1 | ////////////////////////////////////////////////////////////////////// |
---|
2 | version="version ncfrac.lib 4.0.0.0 Dec_2017 "; //$Id$ |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: ncfrac.lib object-oriented interface for olga.lib |
---|
6 | AUTHOR: Johannes Hoffmann, email: johannes.hoffmann at math.rwth-aachen.de |
---|
7 | |
---|
8 | OVERVIEW: |
---|
9 | This library introduces a new type: ncfrac. |
---|
10 | This type wraps the data defining a (non-commutative) fraction in an Ore |
---|
11 | localization of a G-algebra as in olga.lib. |
---|
12 | An element of type ncfrac has five members: |
---|
13 | - polys lnum, lden, rnum, rden |
---|
14 | - ncloc loc |
---|
15 | |
---|
16 | OPERATIONS: |
---|
17 | string(ncfrac); |
---|
18 | give a string representation of the data describing the fraction |
---|
19 | print(ncfrac); |
---|
20 | prints the string representation of the fraction |
---|
21 | status(ncfrac); |
---|
22 | report on the status/validity of the fraction |
---|
23 | test(ncfrac); |
---|
24 | check if the fraction is valid |
---|
25 | |
---|
26 | INFIX OPERATIONS: |
---|
27 | ncfrac == ncfrac; |
---|
28 | compare two fractions |
---|
29 | ncfrac != ncfrac; |
---|
30 | compare two fractions |
---|
31 | ncfrac + ncfrac; |
---|
32 | add two fractions |
---|
33 | ncfrac - ncfrac |
---|
34 | subtract two fractions |
---|
35 | ncfrac * ncfrac |
---|
36 | multiply two fractions |
---|
37 | ncfrac / ncfrac |
---|
38 | divide two fractions |
---|
39 | ncfrac = int/number/poly |
---|
40 | create a fraction with: |
---|
41 | - left and right denominator equal to 1 |
---|
42 | - left and right numerator determined by the input |
---|
43 | - localization data describing the trivial monoidal localization at 1 |
---|
44 | ncfrac = vector |
---|
45 | create a fraction from a vector v with unspecified localization such that |
---|
46 | lden,lnum,rnum,rden = v[1],v[2],v[3],v[4] |
---|
47 | (note: without specifying a localization afterwards this results is an |
---|
48 | invalid fraction) |
---|
49 | ncfrac = list |
---|
50 | create a fraction from a list L as follows: |
---|
51 | - try to create a fraction from L[1] as above |
---|
52 | - if L[2] is of type ncloc set the localization of the fraction to L[2] |
---|
53 | |
---|
54 | PROCEDURES: |
---|
55 | hasLeftDenom(ncfrac); check if the given fraction has a left representation |
---|
56 | hasRightDenom(ncfrac); check if the given fraction has a right representation |
---|
57 | isZeroNcfrac(ncfrac); check if the given fraction is equal to zero |
---|
58 | isOneNcfrac(ncfrac); check if the given fraction is equal to one |
---|
59 | zeroNcfrac(ncloc loc); create the fraction equal to zero in the given localization |
---|
60 | oneNcfrac(ncloc loc); create the fraction equal to one in the given localization |
---|
61 | ensureLeftNcfrac(ncfrac); compute a left representation of the given fraction if it does not have one |
---|
62 | ensureRightNcfrac(ncfrac); compute a right representation of the given fraction if it does not have one |
---|
63 | negateNcfrac(ncfrac); compute the additive inverse of the given fraction |
---|
64 | isInvertibleNcfrac(ncfrac); check if the given fraction is invertible (note: see the description of |
---|
65 | isInvertibleLeftFraction from olga.lib for specific behaviour) |
---|
66 | invertNcfrac(ncfrac); compute the multiplicative inverse of the given fraction (note: see the |
---|
67 | description of invertLeftFraction from olga.lib for specific behaviour) |
---|
68 | testNcfrac(); execute a series of internal testing procedures |
---|
69 | testNcfracExamples(); execute the examples of all procedures in this library |
---|
70 | "; |
---|
71 | ////////////////////////////////////////////////////////////////////// |
---|
72 | proc testNcfracExamples() |
---|
73 | "USAGE: testNcfracExamples() |
---|
74 | PURPOSE: execute the examples of all procedures in this library |
---|
75 | RETURN: nothing |
---|
76 | NOTE: |
---|
77 | EXAMPLE: " |
---|
78 | { |
---|
79 | example hasLeftDenom; |
---|
80 | example hasRightDenom; |
---|
81 | example isZeroNcfrac; |
---|
82 | example isOneNcfrac; |
---|
83 | example zeroNcfrac; |
---|
84 | example oneNcfrac; |
---|
85 | example ensureLeftNcfrac; |
---|
86 | example ensureRightNcfrac; |
---|
87 | } |
---|
88 | ////////////////////////////////////////////////////////////////////// |
---|
89 | proc testNcfrac() |
---|
90 | "USAGE: testNcfrac() |
---|
91 | PURPOSE: execute a series of internal testing procedures |
---|
92 | RETURN: nothing |
---|
93 | NOTE: |
---|
94 | EXAMPLE: " |
---|
95 | { |
---|
96 | print("testing ncfrac.lib..."); |
---|
97 | testHasLeftHasRight(); |
---|
98 | testIsZeroIsOne(); |
---|
99 | testNcFracCreation(); |
---|
100 | testNcfracComparison(); |
---|
101 | testNcfracAddition(); |
---|
102 | testNcfracSubtraction(); |
---|
103 | testNcfracMultiplication(); |
---|
104 | testNcfracDivision(); |
---|
105 | testNcfracInversion(); |
---|
106 | testEnsureRightNcfrac(); |
---|
107 | testEnsureLeftNcfrac(); |
---|
108 | print("testing complete - ncfrac.lib OK"); |
---|
109 | } |
---|
110 | ////////////////////////////////////////////////////////////////////// |
---|
111 | static proc mod_init() { |
---|
112 | LIB "ncloc.lib"; |
---|
113 | /* new type: ncfrac (non-commutative fraction) */ |
---|
