[380a17b] | 1 | ////////////////////////////////////////////////////////////////////////////// |
---|
[3686937] | 2 | version="version normal.lib 4.0.0.0 Jun_2013 "; // $Id$ |
---|
[1598658] | 3 | category="Commutative Algebra"; |
---|
| 4 | info=" |
---|
| 5 | LIBRARY: normal.lib Normalization of Affine Rings |
---|
| 6 | AUTHORS: G.-M. Greuel, greuel@mathematik.uni-kl.de, |
---|
| 7 | @* S. Laplagne, slaplagn@dm.uba.ar, |
---|
| 8 | @* G. Pfister, pfister@mathematik.uni-kl.de |
---|
| 9 | |
---|
| 10 | |
---|
[bf42f0] | 11 | PROCEDURES: |
---|
[1598658] | 12 | normal(I,[...]); normalization of an affine ring |
---|
| 13 | normalP(I,[...]); normalization of an affine ring in positive characteristic |
---|
| 14 | normalC(I,[...]); normalization of an affine ring through a chain of rings |
---|
| 15 | HomJJ(L); presentation of End_R(J) as affine ring, J an ideal |
---|
| 16 | genus(I); computes the geometric genus of a projective curve |
---|
| 17 | primeClosure(L); integral closure of R/p, p a prime ideal |
---|
| 18 | closureFrac(L); writes a poly in integral closure as element of Quot(R/p) |
---|
| 19 | iMult(L); intersection multiplicity of the ideals of the list L |
---|
| 20 | |
---|
| 21 | deltaLoc(f,S); sum of delta invariants at conjugated singular points |
---|
| 22 | locAtZero(I); checks whether the zero set of I is located at 0 |
---|
| 23 | norTest(I,nor); checks the output of normal, normalP, normalC |
---|
| 24 | getSmallest(J); computes the polynomial of smallest degree of J |
---|
| 25 | getOneVar(J, vari); computes a polynomial of J in the variable vari |
---|
| 26 | changeDenominator(U1, c1, c2, I); computes ideal U2 such that 1/c1*U1=1/c2*U2 |
---|
[1e1ec4] | 27 | |
---|
| 28 | SEE ALSO: locnormal_lib;modnormal_lib |
---|
[1598658] | 29 | "; |
---|
| 30 | |
---|
| 31 | LIB "general.lib"; |
---|
| 32 | LIB "poly.lib"; |
---|
| 33 | LIB "sing.lib"; |
---|
| 34 | LIB "primdec.lib"; |
---|
| 35 | LIB "elim.lib"; |
---|
| 36 | LIB "presolve.lib"; |
---|
| 37 | LIB "inout.lib"; |
---|
| 38 | LIB "ring.lib"; |
---|
| 39 | LIB "hnoether.lib"; |
---|
| 40 | LIB "reesclos.lib"; |
---|
| 41 | LIB "algebra.lib"; |
---|
| 42 | |
---|
| 43 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 44 | |
---|
| 45 | proc normal(ideal id, list #) |
---|
| 46 | "USAGE: normal(id [,choose]); id = radical ideal, choose = list of options. @* |
---|
| 47 | Optional parameters in list choose (can be entered in any order):@* |
---|
| 48 | Decomposition:@* |
---|
[c47547] | 49 | - \"equidim\" -> computes first an equidimensional decomposition of the |
---|
| 50 | input ideal, and then the normalization of each component (default).@* |
---|
| 51 | - \"prim\" -> computes first the minimal associated primes of the input |
---|
| 52 | ideal, and then the normalization of each prime. (When the input ideal |
---|
| 53 | is not prime and the minimal associated primes are easy to compute, |
---|
| 54 | this method is usually faster than \"equidim\".)@* |
---|
[1598658] | 55 | - \"noDeco\" -> no preliminary decomposition is done. If the ideal is |
---|
| 56 | not equidimensional radical, output might be wrong.@* |
---|
| 57 | - \"isPrim\" -> assumes that the ideal is prime. If this assumption |
---|
| 58 | does not hold, the output might be wrong.@* |
---|
| 59 | - \"noFac\" -> factorization is avoided in the computation of the |
---|
| 60 | minimal associated primes; |
---|
| 61 | Other:@* |
---|
| 62 | - \"useRing\" -> uses the original ring ordering.@* |
---|
| 63 | If this option is set and if the ring ordering is not global, normal |
---|
| 64 | will change to a global ordering only for computing radicals and prime |
---|
| 65 | or equidimensional decompositions.@* |
---|
| 66 | If this option is not set, normal changes to dp ordering and performs |
---|
| 67 | all computations with respect to this ordering.@* |
---|
| 68 | - \"withDelta\" (or \"wd\") -> returns also the delta invariants.@* |
---|
| 69 | If the optional parameter choose is not given or empty, only |
---|
| 70 | \"equidim\" but no other option is used.@* |
---|
| 71 | - list(\"inputJ\", ideal inputJ) -> takes as initial test ideal the |
---|
[ea87a9] | 72 | ideal inputJ. This option is only for use in other procedures. Using |
---|
[1598658] | 73 | this option, the result might not be the normalization.@* |
---|
[ea87a9] | 74 | (Option only valid for global algorithm.)@* |
---|
| 75 | - list(\"inputC\", ideal inputC) -> takes as initial conductor the |
---|
| 76 | ideal inputC. This option is only for use in other procedures. Using |
---|
[1598658] | 77 | this option, the result might not be the normalization.@* |
---|
| 78 | (Option only valid for global algorithm.)@* |
---|
[ea87a9] | 79 | Options used for computing integral basis (over rings of two |
---|
[1598658] | 80 | variables):@* |
---|
[ea87a9] | 81 | - \"var1\" -> uses a polynomial in the first variable as |
---|
[1598658] | 82 | universal denominator.@* |
---|
[ea87a9] | 83 | - \"var2\" -> uses a polynomial in the second variable as universal |
---|
[1598658] | 84 | denominator.@* |
---|
| 85 | If the optional parameter choose is not given or empty, only |
---|
| 86 | \"equidim\" but no other option is used.@* |
---|
| 87 | ASSUME: The ideal must be radical, for non-radical ideals the output may |
---|
| 88 | be wrong (id=radical(id); makes id radical). However, when using the |
---|
| 89 | \"prim\" option the minimal associated primes of id are computed first |
---|
| 90 | and hence normal computes the normalization of the radical of id.@* |
---|
| 91 | NOTE: \"isPrim\" should only be used if id is known to be prime. |
---|
| 92 | RETURN: a list, say nor, of size 2 (resp. 3 with option \"withDelta\"). |
---|
| 93 | @format Let R denote the basering and id the input ideal. |
---|
| 94 | * nor[1] is a list of r rings, where r is the number of associated |
---|
| 95 | primes P_i with option \"prim\" (resp. >= no of equidimenensional |
---|
| 96 | components P_i with option \"equidim\").@* |
---|
| 97 | Each ring Ri := nor[1][i], i=1..r, contains two ideals with given |
---|
| 98 | names @code{norid} and @code{normap} such that: @* |
---|
| 99 | - Ri/norid is the normalization of the i-th component, i.e. the |
---|
| 100 | integral closure of R/P_i in its field of fractions (as affine ring); |
---|
| 101 | - @code{normap} gives the normalization map from R/id to |
---|
| 102 | Ri/norid for each i.@* |
---|
| 103 | - the direct sum of the rings Ri/norid, i=1,..r, is the normalization |
---|
| 104 | of R/id as affine algebra; @* |
---|
| 105 | * nor[2] is a list of size r with information on the normalization of |
---|
| 106 | the i-th component as module over the basering R:@* |
---|
| 107 | nor[2][i] is an ideal, say U, in R such that the integral closure |
---|
| 108 | of basering/P_i is generated as module over R by 1/c * U, with c |
---|
| 109 | the last element U[size(U)] of U.@* |
---|
| 110 | * nor[3] (if option \"withDelta\" is set) is a list of an intvec |
---|
| 111 | of size r, the delta invariants of the r components, and an integer, |
---|
| 112 | the total delta invariant of basering/id (-1 means infinite, and 0 |
---|
| 113 | that R/P_i resp. R/id is normal). |
---|
| 114 | @end format |
---|
| 115 | THEORY: We use here a general algorithm described in [G.-M.Greuel, S.Laplagne, |
---|
| 116 | F.Seelisch: Normalization of Rings (2009)].@* |
---|
| 117 | The procedure computes the R-module structure, the algebra structure |
---|
| 118 | and the delta invariant of the normalization of R/id:@* |
---|
| 119 | The normalization of R/id is the integral closure of R/id in its total |
---|
| 120 | ring of fractions. It is a finitely generated R-module and nor[2] |
---|
| 121 | computes R-module generators of it. More precisely: If U:=nor[2][i] |
---|
| 122 | and c:=U[size(U)], then c is a non-zero divisor and U/c is an R-module |
---|
| 123 | in the total ring of fractions, the integral closure of R/P_i. Since |
---|
| 124 | U[size(U)]/c is equal to 1, R/P_i resp. R/id is contained in the |
---|
| 125 | integral closure.@* |
---|
| 126 | The normalization is also an affine algebra over the ground field |
---|
| 127 | and nor[1] presents it as such. For geometric considerations nor[1] is |
---|
| 128 | relevant since the variety of the ideal norid in Ri is the |
---|
| 129 | normalization of the variety of the ideal P_i in R.@* |
---|
| 130 | The delta invariant of a reduced ring A is dim_K(normalization(A)/A). |
---|
| 131 | For A=K[x1,...,xn]/id we call this number also the delta invariant of |
---|
| 132 | id. nor[3] returns the delta invariants of the components P_i and of |
---|
| 133 | id. |
---|
| 134 | NOTE: To use the i-th ring type e.g.: @code{def R=nor[1][i]; setring R;}. |
---|
| 135 | @* Increasing/decreasing printlevel displays more/less comments |
---|
| 136 | (default: printlevel=0). |
---|
| 137 | @* Implementation works also for local rings. |
---|
| 138 | @* Not implemented for quotient rings. |
---|
| 139 | @* If the input ideal id is weighted homogeneous a weighted ordering may |
---|
| 140 | be used together with the useRing-option (qhweight(id); computes |
---|
| 141 | weights). |
---|
| 142 | KEYWORDS: normalization; integral closure; delta invariant. |
---|
| 143 | SEE ALSO: normalC, normalP. |
---|
| 144 | EXAMPLE: example normal; shows an example |
---|
| 145 | " |
---|
| 146 | { |
---|
| 147 | intvec opt = option(get); // Save current options |
---|
| 148 | |
---|
| 149 | int i,j; |
---|
| 150 | int decomp; // Preliminary decomposition: |
---|
| 151 | // 0 -> no decomposition (id is assumed to be prime) |
---|
| 152 | // 1 -> no decomposition |
---|
| 153 | // (id is assumed to be equidimensional radical) |
---|
| 154 | // 2 -> equidimensional decomposition |
---|
| 155 | // 3 -> minimal associated primes |
---|
| 156 | int noFac, useRing, withDelta; |
---|
| 157 | int dbg = printlevel - voice + 2; |
---|
| 158 | int nvar = nvars(basering); |
---|
| 159 | int chara = char(basering); |
---|
| 160 | int denomOption; // Method for choosing the conductor |
---|
| 161 | |
---|
| 162 | ideal inputJ = 0; // Test ideal given in the input (if any). |
---|
| 163 | ideal inputC = 0; // Conductor ideal given in the input (if any). |
---|
| 164 | |
---|
| 165 | list result, resultNew; |
---|
| 166 | list keepresult; |
---|
| 167 | list ringStruc; |
---|
| 168 | ideal U; |
---|
| 169 | poly c; |
---|
| 170 | int sp; // Number of components. |
---|
| 171 | |
---|
| 172 | // Default methods: |
---|
| 173 | noFac = 0; // Use facSTD when computing minimal associated primes |
---|
| 174 | decomp = 2; // Equidimensional decomposition |
---|
| 175 | useRing = 0; // Change first to dp ordering, and perform all |
---|
| 176 | // computations there. |
---|
| 177 | withDelta = 0; // Do not compute the delta invariant. |
---|
[ea87a9] | 178 | denomOption = 0; // The default universal denominator is the smallest |
---|
[1598658] | 179 | // degree polynomial. |
---|
| 180 | |
---|
| 181 | //--------------------------- define the method --------------------------- |
---|
| 182 | for ( i=1; i <= size(#); i++ ) |
---|
| 183 | { |
---|
| 184 | if ( typeof(#[i]) == "string" ) |
---|
| 185 | { |
---|
| 186 | //--------------------------- choosen methods ----------------------- |
---|
| 187 | if ( (#[i]=="isprim") or (#[i]=="isPrim") ) |
---|
| 188 | {decomp = 0;} |
---|
| 189 | |
---|
| 190 | if ( (#[i]=="nodeco") or (#[i]=="noDeco") ) |
---|
| 191 | {decomp = 1;} |
---|
| 192 | |
---|
| 193 | if (#[i]=="prim") |
---|
| 194 | {decomp = 3;} |
---|
| 195 | |
---|
| 196 | if (#[i]=="equidim") |
---|
| 197 | {decomp = 2;} |
---|
| 198 | |
---|
| 199 | if ( (#[i]=="nofac") or (#[i]=="noFac") ) |
---|
| 200 | {noFac=1;} |
---|
| 201 | |
---|
| 202 | if ( ((#[i]=="useRing") or (#[i]=="usering")) and (ordstr(basering) != "dp("+string(nvars(basering))+"),C")) |
---|
| 203 | {useRing = 1;} |
---|
| 204 | |
---|
| 205 | if ( (#[i]=="withDelta") or (#[i]=="wd") or (#[i]=="withdelta")) |
---|
| 206 | { |
---|
| 207 | if((decomp == 0) or (decomp == 3)) |
---|
| 208 | { |
---|
| 209 | withDelta = 1; |
---|
| 210 | } |
---|
| 211 | else |
---|
| 212 | { |
---|
| 213 | decomp = 3; |
---|
| 214 | withDelta = 1; |
---|
| 215 | //Note: the delta invariants cannot be computed with an equidimensional |
---|
| 216 | //decomposition, hence we compute first the minimal primes |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | if (#[i]=="var1") |
---|
| 220 | {denomOption = 1;} |
---|
| 221 | if (#[i]=="var2") |
---|
| 222 | {denomOption = 2;} |
---|
| 223 | } |
---|
| 224 | if(typeof(#[i]) == "list"){ |
---|
| 225 | if(size(#[i]) == 2){ |
---|
| 226 | if (#[i][1]=="inputJ"){ |
---|
| 227 | if(typeof(#[i][2]) == "ideal"){ |
---|
| 228 | inputJ = #[i][2]; |
---|
| 229 | } |
---|
| 230 | } |
---|
| 231 | } |
---|
| 232 | if (#[i][1]=="inputC"){ |
---|
| 233 | if(size(#[i]) == 2){ |
---|
| 234 | if(typeof(#[i][2]) == "ideal"){ |
---|
| 235 | inputC = #[i][2]; |
---|
| 236 | } |
---|
| 237 | } |
---|
| 238 | } |
---|
| 239 | } |
---|
| 240 | } |
---|
| 241 | kill #; |
---|
| 242 | |
---|
| 243 | //------------------------ change ring if required ------------------------ |
---|
| 244 | // If the ordering is not global, we change to dp ordering for computing the |
---|
| 245 | // min ass primes. |
---|
| 246 | // If the ordering is global, but not dp, and useRing = 0, we also change to |
---|
| 247 | // dp ordering. |
---|
| 248 | |
---|
[1e1ec4] | 249 | int isGlobal = attrib(basering,"global");// Checks if the original ring has |
---|
[1598658] | 250 | // global ordering. |
---|
| 251 | |
---|
| 252 | def origR = basering; // origR is the original ring |
---|
| 253 | // R is the ring where computations will be done |
---|
| 254 | |
---|
| 255 | if((useRing == 1) and (isGlobal == 1)) |
---|
| 256 | { |
---|
| 257 | def globR = basering; |
---|
| 258 | } |
---|
| 259 | else |
---|
| 260 | { |
---|
| 261 | // We change to dp ordering. |
---|
| 262 | list rl = ringlist(origR); |
---|
| 263 | list origOrd = rl[3]; |
---|
| 264 | list newOrd = list("dp", intvec(1:nvars(origR))), list("C", 0); |
---|
| 265 | rl[3] = newOrd; |
---|
| 266 | def globR = ring(rl); |
---|
| 267 | setring globR; |
---|
| 268 | ideal id = fetch(origR, id); |
---|
| 269 | } |
---|
| 270 | |
---|
| 271 | //------------------------ trivial checkings ------------------------ |
---|
| 272 | id = groebner(id); |
---|
| 273 | if((size(id) == 0) or (id[1] == 1)) |
---|
| 274 | { |
---|
| 275 | // The original ring R/I was normal. Nothing to do. |
---|
| 276 | // We define anyway a new ring, equal to R, to be able to return it. |
---|
| 277 | setring origR; |
---|
| 278 | list lR = ringlist(origR); |
---|
| 279 | def ROut = ring(lR); |
---|
| 280 | setring ROut; |
---|
| 281 | ideal norid = fetch(origR, id); |
---|
| 282 | ideal normap = maxideal(1); |
---|
| 283 | export norid; |
---|
| 284 | export normap; |
---|
| 285 | setring origR; |
---|
| 286 | if(withDelta) |
---|
| 287 | { |
---|
| 288 | result = list(list(ROut), list(ideal(1)), list(intvec(0), 0)); |
---|
| 289 | } |
---|
| 290 | else |
---|
| 291 | { |
---|
| 292 | result = list(list(ROut), list(ideal(1))); |
---|
| 293 | } |
---|
| 294 | sp = 1; // number of rings in the output |
---|
| 295 | option(set, opt); |
---|
| 296 | normalOutputText(dbg, withDelta, sp); |
---|
| 297 | return(result); |
---|
| 298 | } |
---|
| 299 | //------------------------ preliminary decomposition----------------------- |
---|
| 300 | list prim; |
---|
| 301 | if(decomp == 2) |
---|
| 302 | { |
---|
| 303 | dbprint(dbg, "// Computing the equidimensional decomposition..."); |
---|
| 304 | prim = equidim(id); |
---|
| 305 | } |
---|
| 306 | if((decomp == 0) or (decomp == 1)) |
---|
| 307 | { |
---|
| 308 | prim = id; |
---|
| 309 | } |
---|
| 310 | if(decomp == 3) |
---|
| 311 | { |
---|
| 312 | dbprint(dbg, "// Computing the minimal associated primes..."); |
---|
| 313 | if( noFac ) |
---|
| 314 | { prim = minAssGTZ(id,1); } |
---|
| 315 | else |
---|
| 316 | { prim = minAssGTZ(id); } |
---|
| 317 | } |
---|
| 318 | sp = size(prim); |
---|
| 319 | if(dbg>=1) |
---|
| 320 | { |
---|
| 321 | prim; ""; |
---|
| 322 | "// number of components is", sp; |
---|
| 323 | ""; |
---|
| 324 | } |
---|
| 325 | |
---|
| 326 | |
---|
| 327 | //----------------- back to the original ring if required ------------------ |
---|
| 328 | // if ring was not global and useRing is on, we go back to the original ring |
---|
| 329 | if((useRing == 1) and (isGlobal != 1)) |
---|
| 330 | { |
---|
| 331 | setring origR; |
---|
| 332 | def R = basering; |
---|
| 333 | list prim = fetch(globR, prim); |
---|
| 334 | } |
---|
| 335 | else |
---|
| 336 | { |
---|
| 337 | def R = basering; |
---|
| 338 | ideal inputJ = fetch(origR, inputJ); |
---|
| 339 | ideal inputC = fetch(origR, inputC); |
---|
| 340 | if(useRing == 0) |
---|
| 341 | { |
---|
| 342 | ideal U; |
---|
| 343 | poly c; |
---|
