1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: nctools.lib,v 1.50 2009-04-14 12:37:04 motsak Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: nctools.lib General tools for noncommutative algebras |
---|
6 | AUTHORS: Levandovskyy V., levandov@mathematik.uni-kl.de, |
---|
7 | @* Lobillo, F.J., jlobillo@ugr.es, |
---|
8 | @* Rabelo, C., crabelo@ugr.es, |
---|
9 | @* Motsak, O., U@D, where U={motsak}, D={mathematik.uni-kl.de} |
---|
10 | |
---|
11 | |
---|
12 | |
---|
13 | SUPPORT: DFG (Deutsche Forschungsgesellschaft) and Metodos algebraicos y efectivos en grupos cuanticos, BFM2001-3141, MCYT, Jose Gomez-Torrecillas (Main researcher). |
---|
14 | |
---|
15 | MAIN PROCEDURES: |
---|
16 | Gweights(r); compute weights for a compatible ordering in a G-algebra, |
---|
17 | weightedRing(r); change the ordering of a ring to a weighted one, |
---|
18 | ndcond(); the ideal of non-degeneracy conditions in G-algebra, |
---|
19 | Weyl([p]); create Weyl algebra structure in a basering (two different realizations), |
---|
20 | makeWeyl(n, [p]); return n-th Weyl algebra in (x(i),D(i)) presentation, |
---|
21 | makeHeisenberg(N, [p,d]); return n-th Heisenberg algebra in (x(i),y(i),h) realization, |
---|
22 | Exterior(); return qring, the exterior algebra of a basering, |
---|
23 | findimAlgebra(M,[r]); create finite dimensional algebra structure from the basering and the multiplication matrix M, |
---|
24 | superCommutative([b,e,Q]); return qring, the super-commutative algebra over a basering, |
---|
25 | rightStd(I); compute a right Groebner basis of an ideal, |
---|
26 | |
---|
27 | AUXILIARY PROCEDURES: |
---|
28 | ncRelations(r); recover the non-commutative relations of a G-algebra, |
---|
29 | isCentral(p); check for the commutativity of a polynomial in the G-algebra, |
---|
30 | isNC(); check whether basering is noncommutative, |
---|
31 | isCommutative(); check whether basering is commutative |
---|
32 | isWeyl(); check whether basering is a Weyl algebra |
---|
33 | UpOneMatrix(N); return NxN matrix with 1's in the whole upper triagle, |
---|
34 | AltVarStart(); return first alternating variable of a super-commutative algebra, |
---|
35 | AltVarEnd(); return last alternating variable of a super-commutative algebra, |
---|
36 | IsSCA(); check whether current ring is a super-commutative algebra |
---|
37 | "; |
---|
38 | |
---|
39 | |
---|
40 | LIB "ring.lib"; // for rootofUnity |
---|
41 | LIB "poly.lib"; // for newtonDiag |
---|
42 | // LIB "ncalg.lib"; |
---|
43 | |
---|
44 | /////////////////////////////////////////////////////////////////////////////// |
---|
45 | |
---|
46 | // This procedure computes a weights vector for a G-algebra r |
---|
47 | |
---|
48 | proc Gweights(def r) |
---|
49 | "USAGE: Gweights(r); r a ring or a square matrix |
---|
50 | RETURN: intvec |
---|
51 | PURPOSE: compute an appropriate weight int vector for a G-algebra, i.e., such that |
---|
52 | \foral\;i<j\;\;lm_w(d_{ij}) <_w x_i x_j. |
---|
53 | @* the polynomials d_{ij} are taken from r itself, if it is of the type ring |
---|
54 | @* or defined by the given square polynomial matrix |
---|
55 | THEORY: @code{Gweights} returns an integer vector, whose weighting should be used to redefine the G-algebra in order |
---|
56 | to get the same non-commutative structure w.r.t. a weighted ordering. If the input is a matrix and the output is the zero |
---|
57 | vector then there is not a G-algebra structure associated to these relations with respect to the given variables. |
---|
58 | @*Another possibility is to use @code{weightedRing} to obtain directly a G-algebra with the new appropriate (weighted) ordering. |
---|
59 | EXAMPLE: example Gweights; shows examples |
---|
60 | SEE ALSO: weightedRing |
---|
61 | "{ |
---|
62 | int novalid=0; |
---|
63 | if (typeof(r)=="ring") //a ring is admissible as input |
---|
64 | { |
---|
65 | setring r; |
---|
66 | matrix tails; |
---|
67 | def l = ncRelations(r); |
---|
68 | tails = l[2]; // l=C,D we need D, the tails of the relations |
---|
69 | } |
---|
70 | else |
---|
71 | { |
---|
72 | matrix tails; |
---|
73 | if ( (typeof(r)=="matrix") || (typeof(r)=="intmat") ) |
---|
74 | { |
---|
75 | if ( nrows(r)==ncols(r) ) //the input is a square matrix |
---|
76 | { |
---|
77 | tails = matrix(r); |
---|
78 | } |
---|
79 | else |
---|
80 | { |
---|
81 | novalid = 1; |
---|
82 | } |
---|
83 | } |
---|
84 | else |
---|
85 | { |
---|
86 | novalid=1; |
---|
87 | } |
---|
88 | } |
---|
89 | if (novalid==0) |
---|
90 | { |
---|
91 | intmat IM = SimplMat(tails); |
---|
92 | if ( size(IM)>1 ) |
---|
93 | { |
---|
94 | int n = ncols(tails); |
---|
95 | int m = nrows(IM)-1; |
---|
96 | int m1 = 0; |
---|
97 | int m2 = m; |
---|
98 | int m3 = 0; |
---|
99 | ring simplexring=(real,10),(x),lp;// The simplex procedure requires a basering of this type |
---|
100 | matrix M = IM; |
---|
101 | list sol = simplex (M,m,n,m1,m2,m3); |
---|
102 | return(weightvector(sol)); |
---|
103 | } |
---|
104 | else |
---|
105 | { |
---|
106 | "Invalid input"; //usually because the input is a one variable ring |
---|
107 | return(); |
---|
108 | } |
---|
109 | } |
---|
110 | else |
---|
111 | { |
---|
112 | "The input must be a ring or a square matrix"; |
---|
113 | return(); |
---|
114 | } |
---|
115 | } |
---|
116 | example |
---|
117 | { |
---|
118 | "EXAMPLE:";echo=2; |
---|
119 | ring r = (0,q),(a,b,c,d),lp; |
---|
120 | matrix C[4][4]; |
---|
121 | C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q; |
---|
122 | matrix D[4][4]; |
---|
123 | D[1,4]=(q-1/q)*b*c; |
---|
124 | def S = nc_algebra(C,D); setring S; S; |
---|
125 | Gweights(S); |
---|
126 | def D=fetch(r,D); |
---|
127 | Gweights(D); |
---|
128 | } |
---|
129 | |
---|
130 | /////////////////////////////////////////////////////////////////////////////// |
---|
131 | |
---|
132 | // This procedure take a ring r, call to Gweights(r) and use the output |
---|
133 | // of Gweights(r) to make a change of order in r |
---|
134 | // The output is a new ring, equal to r but the order |
---|
135 | // r must be a G-algebra |
---|
136 | |
---|
137 | proc weightedRing(def r) |
---|
138 | "USAGE: weightedRing(r); r a ring |
---|
139 | RETURN: ring |
---|
140 | PURPOSE: equip the variables of the given ring with weights such that the relations of new ring (with weighted variables) satisfies the ordering condition for G-algebras: |
---|
141 | e.g. \forall\;i<j\;\;lm_w(d_{ij})<_w x_i x_j. |
---|
142 | NOTE: activate this ring with the \"setring\" command |
---|
143 | EXAMPLE: example weightedRing; shows examples |
---|
144 | SEE ALSO: Gweights |
---|
145 | "{ |
---|
146 | def wv=Gweights(r); |
---|
147 | if (typeof(wv)=="intvec") |
---|
148 | { |
---|
149 | setring r; |
---|
150 | int n=nvars(r); |
---|
151 | // Generating an nxn-intmat order |
---|
152 | intmat m[n][n]; |
---|
153 | m[1,1]=wv[1]; |
---|
154 | int i; |
---|
155 | for (i=2; i<=n; i++) |
---|
156 | { |
---|
157 | m[1,i]=wv[i]; |
---|
158 | m[i,n+2-i]=1; |
---|