114 | newstruct("ncfrac", "ncloc loc, poly rden, poly rnum, poly lden, poly lnum"); |
---|
115 | system("install", "ncfrac", "print", printNcfrac, 1); |
---|
116 | system("install", "ncfrac", "string", ncfracToString, 1); |
---|
117 | system("install", "ncfrac", "=", createNcfrac, 1); |
---|
118 | system("install", "ncfrac", "==", compareNcfracs, 2); |
---|
119 | system("install", "ncfrac", "!=", invertedCompareNcfracs, 2); |
---|
120 | system("install", "ncfrac", "+", addNcfracs, 2); |
---|
121 | system("install", "ncfrac", "-", subtractNcfracs, 2); |
---|
122 | system("install", "ncfrac", "*", multiplyNcfracs, 2); |
---|
123 | system("install", "ncfrac", "/", divideNcfracs, 2); |
---|
124 | system("install", "ncfrac", "test", testNcfrac, 4); |
---|
125 | system("install", "ncfrac", "status", statusNcfrac, 4); |
---|
126 | } |
---|
127 | ////////////////////////////////////////////////////////////////////// |
---|
128 | proc hasLeftDenom(ncfrac frac) |
---|
129 | "USAGE: hasLeftDenom(frac), ncfrac frac |
---|
130 | PURPOSE: checks if frac has a left representation |
---|
131 | RETURN: int, 1 if frac has a left representation, 0 otherwise |
---|
132 | EXAMPLE: example hasLeftDenom; shows example" |
---|
133 | { |
---|
134 | return(frac.lden != 0); |
---|
135 | } |
---|
136 | example |
---|
137 | { |
---|
138 | "EXAMPLE:"; echo = 2; |
---|
139 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
140 | def S = Weyl(); |
---|
141 | setring S; |
---|
142 | ncloc loc = ideal(x-3,y+7); |
---|
143 | ncfrac noLeft = list([0,0,3*y*Dx,x+2], loc); |
---|
144 | hasLeftDenom(noLeft); |
---|
145 | ncfrac left = list([1,Dx,Dx,1], loc); |
---|
146 | hasLeftDenom(left); |
---|
147 | } |
---|
148 | ////////////////////////////////////////////////////////////////////// |
---|
149 | proc hasRightDenom(ncfrac frac) |
---|
150 | "USAGE: hasRightDenom(frac), ncfrac frac |
---|
151 | PURPOSE: checks if frac has a right representation |
---|
152 | RETURN: int, 1 if frac has a right representation, 0 otherwise |
---|
153 | EXAMPLE: example hasRightDenom; shows example" |
---|
154 | { |
---|
155 | return(frac.rden != 0); |
---|
156 | } |
---|
157 | example |
---|
158 | { |
---|
159 | "EXAMPLE:"; echo = 2; |
---|
160 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
161 | def S = Weyl(); |
---|
162 | setring S; |
---|
163 | ncloc loc = ideal(x-3,y+7); |
---|
164 | ncfrac noRight = list([x+2,3*y*Dx,0,0], loc); |
---|
165 | hasRightDenom(noRight); |
---|
166 | ncfrac right = list([1,Dx,Dx,1], loc); |
---|
167 | hasRightDenom(right); |
---|
168 | } |
---|
169 | ////////// status and printing /////////////////////////////////////// |
---|
170 | static proc toVector(ncfrac frac) { |
---|
171 | return([frac.lden, frac.lnum, frac.rnum, frac.rden]); |
---|
172 | } |
---|
173 | ////////////////////////////////////////////////////////////////////// |
---|
174 | static proc statusNcfrac(ncfrac frac) { |
---|
175 | return(fracStatus(toVector(frac), frac.loc.locType, frac.loc.locData)); |
---|
176 | // fracStatus from olga.lib |
---|
177 | } |
---|
178 | ////////////////////////////////////////////////////////////////////// |
---|
179 | static proc testNcfrac(ncfrac frac) { |
---|
180 | list stat = status(frac); |
---|
181 | if(!stat[1]) { |
---|
182 | ERROR(stat[2]); |
---|
183 | } else { |
---|
184 | return(); |
---|
185 | } |
---|
186 | } |
---|
187 | ////////////////////////////////////////////////////////////////////// |
---|
188 | static proc ncfracToString(ncfrac frac) { |
---|
189 | list stat = status(frac); |
---|
190 | if (!stat[1]) { |
---|
191 | return(stat[2]); |
---|
192 | } else { |
---|
193 | return("left repr.: (" + string(frac.lden) + "," + string(frac.lnum) |
---|
194 | + ")" + newline + "right repr.: (" + string(frac.rnum) + "," |
---|
195 | + string(frac.rden) + ")"); |
---|
196 | } |
---|
197 | } |
---|
198 | ////////////////////////////////////////////////////////////////////// |
---|
199 | static proc printNcfrac(ncfrac frac) { |
---|
200 | string(frac); |
---|
201 | } |
---|
202 | ////////////////////////////////////////////////////////////////////// |
---|
203 | proc isZeroNcfrac(ncfrac frac) |
---|
204 | "USAGE: isZeroNcfrac(frac), ncfrac frac |
---|
205 | PURPOSE: checks if frac is zero |
---|
206 | RETURN: int, 1 if frac is zero, 0 otherwise |
---|
207 | EXAMPLE: example isZeroNcfrac; shows example" |
---|
208 | { |
---|
209 | testNcfrac(frac); |
---|
210 | if (hasLeftDenom(frac)) { // frac has left representation |
---|
211 | return(frac.lnum == 0); |
---|
212 | } else { // frac has right representation, but no left representation |
---|
213 | return(frac.rnum == 0); |
---|
214 | } |
---|
215 | } |
---|
216 | example |
---|
217 | { |
---|
218 | "EXAMPLE:"; echo = 2; |
---|
219 | ring Q = (0,q),(x,y,Qx,Qy),dp; |
---|
220 | matrix C[4][4] = UpOneMatrix(4); |
---|
221 | C[1,3] = q; |
---|
222 | C[2,4] = q; |
---|
223 | def ncQ = nc_algebra(C,0); |
---|
224 | setring ncQ; |
---|
225 | ncloc loc = intvec(2); |
---|
226 | ncfrac frac = list([y^2+7*y+1,0,0,0], loc); |
---|
227 | isZeroNcfrac(frac); |
---|
228 | frac.lnum = 42*y*Qy+7*Qx+3*x+7; |
---|
229 | isZeroNcfrac(frac); |
---|
230 | } |
---|
231 | ////////////////////////////////////////////////////////////////////// |
---|
232 | proc isOneNcfrac(ncfrac frac) |
---|
233 | "USAGE: isOneNcfrac(frac), ncfrac frac |
---|
234 | PURPOSE: checks if frac is one |
---|