| 344 | } |
---|
| 345 | } |
---|
| 346 | |
---|
| 347 | // ---------------- normalization of the components------------------------- |
---|
| 348 | // calls normalM to compute the normalization of each component. |
---|
| 349 | |
---|
| 350 | list norComp; // The normalization of each component. |
---|
| 351 | int delt; |
---|
| 352 | int deltI = 0; |
---|
| 353 | int totalComps = 0; |
---|
| 354 | |
---|
| 355 | setring origR; |
---|
| 356 | def newROrigOrd; |
---|
| 357 | list newRListO; |
---|
| 358 | setring R; |
---|
| 359 | def newR; |
---|
| 360 | list newRList; |
---|
| 361 | |
---|
| 362 | for(i=1; i<=size(prim); i++) |
---|
| 363 | { |
---|
| 364 | if(dbg>=2){pause();} |
---|
| 365 | if(dbg>=1) |
---|
| 366 | { |
---|
| 367 | "// start computation of component",i; |
---|
| 368 | " --------------------------------"; |
---|
| 369 | } |
---|
| 370 | if(groebner(prim[i])[1] != 1) |
---|
| 371 | { |
---|
| 372 | if(dbg>=2) |
---|
| 373 | { |
---|
| 374 | "We compute the normalization in the ring"; basering; |
---|
| 375 | } |
---|
| 376 | printlevel = printlevel + 1; |
---|
| 377 | norComp = normalM(prim[i], decomp, withDelta, denomOption, inputJ, inputC); |
---|
| 378 | printlevel = printlevel - 1; |
---|
| 379 | for(j = 1; j <= size(norComp); j++) |
---|
| 380 | { |
---|
| 381 | newR = norComp[j][3]; |
---|
[1e1ec4] | 382 | if(!defined(savebasering)) { def savebasering;} |
---|
[aacb5a] | 383 | savebasering=basering; |
---|
[6e80ab] | 384 | setring newR; // must be in a compatible ring to newR |
---|
| 385 | // as ringlist may produce ring-dep. stuff |
---|
[1e1ec4] | 386 | if(!defined(newRList)) { list newRList;} |
---|
[1598658] | 387 | newRList = ringlist(newR); |
---|
[6e80ab] | 388 | setring savebasering; |
---|
[1598658] | 389 | U = norComp[j][1]; |
---|
| 390 | c = norComp[j][2]; |
---|
| 391 | if(withDelta) |
---|
| 392 | { |
---|
| 393 | delt = norComp[j][4]; |
---|
| 394 | if((delt >= 0) and (deltI >= 0)) |
---|
| 395 | { |
---|
| 396 | deltI = deltI + delt; |
---|
| 397 | } |
---|
| 398 | else |
---|
| 399 | { |
---|
| 400 | deltI = -1; |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | // -- incorporate result for this component to the list of results --- |
---|
| 404 | if(useRing == 0) |
---|
| 405 | { |
---|
| 406 | // We go back to the original ring. |
---|
| 407 | setring origR; |
---|
| 408 | U = fetch(R, U); |
---|
| 409 | c = fetch(R, c); |
---|
[6e80ab] | 410 | newRListO = imap(newR, newRList); |
---|
[1598658] | 411 | // We change the ordering in the new ring. |
---|
| 412 | if(nvars(newR) > nvars(origR)) |
---|
| 413 | { |
---|
| 414 | newRListO[3]=insert(origOrd, newRListO[3][1]); |
---|
| 415 | } |
---|
| 416 | else |
---|
| 417 | { |
---|
| 418 | newRListO[3] = origOrd; |
---|
| 419 | } |
---|
| 420 | newROrigOrd = ring(newRListO); |
---|
| 421 | setring newROrigOrd; |
---|
| 422 | ideal norid = imap(newR, norid); |
---|
| 423 | ideal normap = imap(newR, normap); |
---|
| 424 | export norid; |
---|
| 425 | export normap; |
---|
| 426 | setring origR; |
---|
| 427 | totalComps++; |
---|
| 428 | result[totalComps] = list(U, c, newROrigOrd); |
---|
| 429 | if(withDelta) |
---|
| 430 | { |
---|
| 431 | result[totalComps] = insert(result[totalComps], delt, 3); |
---|
| 432 | } |
---|
| 433 | setring R; |
---|
| 434 | } |
---|
| 435 | else |
---|
| 436 | { |
---|
| 437 | setring R; |
---|
| 438 | totalComps++; |
---|
| 439 | result[totalComps] = norComp[j]; |
---|
| 440 | } |
---|
| 441 | } |
---|
| 442 | } |
---|
| 443 | } |
---|
| 444 | |
---|
| 445 | // -------------------------- delta computation ---------------------------- |
---|
| 446 | if(withDelta == 1) |
---|
| 447 | { |
---|
| 448 | // Intersection multiplicities of list prim, sp=size(prim). |
---|
| 449 | if ( dbg >= 1 ) |
---|
| 450 | { |
---|
| 451 | "// Sum of delta for all components: ", deltI; |
---|
| 452 | } |
---|
| 453 | if(size(prim) > 1) |
---|
| 454 | { |
---|
| 455 | dbprint(dbg, "// Computing the sum of the intersection multiplicities of the components..."); |
---|
| 456 | int mul = iMult(prim); |
---|
| 457 | if ( mul < 0 ) |
---|
| 458 | { |
---|
| 459 | deltI = -1; |
---|
| 460 | } |
---|
| 461 | else |
---|
| 462 | { |
---|
| 463 | deltI = deltI + mul; |
---|
| 464 | } |
---|
| 465 | if ( dbg >= 1 ) |
---|
| 466 | { |
---|
| 467 | "// Intersection multiplicity is : ", mul; |
---|
| 468 | } |
---|
| 469 | } |
---|
| 470 | } |
---|
| 471 | |
---|
| 472 | // -------------------------- prepare output ------------------------------ |
---|
| 473 | setring origR; |
---|
| 474 | |
---|
| 475 | list RL; // List of rings |
---|
| 476 | list MG; // Module generators |
---|
| 477 | intvec DV; // Vector of delta's of each component |
---|
| 478 | for(i = 1; i <= size(result); i++) |
---|
| 479 | { |
---|
| 480 | RL[i] = result[i][3]; |
---|
| 481 | MG[i] = lineUpLast(result[i][1], result[i][2]); |
---|
| 482 | if(withDelta) |
---|
| 483 | { |
---|
| 484 | DV[i] = result[i][4]; |
---|
| 485 | } |
---|
| 486 | } |
---|
| 487 | if(withDelta) |
---|
| 488 | { |
---|
| 489 | resultNew = list(RL, MG, list(DV, deltI)); |
---|
| 490 | } |
---|
| 491 | else |
---|
| 492 | { |
---|
| 493 | resultNew = list(RL, MG); |
---|
| 494 | } |
---|
| 495 | sp = size(RL); //RL = list of rings |
---|
| 496 | |
---|
| 497 | option(set, opt); |
---|
| 498 | normalOutputText(dbg, withDelta, sp); |
---|
| 499 | return(resultNew); |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | example |
---|
| 503 | { "EXAMPLE:"; |
---|
| 504 | printlevel = printlevel+1; |
---|
| 505 | echo = 2; |
---|
| 506 | ring s = 0,(x,y),dp; |
---|
| 507 | ideal i = (x2-y3)*(x2+y2)*x; |
---|
| 508 | list nor = normal(i, "withDelta", "prim"); |
---|
| 509 | nor; |
---|
| 510 | |
---|
| 511 | // 2 branches have delta = 1, and 1 branch has delta = 0 |
---|
| 512 | // the total delta invariant is 13 |
---|
| 513 | |
---|
| 514 | def R2 = nor[1][2]; setring R2; |
---|
| 515 | norid; normap; |
---|
| 516 | |
---|
| 517 | echo = 0; |
---|
| 518 | printlevel = printlevel-1; |
---|
| 519 | pause(" hit return to continue"); echo=2; |
---|
| 520 | |
---|
| 521 | ring r = 2,(x,y,z),dp; |
---|
| 522 | ideal i = z3-xy4; |
---|
| 523 | list nor = normal(i, "withDelta", "prim"); nor; |
---|
| 524 | // the delta invariant is infinite |
---|
| 525 | // xy2z/z2 and xy3/z2 generate the integral closure of r/i as r/i-module |
---|
| 526 | // in its quotient field Quot(r/i) |
---|
| 527 | |
---|
| 528 | // the normalization as affine algebra over the ground field: |
---|
| 529 | def R = nor[1][1]; setring R; |
---|
| 530 | norid; normap; |
---|
| 531 | } |
---|
| 532 | |
---|
| 533 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 534 | // Prints the output text in proc normal. |
---|
| 535 | // |
---|
| 536 | static proc normalOutputText(int dbg, int withDelta, int sp) |
---|
| 537 | // int dbg: printlevel |
---|
| 538 | // int withDelta: output contains information about the delta invariant |
---|
| 539 | // int sp: number of output rings. |
---|
| 540 | { |
---|
| 541 | if ( dbg >= 0 ) |
---|
| 542 | { |
---|
| 543 | ""; |
---|
| 544 | if(!withDelta) |
---|
| 545 | { |
---|
| 546 | "// 'normal' created a list, say nor, of two elements."; |
---|
| 547 | } |
---|
| 548 | else |
---|
| 549 | { |
---|
| 550 | "// 'normal' created a list, say nor, of three elements."; |
---|
| 551 | } |
---|
| 552 | "// To see the list type"; |
---|
| 553 | " nor;"; |
---|
| 554 | ""; |
---|
| 555 | "// * nor[1] is a list of", sp, "ring(s)."; |
---|
| 556 | "// To access the i-th ring nor[1][i], give it a name, say Ri, and type"; |
---|
| 557 | " def R1 = nor[1][1]; setring R1; norid; normap;"; |
---|
| 558 | "// For the other rings type first (if R is the name of your base ring)"; |
---|
| 559 | " setring R;"; |
---|
| 560 | "// and then continue as for R1."; |
---|
| 561 | "// Ri/norid is the affine algebra of the normalization of R/P_i where"; |
---|
| 562 | "// P_i is the i-th component of a decomposition of the input ideal id"; |
---|
| 563 | "// and normap the normalization map from R to Ri/norid."; |
---|
| 564 | ""; |
---|
| 565 | "// * nor[2] is a list of", sp, "ideal(s). Let ci be the last generator"; |
---|
| 566 | "// of the ideal nor[2][i]. Then the integral closure of R/P_i is"; |
---|
| 567 | "// generated as R-submodule of the total ring of fractions by"; |
---|
| 568 | "// 1/ci * nor[2][i]."; |
---|
| 569 | |
---|
| 570 | if(withDelta) |
---|
| 571 | { ""; |
---|
| 572 | "// * nor[3] is a list of an intvec of size", sp, "the delta invariants "; |
---|
| 573 | "// of the components, and an integer, the total delta invariant "; |
---|
| 574 | "// of R/id (-1 means infinite, and 0 that R/P_i resp. R/id is normal)."; |
---|
| 575 | } |
---|
| 576 | } |
---|
| 577 | } |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 581 | |
---|
| 582 | proc HomJJ (list Li) |
---|
| 583 | "USAGE: HomJJ (Li); Li = list: ideal SBid, ideal id, ideal J, poly p |
---|
| 584 | ASSUME: R = P/id, P = basering, a polynomial ring, id an ideal of P, |
---|
| 585 | @* SBid = standard basis of id, |
---|
| 586 | @* J = ideal of P containing the polynomial p, |
---|
| 587 | @* p = nonzero divisor of R |
---|
| 588 | COMPUTE: Endomorphism ring End_R(J)=Hom_R(J,J) with its ring structure as |
---|
| 589 | affine ring, together with the map R --> Hom_R(J,J) of affine rings, |
---|
| 590 | where R is the quotient ring of P modulo the standard basis SBid. |
---|
| 591 | RETURN: a list l of three objects |
---|
| 592 | @format |
---|
| 593 | l[1] : a polynomial ring, containing two ideals, 'endid' and 'endphi' |
---|
| 594 | such that l[1]/endid = Hom_R(J,J) and |
---|
| 595 | endphi describes the canonical map R -> Hom_R(J,J) |
---|
| 596 | l[2] : an integer which is 1 if phi is an isomorphism, 0 if not |
---|
| 597 | l[3] : an integer, = dim_K(Hom_R(J,J)/R) (the contribution to delta) |
---|
| 598 | if the dimension is finite, -1 otherwise |
---|
| 599 | @end format |
---|
| 600 | NOTE: printlevel >=1: display comments (default: printlevel=0) |
---|
| 601 | EXAMPLE: example HomJJ; shows an example |
---|
| 602 | " |
---|
| 603 | { |
---|
| 604 | //---------- initialisation --------------------------------------------------- |
---|
| 605 | int isIso,isPr,isHy,isCo,isRe,isEq,oSAZ,ii,jj,q,y; |
---|
| 606 | intvec rw,rw1; |
---|
| 607 | list L; |
---|
| 608 | y = printlevel-voice+2; // y=printlevel (default: y=0) |
---|
| 609 | def P = basering; |
---|
| 610 | ideal SBid, id, J = Li[1], Li[2], Li[3]; |
---|
| 611 | poly p = Li[4]; |
---|
| 612 | int noRed = 0; |
---|
| 613 | if(size(Li) > 4) |
---|
| 614 | { |
---|
| 615 | if(Li[5] == 1) { noRed = 1; } |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | attrib(SBid,"isSB",1); |
---|
| 619 | int homo = homog(Li[2]); //is 1 if id is homogeneous, 0 if not |
---|
| 620 | |
---|
| 621 | //---- set attributes for special cases where algorithm can be simplified ----- |
---|
| 622 | if( homo==1 ) |
---|
| 623 | { |
---|
| 624 | rw = ringweights(P); |
---|
| 625 | } |
---|
| 626 | if( typeof(attrib(id,"isPrim"))=="int" ) |
---|
| 627 | { |
---|
| 628 | if(attrib(id,"isPrim")==1) { isPr=1; } |
---|
| 629 | } |
---|
| 630 | if( typeof(attrib(id,"onlySingularAtZero"))=="int" ) |
---|
| 631 | { |
---|
| 632 | if(attrib(id,"onlySingularAtZero")==1){oSAZ=1; } |
---|
| 633 | } |
---|
| 634 | if( typeof(attrib(id,"isIsolatedSingularity"))=="int" ) |
---|
| 635 | { |
---|
| 636 | if(attrib(id,"isIsolatedSingularity")==1) { isIso=1; } |
---|
| 637 | } |
---|
| 638 | if( typeof(attrib(id,"isCohenMacaulay"))=="int" ) |
---|
| 639 | { |
---|
| 640 | if(attrib(id,"isCohenMacaulay")==1) { isCo=1; } |
---|
| 641 | } |
---|
| 642 | if( typeof(attrib(id,"isRegInCodim2"))=="int" ) |
---|
| 643 | { |
---|
| 644 | if(attrib(id,"isRegInCodim2")==1) { isRe=1; } |
---|
| 645 | } |
---|
| 646 | if( typeof(attrib(id,"isEquidimensional"))=="int" ) |
---|
| 647 | { |
---|
| 648 | if(attrib(id,"isEquidimensional")==1) { isEq=1; } |
---|
| 649 | } |
---|
| 650 | //-------------------------- go to quotient ring ------------------------------ |
---|
| 651 | qring R = SBid; |
---|
| 652 | ideal id = fetch(P,id); |
---|
| 653 | ideal J = fetch(P,J); |
---|
| 654 | poly p = fetch(P,p); |
---|
| 655 | ideal f,rf,f2; |
---|
| 656 | module syzf; |
---|
| 657 | //---------- computation of p*Hom(J,J) as R-ideal ----------------------------- |
---|
| 658 | if ( y>=1 ) |
---|
| 659 | { |
---|
| 660 | "// compute p*Hom(J,J) = p*J:J"; |
---|
| 661 | "// the ideal J:";J; |
---|
| 662 | } |
---|
| 663 | f = quotient(p*J,J); |
---|
| 664 | |
---|
| 665 | //### (neu GMG 4.10.08) divide by the greatest common divisor: |
---|
| 666 | poly gg = gcd( f[1],p ); |
---|
| 667 | for(ii=2; ii <=ncols(f); ii++) |
---|
| 668 | { |
---|
| 669 | gg=gcd(gg,f[ii]); |
---|
| 670 | } |
---|
| 671 | for(ii=1; ii<=ncols(f); ii++) |
---|
| 672 | { |
---|
| 673 | f[ii]=f[ii]/gg; |
---|
| 674 | } |
---|
| 675 | p = p/gg; |
---|
| 676 | |
---|
| 677 | if ( y>=1 ) |
---|
| 678 | { |
---|
| 679 | "// the non-zerodivisor p:"; p; |
---|
| 680 | "// the module p*Hom(J,J) = p*J:J :"; f; |
---|
| 681 | ""; |
---|
| 682 | } |
---|
| 683 | f2 = std(p); |
---|
| 684 | |
---|
| 685 | //---------- Test: Hom(J,J) == R ?, if yes, go home --------------------------- |
---|
| 686 | |
---|
| 687 | //rf = interred(reduce(f,f2)); |
---|
| 688 | //### interred hier weggelassen, unten zugefuegt |
---|
| 689 | rf = reduce(f,f2); //represents p*Hom(J,J)/p*R = Hom(J,J)/R |
---|
| 690 | if ( size(rf) == 0 ) |
---|
| 691 | { |
---|
| 692 | if ( homog(f) && find(ordstr(basering),"s")==0 ) |
---|
| 693 | { |
---|
| 694 | ring newR1 = char(P),(X(1..nvars(P))),(a(rw),dp); |
---|
| 695 | } |
---|
| 696 | else |
---|
| 697 | { |
---|
| 698 | ring newR1 = char(P),(X(1..nvars(P))),dp; |
---|
| 699 | } |
---|
| 700 | ideal endphi = maxideal(1); |
---|
| 701 | ideal endid = fetch(P,id); |
---|
| 702 | endid = simplify(endid,2); |
---|
| 703 | L = substpart(endid,endphi,homo,rw); //## hier substpart |
---|
| 704 | def lastRing = L[1]; |
---|
| 705 | setring lastRing; |
---|
| 706 | |
---|
| 707 | attrib(endid,"onlySingularAtZero",oSAZ); |
---|
| 708 | attrib(endid,"isCohenMacaulay",isCo); |
---|
| 709 | attrib(endid,"isPrim",isPr); |
---|
| 710 | attrib(endid,"isIsolatedSingularity",isIso); |
---|
| 711 | attrib(endid,"isRegInCodim2",isRe); |
---|
| 712 | attrib(endid,"isEqudimensional",isEq); |
---|
| 713 | attrib(endid,"isHypersurface",0); |
---|
| 714 | attrib(endid,"isCompleteIntersection",0); |
---|
| 715 | attrib(endid,"isRadical",0); |
---|
| 716 | L=lastRing; |
---|
| 717 | L = insert(L,1,1); |
---|
| 718 | dbprint(y,"// case R = Hom(J,J)"); |
---|
| 719 | if(y>=1) |
---|
| 720 | { |
---|
| 721 | "// R=Hom(J,J)"; |
---|
| 722 | lastRing; |
---|
| 723 | "// the new ideal"; |
---|
| 724 | endid; |
---|
| 725 | " "; |
---|
| 726 | "// the old ring"; |
---|
| 727 | P; |
---|
| 728 | "// the old ideal"; |
---|
| 729 | setring P; |
---|
| 730 | id; |
---|
| 731 | " "; |
---|
| 732 | setring lastRing; |
---|
| 733 | "// the map to the new ring"; |
---|
| 734 | endphi; |
---|
| 735 | " "; |
---|
| 736 | pause(); |
---|
| 737 | ""; |
---|
| 738 | } |
---|
| 739 | setring P; |
---|
| 740 | L[3]=0; |
---|
| 741 | return(L); |
---|
| 742 | } |
---|
| 743 | if(y>=1) |
---|
| 744 | { |
---|
| 745 | "// R is not equal to Hom(J,J), we have to try again"; |
---|
| 746 | pause(); |
---|
| 747 | ""; |
---|
| 748 | } |
---|
| 749 | //---------- Hom(J,J) != R: create new ring and map from old ring ------------- |
---|
| 750 | // the ring newR1/SBid+syzf will be isomorphic to Hom(J,J) as R-module |
---|
| 751 | // f2=p (i.e. ideal generated by p) |
---|
| 752 | |
---|
| 753 | //f = mstd(f)[2]; //### geaendert GMG 04.10.08 |
---|
| 754 | //ideal ann = quotient(f2,f); //### f durch rf ersetzt |
---|
| 755 | rf = mstd(rf)[2]; //rf = NF(f,p), hence <p,rf> = <p,f> |
---|
| 756 | ideal ann = quotient(f2,rf); //p:f = p:rf |
---|
| 757 | |
---|
| 758 | //------------- compute the contribution to delta ---------- |
---|
| 759 | //delt=dim_K(Hom(JJ)/R (or -1 if infinite) |
---|
| 760 | |
---|
| 761 | int delt=vdim(std(modulo(f,ideal(p)))); |
---|
| 762 | |
---|
| 763 | f = p,rf; // generates pJ:J mod(p), i.e. p*Hom(J,J)/p*R as R-module |
---|
| 764 | q = size(f); |
---|
| 765 | syzf = syz(f); |
---|
| 766 | |
---|
| 767 | if ( homo==1 ) |
---|
| 768 | { |
---|
| 769 | rw1 = rw,0; |
---|
| 770 | for ( ii=2; ii<=q; ii++ ) |
---|
| 771 | { |
---|
| 772 | rw = rw, deg(f[ii])-deg(f[1]); |
---|
| 773 | rw1 = rw1, deg(f[ii])-deg(f[1]); |
---|
| 774 | } |
---|
| 775 | ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),(a(rw1),dp); |
---|
| 776 | } |
---|
| 777 | else |
---|
| 778 | { |
---|
| 779 | ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),dp; |
---|
| 780 | } |
---|
| 781 | |
---|
| 782 | //map psi1 = P,maxideal(1); //### psi1 durch fetch ersetzt |
---|
| 783 | //ideal SBid = psi1(SBid); |
---|
| 784 | ideal SBid = fetch(P,SBid); |