159 | } |
---|
160 | // End of generation. |
---|
161 | def lr=ncRelations(r); |
---|
162 | string newringstring="ring newring=("+charstr(r)+"),("+varstr(r)+"),M("+string(m)+")"; |
---|
163 | execute (newringstring); |
---|
164 | def lnewring=imap(r,lr); |
---|
165 | return( nc_algebra(lnewring[1],lnewring[2]) ); |
---|
166 | } |
---|
167 | else |
---|
168 | { |
---|
169 | "Invalid input.";//usually because the input is a one variable ring |
---|
170 | return(); |
---|
171 | } |
---|
172 | } |
---|
173 | example |
---|
174 | { |
---|
175 | "EXAMPLE:";echo=2; |
---|
176 | ring r = (0,q),(a,b,c,d),lp; |
---|
177 | matrix C[4][4]; |
---|
178 | C[1,2]=q; C[1,3]=q; C[1,4]=1; C[2,3]=1; C[2,4]=q; C[3,4]=q; |
---|
179 | matrix D[4][4]; |
---|
180 | D[1,4]=(q-1/q)*b*c; |
---|
181 | def S = nc_algebra(C,D); setring S; S; |
---|
182 | def t=weightedRing(S); |
---|
183 | setring t; t; |
---|
184 | } |
---|
185 | |
---|
186 | /////////////////////////////////////////////////////////////////////////////// |
---|
187 | |
---|
188 | // This procedure computes ei+ej-f with f running in Newton(pij) and deletes the zero rows |
---|
189 | |
---|
190 | static proc Cij(intmat M, int i,j) |
---|
191 | { |
---|
192 | M=(-1)*M; |
---|
193 | int nc=ncols(M); |
---|
194 | intvec N; |
---|
195 | int k; |
---|
196 | for (k=1; k<=nrows(M); k++) |
---|
197 | { |
---|
198 | M[k,i]=M[k,i]+1; |
---|
199 | M[k,j]=M[k,j]+1; |
---|
200 | if (intvec(M[k,1..nc])!=0) |
---|
201 | { |
---|
202 | N=N,intvec(M[k,1..nc]); |
---|
203 | } // we only want non-zero rows |
---|
204 | } |
---|
205 | if (size(N)>1) |
---|
206 | { |
---|
207 | N=N[2..size(N)]; // Deleting the zero added in the definition of N |
---|
208 | M=intmat(N,size(N)/nc,nc); // Conversion from vector to matrix |
---|
209 | } |
---|
210 | else |
---|
211 | { |
---|
212 | intmat M[1][1]=0; |
---|
213 | } |
---|
214 | return (M); |
---|
215 | } |
---|
216 | |
---|
217 | /////////////////////////////////////////////////////////////////////////////// |
---|
218 | |
---|
219 | // This procedure run over the matrix of pij calculating Cij |
---|
220 | |
---|
221 | static proc Ct(matrix P) |
---|
222 | { |
---|
223 | int k = ncols(P); |
---|
224 | intvec T = 0; |
---|
225 | int i,j; |
---|
226 | // int notails=1; |
---|
227 | def S; |
---|
228 | for (j=2; j<=k; j++) |
---|
229 | { |
---|
230 | for (i=1; i<j; i++) |
---|
231 | { |
---|
232 | if ( P[i,j] != 0 ) |
---|
233 | { |
---|
234 | // notails=0; |
---|
235 | S = newtonDiag(P[i,j]); |
---|
236 | S = Cij(S,i,j); |
---|
237 | if ( size(S)>1 ) |
---|
238 | { |
---|
239 | T = T,S; |
---|
240 | } |
---|
241 | } |
---|
242 | } |
---|
243 | } |
---|
244 | if ( size(T)==1 ) |
---|
245 | { |
---|
246 | intmat C[1][1] = 0; |
---|
247 | } |
---|
248 | else |
---|
249 | { |
---|
250 | T=T[2..size(T)]; // Deleting the zero added in the definition of T |
---|
251 | intmat C = intmat(T,size(T)/k,k); // Conversion from vector to matrix |
---|
252 | } |
---|
253 | return (C); |
---|
254 | } |
---|
255 | |
---|
256 | /////////////////////////////////////////////////////////////////////////////// |
---|
257 | |
---|
258 | // The purpose of this procedure is to produce the input matrix required by simplex procedure |
---|
259 | |
---|
260 | static proc SimplMat(matrix P) |
---|
261 | { |
---|
262 | intmat C=Ct(P); |
---|
263 | if (size(C)>1) |
---|
264 | { |
---|
265 | int r = nrows(C); |
---|
266 | int n = ncols(C); |
---|
267 | int f = 1+n+r; |
---|
268 | intmat M[f][n+1]=0; |
---|
269 | int i; |
---|
270 | for (i=2; i<=(n+1); i++) |
---|
271 | { |
---|
272 | M[1,i]=-1; // (0,-1,-1,-1,...) objective function in the first row |
---|
273 | } |
---|
274 | for (i=2; i<=f; i++) {M[i,1]=1;} // All the independent terms are 1 |
---|
275 | for (i=2; i<=(n+1); i++) {M[i,i]=-1;} // wi>=1 is an identity matrix |
---|
276 | M[(n+2)..f,2..(n+1)]=(-1)*intvec(C); // <wi,a> >= 1, a in C ... |
---|
277 | } |
---|
278 | else |
---|
279 | { |
---|
280 | int n = ncols(P); |
---|
281 | int f = 1+n; |
---|
282 | intmat M[f][n+1]=0; |
---|
283 | int i; |
---|
284 | for (i=2; i<=(n+1); i++) {M[1,i]=-1;} // (0,-1,-1,-1,...) objective function in the first row |
---|
285 | for (i=2; i<=f; i++) {M[i,1]=1;} // All the independent terms are 1 |
---|
286 | for (i=2; i<=(n+1); i++) {M[i,i]=-1;} // wi>=1 is an identity matrix |
---|
287 | } |
---|
288 | return (M); |
---|
289 | } |
---|
290 | |
---|
291 | /////////////////////////////////////////////////////////////////////////////// |
---|
292 | |
---|
293 | // This procedure generates a nice output of the simplex method consisting of a vector |
---|
294 | // with the solutions. The vector is ordered. |
---|
295 | |
---|
296 | static proc weightvector(list l) |
---|
297 | "ASSUME: l is the output of simplex. |
---|
298 | RETURN: if there is a solution, an intvec with it will be returned" |
---|
299 | { |
---|
300 | matrix m=l[1]; |
---|
301 | intvec nv=l[3]; |
---|
302 | int sol=l[2]; |
---|
303 | int rows=nrows(m); |
---|
304 | int N=l[6]; |
---|
305 | intmat wv[1][N]=0; |
---|
306 | int i; |
---|
307 | if (sol) |
---|
308 | { |
---|
309 | "no solution satisfies the given constraints"; |
---|
310 | } |
---|
311 | else |
---|
312 | { |
---|
313 | for ( i = 2; i <= rows; i++ ) |
---|
314 | { |
---|
315 | if ( nv[i-1] <= N ) |
---|
316 | { |
---|
317 | wv[1,nv[i-1]]=int(m[i,1]); |
---|
318 | } |
---|
319 | } |
---|
320 | } |
---|
321 | return (intvec(wv)); |
---|
322 | } |
---|
323 | |
---|
324 | |
---|
325 | |
---|
326 | /////////////////////////////////////////////////////////////////////////////// |
---|
327 | |
---|
328 | // This procedure recover the non-conmutative relations (matrices C and D) |
---|
329 | |
---|
330 | proc ncRelations(def r) |
---|
331 | "USAGE: ncRelations(r); r a ring |
---|
332 | RETURN: list L with two elements, both elements are of type matrix: |
---|
333 | @* L[1] = matrix of coefficients C, |
---|
334 | @* L[2] = matrix of polynomials D |
---|
335 | PURPOSE: recover the noncommutative relations via matrices C and D from |
---|
336 | a noncommutative ring |
---|
337 | SEE ALSO: ringlist, G-algebras |
---|
338 | EXAMPLE: example ncRelations; shows examples |
---|
339 | "{ |
---|
340 | list l; |
---|
341 | if (typeof(r)=="ring") |
---|
342 | { |
---|
343 | int n=nvars(r); |
---|
344 | matrix C[n][n]=0; |
---|
345 | matrix D[n][n]=0; |
---|
346 | poly f; poly g; |
---|
347 | if (n>1) |
---|
348 | { |
---|
349 | int i,j; |
---|
350 | for (i=2; i<=n; i++) |
---|
351 | { |
---|
352 | for (j=1; j<i; j++) |
---|
353 | { |
---|
354 | f=var(i)*var(j); // yx=c*xy+... |
---|
355 | g=var(j)*var(i); // xy |
---|
356 | while (C[j,i]==0) |
---|
357 | { |
---|
358 | if (leadmonom(f)==leadmonom(g)) |
---|
359 | { |
---|
360 | C[j,i]=leadcoef(f); |
---|
361 | D[j,i]=D[j,i]+f-lead(f); |
---|
362 | } |
---|
363 | else |
---|
364 | { |
---|
365 | D[j,i]=D[j,i]+lead(f); |
---|
366 | f=f-lead(f); |
---|
367 | } |
---|
368 | } |
---|
369 | } |
---|
370 | } |
---|
371 | l=C,D; |
---|
372 | } |
