1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: nctools.lib,v 1.39 2008-04-23 14:06:10 motsak Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: nctools.lib General tools for noncommutative algebras |
---|
6 | AUTHORS: Levandovskyy V., levandov@mathematik.uni-kl.de, |
---|
7 | @* Lobillo, F.J., jlobillo@ugr.es, |
---|
8 | @* Rabelo, C., crabelo@ugr.es, |
---|
9 | @* Motsak, O., {U@D}, where U={motsak}, D={mathematik.uni-kl.de}. |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | SUPPORT: DFG (Deutsche Forschungsgesellschaft) and Metodos algebraicos y efectivos en grupos cuanticos, BFM2001-3141, MCYT, Jose Gomez-Torrecillas (Main researcher). |
---|
14 | |
---|
15 | MAIN PROCEDURES: |
---|
16 | Gweights(r); compute weights for a compatible ordering in a G-algebra, |
---|
17 | weightedRing(r); change the ordering of a ring to a weighted one, |
---|
18 | ndcond(); the ideal of non-degeneracy conditions in G-algebra, |
---|
19 | Weyl([p]); create Weyl algebra structure in a basering (two different realizations), |
---|
20 | makeWeyl(n, [p]); return n-th Weyl algebra in (x(i),D(i)) presentation, |
---|
21 | makeHeisenberg(N, [p,d]); return n-th Heisenberg algebra in (x(i),y(i),h) realization, |
---|
22 | Exterior(); return qring, the exterior algebra of a basering, |
---|
23 | findimAlgebra(M,[r]); create finite dimensional algebra structure from the basering and the multiplication matrix M, |
---|
24 | SuperCommutative([b,e,Q]); return qring, the super-commutative algebra over a basering, |
---|
25 | rightStd(I); compute a right Groebner basis of an ideal, |
---|
26 | |
---|
27 | AUXILIARY PROCEDURES: |
---|
28 | ncRelations(r); recover the non-commutative relations of a G-algebra, |
---|
29 | isCentral(p); check for the commutativity of a polynomial in the G-algebra, |
---|
30 | isNC(); check whether basering is noncommutative, |
---|
31 | UpOneMatrix(N); return NxN matrix with 1's in the whole upper triagle, |
---|
32 | AltVarStart(); return first alternating variable of a super-commutative algebra, |
---|
33 | AltVarEnd(); return last alternating variable of a super-commutative algebra, |
---|
34 | IsSCA(); checks whether current ring is a super-commutative algebra |
---|
35 | "; |
---|
36 | |
---|
37 | |
---|
38 | LIB "ring.lib"; // for rootofUnity |
---|
39 | LIB "poly.lib"; // for newtonDiag |
---|
40 | // LIB "ncalg.lib"; |
---|
41 | |
---|
42 | /////////////////////////////////////////////////////////////////////////////// |
---|
43 | |
---|
44 | // This procedure computes a weights vector for a G-algebra r |
---|
45 | |
---|
46 | proc Gweights(def r) |
---|
47 | "USAGE: Gweights(r); r a ring or a square matrix |
---|
48 | RETURN: intvec |
---|
49 | PURPOSE: compute the weight vector for the following G-algebra: |
---|
50 | @* for r itself, if it is of the type ring, |
---|
51 | @* or for a G-algebra, defined by the square polynomial matrix r |
---|
52 | THEORY: @code{Gweights} returns a vector, which must be used to redefine the G-algebra. If the input is a matrix and the output is the zero vector then there is not a G-algebra structure associated to these relations with respect to the given variables. Another possibility is to use @code{weightedRing} to obtain directly the G-algebra with the new weighted ordering. |
---|
53 | EXAMPLE: example Gweights; shows examples |
---|
54 | SEE ALSO: weightedRing |
---|
55 | "{ |
---|
56 | int novalid=0; |
---|
57 | if (typeof(r)=="ring") //a ring is admissible as input |
---|
58 | { |
---|
59 | setring r; |
---|
60 | matrix tails; |
---|
61 | def l = ncRelations(r); |
---|
62 | tails = l[2]; // l=C,D we need D, the tails of the relations |
---|
63 | } |
---|
64 | else |
---|
65 | { |
---|
66 | matrix tails; |
---|
67 | if ( (typeof(r)=="matrix") || (typeof(r)=="intmat") ) |
---|
68 | { |
---|
69 | if ( nrows(r)==ncols(r) ) //the input is a square matrix |
---|
70 | { |
---|
71 | tails = matrix(r); |
---|
72 | } |
---|
73 | else |
---|
74 | { |
---|
75 | novalid = 1; |
---|
76 | } |
---|
77 | } |
---|
78 | else |
---|
79 | { |
---|
80 | novalid=1; |
---|
81 | } |
---|
82 | } |
---|
83 | if (novalid==0) |
---|
84 | { |
---|
85 | intmat IM = SimplMat(tails); |
---|
86 | if ( size(IM)>1 ) |
---|
87 | { |
---|
88 | int n = ncols(tails); |
---|
89 | int m = nrows(IM)-1; |
---|
90 | int m1 = 0; |
---|
91 | int m2 = m; |
---|
92 | int m3 = 0; |
---|
93 | ring simplexring=(real,10),(x),lp;// The simplex procedure requires a basering of this type |
---|
94 | matrix M = IM; |
---|
95 | list sol = simplex (M,m,n,m1,m2,m3); |
---|
96 | return(weightvector(sol)); |
---|
97 | } |
---|
98 | else |
---|
99 | { |
---|
100 | "Invalid input"; //usually because the input is a one variable ring |
---|
101 | return(); |
---|
102 | } |
---|
103 | } |
---|
104 | else |
---|
105 | { |
---|
106 | "The input must be a ring or a square matrix"; |
---|
107 | return(); |
---|
108 | } |
---|
109 | } |
---|
110 | example |
---|
111 | { |
---|
112 | "EXAMPLE:";echo=2; |
---|
113 | ring r = (0,q),(a,b,c,d),lp; |
---|
114 | matrix C[4][4]; |
---|
115 | C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q; |
---|
116 | matrix D[4][4]; |
---|
117 | D[1,4]=(q-1/q)*b*c; |
---|
118 | def S = nc_algebra(C,D); setring S; S; |
---|
119 | Gweights(S); |
---|
120 | def D=fetch(r,D); |
---|
121 | Gweights(D); |
---|
122 | } |
---|
123 | |
---|
124 | /////////////////////////////////////////////////////////////////////////////// |
---|
125 | |
---|
126 | // This procedure take a ring r, call to Gweights(r) and use the output |
---|
127 | // of Gweights(r) to make a change of order in r |
---|
128 | // The output is a new ring, equal to r but the order |
---|
129 | // r must be a G-algebra |
---|
130 | |
---|
131 | proc weightedRing(def r) |
---|
132 | "USAGE: weightedRing(r); r a ring |
---|
133 | RETURN: ring |
---|
134 | PURPOSE: equip the variables of a ring with such weights,that the relations of new ring (with weighted variables) satisfies the ordering condition for G-algebras |
---|
135 | NOTE: activate this ring with the \"setring\" command |
---|
136 | EXAMPLE: example weightedRing; shows examples |
---|
137 | SEE ALSO: Gweights |
---|
138 | "{ |
---|
139 | def wv=Gweights(r); |
---|
140 | if (typeof(wv)=="intvec") |
---|
141 | { |
---|
142 | setring r; |
---|
143 | int n=nvars(r); |
---|
144 | // Generating an nxn-intmat order |
---|
145 | intmat m[n][n]; |
---|
146 | m[1,1]=wv[1]; |