---|
| 785 | attrib(SBid,"isSB",1); |
---|
| 786 | |
---|
| 787 | qring newR = std(SBid); |
---|
| 788 | |
---|
| 789 | //map psi = R,ideal(X(1..nvars(R))); //### psi durch fetch ersetzt |
---|
| 790 | //ideal id = psi(id); |
---|
| 791 | //ideal f = psi(f); |
---|
| 792 | //module syzf = psi(syzf); |
---|
| 793 | ideal id = fetch(R,id); |
---|
| 794 | ideal f = fetch(R,f); |
---|
| 795 | module syzf = fetch(R,syzf); |
---|
| 796 | ideal pf,Lin,Quad,Q; |
---|
| 797 | matrix T,A; |
---|
| 798 | list L1; |
---|
| 799 | |
---|
| 800 | //---------- computation of Hom(J,J) as affine ring --------------------------- |
---|
| 801 | // determine kernel of: R[T1,...,Tq] -> J:J >-> R[1/p]=R[t]/(t*p-1), |
---|
| 802 | // Ti -> fi/p -> t*fi (p=f1=f[1]), to get ring structure. This is of course |
---|
| 803 | // the same as the kernel of R[T1,...,Tq] -> pJ:J >-> R, Ti -> fi. |
---|
| 804 | // It is a fact, that the kernel is generated by the linear and the quadratic |
---|
| 805 | // relations |
---|
| 806 | // f=p,rf, rf=reduce(f,p), generates pJ:J mod(p), |
---|
| 807 | // i.e. p*Hom(J,J)/p*R as R-module |
---|
| 808 | |
---|
| 809 | pf = f[1]*f; |
---|
| 810 | T = matrix(ideal(T(1..q)),1,q); |
---|
| 811 | Lin = ideal(T*syzf); |
---|
| 812 | if(y>=1) |
---|
| 813 | { |
---|
| 814 | "// the ring structure of Hom(J,J) as R-algebra"; |
---|
| 815 | "// the linear relations:"; |
---|
| 816 | Lin; |
---|
| 817 | } |
---|
| 818 | |
---|
| 819 | poly ff; |
---|
| 820 | for (ii=2; ii<=q; ii++ ) |
---|
| 821 | { |
---|
| 822 | for ( jj=2; jj<=ii; jj++ ) |
---|
| 823 | { |
---|
| 824 | ff = NF(f[ii]*f[jj],std(0)); //this makes lift much faster |
---|
| 825 | A = lift(pf,ff); //ff lin. comb. of elts of pf mod I |
---|
| 826 | Quad = Quad, ideal(T(jj)*T(ii) - T*A); //quadratic relations |
---|
| 827 | } |
---|
| 828 | } |
---|
| 829 | |
---|
| 830 | if(y>=1) |
---|
| 831 | { |
---|
| 832 | "// the quadratic relations"; |
---|
| 833 | Quad; |
---|
| 834 | pause(); |
---|
| 835 | newline; |
---|
| 836 | } |
---|
| 837 | Q = Lin,Quad; |
---|
| 838 | Q = subst(Q,T(1),1); |
---|
| 839 | //Q = mstd(Q)[2]; //### sehr aufwendig, daher weggelassen (GMG) |
---|
| 840 | //### ev das neue interred |
---|
| 841 | //mstd dient nur zum verkleinern, die SB-Eigenschaft geht spaeter verloren |
---|
| 842 | //da in neuen Ring abgebildet und mit id vereinigt |
---|
| 843 | |
---|
| 844 | //---------- reduce number of variables by substitution, if possible ---------- |
---|
| 845 | if (homo==1) |
---|
| 846 | { |
---|
| 847 | ring newRing = char(R),(X(1..nvars(R)),T(2..q)),(a(rw),dp); |
---|
| 848 | } |
---|
| 849 | else |
---|
| 850 | { |
---|
| 851 | ring newRing = char(R),(X(1..nvars(R)),T(2..q)),dp; |
---|
| 852 | } |
---|
| 853 | |
---|
| 854 | ideal endid = imap(newR,id),imap(newR,Q); |
---|
| 855 | //hier wird Q weiterverwendet, die SB-Eigenschaft wird nicht verwendet. |
---|
| 856 | endid = simplify(endid,2); |
---|
| 857 | ideal endphi = ideal(X(1..nvars(R))); |
---|
| 858 | |
---|
| 859 | |
---|
| 860 | if(noRed == 0) |
---|
| 861 | { |
---|
| 862 | L = substpart(endid,endphi,homo,rw); |
---|
| 863 | def lastRing=L[1]; |
---|
| 864 | setring lastRing; |
---|
| 865 | //return(lastRing); |
---|
| 866 | } |
---|
| 867 | else |
---|
| 868 | { |
---|
| 869 | list RL = ringlist(newRing); |
---|
| 870 | def lastRing = ring(RL); |
---|
| 871 | setring lastRing; |
---|
| 872 | ideal endid = fetch(newRing, endid); |
---|
| 873 | ideal endphi = fetch(newRing, endphi); |
---|
| 874 | export(endid); |
---|
| 875 | export(endphi); |
---|
| 876 | //def lastRing = newRing; |
---|
| 877 | //setring R; |
---|
| 878 | //return(newR); |
---|
| 879 | } |
---|
| 880 | |
---|
| 881 | |
---|
| 882 | // L = substpart(endid,endphi,homo,rw); |
---|
| 883 | |
---|
| 884 | // def lastRing=L[1]; |
---|
| 885 | // setring lastRing; |
---|
| 886 | |
---|
| 887 | attrib(endid,"onlySingularAtZero",0); |
---|
| 888 | map sigma=R,endphi; |
---|
| 889 | ideal an=sigma(ann); |
---|
| 890 | export(an); //noetig? |
---|
| 891 | //ideal te=an,endid; |
---|
| 892 | //if(isIso && (size(reduce(te,std(maxideal(1))))==0)) //#### ok??? |
---|
| 893 | // { |
---|
| 894 | // attrib(endid,"onlySingularAtZero",oSAZ); |
---|
| 895 | // } |
---|
| 896 | //kill te; |
---|
| 897 | attrib(endid,"isCohenMacaulay",isCo); //#### ok??? |
---|
| 898 | attrib(endid,"isPrim",isPr); |
---|
| 899 | attrib(endid,"isIsolatedSingularity",isIso); |
---|
| 900 | attrib(endid,"isRegInCodim2",isRe); |
---|
| 901 | attrib(endid,"isEquidimensional",isEq); |
---|
| 902 | attrib(endid,"isHypersurface",0); |
---|
| 903 | attrib(endid,"isCompleteIntersection",0); |
---|
| 904 | attrib(endid,"isRadical",0); |
---|
| 905 | if(y>=1) |
---|
| 906 | { |
---|
| 907 | "// the new ring after reduction of the number of variables"; |
---|
| 908 | lastRing; |
---|
| 909 | "// the new ideal"; |
---|
| 910 | endid; ""; |
---|
| 911 | "// the old ring"; |
---|
| 912 | P; |
---|
| 913 | "// the old ideal"; |
---|
| 914 | setring P; |
---|
| 915 | id; |
---|
| 916 | " "; |
---|
| 917 | setring lastRing; |
---|
| 918 | "// the map to the new ring"; |
---|
| 919 | endphi; |
---|
| 920 | " "; |
---|
| 921 | pause(); |
---|
| 922 | ""; |
---|
| 923 | } |
---|
| 924 | L = lastRing; |
---|
| 925 | L = insert(L,0,1); |
---|
| 926 | L[3] = delt; |
---|
| 927 | return(L); |
---|
| 928 | } |
---|
| 929 | example |
---|
| 930 | {"EXAMPLE:"; echo = 2; |
---|
| 931 | ring r = 0,(x,y),wp(2,3); |
---|
| 932 | ideal id = y^2-x^3; |
---|
| 933 | ideal J = x,y; |
---|
| 934 | poly p = x; |
---|
| 935 | list Li = std(id),id,J,p; |
---|
| 936 | list L = HomJJ(Li); |
---|
| 937 | def end = L[1]; // defines ring L[1], containing ideals endid, endphi |
---|
| 938 | setring end; // makes end the basering |
---|
| 939 | end; |
---|
| 940 | endid; // end/endid is isomorphic to End(r/id) as ring |
---|
| 941 | map psi = r,endphi;// defines the canonical map r/id -> End(r/id) |
---|
| 942 | psi; |
---|
| 943 | L[3]; // contribution to delta |
---|
| 944 | } |
---|
| 945 | |
---|
| 946 | |
---|
| 947 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 948 | //compute intersection multiplicities as needed for delta(I) in |
---|
| 949 | //normalizationPrimes and normalP: |
---|
| 950 | |
---|
| 951 | proc iMult (list prim) |
---|
| 952 | "USAGE: iMult(L); L a list of ideals |
---|
| 953 | RETURN: int, the intersection multiplicity of the ideals of L; |
---|
| 954 | if iMult(L) is infinite, -1 is returned. |
---|
| 955 | THEORY: If r=size(L)=2 then iMult(L) = vdim(std(L[1]+L[2])) and in general |
---|
| 956 | iMult(L) = sum{ iMult(L[j],Lj) | j=1..r-1 } with Lj the intersection |
---|
| 957 | of L[j+1],...,L[r]. If I is the intersection of all ideals in L then |
---|
| 958 | we have delta(I) = delta(L[1])+...+delta(L[r]) + iMult(L) where |
---|
| 959 | delta(I) = vdim (normalisation(R/I)/(R/I)), R the basering. |
---|
| 960 | EXAMPLE: example iMult; shows an example |
---|
| 961 | " |
---|
| 962 | { int i,mul,mu; |
---|
| 963 | int sp = size(prim); |
---|
| 964 | int y = printlevel-voice+2; |
---|
| 965 | if ( sp > 1 ) |
---|
| 966 | { |
---|
| 967 | ideal I(sp-1) = prim[sp]; |
---|
| 968 | mu = vdim(std(I(sp-1)+prim[sp-1])); |
---|
| 969 | mul = mu; |
---|
| 970 | if ( y>=1 ) |
---|
| 971 | { |
---|
| 972 | "// intersection multiplicity of component",sp,"with",sp-1,":"; mu; |
---|
| 973 | } |
---|
| 974 | if ( mu >= 0 ) |
---|
| 975 | { |
---|
| 976 | for (i=sp-2; i>=1 ; i--) |
---|
| 977 | { |
---|
| 978 | ideal I(i) = intersect(I(i+1),prim[i+1]); |
---|
| 979 | mu = vdim(std(I(i)+prim[i])); |
---|
| 980 | if ( mu < 0 ) |
---|
| 981 | { |
---|
| 982 | break; |
---|
| 983 | } |
---|
| 984 | mul = mul + mu; |
---|
| 985 | if ( y>=1 ) |
---|
| 986 | { |
---|
| 987 | "// intersection multiplicity of components",sp,"...",i+1,"with",i; mu; |
---|
| 988 | } |
---|
| 989 | } |
---|
| 990 | } |
---|
| 991 | } |
---|
| 992 | return(mul); |
---|
| 993 | } |
---|
| 994 | example |
---|
| 995 | { "EXAMPLE:"; echo = 2; |
---|
| 996 | ring s = 23,(x,y),dp; |
---|
| 997 | list L = (x-y),(x3+y2); |
---|
| 998 | iMult(L); |
---|
| 999 | L = (x-y),(x3+y2),(x3-y4); |
---|
| 1000 | iMult(L); |
---|
| 1001 | } |
---|
| 1002 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 1003 | //check if I has a singularity only at zero, as needed in normalizationPrimes |
---|
| 1004 | |
---|
| 1005 | proc locAtZero (ideal I) |
---|
| 1006 | "USAGE: locAtZero(I); I = ideal |
---|
| 1007 | RETURN: int, 1 if I has only one point which is located at zero, 0 otherwise |
---|
| 1008 | ASSUME: I is given as a standard bases in the basering |
---|
| 1009 | NOTE: only useful in affine rings, in local rings vdim does the check |
---|
| 1010 | EXAMPLE: example locAtZero; shows an example |
---|
| 1011 | " |
---|
| 1012 | { |
---|
| 1013 | int ii,jj, caz; //caz: conzentrated at zero |
---|
| 1014 | int dbp = printlevel-voice+2; |
---|
| 1015 | int nva = nvars(basering); |
---|
| 1016 | int vdi = vdim(I); |
---|
| 1017 | if ( vdi < 0 ) |
---|
| 1018 | { |
---|
| 1019 | if (dbp >=1) |
---|
| 1020 | { "// non-isolated singularitiy";""; } |
---|
| 1021 | return(caz); |
---|
| 1022 | } |
---|
| 1023 | |
---|
| 1024 | //Now the ideal is 0-dim |
---|
| 1025 | //First an easy test |
---|
| 1026 | //If I is homogenous and not constant it is concentrated at 0 |
---|
| 1027 | if( homog(I)==1 && size(jet(I,0))==0) |
---|
| 1028 | { |
---|
| 1029 | caz=1; |
---|
| 1030 | if (dbp >=1) |
---|
| 1031 | { "// isolated singularity and homogeneous";""; } |
---|
| 1032 | return(caz); |
---|
| 1033 | } |
---|
| 1034 | |
---|
| 1035 | //Now the general case with I 0-dim. Choose an appropriate power pot, |
---|
| 1036 | //and check each variable x whether x^pot is in I. |
---|
| 1037 | int mi1 = mindeg1(lead(I)); |
---|
| 1038 | int pot = vdi; |
---|
| 1039 | if ( (mi1+(mi1==1))^2 < vdi ) |
---|
| 1040 | { |
---|
| 1041 | pot = (mi1+(mi1==1))^2; //### alternativ: pot = vdi lassen |
---|
| 1042 | } |
---|
| 1043 | |
---|
| 1044 | while ( 1 ) |
---|
| 1045 | { |
---|
| 1046 | caz = 1; |
---|
| 1047 | for ( ii=1; ii<= nva; ii++ ) |
---|
| 1048 | { |
---|
| 1049 | if ( NF(var(ii)^pot,I) != 0 ) |
---|
| 1050 | { |
---|
| 1051 | caz = 0; break; |
---|
| 1052 | } |
---|
| 1053 | } |
---|
| 1054 | if ( caz == 1 || pot >= vdi ) |
---|
| 1055 | { |
---|
| 1056 | if (dbp >=1) |
---|
| 1057 | { |
---|
| 1058 | "// mindeg, exponent, vdim used in 'locAtZero':", mi1,pot,vdi; ""; |
---|
| 1059 | } |
---|
| 1060 | return(caz); |
---|
| 1061 | } |
---|
| 1062 | else |
---|
| 1063 | { |
---|
| 1064 | if ( pot^2 < vdi ) |
---|
| 1065 | { pot = pot^2; } |
---|
| 1066 | else |
---|
| 1067 | { pot = vdi; } |
---|
| 1068 | } |
---|
| 1069 | } |
---|
| 1070 | } |
---|
| 1071 | example |
---|
| 1072 | { "EXAMPLE:"; echo = 2; |
---|
| 1073 | ring r = 0,(x,y,z),dp; |
---|
| 1074 | poly f = z5+y4+x3+xyz; |
---|
| 1075 | ideal i = jacob(f),f; |
---|
| 1076 | i=std(i); |
---|
| 1077 | locAtZero(i); |
---|
| 1078 | i= std(i*ideal(x-1,y,z)); |
---|
| 1079 | locAtZero(i); |
---|
| 1080 | } |
---|
| 1081 | |
---|
| 1082 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 1083 | |
---|
| 1084 | //The next procedure normalizationPrimes computes the normalization of an |
---|
| 1085 | //irreducible or an equidimensional ideal i. |
---|
| 1086 | //- If i is irreducuble, then the returned list, say nor, has size 2 |
---|
| 1087 | //with nor[1] the normalization ring and nor[2] the delta invariant. |
---|
| 1088 | //- If i is equidimensional, than the "splitting tools" can create a |
---|
| 1089 | //decomposition of i and nor can have more than 1 ring. |
---|
| 1090 | |
---|
| 1091 | static proc normalizationPrimes(ideal i,ideal ihp,int delt,intvec delti,list #) |
---|
| 1092 | "USAGE: normalizationPrimes(i,ihp,delt[,si]); i = equidimensional ideal, |
---|
| 1093 | ihp = map (partial normalization), delt = partial delta-invariant, |
---|
| 1094 | si = ideal s.t. V(si) contains singular locus (optional) |
---|
| 1095 | RETURN: a list of rings, say nor, and an integer, the delta-invariant |
---|
| 1096 | at the end of the list. |
---|
| 1097 | each ring nor[j], j = 1..size(nor)-1, contains two ideals |
---|
| 1098 | with given names norid and normap such that |
---|
| 1099 | - the direct sum of the rings nor[j]/norid is |
---|
| 1100 | the normalization of basering/i; |
---|
| 1101 | - normap gives the normalization map from basering/id |
---|
| 1102 | to nor[j]/norid (for each j) |
---|
| 1103 | nor[size(nor)] = dim_K(normalisation(P/i) / (P/i)) is the |
---|
| 1104 | delta-invariant, where P is the basering. |
---|
| 1105 | EXAMPLE: example normalizationPrimes; shows an example |
---|
| 1106 | " |
---|
| 1107 | { |
---|
| 1108 | //Note: this procedure calls itself as long as the test for |
---|
| 1109 | //normality, i.e if R==Hom(J,J), is negative. |
---|
| 1110 | |
---|
| 1111 | int printlev = printlevel; //store printlevel in order to reset it later |
---|
| 1112 | int y = printlevel-voice+2; // y=printlevel (default: y=0) |
---|
| 1113 | if(y>=1) |
---|
| 1114 | { |
---|
| 1115 | ""; |
---|
| 1116 | "// START a normalization loop with the ideal"; |
---|
| 1117 | i; ""; |
---|
| 1118 | "// in the ring:"; |
---|
| 1119 | basering; ""; |
---|
| 1120 | pause(); |
---|
| 1121 | ""; |
---|
| 1122 | } |
---|
| 1123 | |
---|
| 1124 | def BAS=basering; |
---|
| 1125 | list result,keepresult1,keepresult2,JM,gnirlist; |
---|
| 1126 | ideal J,SB,MB; |
---|
| 1127 | int depth,lauf,prdim,osaz; |
---|
| 1128 | int ti=timer; |
---|
| 1129 | |
---|
| 1130 | gnirlist = ringlist(BAS); |
---|
| 1131 | |
---|
| 1132 | //----------- the trivial case of a zero ideal as input, RETURN ------------ |
---|
| 1133 | if(size(i)==0) |
---|
| 1134 | { |
---|
| 1135 | if(y>=1) |
---|
| 1136 | { |
---|
| 1137 | "// the ideal was the zero-ideal"; |
---|
| 1138 | } |
---|
| 1139 | // execute("ring newR7="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
| 1140 | // +ordstr(basering)+");"); |
---|
| 1141 | def newR7 = ring(gnirlist); |
---|
| 1142 | setring newR7; |
---|
| 1143 | ideal norid=ideal(0); |
---|
| 1144 | ideal normap=fetch(BAS,ihp); |
---|
| 1145 | export norid; |
---|
| 1146 | export normap; |
---|
| 1147 | result=newR7; |
---|
| 1148 | result[size(result)+1]=list(delt,delti); |
---|
| 1149 | setring BAS; |
---|
| 1150 | return(result); |
---|
| 1151 | } |
---|
| 1152 | |
---|
| 1153 | //--------------- General NOTATION, compute SB of input ----------------- |
---|
| 1154 | // SM is a list, the result of mstd(i) |
---|
| 1155 | // SM[1] = SB of input ideal i, |
---|
| 1156 | // SM[2] = (minimal) generators for i. |
---|
| 1157 | // We work with SM and will copy the attributes from i to SM[2] |
---|
| 1158 | // JM will be a list, either JM[1]=maxideal(1),JM[2]=maxideal(1) |
---|
| 1159 | // in case i has onlySingularAtZero, or JM = mstd(si) where si = #[1], |
---|
| 1160 | // or JM = mstd(J) where J is the ideal of the singular locus |
---|
| 1161 | // JM[2] must be (made) radical |
---|
| 1162 | |
---|
| 1163 | if(y>=1) |
---|
| 1164 | { |
---|
| 1165 | "// SB-computation of the ideal"; |
---|
| 1166 | } |
---|
| 1167 | |
---|
| 1168 | list SM = mstd(i); //Now the work starts |
---|
| 1169 | int dimSM = dim(SM[1]); //dimension of variety to normalize |
---|
| 1170 | if(y>=1) |
---|
| 1171 | { |
---|
| 1172 | "// the dimension is:"; dimSM; |
---|
| 1173 | } |
---|
| 1174 | //----------------- the general case, set attributes ---------------- |
---|
| 1175 | //Note: onlySingularAtZero is NOT preserved under the ring extension |
---|
| 1176 | //basering --> Hom(J,J) (in contrast to isIsolatedSingularity), |
---|
| 1177 | //therefore we reset it: |
---|
| 1178 | |
---|
| 1179 | attrib(i,"onlySingularAtZero",0); |
---|
| 1180 | |
---|
| 1181 | if(attrib(i,"isPrim")==1) |
---|
| 1182 | { |
---|
| 1183 | attrib(SM[2],"isPrim",1); |
---|
| 1184 | } |
---|
| 1185 | else |
---|
| 1186 | { |
---|
| 1187 | attrib(SM[2],"isPrim",0); |
---|
| 1188 | } |
---|
| 1189 | if(attrib(i,"isIsolatedSingularity")==1) |
---|
| 1190 | { |
---|
| 1191 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
| 1192 | } |
---|
| 1193 | else |
---|
| 1194 | { |
---|
| 1195 | attrib(SM[2],"isIsolatedSingularity",0); |
---|
| 1196 | } |
---|
| 1197 | if(attrib(i,"isCohenMacaulay")==1) |
---|
| 1198 | { |
---|
| 1199 | attrib(SM[2],"isCohenMacaulay",1); |
---|
| 1200 | } |
---|
| 1201 | else |
---|
| 1202 | { |
---|
| 1203 | attrib(SM[2],"isCohenMacaulay",0); |
---|
| 1204 | } |
---|
| 1205 | if(attrib(i,"isRegInCodim2")==1) |
---|
| 1206 | { |
---|
| 1207 | attrib(SM[2],"isRegInCodim2",1); |
---|
| 1208 | } |
---|
| 1209 | else |
---|
| 1210 | { |
---|
| 1211 | attrib(SM[2],"isRegInCodim2",0); |
---|
| 1212 | } |
---|
| 1213 | if(attrib(i,"isEquidimensional")==1) |
---|
| 1214 | { |
---|
| 1215 | attrib(SM[2],"isEquidimensional",1); |
---|
| 1216 | } |
---|
| 1217 | else |
---|
| 1218 | { |
---|
| 1219 | attrib(SM[2],"isEquidimensional",0); |