235 | RETURN: int, 1 if frac is one, 0 otherwise |
---|
236 | EXAMPLE: example isOneNcfrac; shows example" |
---|
237 | { |
---|
238 | testNcfrac(frac); |
---|
239 | if (hasLeftDenom(frac)) { // frac has left representation |
---|
240 | return(frac.lden == frac.lnum); |
---|
241 | } else { // frac has right representation, but no left representation |
---|
242 | return(frac.rden == frac.rnum); |
---|
243 | } |
---|
244 | } |
---|
245 | example |
---|
246 | { |
---|
247 | "EXAMPLE:"; echo = 2; |
---|
248 | ring Q = (0,q),(x,y,Qx,Qy),dp; |
---|
249 | matrix C[4][4] = UpOneMatrix(4); |
---|
250 | C[1,3] = q; |
---|
251 | C[2,4] = q; |
---|
252 | def ncQ = nc_algebra(C,0); |
---|
253 | setring ncQ; |
---|
254 | ncloc loc = intvec(2); |
---|
255 | ncfrac frac = list([y^2+7*y+1,y^2+7*y+1,0,0], loc); |
---|
256 | isOneNcfrac(frac); |
---|
257 | frac.lnum = 42*y*Qy+7*Qx+3*x+7; |
---|
258 | isOneNcfrac(frac); |
---|
259 | } |
---|
260 | ////////// initialization, comparison and declaration //////////////// |
---|
261 | static proc createNcfrac(def input) { |
---|
262 | string inputType = typeof(input); |
---|
263 | ncfrac result; |
---|
264 | if (inputType == "list") { |
---|
265 | if (size(input) >= 2) { |
---|
266 | result = createNcfrac(input[1]); |
---|
267 | if (typeof(input[2]) == "ncloc") { |
---|
268 | result.loc = input[2]; |
---|
269 | } |
---|
270 | } |
---|
271 | } |
---|
272 | if (inputType == "int" || inputType == "number" || inputType == "poly") { |
---|
273 | result.lden = poly(1); |
---|
274 | result.lnum = poly(input); |
---|
275 | result.rden = poly(1); |
---|
276 | result.rnum = poly(input); |
---|
277 | result.loc = ncloc(list(1)); |
---|
278 | } |
---|
279 | if (inputType == "vector") { |
---|
280 | result.lden = input[1]; |
---|
281 | result.lnum = input[2]; |
---|
282 | result.rnum = input[3]; |
---|
283 | result.rden = input[4]; |
---|
284 | } |
---|
285 | return(result); |
---|
286 | } |
---|
287 | ////////////////////////////////////////////////////////////////////// |
---|
288 | proc zeroNcfrac(ncloc loc) |
---|
289 | "USAGE: zeroNcfrac(loc), ncloc loc |
---|
290 | PURPOSE: returns the zero fraction in the localization loc |
---|
291 | RETURN: ncfrac |
---|
292 | EXAMPLE: example zeroNcfrac; shows example" |
---|
293 | { |
---|
294 | return(ncfrac(list([1,0,0,1], loc))); |
---|
295 | } |
---|
296 | example |
---|
297 | { |
---|
298 | "EXAMPLE:"; echo = 2; |
---|
299 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
300 | def S = Weyl(); |
---|
301 | setring S; |
---|
302 | ncloc loc = ideal(x-53,y-7); |
---|
303 | zeroNcfrac(loc); |
---|
304 | } |
---|
305 | ////////////////////////////////////////////////////////////////////// |
---|
306 | proc oneNcfrac(ncloc loc) |
---|
307 | "USAGE: oneNcfrac(loc), ncloc loc |
---|
308 | PURPOSE: returns the one fraction in the localization loc |
---|
309 | RETURN: ncfrac |
---|
310 | EXAMPLE: " |
---|
311 | { |
---|
312 | return(ncfrac(list([1,1,1,1], loc))); |
---|
313 | } |
---|
314 | example |
---|
315 | { |
---|
316 | "EXAMPLE:"; echo = 2; |
---|
317 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
318 | def S = Weyl(); |
---|
319 | setring S; |
---|
320 | ncloc loc = ideal(x-42,y-17); |
---|
321 | oneNcfrac(loc); |
---|
322 | } |
---|
323 | ////////////////////////////////////////////////////////////////////// |
---|
324 | static proc trimNcfrac(ncfrac frac) |
---|
325 | "USAGE: trimNcfrac(frac), ncfrac frac |
---|
326 | PURPOSE: simplifies complicated representations of zero and one |
---|
327 | RETURN: ncfrac |
---|
328 | NOTE: - if frac is zero, returns the default representation of zero |
---|
329 | - if frac is one, returns the default representation of one |
---|
330 | - otherwise returns frac |
---|
331 | EXAMPLE: example trimNcfrac; shows example" |
---|
332 | { |
---|
333 | testNcfrac(frac); |
---|
334 | if (isZeroNcfrac(frac)) { |
---|
335 | return(zeroNcfrac(frac.loc)); |
---|
336 | } |
---|
337 | if (isOneNcfrac(frac)) { |
---|
338 | return(oneNcfrac(frac.loc)); |
---|
339 | } |
---|
340 | return(frac); |
---|
341 | } example { |
---|
342 | "EXAMPLE:"; echo = 2; |
---|
343 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
344 | def S = Weyl(); |
---|
345 | setring S; |
---|
346 | ncloc loc = poly(x); |
---|
347 | loc; |
---|
348 | ncfrac frac1 = list([x^2,x*x,0,0], loc); |
---|
349 | trimNcfrac(frac1); |
---|
350 | ncfrac frac2 = list([0,0,0,x], loc); |
---|
351 | trimNcfrac(frac2); |
---|
352 | } |
---|
353 | ////////////////////////////////////////////////////////////////////// |
---|
354 | static proc compareNcfracs(ncfrac frac1, ncfrac frac2) { |
---|
355 | testNcfrac(frac1); |
---|
356 | testNcfrac(frac2); |
---|
357 | if (isZeroNcfrac(frac1)) { |
---|
358 | return(isZeroNcfrac(frac2)); |
---|
359 | } |
---|
360 | if (isOneNcfrac(frac1)) { |
---|
361 | return(isOneNcfrac(frac2)); |
---|
362 | } |
---|
363 | if (isZeroNcfrac(frac1 - frac2)) { |
---|
364 | // frac1 and frac2 are equal iff their difference is zero |
---|
365 | return (1); |
---|
366 | } else { |
---|
367 | return (0); |
---|
368 | } |
---|
369 | } |
---|
370 | ////////////////////////////////////////////////////////////////////// |
---|
371 | static proc invertedCompareNcfracs(ncfrac frac1, ncfrac frac2) { |
---|
372 | return(!compareNcfracs(frac1, frac2)); |
---|
373 | } |
---|
374 | ////////// compute left resp. right representations ////////////////// |