---|
147 | int i; |
---|
148 | for (i=2; i<=n; i++) |
---|
149 | { |
---|
150 | m[1,i]=wv[i]; |
---|
151 | m[i,n+2-i]=1; |
---|
152 | } |
---|
153 | // End of generation. |
---|
154 | def lr=ncRelations(r); |
---|
155 | string newringstring="ring newring=("+charstr(r)+"),("+varstr(r)+"),M("+string(m)+")"; |
---|
156 | execute (newringstring); |
---|
157 | def lnewring=imap(r,lr); |
---|
158 | return( nc_algebra(lnewring[1],lnewring[2]) ); |
---|
159 | } |
---|
160 | else |
---|
161 | { |
---|
162 | "Invalid input.";//usually because the input is a one variable ring |
---|
163 | return(); |
---|
164 | } |
---|
165 | } |
---|
166 | example |
---|
167 | { |
---|
168 | "EXAMPLE:";echo=2; |
---|
169 | ring r = (0,q),(a,b,c,d),lp; |
---|
170 | matrix C[4][4]; |
---|
171 | C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q; |
---|
172 | matrix D[4][4]; |
---|
173 | D[1,4]=(q-1/q)*b*c; |
---|
174 | def S = nc_algebra(C,D); setring S; S; |
---|
175 | def t=weightedRing(S); |
---|
176 | setring t; t; |
---|
177 | } |
---|
178 | |
---|
179 | /////////////////////////////////////////////////////////////////////////////// |
---|
180 | |
---|
181 | // This procedure computes ei+ej-f with f running in Newton(pij) and deletes the zero rows |
---|
182 | |
---|
183 | static proc Cij(intmat M, int i,j) |
---|
184 | { |
---|
185 | M=(-1)*M; |
---|
186 | int nc=ncols(M); |
---|
187 | intvec N; |
---|
188 | int k; |
---|
189 | for (k=1; k<=nrows(M); k++) |
---|
190 | { |
---|
191 | M[k,i]=M[k,i]+1; |
---|
192 | M[k,j]=M[k,j]+1; |
---|
193 | if (intvec(M[k,1..nc])!=0) |
---|
194 | { |
---|
195 | N=N,intvec(M[k,1..nc]); |
---|
196 | } // we only want non-zero rows |
---|
197 | } |
---|
198 | if (size(N)>1) |
---|
199 | { |
---|
200 | N=N[2..size(N)]; // Deleting the zero added in the definition of N |
---|
201 | M=intmat(N,size(N)/nc,nc); // Conversion from vector to matrix |
---|
202 | } |
---|
203 | else |
---|
204 | { |
---|
205 | intmat M[1][1]=0; |
---|
206 | } |
---|
207 | return (M); |
---|
208 | } |
---|
209 | |
---|
210 | /////////////////////////////////////////////////////////////////////////////// |
---|
211 | |
---|
212 | // This procedure run over the matrix of pij calculating Cij |
---|
213 | |
---|
214 | static proc Ct(matrix P) |
---|
215 | { |
---|
216 | int k = ncols(P); |
---|
217 | intvec T = 0; |
---|
218 | int i,j; |
---|
219 | // int notails=1; |
---|
220 | def S; |
---|
221 | for (j=2; j<=k; j++) |
---|
222 | { |
---|
223 | for (i=1; i<j; i++) |
---|
224 | { |
---|
225 | if ( P[i,j] != 0 ) |
---|
226 | { |
---|
227 | // notails=0; |
---|
228 | S = newtonDiag(P[i,j]); |
---|
229 | S = Cij(S,i,j); |
---|
230 | if ( size(S)>1 ) |
---|
231 | { |
---|
232 | T = T,S; |
---|
233 | } |
---|
234 | } |
---|
235 | } |
---|
236 | } |
---|
237 | if ( size(T)==1 ) |
---|
238 | { |
---|
239 | intmat C[1][1] = 0; |
---|
240 | } |
---|
241 | else |
---|
242 | { |
---|
243 | T=T[2..size(T)]; // Deleting the zero added in the definition of T |
---|
244 | intmat C = intmat(T,size(T)/k,k); // Conversion from vector to matrix |
---|
245 | } |
---|
246 | return (C); |
---|
247 | } |
---|
248 | |
---|
249 | /////////////////////////////////////////////////////////////////////////////// |
---|
250 | |
---|
251 | // The purpose of this procedure is to produce the input matrix required by simplex procedure |
---|
252 | |
---|
253 | static proc SimplMat(matrix P) |
---|
254 | { |
---|
255 | intmat C=Ct(P); |
---|
256 | if (size(C)>1) |
---|
257 | { |
---|
258 | int r = nrows(C); |
---|
259 | int n = ncols(C); |
---|
260 | int f = 1+n+r; |
---|
261 | intmat M[f][n+1]=0; |
---|
262 | int i; |
---|
263 | for (i=2; i<=(n+1); i++) |
---|
264 | { |
---|
265 | M[1,i]=-1; // (0,-1,-1,-1,...) objective function in the first row |
---|
266 | } |
---|
267 | for (i=2; i<=f; i++) {M[i,1]=1;} // All the independent terms are 1 |
---|
268 | for (i=2; i<=(n+1); i++) {M[i,i]=-1;} // wi>=1 is an identity matrix |
---|
269 | M[(n+2)..f,2..(n+1)]=(-1)*intvec(C); // <wi,a> >= 1, a in C ... |
---|
270 | } |
---|
271 | else |
---|
272 | { |
---|
273 | int n = ncols(P); |
---|
274 | int f = 1+n; |
---|
275 | intmat M[f][n+1]=0; |
---|
276 | int i; |
---|
277 | for (i=2; i<=(n+1); i++) {M[1,i]=-1;} // (0,-1,-1,-1,...) objective function in the first row |
---|
278 | for (i=2; i<=f; i++) {M[i,1]=1;} // All the independent terms are 1 |
---|
279 | for (i=2; i<=(n+1); i++) {M[i,i]=-1;} // wi>=1 is an identity matrix |
---|
280 | } |
---|
281 | return (M); |
---|
282 | } |
---|
283 | |
---|
284 | /////////////////////////////////////////////////////////////////////////////// |
---|
285 | |
---|
286 | // This procedure generates a nice output of the simplex method consisting of a vector |
---|
287 | // with the solutions. The vector is ordered. |
---|
288 | |
---|
289 | static proc weightvector(list l) |
---|
290 | "ASSUME: l is the output of simplex. |
---|
291 | RETURN: if there is a solution, an intvec with it will be returned" |
---|
292 | { |
---|
293 | matrix m=l[1]; |
---|
294 | intvec nv=l[3]; |
---|
295 | int sol=l[2]; |
---|
296 | int rows=nrows(m); |
---|
297 | int N=l[6]; |
---|
298 | intmat wv[1][N]=0; |
---|
299 | int i; |
---|
300 | if (sol) |
---|
301 | { |
---|
302 | "no solution satisfies the given constraints"; |
---|
303 | } |
---|
304 | else |
---|
305 | { |
---|
306 | for ( i = 2; i <= rows; i++ ) |
---|
307 | { |
---|
308 | if ( nv[i-1] <= N ) |
---|
309 | { |
---|
310 | wv[1,nv[i-1]]=int(m[i,1]); |
---|
311 | } |
---|
312 | } |
---|
313 | } |
---|
314 | return (intvec(wv)); |
---|
315 | } |
---|
316 | |
---|
317 | |
---|
318 | |
---|
319 | /////////////////////////////////////////////////////////////////////////////// |
---|
320 | |
---|
321 | // This procedure recover the non-conmutative relations (matrices C and D) |
---|
322 | |
---|
323 | proc ncRelations(def r) |
---|
324 | "USAGE: ncRelations(r); r a ring |
---|
325 | RETURN: list L with two elements, both elements are of type matrix: |
---|
326 | @* L[1] = matrix of coefficients C, |
---|
327 | @* L[2] = matrix of polynomials D |
---|
328 | PURPOSE: recover the noncommutative relations via matrices C and D from |
---|
329 | a noncommutative ring |
---|
330 | SEE ALSO: ringlist, G-algebras |
---|
331 | EXAMPLE: example ncRelations; shows examples |
---|
332 | "{ |
---|
333 | list l; |
---|
334 | if (typeof(r)=="ring") |
---|
335 | { |
---|
336 | int n=nvars(r); |