---|
| 1220 | } |
---|
| 1221 | if(attrib(i,"isCompleteIntersection")==1) |
---|
| 1222 | { |
---|
| 1223 | attrib(SM[2],"isCompleteIntersection",1); |
---|
| 1224 | } |
---|
| 1225 | else |
---|
| 1226 | { |
---|
| 1227 | attrib(SM[2],"isCompleteIntersection",0); |
---|
| 1228 | } |
---|
| 1229 | if(attrib(i,"isHypersurface")==1) |
---|
| 1230 | { |
---|
| 1231 | attrib(SM[2],"isHypersurface",1); |
---|
| 1232 | } |
---|
| 1233 | else |
---|
| 1234 | { |
---|
| 1235 | attrib(SM[2],"isHypersurface",0); |
---|
| 1236 | } |
---|
| 1237 | |
---|
| 1238 | if(attrib(i,"onlySingularAtZero")==1) |
---|
| 1239 | { |
---|
| 1240 | attrib(SM[2],"onlySingularAtZero",1); |
---|
| 1241 | } |
---|
| 1242 | else |
---|
| 1243 | { |
---|
| 1244 | attrib(SM[2],"onlySingularAtZero",0); |
---|
| 1245 | } |
---|
| 1246 | |
---|
| 1247 | //------- an easy and cheap test for onlySingularAtZero --------- |
---|
| 1248 | if( (attrib(SM[2],"isIsolatedSingularity")==1) && (homog(SM[2])==1) ) |
---|
| 1249 | { |
---|
| 1250 | attrib(SM[2],"onlySingularAtZero",1); |
---|
| 1251 | } |
---|
| 1252 | |
---|
| 1253 | //-------------------- Trivial cases, in each case RETURN ------------------ |
---|
| 1254 | // input ideal is the ideal of a partial normalization |
---|
| 1255 | |
---|
| 1256 | // ------------ Trivial case: input ideal contains a unit --------------- |
---|
| 1257 | if( dimSM == -1) |
---|
| 1258 | { ""; |
---|
| 1259 | " // A unit ideal was found."; |
---|
| 1260 | " // Stop with partial result computed so far";""; |
---|
| 1261 | |
---|
| 1262 | MB=SM[2]; |
---|
| 1263 | intvec rw; |
---|
| 1264 | list LL=substpart(MB,ihp,0,rw); |
---|
| 1265 | def newR6=LL[1]; |
---|
| 1266 | setring newR6; |
---|
| 1267 | ideal norid=endid; |
---|
| 1268 | ideal normap=endphi; |
---|
| 1269 | kill endid,endphi; |
---|
| 1270 | export norid; |
---|
| 1271 | export normap; |
---|
| 1272 | result=newR6; |
---|
| 1273 | result[size(result)+1]=list(delt,delti); |
---|
| 1274 | setring BAS; |
---|
| 1275 | return(result); |
---|
| 1276 | } |
---|
| 1277 | |
---|
| 1278 | // --- Trivial case: input ideal is zero-dimensional and homog --- |
---|
| 1279 | if( (dim(SM[1])==0) && (homog(SM[2])==1) ) |
---|
| 1280 | { |
---|
| 1281 | if(y>=1) |
---|
| 1282 | { |
---|
| 1283 | "// the ideal was zero-dimensional and homogeneous"; |
---|
| 1284 | } |
---|
| 1285 | MB=maxideal(1); |
---|
| 1286 | intvec rw; |
---|
| 1287 | list LL=substpart(MB,ihp,0,rw); |
---|
| 1288 | def newR5=LL[1]; |
---|
| 1289 | setring newR5; |
---|
| 1290 | ideal norid=endid; |
---|
| 1291 | ideal normap=endphi; |
---|
| 1292 | kill endid,endphi; |
---|
| 1293 | export norid; |
---|
| 1294 | export normap; |
---|
| 1295 | result=newR5; |
---|
| 1296 | result[size(result)+1]=list(delt,delti); |
---|
| 1297 | setring BAS; |
---|
| 1298 | return(result); |
---|
| 1299 | } |
---|
| 1300 | |
---|
| 1301 | // --- Trivial case: input ideal defines a line --- |
---|
| 1302 | //the one-dimensional, homogeneous case and degree 1 case |
---|
| 1303 | if( (dim(SM[1])==1) && (maxdeg1(SM[2])==1) && (homog(SM[2])==1) ) |
---|
| 1304 | { |
---|
| 1305 | if(y>=1) |
---|
| 1306 | { |
---|
| 1307 | "// the ideal defines a line"; |
---|
| 1308 | } |
---|
| 1309 | MB=SM[2]; |
---|
| 1310 | intvec rw; |
---|
| 1311 | list LL=substpart(MB,ihp,0,rw); |
---|
| 1312 | def newR4=LL[1]; |
---|
| 1313 | setring newR4; |
---|
| 1314 | ideal norid=endid; |
---|
| 1315 | ideal normap=endphi; |
---|
| 1316 | kill endid,endphi; |
---|
| 1317 | export norid; |
---|
| 1318 | export normap; |
---|
| 1319 | result=newR4; |
---|
| 1320 | result[size(result)+1]=list(delt,delti); |
---|
| 1321 | setring BAS; |
---|
| 1322 | return(result); |
---|
| 1323 | } |
---|
| 1324 | |
---|
| 1325 | //---------------------- The non-trivial cases start ------------------- |
---|
| 1326 | //the higher dimensional case |
---|
| 1327 | //we test first hypersurface, CohenMacaulay and complete intersection |
---|
| 1328 | |
---|
| 1329 | if( ((size(SM[2])+dim(SM[1])) == nvars(basering)) ) |
---|
| 1330 | { |
---|
| 1331 | //the test for complete intersection |
---|
| 1332 | attrib(SM[2],"isCohenMacaulay",1); |
---|
| 1333 | attrib(SM[2],"isCompleteIntersection",1); |
---|
| 1334 | attrib(SM[2],"isEquidimensional",1); |
---|
| 1335 | if(y>=1) |
---|
| 1336 | { |
---|
| 1337 | "// the ideal is a complete intersection"; |
---|
| 1338 | } |
---|
| 1339 | } |
---|
| 1340 | if( size(SM[2]) == 1 ) |
---|
| 1341 | { |
---|
| 1342 | attrib(SM[2],"isHypersurface",1); |
---|
| 1343 | if(y>=1) |
---|
| 1344 | { |
---|
| 1345 | "// the ideal is a hypersurface"; |
---|
| 1346 | } |
---|
| 1347 | } |
---|
| 1348 | |
---|
| 1349 | //------------------- compute the singular locus ------------------- |
---|
| 1350 | // Computation if singular locus is critical |
---|
| 1351 | // Notation: J ideal of singular locus or (if given) containing it |
---|
| 1352 | // JM = mstd(J) or maxideal(1),maxideal(1) |
---|
| 1353 | // JM[1] SB of singular locus, JM[2] minbasis, dimJ = dim(JM[1]) |
---|
| 1354 | // SM[1] SB of the input ideal i, SM[2] minbasis |
---|
| 1355 | // Computation if singular locus is critical, because it determines the |
---|
| 1356 | // size of the ring Hom_R(J,J). We only need a test ideal contained in J. |
---|
| 1357 | |
---|
| 1358 | //----------------------- onlySingularAtZero ------------------------- |
---|
| 1359 | if( attrib(SM[2],"onlySingularAtZero") ) |
---|
| 1360 | { |
---|
| 1361 | JM = maxideal(1),maxideal(1); |
---|
| 1362 | attrib(JM[1],"isSB",1); |
---|
| 1363 | attrib(JM[2],"isRadical",1); |
---|
| 1364 | if( dim(SM[1]) >=2 ) |
---|
| 1365 | { |
---|
| 1366 | attrib(SM[2],"isRegInCodim2",1); |
---|
| 1367 | } |
---|
| 1368 | } |
---|
| 1369 | |
---|
| 1370 | //-------------------- not onlySingularAtZero ------------------------- |
---|
| 1371 | if( attrib(SM[2],"onlySingularAtZero") == 0 ) |
---|
| 1372 | { |
---|
| 1373 | //--- the case where an ideal #[1] is given: |
---|
| 1374 | if( size(#)>0 ) |
---|
| 1375 | { |
---|
| 1376 | J = #[1],SM[2]; |
---|
| 1377 | JM = mstd(J); |
---|
| 1378 | if( typeof(attrib(#[1],"isRadical"))!="int" ) |
---|
| 1379 | { |
---|
| 1380 | attrib(JM[2],"isRadical",0); |
---|
| 1381 | } |
---|
| 1382 | } |
---|
| 1383 | |
---|
| 1384 | //--- the case where an ideal #[1] is not given: |
---|
| 1385 | if( (size(#)==0) ) |
---|
| 1386 | { |
---|
| 1387 | if(y >=1 ) |
---|
| 1388 | { |
---|
| 1389 | "// singular locus will be computed"; |
---|
| 1390 | } |
---|
| 1391 | |
---|
| 1392 | J = SM[1],minor(jacob(SM[2]),nvars(basering)-dim(SM[1]),SM[1]); |
---|
| 1393 | if( y >=1 ) |
---|
| 1394 | { |
---|
| 1395 | "// SB of singular locus will be computed"; |
---|
| 1396 | } |
---|
| 1397 | JM = mstd(J); |
---|
| 1398 | } |
---|
| 1399 | |
---|
| 1400 | int dimJ = dim(JM[1]); |
---|
| 1401 | attrib(JM[1],"isSB",1); |
---|
| 1402 | if( y>=1 ) |
---|
| 1403 | { |
---|
| 1404 | "// the dimension of the singular locus is"; dimJ ; ""; |
---|
| 1405 | } |
---|
| 1406 | |
---|
| 1407 | if(dim(JM[1]) <= dim(SM[1])-2) |
---|
| 1408 | { |
---|
| 1409 | attrib(SM[2],"isRegInCodim2",1); |
---|
| 1410 | } |
---|
| 1411 | |
---|
| 1412 | //------------------ the smooth case, RETURN ------------------- |
---|
| 1413 | if( dimJ == -1 ) |
---|
| 1414 | { |
---|
| 1415 | if(y>=1) |
---|
| 1416 | { |
---|
| 1417 | "// the ideal is smooth"; |
---|
| 1418 | } |
---|
| 1419 | MB=SM[2]; |
---|
| 1420 | intvec rw; |
---|
| 1421 | list LL=substpart(MB,ihp,0,rw); |
---|
| 1422 | def newR3=LL[1]; |
---|
| 1423 | setring newR3; |
---|
| 1424 | ideal norid=endid; |
---|
| 1425 | ideal normap=endphi; |
---|
| 1426 | kill endid,endphi; |
---|
| 1427 | export norid; |
---|
| 1428 | export normap; |
---|
| 1429 | result=newR3; |
---|
| 1430 | result[size(result)+1]=list(delt,delti); |
---|
| 1431 | setring BAS; |
---|
| 1432 | return(result); |
---|
| 1433 | } |
---|
| 1434 | |
---|
| 1435 | //------- extra check for onlySingularAtZero, relatively cheap ---------- |
---|
| 1436 | //it uses the procedure 'locAtZero' from for testing |
---|
| 1437 | //if an ideal is concentrated at 0 |
---|
| 1438 | if(y>=1) |
---|
| 1439 | { |
---|
| 1440 | "// extra test for onlySingularAtZero:"; |
---|
| 1441 | } |
---|
[152996] | 1442 | if ( locAtZero(JM[1]) ) |
---|
| 1443 | { |
---|
| 1444 | attrib(SM[2],"onlySingularAtZero",1); |
---|
| 1445 | JM = maxideal(1),maxideal(1); |
---|
| 1446 | attrib(JM[1],"isSB",1); |
---|
| 1447 | attrib(JM[2],"isRadical",1); |
---|
| 1448 | } |
---|
| 1449 | else |
---|
| 1450 | { |
---|
| 1451 | attrib(SM[2],"onlySingularAtZero",0); |
---|
| 1452 | } |
---|
[1598658] | 1453 | } |
---|
| 1454 | |
---|
| 1455 | //displaying the attributes: |
---|
| 1456 | if(y>=2) |
---|
| 1457 | { |
---|
| 1458 | "// the attributes of the ideal are:"; |
---|
| 1459 | "// isCohenMacaulay:", attrib(SM[2],"isCohenMacaulay"); |
---|
| 1460 | "// isCompleteIntersection:", attrib(SM[2],"isCompleteIntersection"); |
---|
| 1461 | "// isHypersurface:", attrib(SM[2],"isHypersurface"); |
---|
| 1462 | "// isEquidimensional:", attrib(SM[2],"isEquidimensional"); |
---|
| 1463 | "// isPrim:", attrib(SM[2],"isPrim"); |
---|
| 1464 | "// isRegInCodim2:", attrib(SM[2],"isRegInCodim2"); |
---|
| 1465 | "// isIsolatedSingularity:", attrib(SM[2],"isIsolatedSingularity"); |
---|
| 1466 | "// onlySingularAtZero:", attrib(SM[2],"onlySingularAtZero"); |
---|
| 1467 | "// isRad:", attrib(SM[2],"isRad");""; |
---|
| 1468 | } |
---|
| 1469 | |
---|
| 1470 | //------------- case: CohenMacaulay in codim 2, RETURN --------------- |
---|
| 1471 | if( (attrib(SM[2],"isRegInCodim2")==1) && |
---|
| 1472 | (attrib(SM[2],"isCohenMacaulay")==1) ) |
---|
| 1473 | { |
---|
| 1474 | if(y>=1) |
---|
| 1475 | { |
---|
| 1476 | "// the ideal was CohenMacaulay and regular in codim 2, hence normal"; |
---|
| 1477 | } |
---|
| 1478 | MB=SM[2]; |
---|
| 1479 | intvec rw; |
---|
| 1480 | list LL=substpart(MB,ihp,0,rw); |
---|
| 1481 | def newR6=LL[1]; |
---|
| 1482 | setring newR6; |
---|
| 1483 | ideal norid=endid; |
---|
| 1484 | ideal normap=endphi; |
---|
| 1485 | kill endid,endphi; |
---|
| 1486 | export norid; |
---|
| 1487 | export normap; |
---|
| 1488 | result=newR6; |
---|
| 1489 | result[size(result)+1]=list(delt,delti); |
---|
| 1490 | setring BAS; |
---|
| 1491 | return(result); |
---|
| 1492 | } |
---|
| 1493 | |
---|
| 1494 | //---------- case: isolated singularity only at 0, RETURN ------------ |
---|
| 1495 | // In this case things are easier, we can use the maximal ideal as radical |
---|
| 1496 | // of the singular locus; |
---|
| 1497 | // JM mstd of ideal of singular locus, SM mstd of input ideal |
---|
| 1498 | |
---|
| 1499 | if( attrib(SM[2],"onlySingularAtZero") ) |
---|
| 1500 | { |
---|
| 1501 | //------ check variables for being a non zero-divizor ------ |
---|
| 1502 | // SL = ideal of vars not contained in ideal SM[1]: |
---|
| 1503 | |
---|
| 1504 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
| 1505 | ideal SL = simplify(reduce(maxideal(1),SM[1]),2); |
---|
| 1506 | ideal Ann = quotient(SM[2],SL[1]); |
---|
| 1507 | ideal qAnn = simplify(reduce(Ann,SM[1]),2); |
---|
| 1508 | //NOTE: qAnn=0 if and only if first var (=SL[1]) not in SM is a nzd of R/SM |
---|
| 1509 | |
---|
| 1510 | //------------- We found a non-zerodivisor of R/SM ----------------------- |
---|
| 1511 | // here the enlarging of the ring via Hom_R(J,J) starts |
---|
| 1512 | |
---|
| 1513 | if( size(qAnn)==0 ) |
---|
| 1514 | { |
---|
| 1515 | if(y>=1) |
---|
| 1516 | { |
---|
| 1517 | ""; |
---|
| 1518 | "// the ideal rad(J):"; maxideal(1); |
---|
| 1519 | ""; |
---|
| 1520 | } |
---|
| 1521 | |
---|
| 1522 | // ------------- test for normality, compute Hom_R(J,J) ------------- |
---|
| 1523 | // Note: |
---|
| 1524 | // HomJJ (ideal SBid, ideal id, ideal J, poly p) with |
---|
| 1525 | // SBid = SB of id, J = radical ideal of basering P with: |
---|
| 1526 | // nonNormal(R) is in V(J), J contains the nonzero divisor p |
---|
| 1527 | // of R = P/id (J = test ideal) |
---|
| 1528 | // returns a list l of three objects |
---|
| 1529 | // l[1] : a polynomial ring, containing two ideals, 'endid' and 'endphi' |
---|
| 1530 | // s.t. l[1]/endid = Hom_R(J,J) and endphi= map R -> Hom_R(J,J) |
---|
| 1531 | // l[2] : an integer which is 1 if phi is an isomorphism, 0 if not |
---|
| 1532 | // l[3] : an integer, = dim_K(Hom_R(J,J)/R) if finite, -1 otherwise |
---|
| 1533 | |
---|
| 1534 | list RR; |
---|
| 1535 | RR = SM[1],SM[2],maxideal(1),SL[1]; |
---|
| 1536 | RR = HomJJ(RR,y); |
---|
| 1537 | // --------------------- non-normal case ------------------ |
---|
| 1538 | //RR[2]==0 means that the test for normality is negative |
---|
| 1539 | if( RR[2]==0 ) |
---|
| 1540 | { |
---|
| 1541 | def newR=RR[1]; |
---|
| 1542 | setring newR; |
---|
| 1543 | map psi=BAS,endphi; |
---|
| 1544 | list JM = psi(JM); //### |
---|
| 1545 | ideal J = JM[2]; |
---|
| 1546 | if ( delt>=0 && RR[3]>=0 ) |
---|
| 1547 | { |
---|
| 1548 | delt = delt+RR[3]; |
---|
| 1549 | } |
---|
| 1550 | else |
---|
| 1551 | { delt = -1; } |
---|
| 1552 | delti[size(delti)]=delt; |
---|
| 1553 | |
---|
| 1554 | // ---------- recursive call of normalizationPrimes ----------- |
---|
| 1555 | //normalizationPrimes(ideal i,ideal ihp,int delt,intvec delti,list #) |
---|
| 1556 | //ihp = (partial) normalisation map from basering |
---|
| 1557 | //#[1] ideal s.t. V(#[1]) contains singular locus of i (test ideal) |
---|
| 1558 | |
---|
| 1559 | if ( y>=1 ) |
---|
| 1560 | { |
---|
| 1561 | "// case: onlySingularAtZero, non-zerodivisor found"; |
---|
| 1562 | "// contribution of delta in ringextension R -> Hom_R(J,J):"; delt; |
---|
| 1563 | } |
---|
| 1564 | |
---|
| 1565 | //intvec atr=getAttrib(endid); |
---|
| 1566 | //"//### case: isolated singularity only at 0, recursive"; |
---|
| 1567 | //"size endid:", size(endid), size(string(endid)); |
---|
| 1568 | //"interred:"; |
---|
| 1569 | //endid = interred(endid); |
---|
| 1570 | //endid = setAttrib(endid,atr); |
---|
| 1571 | //"size endid:", size(endid), size(string(endid)); |
---|
| 1572 | |
---|
| 1573 | printlevel=printlevel+1; |
---|
| 1574 | list tluser = |
---|
| 1575 | normalizationPrimes(endid,psi(ihp),delt,delti); |
---|
| 1576 | //list tluser = |
---|
| 1577 | // normalizationPrimes(endid,psi(ihp),delt,delti,J); |
---|
| 1578 | //#### ??? improvement: give also the old ideal of sing locus??? |
---|
| 1579 | |
---|
| 1580 | printlevel = printlev; //reset printlevel |
---|
| 1581 | setring BAS; |
---|
| 1582 | return(tluser); |
---|
| 1583 | } |
---|
| 1584 | |
---|
| 1585 | // ------------------ the normal case, RETURN ----------------- |
---|
| 1586 | // Now RR[2] must be 1, hence the test for normality was positive |
---|
| 1587 | MB=SM[2]; |
---|
| 1588 | //execute("ring newR7="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
| 1589 | // +ordstr(basering)+");"); |
---|
| 1590 | def newR7 = ring(gnirlist); |
---|
| 1591 | setring newR7; |
---|
| 1592 | ideal norid=fetch(BAS,MB); |
---|
| 1593 | ideal normap=fetch(BAS,ihp); |
---|
| 1594 | if ( delt>=0 && RR[3]>=0 ) |
---|
| 1595 | { |
---|
| 1596 | delt = delt+RR[3]; |
---|
| 1597 | } |
---|
| 1598 | else |
---|
| 1599 | { delt = -1; } |
---|
| 1600 | delti[size(delti)]=delt; |
---|
| 1601 | |
---|
| 1602 | intvec atr = getAttrib(norid); |
---|
| 1603 | |
---|
| 1604 | //"//### case: isolated singularity only at 0, final"; |
---|
| 1605 | //"size norid:", size(norid), size(string(norid)); |
---|
| 1606 | //"interred:"; |
---|
| 1607 | //norid = interred(norid); |
---|
| 1608 | //norid = setAttrib(norid,atr); |
---|
| 1609 | //"size norid:", size(norid), size(string(norid)); |
---|
| 1610 | |
---|
| 1611 | export norid; |
---|
| 1612 | export normap; |
---|
| 1613 | result=newR7; |
---|
| 1614 | result[size(result)+1]=list(delt,delti); |
---|
| 1615 | setring BAS; |
---|
| 1616 | return(result); |
---|
| 1617 | } |
---|
| 1618 | |
---|
| 1619 | //------ zerodivisor of R/SM was found, gives a splitting ------------ |
---|
| 1620 | //Now the case where qAnn!=0, i.e. SL[1] is a zero divisor of R/SM |
---|
| 1621 | //and we have found a splitting: id and id1 |
---|
| 1622 | //id = Ann defines components of R/SM in the complement of V(SL[1]) |
---|
| 1623 | //id1 defines components of R/SM in the complement of V(id) |
---|
| 1624 | |
---|
| 1625 | else |
---|
| 1626 | { |
---|
| 1627 | ideal id = Ann; |
---|
| 1628 | attrib(id,"isCohenMacaulay",0); |
---|
| 1629 | attrib(id,"isPrim",0); |
---|
| 1630 | attrib(id,"isIsolatedSingularity",1); |
---|
| 1631 | attrib(id,"isRegInCodim2",0); |
---|
| 1632 | attrib(id,"isHypersurface",0); |
---|
| 1633 | attrib(id,"isCompleteIntersection",0); |
---|
| 1634 | attrib(id,"isEquidimensional",0); |
---|
| 1635 | attrib(id,"onlySingularAtZero",1); |
---|
| 1636 | |
---|
| 1637 | ideal id1 = quotient(SM[2],Ann); |
---|
| 1638 | attrib(id1,"isCohenMacaulay",0); |
---|
| 1639 | attrib(id1,"isPrim",0); |
