|
245 | int sJ = vdim(@JcapZ); |
---|
246 | if (sJ==-1) |
---|
247 | { |
---|
248 | "There is no finite decomposition"; |
---|
249 | return(0); |
---|
250 | } |
---|
251 | // print(@JcapZ); |
---|
252 | // 2. compute the min.ass.primes of the ideal in the center |
---|
253 | list @L = minAssGTZ(@JcapZ); |
---|
254 | int sL = size(@L); |
---|
255 | // print("etL:"); |
---|
256 | // @L; |
---|
257 | // exception: is sL==1, the whole ideal has unique cen.char |
---|
258 | if (sL ==1) |
---|
259 | { |
---|
260 | setring @A; |
---|
261 | map @M = @@Z,Center[1..size(Center)]; |
---|
262 | list L = @M(@L); |
---|
263 | list @R; |
---|
264 | @R[1] = L[1]; |
---|
265 | if (nrows(@R[1])==1) |
---|
266 | { |
---|
267 | @R[1] = ideal(@R[1]); |
---|
268 | } |
---|
269 | @R[2] = I; |
---|
270 | if (nrows(@R[2])==1) |
---|
271 | { |
---|
272 | @R[2] = ideal(@R[2]); |
---|
273 | } |
---|
274 | @R[2] = std(@R[2]); |
---|
275 | @R[3] = vdim(@R[2]); |
---|
276 | return(@R); |
---|
277 | } |
---|
278 | list @CharKer; |
---|
279 | for(i=1; i<=sL; i++) |
---|
280 | { |
---|
281 | @L[i] = std(@L[i]); |
---|
282 | } |
---|
283 | // 3. compute the intersections of characters |
---|
284 | for(i=1; i<=sL; i++) |
---|
285 | { |
---|
286 | @CharKer[i] = CharKernel(@L,i); |
---|
287 | } |
---|
288 | // print("Charker:"); |
---|
289 | // @CharKer; |
---|
290 | // 4. Go back to the algebra and compute central saturations |
---|
291 | setring @A; |
---|
292 | map @M = @@Z,Center[1..size(Center)]; |
---|
293 | list L = @M(@CharKer); |
---|
294 | list R,@R; |
---|
295 | for(i=1; i<=sL; i++) |
---|
296 | { |
---|
297 | @R[1] = L[i]; |
---|
298 | if (nrows(@R[1])==1) |
---|
299 | { |
---|
300 | @R[1] = ideal(@R[1]); |
---|
301 | } |
---|
302 | @R[2] = CentralSaturation(I,L[i]); |
---|
303 | if (nrows(@R[2])==1) |
---|
304 | { |
---|
305 | @R[2] = ideal(@R[2]); |
---|
306 | } |
---|
307 | @R[2] = std(@R[2]); |
---|
308 | @R[3] = vdim(@R[2]); |
---|
309 | R[i] = @R; |
---|
310 | } |
---|
311 | return(R); |
---|
312 | } |
---|
313 | example |
---|
314 | { "EXAMPLE:"; echo = 2; |
---|
315 | option(returnSB); |
---|
316 | def a = sl2(); // U(sl_2) in characteristic 0 |
---|
317 | setring a; |
---|
318 | ideal I = e3,f3,h3-4*h; |
---|
319 | I = twostd(I); // two-sided ideal generated by I |
---|
320 | vdim(I); // it is finite-dimensional |
---|
321 | list Cn = 4*e*f+h^2-2*h; // the only central element |
---|
322 | list T = CenCharDec(I,Cn); |
---|
323 | T; |
---|
324 | } |
---|
325 | /////////////////////////////////////////////////////////////////////////////// |
---|
326 | proc IntersectWithSub (ideal M, def #) |
---|
327 | "USAGE: IntersectWithSub(M,Z), M an ideal, Z an ideal/list of pairwise commutative elements |
---|
328 | PURPOSE: computes an intersection of M with the subalgebra, generated by Z |
---|
329 | RETURN: ideal (of two--sided generators, not a Groebner basis!) |
---|
330 | NOTE: usually one puts generators of the center into Z |
---|
331 | EXAMPLE: example IntersectWithSub; shows an example |
---|
332 | " |
---|
333 | { |
---|
334 | ideal Z; |
---|
335 | if (typeof(#) == "list") |
---|
336 | { |
---|
337 | int cc; |
---|
338 | list tmp = #; |
---|
339 | for (cc=1; cc<=size(tmp); cc++) |
---|
340 | { |
---|
341 | Z[cc] = tmp[cc]; |
---|
342 | } |
---|
343 | kill tmp; |
---|
344 | } |
---|
345 | if (typeof(#) == "ideal") |
---|
346 | { |
---|
347 | Z = #; |
---|
348 | } |
---|
349 | // returns a submodule of M, equal to M \cap Z |
---|
350 | // correctness: Z should consists of pairwise |
---|
351 | // commutative elements |
---|
352 | int nz = size(Z); |
---|
353 | int i,j; |
---|
354 | poly p; |
---|
355 | for (i=1; i<nz; i++) |
---|
356 | { |
---|
357 | for (j=i+1; j<=nz; j++) |
---|
358 | { |
---|
359 | p = bracket(Z[i],Z[j]); |
---|
360 | if (p!=0) |
---|
361 | { |
---|
362 | "Error: generators of the subalgebra do not commute."; |
---|
363 | return(ideal(0)); |
---|
364 | } |
---|
365 | } |
---|
366 | } |
---|
367 | // main action |
---|
368 | def B = basering; |
---|
369 | setring B; |
---|
370 | string s1,s2; |
---|
371 | s1 = "ring @Z = ("; |
---|
372 | s2 = s1 + charstr(basering) + "),(z(1.." + string(nz)+")),Dp"; |
---|
373 | // s2; |
---|
374 | execute(s2); |
---|
375 | setring B; |
---|
376 | map F = @Z,Z; |
---|
377 | setring @Z; |
---|
378 | ideal PreM = preimage(B,F,M); |
---|
379 | PreM = std(PreM); |
---|
380 | setring B; |
---|
381 | ideal T = F(PreM); |
---|
382 | return(T); |
---|
383 | } |
---|
384 | example |
---|
385 | { |
---|
386 | "EXAMPLE:"; echo = 2; |
---|
387 | ring r=(0,a),(e,f,h),Dp; |
---|
388 | matrix @d[3][3]; |
---|
389 | @d[1,2]=-h; |
---|
390 | @d[1,3]=2e; |
---|
391 | @d[2,3]=-2f; |
---|
392 | ncalgebra(1,@d); // parametric U(sl_2) |
---|
393 | ideal I = e,h-a; |
---|
394 | ideal C; |
---|
395 | C[1] = h^2-2*h+4*e*f; // the center of U(sl_2) |
---|
396 | ideal X = IntersectWithSub(I,C); |
---|
397 | X; |
---|
398 | ideal G = e*f, h; // the biggest comm. subalgebra of U(sl_2) |
---|
399 | ideal Y = IntersectWithSub(I,G); |
---|
400 | Y; |
---|
401 | } |
---|