---|
373 | else { "The ring must have two or more variables"; } |
---|
374 | } |
---|
375 | else { "The input must be of a type ring";} |
---|
376 | return (l); |
---|
377 | } |
---|
378 | example |
---|
379 | { |
---|
380 | "EXAMPLE:";echo=2; |
---|
381 | ring r = 0,(x,y,z),dp; |
---|
382 | matrix C[3][3]=0,1,2,0,0,-1,0,0,0; |
---|
383 | print(C); |
---|
384 | matrix D[3][3]=0,1,2y,0,0,-2x+y+1; |
---|
385 | print(D); |
---|
386 | def S=nc_algebra(C,D);setring S; S; |
---|
387 | def l=ncRelations(S); |
---|
388 | print (l[1]); |
---|
389 | print (l[2]); |
---|
390 | } |
---|
391 | |
---|
392 | /////////////////////////////////////////////////////////////////////////////// |
---|
393 | |
---|
394 | proc findimAlgebra(matrix M, list #) |
---|
395 | "USAGE: findimAlgebra(M,[r]); M a matrix, r an optional ring |
---|
396 | RETURN: ring |
---|
397 | PURPOSE: define a finite dimensional algebra structure on a ring |
---|
398 | NOTE: the matrix M is used to define the relations x(j)*x(i) = M[i,j] in the |
---|
399 | basering (by default) or in the optional ring r. |
---|
400 | @* The procedure equips the ring with the noncommutative structure. |
---|
401 | @* The procedure exports the ideal (not a two-sided Groebner basis!), called @code{fdQuot}, for further qring definition. |
---|
402 | THEORY: finite dimensional algebra can be represented as a factor algebra |
---|
403 | of a G-algebra modulo certain two-sided ideal. The relations of a f.d. algebra are thus naturally divided into two groups: firstly, the relations |
---|
404 | on the variables of the ring, making it into G-algebra and the rest of them, which constitute the ideal which will be factored out. |
---|
405 | EXAMPLE: example findimAlgebra; shows examples |
---|
406 | " |
---|
407 | { |
---|
408 | if (size(#) >0) |
---|
409 | { |
---|
410 | if ( typeof(#[1])!="ring" ) { return();} |
---|
411 | else |
---|
412 | { |
---|
413 | def @R1 = #[1]; |
---|
414 | setring @R1; |
---|
415 | } |
---|
416 | } |
---|
417 | int i,j; |
---|
418 | int n=nvars(basering); |
---|
419 | poly p; |
---|
420 | ideal I; |
---|
421 | number c; |
---|
422 | matrix C[n][n]; |
---|
423 | matrix D[n][n]; |
---|
424 | for (i=1; i<=n; i++) |
---|
425 | { |
---|
426 | for (j=i; j<=n; j++) |
---|
427 | { |
---|
428 | p=var(i)*var(j)-M[i,j]; |
---|
429 | if ( (size(I)==1) && (I[1]==0) ) { I=p; } |
---|
430 | else { I=I,p; } |
---|
431 | if (j>i) |
---|
432 | { |
---|
433 | if ((M[i,j]!=0) && (M[j,i]!=0)) |
---|
434 | { |
---|
435 | c = leadcoef(M[j,i])/leadcoef(M[i,j]); |
---|
436 | } |
---|
437 | else |
---|
438 | { |
---|
439 | c = 1; |
---|
440 | } |
---|
441 | C[i,j]=c; |
---|
442 | D[i,j]= - M[j,i] +c*M[i,j]; |
---|
443 | } |
---|
444 | } |
---|
445 | } |
---|
446 | def save = basering; |
---|
447 | def S = nc_algebra(C,D); setring S; |
---|
448 | ideal fdQuot = fetch(save,D); |
---|
449 | export fdQuot; |
---|
450 | return(S); |
---|
451 | } |
---|
452 | example |
---|
453 | { |
---|
454 | "EXAMPLE:";echo=2; |
---|
455 | ring r=(0,a,b),(x(1..3)),dp; |
---|
456 | matrix S[3][3]; |
---|
457 | S[2,3]=a*x(1); S[3,2]=-b*x(1); |
---|
458 | def A=findimAlgebra(S); setring A; |
---|
459 | fdQuot = twostd(fdQuot); |
---|
460 | qring Qr = fdQuot; |
---|
461 | Qr; |
---|
462 | } |
---|
463 | |
---|
464 | /////////////////////////////////////////////////////////////////////////////// |
---|
465 | |
---|
466 | proc isCentral(poly p, list #) |
---|
467 | "USAGE: isCentral(p); p poly |
---|
468 | RETURN: int, 1 if p commutes with all variables and 0 otherwise |
---|
469 | PURPOSE: check whether p is central in a basering (that is, commutes with every generator of the ring) |
---|
470 | NOTE: if @code{printlevel} > 0, the procedure displays intermediate information (by default, @code{printlevel}=0 ) |
---|
471 | EXAMPLE: example isCentral; shows examples |
---|
472 | "{ |
---|
473 | //v an integer (with v!=0, procedure will be verbose) |
---|
474 | int N = nvars(basering); |
---|
475 | int in; |
---|
476 | int flag = 1; |
---|
477 | poly q = 0; |
---|
478 | for (in=1; in<=N; in++) |
---|
479 | { |
---|
480 | q = p*var(in)-var(in)*p; |
---|
481 | if (q!=0) |
---|
482 | { |
---|
483 | if ( (size(#) >0 ) || (printlevel>0) ) |
---|
484 | { |
---|
485 | "Non-central at:", var(in); |
---|
486 | } |
---|
487 | flag = 0; |
---|
488 | } |
---|
489 | } |
---|
490 | return(flag); |
---|
491 | } |
---|
492 | example |
---|
493 | { |
---|
494 | "EXAMPLE:";echo=2; |
---|
495 | ring r=0,(x,y,z),dp; |
---|
496 | matrix D[3][3]=0; |
---|
497 | D[1,2]=-z; |
---|
498 | D[1,3]=2*x; |
---|
499 | D[2,3]=-2*y; |
---|
500 | def S = nc_algebra(1,D); setring S; |
---|
501 | S; // this is U(sl_2) |
---|
502 | poly c = 4*x*y+z^2-2*z; |
---|
503 | printlevel = 0; |
---|
504 | isCentral(c); |
---|
505 | poly h = x*c; |
---|
506 | printlevel = 1; |
---|
507 | isCentral(h); |
---|
508 | } |
---|
509 | |
---|
510 | /////////////////////////////////////////////////////////////////////////////// |
---|
511 | |
---|
512 | proc UpOneMatrix(int N) |
---|
513 | "USAGE: UpOneMatrix(n); n an integer |
---|
514 | RETURN: intmat |
---|
515 | PURPOSE: compute an n x n matrix with 1's in the whole upper triangle |
---|
516 | NOTE: helpful for setting noncommutative algebras with complicated |
---|
517 | coefficient matrices |
---|
518 | EXAMPLE: example UpOneMatrix; shows examples |
---|
519 | "{ |
---|
520 | int ii,jj; |
---|
521 | intmat U[N][N]=0; |
---|
522 | for (ii=1;ii<N;ii++) |
---|
523 | { |
---|
524 | for (jj=ii+1;jj<=N;jj++) |
---|
525 | { |
---|
526 | U[ii,jj]=1; |
---|
527 | } |
---|
528 | } |
---|
529 | return(U); |
---|
530 | } |
---|
531 | example |
---|
532 | { |
---|
533 | "EXAMPLE:";echo=2; |
---|
534 | ring r = (0,q),(x,y,z),dp; |
---|
535 | matrix C = UpOneMatrix(3); |
---|
536 | C[1,3] = q; |
---|
537 | print(C); |
---|
538 | def S = nc_algebra(C,0); setring S; |
---|
539 | S; |
---|
540 | } |
---|
541 | |
---|
542 | /////////////////////////////////////////////////////////////////////////////// |
---|
543 | proc ndcond(list #) |
---|
544 | "USAGE: ndcond(); |
---|
545 | RETURN: ideal |
---|
546 | PURPOSE: compute the non-degeneracy conditions of the basering |
---|
547 | NOTE: if @code{printlevel} > 0, the procedure displays intermediate information (by default, @code{printlevel}=0 ) |
---|
548 | EXAMPLE: example ndcond; shows examples |
---|
549 | " |
---|
550 | { |
---|
551 | // internal documentation, for tests etc |
---|
552 | // 1st arg: v an optional integer (if v!=0, will be verbose) |
---|
553 | // if the second argument is given, produces ndc wrt powers x^N |
---|
554 | int N = 1; |
---|
555 | int Verbose = 0; |
---|
556 | if ( size(#)>=1 ) { Verbose = int(#[1]); } |
---|
557 | if ( size(#)>=2 ) { N = int(#[2]); } |
---|
558 | Verbose = ((Verbose) || (printlevel>0)); |
---|
559 | int cnt = 1; |
---|
560 | int numvars = nvars(basering); |
---|
561 | int a,b,c; |
---|
562 | poly p = 1; |
---|
563 | ideal res = 0; |
---|
564 | for (cnt=1; cnt<=N; cnt++) |
---|