---|
| 1640 | attrib(id1,"isIsolatedSingularity",1); |
---|
| 1641 | attrib(id1,"isRegInCodim2",0); |
---|
| 1642 | attrib(id1,"isHypersurface",0); |
---|
| 1643 | attrib(id1,"isCompleteIntersection",0); |
---|
| 1644 | attrib(id1,"isEquidimensional",0); |
---|
| 1645 | attrib(id1,"onlySingularAtZero",1); |
---|
| 1646 | |
---|
| 1647 | // ---------- recursive call of normalizationPrimes ----------- |
---|
| 1648 | if ( y>=1 ) |
---|
| 1649 | { |
---|
| 1650 | "// case: onlySingularAtZero, zerodivisor found, splitting:"; |
---|
| 1651 | "// total delta before splitting:", delt; |
---|
| 1652 | "// splitting in two components:"; |
---|
| 1653 | } |
---|
| 1654 | |
---|
| 1655 | printlevel = printlevel+1; //to see comments in normalizationPrimes |
---|
| 1656 | keepresult1 = normalizationPrimes(id,ihp,0,0); //1st split factor |
---|
| 1657 | keepresult2 = normalizationPrimes(id1,ihp,0,0); //2nd split factor |
---|
| 1658 | printlevel = printlev; //reset printlevel |
---|
| 1659 | |
---|
| 1660 | int delt1 = keepresult1[size(keepresult1)][1]; |
---|
| 1661 | int delt2 = keepresult2[size(keepresult2)][1]; |
---|
| 1662 | intvec delti1 = keepresult1[size(keepresult1)][2]; |
---|
| 1663 | intvec delti2 = keepresult2[size(keepresult2)][2]; |
---|
| 1664 | |
---|
| 1665 | if( delt>=0 && delt1>=0 && delt2>=0 ) |
---|
| 1666 | { ideal idid1=id,id1; |
---|
| 1667 | int mul = vdim(std(idid1)); |
---|
| 1668 | if ( mul>=0 ) |
---|
| 1669 | { |
---|
| 1670 | delt = delt+mul+delt1+delt2; |
---|
| 1671 | } |
---|
| 1672 | else |
---|
| 1673 | { |
---|
| 1674 | delt = -1; |
---|
| 1675 | } |
---|
| 1676 | } |
---|
| 1677 | if ( y>=1 ) |
---|
| 1678 | { |
---|
| 1679 | "// delta of first component:", delt1; |
---|
| 1680 | "// delta of second componenet:", delt2; |
---|
| 1681 | "// intersection multiplicity of both components:", mul; |
---|
| 1682 | "// total delta after splitting:", delt; |
---|
| 1683 | } |
---|
| 1684 | |
---|
| 1685 | else |
---|
| 1686 | { |
---|
| 1687 | delt = -1; |
---|
| 1688 | } |
---|
| 1689 | for(lauf=1;lauf<=size(keepresult2)-1;lauf++) |
---|
| 1690 | { |
---|
| 1691 | keepresult1=insert(keepresult1,keepresult2[lauf]); |
---|
| 1692 | } |
---|
| 1693 | keepresult1[size(keepresult1)]=list(delt,delti); |
---|
| 1694 | |
---|
| 1695 | return(keepresult1); |
---|
| 1696 | } |
---|
| 1697 | } |
---|
| 1698 | // Case "onlySingularAtZero" has finished and returned result |
---|
| 1699 | |
---|
| 1700 | //-------------- General case, not onlySingularAtZero, RETURN --------------- |
---|
| 1701 | //test for non-normality, i.e. if Hom(I,I)<>R |
---|
| 1702 | //we can use Hom(I,I) to continue |
---|
| 1703 | |
---|
| 1704 | //------ check variables for being a non zero-divizor ------ |
---|
| 1705 | // SL = ideal of vars not contained in ideal SM[1]: |
---|
| 1706 | |
---|
| 1707 | ideal SL = simplify(reduce(JM[2],SM[1]),2); |
---|
| 1708 | ideal Ann = quotient(SM[2],SL[1]); |
---|
| 1709 | ideal qAnn = simplify(reduce(Ann,SM[1]),2); |
---|
| 1710 | //NOTE: qAnn=0 <==> first var (=SL[1]) not contained in SM is a nzd of R/SM |
---|
| 1711 | |
---|
| 1712 | //------------- We found a non-zerodivisor of R/SM ----------------------- |
---|
| 1713 | //SM = mstd of ideal of variety, JM = mstd of ideal of singular locus |
---|
| 1714 | |
---|
| 1715 | if( size(qAnn)==0 ) |
---|
| 1716 | { |
---|
| 1717 | list RR; |
---|
| 1718 | list RS; |
---|
| 1719 | // ----------------- Computation of the radical ----------------- |
---|
| 1720 | if(y>=1) |
---|
| 1721 | { |
---|
| 1722 | "// radical computation of singular locus"; |
---|
| 1723 | } |
---|
| 1724 | J = radical(JM[2]); //the radical of singular locus |
---|
| 1725 | JM = mstd(J); |
---|
| 1726 | |
---|
| 1727 | if(y>=1) |
---|
| 1728 | { |
---|
| 1729 | "// radical is equal to:";""; JM[2]; |
---|
| 1730 | ""; |
---|
| 1731 | } |
---|
| 1732 | // ------------ choose non-zerodivisor of smaller degree ---------- |
---|
| 1733 | //### evtl. fuer SL[1] anderen Nichtnullteiler aus J waehlen ? |
---|
| 1734 | if( deg(SL[1]) > deg(J[1]) ) |
---|
| 1735 | { |
---|
| 1736 | Ann=quotient(SM[2],J[1]); |
---|
| 1737 | qAnn=simplify(reduce(Ann,SM[1]),2); |
---|
| 1738 | if(size(qAnn)==0) |
---|
| 1739 | { |
---|
| 1740 | SL[1]=J[1]; |
---|
| 1741 | } |
---|
| 1742 | } |
---|
| 1743 | |
---|
| 1744 | // --------------- computation of Hom(rad(J),rad(J)) -------------- |
---|
| 1745 | RR=SM[1],SM[2],JM[2],SL[1]; |
---|
| 1746 | |
---|
| 1747 | if(y>=1) |
---|
| 1748 | { |
---|
| 1749 | "// compute Hom(rad(J),rad(J))"; |
---|
| 1750 | } |
---|
| 1751 | |
---|
| 1752 | RS=HomJJ(RR,y); //most important subprocedure |
---|
| 1753 | |
---|
| 1754 | // ------------------ the normal case, RETURN ----------------- |
---|
| 1755 | // RS[2]==1 means that the test for normality was positive |
---|
| 1756 | if(RS[2]==1) |
---|
| 1757 | { |
---|
| 1758 | def lastR=RS[1]; |
---|
| 1759 | setring lastR; |
---|
| 1760 | map psi1=BAS,endphi; |
---|
| 1761 | ideal norid=endid; |
---|
| 1762 | ideal normap=psi1(ihp); |
---|
| 1763 | kill endid,endphi; |
---|
| 1764 | |
---|
| 1765 | intvec atr=getAttrib(norid); |
---|
| 1766 | |
---|
| 1767 | //"//### general case: not isolated singularity only at 0, final"; |
---|
| 1768 | //"size norid:", size(norid), size(string(norid)); |
---|
| 1769 | //"interred:"; |
---|
| 1770 | //norid = interred(norid); |
---|
| 1771 | //norid = setAttrib(norid,atr); |
---|
| 1772 | //"size norid:", size(norid), size(string(norid)); |
---|
| 1773 | |
---|
| 1774 | export norid; |
---|
| 1775 | export normap; |
---|
| 1776 | result=lastR; |
---|
| 1777 | if ( y>=1 ) |
---|
| 1778 | { |
---|
| 1779 | "// case: not onlySingularAtZero, last ring Hom_R(J,J) computed"; |
---|
| 1780 | "// delta before last ring:", delt; |
---|
| 1781 | } |
---|
| 1782 | |
---|
| 1783 | if ( delt>=0 && RS[3]>=0 ) |
---|
| 1784 | { |
---|
| 1785 | delt = delt+RS[3]; |
---|
| 1786 | } |
---|
| 1787 | else |
---|
| 1788 | { delt = -1; } |
---|
| 1789 | |
---|
| 1790 | // delti = delti,delt; |
---|
| 1791 | delti[size(delti)]=delt; |
---|
| 1792 | |
---|
| 1793 | if ( y>=1 ) |
---|
| 1794 | { |
---|
| 1795 | "// delta of last ring:", delt; |
---|
| 1796 | } |
---|
| 1797 | |
---|
| 1798 | result[size(result)+1]=list(delt,delti); |
---|
| 1799 | setring BAS; |
---|
| 1800 | return(result); |
---|
| 1801 | } |
---|
| 1802 | |
---|
| 1803 | // ----- the non-normal case, recursive call of normalizationPrimes ------- |
---|
| 1804 | // RS=HomJJ(RR,y) was computed above, RS[1] contains endid and endphi |
---|
| 1805 | // RS[1] = new ring Hom_R(J,J), RS[2]= 0 or 1, RS[2]=contribution to delta |
---|
| 1806 | // now RS[2]must be 0, i.e. the test for normality was negative |
---|
| 1807 | |
---|
| 1808 | int n = nvars(basering); |
---|
| 1809 | ideal MJ = JM[2]; |
---|
| 1810 | |
---|
| 1811 | def newR=RS[1]; |
---|
| 1812 | setring newR; |
---|
| 1813 | map psi=BAS,endphi; |
---|
| 1814 | if ( y>=1 ) |
---|
| 1815 | { |
---|
| 1816 | "// case: not onlySingularAtZero, compute new ring = Hom_R(J,J)"; |
---|
| 1817 | "// delta of old ring:", delt; |
---|
| 1818 | } |
---|
| 1819 | if ( delt>=0 && RS[3]>=0 ) |
---|
| 1820 | { |
---|
| 1821 | delt = delt+RS[3]; |
---|
| 1822 | } |
---|
| 1823 | else |
---|
| 1824 | { delt = -1; } |
---|
| 1825 | if ( y>=1 ) |
---|
| 1826 | { |
---|
| 1827 | "// delta of new ring:", delt; |
---|
| 1828 | } |
---|
| 1829 | |
---|
| 1830 | delti[size(delti)]=delt; |
---|
| 1831 | intvec atr=getAttrib(endid); |
---|
| 1832 | |
---|
| 1833 | //"//### general case: not isolated singularity only at 0, recursive"; |
---|
| 1834 | //"size endid:", size(endid), size(string(endid)); |
---|
| 1835 | //"interred:"; |
---|
| 1836 | //endid = interred(endid); |
---|
| 1837 | //endid = setAttrib(endid,atr); |
---|
| 1838 | //"size endid:", size(endid), size(string(endid)); |
---|
| 1839 | |
---|
| 1840 | printlevel = printlevel+1; |
---|
| 1841 | list tluser= |
---|
| 1842 | normalizationPrimes(endid,psi(ihp),delt,delti,psi(MJ)); |
---|
| 1843 | printlevel = printlev; //reset printlevel |
---|
| 1844 | setring BAS; |
---|
| 1845 | return(tluser); |
---|
| 1846 | } |
---|
| 1847 | |
---|
| 1848 | //---- A whole singular component was found, RETURN ----- |
---|
| 1849 | if( Ann == 1) |
---|
| 1850 | { |
---|
| 1851 | "// Input appeared not to be a radical ideal!"; |
---|
| 1852 | "// A (everywhere singular) component with ideal"; |
---|
| 1853 | "// equal to its Jacobian ideal was found"; |
---|
| 1854 | "// Procedure will stop with partial result computed so far";""; |
---|
| 1855 | |
---|
| 1856 | MB=SM[2]; |
---|
| 1857 | intvec rw; |
---|
| 1858 | list LL=substpart(MB,ihp,0,rw); |
---|
| 1859 | def newR6=LL[1]; |
---|
| 1860 | setring newR6; |
---|
| 1861 | ideal norid=endid; |
---|
| 1862 | ideal normap=endphi; |
---|
| 1863 | kill endid,endphi; |
---|
| 1864 | export norid; |
---|
| 1865 | export normap; |
---|
| 1866 | result=newR6; |
---|
| 1867 | result[size(result)+1]=lst(delt,delti); |
---|
| 1868 | setring BAS; |
---|
| 1869 | return(result); |
---|
| 1870 | } |
---|
| 1871 | |
---|
| 1872 | //------ zerodivisor of R/SM was found, gives a splitting ------------ |
---|
| 1873 | //Now the case where qAnn!=0, i.e. SL[1] is a zero divisor of R/SM |
---|
| 1874 | //and we have found a splitting: new1 and new2 |
---|
| 1875 | //id = Ann defines components of R/SM in the complement of V(SL[1]) |
---|
| 1876 | //id1 defines components of R/SM in the complement of V(id) |
---|
| 1877 | |
---|
| 1878 | else |
---|
| 1879 | { |
---|
| 1880 | if(y>=1) |
---|
| 1881 | { |
---|
| 1882 | "// zero-divisor found"; |
---|
| 1883 | } |
---|
| 1884 | int equi = attrib(SM[2],"isEquidimensional"); |
---|
| 1885 | int oSAZ = attrib(SM[2],"onlySingularAtZero"); |
---|
| 1886 | int isIs = attrib(SM[2],"isIsolatedSingularity"); |
---|
| 1887 | |
---|
| 1888 | ideal new1 = Ann; |
---|
| 1889 | ideal new2 = quotient(SM[2],Ann); |
---|
| 1890 | //ideal new2=SL[1],SM[2]; |
---|
| 1891 | |
---|
| 1892 | //execute("ring newR1="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
| 1893 | // +ordstr(basering)+");"); |
---|
| 1894 | def newR1 = ring(gnirlist); |
---|
| 1895 | setring newR1; |
---|
| 1896 | |
---|
| 1897 | ideal vid = fetch(BAS,new1); |
---|
| 1898 | ideal ihp = fetch(BAS,ihp); |
---|
| 1899 | attrib(vid,"isCohenMacaulay",0); |
---|
| 1900 | attrib(vid,"isPrim",0); |
---|
| 1901 | attrib(vid,"isIsolatedSingularity",isIs); |
---|
| 1902 | attrib(vid,"isRegInCodim2",0); |
---|
| 1903 | attrib(vid,"onlySingularAtZero",oSAZ); |
---|
| 1904 | attrib(vid,"isEquidimensional",equi); |
---|
| 1905 | attrib(vid,"isHypersurface",0); |
---|
| 1906 | attrib(vid,"isCompleteIntersection",0); |
---|
| 1907 | |
---|
| 1908 | // ---------- recursive call of normalizationPrimes ----------- |
---|
| 1909 | if ( y>=1 ) |
---|
| 1910 | { |
---|
| 1911 | "// total delta before splitting:", delt; |
---|
| 1912 | "// splitting in two components:"; |
---|
| 1913 | } |
---|
| 1914 | printlevel = printlevel+1; |
---|
| 1915 | keepresult1 = |
---|
| 1916 | normalizationPrimes(vid,ihp,0,0); //1st split factor |
---|
| 1917 | |
---|
| 1918 | list delta1 = keepresult1[size(keepresult1)]; |
---|
| 1919 | |
---|
| 1920 | setring BAS; |
---|
| 1921 | //execute("ring newR2="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
| 1922 | // +ordstr(basering)+");"); |
---|
| 1923 | def newR2 = ring(gnirlist); |
---|
| 1924 | setring newR2; |
---|
| 1925 | |
---|
| 1926 | ideal vid = fetch(BAS,new2); |
---|
| 1927 | ideal ihp = fetch(BAS,ihp); |
---|
| 1928 | attrib(vid,"isCohenMacaulay",0); |
---|
| 1929 | attrib(vid,"isPrim",0); |
---|
| 1930 | attrib(vid,"isIsolatedSingularity",isIs); |
---|
| 1931 | attrib(vid,"isRegInCodim2",0); |
---|
| 1932 | attrib(vid,"isEquidimensional",equi); |
---|
| 1933 | attrib(vid,"isHypersurface",0); |
---|
| 1934 | attrib(vid,"isCompleteIntersection",0); |
---|
| 1935 | attrib(vid,"onlySingularAtZero",oSAZ); |
---|
| 1936 | |
---|
| 1937 | keepresult2 = |
---|
| 1938 | normalizationPrimes(vid,ihp,0,0); |
---|
| 1939 | list delta2 = keepresult2[size(keepresult2)]; //2nd split factor |
---|
| 1940 | printlevel = printlev; //reset printlevel |
---|
| 1941 | |
---|
| 1942 | setring BAS; |
---|
| 1943 | |
---|
| 1944 | //compute intersection multiplicity of both components: |
---|
| 1945 | new1 = new1,new2; |
---|
| 1946 | int mul=vdim(std(new1)); |
---|
| 1947 | |
---|
| 1948 | // ----- normalizationPrimes finished, add up results, RETURN -------- |
---|
| 1949 | for(lauf=1;lauf<=size(keepresult2)-1;lauf++) |
---|
| 1950 | { |
---|
| 1951 | keepresult1 = insert(keepresult1,keepresult2[lauf]); |
---|
| 1952 | } |
---|
| 1953 | if ( delt >=0 && delta1[1] >=0 && delta2[1] >=0 && mul >=0 ) |
---|
| 1954 | { |
---|
| 1955 | delt = delt+mul+delta1[1]+delta2[1]; |
---|
| 1956 | } |
---|
| 1957 | else |
---|
| 1958 | { delt = -1; } |
---|
| 1959 | delti = -2; |
---|
| 1960 | |
---|
| 1961 | if ( y>=1 ) |
---|
| 1962 | { |
---|
| 1963 | "// zero divisor produced a splitting into two components"; |
---|
| 1964 | "// delta of first component:", delta1; |
---|
| 1965 | "// delta of second componenet:", delta2; |
---|
| 1966 | "// intersection multiplicity of both components:", mul; |
---|
| 1967 | "// total delta after splitting:", delt; |
---|
| 1968 | } |
---|
| 1969 | keepresult1[size(keepresult1)] = list(delt,delti); |
---|
| 1970 | return(keepresult1); |
---|
| 1971 | } |
---|
| 1972 | } |
---|
| 1973 | example |
---|
| 1974 | { "EXAMPLE:";echo = 2; |
---|
| 1975 | // Huneke |
---|
| 1976 | ring qr=31991,(a,b,c,d,e),dp; |
---|
| 1977 | ideal i= |
---|
| 1978 | 5abcde-a5-b5-c5-d5-e5, |
---|
| 1979 | ab3c+bc3d+a3be+cd3e+ade3, |
---|
| 1980 | a2bc2+b2cd2+a2d2e+ab2e2+c2de2, |
---|
| 1981 | abc5-b4c2d-2a2b2cde+ac3d2e-a4de2+bcd2e3+abe5, |
---|
| 1982 | ab2c4-b5cd-a2b3de+2abc2d2e+ad4e2-a2bce3-cde5, |
---|
| 1983 | a3b2cd-bc2d4+ab2c3e-b5de-d6e+3abcd2e2-a2be4-de6, |
---|
| 1984 | a4b2c-abc2d3-ab5e-b3c2de-ad5e+2a2bcde2+cd2e4, |
---|
| 1985 | b6c+bc6+a2b4e-3ab2c2de+c4d2e-a3cde2-abd3e2+bce5; |
---|
| 1986 | |
---|
| 1987 | list pr=normalizationPrimes(i); |
---|
| 1988 | def r1 = pr[1]; |
---|
| 1989 | setring r1; |
---|
| 1990 | norid; |
---|
| 1991 | normap; |
---|
| 1992 | } |
---|
| 1993 | |
---|
| 1994 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 1995 | static proc substpart(ideal endid, ideal endphi, int homo, intvec rw) |
---|
| 1996 | |
---|
| 1997 | "//Repeated application of elimpart to endid, until no variables can be |
---|
| 1998 | //directy substituded. homo=1 if input is homogeneous, rw contains |
---|
| 1999 | //original weights, endphi (partial) normalization map"; |
---|
| 2000 | |
---|
| 2001 | //NOTE concerning iteration of maps: Let phi: x->f(y,z), y->g(x,z) then |
---|
| 2002 | //phi: x+y+z->f(y,z)+g(x,z)+z, phi(phi):x+y+z->f(g(x,z),z)+g(f(y,z),z)+z |
---|
| 2003 | //and so on: none of the x or y will be eliminated |
---|
| 2004 | //Now subst: first x and then y: x+y+z->f(g(x,z),z)+g(x,z)+z eliminates y |
---|
| 2005 | //further subst replaces x by y, makes no sense (objects more compicated). |
---|
| 2006 | //Subst first y and then x eliminates x |
---|
| 2007 | //In our situation we have triangular form: x->f(y,z), y->g(z). |
---|
| 2008 | //phi: x+y+z->f(y,z)+g(z)+z, phi(phi):x+y+z->f(g(z),z)+g(z)+z eliminates x,y |
---|
| 2009 | //subst x,y: x+y+z->f(g(z),z)+g(z)+z, eliminates x,y |
---|
| 2010 | //subst y,x: x+y+z->f(y,z)+g(z)+z eliminates only x |
---|
| 2011 | //HENCE: substitute vars depending on most other vars first |
---|
| 2012 | //However, if the sytem xi-fi is reduced then xi does not appear in any of the |
---|
| 2013 | //fj and hence the order does'nt matter when substitutinp xi by fi |
---|
| 2014 | |
---|
| 2015 | { |
---|
| 2016 | def newRing = basering; |
---|
| 2017 | int ii,jj; |
---|
| 2018 | map phi = newRing,maxideal(1); //identity map |
---|
| 2019 | list Le = elimpart(endid); |
---|
| 2020 | //this proc and the next loop try to substitute as many variables as |
---|
| 2021 | //possible indices of substituted variables |
---|
| 2022 | |
---|
| 2023 | int q = size(Le[2]); //q vars, stored in Le[2], have been substitutet |
---|
| 2024 | intvec rw1 = 0; //will become indices of substituted variables |
---|
| 2025 | rw1[nvars(basering)] = 0; |
---|
| 2026 | rw1 = rw1+1; //rw1=1,..,1 (as many 1 as nvars(basering)) |
---|
| 2027 | |
---|
| 2028 | while( size(Le[2]) != 0 ) |
---|
| 2029 | { |
---|
| 2030 | endid = Le[1]; |
---|
| 2031 | if ( defined(ps) ) |
---|
| 2032 | { kill ps; } |
---|
| 2033 | map ps = newRing,Le[5]; |
---|
| 2034 | phi = ps(phi); |
---|
| 2035 | for(ii=1;ii<=size(Le[2]);ii++) |
---|
| 2036 | { |
---|
| 2037 | phi=phi(phi); |
---|
| 2038 | } |
---|
| 2039 | //eingefuegt wegen x2-y2z2+z3 |
---|
| 2040 | |
---|
| 2041 | for( ii=1; ii<=size(rw1); ii++ ) |
---|
| 2042 | { |
---|
| 2043 | if( Le[4][ii]==0 ) //ii = index of var which was substituted |
---|
| 2044 | { |
---|