---|
337 | matrix C[n][n]=0; |
---|
338 | matrix D[n][n]=0; |
---|
339 | poly f; poly g; |
---|
340 | if (n>1) |
---|
341 | { |
---|
342 | int i,j; |
---|
343 | for (i=2; i<=n; i++) |
---|
344 | { |
---|
345 | for (j=1; j<i; j++) |
---|
346 | { |
---|
347 | f=var(i)*var(j); // yx=c*xy+... |
---|
348 | g=var(j)*var(i); // xy |
---|
349 | while (C[j,i]==0) |
---|
350 | { |
---|
351 | if (leadmonom(f)==leadmonom(g)) |
---|
352 | { |
---|
353 | C[j,i]=leadcoef(f); |
---|
354 | D[j,i]=D[j,i]+f-lead(f); |
---|
355 | } |
---|
356 | else |
---|
357 | { |
---|
358 | D[j,i]=D[j,i]+lead(f); |
---|
359 | f=f-lead(f); |
---|
360 | } |
---|
361 | } |
---|
362 | } |
---|
363 | } |
---|
364 | l=C,D; |
---|
365 | } |
---|
366 | else { "The ring must have two or more variables"; } |
---|
367 | } |
---|
368 | else { "The input must be of a type ring";} |
---|
369 | return (l); |
---|
370 | } |
---|
371 | example |
---|
372 | { |
---|
373 | "EXAMPLE:";echo=2; |
---|
374 | ring r = 0,(x,y,z),dp; |
---|
375 | matrix C[3][3]=0,1,2,0,0,-1,0,0,0; |
---|
376 | print(C); |
---|
377 | matrix D[3][3]=0,1,2y,0,0,-2x+y+1; |
---|
378 | print(D); |
---|
379 | def S=nc_algebra(C,D);setring S; S; |
---|
380 | def l=ncRelations(S); |
---|
381 | print (l[1]); |
---|
382 | print (l[2]); |
---|
383 | } |
---|
384 | |
---|
385 | /////////////////////////////////////////////////////////////////////////////// |
---|
386 | |
---|
387 | proc findimAlgebra(matrix M, list #) |
---|
388 | "USAGE: findimAlgebra(M,[r]); M a matrix, r an optional ring |
---|
389 | RETURN: ring |
---|
390 | PURPOSE: define a finite dimensional algebra structure on a ring |
---|
391 | NOTE: the matrix M is used to define the relations x(j)*x(i) = M[i,j] in the |
---|
392 | basering (by default) or in the optional ring r. |
---|
393 | @* The procedure equips the ring with the noncommutative structure. |
---|
394 | @* The procedure exports the ideal (not a two-sided Groebner basis!), called @code{fdQuot}, for further qring definition. |
---|
395 | THEORY: finite dimensional algebra can be represented as a factor algebra |
---|
396 | of a G-algebra modulo certain two-sided ideal. The relations of a f.d. algebra are thus naturally divided into two groups: firstly, the relations |
---|
397 | on the variables of the ring, making it into G-algebra and the rest of them, which constitute the ideal which will be factored out. |
---|
398 | EXAMPLE: example findimAlgebra; shows examples |
---|
399 | " |
---|
400 | { |
---|
401 | if (size(#) >0) |
---|
402 | { |
---|
403 | if ( typeof(#[1])!="ring" ) { return();} |
---|
404 | else |
---|
405 | { |
---|
406 | def @R1 = #[1]; |
---|
407 | setring @R1; |
---|
408 | } |
---|
409 | } |
---|
410 | int i,j; |
---|
411 | int n=nvars(basering); |
---|
412 | poly p; |
---|
413 | ideal I; |
---|
414 | number c; |
---|
415 | matrix C[n][n]; |
---|
416 | matrix D[n][n]; |
---|
417 | for (i=1; i<=n; i++) |
---|
418 | { |
---|
419 | for (j=i; j<=n; j++) |
---|
420 | { |
---|
421 | p=var(i)*var(j)-M[i,j]; |
---|
422 | if ( (size(I)==1) && (I[1]==0) ) { I=p; } |
---|
423 | else { I=I,p; } |
---|
424 | if (j>i) |
---|
425 | { |
---|
426 | if ((M[i,j]!=0) && (M[j,i]!=0)) |
---|
427 | { |
---|
428 | c = leadcoef(M[j,i])/leadcoef(M[i,j]); |
---|
429 | } |
---|
430 | else |
---|
431 | { |
---|
432 | c = 1; |
---|
433 | } |
---|
434 | C[i,j]=c; |
---|
435 | D[i,j]= - M[j,i] +c*M[i,j]; |
---|
436 | } |
---|
437 | } |
---|
438 | } |
---|
439 | def save = basering; |
---|
440 | def S = nc_algebra(C,D); setring S; |
---|
441 | ideal fdQuot = fetch(save,D); |
---|
442 | export fdQuot; |
---|
443 | return(S); |
---|
444 | } |
---|
445 | example |
---|
446 | { |
---|
447 | "EXAMPLE:";echo=2; |
---|
448 | ring r=(0,a,b),(x(1..3)),dp; |
---|
449 | matrix S[3][3]; |
---|
450 | S[2,3]=a*x(1); S[3,2]=-b*x(1); |
---|
451 | def A=findimAlgebra(S); setring A; |
---|
452 | fdQuot = twostd(fdQuot); |
---|
453 | qring Qr = fdQuot; |
---|
454 | Qr; |
---|
455 | } |
---|
456 | |
---|
457 | /////////////////////////////////////////////////////////////////////////////// |
---|
458 | |
---|
459 | proc isCentral(poly p, list #) |
---|
460 | "USAGE: isCentral(p); p poly |
---|
461 | RETURN: int, 1 if p commutes with all variables and 0 otherwise |
---|
462 | PURPOSE: check whether p is central in a basering (that is, commutes with every generator of a ring) |
---|
463 | NOTE: if @code{printlevel} > 0, the procedure displays intermediate information (by default, @code{printlevel}=0 ) |
---|
464 | EXAMPLE: example isCentral; shows examples |
---|
465 | "{ |
---|
466 | //v an integer (with v!=0, procedure will be verbose) |
---|
467 | int N = nvars(basering); |
---|
468 | int in; |
---|
469 | int flag = 1; |
---|
470 | poly q = 0; |
---|
471 | for (in=1; in<=N; in++) |
---|
472 | { |
---|
473 | q = p*var(in)-var(in)*p; |
---|
474 | if (q!=0) |
---|
475 | { |
---|
476 | if ( (size(#) >0 ) || (printlevel>0) ) |
---|
477 | { |
---|
478 | "Noncentral at:", var(in); |
---|
479 | } |
---|
480 | flag = 0; |
---|
481 | } |
---|
482 | } |
---|
483 | return(flag); |
---|
484 | } |
---|
485 | example |
---|
486 | { |
---|
487 | "EXAMPLE:";echo=2; |
---|
488 | ring r=0,(x,y,z),dp; |
---|
489 | matrix D[3][3]=0; |
---|
490 | D[1,2]=-z; |
---|
491 | D[1,3]=2*x; |
---|
492 | D[2,3]=-2*y; |
---|
493 | def S = nc_algebra(1,D); setring S; |
---|
494 | S; // this is U(sl_2) |
---|
495 | poly c = 4*x*y+z^2-2*z; |
---|
496 | printlevel = 0; |
---|
497 | isCentral(c); |
---|
498 | poly h = x*c; |
---|
499 | printlevel = 1; |
---|
500 | isCentral(h); |
---|
501 | } |
---|
502 | |
---|
503 | /////////////////////////////////////////////////////////////////////////////// |
---|
504 | |
---|
505 | proc UpOneMatrix(int N) |
---|
506 | "USAGE: UpOneMatrix(n); n an integer |
---|
507 | RETURN: intmat |
---|
508 | PURPOSE: compute an n x n matrix with 1's in the whole upper triangle |
---|
509 | NOTE: helpful for setting noncommutative algebras with complicated |
---|
510 | coefficient matrices |
---|
511 | EXAMPLE: example UpOneMatrix; shows examples |
---|
512 | "{ |
---|
513 | int ii,jj; |
---|
514 | intmat U[N][N]=0; |
---|
515 | for (ii=1;ii<N;ii++) |
---|
516 | { |
---|
517 | for (jj=ii+1;jj<=N;jj++) |
---|
518 | { |
---|
519 | U[ii,jj]=1; |
---|
520 | } |
---|
521 | } |
---|
522 | return(U); |
---|
523 | } |
---|
524 | example |
---|
525 | { |
---|
526 | "EXAMPLE:";echo=2; |
---|