---|
375 | proc ensureLeftNcfrac(ncfrac frac) |
---|
376 | "USAGE: ensureLeftNcfrac(frac), ncfrac frac |
---|
377 | PURPOSE: ensures that frac has a left representation (by computing it if not |
---|
378 | alreaDy known) |
---|
379 | RETURN: ncfrac, a representation of frac which has a left representation |
---|
380 | EXAMPLE: " |
---|
381 | { |
---|
382 | testNcfrac(frac); |
---|
383 | if (hasLeftDenom(frac)) { |
---|
384 | return(frac); |
---|
385 | } |
---|
386 | ncloc loc = frac.loc; |
---|
387 | vector f = toVector(frac); |
---|
388 | vector result = convertRightToLeftFraction(f, loc.locType, loc.locData); |
---|
389 | return(ncfrac(list(result, loc))); |
---|
390 | } |
---|
391 | example |
---|
392 | { |
---|
393 | "EXAMPLE:"; echo = 2; |
---|
394 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
395 | def S = Weyl(); |
---|
396 | setring S; S; |
---|
397 | // monoidal localization |
---|
398 | poly g1 = x+3; |
---|
399 | poly g2 = x*y; |
---|
400 | list L = g1,g2; |
---|
401 | ncloc loc0 = L; |
---|
402 | poly g = g1^2*g2; |
---|
403 | poly f = Dx; |
---|
404 | ncfrac frac0 = [0,0,f,g]; |
---|
405 | frac0.loc = loc0; |
---|
406 | ncfrac rm = ensureLeftNcfrac(frac0); |
---|
407 | print(rm); |
---|
408 | rm.lnum*g-rm.lden*f; |
---|
409 | // geometric localization |
---|
410 | ncloc loc1 = ideal(x-1,y-3); |
---|
411 | f = Dx; |
---|
412 | g = x^2+y; |
---|
413 | ncfrac frac1 = [0,0,f,g]; |
---|
414 | frac1.loc = loc1; |
---|
415 | ncfrac rg = ensureLeftNcfrac(frac1); |
---|
416 | print(rg); |
---|
417 | rg.lnum*g-rg.lden*f; |
---|
418 | // rational localization |
---|
419 | intvec rat = 1; |
---|
420 | ncloc loc2 = rat; |
---|
421 | f = Dx+Dy; |
---|
422 | g = x; |
---|
423 | ncfrac frac2 = [0,0,f,g]; |
---|
424 | frac2.loc = loc2; |
---|
425 | ncfrac rr = ensureLeftNcfrac(frac2); |
---|
426 | print(rr); |
---|
427 | rr.lnum*g-rr.lden*f; |
---|
428 | } |
---|
429 | ////////////////////////////////////////////////////////////////////// |
---|
430 | proc ensureRightNcfrac(ncfrac frac) |
---|
431 | "USAGE: ensureLeftNcfrac(frac), ncfrac frac |
---|
432 | PURPOSE: ensures that frac has a right representation (by computing it if not |
---|
433 | alreaDy known) |
---|
434 | RETURN: ncfrac, a representation of frac which has a right representation |
---|
435 | EXAMPLE: " |
---|
436 | { |
---|
437 | testNcfrac(frac); |
---|
438 | if (hasRightDenom(frac)) { |
---|
439 | return (frac); |
---|
440 | } |
---|
441 | ncloc loc = frac.loc; |
---|
442 | vector f = toVector(frac); |
---|
443 | vector result = convertLeftToRightFraction(f, loc.locType, loc.locData); |
---|
444 | return(ncfrac(list(result, loc))); |
---|
445 | } |
---|
446 | example |
---|
447 | { |
---|
448 | "EXAMPLE:"; echo = 2; |
---|
449 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
450 | def S = Weyl(); |
---|
451 | setring S; S; |
---|
452 | // monoidal localization |
---|
453 | poly g = x; |
---|
454 | poly f = Dx; |
---|
455 | ncloc loc0 = g; |
---|
456 | ncfrac frac0 = [g,f,0,0]; |
---|
457 | frac0.loc = loc0; |
---|
458 | ncfrac rm = ensureRightNcfrac(frac0); |
---|
459 | print(rm); |
---|
460 | f*rm.rden-g*rm.rnum; |
---|
461 | // geometric localization |
---|
462 | g = x+y; |
---|
463 | f = Dx+Dy; |
---|
464 | ncloc loc1 = ideal(x-1,y-3); |
---|
465 | ncfrac frac1 = [g,f,0,0]; |
---|
466 | frac1.loc = loc1; |
---|
467 | ncfrac rg = ensureRightNcfrac(frac1); |
---|
468 | print(rg); |
---|
469 | f*rg.rden-g*rg.rnum; |
---|
470 | // rational localization |
---|
471 | intvec rat = 1; |
---|
472 | f = Dx+Dy; |
---|
473 | g = x; |
---|
474 | ncloc loc2 = rat; |
---|
475 | ncfrac frac2 = [g,f,0,0]; |
---|
476 | frac2.loc = loc2; |
---|
477 | ncfrac rr = ensureRightNcfrac(frac2); |
---|
478 | print(rr); |
---|
479 | f*rr.rden-g*rr.rnum; |
---|
480 | } |
---|
481 | ////////// arithmetic //////////////////////////////////////////////// |
---|
482 | static proc addNcfracs(ncfrac frac1, ncfrac frac2) { |
---|
483 | testNcfrac(frac1); |
---|
484 | testNcfrac(frac2); |
---|
485 | ncloc loc = frac1.loc; |
---|
486 | if (loc != frac2.loc) { |
---|
487 | ERROR("cannot add fractions: incompatible localizations"); |
---|
488 | } |
---|
489 | vector f1 = toVector(frac1); |
---|
490 | vector f2 = toVector(frac2); |
---|
491 | vector result = addLeftFractions(f1, f2, loc.locType, loc.locData, 1); |
---|
492 | return(ncfrac(list(result, loc))); |
---|
493 | } |
---|
494 | ////////////////////////////////////////////////////////////////////// |
---|
495 | proc negateNcfrac(ncfrac frac) |
---|
496 | "USAGE: negateNcfrac(frac), ncfrac frac |
---|
497 | PURPOSE: compute the negative (i.e. additive inverse) of frac |
---|
498 | RETURN: ncfrac |
---|
499 | NOTE: returns (-1)*frac |
---|
500 | EXAMPLE: example negateNcfrac; shows example" |
---|
501 | { |
---|
502 | ncfrac result = frac; |
---|
503 | result.lnum = result.lnum * (-1); |
---|
504 | result.rnum = result.rnum * (-1); |
---|
505 | return(result); |
---|
506 | } |
---|
507 | example |
---|
508 | { |
---|
509 | "EXAMPLE:"; echo = 2; |
---|
510 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
511 | def S = Weyl(); |
---|
512 | setring S; |
---|
513 | poly g = x*y^2+4*x+7*y-98; |
---|
514 | ncloc loc = g; |
---|
515 | ncfrac frac = list([g, 13*x^2], loc); |
---|
516 | frac; |
---|
517 | ncfrac negFrac = negateNcfrac(frac); |
---|