565 | { |
---|
566 | if (Verbose) { "Processing degree :",cnt;} |
---|
567 | for (a=1; a<=numvars-2; a++) |
---|
568 | { |
---|
569 | for (b=a+1; b<=numvars-1; b++) |
---|
570 | { |
---|
571 | for(c=b+1; c<=numvars; c++) |
---|
572 | { |
---|
573 | p = (var(c)^cnt)*(var(b)^cnt); |
---|
574 | p = p*(var(a)^cnt); |
---|
575 | p = p-(var(c)^cnt)*((var(b)^cnt)*(var(a)^cnt)); |
---|
576 | if (Verbose) {a,".",b,".",c,".";} |
---|
577 | if (p!=0) |
---|
578 | { |
---|
579 | if ( res==0 ) |
---|
580 | { |
---|
581 | res[1] = p; |
---|
582 | } |
---|
583 | else |
---|
584 | { |
---|
585 | res = res,p; |
---|
586 | } |
---|
587 | if (Verbose) { "failed:",p; } |
---|
588 | } |
---|
589 | } |
---|
590 | } |
---|
591 | } |
---|
592 | if (Verbose) { "done"; } |
---|
593 | } |
---|
594 | return(res); |
---|
595 | } |
---|
596 | example |
---|
597 | { |
---|
598 | "EXAMPLE:";echo=2; |
---|
599 | ring r = (0,q1,q2),(x,y,z),dp; |
---|
600 | matrix C[3][3]; |
---|
601 | C[1,2]=q2; C[1,3]=q1; C[2,3]=1; |
---|
602 | matrix D[3][3]; |
---|
603 | D[1,2]=x; D[1,3]=z; |
---|
604 | def S = nc_algebra(C,D); setring S; |
---|
605 | S; |
---|
606 | ideal j=ndcond(); // the silent version |
---|
607 | j; |
---|
608 | printlevel=1; |
---|
609 | ideal i=ndcond(); // the verbose version |
---|
610 | i; |
---|
611 | } |
---|
612 | |
---|
613 | |
---|
614 | /////////////////////////////////////////////////////////////////////////////// |
---|
615 | proc Weyl(list #) |
---|
616 | "USAGE: Weyl() |
---|
617 | RETURN: ring |
---|
618 | PURPOSE: create a Weyl algebra structure on the basering |
---|
619 | NOTE: Activate this ring using the command @code{setring}. |
---|
620 | @*Assume the number of variables of a basering is 2k. |
---|
621 | (if the number of variables is odd, an error message will be returned) |
---|
622 | @* by default, the procedure treats first k variables as coordinates x_i and the last k as differentials d_i |
---|
623 | @* if a non-zero optional argument is given, the procedure treats 2k variables of a basering as k pairs (x_i,d_i), i.e. variables with odd numbers are treated as coordinates and with even numbers as differentials |
---|
624 | SEE ALSO: makeWeyl |
---|
625 | EXAMPLE: example Weyl; shows examples |
---|
626 | " |
---|
627 | { |
---|
628 | //there are two possibilities for choosing the PBW basis. |
---|
629 | //The variables have names x(i) for coordinates and d(i) for partial |
---|
630 | // differentiations. By default, the procedure |
---|
631 | //creates a ring, where the variables are ordered as x(1..n),d(1..n). the |
---|
632 | // tensor product-like realization x(1),d(1),x(2),d(2),... is used. |
---|
633 | string rname=nameof(basering); |
---|
634 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
635 | { |
---|
636 | "You have to call the procedure from the ring"; |
---|
637 | return(); |
---|
638 | } |
---|
639 | int @chr = 0; |
---|
640 | if ( size(#) > 0 ) |
---|
641 | { |
---|
642 | if ( typeof( #[1] ) == "int" ) |
---|
643 | { |
---|
644 | @chr = #[1]; |
---|
645 | } |
---|
646 | } |
---|
647 | int nv = nvars(basering); |
---|
648 | int N = nv div 2; |
---|
649 | if ((nv % 2) != 0) |
---|
650 | { |
---|
651 | "Cannot create Weyl structure for an odd number of generators"; |
---|
652 | return(); |
---|
653 | } |
---|
654 | matrix @D[nv][nv]; |
---|
655 | int i; |
---|
656 | for ( i=1; i<=N; i++ ) |
---|
657 | { |
---|
658 | if ( @chr==0 ) // default |
---|
659 | { |
---|
660 | @D[i,N+i]=1; |
---|
661 | } |
---|
662 | else |
---|
663 | { |
---|
664 | @D[2*i-1,2*i]=1; |
---|
665 | } |
---|
666 | } |
---|
667 | def @R = nc_algebra(1,@D); |
---|
668 | return(@R); |
---|
669 | } |
---|
670 | example |
---|
671 | { |
---|
672 | "EXAMPLE:";echo=2; |
---|
673 | ring A1=0,(x(1..2),d(1..2)),dp; |
---|
674 | def S=Weyl(); |
---|
675 | setring S; S; |
---|
676 | kill A1,S; |
---|
677 | ring B1=0,(x1,d1,x2,d2),dp; |
---|
678 | def S=Weyl(1); |
---|
679 | setring S; S; |
---|
680 | } |
---|
681 | |
---|
682 | /////////////////////////////////////////////////////////////////////////////// |
---|
683 | proc makeHeisenberg(int N, list #) |
---|
684 | "USAGE: makeHeisenberg(n, [p,d]); int n (setting 2n+1 variables), optional int p (field characteristic), optional int d (power of h in the commutator) |
---|
685 | RETURN: ring |
---|
686 | PURPOSE: create the n-th Heisenberg algebra in the variables x(1),y(1),...,x(n),y(n),h over the rationals Q or F_p with the relations |
---|
687 | \forall\;i\in\{1,2,\ldots,n\}\;\;y(j)x(i) = x(i)y(j)+h^d. |
---|
688 | SEE ALSO: makeWeyl |
---|
689 | NOTE: activate this ring with the @code{setring} command |
---|
690 | @* If p is not prime, the next larger prime number will be used. |
---|
691 | EXAMPLE: example makeHeisenberg; shows examples |
---|
692 | " |
---|
693 | { |
---|
694 | int @chr = 0; |
---|
695 | int @deg = 1; |
---|
696 | if ( size(#) > 0 ) |
---|
697 | { |
---|
698 | if ( typeof( #[1] ) == "int" ) |
---|
699 | { |
---|
700 | @chr = #[1]; |
---|
701 | } |
---|
702 | } |
---|
703 | if ( size(#) > 1 ) |
---|
704 | { |
---|
705 | if ( typeof( #[2] ) == "int" ) |
---|
706 | { |
---|
707 | @deg = #[2]; |
---|
708 | if (@deg <1) { @deg = 1; } |
---|
709 | } |
---|
710 | } |
---|
711 | ring @@r=@chr,(x(1..N),y(1..N),h),lp; |
---|
712 | matrix D[2*N+1][2*N+1]; |
---|
713 | int i; |
---|
714 | for (i=1;i<=N;i++) |
---|
715 | { |
---|
716 | D[i,N+i]=h^@deg; |
---|
717 | } |
---|
718 | return(nc_algebra(1,D)); |
---|
719 | } |
---|
720 | example |
---|
721 | { |
---|
722 | "EXAMPLE:";echo=2; |
---|
723 | def a = makeHeisenberg(2); |
---|
724 | setring a; a; |
---|
725 | def H3 = makeHeisenberg(3, 7, 2); |
---|
726 | setring H3; H3; |
---|
727 | } |
---|
728 | |
---|
729 | |
---|
730 | |
---|
731 | /////////////////////////////////////////////////////////////////////////////// |
---|
732 | proc superCommutative(list #) |
---|
733 | "USAGE: superCommutative([b,[e, [Q, [flag]]]]); |
---|
734 | RETURN: qring |
---|
735 | PURPOSE: create a super-commutative algebra (as a GR-algebra) over a basering, |
---|
736 | NOTE: activate this qring with the \"setring\" command. |
---|
737 | NOTE: if b==e then the resulting ring is commutative unless 'flag' is given and non-zero. |
---|
738 | @* By default, @code{b=1, e=nvars(basering), Q=0}, and @code{flag=0}. |
---|
739 | THEORY: given a basering, this procedure introduces the anticommutative relations x(j)x(i)=-x(i)x(j) for all e>=j>i>=b, |
---|
740 | @* moreover, creates a factor algebra modulo the two-sided ideal, generated by x(b)^2, ..., x(e)^2[ + Q] |
---|
741 | DISPLAY: If @code{printlevel} > 1, warning debug messages will be printed |
---|
742 | EXAMPLE: example superCommutative; shows examples |
---|
743 | " |
---|
744 | { |
---|
745 | int fprot = (printlevel > 1); // (find(option(),"prot") != 0); |
---|
746 | |
---|
747 | string rname=nameof(basering); |
---|
748 | |
---|
749 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
750 | { |
---|
751 | ERROR("You have to call the procedure from the ring"); |