527 | ring r = (0,q),(x,y,z),dp; |
---|
528 | matrix C = UpOneMatrix(3); |
---|
529 | C[1,3] = q; |
---|
530 | print(C); |
---|
531 | def S = nc_algebra(C,0); setring S; |
---|
532 | S; |
---|
533 | } |
---|
534 | |
---|
535 | /////////////////////////////////////////////////////////////////////////////// |
---|
536 | proc ndcond(list #) |
---|
537 | "USAGE: ndcond(); |
---|
538 | RETURN: ideal |
---|
539 | PURPOSE: compute the non-degeneracy conditions of the basering |
---|
540 | NOTE: if @code{printlevel} > 0, the procedure displays intermediate information (by default, @code{printlevel}=0 ) |
---|
541 | EXAMPLE: example ndcond; shows examples |
---|
542 | " |
---|
543 | { |
---|
544 | // internal documentation, for tests etc |
---|
545 | // 1st arg: v an optional integer (if v!=0, will be verbose) |
---|
546 | // if the second argument is given, produces ndc wrt powers x^N |
---|
547 | int N = 1; |
---|
548 | int Verbose = 0; |
---|
549 | if ( size(#)>=1 ) { Verbose = int(#[1]); } |
---|
550 | if ( size(#)>=2 ) { N = int(#[2]); } |
---|
551 | Verbose = ((Verbose) || (printlevel>0)); |
---|
552 | int cnt = 1; |
---|
553 | int numvars = nvars(basering); |
---|
554 | int a,b,c; |
---|
555 | poly p = 1; |
---|
556 | ideal res = 0; |
---|
557 | for (cnt=1; cnt<=N; cnt++) |
---|
558 | { |
---|
559 | if (Verbose) { "Processing degree :",cnt;} |
---|
560 | for (a=1; a<=numvars-2; a++) |
---|
561 | { |
---|
562 | for (b=a+1; b<=numvars-1; b++) |
---|
563 | { |
---|
564 | for(c=b+1; c<=numvars; c++) |
---|
565 | { |
---|
566 | p = (var(c)^cnt)*(var(b)^cnt); |
---|
567 | p = p*(var(a)^cnt); |
---|
568 | p = p-(var(c)^cnt)*((var(b)^cnt)*(var(a)^cnt)); |
---|
569 | if (Verbose) {a,".",b,".",c,".";} |
---|
570 | if (p!=0) |
---|
571 | { |
---|
572 | if ( res==0 ) |
---|
573 | { |
---|
574 | res[1] = p; |
---|
575 | } |
---|
576 | else |
---|
577 | { |
---|
578 | res = res,p; |
---|
579 | } |
---|
580 | if (Verbose) { "failed:",p; } |
---|
581 | } |
---|
582 | } |
---|
583 | } |
---|
584 | } |
---|
585 | if (Verbose) { "done"; } |
---|
586 | } |
---|
587 | return(res); |
---|
588 | } |
---|
589 | example |
---|
590 | { |
---|
591 | "EXAMPLE:";echo=2; |
---|
592 | ring r = (0,q1,q2),(x,y,z),dp; |
---|
593 | matrix C[3][3]; |
---|
594 | C[1,2]=q2; C[1,3]=q1; C[2,3]=1; |
---|
595 | matrix D[3][3]; |
---|
596 | D[1,2]=x; D[1,3]=z; |
---|
597 | def S = nc_algebra(C,D); setring S; |
---|
598 | S; |
---|
599 | ideal j=ndcond(); // the silent version |
---|
600 | j; |
---|
601 | printlevel=1; |
---|
602 | ideal i=ndcond(); // the verbose version |
---|
603 | i; |
---|
604 | } |
---|
605 | |
---|
606 | |
---|
607 | /////////////////////////////////////////////////////////////////////////////// |
---|
608 | proc Weyl(list #) |
---|
609 | "USAGE: Weyl([p]); p an optional integer |
---|
610 | RETURN: ring |
---|
611 | PURPOSE: create a Weyl algebra structure from the basering |
---|
612 | NOTE: suppose the number of variables of a basering is 2k. |
---|
613 | (if this number is odd, an error message will be returned) |
---|
614 | @* by default, the procedure treats first k variables as coordinates x_i and the last k as differentials d_i |
---|
615 | @* if nonzero p is given, the procedure treats 2k variables of a basering as k pairs (x_i,d_i), i.e. variables with odd numbers are treated as coordinates and with even numbers as differentials |
---|
616 | SEE ALSO: makeWeyl |
---|
617 | EXAMPLE: example Weyl; shows examples |
---|
618 | " |
---|
619 | { |
---|
620 | //there are two possibilities for choosing the PBW basis. |
---|
621 | //The variables have names x(i) for coordinates and d(i) for partial |
---|
622 | // differentiations. By default, the procedure |
---|
623 | //creates a ring, where the variables are ordered as x(1..n),d(1..n). the |
---|
624 | // tensor product-like realization x(1),d(1),x(2),d(2),... is used. |
---|
625 | string rname=nameof(basering); |
---|
626 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
627 | { |
---|
628 | "You have to call the procedure from the ring"; |
---|
629 | return(); |
---|
630 | } |
---|
631 | int @chr = 0; |
---|
632 | if ( size(#) > 0 ) |
---|
633 | { |
---|
634 | if ( typeof( #[1] ) == "int" ) |
---|
635 | { |
---|
636 | @chr = #[1]; |
---|
637 | } |
---|
638 | } |
---|
639 | int nv = nvars(basering); |
---|
640 | int N = nv div 2; |
---|
641 | if ((nv % 2) != 0) |
---|
642 | { |
---|
643 | "Cannot create Weyl structure for an odd number of generators"; |
---|
644 | return(); |
---|
645 | } |
---|
646 | matrix @D[nv][nv]; |
---|
647 | int i; |
---|
648 | for ( i=1; i<=N; i++ ) |
---|
649 | { |
---|
650 | if ( @chr==0 ) // default |
---|
651 | { |
---|
652 | @D[i,N+i]=1; |
---|
653 | } |
---|
654 | else |
---|
655 | { |
---|
656 | @D[2*i-1,2*i]=1; |
---|
657 | } |
---|
658 | } |
---|
659 | def @R = nc_algebra(1,@D); |
---|
660 | return(@R); |
---|
661 | } |
---|
662 | example |
---|
663 | { |
---|
664 | "EXAMPLE:";echo=2; |
---|
665 | ring A1=0,(x(1..2),d(1..2)),dp; |
---|
666 | def S=Weyl(); |
---|
667 | setring S; S; |
---|
668 | kill A1,S; |
---|
669 | ring B1=0,(x1,d1,x2,d2),dp; |
---|
670 | def S=Weyl(1); |
---|
671 | setring S; S; |
---|
672 | } |
---|
673 | |
---|
674 | /////////////////////////////////////////////////////////////////////////////// |
---|
675 | proc makeHeisenberg(int N, list #) |
---|
676 | "USAGE: makeHeisenberg(n, [p,d]); int n (setting 2n+1 variables), optional int p (field characteristic), optional int d (power of h in the commutator) |
---|
677 | RETURN: ring |
---|
678 | PURPOSE: create an n-th Heisenberg algebra in the variables x(1),y(1),...,x(n),y(n),h |
---|
679 | SEE ALSO: makeWeyl |
---|
680 | NOTE: activate this ring with the \"setring\" command |
---|
681 | EXAMPLE: example makeHeisenberg; shows examples |
---|
682 | " |
---|
683 | { |
---|
684 | int @chr = 0; |
---|
685 | int @deg = 1; |
---|
686 | if ( size(#) > 0 ) |
---|
687 | { |
---|
688 | if ( typeof( #[1] ) == "int" ) |
---|
689 | { |
---|
690 | @chr = #[1]; |
---|
691 | } |
---|
692 | } |
---|
693 | if ( size(#) > 1 ) |
---|
694 | { |
---|
695 | if ( typeof( #[2] ) == "int" ) |
---|
696 | { |
---|
697 | @deg = #[2]; |
---|
698 | if (@deg <1) { @deg = 1; } |
---|
699 | } |
---|
700 | } |
---|
701 | ring @@r=@chr,(x(1..N),y(1..N),h),lp; |
---|
702 | matrix D[2*N+1][2*N+1]; |
---|
703 | int i; |
---|
704 | for (i=1;i<=N;i++) |
---|
705 | { |
---|
706 | D[i,N+i]=h^@deg; |
---|
707 | } |