518 | negFrac; |
---|
519 | frac + negFrac; |
---|
520 | } |
---|
521 | ////////////////////////////////////////////////////////////////////// |
---|
522 | static proc subtractNcfracs(ncfrac frac1, ncfrac frac2) { |
---|
523 | testNcfrac(frac1); |
---|
524 | testNcfrac(frac2); |
---|
525 | if (frac1.loc != frac2.loc) { |
---|
526 | ERROR("cannot subtract fractions: incompatible localizations"); |
---|
527 | } |
---|
528 | return(frac1 + negateNcfrac(frac2)); |
---|
529 | } |
---|
530 | ////////////////////////////////////////////////////////////////////// |
---|
531 | static proc multiplyNcfracs(ncfrac frac1, ncfrac frac2) { |
---|
532 | testNcfrac(frac1); |
---|
533 | testNcfrac(frac2); |
---|
534 | ncloc loc = frac1.loc; |
---|
535 | if (loc != frac2.loc) { |
---|
536 | ERROR("cannot multiply fractions: incompatible localizations"); |
---|
537 | } |
---|
538 | vector f1 = toVector(frac1); |
---|
539 | vector f2 = toVector(frac2); |
---|
540 | vector result = multiplyLeftFractions(f1, f2, loc.locType, loc.locData, 1); |
---|
541 | return(ncfrac(list(result, loc))); |
---|
542 | } |
---|
543 | ////////////////////////////////////////////////////////////////////// |
---|
544 | proc isInvertibleNcfrac(ncfrac frac) |
---|
545 | "USAGE: isInvertibleNcfrac(frac), ncfrac frac |
---|
546 | PURPOSE: checks if frac is invertible |
---|
547 | RETURN: int, 1 if frac is invertible, 0 otherwise |
---|
548 | EXAMPLE: example isInvertibleNcfrac; shows example" |
---|
549 | { |
---|
550 | testNcfrac(frac); |
---|
551 | poly num; |
---|
552 | if (hasLeftDenom(frac)) { // frac has left representation |
---|
553 | num = frac.lnum; |
---|
554 | } else { // frac has right representation, but no left representation |
---|
555 | num = frac.rnum; |
---|
556 | } |
---|
557 | return(isDenom(num, frac.loc)); |
---|
558 | } |
---|
559 | example |
---|
560 | { |
---|
561 | "EXAMPLE:"; echo = 2; |
---|
562 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
563 | def S = Weyl(); |
---|
564 | setring S; |
---|
565 | ncloc loc = intvec(2); |
---|
566 | ncfrac frac = list([y,y+1,0,0], loc); |
---|
567 | isInvertibleNcfrac(frac); |
---|
568 | frac = list([y,x+1,0,0], loc); |
---|
569 | isInvertibleNcfrac(frac); |
---|
570 | } |
---|
571 | ////////////////////////////////////////////////////////////////////// |
---|
572 | proc invertNcfrac(ncfrac frac) |
---|
573 | "USAGE: invertNcfrac(frac), ncfrac frac |
---|
574 | PURPOSE: compute the inverse of frac |
---|
575 | RETURN: ncfrac |
---|
576 | NOTE: returns the zero fraction if frac is not invertible |
---|
577 | EXAMPLE: example invertNcfrac; shows example" |
---|
578 | { |
---|
579 | ncfrac result; |
---|
580 | if (!isInvertibleNcfrac(frac)) { |
---|
581 | result = zeroNcfrac(frac.loc); |
---|
582 | } else { |
---|
583 | result = list([frac.lnum, frac.lden, frac.rden, frac.rnum], frac.loc); |
---|
584 | } |
---|
585 | return(result); |
---|
586 | } |
---|
587 | example |
---|
588 | { |
---|
589 | "EXAMPLE:"; echo = 2; |
---|
590 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
591 | def S = Weyl(); |
---|
592 | setring S; |
---|
593 | ncloc loc = intvec(2); |
---|
594 | ncfrac frac1 = list([y,y+1,0,0], loc); |
---|
595 | // frac1 is invertible |
---|
596 | ncfrac inv = invertNcfrac(frac1); |
---|
597 | inv; |
---|
598 | ncfrac frac2 = list([y,x+1,0,0], loc); |
---|
599 | // frac2 is not invertible |
---|
600 | inv = invertNcfrac(frac2); |
---|
601 | inv; |
---|
602 | } |
---|
603 | ////////////////////////////////////////////////////////////////////// |
---|
604 | static proc divideNcfracs(ncfrac frac1, ncfrac frac2) { |
---|
605 | testNcfrac(frac1); |
---|
606 | testNcfrac(frac2); |
---|
607 | if (frac1.loc != frac2.loc) { |
---|
608 | ERROR("cannot multiply fractions: incompatible localizations"); |
---|
609 | } |
---|
610 | if(!isInvertibleNcfrac(frac2)) { |
---|
611 | ERROR("division by non-invertible fraction"); |
---|
612 | } else { |
---|
613 | return(frac1 * invertNcfrac(frac2)); |
---|
614 | } |
---|
615 | } |
---|
616 | ////////////////////////////////////////////////////////////////////// |
---|
617 | ////////// internal testing procedures /////////////////////////////// |
---|
618 | static proc testHasLeftHasRight() |
---|
619 | { |
---|
620 | print(" testing ncfrac hasLeftDenom/hasRightDenom..."); |
---|
621 | ring r = 0,(x,y,Dx,Dy),dp; |
---|
622 | def R = Weyl(); |
---|
623 | setring R; |
---|
624 | ncloc loc = ideal(x-3,y+7); |
---|
625 | ncfrac noLeft = list([0,0,3*y*Dx,x+2], loc); |
---|
626 | if (hasLeftDenom(noLeft)) { |
---|
627 | ERROR("hasLeftDenom noLeft failed"); |
---|
628 | } |
---|
629 | ncfrac left = list([1,Dx,Dx,1], loc); |
---|
630 | if (!hasLeftDenom(left)) { |
---|
631 | ERROR("hasLeftDenom left failed"); |
---|
632 | } |
---|
633 | ncfrac noRight = list([x+2,3*y*Dx,0,0], loc); |
---|
634 | if (hasRightDenom(noRight)) { |
---|
635 | ERROR("hasRightDenom noRight failed"); |
---|
636 | } |
---|
637 | ncfrac right = list([1,Dx,Dx,1], loc); |
---|
638 | if (!hasRightDenom(right)) { |
---|
639 | ERROR("hasRightDenom right failed"); |
---|
640 | } |
---|
641 | print(" ncloc hasLeftDenom/hasRightDenom OK"); |
---|
642 | } |
---|
643 | ////////////////////////////////////////////////////////////////////// |
---|
644 | static proc testIsZeroIsOne() |
---|
645 | { |
---|
646 | print(" testing ncfrac isZeroNcfrac/isOneNcfrac..."); |