---|
752 | return(); |
---|
753 | } |
---|
754 | |
---|
755 | def saveRing = basering; |
---|
756 | |
---|
757 | int N = nvars(saveRing); |
---|
758 | int b = 1; |
---|
759 | int e = N; |
---|
760 | int flag = 0; |
---|
761 | |
---|
762 | ideal Q = 0; |
---|
763 | |
---|
764 | if(size(#)>0) |
---|
765 | { |
---|
766 | if(typeof(#[1]) != "int") |
---|
767 | { |
---|
768 | ERROR("The argument 'b' must be an integer!"); |
---|
769 | return(); |
---|
770 | } |
---|
771 | b = #[1]; |
---|
772 | |
---|
773 | if((b < 1)||(b > N)) |
---|
774 | { |
---|
775 | ERROR("The argument 'b' must within [1..nvars(basering)]!"); |
---|
776 | return(); |
---|
777 | } |
---|
778 | |
---|
779 | } |
---|
780 | |
---|
781 | if(size(#)>1) |
---|
782 | { |
---|
783 | if(typeof(#[2]) != "int") |
---|
784 | { |
---|
785 | ERROR("The argument 'e' must be an integer!"); |
---|
786 | return(); |
---|
787 | } |
---|
788 | e = #[2]; |
---|
789 | |
---|
790 | if((e < 1)||(e > N)) |
---|
791 | { |
---|
792 | ERROR("The argument 'e' must within [1..nvars(basering)]!"); |
---|
793 | return(); |
---|
794 | } |
---|
795 | |
---|
796 | if(e < b) |
---|
797 | { |
---|
798 | ERROR("The argument 'e' must be bigger or equal to 'b'!"); |
---|
799 | return(); |
---|
800 | } |
---|
801 | } |
---|
802 | |
---|
803 | if(size(#)>2) |
---|
804 | { |
---|
805 | if(typeof(#[3]) != "ideal") |
---|
806 | { |
---|
807 | ERROR("The argument 'Q' must be an ideal!"); |
---|
808 | return(); |
---|
809 | } |
---|
810 | Q = #[3]; |
---|
811 | } |
---|
812 | |
---|
813 | if(size(#)>3) |
---|
814 | { |
---|
815 | if(typeof(#[4]) != "int") |
---|
816 | { |
---|
817 | ERROR("The argument 'flag' must be an integer!"); |
---|
818 | return(); |
---|
819 | } |
---|
820 | flag = #[4]; |
---|
821 | } |
---|
822 | |
---|
823 | int iSavedDegBoung = degBound; |
---|
824 | |
---|
825 | if( (b == e) && (flag == 0) ) // commutative ring!!! |
---|
826 | { |
---|
827 | if( fprot == 1) |
---|
828 | { |
---|
829 | print("Warning: (b==e) means that the resulting ring will be commutative!"); |
---|
830 | } |
---|
831 | |
---|
832 | degBound=0; |
---|
833 | Q = std(Q + (var(b)^2)); |
---|
834 | degBound = iSavedDegBoung; |
---|
835 | |
---|
836 | qring @EA = Q; // and it will be internally commutative as well!!! |
---|
837 | |
---|
838 | return(@EA); |
---|
839 | } |
---|
840 | |
---|
841 | /* |
---|
842 | // Singular'(H.S.) politics: no ring copies! |
---|
843 | // in future nc_algebra() should return a new ring!!! |
---|
844 | list CurrRing = ringlist(basering); |
---|
845 | def @R = ring(CurrRing); |
---|
846 | setring @R; // @R; |
---|
847 | */ |
---|
848 | |
---|
849 | if( (char(basering)==2) && (flag == 0) )// commutative ring!!! |
---|
850 | { |
---|
851 | if( fprot == 1) |
---|
852 | { |
---|
853 | print("Warning: (char == 2) means that the resulting ring will be commutative!"); |
---|
854 | } |
---|
855 | |
---|
856 | int j = ncols(Q) + 1; |
---|
857 | |
---|
858 | for ( int i=e; i>=b; i--, j++ ) |
---|
859 | { |
---|
860 | Q[j] = var(i)^2; |
---|
861 | } |
---|
862 | |
---|
863 | degBound=0; |
---|
864 | Q = std(Q); |
---|
865 | degBound = iSavedDegBoung; |
---|
866 | |
---|
867 | qring @EA = Q; // and it will be internally commutative as well!!! |
---|
868 | return(@EA); |
---|
869 | } |
---|
870 | |
---|
871 | |
---|
872 | int i, j; |
---|
873 | |
---|
874 | if( (b == 1) && (e == N) ) // just an exterior algebra? |
---|
875 | { |
---|
876 | def S = nc_algebra(-1, 0); // define ground G-algebra! |
---|
877 | setring S; |
---|
878 | } else |
---|
879 | { |
---|
880 | matrix @E = UpOneMatrix(N); |
---|
881 | |
---|
882 | for ( i = b; i < e; i++ ) |
---|
883 | { |
---|
884 | for ( j = i+1; j <= e; j++ ) |
---|
885 | { |
---|
886 | @E[i, j] = -1; |
---|
887 | } |
---|
888 | } |
---|
889 | def S = nc_algebra(@E, 0); // define ground G-algebra! |
---|
890 | setring S; |
---|
891 | } |
---|
892 | |
---|
893 | ideal @Q = fetch(saveRing, Q); |
---|
894 | |
---|
895 | j = ncols(@Q) + 1; |
---|
896 | |
---|
897 | for ( i=e; i>=b; i--, j++ ) |
---|
898 | { |
---|
899 | @Q[j] = var(i)^2; |
---|
900 | } |
---|
901 | |
---|
902 | if( (fprot == 1) and (attrib(basering, "global") != 1) ) |
---|
903 | { |
---|
904 | print("Warning: Since the current ordering is not global there might be problems computing twostd(Q)!"); |
---|
905 | "Q:"; |
---|
906 | @Q; |
---|
907 | } |
---|
908 | |
---|
909 | degBound=0; |
---|
910 | @Q = twostd(@Q); // must be computed within the ground G-algebra => problems with local orderings! |
---|
911 | degBound = iSavedDegBoung; |
---|
912 | |
---|
913 | qring @EA = @Q; |
---|
914 | |
---|
915 | // "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
916 | return(@EA); |
---|
917 | } |
---|
918 | example |
---|
919 | { |
---|
920 | "EXAMPLE:";echo=2; |
---|
921 | ring R = 0,(x(1..4)),dp; // global! |
---|
922 | def ER = superCommutative(); // the same as Exterior (b = 1, e = N) |
---|
923 | setring ER; ER; |
---|
924 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
925 | kill R; kill ER; |
---|
926 | ring R = 0,(x(1..4)),(lp(1), dp(3)); // global! |
---|
927 | def ER = superCommutative(2); // b = 2, e = N |
---|
928 | setring ER; ER; |
---|
929 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
930 | kill R; kill ER; |
---|
931 | ring R = 0,(x(1..6)),(ls(2), dp(2), lp(2)); // local! |
---|
932 | def ER = superCommutative(3,4); // b = 3, e = 4 |
---|
933 | setring ER; ER; |
---|
934 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
935 | kill R; kill ER; |
---|
936 | } |
---|
937 | |
---|
938 | |
---|
939 | proc SuperCommutative(list #) |
---|
940 | { |
---|
941 | return( superCommutative(#) ); |
---|
942 | } |
---|
943 | |
---|
944 | |
---|
945 | static proc ParseSCA() |
---|
946 | " |
---|
947 | RETURN: list {AltVarStart, AltVarEnd} is currRing is SCA, returns undef otherwise. |
---|
948 | NOTE: rings with only one non-commutative variable are commutative rings which are super-sommutative itself! |
---|
949 | " |
---|
950 | { |
---|
951 | def saveRing = basering; |
---|
952 | |
---|
953 | int i, j; |
---|
954 | int N = nvars(saveRing); |
---|
955 | |
---|
956 | int b = N+1; |
---|
957 | int e = -1; |
---|
958 | |
---|
959 | int fprot = (find(option(),"prot") != 0); |
---|
960 | |
---|
961 | |
---|
962 | if( size(ideal(saveRing)) == 0 ) |
---|
963 | { |
---|
964 | return("SCA rings are factors by (at least) squares!"); // no squares in the factor ideal! |
---|
965 | } |
---|
966 | |
---|
967 | list L = ringlist(saveRing); |
---|
968 | |
---|
969 | if( size(L)!=6 ) |
---|
970 | { |
---|
971 | if(fprot) |
---|
972 | { |
---|
973 | print("Warning: The current ring is internally commutative!"); |
---|
974 | } |
---|
975 | |
---|
976 | for( i = N; i > 0; i-- ) |
---|
977 | { |
---|
978 | if( NF(var(i)^2, std(0)) == 0 ) |
---|
979 | { |
---|
980 | if( (fprot == 1) and (i > 1) ) |
---|
981 | { |
---|
982 | print("Warning: the SCA representation of the current commutative factor ring may be ambiguous!"); |