| 2045 | rw1[ii]=0; //substituted vars have entry 0 in rw1 |
---|
| 2046 | } |
---|
| 2047 | } |
---|
| 2048 | Le=elimpart(endid); //repeated application of elimpart |
---|
| 2049 | q = q + size(Le[2]); |
---|
| 2050 | } |
---|
| 2051 | endphi = phi(endphi); |
---|
| 2052 | //---------- return ----------------------------------------------------------- |
---|
| 2053 | // first the trivial case, where all variable have been eliminated |
---|
| 2054 | if( nvars(newRing) == q ) |
---|
| 2055 | { |
---|
| 2056 | ring lastRing = char(basering),T(1),dp; |
---|
| 2057 | ideal endid = T(1); |
---|
| 2058 | ideal endphi = T(1); |
---|
| 2059 | for(ii=2; ii<=q; ii++ ) |
---|
| 2060 | { |
---|
| 2061 | endphi[ii] = 0; |
---|
| 2062 | } |
---|
| 2063 | export(endid,endphi); |
---|
| 2064 | list L = lastRing; |
---|
| 2065 | setring newRing; |
---|
| 2066 | return(L); |
---|
| 2067 | } |
---|
| 2068 | |
---|
| 2069 | // in the homogeneous case put weights for the remaining vars correctly, i.e. |
---|
| 2070 | // delete from rw those weights for which the corresponding entry of rw1 is 0 |
---|
| 2071 | |
---|
| 2072 | if (homo==1 && nvars(newRing)-q >1 && size(endid) >0 ) |
---|
| 2073 | { |
---|
| 2074 | jj=1; |
---|
| 2075 | for( ii=2; ii<size(rw1); ii++) |
---|
| 2076 | { |
---|
| 2077 | jj++; |
---|
| 2078 | if( rw1[ii]==0 ) |
---|
| 2079 | { |
---|
| 2080 | rw=rw[1..jj-1],rw[jj+1..size(rw)]; |
---|
| 2081 | jj=jj-1; |
---|
| 2082 | } |
---|
| 2083 | } |
---|
| 2084 | if( rw1[1]==0 ) { rw=rw[2..size(rw)]; } |
---|
| 2085 | if( rw1[size(rw1)]==0 ){ rw=rw[1..size(rw)-1]; } |
---|
| 2086 | |
---|
| 2087 | ring lastRing = char(basering),(T(1..nvars(newRing)-q)),(a(rw),dp); |
---|
| 2088 | } |
---|
| 2089 | else |
---|
| 2090 | { |
---|
| 2091 | ring lastRing = char(basering),(T(1..nvars(newRing)-q)),dp; |
---|
| 2092 | } |
---|
| 2093 | ideal lastmap; |
---|
| 2094 | jj = 1; |
---|
| 2095 | |
---|
| 2096 | for(ii=1; ii<=size(rw1); ii++ ) |
---|
| 2097 | { |
---|
| 2098 | if ( rw1[ii]==1 ) { lastmap[ii] = T(jj); jj=jj+1; } |
---|
| 2099 | if ( rw1[ii]==0 ) { lastmap[ii] = 0; } |
---|
| 2100 | } |
---|
| 2101 | map phi1 = newRing,lastmap; |
---|
| 2102 | ideal endid = phi1(endid); //### bottelneck |
---|
| 2103 | ideal endphi = phi1(endphi); |
---|
| 2104 | |
---|
| 2105 | /* |
---|
| 2106 | Versuch: subst statt phi |
---|
| 2107 | for(ii=1; ii<=size(rw1); ii++ ) |
---|
| 2108 | { |
---|
| 2109 | if ( rw1[ii]==1 ) { endid = subst(endid,var(ii),T(jj)); } |
---|
| 2110 | if ( rw1[ii]==0 ) { endid = subst(endid,var(ii),0); } |
---|
| 2111 | } |
---|
| 2112 | */ |
---|
| 2113 | export(endid); |
---|
| 2114 | export(endphi); |
---|
| 2115 | list L = lastRing; |
---|
| 2116 | setring newRing; |
---|
| 2117 | return(L); |
---|
| 2118 | } |
---|
| 2119 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 2120 | static proc deltaP(ideal I) |
---|
| 2121 | { |
---|
| 2122 | def R=basering; |
---|
| 2123 | int c,d,i; |
---|
| 2124 | int n=nvars(R); |
---|
| 2125 | list nor; |
---|
| 2126 | if(size(I)>1){ERROR("no hypersurface");} |
---|
| 2127 | ideal J=std(slocus(I)); |
---|
| 2128 | if(dim(J)<=0){return(0);} |
---|
| 2129 | poly h; |
---|
| 2130 | d=1; |
---|
| 2131 | while((d)&&(i<n)) |
---|
| 2132 | { |
---|
| 2133 | i++; |
---|
| 2134 | h=var(i); |
---|
| 2135 | d=dim(std(J+ideal(h))); |
---|
| 2136 | } |
---|
| 2137 | i=0; |
---|
| 2138 | while(d) |
---|
| 2139 | { |
---|
| 2140 | i++; |
---|
| 2141 | if(i>10){ERROR("delta not found, please inform the authors")}; |
---|
| 2142 | h=randomLast(100)[n]; |
---|
| 2143 | d=dim(std(J+ideal(h))); |
---|
| 2144 | } |
---|
| 2145 | I=I,h-1; |
---|
| 2146 | if(char(R)<=19) |
---|
| 2147 | { |
---|
| 2148 | nor=normalP(I); |
---|
| 2149 | } |
---|
| 2150 | else |
---|
| 2151 | { |
---|
| 2152 | nor=normal(I); |
---|
| 2153 | } |
---|
| 2154 | return(nor[2][2]); |
---|
| 2155 | } |
---|
| 2156 | |
---|
| 2157 | proc genus(ideal I,list #) |
---|
| 2158 | "USAGE: genus(i) or genus(i,1); I a 1-dimensional ideal |
---|
| 2159 | RETURN: an integer, the geometric genus p_g = p_a - delta of the projective |
---|
| 2160 | curve defined by i, where p_a is the arithmetic genus. |
---|
| 2161 | NOTE: delta is the sum of all local delta-invariants of the singularities, |
---|
| 2162 | i.e. dim(R'/R), R' the normalization of the local ring R of the |
---|
| 2163 | singularity. @* |
---|
| 2164 | genus(i,1) uses the normalization to compute delta. Usually genus(i,1) |
---|
| 2165 | is slower than genus(i) but sometimes not. |
---|
| 2166 | EXAMPLE: example genus; shows an example |
---|
| 2167 | " |
---|
| 2168 | { |
---|
| 2169 | int w = printlevel-voice+2; // w=printlevel (default: w=0) |
---|
| 2170 | |
---|
| 2171 | def R0=basering; |
---|
| 2172 | if(char(basering)>0) |
---|
| 2173 | { |
---|
[1e1ec4] | 2174 | def R1=changeord(list(list("dp",1:nvars(basering)))); |
---|
[1598658] | 2175 | setring R1; |
---|
| 2176 | ideal I=imap(R0,I); |
---|
| 2177 | I=radical(I); |
---|
| 2178 | I=std(I); |
---|
| 2179 | if(dim(I)!=1) |
---|
| 2180 | { |
---|
| 2181 | if(((homog(I))&&(dim(I)!=2))||(!homog(I))) |
---|
| 2182 | { |
---|
| 2183 | ERROR("This is not a curve"); |
---|
| 2184 | } |
---|
| 2185 | } |
---|
| 2186 | if(homog(I)&&(dim(I)==2)) |
---|
| 2187 | { |
---|
| 2188 | def S=R0; |
---|
| 2189 | setring S; |
---|
| 2190 | ideal J=I; |
---|
| 2191 | } |
---|
| 2192 | else |
---|
| 2193 | { |
---|
| 2194 | def S=changevar(varstr(R0)+",@t"); |
---|
| 2195 | setring S; |
---|
| 2196 | ideal J=imap(R1,I); |
---|
| 2197 | J=homog(J,@t); |
---|
| 2198 | J=std(J); |
---|
| 2199 | } |
---|
| 2200 | int pa=1-hilbPoly(J)[1]; |
---|
| 2201 | pa=pa-deltaP(J); |
---|
| 2202 | setring R0; |
---|
| 2203 | return(pa); |
---|
| 2204 | } |
---|
| 2205 | I=std(I); |
---|
| 2206 | if(dim(I)!=1) |
---|
| 2207 | { |
---|
| 2208 | if(((homog(I))&&(dim(I)!=2))||(!homog(I))) |
---|
| 2209 | { |
---|
| 2210 | // ERROR("This is not a curve"); |
---|
| 2211 | if(w==1){"** WARNING: Input does not define a curve **"; "";} |
---|
| 2212 | } |
---|
| 2213 | } |
---|
| 2214 | list L=elimpart(I); |
---|
| 2215 | if(size(L[2])!=0) |
---|
| 2216 | { |
---|
| 2217 | map psi=R0,L[5]; |
---|
| 2218 | I=std(psi(I)); |
---|
| 2219 | } |
---|
| 2220 | if(size(I)==0) |
---|
| 2221 | { |
---|
| 2222 | return(0); |
---|
| 2223 | } |
---|
| 2224 | list N=findvars(I,0); |
---|
| 2225 | if(size(N[1])==1) |
---|
| 2226 | { |
---|
| 2227 | |
---|
| 2228 | poly p=I[1]; |
---|
| 2229 | // if(deg(squarefree(p))<deg(p)){ERROR("Curve is not reduced");} |
---|
| 2230 | return(-deg(p)+1); |
---|
| 2231 | } |
---|
| 2232 | if(size(N[1]) < nvars(R0)) |
---|
| 2233 | { |
---|
| 2234 | string newvar=string(N[1]); |
---|
| 2235 | execute("ring R=("+charstr(R0)+"),("+newvar+"),dp;"); |
---|
| 2236 | ideal I =imap(R0,I); |
---|
| 2237 | attrib(I,"isSB",1); |
---|
| 2238 | } |
---|
| 2239 | else |
---|
| 2240 | { |
---|
| 2241 | def R=basering; |
---|
| 2242 | } |
---|
| 2243 | if(dim(I)==2) |
---|
| 2244 | { |
---|
| 2245 | def newR=basering; |
---|
| 2246 | } |
---|
| 2247 | else |
---|
| 2248 | { |
---|
| 2249 | if(dim(I)==0) |
---|
| 2250 | { |
---|
| 2251 | execute("ring Rhelp=("+charstr(R0)+"),(@s,@t),dp;"); |
---|
| 2252 | } |
---|
| 2253 | else |
---|
| 2254 | { |
---|
| 2255 | execute("ring Rhelp=("+charstr(R0)+"),(@s),dp;"); |
---|
| 2256 | } |
---|
| 2257 | def newR=R+Rhelp; |
---|
| 2258 | setring newR; |
---|
| 2259 | ideal I=imap(R,I); |
---|
| 2260 | I=homog(I,@s); |
---|
| 2261 | attrib(I,"isSB",1); |
---|
| 2262 | } |
---|
| 2263 | |
---|
| 2264 | if((nvars(basering)<=3)&&(size(I)>1)) |
---|
| 2265 | { |
---|
| 2266 | ERROR("This is not equidimensional"); |
---|
| 2267 | } |
---|
| 2268 | |
---|
| 2269 | intvec hp=hilbPoly(I); |
---|
| 2270 | int p_a=1-hp[1]; |
---|
| 2271 | int d=hp[2]; |
---|
| 2272 | |
---|
| 2273 | if(w>=1) |
---|
| 2274 | { |
---|
| 2275 | "";"The ideal of the projective curve:";"";I;""; |
---|
| 2276 | "The coefficients of the Hilbert polynomial";hp; |
---|
| 2277 | "arithmetic genus:";p_a; |
---|
| 2278 | "degree:";d;""; |
---|
| 2279 | } |
---|
| 2280 | |
---|
| 2281 | intvec v = hilb(I,1); |
---|
| 2282 | int i,o; |
---|
| 2283 | if(nvars(basering)>3) |
---|
| 2284 | { |
---|
| 2285 | map phi=newR,maxideal(1); |
---|
| 2286 | int de; |
---|
| 2287 | ideal K,L1; |
---|
| 2288 | matrix M; |
---|
| 2289 | poly m=var(4); |
---|
| 2290 | poly he; |
---|
| 2291 | for(i=5;i<=nvars(basering);i++){m=m*var(i);} |
---|
| 2292 | K=eliminate(I,m,v); |
---|
| 2293 | if(size(K)==1){de=deg(K[1]);} |
---|
| 2294 | m=var(1); |
---|
| 2295 | for(i=2;i<=nvars(basering)-3;i++){m=m*var(i);} |
---|
| 2296 | i=0; |
---|
| 2297 | while(d!=de) |
---|
| 2298 | { |
---|
| 2299 | o=1; |
---|
| 2300 | i++; |
---|
| 2301 | K=phi(I); |
---|
| 2302 | K=eliminate(K,m,v); |
---|
| 2303 | if(size(K)==1){de=deg(K[1]);} |
---|
| 2304 | if((i==5)&&(d!=de)) |
---|
| 2305 | { |
---|
| 2306 | K=reduce(equidimMax(I),I); |
---|
| 2307 | if(size(K)!=0){ERROR("This is not equidimensional");} |
---|
| 2308 | } |
---|
| 2309 | if(i==10) |
---|
| 2310 | { |
---|
| 2311 | J;K; |
---|
| 2312 | ERROR("genus: did not find a good projection for to |
---|
| 2313 | the plain"); |
---|
| 2314 | } |
---|
| 2315 | if(i<5) |
---|
| 2316 | { |
---|
| 2317 | M=sparsetriag(nvars(newR),nvars(newR),80-5*i,i); |
---|
| 2318 | } |
---|
| 2319 | else |
---|
| 2320 | { |
---|
| 2321 | if(i<8) |
---|
| 2322 | { |
---|
| 2323 | M=transpose(sparsetriag(nvars(newR),nvars(newR),80-5*i,i)); |
---|
| 2324 | } |
---|
| 2325 | else |
---|
| 2326 | { |
---|
| 2327 | he=0; |
---|
| 2328 | while(he==0) |
---|
| 2329 | { |
---|
| 2330 | M=randommat(nvars(newR),nvars(newR),ideal(1),20); |
---|
| 2331 | he=det(M); |
---|
| 2332 | } |
---|
| 2333 | } |
---|
| 2334 | } |
---|
| 2335 | L1=M*transpose(maxideal(1)); |
---|
| 2336 | phi=newR,L1; |
---|
| 2337 | } |
---|
| 2338 | I=K; |
---|
| 2339 | } |
---|
| 2340 | poly p=I[1]; |
---|
| 2341 | |
---|
| 2342 | execute("ring S=("+charstr(R)+"),(x,y,t),dp;"); |
---|
| 2343 | ideal L=maxideal(1); |
---|
| 2344 | execute("ring C=("+charstr(R)+"),(x,y),ds;"); |
---|
| 2345 | ideal I; |
---|
| 2346 | execute("ring A=("+charstr(R)+"),(x,t),dp;"); |
---|
| 2347 | map phi=S,1,x,t; |
---|
| 2348 | map psi=S,x,1,t; |
---|
| 2349 | poly g,h; |
---|
| 2350 | ideal I,I1; |
---|
| 2351 | execute("ring B=("+charstr(R)+"),(x,t),ds;"); |
---|
| 2352 | |
---|
| 2353 | setring S; |
---|
| 2354 | if(o) |
---|
| 2355 | { |
---|
| 2356 | for(i=1;i<=nvars(newR)-3;i++){L[i]=0;} |
---|
| 2357 | L=L,maxideal(1); |
---|
| 2358 | } |
---|
| 2359 | map sigma=newR,L; |
---|
| 2360 | poly F=sigma(p); |
---|
| 2361 | if(w>=1){"the projected curve:";"";F;"";} |
---|
| 2362 | |
---|
| 2363 | kill newR; |
---|
| 2364 | |
---|
[ed7a55c] | 2365 | int genus=(d-1)*(d-2) div 2; |
---|
[1598658] | 2366 | if(w>=1){"the arithmetic genus of the plane curve:";genus;pause();} |
---|
| 2367 | |
---|
| 2368 | int delt,deltaloc,deltainf,tau,tauinf,cusps,iloc,iglob,l,nsing, |
---|
| 2369 | tauloc,tausing,k,rat,nbranchinf,nbranch,nodes,cuspsinf,nodesinf; |
---|
| 2370 | list inv; |
---|
| 2371 | |
---|
| 2372 | if(w>=1) |
---|
| 2373 | {"";"analyse the singularities at oo";"";"singular locus at (1,x,0):";"";} |
---|
| 2374 | setring A; |
---|
| 2375 | g=phi(F); |
---|
| 2376 | h=psi(F); |
---|
| 2377 | I=g,jacob(g),var(2); |
---|
| 2378 | I=std(I); |
---|
| 2379 | if(deg(I[1])>0) |
---|
| 2380 | { |
---|
| 2381 | list qr=minAssGTZ(I); |
---|
| 2382 | if(w>=1){qr;"";} |
---|
| 2383 | |
---|
| 2384 | for(k=1;k<=size(qr);k++) |
---|
| 2385 | { |
---|
| 2386 | if(w>=1){ nsing=nsing+vdim(std(qr[k]));} |
---|
| 2387 | inv=deltaLoc(g,qr[k]); |
---|
| 2388 | deltainf=deltainf+inv[1]; |
---|
| 2389 | tauinf=tauinf+inv[2]; |
---|
| 2390 | l=vdim(std(qr[k])); |
---|
| 2391 | if(inv[2]==l){nodesinf=nodesinf+l;} |
---|
| 2392 | if(inv[2]==2*l){cuspsinf=cuspsinf+l;} |
---|
| 2393 | nbranchinf=nbranchinf+inv[3]; |
---|
| 2394 | } |
---|
| 2395 | } |
---|
| 2396 | else |
---|
| 2397 | { |
---|
| 2398 | if(w>=1){" the curve is smooth at (1,x,0)";"";} |
---|
| 2399 | } |
---|
| 2400 | if(w>=1){"singular locus at (0,1,0):";"";} |
---|
| 2401 | inv=deltaLoc(h,maxideal(1)); |
---|
| 2402 | if((w>=1)&&(inv[2]!=0)){ nsing++;} |
---|
| 2403 | deltainf=deltainf+inv[1]; |
---|
| 2404 | tauinf=tauinf+inv[2]; |
---|
| 2405 | if(inv[2]==1){nodesinf++;} |
---|
| 2406 | if(inv[2]==2){cuspsinf++;} |
---|
| 2407 | |
---|
| 2408 | if((w>=1)&&(inv[2]==0)){" the curve is smooth at (0,1,0)";"";} |
---|
| 2409 | if(inv[2]>0){nbranchinf=nbranchinf+inv[3];} |
---|
| 2410 | |
---|
| 2411 | if(w>=1) |
---|
| 2412 | { |
---|
| 2413 | if(tauinf==0) |
---|
| 2414 | { |
---|
| 2415 | " the curve is smooth at oo";""; |
---|
| 2416 | } |
---|
| 2417 | else |
---|
| 2418 | { |
---|
| 2419 | "number of singularities at oo:";nsing; |
---|
| 2420 | "nodes at oo:";nodesinf; |
---|
| 2421 | "cusps at oo:";cuspsinf; |
---|
| 2422 | "branches at oo:";nbranchinf; |
---|
| 2423 | "Tjurina number at oo:";tauinf; |
---|
| 2424 | "delta at oo:";deltainf; |
---|
| 2425 | "Milnor number at oo:";2*deltainf-nbranchinf+nsing; |
---|
| 2426 | pause(); |
---|
| 2427 | } |
---|
| 2428 | "singularities at (x,y,1):";""; |
---|
| 2429 | } |
---|
| 2430 | execute("ring newR=("+charstr(R)+"),(x,y),dp;"); |
---|
| 2431 | //the singularities at the affine part |
---|
| 2432 | map sigma=S,var(1),var(2),1; |
---|
| 2433 | ideal I=sigma(F); |
---|
| 2434 | |
---|
| 2435 | if(size(#)!=0) |
---|
| 2436 | { //uses the normalization to compute delta |
---|
[e1cda9] | 2437 | list nor=normal(I,"withDelta"); |
---|
[1598658] | 2438 | delt=nor[size(nor)][2]; |
---|
| 2439 | genus=genus-delt-deltainf; |
---|
| 2440 | setring R0; |
---|
| 2441 | return(genus); |
---|
| 2442 | } |
---|
| 2443 | |
---|
| 2444 | ideal I1=jacob(I); |
---|
| 2445 | matrix Hess[2][2]=jacob(I1); |
---|
| 2446 | ideal ID=I+I1+ideal(det(Hess));//singular locus of I+I1 |
---|
| 2447 | |
---|
| 2448 | ideal radID=std(radical(ID));//the non-nodal locus |
---|
| 2449 | if(w>=1){"the non-nodal locus:";"";radID;pause();"";} |
---|
| 2450 | if(deg(radID[1])==0) |
---|
| 2451 | { |
---|
| 2452 | ideal IDsing=1; |
---|
| 2453 | } |
---|
| 2454 | else |
---|
| 2455 | { |
---|
| 2456 | ideal IDsing=minor(jacob(ID),2)+radID;//singular locus of ID |
---|
| 2457 | } |
---|
| 2458 | |
---|
| 2459 | iglob=vdim(std(IDsing)); |
---|
| 2460 | |
---|
| 2461 | if(iglob!=0)//computation of the radical of IDsing |
---|
| 2462 | { |
---|
| 2463 | ideal radIDsing=reduce(IDsing,radID); |
---|
| 2464 | if(size(radIDsing)==0) |
---|
| 2465 | { |
---|
| 2466 | radIDsing=radID; |
---|
| 2467 | attrib(radIDsing,"isSB",1); |
---|
| 2468 | } |
---|
| 2469 | else |
---|
| 2470 | { |
---|
| 2471 | radIDsing=std(radical(IDsing)); |
---|
| 2472 | } |
---|
| 2473 | iglob=vdim(radIDsing); |
---|
| 2474 | if((w>=1)&&(iglob)) |
---|
| 2475 | {"the non-nodal-cuspidal locus:";radIDsing;pause();"";} |
---|
| 2476 | } |
---|
| 2477 | cusps=vdim(radID)-iglob; |
---|
| 2478 | nsing=nsing+cusps; |
---|
| 2479 | |
---|
| 2480 | if(iglob==0) |
---|
| 2481 | { |
---|
| 2482 | if(w>=1){" there are only cusps and nodes";"";} |
---|
| 2483 | tau=vdim(std(I+jacob(I))); |
---|
| 2484 | tauinf=tauinf+tau; |
---|
| 2485 | nodes=tau-2*cusps; |
---|
| 2486 | delt=nodes+cusps; |
---|
| 2487 | nbranch=2*tau-3*cusps; |
---|
| 2488 | nsing=nsing+nodes; |
---|
| 2489 | } |
---|
| 2490 | else |
---|
| 2491 | { |
---|
| 2492 | if(w>=1){"the non-nodal-cuspidal singularities";"";} |
---|
| 2493 | setring C; |
---|
[03b9ee] | 2494 | ideal I1=imap(newR,radIDsing); |
---|
[1598658] | 2495 | iloc=vdim(std(I1)); |
---|
| 2496 | if(iglob==iloc) |
---|
| 2497 | { |
---|
| 2498 | if(w>=1){"only cusps and nodes outside (0,0,1)";} |
---|
| 2499 | setring newR; |
---|
| 2500 | tau=vdim(std(I+jacob(I))); |
---|
| 2501 | tauinf=tauinf+tau; |
---|
| 2502 | inv=deltaLoc(I[1],maxideal(1)); |
---|
| 2503 | delt=inv[1]; |
---|
| 2504 | tauloc=inv[2]; |
---|
| 2505 | nodes=tau-tauloc-2*cusps; |
---|
| 2506 | nsing=nsing+nodes; |
---|
[f2e8212] | 2507 | if (inv[2]!=0) { nsing++; } |
---|
[1598658] | 2508 | nbranch=inv[3]+ 2*nodes+cusps; |
---|
| 2509 | delt=delt+nodes+cusps; |
---|
| 2510 | if((w>=1)&&(inv[2]==0)){"smooth at (0,0,1)";} |
---|
| 2511 | } |
---|
| 2512 | else |
---|
| 2513 | { |
---|
| 2514 | setring newR; |
---|
[03b9ee] | 2515 | list pr=minAssGTZ(radIDsing); |
---|
[1598658] | 2516 | if(w>=1){pr;} |
---|
| 2517 | |
---|
| 2518 | for(k=1;k<=size(pr);k++) |
---|
| 2519 | { |
---|
| 2520 | if(w>=1){nsing=nsing+vdim(std(pr[k]));} |
---|
| 2521 | inv=deltaLoc(I[1],pr[k]); |
---|
| 2522 | delt=delt+inv[1]; |
---|
| 2523 | tausing=tausing+inv[2]; |
---|
| 2524 | nbranch=nbranch+inv[3]; |
---|
| 2525 | } |
---|
| 2526 | tau=vdim(std(I+jacob(I))); |
---|
| 2527 | tauinf=tauinf+tau; |
---|
| 2528 | nodes=tau-tausing-2*cusps; |
---|
| 2529 | nsing=nsing+nodes; |
---|
| 2530 | delt=delt+nodes+cusps; |
---|
| 2531 | nbranch=nbranch+2*nodes+cusps; |
---|
| 2532 | } |