---|
647 | ring Q = (0,q),(x,y,Qx,Qy),dp; |
---|
648 | matrix C[4][4] = UpOneMatrix(4); |
---|
649 | C[1,3] = q; |
---|
650 | C[2,4] = q; |
---|
651 | def ncQ = nc_algebra(C,0); |
---|
652 | setring ncQ; |
---|
653 | ncloc loc = intvec(2); |
---|
654 | ncfrac frac = list([y^2+7*y+1,0,0,0], loc); |
---|
655 | if (!isZeroNcfrac(frac)) { |
---|
656 | ERROR("isZeroNcfrac zero failed"); |
---|
657 | } |
---|
658 | frac.lnum = 42*y*Qy+7*Qx+3*x+7; |
---|
659 | if (isZeroNcfrac(frac)) { |
---|
660 | ERROR("isZeroNcfrac non-zero failed"); |
---|
661 | } |
---|
662 | frac.lnum = frac.lden; |
---|
663 | //frac = list([y^2+7*y+1,y^2+7*y+1,0,0], loc); |
---|
664 | if (!isOneNcfrac(frac)) { |
---|
665 | ERROR("isOneNcfrac one failed"); |
---|
666 | } |
---|
667 | frac.lnum = 42*y*Qy+7*Qx+3*x+7; |
---|
668 | if (isOneNcfrac(frac)) { |
---|
669 | ERROR("isOneNcfrac non-one failed"); |
---|
670 | } |
---|
671 | print(" ncloc isZeroNcfrac/isOneNcfrac OK"); |
---|
672 | } |
---|
673 | ////////////////////////////////////////////////////////////////////// |
---|
674 | static proc testNcFracCreation() { |
---|
675 | print(" testing ncfrac creation..."); |
---|
676 | ring r = 0,(x,y,Dx,Dy),dp; |
---|
677 | def R = Weyl(); |
---|
678 | setring R; |
---|
679 | ncloc loc = list(x); |
---|
680 | ncfrac frac1 = [x,Dx,0,0]; // create from vector |
---|
681 | frac1.loc = loc; |
---|
682 | test(frac1); |
---|
683 | ncfrac frac2 = 7; // create from interface |
---|
684 | frac2.loc = loc; |
---|
685 | test(frac2); |
---|
686 | ncfrac frac3 = 4*x*Dx*Dy*Dy; // create from poly |
---|
687 | frac3.loc = loc; |
---|
688 | test(frac3); |
---|
689 | ncfrac frac4 = list([x^2,Dx], loc); // create from list with vector |
---|
690 | test(frac4); |
---|
691 | ncfrac frac5 = list(42, loc); // create from list with int |
---|
692 | test(frac5); |
---|
693 | print(" ncfrac creation OK"); |
---|
694 | } |
---|
695 | ////////////////////////////////////////////////////////////////////// |
---|
696 | static proc testNcfracComparison() { |
---|
697 | print(" testing ncfrac comparison..."); |
---|
698 | ring r = 0,(x,y,Dx,Dy),dp; |
---|
699 | def R = Weyl(); |
---|
700 | setring R; |
---|
701 | // monoidal |
---|
702 | poly g1 = x*y+3; |
---|
703 | poly g2 = y^3; |
---|
704 | ncloc locm = list(g1, g2); |
---|
705 | ncfrac fracm1 = list([g1,Dx,0,0], locm); |
---|
706 | ncfrac fracm2 = list([g1*g2,g2*Dx,0,0], locm); |
---|
707 | ncfrac fracm3 = list([g1*g2,g1*Dx+3,0,0], locm); |
---|
708 | if (!(fracm1 == fracm2)) { |
---|
709 | ERROR("Weyl monoidal positive basic comparison error"); |
---|
710 | } |
---|
711 | if (fracm1 == fracm3) { |
---|
712 | ERROR("Weyl monoidal first negative basic comparison error"); |
---|
713 | } |
---|
714 | if (fracm2 == fracm3) { |
---|
715 | ERROR("Weyl monoidal second negative basic comparison error"); |
---|
716 | } |
---|
717 | // geometric |
---|
718 | ideal p = x+5, y-2; |
---|
719 | ncloc locg = p; |
---|
720 | ncfrac fracg1 = list([g1,Dx,0,0], locg); |
---|
721 | ncfrac fracg2 = list([g1*g2,g2*Dx,0,0], locg); |
---|
722 | ncfrac fracg3 = list([g1*g2,g1*Dx+3,0,0], locg); |
---|
723 | if (!(fracg1 == fracg2)) { |
---|
724 | ERROR("Weyl geometric positive basic comparison error"); |
---|
725 | } |
---|
726 | if (fracg1 == fracg3) { |
---|
727 | ERROR("Weyl geometric first negative basic comparison error"); |
---|
728 | } |
---|
729 | if (fracg2 == fracg3) { |
---|
730 | ERROR("Weyl geometric second negative basic comparison error"); |
---|
731 | } |
---|
732 | // rational |
---|
733 | intvec rat = 1,4; |
---|
734 | ncloc locr = rat; |
---|
735 | ncfrac fracr1 = list([x+Dy,Dx,0,0], locr); |
---|
736 | ncfrac fracr2 = list([x*Dy*(x+Dy),x*Dx*Dy,0,0], locr); |
---|
737 | ncfrac fracr3 = list([Dy*x*(x+Dy),x*Dx*Dy+1,0,0], locr); |
---|
738 | if (!(fracr1 == fracr2)) { |
---|
739 | ERROR("Weyl rational positive basic comparison error"); |
---|
740 | } |
---|
741 | if (fracr1 == fracr3) { |
---|
742 | ERROR("Weyl rational first negative basic comparison error"); |
---|
743 | } |
---|
744 | if (fracr2 == fracr3) { |
---|
745 | ERROR("Weyl rational second negative basic comparison error"); |
---|
746 | } |
---|
747 | print(" ncfrac comparison OK"); |
---|
748 | } |
---|
749 | ////////////////////////////////////////////////////////////////////// |
---|
750 | static proc testNcfracAddition() { |
---|
751 | print(" testing ncfrac addition..."); |
---|
752 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
753 | def S = Weyl(); |
---|
754 | setring S; |
---|
755 | poly g1 = x+3; |
---|
756 | poly g2 = x*y+y; |
---|
757 | ncloc loc = list(g1,g2); |
---|
758 | ncfrac frac1 = list([g1,Dx,0,0], loc); |
---|
759 | ncfrac frac2 = list([g2,Dy,0,0], loc); |
---|
760 | ncfrac resu = frac1 + frac2; |
---|
761 | if (resu.lden != g1*g2 || resu.lnum != g2*Dx+g1*Dy) { |
---|
762 | ERROR("Weyl monoidal addition error"); |
---|
763 | } |
---|
764 | loc = ideal(x-1,y-3); |
---|
765 | frac1.loc = loc; |
---|
766 | frac2.loc = loc; |
---|
767 | resu = frac1 + frac2; |
---|
768 | if (resu.lden != g1*g2 || resu.lnum != g2*Dx+g1*Dy) { |
---|
769 | ERROR("Weyl geometric maximal addition error"); |
---|
770 | } |
---|
771 | loc = ideal(y+3); |
---|
772 | frac1.loc = loc; |
---|
773 | frac2.loc = loc; |
---|
774 | resu = frac1 + frac2; |
---|
775 | if (resu.lden != g1*g2 || resu.lnum != g2*Dx+g1*Dy) { |
---|