---|
708 | return(nc_algebra(1,D)); |
---|
709 | } |
---|
710 | example |
---|
711 | { |
---|
712 | "EXAMPLE:";echo=2; |
---|
713 | def a = makeHeisenberg(2); |
---|
714 | setring a; a; |
---|
715 | def H3 = makeHeisenberg(3, 7, 2); |
---|
716 | setring H3; H3; |
---|
717 | } |
---|
718 | |
---|
719 | /////////////////////////////////////////////////////////////////////////////// |
---|
720 | proc SuperCommutative(list #) |
---|
721 | "USAGE: SuperCommutative([b,[e, [Q, [flag]]]]); |
---|
722 | RETURN: qring |
---|
723 | PURPOSE: create the super-commutative algebra (as a GR-algebra) 'over' a basering, |
---|
724 | NOTE: activate this qring with the \"setring\" command. |
---|
725 | NOTE: if b==e then the resulting ring is commutative unles 'flag' is given and non-zero. |
---|
726 | THEORY: given a basering, this procedure introduces the anticommutative relations x(j)x(i)=-x(i)x(j) for all e>=j>i>=b, |
---|
727 | @* moreover, creates a factor algebra modulo the two-sided ideal, generated by x(b)^2, ..., x(e)^2[ + Q] |
---|
728 | EXAMPLE: example SuperCommutative; shows examples |
---|
729 | " |
---|
730 | { |
---|
731 | |
---|
732 | // NOTE: as a side effect the basering will be changed (if not in a commutative case) to bo the ground G-algebra (without factor). |
---|
733 | int fprot = (find(option(),"prot") != 0); |
---|
734 | |
---|
735 | string rname=nameof(basering); |
---|
736 | |
---|
737 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
738 | { |
---|
739 | ERROR("You have to call the procedure from the ring"); |
---|
740 | return(); |
---|
741 | } |
---|
742 | |
---|
743 | def saveRing = basering; |
---|
744 | |
---|
745 | int N = nvars(saveRing); |
---|
746 | int b = 1; |
---|
747 | int e = N; |
---|
748 | int flag = 0; |
---|
749 | |
---|
750 | ideal Q = 0; |
---|
751 | |
---|
752 | if(size(#)>0) |
---|
753 | { |
---|
754 | if(typeof(#[1]) != "int") |
---|
755 | { |
---|
756 | ERROR("The argument 'b' must be an integer!"); |
---|
757 | return(); |
---|
758 | } |
---|
759 | b = #[1]; |
---|
760 | |
---|
761 | if((b < 1)||(b > N)) |
---|
762 | { |
---|
763 | ERROR("The argument 'b' must within [1..nvars(basering)]!"); |
---|
764 | return(); |
---|
765 | } |
---|
766 | |
---|
767 | } |
---|
768 | |
---|
769 | if(size(#)>1) |
---|
770 | { |
---|
771 | if(typeof(#[2]) != "int") |
---|
772 | { |
---|
773 | ERROR("The argument 'e' must be an integer!"); |
---|
774 | return(); |
---|
775 | } |
---|
776 | e = #[2]; |
---|
777 | |
---|
778 | if((e < 1)||(e > N)) |
---|
779 | { |
---|
780 | ERROR("The argument 'e' must within [1..nvars(basering)]!"); |
---|
781 | return(); |
---|
782 | } |
---|
783 | |
---|
784 | if(e < b) |
---|
785 | { |
---|
786 | ERROR("The argument 'e' must be bigger or equal to 'b'!"); |
---|
787 | return(); |
---|
788 | } |
---|
789 | } |
---|
790 | |
---|
791 | if(size(#)>2) |
---|
792 | { |
---|
793 | if(typeof(#[3]) != "ideal") |
---|
794 | { |
---|
795 | ERROR("The argument 'Q' must be an ideal!"); |
---|
796 | return(); |
---|
797 | } |
---|
798 | Q = #[3]; |
---|
799 | } |
---|
800 | |
---|
801 | if(size(#)>3) |
---|
802 | { |
---|
803 | if(typeof(#[4]) != "int") |
---|
804 | { |
---|
805 | ERROR("The argument 'flag' must be an integer!"); |
---|
806 | return(); |
---|
807 | } |
---|
808 | flag = #[4]; |
---|
809 | } |
---|
810 | |
---|
811 | int iSavedDegBoung = degBound; |
---|
812 | |
---|
813 | if( (b == e) && (flag == 0) ) // commutative ring!!! |
---|
814 | { |
---|
815 | if( fprot == 1) |
---|
816 | { |
---|
817 | print("Warning: (b==e) means that the resulting ring will be commutative!"); |
---|
818 | } |
---|
819 | |
---|
820 | degBound=0; |
---|
821 | Q = std(Q + (var(b)^2)); |
---|
822 | degBound = iSavedDegBoung; |
---|
823 | |
---|
824 | qring @EA = Q; // and it will be internally commutative as well!!! |
---|
825 | |
---|
826 | return(@EA); |
---|
827 | } |
---|
828 | |
---|
829 | /* |
---|
830 | // Singular'(H.S.) politics: no ring copies! |
---|
831 | // in future nc_algebra() should return a new ring!!! |
---|
832 | list CurrRing = ringlist(basering); |
---|
833 | def @R = ring(CurrRing); |
---|
834 | setring @R; // @R; |
---|
835 | */ |
---|
836 | |
---|
837 | if( (char(basering)==2) && (flag == 0) )// commutative ring!!! |
---|
838 | { |
---|
839 | if( fprot == 1) |
---|
840 | { |
---|
841 | print("Warning: (char == 2) means that the resulting ring will be commutative!"); |
---|
842 | } |
---|
843 | |
---|
844 | int j = ncols(Q) + 1; |
---|
845 | |
---|
846 | for ( int i=e; i>=b; i--, j++ ) |
---|
847 | { |
---|
848 | Q[j] = var(i)^2; |
---|
849 | } |
---|
850 | |
---|
851 | degBound=0; |
---|
852 | Q = std(Q); |
---|
853 | degBound = iSavedDegBoung; |
---|
854 | |
---|
855 | qring @EA = Q; // and it will be internally commutative as well!!! |
---|
856 | return(@EA); |
---|
857 | } |
---|
858 | |
---|
859 | |
---|
860 | int i, j; |
---|
861 | |
---|
862 | if( (b == 1) && (e == N) ) // just an exterior algebra? |
---|
863 | { |
---|
864 | def S = nc_algebra(-1, 0); // define ground G-algebra! |
---|
865 | setring S; |
---|
866 | } else |
---|
867 | { |
---|
868 | matrix @E = UpOneMatrix(N); |
---|
869 | |
---|
870 | for ( i = b; i < e; i++ ) |
---|
871 | { |
---|
872 | for ( j = i+1; j <= e; j++ ) |
---|
873 | { |
---|
874 | @E[i, j] = -1; |
---|
875 | } |
---|
876 | } |
---|
877 | def S = nc_algebra(@E, 0); // define ground G-algebra! |
---|
878 | setring S; |
---|
879 | } |
---|
880 | |
---|
881 | ideal @Q = fetch(saveRing, Q); |
---|
882 | |
---|
883 | j = ncols(@Q) + 1; |
---|
884 | |
---|
885 | for ( i=e; i>=b; i--, j++ ) |
---|
886 | { |
---|
887 | @Q[j] = var(i)^2; |
---|
888 | } |
---|
889 | |
---|
890 | if( (fprot == 1) and (attrib(basering, "global") != 1) ) |
---|
891 | { |
---|
892 | print("Warning: Since the current ordering is not global there might be problems computing twostd(Q)!"); |
---|
893 | print("Q:", @Q); |
---|
894 | } |
---|
895 | |
---|
896 | degBound=0; |
---|
897 | @Q = twostd(@Q); // must be computed within the ground G-algebra => problems with local orderings! |
---|
898 | degBound = iSavedDegBoung; |
---|
899 | |
---|
900 | qring @EA = @Q; |
---|
901 | |
---|
902 | // "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
903 | return(@EA); |
---|
904 | } |
---|
905 | example |
---|
906 | { |
---|
907 | "EXAMPLE:";echo=2; |
---|
908 | ring R = 0,(x(1..4)),dp; // global! |
---|
909 | def ER = SuperCommutative(); // the same as Exterior (b = 1, e = N) |