---|
983 | } |
---|
984 | |
---|
985 | return( list(i, i) ); // this is not unique in this case! there may be other squares in the factor ideal! |
---|
986 | } |
---|
987 | } |
---|
988 | |
---|
989 | return("The current commutative ring is not SCA! (Wrong quotient ideal)"); // no squares in the factor ideal! |
---|
990 | } |
---|
991 | |
---|
992 | module D = simplify(L[6], 2 + 4); |
---|
993 | |
---|
994 | if( size(D)>0 ) |
---|
995 | { |
---|
996 | return("The current ring is not SCA! (D!=0)"); |
---|
997 | } |
---|
998 | |
---|
999 | matrix C = L[5]; |
---|
1000 | poly c; |
---|
1001 | |
---|
1002 | for( i = 1; i < N; i++ ) |
---|
1003 | { |
---|
1004 | for( j = i+1; j <= N; j++ ) |
---|
1005 | { |
---|
1006 | c = C[i, j]; |
---|
1007 | |
---|
1008 | if( c == -1 ) |
---|
1009 | { |
---|
1010 | if(i < b) |
---|
1011 | { |
---|
1012 | b = i; |
---|
1013 | } |
---|
1014 | |
---|
1015 | if(j > e) |
---|
1016 | { |
---|
1017 | e = j; |
---|
1018 | } |
---|
1019 | } else |
---|
1020 | { // should commute |
---|
1021 | if( c!=1 ) |
---|
1022 | { |
---|
1023 | return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=1)"); |
---|
1024 | } |
---|
1025 | } |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | if( (b > N) || (e < 1)) |
---|
1030 | { |
---|
1031 | if(fprot) |
---|
1032 | { |
---|
1033 | print("Warning: The current ring is a commutative GR-algebra!"); |
---|
1034 | } |
---|
1035 | |
---|
1036 | for( i = N; i > 0; i-- ) |
---|
1037 | { |
---|
1038 | if( NF(var(i)^2, std(0)) == 0 ) |
---|
1039 | { |
---|
1040 | if( (fprot == 1) and (i > 1) ) |
---|
1041 | { |
---|
1042 | print("Warning: the SCA representation of the current factor ring may be ambiguous!"); |
---|
1043 | } |
---|
1044 | |
---|
1045 | return( list(i, i) ); // this is not unique in this case! there may be other squares in the factor ideal! |
---|
1046 | } |
---|
1047 | } |
---|
1048 | |
---|
1049 | return("The current commutative GR-algebra is not SCA! (Wrong quotient ideal)"); // no squares in the factor ideal! |
---|
1050 | } |
---|
1051 | |
---|
1052 | for( i = 1; i < N; i++ ) |
---|
1053 | { |
---|
1054 | for( j = i+1; j <= N; j++ ) |
---|
1055 | { |
---|
1056 | c = C[i, j]; |
---|
1057 | |
---|
1058 | if( (b <= i) && (j <= e) ) // S <= i < j <= E |
---|
1059 | { // anticommutative part |
---|
1060 | if( c!= -1 ) |
---|
1061 | { |
---|
1062 | return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=-1)"); |
---|
1063 | } |
---|
1064 | } else |
---|
1065 | { // should commute |
---|
1066 | if( c!=1 ) |
---|
1067 | { |
---|
1068 | return("The current ring is not SCA! (C["+ string(i)+"," + string(j)+"]!=1)"); |
---|
1069 | } |
---|
1070 | } |
---|
1071 | } |
---|
1072 | } |
---|
1073 | |
---|
1074 | for( i = b; i <= e; i++ ) |
---|
1075 | { |
---|
1076 | if( NF(var(i)^2, std(0)) != 0 ) |
---|
1077 | { |
---|
1078 | return("The current ring is not SCA! (Wrong quotient ideal)"); |
---|
1079 | } |
---|
1080 | } |
---|
1081 | |
---|
1082 | //////////////////////////////////////////////////////////////////////// |
---|
1083 | // ok. it is a SCA!!! |
---|
1084 | |
---|
1085 | return(list(b, e)); |
---|
1086 | } |
---|
1087 | |
---|
1088 | /////////////////////////////////////////////////////////////////////////////// |
---|
1089 | proc AltVarStart() |
---|
1090 | "USAGE: AltVarStart(); |
---|
1091 | RETURN: int |
---|
1092 | PURPOSE: returns the number of the first alternating variable of basering |
---|
1093 | NOTE: basering should be a super-commutative algebra with at most one block of anti-commutative variables |
---|
1094 | @* For commutative rings, @code{nvars(basering)+1} will be returned. |
---|
1095 | EXAMPLE: example AltVarStart; shows examples |
---|
1096 | " |
---|
1097 | { |
---|
1098 | def l = ParseSCA(); |
---|
1099 | |
---|
1100 | if( typeof(l) != "string" ) |
---|
1101 | { |
---|
1102 | return(l[1]); |
---|
1103 | } |
---|
1104 | |
---|
1105 | ERROR(l); |
---|
1106 | return(); |
---|
1107 | } |
---|
1108 | example |
---|
1109 | { |
---|
1110 | "EXAMPLE:";echo=2; |
---|
1111 | ring R = 0,(x(1..4)),dp; // global! |
---|
1112 | def ER = superCommutative(2); // (b = 2, e = N) |
---|
1113 | setring ER; ER; |
---|
1114 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
1115 | } |
---|
1116 | |
---|
1117 | /////////////////////////////////////////////////////////////////////////////// |
---|
1118 | proc AltVarEnd() |
---|
1119 | "USAGE: AltVarStart(); |
---|
1120 | RETURN: int |
---|
1121 | PURPOSE: returns the number of the last alternating variable of basering |
---|
1122 | NOTE: basering should be a super-commutative algebra with at most one block of anti-commutative variables |
---|
1123 | @* returns -1 for commutative rings |
---|
1124 | EXAMPLE: example AltVarEnd; shows examples |
---|
1125 | " |
---|
1126 | { |
---|
1127 | def l = ParseSCA(); |
---|
1128 | |
---|
1129 | if( typeof(l) != "string" ) |
---|
1130 | { |
---|
1131 | return(l[2]); |
---|
1132 | } |
---|
1133 | |
---|
1134 | ERROR(l); |
---|
1135 | return(); |
---|
1136 | } |
---|
1137 | example |
---|
1138 | { |
---|
1139 | "EXAMPLE:";echo=2; |
---|
1140 | ring R = 0,(x(1..4)),dp; // global! |
---|
1141 | def ER = superCommutative(2); // (b = 2, e = N) |
---|
1142 | setring ER; ER; |
---|
1143 | "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; |
---|
1144 | } |
---|
1145 | |
---|
1146 | /////////////////////////////////////////////////////////////////////////////// |
---|
1147 | proc IsSCA() |
---|
1148 | "USAGE: IsSCA(); |
---|
1149 | RETURN: int |
---|
1150 | PURPOSE: returns 1 if basering is a super-commutative algebra and 0 otherwise. |
---|
1151 | NOTE: shows hint message for non-SCA algebras if the 'prot' option is on. |
---|
1152 | EXAMPLE: example IsSCA; shows examples |
---|
1153 | " |
---|
1154 | { |
---|
1155 | def l = ParseSCA(); |
---|
1156 | |
---|
1157 | if( typeof(l) != "string" ) |
---|
1158 | { |
---|
1159 | return(1); |
---|
1160 | } |
---|
1161 | |
---|
1162 | if( find(option(),"prot") != 0 ) |
---|
1163 | { |
---|
1164 | print(l); |
---|
1165 | } |
---|
1166 | |
---|
1167 | return(0); |
---|
1168 | } |
---|
1169 | example |
---|
1170 | { |
---|
1171 | "EXAMPLE:";echo=2; |
---|
1172 | ///////////////////////////////////////////////////////////////////// |
---|
1173 | ring R = 0,(x(1..4)),dp; // commutative |
---|
1174 | if(IsSCA()) |
---|
1175 | { "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1176 | else |
---|
1177 | { "Not a super-commutative algebra!!!"; } |
---|
1178 | kill R; |
---|
1179 | ///////////////////////////////////////////////////////////////////// |
---|
1180 | ring R = 0,(x(1..4)),dp; |
---|
1181 | def S = nc_algebra(1, 0); setring S; S; // still commutative! |
---|
1182 | if(IsSCA()) |
---|
1183 | { "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1184 | else |
---|
1185 | { "Not a super-commutative algebra!!!"; } |
---|
1186 | kill R, S; |
---|
1187 | ///////////////////////////////////////////////////////////////////// |
---|
1188 | ring R = 0,(x(1..4)),dp; |