776 | ERROR("Weyl geometric prime addition error"); |
---|
777 | } |
---|
778 | loc = intvec(2); |
---|
779 | frac1 = list([y^2+y+1,Dx,0,0], loc); |
---|
780 | frac2 = list([y-2,Dy,0,0], loc); |
---|
781 | resu = frac1 + frac2; |
---|
782 | if (resu.lden != (y^2+y+1)*(y-2) || resu.lnum != (y-2)*Dx+(y^2+y+1)*Dy) { |
---|
783 | ERROR("Weyl rational addition error"); |
---|
784 | } |
---|
785 | print(" ncfrac addition OK"); |
---|
786 | } |
---|
787 | ////////////////////////////////////////////////////////////////////// |
---|
788 | static proc testNcfracSubtraction() { |
---|
789 | print(" testing ncfrac subtraction..."); |
---|
790 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
791 | def S = Weyl(); |
---|
792 | setring S; |
---|
793 | poly g1 = x+3; |
---|
794 | poly g2 = x*y+y; |
---|
795 | ncloc loc = list(g1,g2); |
---|
796 | ncfrac frac1 = list([g1,Dx,0,0], loc); |
---|
797 | ncfrac frac2 = list([g2,-Dy,0,0], loc); |
---|
798 | ncfrac resu = frac1 - frac2; |
---|
799 | if (resu.lden != g1*g2 || resu.lnum != g2*Dx+g1*Dy) { |
---|
800 | ERROR("Weyl monoidal subtraction error"); |
---|
801 | } |
---|
802 | loc = ideal(x-1,y-3); |
---|
803 | frac1.loc = loc; |
---|
804 | frac2.loc = loc; |
---|
805 | resu = frac1 - frac2; |
---|
806 | if (resu.lden != g1*g2 || resu.lnum != g2*Dx+g1*Dy) { |
---|
807 | ERROR("Weyl geometric subtraction error"); |
---|
808 | } |
---|
809 | loc = intvec(2); |
---|
810 | frac1 = list([y^2+y+1,Dx,0,0], loc); |
---|
811 | frac2 = list([y-2,-Dy,0,0], loc); |
---|
812 | resu = frac1 - frac2; |
---|
813 | if (resu.lden != (y^2+y+1)*(y-2) || resu.lnum != (y-2)*Dx+(y^2+y+1)*Dy) { |
---|
814 | ERROR("Weyl rational subtraction error"); |
---|
815 | } |
---|
816 | print(" ncfrac subtraction OK"); |
---|
817 | } |
---|
818 | ////////////////////////////////////////////////////////////////////// |
---|
819 | static proc testNcfracMultiplication() { |
---|
820 | print(" testing ncfrac multiplication..."); |
---|
821 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
822 | def S = Weyl(); |
---|
823 | setring S; |
---|
824 | // monoidal localization |
---|
825 | poly g1 = x+3; |
---|
826 | poly g2 = x*y+y; |
---|
827 | ncloc loc = list(g1,g2); |
---|
828 | ncfrac frac1 = list([g1,Dx,0,0], loc); |
---|
829 | ncfrac frac2 = list([g2,Dy,0,0], loc); |
---|
830 | ncfrac resu = frac1 * frac2; |
---|
831 | if (resu.lden != g1*g2^2 || resu.lnum != x*y*Dx*Dy+y*Dx*Dy-y*Dy) { |
---|
832 | ERROR("Weyl monoidal multiplication error"); |
---|
833 | } |
---|
834 | // geometric localization |
---|
835 | loc = ideal(x-1,y-3); |
---|
836 | frac1.loc = loc; |
---|
837 | frac2.loc = loc; |
---|
838 | resu = frac1 * frac2; |
---|
839 | if (resu.lden != g1*g2*(x+1) || resu.lnum != x*Dx*Dy+Dx*Dy-Dy) { |
---|
840 | ERROR("Weyl geometric multiplication error"); |
---|
841 | } |
---|
842 | // rational localization |
---|
843 | loc = intvec(2); |
---|
844 | frac1 = list([y^2+y+1,Dx,0,0], loc); |
---|
845 | frac2 = list([y-2,Dy,0,0], loc); |
---|
846 | resu = frac1 * frac2; |
---|
847 | if (resu.lden != (y^2+y+1)*(y-2) || resu.lnum != Dx*Dy) { |
---|
848 | ERROR("Weyl rational multiplication (1*2) error"); |
---|
849 | } |
---|
850 | resu = frac2 * frac1; |
---|
851 | if (resu.lden != (y^2+y+1)^2*(y-2) || resu.lnum != y^2*Dx*Dy+y*Dx*Dy-2*y*Dx+Dx*Dy-Dx) { |
---|
852 | ERROR("Weyl rational multiplication (2*1) error"); |
---|
853 | } |
---|
854 | print(" ncfrac multiplication OK"); |
---|
855 | } |
---|
856 | ////////////////////////////////////////////////////////////////////// |
---|
857 | static proc testNcfracDivision() { |
---|
858 | print(" testing ncfrac division..."); |
---|
859 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
860 | def S = Weyl(); |
---|
861 | setring S; |
---|
862 | // monoidal localization |
---|
863 | poly g1 = x+3; |
---|
864 | poly g2 = x*y+y; |
---|
865 | ncloc loc = list(g1,g2); |
---|
866 | ncfrac frac1 = list([g1,Dx,0,0], loc); |
---|
867 | ncfrac frac2 = list([g2,g1,0,0], loc); |
---|
868 | ncfrac resu = frac1 / frac2; |
---|
869 | if (resu.lden != g1^3 || resu.lnum != x^2*y*Dx+4*x*y*Dx+3*y*Dx+2*y) { |
---|
870 | ERROR("Weyl monoidal division error"); |
---|
871 | } |
---|
872 | // geometric localization |
---|
873 | loc = ideal(x-1,y-3); |
---|
874 | frac1.loc = loc; |
---|
875 | frac2.loc = loc; |
---|
876 | resu = frac1 / frac2; |
---|
877 | if (resu.lden != g1^3 || resu.lnum != x^2*y*Dx+4*x*y*Dx+3*y*Dx+2*y) { |
---|
878 | ERROR("Weyl geometric division error"); |
---|
879 | } |
---|
880 | // rational localization |
---|
881 | loc = intvec(2); |
---|
882 | frac1 = list([y^2+y+1,Dx,0,0], loc); |
---|
883 | frac2 = list([y-2,3*y^2-21y+2,0,0], loc); |
---|
884 | resu = frac1 / frac2; |
---|
885 | if (resu.lden != 3*y^4-18*y^3-16*y^2-19*y+2 || resu.lnum != (y-2)*Dx) { |
---|
886 | ERROR("Weyl geometric division error"); |
---|
887 | } |
---|
888 | print(" ncfrac division OK"); |
---|
889 | } |
---|
890 | ////////////////////////////////////////////////////////////////////// |
---|
891 | static proc testNcfracInversion() { |
---|
892 | print(" testing ncfrac invertNcfrac..."); |
---|
893 | ring R = 0,(x,y,Dx,Dy),dp; |
---|
894 | def S = Weyl(); |
---|
895 | setring S; |
---|
896 | poly g1 = x+3; |
---|
897 | poly g2 = x*y; |
---|
898 | ncfrac frac = list([g1*g2, 17, 0, 0], ncloc(list(g1,g2))); |
---|
899 | frac = invertNcfrac(frac); |
---|