---|
910 | setring ER; ER; |
---|
911 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
912 | kill R; kill ER; |
---|
913 | ring R = 0,(x(1..4)),(lp(1), dp(3)); // global! |
---|
914 | def ER = SuperCommutative(2); // b = 2, e = N |
---|
915 | setring ER; ER; |
---|
916 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
917 | kill R; kill ER; |
---|
918 | ring R = 0,(x(1..6)),(ls(2), dp(2), lp(2)); // local! |
---|
919 | def ER = SuperCommutative(3,4); // b = 3, e = 4 |
---|
920 | setring ER; ER; |
---|
921 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
922 | kill R; kill ER; |
---|
923 | } |
---|
924 | |
---|
925 | |
---|
926 | static proc ParseSCA() |
---|
927 | " |
---|
928 | RETURN: list {AltVarStart, AltVarEnd} is currRing is SCA, returns undef otherwise. |
---|
929 | NOTE: rings with only one non-commutative variable are commutative rings which are super-sommutative itself! |
---|
930 | " |
---|
931 | { |
---|
932 | def saveRing = basering; |
---|
933 | |
---|
934 | int i, j; |
---|
935 | int N = nvars(saveRing); |
---|
936 | |
---|
937 | int b = N+1; |
---|
938 | int e = -1; |
---|
939 | |
---|
940 | int fprot = (find(option(),"prot") != 0); |
---|
941 | |
---|
942 | |
---|
943 | if( size(ideal(saveRing)) == 0 ) |
---|
944 | { |
---|
945 | return("SCA rings are factors by (at least) squares!"); // no squares in the factor ideal! |
---|
946 | } |
---|
947 | |
---|
948 | list L = ringlist(saveRing); |
---|
949 | |
---|
950 | if( size(L)!=6 ) |
---|
951 | { |
---|
952 | if(fprot) |
---|
953 | { |
---|
954 | print("Warning: The current ring is internally commutative!"); |
---|
955 | } |
---|
956 | |
---|
957 | for( i = N; i > 0; i-- ) |
---|
958 | { |
---|
959 | if( NF(var(i)^2, std(0)) == 0 ) |
---|
960 | { |
---|
961 | if( (fprot == 1) and (i > 1) ) |
---|
962 | { |
---|
963 | print("Warning: the SCA representation of the current commutative factor ring may be ambiguous!"); |
---|
964 | } |
---|
965 | |
---|
966 | return( list(i, i) ); // this is not unique in this case! there may be other squares in the factor ideal! |
---|
967 | } |
---|
968 | } |
---|
969 | |
---|
970 | return("The current commutative ring is not SCA! (Wrong quotient ideal)"); // no squares in the factor ideal! |
---|
971 | } |
---|
972 | |
---|
973 | module D = simplify(L[6], 2 + 4); |
---|
974 | |
---|
975 | if( size(D)>0 ) |
---|
976 | { |
---|
977 | return("The current ring is not SCA! (D!=0)"); |
---|
978 | } |
---|
979 | |
---|
980 | matrix C = L[5]; |
---|
981 | poly c; |
---|
982 | |
---|
983 | for( i = 1; i < N; i++ ) |
---|
984 | { |
---|
985 | for( j = i+1; j <= N; j++ ) |
---|
986 | { |
---|
987 | c = C[i, j]; |
---|
988 | |
---|
989 | if( c == -1 ) |
---|
990 | { |
---|
991 | if(i < b) |
---|
992 | { |
---|
993 | b = i; |
---|
994 | } |
---|
995 | |
---|
996 | if(j > e) |
---|
997 | { |
---|
998 | e = j; |
---|
999 | } |
---|
1000 | } else |
---|
1001 | { // should commute |
---|
1002 | if( c!=1 ) |
---|
1003 | { |
---|
1004 | return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=1)"); |
---|
1005 | } |
---|
1006 | } |
---|
1007 | } |
---|
1008 | } |
---|
1009 | |
---|
1010 | if( (b > N) || (e < 1)) |
---|
1011 | { |
---|
1012 | if(fprot) |
---|
1013 | { |
---|
1014 | print("Warning: The current ring is a commutative GR-algebra!"); |
---|
1015 | } |
---|
1016 | |
---|
1017 | for( i = N; i > 0; i-- ) |
---|
1018 | { |
---|
1019 | if( NF(var(i)^2, std(0)) == 0 ) |
---|
1020 | { |
---|
1021 | if( (fprot == 1) and (i > 1) ) |
---|
1022 | { |
---|
1023 | print("Warning: the SCA representation of the current factor ring may be ambiguous!"); |
---|
1024 | } |
---|
1025 | |
---|
1026 | return( list(i, i) ); // this is not unique in this case! there may be other squares in the factor ideal! |
---|
1027 | } |
---|
1028 | } |
---|
1029 | |
---|
1030 | return("The current commutative GR-algebra is not SCA! (Wrong quotient ideal)"); // no squares in the factor ideal! |
---|
1031 | } |
---|
1032 | |
---|
1033 | for( i = 1; i < N; i++ ) |
---|
1034 | { |
---|
1035 | for( j = i+1; j <= N; j++ ) |
---|
1036 | { |
---|
1037 | c = C[i, j]; |
---|
1038 | |
---|
1039 | if( (b <= i) && (j <= e) ) // S <= i < j <= E |
---|
1040 | { // anticommutative part |
---|
1041 | if( c!= -1 ) |
---|
1042 | { |
---|
1043 | return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=-1)"); |
---|
1044 | } |
---|
1045 | } else |
---|
1046 | { // should commute |
---|
1047 | if( c!=1 ) |
---|
1048 | { |
---|
1049 | return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=1)"); |
---|
1050 | } |
---|
1051 | } |
---|
1052 | } |
---|
1053 | } |
---|
1054 | |
---|
1055 | for( i = b; i <= e; i++ ) |
---|
1056 | { |
---|
1057 | if( NF(var(i)^2, std(0)) != 0 ) |
---|
1058 | { |
---|
1059 | return("The current ring is not SCA! (Wrong quotient ideal)"); |
---|
1060 | } |
---|
1061 | } |
---|
1062 | |
---|
1063 | //////////////////////////////////////////////////////////////////////// |
---|
1064 | // ok. it is a SCA!!! |
---|
1065 | |
---|
1066 | return(list(b, e)); |
---|
1067 | } |
---|
1068 | |
---|
1069 | /////////////////////////////////////////////////////////////////////////////// |
---|
1070 | proc AltVarStart() |
---|
1071 | "USAGE: AltVarStart(); |
---|
1072 | RETURN: int |
---|
1073 | PURPOSE: returns the number of the first alternating variable of basering |
---|
1074 | NOTE: basering should be a super-commutative algebra! |
---|
1075 | EXAMPLE: example AltVarStart; shows examples |
---|
1076 | " |
---|
1077 | { |
---|
1078 | def l = ParseSCA(); |
---|
1079 | |
---|
1080 | if( typeof(l) != "string" ) |
---|
1081 | { |
---|
1082 | return(l[1]); |
---|
1083 | } |
---|
1084 | |
---|
1085 | ERROR(l); |
---|
1086 | return(); |
---|
1087 | } |
---|
1088 | example |
---|
1089 | { |
---|
1090 | "EXAMPLE:";echo=2; |
---|
1091 | ring R = 0,(x(1..4)),dp; // global! |
---|
1092 | def ER = SuperCommutative(2); // (b = 2, e = N) |
---|
1093 | setring ER; ER; |
---|
1094 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
1095 | } |
---|
1096 | |
---|
1097 | /////////////////////////////////////////////////////////////////////////////// |
---|
1098 | proc AltVarEnd() |
---|
1099 | "USAGE: AltVarStart(); |
---|
1100 | RETURN: int |
---|
1101 | PURPOSE: returns the number of the last alternating variable of basering |
---|
1102 | NOTE: basering should be a super-commutative algebra! |
---|