---|
1189 | list CurrRing = ringlist(R); |
---|
1190 | def ER = ring(CurrRing); |
---|
1191 | setring ER; // R; |
---|
1192 | |
---|
1193 | matrix E = UpOneMatrix(nvars(R)); |
---|
1194 | |
---|
1195 | int i, j; int b = 2; int e = 3; |
---|
1196 | |
---|
1197 | for ( i = b; i < e; i++ ) |
---|
1198 | { |
---|
1199 | for ( j = i+1; j <= e; j++ ) |
---|
1200 | { |
---|
1201 | E[i, j] = -1; |
---|
1202 | } |
---|
1203 | } |
---|
1204 | |
---|
1205 | def S = nc_algebra(E,0); setring S; S; |
---|
1206 | |
---|
1207 | if(IsSCA()) |
---|
1208 | { "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1209 | else |
---|
1210 | { "Not a super-commutative algebra!!!"; } |
---|
1211 | kill R, ER, S; |
---|
1212 | ///////////////////////////////////////////////////////////////////// |
---|
1213 | ring R = 0,(x(1..4)),dp; |
---|
1214 | def ER = superCommutative(2); // (b = 2, e = N) |
---|
1215 | setring ER; ER; |
---|
1216 | if(IsSCA()) |
---|
1217 | { "This is a SCA! Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; } |
---|
1218 | else |
---|
1219 | { "Not a super-commutative algebra!!!"; } |
---|
1220 | kill R, ER; |
---|
1221 | } |
---|
1222 | |
---|
1223 | |
---|
1224 | |
---|
1225 | /////////////////////////////////////////////////////////////////////////////// |
---|
1226 | proc Exterior(list #) |
---|
1227 | "USAGE: Exterior(); |
---|
1228 | RETURN: qring |
---|
1229 | PURPOSE: create the exterior algebra of a basering |
---|
1230 | NOTE: activate this qring with the \"setring\" command |
---|
1231 | THEORY: given a basering, this procedure introduces the anticommutative relations x(j)x(i)=-x(i)x(j) for all j>i, |
---|
1232 | @* moreover, creates a factor algebra modulo the two-sided ideal, generated by x(i)^2 for all i |
---|
1233 | EXAMPLE: example Exterior; shows examples |
---|
1234 | " |
---|
1235 | { |
---|
1236 | string rname=nameof(basering); |
---|
1237 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
1238 | { |
---|
1239 | "You have to call the procedure from the ring"; |
---|
1240 | return(); |
---|
1241 | } |
---|
1242 | int N = nvars(basering); |
---|
1243 | string NewRing = "ring @R=("+charstr(basering)+"),("+varstr(basering)+"),("+ordstr(basering)+");"; |
---|
1244 | execute(NewRing); |
---|
1245 | matrix @E = UpOneMatrix(N); |
---|
1246 | @E = -1*(@E); |
---|
1247 | def @@RR = nc_algebra(@E,0); setring @@RR; |
---|
1248 | int i; |
---|
1249 | ideal Q; |
---|
1250 | for ( i=1; i<=N; i++ ) |
---|
1251 | { |
---|
1252 | Q[i] = var(i)^2; |
---|
1253 | } |
---|
1254 | Q = twostd(Q); |
---|
1255 | qring @EA = Q; |
---|
1256 | return(@EA); |
---|
1257 | } |
---|
1258 | example |
---|
1259 | { |
---|
1260 | "EXAMPLE:";echo=2; |
---|
1261 | ring R = 0,(x(1..3)),dp; |
---|
1262 | def ER = Exterior(); |
---|
1263 | setring ER; |
---|
1264 | ER; |
---|
1265 | } |
---|
1266 | |
---|
1267 | /////////////////////////////////////////////////////////////////////////////// |
---|
1268 | proc makeWeyl(int n, list #) |
---|
1269 | "USAGE: makeWeyl(n,[p]); n an integer, n>0; p an optional integer (field characteristic) |
---|
1270 | RETURN: ring |
---|
1271 | PURPOSE: create the n-th Weyl algebra over the rationals Q or F_p |
---|
1272 | NOTE: activate this ring with the \"setring\" command. |
---|
1273 | @* The presentation of an n-th Weyl algebra is classical: D(i)x(i)=x(i)D(i)+1, |
---|
1274 | @* where x(i) correspond to coordinates and D(i) to partial differentiations, i=1,...,n. |
---|
1275 | @* If p is not prime, the next larger prime number will be used. |
---|
1276 | SEE ALSO: Weyl |
---|
1277 | EXAMPLE: example makeWeyl; shows examples |
---|
1278 | "{ |
---|
1279 | if (n<1) |
---|
1280 | { |
---|
1281 | print("Incorrect input"); |
---|
1282 | return(); |
---|
1283 | } |
---|
1284 | int @p = 0; |
---|
1285 | if ( size(#) > 0 ) |
---|
1286 | { |
---|
1287 | if ( typeof( #[1] ) == "int" ) |
---|
1288 | { |
---|
1289 | @p = #[1]; |
---|
1290 | } |
---|
1291 | } |
---|
1292 | if (n ==1) |
---|
1293 | { |
---|
1294 | ring @rr = @p,(x,D),dp; |
---|
1295 | } |
---|
1296 | else |
---|
1297 | { |
---|
1298 | ring @rr = @p,(x(1..n),D(1..n)),dp; |
---|
1299 | } |
---|
1300 | setring @rr; |
---|
1301 | def @rrr = Weyl(); |
---|
1302 | return(@rrr); |
---|
1303 | } |
---|
1304 | example |
---|
1305 | { "EXAMPLE:"; echo = 2; |
---|
1306 | def a = makeWeyl(3); |
---|
1307 | setring a; |
---|
1308 | a; |
---|
1309 | } |
---|
1310 | |
---|
1311 | ////////////////////////////////////////////////////////////////////// |
---|
1312 | proc isNC() |
---|
1313 | "USAGE: isNC(); |
---|
1314 | PURPOSE: check whether a basering is commutative or not |
---|
1315 | RETURN: int, 1 if basering is noncommutative and 0 otherwise |
---|
1316 | EXAMPLE: example isNC; shows examples |
---|
1317 | "{ |
---|
1318 | string rname=nameof(basering); |
---|
1319 | if ( rname == "basering") // i.e. no ring has been set yet |
---|
1320 | { |
---|
1321 | "You have to call the procedure from the ring"; |
---|
1322 | return(); |
---|
1323 | } |
---|
1324 | int n = nvars(basering); |
---|
1325 | int i,j; |
---|
1326 | poly p; |
---|
1327 | for (i=1; i<n; i++) |
---|
1328 | { |
---|
1329 | for (j=i+1; j<=n; j++) |
---|
1330 | { |
---|
1331 | p = var(j)*var(i) - var(i)*var(j); |
---|
1332 | if (p!=0) { return(1);} |
---|
1333 | } |
---|
1334 | } |
---|
1335 | return(0); |
---|
1336 | } |
---|
1337 | example |
---|
1338 | { "EXAMPLE:"; echo = 2; |
---|
1339 | def a = makeWeyl(2); |
---|
1340 | setring a; |
---|
1341 | isNC(); |
---|
1342 | kill a; |
---|
1343 | ring r = 17,(x(1..7)),dp; |
---|
1344 | isNC(); |
---|
1345 | kill r; |
---|
1346 | } |
---|
1347 | |
---|
1348 | /////////////////////////////////////////////////////////////////////////////// |
---|
1349 | proc rightStd(def I) |
---|
1350 | "USAGE: rightStd(I); I an ideal/ module |
---|
1351 | PURPOSE: compute a right Groebner basis of I |
---|
1352 | RETURN: the same type as input |
---|
1353 | EXAMPLE: example rightStd; shows examples |
---|
1354 | " |
---|
1355 | { |
---|
1356 | def A = basering; |
---|
1357 | def Aopp = opposite(A); |
---|
1358 | setring Aopp; |
---|
1359 | def Iopp = oppose(A,I); |
---|
1360 | def Jopp = groebner(Iopp); |
---|
1361 | setring A; |
---|
1362 | def J = oppose(Aopp,Jopp); |
---|
1363 | return(J); |
---|
1364 | } |
---|
1365 | example |
---|
1366 | { "EXAMPLE:"; echo = 2; |
---|
1367 | LIB "ncalg.lib"; |
---|
1368 | def A = makeUsl(2); |
---|
1369 | setring A; |
---|
1370 | ideal I = e2,f; |
---|
1371 | option(redSB); |
---|
1372 | option(redTail); |
---|
1373 | ideal LI = std(I); |
---|
1374 | LI; |
---|
1375 | ideal RI = rightStd(I); |
---|
1376 | RI; |
---|
1377 | } |
---|
1378 | |
---|
1379 | /////////////////////////////////////////////////////////////////////////////// |
---|
1380 | proc rightSyz(def I) |
---|
1381 | "USAGE: rightSyz(I); I an ideal/ module |
---|
1382 | PURPOSE: compute a right syzygy module of I |
---|
1383 | RETURN: the same type as input |
---|
1384 | EXAMPLE: example rightSyz; shows examples |