900 | if (frac.lden != 17 || frac.lnum != g1*g2) { |
---|
901 | ERROR("Weyl monoidal inversion error"); |
---|
902 | } |
---|
903 | frac = list([g1, 3*x, 0, 0], ncloc(ideal(x-1,y))); |
---|
904 | frac = invertNcfrac(frac); |
---|
905 | if (frac.lden != 3*x || frac.lnum != x+3) { |
---|
906 | ERROR("Weyl geometric inversion error"); |
---|
907 | } |
---|
908 | frac = list([g1*g2, y, 0, 0], ncloc(intvec(1,2))); |
---|
909 | frac = invertNcfrac(frac); |
---|
910 | if (frac.lden != y || frac.lnum != g1*g2) { |
---|
911 | ERROR("Weyl rational inversion error"); |
---|
912 | } |
---|
913 | print(" ncfrac invertNcfrac OK"); |
---|
914 | } |
---|
915 | ////////////////////////////////////////////////////////////////////// |
---|
916 | static proc testEnsureRightNcfrac() { |
---|
917 | print(" testing ncfrac ensureRightNcfrac..."); |
---|
918 | // Weyl |
---|
919 | ring W = 0,(x,y,Dx,Dy),dp; |
---|
920 | def ncW = Weyl(); |
---|
921 | setring ncW; |
---|
922 | //// monoidal localization |
---|
923 | ncloc monloc = list(x); |
---|
924 | ncfrac monfrac = list([x,Dx,0,0], monloc); |
---|
925 | ncfrac monresult = ensureRightNcfrac(monfrac); |
---|
926 | if (!status(monresult)[1]) { |
---|
927 | ERROR("Weyl monoidal ensureRightNcfrac failed"); |
---|
928 | } |
---|
929 | //// geometrical localization |
---|
930 | ncloc geoloc = ideal(x-1,y-3); |
---|
931 | ncfrac geofrac = list([x+y,Dx+Dy,0,0], geoloc); |
---|
932 | ncfrac georesult = ensureRightNcfrac(geofrac); |
---|
933 | if (!status(georesult)[1]) { |
---|
934 | ERROR("Weyl geometric ensureRightNcfrac failed"); |
---|
935 | } |
---|
936 | //// rational localization |
---|
937 | ncloc ratloc = intvec(1); |
---|
938 | ncfrac ratfrac = list([x,Dx+Dy], ratloc); |
---|
939 | ncfrac ratresult = ensureRightNcfrac(ratfrac); |
---|
940 | if (!status(ratresult)[1]) { |
---|
941 | ERROR("Weyl rational ensureRightNcfrac failed"); |
---|
942 | } |
---|
943 | // shift rational localization |
---|
944 | ring S = 0,(x,y,Sx,Sy),dp; |
---|
945 | matrix D[4][4]; |
---|
946 | D[1,3] = Sx; |
---|
947 | D[2,4] = Sy; |
---|
948 | def ncS = nc_algebra(1, D); |
---|
949 | setring ncS; |
---|
950 | ncfrac shiftfrac = list([x,Sx+Sy], ratloc); |
---|
951 | ncfrac shiftresult = ensureRightNcfrac(shiftfrac); |
---|
952 | if (!status(shiftresult)[1]) { |
---|
953 | ERROR("Shift rational ensureRightNcfrac failed"); |
---|
954 | } |
---|
955 | // q-shift rational localization |
---|
956 | ring Q = (0,q),(x,y,Qx,Qy),dp; |
---|
957 | matrix C[4][4] = UpOneMatrix(4); |
---|
958 | C[1,3] = q; |
---|
959 | C[2,4] = q; |
---|
960 | def ncQ = nc_algebra(C, 0); |
---|
961 | setring ncQ; |
---|
962 | ncfrac qshiftfrac = list([x,Qx+Qy], ratloc); |
---|
963 | ncfrac qshiftresult = ensureRightNcfrac(qshiftfrac); |
---|
964 | if (!status(qshiftresult)[1]) { |
---|
965 | ERROR("q-shift rational ensureRightNcfrac failed"); |
---|
966 | } |
---|
967 | print(" ncfrac ensureRightNcfrac OK"); |
---|
968 | } |
---|
969 | ////////////////////////////////////////////////////////////////////// |
---|
970 | static proc testEnsureLeftNcfrac() { |
---|
971 | print(" testing ncfrac ensureLeftNcfrac..."); |
---|
972 | // Weyl |
---|
973 | ring W = 0,(x,y,Dx,Dy),dp; |
---|
974 | def ncW = Weyl(); |
---|
975 | setring ncW; |
---|
976 | //// monoidal localization |
---|
977 | ncloc monloc = list(x+3, x*y); |
---|
978 | ncfrac monfrac = list([0,0,Dx,(x+3)^2*x], monloc); |
---|
979 | ncfrac monresult = ensureLeftNcfrac(monfrac); |
---|
980 | if (!status(monresult)[1]) { |
---|
981 | ERROR("Weyl monoidal ensureLeftNcfrac failed"); |
---|
982 | } |
---|
983 | //// geometric localization |
---|
984 | ncloc geoloc = ideal(x-1,y-3); |
---|
985 | ncfrac geofrac = list([0,0,Dx,x^2+y], geoloc); |
---|
986 | ncfrac georesult = ensureLeftNcfrac(geofrac); |
---|
987 | if (!status(georesult)[1]) { |
---|
988 | ERROR("Weyl monoidal ensureLeftNcfrac failed"); |
---|
989 | } |
---|
990 | //// rational localization |
---|
991 | ncloc ratloc = intvec(1); |
---|
992 | ncfrac ratfrac = list([0,0,Dx+Dy,x], ratloc); |
---|
993 | ncfrac ratresult = ensureLeftNcfrac(ratfrac); |
---|
994 | if (!status(ratresult)[1]) { |
---|
995 | ERROR("Weyl monoidal ensureLeftNcfrac failed"); |
---|
996 | } |
---|
997 | // shift rational localization |
---|
998 | ring S = 0,(x,y,Sx,Sy),dp; |
---|
999 | matrix D[4][4]; |
---|
1000 | D[1,3] = Sx; |
---|
1001 | D[2,4] = Sy; |
---|
1002 | def ncS = nc_algebra(1, D); |
---|
1003 | setring ncS; |
---|
1004 | ncfrac shiftfrac = list([0,0,Sx+Sy,x], ratloc); |
---|
1005 | ncfrac shiftresult = ensureLeftNcfrac(shiftfrac); |
---|
1006 | if (!status(shiftresult)[1]) { |
---|
1007 | ERROR("Shift rational ensureLeftNcfrac failed"); |
---|
1008 | } |
---|
1009 | // q-shift rational localization |
---|
1010 | ring Q = (0,q),(x,y,Qx,Qy),dp; |
---|
1011 | matrix C[4][4] = UpOneMatrix(4); |
---|
1012 | C[1,3] = q; |
---|
1013 | C[2,4] = q; |
---|
1014 | def ncQ = nc_algebra(C, 0); |
---|
1015 | setring ncQ; |
---|
1016 | ncfrac qshiftfrac = list([0,0,Qx+Qy,x], ratloc); |
---|
1017 | ncfrac qshiftresult = ensureLeftNcfrac(qshiftfrac); |
---|
1018 | if (!status(qshiftresult)[1]) { |
---|
1019 | ERROR("q-shift rational ensureLeftNcfrac failed"); |
---|
1020 | } |
---|
1021 | print(" ncfrac ensureLeftNcfrac OK"); |
---|
1022 | } |
---|
1023 | ////////////////////////////////////////////////////////////////////// |
---|