1103 | EXAMPLE: example AltVarEnd; shows examples |
---|
1104 | " |
---|
1105 | { |
---|
1106 | def l = ParseSCA(); |
---|
1107 | |
---|
1108 | if( typeof(l) != "string" ) |
---|
1109 | { |
---|
1110 | return(l[2]); |
---|
1111 | } |
---|
1112 | |
---|
1113 | ERROR(l); |
---|
1114 | return(); |
---|
1115 | } |
---|
1116 | example |
---|
1117 | { |
---|
1118 | "EXAMPLE:";echo=2; |
---|
1119 | ring R = 0,(x(1..4)),dp; // global! |
---|
1120 | def ER = SuperCommutative(2); // (b = 2, e = N) |
---|
1121 | setring ER; ER; |
---|
1122 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
1123 | } |
---|
1124 | |
---|
1125 | /////////////////////////////////////////////////////////////////////////////// |
---|
1126 | proc IsSCA() |
---|
1127 | "USAGE: IsSCA(); |
---|
1128 | RETURN: int |
---|
1129 | PURPOSE: returns 1 if basering is a supercommutative algebra and 0 otherwise. |
---|
1130 | NOTE: shows hint message for non-SCA algebras if the 'prot' option is on. |
---|
1131 | EXAMPLE: example IsSCA; shows examples |
---|
1132 | " |
---|
1133 | { |
---|
1134 | def l = ParseSCA(); |
---|
1135 | |
---|
1136 | if( typeof(l) != "string" ) |
---|
1137 | { |
---|
1138 | return(1); |
---|
1139 | } |
---|
1140 | |
---|
1141 | if( find(option(),"prot") != 0 ) |
---|
1142 | { |
---|
1143 | print(l); |
---|
1144 | } |
---|
1145 | |
---|
1146 | return(0); |
---|
1147 | } |
---|
1148 | example |
---|
1149 | { |
---|
1150 | "EXAMPLE:";echo=2; |
---|
1151 | ///////////////////////////////////////////////////////////////////// |
---|
1152 | ring R = 0,(x(1..4)),dp; // commutative |
---|
1153 | if(IsSCA()) |
---|
1154 | { "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1155 | else |
---|
1156 | { "Not a supercommutative algebra!!!"; } |
---|
1157 | kill R; |
---|
1158 | ///////////////////////////////////////////////////////////////////// |
---|
1159 | ring R = 0,(x(1..4)),dp; |
---|
1160 | def S = nc_algebra(1, 0); setring S; S; // still commutative! |
---|
1161 | if(IsSCA()) |
---|
1162 | { "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1163 | else |
---|
1164 | { "Not a supercommutative algebra!!!"; } |
---|
1165 | kill R, S; |
---|
1166 | ///////////////////////////////////////////////////////////////////// |
---|
1167 | ring R = 0,(x(1..4)),dp; |
---|
1168 | list CurrRing = ringlist(R); |
---|
1169 | def ER = ring(CurrRing); |
---|
1170 | setring ER; // R; |
---|
1171 | |
---|
1172 | matrix E = UpOneMatrix(nvars(R)); |
---|
1173 | |
---|
1174 | int i, j; int b = 2; int e = 3; |
---|
1175 | |
---|
1176 | for ( i = b; i < e; i++ ) |
---|
1177 | { |
---|
1178 | for ( j = i+1; j <= e; j++ ) |
---|
1179 | { |
---|
1180 | E[i, j] = -1; |
---|
1181 | } |
---|
1182 | } |
---|
1183 | |
---|
1184 | def S = nc_algebra(E,0); setring S; S; |
---|
1185 | |
---|
1186 | if(IsSCA()) |
---|
1187 | { "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1188 | else |
---|
1189 | { "Not a supercommutative algebra!!!"; } |
---|
1190 | kill R, ER, S; |
---|
1191 | ///////////////////////////////////////////////////////////////////// |
---|
1192 | ring R = 0,(x(1..4)),dp; |
---|
1193 | def ER = SuperCommutative(2); // (b = 2, e = N) |
---|
1194 | setring ER; ER; |
---|
1195 | if(IsSCA()) |
---|
1196 | { "This is a SCA! Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1197 | else |
---|
1198 | { "Not a supercommutative algebra!!!"; } |
---|
1199 | kill R, ER; |
---|
1200 | } |
---|
1201 | |
---|
1202 | |
---|
1203 | |
---|
1204 | /////////////////////////////////////////////////////////////////////////////// |
---|
1205 | proc Exterior(list #) |
---|
1206 | "USAGE: Exterior(); |
---|
1207 | RETURN: qring |
---|
1208 | PURPOSE: create the exterior algebra of a basering |
---|
1209 | NOTE: activate this qring with the \"setring\" command |
---|
1210 | THEORY: given a basering, this procedure introduces the anticommutative relations x(j)x(i)=-x(i)x(j) for all j>i, |
---|
1211 | @* moreover, creates a factor algebra modulo the two-sided ideal, generated by x(i)^2 for all i |
---|
1212 | EXAMPLE: example Exterior; shows examples |
---|
1213 | " |
---|
1214 | { |
---|
1215 | string rname=nameof(basering); |
---|
1216 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
1217 | { |
---|
1218 | "You have to call the procedure from the ring"; |
---|
1219 | return(); |
---|
1220 | } |
---|
1221 | int N = nvars(basering); |
---|
1222 | string NewRing = "ring @R=("+charstr(basering)+"),("+varstr(basering)+"),("+ordstr(basering)+");"; |
---|
1223 | execute(NewRing); |
---|
1224 | matrix @E = UpOneMatrix(N); |
---|
1225 | @E = -1*(@E); |
---|
1226 | def @@RR = nc_algebra(@E,0); setring @@RR; |
---|
1227 | int i; |
---|
1228 | ideal Q; |
---|
1229 | for ( i=1; i<=N; i++ ) |
---|
1230 | { |
---|
1231 | Q[i] = var(i)^2; |
---|
1232 | } |
---|
1233 | Q = twostd(Q); |
---|
1234 | qring @EA = Q; |
---|
1235 | return(@EA); |
---|
1236 | } |
---|
1237 | example |
---|
1238 | { |
---|
1239 | "EXAMPLE:";echo=2; |
---|
1240 | ring R = 0,(x(1..3)),dp; |
---|
1241 | def ER = Exterior(); |
---|
1242 | setring ER; |
---|
1243 | ER; |
---|
1244 | } |
---|
1245 | |
---|
1246 | /////////////////////////////////////////////////////////////////////////////// |
---|
1247 | proc makeWeyl(int n, list #) |
---|
1248 | "USAGE: makeWeyl(n,[p]); n an integer, n>0; p an optional integer (field characteristic) |
---|
1249 | RETURN: ring |
---|
1250 | PURPOSE: create an n-th Weyl algebra |
---|
1251 | NOTE: activate this ring with the \"setring\" command. |
---|
1252 | @* The presentation of an n-th Weyl algebra is classical: D(i)x(i)=x(i)D(i)+1, |
---|
1253 | @* where x(i) correspond to coordinates and D(i) to partial differentiations, i=1,...,n. |
---|
1254 | SEE ALSO: Weyl |
---|
1255 | EXAMPLE: example makeWeyl; shows examples |
---|
1256 | "{ |
---|
1257 | if (n<1) |
---|
1258 | { |
---|
1259 | print("Incorrect input"); |
---|
1260 | return(); |
---|
1261 | } |
---|
1262 | int @p = 0; |
---|
1263 | if ( size(#) > 0 ) |
---|
1264 | { |
---|
1265 | if ( typeof( #[1] ) == "int" ) |
---|
1266 | { |
---|
1267 | @p = #[1]; |
---|
1268 | } |
---|
1269 | } |
---|
1270 | if (n ==1) |
---|
1271 | { |
---|
1272 | ring @rr = @p,(x,D),dp; |
---|
1273 | } |
---|
1274 | else |
---|
1275 | { |
---|
1276 | ring @rr = @p,(x(1..n),D(1..n)),dp; |
---|
1277 | } |
---|
1278 | setring @rr; |
---|
1279 | def @rrr = Weyl(); |
---|
1280 | return(@rrr); |
---|
1281 | } |
---|
1282 | example |
---|