---|
| 2533 | } |
---|
| 2534 | genus=genus-delt-deltainf; |
---|
| 2535 | if(w>=1) |
---|
| 2536 | { |
---|
| 2537 | "The projected plane curve has locally:";""; |
---|
| 2538 | "singularities:";nsing; |
---|
| 2539 | "branches:";nbranch+nbranchinf; |
---|
| 2540 | "nodes:"; nodes+nodesinf; |
---|
| 2541 | "cusps:";cusps+cuspsinf; |
---|
| 2542 | "Tjurina number:";tauinf; |
---|
| 2543 | "Milnor number:";2*(delt+deltainf)-nbranch-nbranchinf+nsing; |
---|
| 2544 | "delta of the projected curve:";delt+deltainf; |
---|
| 2545 | "delta of the curve:";p_a-genus; |
---|
| 2546 | "genus:";genus; |
---|
| 2547 | "===================================================="; |
---|
| 2548 | ""; |
---|
| 2549 | } |
---|
| 2550 | setring R0; |
---|
| 2551 | return(genus); |
---|
| 2552 | } |
---|
| 2553 | example |
---|
| 2554 | { "EXAMPLE:"; echo = 2; |
---|
| 2555 | ring r=0,(x,y),dp; |
---|
| 2556 | ideal i=y^9 - x^2*(x - 1)^9; |
---|
| 2557 | genus(i); |
---|
| 2558 | ring r7=7,(x,y),dp; |
---|
| 2559 | ideal i=y^9 - x^2*(x - 1)^9; |
---|
| 2560 | genus(i); |
---|
| 2561 | } |
---|
| 2562 | |
---|
| 2563 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 2564 | proc deltaLoc(poly f,ideal singL) |
---|
| 2565 | "USAGE: deltaLoc(f,J); f poly, J ideal |
---|
| 2566 | ASSUME: f is reduced bivariate polynomial; basering has exactly two variables; |
---|
| 2567 | J is irreducible prime component of the singular locus of f (e.g., one |
---|
| 2568 | entry of the output of @code{minAssGTZ(I);}, I = <f,jacob(f)>). |
---|
| 2569 | RETURN: list L: |
---|
| 2570 | @texinfo |
---|
| 2571 | @table @asis |
---|
| 2572 | @item @code{L[1]}; int: |
---|
| 2573 | the sum of (local) delta invariants of f at the (conjugated) singular |
---|
| 2574 | points given by J. |
---|
| 2575 | @item @code{L[2]}; int: |
---|
| 2576 | the sum of (local) Tjurina numbers of f at the (conjugated) singular |
---|
| 2577 | points given by J. |
---|
| 2578 | @item @code{L[3]}; int: |
---|
| 2579 | the sum of (local) number of branches of f at the (conjugated) |
---|
| 2580 | singular points given by J. |
---|
| 2581 | @end table |
---|
| 2582 | @end texinfo |
---|
| 2583 | NOTE: procedure makes use of @code{execute}; increasing printlevel displays |
---|
| 2584 | more comments (default: printlevel=0). |
---|
| 2585 | SEE ALSO: delta, tjurina |
---|
| 2586 | KEYWORDS: delta invariant; Tjurina number |
---|
| 2587 | EXAMPLE: example deltaLoc; shows an example |
---|
| 2588 | " |
---|
| 2589 | { |
---|
[651cce] | 2590 | intvec save_opt=option(get); |
---|
[1598658] | 2591 | option(redSB); |
---|
| 2592 | def R=basering; |
---|
| 2593 | execute("ring S=("+charstr(R)+"),(x,y),lp;"); |
---|
| 2594 | map phi=R,x,y; |
---|
| 2595 | ideal singL=phi(singL); |
---|
| 2596 | singL=simplify(std(singL),1); |
---|
| 2597 | attrib(singL,"isSB",1); |
---|
| 2598 | int d=vdim(singL); |
---|
| 2599 | poly f=phi(f); |
---|
| 2600 | int i; |
---|
| 2601 | int w = printlevel-voice+2; // w=printlevel (default: w=0) |
---|
| 2602 | if(d==1) |
---|
| 2603 | { |
---|
| 2604 | map alpha=S,var(1)-singL[2][2],var(2)-singL[1][2]; |
---|
| 2605 | f=alpha(f); |
---|
| 2606 | execute("ring C=("+charstr(S)+"),("+varstr(S)+"),ds;"); |
---|
| 2607 | poly f=imap(S,f); |
---|
| 2608 | ideal singL=imap(S,singL); |
---|
| 2609 | if((w>=1)&&(ord(f)>=2)) |
---|
| 2610 | { |
---|
| 2611 | "local analysis of the singularities";""; |
---|
| 2612 | basering; |
---|
| 2613 | singL; |
---|
| 2614 | f; |
---|
| 2615 | pause(); |
---|
| 2616 | } |
---|
| 2617 | } |
---|
| 2618 | else |
---|
| 2619 | { |
---|
| 2620 | poly p; |
---|
| 2621 | poly c; |
---|
| 2622 | map psi; |
---|
| 2623 | number co; |
---|
| 2624 | |
---|
| 2625 | while((deg(lead(singL[1]))>1)&&(deg(lead(singL[2]))>1)) |
---|
| 2626 | { |
---|
| 2627 | psi=S,x,y+random(-100,100)*x; |
---|
| 2628 | singL=psi(singL); |
---|
| 2629 | singL=std(singL); |
---|
| 2630 | f=psi(f); |
---|
| 2631 | } |
---|
| 2632 | |
---|
| 2633 | if(deg(lead(singL[2]))==1) |
---|
| 2634 | { |
---|
| 2635 | p=singL[1]; |
---|
| 2636 | c=singL[2]-lead(singL[2]); |
---|
| 2637 | co=leadcoef(singL[2]); |
---|
| 2638 | } |
---|
| 2639 | if(deg(lead(singL[1]))==1) |
---|
| 2640 | { |
---|
| 2641 | psi=S,y,x; |
---|
| 2642 | f=psi(f); |
---|
| 2643 | singL=psi(singL); |
---|
| 2644 | p=singL[2]; |
---|
| 2645 | c=singL[1]-lead(singL[1]); |
---|
| 2646 | co=leadcoef(singL[1]); |
---|
| 2647 | } |
---|
| 2648 | |
---|
| 2649 | execute("ring B=("+charstr(S)+"),a,dp;"); |
---|
| 2650 | map beta=S,a,a; |
---|
| 2651 | poly p=beta(p); |
---|
| 2652 | |
---|
| 2653 | execute("ring C=("+charstr(S)+",a),("+varstr(S)+"),ds;"); |
---|
| 2654 | number p=number(imap(B,p)); |
---|
| 2655 | |
---|
| 2656 | minpoly=p; |
---|
| 2657 | map iota=S,a,a; |
---|
| 2658 | number c=number(iota(c)); |
---|
| 2659 | number co=iota(co); |
---|
| 2660 | |
---|
| 2661 | map alpha=S,x-c/co,y+a; |
---|
| 2662 | poly f=alpha(f); |
---|
| 2663 | f=cleardenom(f); |
---|
| 2664 | if((w>=1)&&(ord(f)>=2)) |
---|
| 2665 | { |
---|
| 2666 | "local analysis of the singularities";""; |
---|
| 2667 | basering; |
---|
| 2668 | alpha; |
---|
| 2669 | f; |
---|
| 2670 | pause(); |
---|
| 2671 | ""; |
---|
| 2672 | } |
---|
| 2673 | } |
---|
| 2674 | option(noredSB); |
---|
| 2675 | ideal fstd=std(ideal(f)+jacob(f)); |
---|
| 2676 | poly hc=highcorner(fstd); |
---|
| 2677 | int tau=vdim(fstd); |
---|
| 2678 | int o=ord(f); |
---|
| 2679 | int delt,nb; |
---|
| 2680 | |
---|
| 2681 | if(tau==0) //smooth case |
---|
| 2682 | { |
---|
| 2683 | setring R; |
---|
[651cce] | 2684 | option(set,save_opt); |
---|
[1598658] | 2685 | return(list(0,0,1)); |
---|
| 2686 | } |
---|
| 2687 | if((char(basering)>=181)||(char(basering)==0)) |
---|
| 2688 | { |
---|
| 2689 | if(o==2) //A_k-singularity |
---|
| 2690 | { |
---|
| 2691 | if(w>=1){"A_k-singularity";"";} |
---|
| 2692 | setring R; |
---|
[ed7a55c] | 2693 | delt=(tau+1) div 2; |
---|
[651cce] | 2694 | option(set,save_opt); |
---|
[1598658] | 2695 | return(list(d*delt,d*tau,d*(2*delt-tau+1))); |
---|
| 2696 | } |
---|
| 2697 | if((lead(f)==var(1)*var(2)^2)||(lead(f)==var(1)^2*var(2))) |
---|
| 2698 | { |
---|
| 2699 | if(w>=1){"D_k- singularity";"";} |
---|
| 2700 | |
---|
| 2701 | setring R; |
---|
[ed7a55c] | 2702 | delt=(tau+2) div 2; |
---|
[651cce] | 2703 | option(set,save_opt); |
---|
[1598658] | 2704 | return(list(d*delt,d*tau,d*(2*delt-tau+1))); |
---|
| 2705 | } |
---|
| 2706 | |
---|
| 2707 | int mu=vdim(std(jacob(f))); |
---|
[507427] | 2708 | |
---|
[1598658] | 2709 | poly g=f+var(1)^mu+var(2)^mu; //to obtain a convenient Newton-polygon |
---|
| 2710 | |
---|
| 2711 | list NP=newtonpoly(g); |
---|
| 2712 | if(w>=1){"Newton-Polygon:";NP;"";} |
---|
| 2713 | int s=size(NP); |
---|
| 2714 | |
---|
| 2715 | if(is_NND(f,mu,NP)) |
---|
| 2716 | { // the Newton-polygon is non-degenerate |
---|
| 2717 | // compute nb, the number of branches |
---|
| 2718 | for(i=1;i<=s-1;i++) |
---|
| 2719 | { |
---|
| 2720 | nb=nb+gcd(NP[i][2]-NP[i+1][2],NP[i][1]-NP[i+1][1]); |
---|
| 2721 | } |
---|
| 2722 | if(w>=1){"Newton-Polygon is non-degenerated";"";} |
---|
[651cce] | 2723 | option(set,save_opt); |
---|
[ed7a55c] | 2724 | return(list(d*(mu+nb-1) div 2,d*tau,d*nb)); |
---|
[1598658] | 2725 | } |
---|
| 2726 | |
---|
| 2727 | if(w>=1){"Newton-Polygon is degenerated";"";} |
---|
| 2728 | |
---|
| 2729 | // the following can certainly be made more efficient when replacing |
---|
| 2730 | // 'hnexpansion' (used only for computing number of branches) by |
---|
| 2731 | // successive blowing-up + test if Newton polygon degenerate: |
---|
| 2732 | if(s>2) // splitting of f |
---|
| 2733 | { |
---|
| 2734 | if(w>=1){"Newton polygon can be used for splitting";"";} |
---|
| 2735 | intvec v=NP[1][2]-NP[2][2],NP[2][1]; |
---|
| 2736 | int de=w_deg(g,v); |
---|
[507427] | 2737 | //int st=w_deg(hc,v)+v[1]+v[2]; |
---|
| 2738 | int st=w_deg(var(1)^NP[size(NP)][1],v)+1; |
---|
[1598658] | 2739 | poly f1=var(2)^NP[2][2]; |
---|
| 2740 | poly f2=jet(g,de,v)/var(2)^NP[2][2]; |
---|
| 2741 | poly h=g-f1*f2; |
---|
| 2742 | de=w_deg(h,v); |
---|
| 2743 | poly k; |
---|
| 2744 | ideal wi=var(2)^NP[2][2],f2; |
---|
| 2745 | matrix li; |
---|
| 2746 | while(de<st) |
---|
| 2747 | { |
---|
| 2748 | k=jet(h,de,v); |
---|
| 2749 | li=lift(wi,k); |
---|
| 2750 | f1=f1+li[2,1]; |
---|
| 2751 | f2=f2+li[1,1]; |
---|
| 2752 | h=g-f1*f2; |
---|
| 2753 | de=w_deg(h,v); |
---|
| 2754 | } |
---|
| 2755 | nb=deltaLoc(f1,maxideal(1))[3]+deltaLoc(f2,maxideal(1))[3]; |
---|
[507427] | 2756 | |
---|
[1598658] | 2757 | setring R; |
---|
[651cce] | 2758 | option(set,save_opt); |
---|
[ed7a55c] | 2759 | return(list(d*(mu+nb-1) div 2,d*tau,d*nb)); |
---|
[1598658] | 2760 | } |
---|
| 2761 | |
---|
| 2762 | f=jet(f,deg(hc)+2); |
---|
| 2763 | if(w>=1){"now we have to use Hamburger-Noether (Puiseux) expansion";} |
---|
| 2764 | ideal fac=factorize(f,1); |
---|
| 2765 | if(size(fac)>1) |
---|
| 2766 | { |
---|
| 2767 | nb=0; |
---|
| 2768 | for(i=1;i<=size(fac);i++) |
---|
| 2769 | { |
---|
| 2770 | nb=nb+deltaLoc(fac[i],maxideal(1))[3]; |
---|
| 2771 | } |
---|
| 2772 | setring R; |
---|
[651cce] | 2773 | option(set,save_opt); |
---|
[ed7a55c] | 2774 | return(list(d*(mu+nb-1) div 2,d*tau,d*nb)); |
---|
[1598658] | 2775 | } |
---|
| 2776 | list HNEXP=hnexpansion(f); |
---|
| 2777 | if (typeof(HNEXP[1])=="ring") { |
---|
| 2778 | def altring = basering; |
---|
| 2779 | def HNEring = HNEXP[1]; setring HNEring; |
---|
| 2780 | nb=size(hne); |
---|
| 2781 | setring R; |
---|
| 2782 | kill HNEring; |
---|
| 2783 | } |
---|
| 2784 | else |
---|
| 2785 | { |
---|
| 2786 | nb=size(HNEXP); |
---|
| 2787 | } |
---|
[651cce] | 2788 | option(set,save_opt); |
---|
[ed7a55c] | 2789 | return(list(d*(mu+nb-1) div 2,d*tau,d*nb)); |
---|
[1598658] | 2790 | } |
---|
| 2791 | else //the case of small characteristic |
---|
| 2792 | { |
---|
| 2793 | f=jet(f,deg(hc)+2); |
---|
| 2794 | if(w>=1){"now we have to use Hamburger-Noether (Puiseux) expansion";} |
---|
| 2795 | delt=delta(f); |
---|
[651cce] | 2796 | option(set,save_opt); |
---|
[1598658] | 2797 | return(list(d*delt,d*tau,d)); |
---|
| 2798 | } |
---|
[651cce] | 2799 | option(set,save_opt); |
---|
[1598658] | 2800 | } |
---|
| 2801 | example |
---|
| 2802 | { "EXAMPLE:"; echo = 2; |
---|
| 2803 | ring r=0,(x,y),dp; |
---|
| 2804 | poly f=(x2+y^2-1)^3 +27x2y2; |
---|
| 2805 | ideal I=f,jacob(f); |
---|
| 2806 | I=std(I); |
---|
| 2807 | list qr=minAssGTZ(I); |
---|
| 2808 | size(qr); |
---|
| 2809 | // each component of the singular locus either describes a cusp or a pair |
---|
| 2810 | // of conjugated nodes: |
---|
| 2811 | deltaLoc(f,qr[1]); |
---|
| 2812 | deltaLoc(f,qr[2]); |
---|
| 2813 | deltaLoc(f,qr[3]); |
---|
| 2814 | deltaLoc(f,qr[4]); |
---|
| 2815 | deltaLoc(f,qr[5]); |
---|
| 2816 | deltaLoc(f,qr[6]); |
---|
| 2817 | } |
---|
| 2818 | /////////////////////////////////////////////////////////////////////////////// |
---|
[2ab830] | 2819 | // compute the weighted degree of p; |
---|
| 2820 | // this code is an exact copy of the proc in paraplanecurves.lib |
---|
| 2821 | // (since we do not want to make it non-static) |
---|
[1598658] | 2822 | static proc w_deg(poly p, intvec v) |
---|
| 2823 | { |
---|
| 2824 | if(p==0){return(-1);} |
---|
| 2825 | int d=0; |
---|
| 2826 | while(jet(p,d,v)==0){d++;} |
---|
| 2827 | d=(transpose(leadexp(jet(p,d,v)))*v)[1]; |
---|
| 2828 | return(d); |
---|
| 2829 | } |
---|
| 2830 | |
---|
| 2831 | //proc hilbPoly(ideal J) |
---|
| 2832 | //{ |
---|
| 2833 | // poly hp; |
---|
| 2834 | // int i; |
---|
| 2835 | // if(!attrib(J,"isSB")){J=std(J);} |
---|
| 2836 | // intvec v = hilb(J,2); |
---|
| 2837 | // for(i=1; i<=size(v); i++){ hp=hp+v[i]*(var(1)-i+2);} |
---|
| 2838 | // return(hp); |
---|
| 2839 | //} |
---|
| 2840 | |
---|
| 2841 | |
---|
| 2842 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 2843 | |
---|
| 2844 | proc primeClosure (list L, list #) |
---|
| 2845 | "USAGE: primeClosure(L [,c]); L a list of a ring containing a prime ideal |
---|
| 2846 | ker, c an optional integer |
---|
| 2847 | RETURN: a list L (of size n+1) consisting of rings L[1],...,L[n] such that |
---|
| 2848 | - L[1] is a copy of (not a reference to!) the input ring L[1] |
---|
| 2849 | - all rings L[i] contain ideals ker, L[2],...,L[n] contain ideals phi |
---|
| 2850 | such that |
---|
| 2851 | L[1]/ker --> ... --> L[n]/ker |
---|
| 2852 | are injections given by the corresponding ideals phi, and L[n]/ker |
---|
| 2853 | is the integral closure of L[1]/ker in its quotient field. |
---|
| 2854 | - all rings L[i] contain a polynomial nzd such that elements of |
---|
| 2855 | L[i]/ker are quotients of elements of L[i-1]/ker with denominator |
---|
| 2856 | nzd via the injection phi. |
---|
| 2857 | L[n+1] is the delta invariant |
---|
| 2858 | NOTE: - L is constructed by recursive calls of primeClosure itself. |
---|
| 2859 | - c determines the choice of nzd: |
---|
| 2860 | - c not given or equal to 0: first generator of the ideal SL, |
---|
| 2861 | the singular locus of Spec(L[i]/ker) |
---|
| 2862 | - c<>0: the generator of SL with least number of monomials. |
---|
| 2863 | EXAMPLE: example primeClosure; shows an example |
---|
| 2864 | " |
---|
| 2865 | { |
---|
| 2866 | //---- Start with a consistency check: |
---|
| 2867 | |
---|
| 2868 | if (!(typeof(L[1])=="ring")) |
---|
| 2869 | { |
---|
| 2870 | "// Parameter must be a ring or a list containing a ring!"; |
---|
| 2871 | return(-1); |
---|
| 2872 | } |
---|
| 2873 | |
---|
| 2874 | int dblvl = printlevel-voice+2; |
---|
| 2875 | list gnirlist = ringlist(basering); |
---|
| 2876 | |
---|
| 2877 | //---- Some auxiliary variables: |
---|
| 2878 | int delt; //finally the delta invariant |
---|
| 2879 | if ( size(L) == 1 ) |
---|
| 2880 | { |
---|
| 2881 | L[2] = delt; //set delta to 0 |
---|
| 2882 | } |
---|
| 2883 | int n = size(L)-1; //L without delta invariant |
---|
| 2884 | |
---|
| 2885 | //---- How to choose the non-zerodivisor later on? |
---|
| 2886 | |
---|
| 2887 | int nzdoption=0; |
---|
| 2888 | if (size(#)>0) |
---|
| 2889 | { |
---|
| 2890 | nzdoption=#[1]; |
---|
| 2891 | } |
---|
| 2892 | |
---|
| 2893 | // R0 below is the ring to work with, if we are in step one, make a copy of the |
---|
| 2894 | // input ring, so that all objects are created in the copy, not in the original |
---|
| 2895 | // ring (therefore a copy, not a reference is defined). |
---|
| 2896 | |
---|
| 2897 | if (n==1) |
---|
| 2898 | { |
---|
| 2899 | def R = L[1]; |
---|
| 2900 | list Rlist = ringlist(R); |
---|
| 2901 | def BAS = basering; |
---|
| 2902 | setring R; |
---|
| 2903 | if (!(typeof(ker)=="ideal")) |
---|
| 2904 | { |
---|
| 2905 | "// No ideal ker in the input ring!"; |
---|
| 2906 | return (-1); |
---|
| 2907 | } |
---|
| 2908 | ker=simplify(interred(ker),15); |
---|
| 2909 | //execute ("ring R0="+charstr(R)+",("+varstr(R)+"),("+ordstr(R)+");"); |
---|
| 2910 | // Rlist may be not defined in this new ring, so we define it again. |
---|
| 2911 | list Rlist2 = ringlist(R); |
---|
| 2912 | def R0 = ring(Rlist2); |
---|
| 2913 | setring R0; |
---|
| 2914 | ideal ker=fetch(R,ker); |
---|
| 2915 | // check whether we compute the normalization of the blow up of |
---|
| 2916 | // an isolated singularity at the origin (checked in normalI) |
---|
| 2917 | |
---|
| 2918 | if (typeof(attrib(L[1],"iso_sing_Rees"))=="int") |
---|
| 2919 | { |
---|
| 2920 | attrib(R0,"iso_sing_Rees",attrib(L[1],"iso_sing_Rees")); |
---|
| 2921 | } |
---|
| 2922 | L[1]=R0; |
---|
| 2923 | } |
---|
| 2924 | else |
---|
| 2925 | { |
---|
| 2926 | def R0 = L[n]; |
---|
| 2927 | setring R0; |
---|
| 2928 | } |
---|
| 2929 | |
---|
| 2930 | // In order to apply HomJJ from normal.lib, we need the radical of the singular |
---|
| 2931 | // locus of ker, J:=rad(ker): |
---|
| 2932 | |
---|
| 2933 | list SM=mstd(ker); |
---|
| 2934 | |
---|
| 2935 | // In the first iteration, we have to compute the singular locus "from |
---|
| 2936 | // scratch". |
---|
| 2937 | // In further iterations, we can fetch it from the previous one but |
---|
| 2938 | // have to compute its radical |
---|
| 2939 | // the next rings R1 contain already the (fetched) ideal |
---|
| 2940 | |
---|
| 2941 | if (n==1) //we are in R0=L[1] |
---|
| 2942 | { |
---|
| 2943 | if (typeof(attrib(R0,"iso_sing_Rees"))=="int") |
---|
| 2944 | { |
---|
| 2945 | ideal J; |
---|
| 2946 | for (int s=1;s<=attrib(R0,"iso_sing_Rees");s++) |
---|
| 2947 | { |
---|
| 2948 | J=J,var(s); |
---|
| 2949 | } |
---|
| 2950 | J = J,SM[2]; |
---|
| 2951 | list JM = mstd(J); |
---|
| 2952 | } |
---|
| 2953 | else |
---|
| 2954 | { |
---|
| 2955 | if ( dblvl >= 1 ) |
---|
| 2956 | {""; |
---|
| 2957 | "// compute the singular locus"; |
---|
| 2958 | } |
---|
| 2959 | //### Berechnung des singulaeren Orts geaendert (ist so schneller) |
---|
| 2960 | ideal J = minor(jacob(SM[2]),nvars(basering)-dim(SM[1]),SM[1]); |
---|