---|
1385 | " |
---|
1386 | { |
---|
1387 | def A = basering; |
---|
1388 | def Aopp = opposite(A); |
---|
1389 | setring Aopp; |
---|
1390 | def Iopp = oppose(A,I); |
---|
1391 | def Jopp = syz(Iopp); |
---|
1392 | setring A; |
---|
1393 | def J = oppose(Aopp,Jopp); |
---|
1394 | return(J); |
---|
1395 | } |
---|
1396 | example |
---|
1397 | { "EXAMPLE:"; echo = 2; |
---|
1398 | ring r = 0,(x,d),dp; |
---|
1399 | def S = nc_algebra(1,1); setring S; // the first Weyl algebra |
---|
1400 | ideal I = x,d; |
---|
1401 | module LS = syz(I); |
---|
1402 | print(LS); |
---|
1403 | module RS = rightSyz(I); |
---|
1404 | print(RS); |
---|
1405 | } |
---|
1406 | |
---|
1407 | /////////////////////////////////////////////////////////////////////////////// |
---|
1408 | proc rightNF(def v, def M) |
---|
1409 | "USAGE: rightNF(I); v a poly/vector, M an ideal/module |
---|
1410 | PURPOSE: compute a right normal form of v w.r.t. M |
---|
1411 | RETURN: poly/vector (as of the 1st argument) |
---|
1412 | EXAMPLE: example rightNF; shows examples |
---|
1413 | " |
---|
1414 | { |
---|
1415 | def A = basering; |
---|
1416 | def Aopp = opposite(A); |
---|
1417 | setring Aopp; |
---|
1418 | def vopp = oppose(A,v); |
---|
1419 | def Mopp = oppose(A,M); |
---|
1420 | Mopp = std(Mopp); |
---|
1421 | def wopp = NF(vopp,Mopp); |
---|
1422 | setring A; |
---|
1423 | def w = oppose(Aopp,wopp); |
---|
1424 | w = simplify(w,2); // skip zeros in ideal/module |
---|
1425 | return(w); |
---|
1426 | } |
---|
1427 | example |
---|
1428 | { "EXAMPLE:"; echo = 2; |
---|
1429 | LIB "ncalg.lib"; |
---|
1430 | ring r = 0,(x,d),dp; |
---|
1431 | def S = nc_algebra(1,1); setring S; // Weyl algebra |
---|
1432 | ideal I = x; I = std(I); |
---|
1433 | poly p = x*d+1; |
---|
1434 | NF(p,I); // left normal form |
---|
1435 | rightNF(p,I); // right normal form |
---|
1436 | } |
---|
1437 | |
---|
1438 | // ********************************** |
---|
1439 | // * NF: Example for vector/module: * |
---|
1440 | // ********************************** |
---|
1441 | // module M = [x,0],[0,d]; M = std(M); |
---|
1442 | // vector v = (x*d+1)*[1,1]; |
---|
1443 | // print(NF(v,M)); |
---|
1444 | // print(rightNF(v,M)); |
---|
1445 | |
---|
1446 | /////////////////////////////////////////////////////////////////////////////// |
---|
1447 | proc rightModulo(def M, def N) |
---|
1448 | "USAGE: rightModulo(M,N); M,N are ideals/modules |
---|
1449 | PURPOSE: compute a right representation of the module (M+N)/N |
---|
1450 | RETURN: module |
---|
1451 | ASSUME: M,N are presentation matrices for right modules |
---|
1452 | EXAMPLE: example rightModulo; shows examples |
---|
1453 | " |
---|
1454 | { |
---|
1455 | def A = basering; |
---|
1456 | def Aopp = opposite(A); |
---|
1457 | setring Aopp; |
---|
1458 | def Mopp = oppose(A,M); |
---|
1459 | def Nopp = oppose(A,N); |
---|
1460 | def Kopp = modulo(Mopp,Nopp); |
---|
1461 | setring A; |
---|
1462 | def K = oppose(Aopp,Kopp); |
---|
1463 | return(K); |
---|
1464 | } |
---|
1465 | example |
---|
1466 | { "EXAMPLE:"; echo = 2; |
---|
1467 | LIB "ncalg.lib"; |
---|
1468 | def A = makeUsl(2); |
---|
1469 | setring A; |
---|
1470 | option(redSB); |
---|
1471 | option(redTail); |
---|
1472 | ideal I = e2,f2,h2-1; |
---|
1473 | I = twostd(I); |
---|
1474 | print(matrix(I)); |
---|
1475 | ideal E = std(e); |
---|
1476 | ideal TL = e,h-1; // the result of left modulo |
---|
1477 | TL; |
---|
1478 | ideal T = rightModulo(E,I); |
---|
1479 | T = rightStd(T+I); |
---|
1480 | T = rightStd(rightNF(T,I)); // make the output canonic |
---|
1481 | T; |
---|
1482 | } |
---|
1483 | |
---|
1484 | ////////////////////////////////////////////////////////////////////// |
---|
1485 | |
---|
1486 | proc isCommutative () |
---|
1487 | "USAGE: isCommutative(); |
---|
1488 | RETURN: int, 1 if basering is commutative, or 0 otherwise |
---|
1489 | PURPOSE: check whether basering is commutative |
---|
1490 | EXAMPLE: example isCommutative; shows an example |
---|
1491 | " |
---|
1492 | { |
---|
1493 | int iscom = 1; |
---|
1494 | list L = ringlist(basering); |
---|
1495 | if (size(L) > 4) // basering is nc_algebra |
---|
1496 | { |
---|
1497 | matrix C = L[5]; |
---|
1498 | matrix D = L[6]; |
---|
1499 | if (size(module(D)) <> 0) { iscom = 0; } |
---|
1500 | else |
---|
1501 | { |
---|
1502 | matrix U = UpOneMatrix(nvars(basering)); |
---|
1503 | if (size(module(C-U)) <> 0) { iscom = 0; } |
---|
1504 | } |
---|
1505 | } |
---|
1506 | return(iscom); |
---|
1507 | } |
---|
1508 | example |
---|
1509 | { |
---|
1510 | "EXAMPLE:"; echo = 2; |
---|
1511 | ring r = 0,(x,y),dp; |
---|
1512 | isCommutative(); |
---|
1513 | def D = Weyl(); setring D; |
---|
1514 | isCommutative(); |
---|
1515 | setring r; |
---|
1516 | def R = nc_algebra(1,0); setring R; |
---|
1517 | isCommutative(); |
---|
1518 | } |
---|
1519 | |
---|
1520 | ////////////////////////////////////////////////////////////////////// |
---|
1521 | |
---|
1522 | proc isWeyl () |
---|
1523 | "USAGE: isWeyl(); |
---|
1524 | RETURN: int, 1 if basering is a Weyl algebra, or 0 otherwise |
---|
1525 | PURPOSE: check whether basering is a Weyl algebra |
---|
1526 | EXAMPLE: example isWeyl; shows an example |
---|
1527 | " |
---|
1528 | { |
---|
1529 | int i,j; |
---|
1530 | int notW = 0; |
---|
1531 | int N = nvars(basering); |
---|
1532 | if (N mod 2 <> 0) { return(notW); } // odd number of generators |
---|
1533 | int n = N/2; |
---|
1534 | list L = ringlist(basering); |
---|
1535 | if (size(L) < 6) { return(notW); } // basering is commutative |
---|
1536 | matrix C = L[5]; |
---|
1537 | matrix D = L[6]; |
---|
1538 | matrix U = UpOneMatrix(N); |
---|
1539 | if (size(ideal(C-U)) <> 0) { return(notW); } // lt(xy)<>lt(yx) |
---|
1540 | ideal I = D; |
---|
1541 | if (size(I) <> n) { return(notW); } // not n entries<>0 |
---|
1542 | I = simplify(I,4+2); |
---|
1543 | int sI = size(I); |
---|
1544 | if (sI > 2) { return(notW); } // more than 2 distinct entries |
---|
1545 | for (i=1; i<=sI; i++) |
---|
1546 | { |
---|
1547 | if (I[i]<>1 && I[i]<>-1) { return (notW); } // other values apart from 1,-1 |
---|
1548 | } |
---|
1549 | ideal Ro,Co; |
---|
1550 | for (i=1; i<=N; i++) |
---|
1551 | { |
---|
1552 | Ro = D[1..N,i]; |
---|
1553 | Co = D[i,1..N]; |
---|
1554 | if (size(Ro)>1 || size(Co)>1) |
---|
1555 | { |
---|
1556 | return(int(0)); // var(i) doesn't commute with more than 1 other vars |
---|
1557 | } |
---|
1558 | } |
---|
1559 | return(int(1)); // all tests passed: basering is Weyl algebra |
---|
1560 | } |
---|
1561 | example |
---|
1562 | { |
---|
1563 | "EXAMPLE:"; echo = 2; |
---|
1564 | ring r = 0,(a,b,c,d),dp; |
---|
1565 | isWeyl(); |
---|
1566 | def D = Weyl(1); setring D; //make from r a Weyl algebra |
---|
1567 | b*a; |
---|
1568 | isWeyl(); |
---|
1569 | ring t = 0,(Dx,x,y,Dy),dp; |
---|
1570 | matrix M[4][4]; M[1,2]=-1; M[3,4]=1; |
---|
1571 | def T = nc_algebra(1,M); setring T; |
---|
1572 | isWeyl(); |
---|
1573 | } |
---|