1283 | { "EXAMPLE:"; echo = 2; |
---|
1284 | def a = makeWeyl(3); |
---|
1285 | setring a; |
---|
1286 | a; |
---|
1287 | } |
---|
1288 | |
---|
1289 | ////////////////////////////////////////////////////////////////////// |
---|
1290 | proc isNC() |
---|
1291 | "USAGE: isNC(); |
---|
1292 | PURPOSE: check whether a basering is commutative or not |
---|
1293 | RETURN: int, 1 if basering is noncommutative and 0 otherwise |
---|
1294 | EXAMPLE: example isNC; shows examples |
---|
1295 | "{ |
---|
1296 | string rname=nameof(basering); |
---|
1297 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
1298 | { |
---|
1299 | "You have to call the procedure from the ring"; |
---|
1300 | return(); |
---|
1301 | } |
---|
1302 | int n = nvars(basering); |
---|
1303 | int i,j; |
---|
1304 | poly p; |
---|
1305 | for (i=1; i<n; i++) |
---|
1306 | { |
---|
1307 | for (j=i+1; j<=n; j++) |
---|
1308 | { |
---|
1309 | p = var(j)*var(i) - var(i)*var(j); |
---|
1310 | if (p!=0) { return(1);} |
---|
1311 | } |
---|
1312 | } |
---|
1313 | return(0); |
---|
1314 | } |
---|
1315 | example |
---|
1316 | { "EXAMPLE:"; echo = 2; |
---|
1317 | def a = makeWeyl(2); |
---|
1318 | setring a; |
---|
1319 | isNC(); |
---|
1320 | kill a; |
---|
1321 | ring r = 17,(x(1..7)),dp; |
---|
1322 | isNC(); |
---|
1323 | kill r; |
---|
1324 | } |
---|
1325 | |
---|
1326 | /////////////////////////////////////////////////////////////////////////////// |
---|
1327 | proc rightStd(def I) |
---|
1328 | "USAGE: rightStd(I); I an ideal/ module |
---|
1329 | PURPOSE: compute a right Groebner basis of I |
---|
1330 | RETURN: the same type as input |
---|
1331 | EXAMPLE: example rightStd; shows examples |
---|
1332 | " |
---|
1333 | { |
---|
1334 | def A = basering; |
---|
1335 | def Aopp = opposite(A); |
---|
1336 | setring Aopp; |
---|
1337 | def Iopp = oppose(A,I); |
---|
1338 | def Jopp = groebner(Iopp); |
---|
1339 | setring A; |
---|
1340 | def J = oppose(Aopp,Jopp); |
---|
1341 | return(J); |
---|
1342 | } |
---|
1343 | example |
---|
1344 | { "EXAMPLE:"; echo = 2; |
---|
1345 | LIB "ncalg.lib"; |
---|
1346 | def A = makeUsl(2); |
---|
1347 | setring A; |
---|
1348 | ideal I = e2,f; |
---|
1349 | option(redSB); |
---|
1350 | option(redTail); |
---|
1351 | ideal LI = std(I); |
---|
1352 | LI; |
---|
1353 | ideal RI = rightStd(I); |
---|
1354 | RI; |
---|
1355 | } |
---|
1356 | |
---|
1357 | /////////////////////////////////////////////////////////////////////////////// |
---|
1358 | proc rightSyz(def I) |
---|
1359 | "USAGE: rightSyz(I); I an ideal/ module |
---|
1360 | PURPOSE: compute a right syzygy module of I |
---|
1361 | RETURN: the same type as input |
---|
1362 | EXAMPLE: example rightSyz; shows examples |
---|
1363 | " |
---|
1364 | { |
---|
1365 | def A = basering; |
---|
1366 | def Aopp = opposite(A); |
---|
1367 | setring Aopp; |
---|
1368 | def Iopp = oppose(A,I); |
---|
1369 | def Jopp = syz(Iopp); |
---|
1370 | setring A; |
---|
1371 | def J = oppose(Aopp,Jopp); |
---|
1372 | return(J); |
---|
1373 | } |
---|
1374 | example |
---|
1375 | { "EXAMPLE:"; echo = 2; |
---|
1376 | ring r = 0,(x,d),dp; |
---|
1377 | def S = nc_algebra(1,1); setring S; // the first Weyl algebra |
---|
1378 | ideal I = x,d; |
---|
1379 | module LS = syz(I); |
---|
1380 | print(LS); |
---|
1381 | module RS = rightSyz(I); |
---|
1382 | print(RS); |
---|
1383 | } |
---|
1384 | |
---|
1385 | /////////////////////////////////////////////////////////////////////////////// |
---|
1386 | proc rightNF(def v, def M) |
---|
1387 | "USAGE: rightNF(I); v a poly/vector, M an ideal/module |
---|
1388 | PURPOSE: compute a right normal form of v w.r.t. M |
---|
1389 | RETURN: poly/vector (as of the 1st argument) |
---|
1390 | EXAMPLE: example rightNF; shows examples |
---|
1391 | " |
---|
1392 | { |
---|
1393 | def A = basering; |
---|
1394 | def Aopp = opposite(A); |
---|
1395 | setring Aopp; |
---|
1396 | def vopp = oppose(A,v); |
---|
1397 | def Mopp = oppose(A,M); |
---|
1398 | Mopp = std(Mopp); |
---|
1399 | def wopp = NF(vopp,Mopp); |
---|
1400 | setring A; |
---|
1401 | def w = oppose(Aopp,wopp); |
---|
1402 | w = simplify(w,2); // skip zeros in ideal/module |
---|
1403 | return(w); |
---|
1404 | } |
---|
1405 | example |
---|
1406 | { "EXAMPLE:"; echo = 2; |
---|
1407 | LIB "ncalg.lib"; |
---|
1408 | ring r = 0,(x,d),dp; |
---|
1409 | def S = nc_algebra(1,1); setring S; // Weyl algebra |
---|
1410 | ideal I = x; I = std(I); |
---|
1411 | poly p = x*d+1; |
---|
1412 | NF(p,I); // left normal form |
---|
1413 | rightNF(p,I); // right normal form |
---|
1414 | } |
---|
1415 | |
---|
1416 | // ********************************** |
---|
1417 | // * NF: Example for vector/module: * |
---|
1418 | // ********************************** |
---|
1419 | // module M = [x,0],[0,d]; M = std(M); |
---|
1420 | // vector v = (x*d+1)*[1,1]; |
---|
1421 | // print(NF(v,M)); |
---|
1422 | // print(rightNF(v,M)); |
---|
1423 | |
---|
1424 | /////////////////////////////////////////////////////////////////////////////// |
---|
1425 | proc rightModulo(def M, def N) |
---|
1426 | "USAGE: rightModulo(M,N); M,N are ideals/modules |
---|
1427 | PURPOSE: compute a right representation of the module (M+N)/N |
---|
1428 | RETURN: module |
---|
1429 | ASSUME: M,N are presentation matrices for right modules |
---|
1430 | EXAMPLE: example rightModulo; shows examples |
---|
1431 | " |
---|
1432 | { |
---|
1433 | def A = basering; |
---|
1434 | def Aopp = opposite(A); |
---|
1435 | setring Aopp; |
---|
1436 | def Mopp = oppose(A,M); |
---|
1437 | def Nopp = oppose(A,N); |
---|
1438 | def Kopp = modulo(Mopp,Nopp); |
---|
1439 | setring A; |
---|
1440 | def K = oppose(Aopp,Kopp); |
---|
1441 | return(K); |
---|
1442 | } |
---|
1443 | example |
---|
1444 | { "EXAMPLE:"; echo = 2; |
---|
1445 | LIB "ncalg.lib"; |
---|
1446 | def A = makeUsl(2); |
---|
1447 | setring A; |
---|
1448 | option(redSB); |
---|
1449 | option(redTail); |
---|
1450 | ideal I = e2,f2,h2-1; |
---|
1451 | I = twostd(I); |
---|
1452 | print(matrix(I)); |
---|
1453 | ideal E = std(e); |
---|
1454 | ideal TL = e,h-1; // the result of left modulo |
---|
1455 | TL; |
---|
1456 | ideal T = rightModulo(E,I); |
---|
1457 | T = rightStd(T+I); |
---|
1458 | T = rightStd(rightNF(T,I)); // make the output canonic |
---|
1459 | T; |
---|
1460 | } |
---|
1461 | |
---|
1462 | ////////////////////////////////////////////////////////////////////// |
---|