| 2961 | J = J,SM[2]; |
---|
| 2962 | list JM = mstd(J); |
---|
| 2963 | } |
---|
| 2964 | |
---|
| 2965 | if ( dblvl >= 1 ) |
---|
| 2966 | {""; |
---|
| 2967 | "// dimension of singular locus is", dim(JM[1]); |
---|
| 2968 | if ( dblvl >= 2 ) |
---|
| 2969 | {""; |
---|
| 2970 | "// the singular locus is:"; JM[2]; |
---|
| 2971 | } |
---|
| 2972 | } |
---|
| 2973 | |
---|
| 2974 | if ( dblvl >= 1 ) |
---|
| 2975 | {""; |
---|
| 2976 | "// compute radical of singular locus"; |
---|
| 2977 | } |
---|
| 2978 | |
---|
| 2979 | J = simplify(radical(JM[2]),2); |
---|
| 2980 | if ( dblvl >= 1 ) |
---|
| 2981 | {""; |
---|
| 2982 | "// radical of singular locus is:"; J; |
---|
| 2983 | pause(); |
---|
| 2984 | } |
---|
| 2985 | } |
---|
| 2986 | else |
---|
| 2987 | { |
---|
| 2988 | if ( dblvl >= 1 ) |
---|
| 2989 | {""; |
---|
| 2990 | "// compute radical of test ideal in ideal of singular locus"; |
---|
| 2991 | } |
---|
| 2992 | J = simplify(radical(J),2); |
---|
| 2993 | if ( dblvl >= 1 ) |
---|
| 2994 | {""; |
---|
| 2995 | "// radical of test ideal is:"; J; |
---|
| 2996 | pause(); |
---|
| 2997 | } |
---|
| 2998 | } |
---|
| 2999 | |
---|
| 3000 | // having computed the radical J of/in the ideal of the singular locus, |
---|
| 3001 | // we now need to pick an element nzd of J; |
---|
| 3002 | // NOTE: nzd must be a non-zero divisor mod ker, i.e. not contained in ker |
---|
| 3003 | |
---|
| 3004 | poly nzd = J[1]; |
---|
| 3005 | poly nzd1 = NF(nzd,SM[1]); |
---|
| 3006 | if (nzd1 != 0) |
---|
| 3007 | { |
---|
| 3008 | if ( deg(nzd)>=deg(nzd1) && size(nzd)>size(nzd1) ) |
---|
| 3009 | { |
---|
| 3010 | nzd = nzd1; |
---|
| 3011 | } |
---|
| 3012 | } |
---|
| 3013 | |
---|
| 3014 | if (nzdoption || nzd1==0) |
---|
| 3015 | { |
---|
| 3016 | for (int ii=2;ii<=ncols(J);ii++) |
---|
| 3017 | { |
---|
| 3018 | nzd1 = NF(J[ii],SM[1]); |
---|
| 3019 | if ( nzd1 != 0 ) |
---|
| 3020 | { |
---|
| 3021 | if ( (deg(nzd)>=deg(J[ii])) && (size(nzd)>size(J[ii])) ) |
---|
| 3022 | { |
---|
| 3023 | nzd=J[ii]; |
---|
| 3024 | } |
---|
| 3025 | if ( deg(nzd)>=deg(nzd1) && size(nzd)>size(nzd1) ) |
---|
| 3026 | { |
---|
| 3027 | nzd = nzd1; |
---|
| 3028 | } |
---|
| 3029 | } |
---|
| 3030 | } |
---|
| 3031 | } |
---|
| 3032 | |
---|
| 3033 | export nzd; |
---|
| 3034 | // In this case we do not eliminate variables, so that the maps |
---|
| 3035 | // are well defined. |
---|
| 3036 | list RR = SM[1],SM[2],J,nzd,1; |
---|
| 3037 | |
---|
| 3038 | if ( dblvl >= 1 ) |
---|
| 3039 | {""; |
---|
| 3040 | "// compute the first ring extension:"; |
---|
| 3041 | "RR: "; |
---|
| 3042 | RR; |
---|
| 3043 | } |
---|
| 3044 | |
---|
| 3045 | list RS = HomJJ(RR); |
---|
| 3046 | //NOTE: HomJJ creates new ring with variables X(i) and T(j) |
---|
| 3047 | //------------------------------------------------------------------------- |
---|
| 3048 | // If we've reached the integral closure (as determined by the result of |
---|
| 3049 | // HomJJ), then we are done, otherwise we have to prepare the next iteration. |
---|
| 3050 | |
---|
| 3051 | if (RS[2]==1) // we've reached the integral closure, we are still in R0 |
---|
| 3052 | { |
---|
| 3053 | kill J; |
---|
| 3054 | if ( n== 1) |
---|
| 3055 | { |
---|
| 3056 | def R1 = RS[1]; |
---|
| 3057 | setring R1; |
---|
| 3058 | ideal norid, normap = endid, endphi; |
---|
| 3059 | kill endid, endphi; |
---|
| 3060 | |
---|
| 3061 | //"//### case: primeClosure, final"; |
---|
| 3062 | //"size norid:", size(norid), size(string(norid)); |
---|
| 3063 | //"interred:"; |
---|
| 3064 | //norid = interred(norid); |
---|
| 3065 | //"size norid:", size(norid), size(string(norid)); |
---|
| 3066 | |
---|
| 3067 | export (norid, normap); |
---|
| 3068 | L[1] = R1; |
---|
| 3069 | } |
---|
| 3070 | return(L); |
---|
| 3071 | } |
---|
| 3072 | else // prepare the next iteration |
---|
| 3073 | { |
---|
| 3074 | if (n==1) // In the first iteration: keep only the data |
---|
| 3075 | { // needed later on. |
---|
| 3076 | kill RR,SM; |
---|
| 3077 | export(ker); |
---|
| 3078 | } |
---|
| 3079 | if ( dblvl >= 1 ) |
---|
| 3080 | {""; |
---|
| 3081 | "// computing the next ring extension, we are in loop"; n+1; |
---|
| 3082 | } |
---|
| 3083 | |
---|
| 3084 | def R1 = RS[1]; // The data of the next ring R1: |
---|
| 3085 | delt = RS[3]; // the delta invariant of the ring extension |
---|
| 3086 | setring R1; // keep only what is necessary and kill |
---|
| 3087 | ideal ker=endid; // everything else. |
---|
| 3088 | export(ker); |
---|
| 3089 | ideal norid=endid; |
---|
| 3090 | |
---|
| 3091 | //"//### case: primeClosure, loop", n+1; |
---|
| 3092 | //"size norid:", size(norid), size(string(norid)); |
---|
| 3093 | //"interred:"; |
---|
| 3094 | //norid = interred(norid); //???? |
---|
| 3095 | //"size norid:", size(norid), size(string(norid)); |
---|
| 3096 | |
---|
| 3097 | export(norid); |
---|
| 3098 | kill endid; |
---|
| 3099 | |
---|
| 3100 | map phi = R0,endphi; // fetch the singular locus |
---|
| 3101 | ideal J = mstd(simplify(phi(J)+ker,4))[2]; // ideal J in R1 |
---|
| 3102 | export(J); |
---|
| 3103 | if(n>1) |
---|
| 3104 | { |
---|
| 3105 | ideal normap=phi(normap); |
---|
| 3106 | } |
---|
| 3107 | else |
---|
| 3108 | { |
---|
| 3109 | ideal normap=endphi; |
---|
| 3110 | } |
---|
| 3111 | export(normap); |
---|
| 3112 | kill phi; // we save phi as ideal, not as map, so that |
---|
| 3113 | ideal phi=endphi; // we have more flexibility in the ring names |
---|
| 3114 | kill endphi; // later on. |
---|
| 3115 | export(phi); |
---|
| 3116 | L=insert(L,R1,n); // Add the new ring R1 and go on with the |
---|
| 3117 | // next iteration |
---|
| 3118 | if ( L[size(L)] >= 0 && delt >= 0 ) |
---|
| 3119 | { |
---|
| 3120 | delt = L[size(L)] + delt; |
---|
| 3121 | } |
---|
| 3122 | else |
---|
| 3123 | { |
---|
| 3124 | delt = -1; |
---|
| 3125 | } |
---|
| 3126 | L[size(L)] = delt; |
---|
| 3127 | |
---|
| 3128 | if (size(#)>0) |
---|
| 3129 | { |
---|
| 3130 | return (primeClosure(L,#)); |
---|
| 3131 | } |
---|
| 3132 | else |
---|
| 3133 | { |
---|
| 3134 | return(primeClosure(L)); // next iteration. |
---|
| 3135 | } |
---|
| 3136 | } |
---|
| 3137 | } |
---|
| 3138 | example |
---|
| 3139 | { |
---|
| 3140 | "EXAMPLE:"; echo=2; |
---|
| 3141 | ring R=0,(x,y),dp; |
---|
| 3142 | ideal I=x4,y4; |
---|
| 3143 | def K=ReesAlgebra(I)[1]; // K contains ker such that K/ker=R[It] |
---|
| 3144 | list L=primeClosure(K); |
---|
| 3145 | def R(1)=L[1]; // L[4] contains ker, L[4]/ker is the |
---|
| 3146 | def R(4)=L[4]; // integral closure of L[1]/ker |
---|
| 3147 | setring R(1); |
---|
| 3148 | R(1); |
---|
| 3149 | ker; |
---|
| 3150 | setring R(4); |
---|
| 3151 | R(4); |
---|
| 3152 | ker; |
---|
| 3153 | } |
---|
| 3154 | |
---|
| 3155 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 3156 | |
---|
| 3157 | proc closureFrac(list L) |
---|
| 3158 | "USAGE: closureFrac (L); L a list of size n+1 as in the result of |
---|
| 3159 | primeClosure, L[n] contains an additional polynomial f |
---|
| 3160 | CREATE: a list fraction of two elements of L[1], such that |
---|
| 3161 | f=fraction[1]/fraction[2] via the injections phi L[i]-->L[i+1]. |
---|
| 3162 | EXAMPLE: example closureFrac; shows an example |
---|
| 3163 | " |
---|
| 3164 | { |
---|
| 3165 | // Define some auxiliary variables: |
---|
| 3166 | |
---|
| 3167 | int n=size(L)-1; |
---|
| 3168 | int i,j,k,l,n2,n3; |
---|
| 3169 | intvec V; |
---|
| 3170 | string mapstr; |
---|
| 3171 | for (i=1; i<=n; i++) { def R(i) = L[i]; } |
---|
| 3172 | |
---|
| 3173 | // The quotient representing f is computed as in 'closureGenerators' with |
---|
| 3174 | // the differences that |
---|
| 3175 | // - the loop is done twice: for the numerator and for the denominator; |
---|
| 3176 | // - the result is stored in the list fraction and |
---|
| 3177 | // - we have to make sure that no more objects of the rings R(i) survive. |
---|
| 3178 | |
---|
| 3179 | for (j=1; j<=2; j++) |
---|
| 3180 | { |
---|
| 3181 | setring R(n); |
---|
| 3182 | if (j==1) |
---|
| 3183 | { |
---|
| 3184 | poly p=f; |
---|
| 3185 | } |
---|
| 3186 | else |
---|
| 3187 | { |
---|
| 3188 | p=1; |
---|
| 3189 | } |
---|
| 3190 | |
---|
| 3191 | for (k=n; k>1; k--) |
---|
| 3192 | { |
---|
| 3193 | if (j==1) |
---|
| 3194 | { |
---|
| 3195 | map phimap=R(k-1),phi; |
---|
| 3196 | } |
---|
| 3197 | |
---|
| 3198 | p=p*phimap(nzd); |
---|
| 3199 | |
---|
| 3200 | if (j==2) |
---|
| 3201 | { |
---|
| 3202 | kill phimap; |
---|
| 3203 | } |
---|
| 3204 | |
---|
| 3205 | if (j==1) |
---|
| 3206 | { |
---|
| 3207 | //### noch abfragen ob Z(i) definiert ist |
---|
| 3208 | list gnirlist = ringlist(R(k)); |
---|
| 3209 | n2 = size(gnirlist[2]); |
---|
| 3210 | n3 = size(gnirlist[3]); |
---|
| 3211 | for( i=1; i<=ncols(phi); i++) |
---|
| 3212 | { |
---|
| 3213 | gnirlist[2][n2+i] = "Z("+string(i)+")"; |
---|
| 3214 | } |
---|
| 3215 | V=0; |
---|
| 3216 | V[ncols(phi)]=0; V=V+1; |
---|
| 3217 | gnirlist[3] = insert(gnirlist[3],list("dp",V),n3-1); |
---|
| 3218 | def S(k) = ring(gnirlist); |
---|
| 3219 | setring S(k); |
---|
| 3220 | |
---|
| 3221 | //execute ("ring S(k) = "+charstr(R(k))+",("+varstr(R(k))+", |
---|
| 3222 | // Z(1.."+string(ncols(phi))+")),(dp("+string(nvars(R(k))) |
---|
| 3223 | // +"),dp("+string(ncols(phi))+"));"); |
---|
| 3224 | |
---|
| 3225 | ideal phi = imap(R(k),phi); |
---|
| 3226 | ideal J = imap (R(k),ker); |
---|
| 3227 | for (l=1;l<=ncols(phi);l++) |
---|
| 3228 | { |
---|
| 3229 | J=J+(Z(l)-phi[l]); |
---|
| 3230 | } |
---|
| 3231 | J=groebner(J); |
---|
| 3232 | poly h=NF(imap(R(k),p),J); |
---|
| 3233 | } |
---|
| 3234 | else |
---|
| 3235 | { |
---|
| 3236 | setring S(k); |
---|
| 3237 | h=NF(imap(R(k),p),J); |
---|
| 3238 | setring R(k); |
---|
| 3239 | kill p; |
---|
| 3240 | } |
---|
| 3241 | |
---|
| 3242 | setring R(k-1); |
---|
| 3243 | |
---|
| 3244 | if (j==1) |
---|
| 3245 | { |
---|
| 3246 | ideal maxi; |
---|
| 3247 | maxi[nvars(R(k))] = 0; |
---|
| 3248 | maxi = maxi,maxideal(1); |
---|
| 3249 | map backmap = S(k),maxi; |
---|
| 3250 | |
---|
| 3251 | //mapstr=" map backmap = S(k),"; |
---|
| 3252 | //for (l=1;l<=nvars(R(k));l++) |
---|
| 3253 | //{ |
---|
| 3254 | // mapstr=mapstr+"0,"; |
---|
| 3255 | //} |
---|
| 3256 | //execute (mapstr+"maxideal(1);"); |
---|
| 3257 | poly p; |
---|
| 3258 | } |
---|
| 3259 | p=NF(backmap(h),std(ker)); |
---|
| 3260 | if (j==2) |
---|
| 3261 | { |
---|
| 3262 | kill backmap; |
---|
| 3263 | } |
---|
| 3264 | } |
---|
| 3265 | |
---|
| 3266 | if (j==1) |
---|
| 3267 | { |
---|
| 3268 | if (defined(fraction)) |
---|
| 3269 | { |
---|
| 3270 | kill fraction; |
---|
| 3271 | list fraction=p; |
---|
| 3272 | } |
---|
| 3273 | else |
---|
| 3274 | { |
---|
| 3275 | list fraction=p; |
---|
| 3276 | } |
---|
| 3277 | } |
---|
| 3278 | else |
---|
| 3279 | { |
---|
| 3280 | fraction=insert(fraction,p,1); |
---|
| 3281 | } |
---|
| 3282 | } |
---|
| 3283 | export(fraction); |
---|
| 3284 | return (); |
---|
| 3285 | } |
---|
| 3286 | example |
---|
| 3287 | { |
---|
| 3288 | "EXAMPLE:"; echo=2; |
---|
| 3289 | ring R=0,(x,y),dp; |
---|
| 3290 | ideal ker=x2+y2; |
---|
| 3291 | export ker; |
---|
| 3292 | list L=primeClosure(R); // We normalize R/ker |
---|
| 3293 | for (int i=1;i<=size(L);i++) { def R(i)=L[i]; } |
---|
| 3294 | setring R(2); |
---|
| 3295 | kill R; |
---|
| 3296 | phi; // The map R(1)-->R(2) |
---|
| 3297 | poly f=T(2); // We will get a representation of f |
---|
| 3298 | export f; |
---|
| 3299 | L[2]=R(2); |
---|
| 3300 | closureFrac(L); |
---|
| 3301 | setring R(1); |
---|
| 3302 | kill R(2); |
---|
| 3303 | fraction; // f=fraction[1]/fraction[2] via phi |
---|
| 3304 | kill R(1); |
---|
| 3305 | } |
---|
| 3306 | |
---|
| 3307 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 3308 | // closureGenerators is called inside proc normal (option "withGens" ) |
---|
| 3309 | // |
---|
| 3310 | |
---|
| 3311 | // INPUT is the output of proc primeClosure (except for the last element, the |
---|
| 3312 | // delta invariant) : hence input is a list L consisting of rings |
---|
| 3313 | // L[1],...,L[n] (denoted R(1)...R(n) below) such that |
---|
| 3314 | // - L[1] is a copy of (not a reference to!) the input ring L[1] |
---|
| 3315 | // - all rings L[i] contain ideals ker, L[2],...,L[n] contain ideals phi |
---|
| 3316 | // such that |
---|
| 3317 | // L[1]/ker --> ... --> L[n]/ker |
---|
| 3318 | // are injections given by the corresponding ideals phi, and L[n]/ker |
---|
| 3319 | // is the integral closure of L[1]/ker in its quotient field. |
---|
| 3320 | // - all rings L[i] contain a polynomial nzd such that elements of |
---|
| 3321 | // L[i]/ker are quotients of elements of L[i-1]/ker with denominator |
---|
| 3322 | // nzd via the injection phi. |
---|
| 3323 | |
---|
| 3324 | // COMPUTE: In the list L of rings R(1),...,R(n), compute representations of |
---|
| 3325 | // the ring variables of the last ring R(n) as fractions of elements of R(1): |
---|
| 3326 | // The proc returns an ideal preim s.t. preim[i]/preim[size(preim)] expresses |
---|
| 3327 | // the ith variable of R(n) as fraction of elements of the basering R(1) |
---|
| 3328 | // preim[size(preim)] is a non-zero divisor of basering/i. |
---|
| 3329 | |
---|
| 3330 | proc closureGenerators(list L); |
---|
| 3331 | { |
---|
| 3332 | def Rees=basering; // when called inside normalI (in reesclos.lib) |
---|
| 3333 | // the Rees Algebra is the current basering |
---|
| 3334 | |
---|
| 3335 | // ------- First of all we need some variable declarations ----------- |
---|
| 3336 | int n = size(L); // the number of rings R(1)-->...-->R(n) |
---|
| 3337 | int length = nvars(L[n]); // the number of variables of the last ring |
---|
| 3338 | int j,k,l,n2,n3; |
---|
| 3339 | intvec V; |
---|
| 3340 | string mapstr; |
---|
| 3341 | list preimages; |
---|
| 3342 | //Note: the empty list belongs to no ring, hence preimages can be used |
---|
| 3343 | //later in R(1) |
---|
| 3344 | //this is not possible for ideals (belong always to some ring) |
---|
| 3345 | |
---|
| 3346 | for (int i=1; i<=n; i++) |
---|
| 3347 | { |
---|
| 3348 | def R(i)=L[i]; //give the rings from L a name |
---|
| 3349 | } |
---|
| 3350 | |
---|
| 3351 | // For each variable (counter j) and for each intermediate ring (counter k): |
---|
| 3352 | // Find a preimage of var_j*phi(nzd(k-1)) in R(k-1). |
---|
| 3353 | // Finally, do the same for nzd. |
---|
| 3354 | |
---|
| 3355 | for (j=1; j <= length+1; j++ ) |
---|
| 3356 | { |
---|
| 3357 | setring R(n); |
---|
| 3358 | if (j==1) |
---|
| 3359 | { |
---|
| 3360 | poly p; |
---|
| 3361 | } |
---|
| 3362 | if (j <= length ) |
---|
| 3363 | { |
---|
| 3364 | p=var(j); |
---|
| 3365 | } |
---|
| 3366 | else |
---|
| 3367 | { |
---|
| 3368 | p=1; |
---|
| 3369 | } |
---|
| 3370 | //i.e. p=j-th var of R(n) for j<=length and p=1 for j=length+1 |
---|
| 3371 | |
---|
| 3372 | for (k=n; k>1; k--) |
---|
| 3373 | { |
---|
| 3374 | |
---|
| 3375 | if (j==1) |
---|
| 3376 | { |
---|
| 3377 | map phimap=R(k-1),phi; //phimap:R(k-1)-->R(n), k=2..n, is the map |
---|
| 3378 | //belonging to phi in R(n) |
---|
| 3379 | } |
---|
| 3380 | |
---|
| 3381 | p = p*phimap(nzd); |
---|
| 3382 | |
---|
| 3383 | // Compute the preimage of [p mod ker(k)] under phi in R(k-1): |
---|
| 3384 | // As p is an element of Image(phi), there is a polynomial h such |
---|
| 3385 | // that h is mapped to [p mod ker(k)], and h can be computed as the |
---|
| 3386 | // normal form of p w.r.t. a Groebner basis of |
---|
| 3387 | // J(k) := <ker(k),Z(l)-phi(k)(l)> in R(k)[Z]=:S(k) |
---|
| 3388 | |
---|
| 3389 | if (j==1) // In the first iteration: Create S(k), fetch phi and |
---|
| 3390 | // ker(k) and construct the ideal J(k). |
---|
| 3391 | { |
---|
| 3392 | //### noch abfragen ob Z(i) definiert ist |
---|
| 3393 | list gnirlist = ringlist(R(k)); |
---|
| 3394 | n2 = size(gnirlist[2]); |
---|
| 3395 | n3 = size(gnirlist[3]); |
---|
| 3396 | for( i=1; i<=ncols(phi); i++) |
---|
| 3397 | { |
---|
| 3398 | gnirlist[2][n2+i] = "Z("+string(i)+")"; |
---|
| 3399 | } |
---|
| 3400 | V=0; |
---|
| 3401 | V[ncols(phi)]=0; |
---|
| 3402 | V=V+1; |
---|
| 3403 | gnirlist[3] = insert(gnirlist[3],list("dp",V),n3-1); |
---|
| 3404 | def S(k) = ring(gnirlist); |
---|
| 3405 | setring S(k); |
---|
| 3406 | |
---|
| 3407 | // execute ("ring S(k) = "+charstr(R(k))+",("+varstr(R(k))+", |
---|
| 3408 | // Z(1.."+string(ncols(phi))+")),(dp("+string(nvars(R(k))) |
---|
| 3409 | // +"),dp("+string(ncols(phi))+"));"); |
---|
| 3410 | |
---|
| 3411 | ideal phi = imap(R(k),phi); |
---|
| 3412 | ideal J = imap (R(k),ker); |
---|
| 3413 | for ( l=1; l<=ncols(phi); l++ ) |
---|
| 3414 | { |
---|
| 3415 | J=J+(Z(l)-phi[l]); |
---|
| 3416 | } |
---|
| 3417 | J = groebner(J); |
---|
| 3418 | poly h = NF(imap(R(k),p),J); |
---|
| 3419 | } |
---|
| 3420 | else |
---|
| 3421 | { |
---|
| 3422 | setring S(k); |
---|
| 3423 | h = NF(imap(R(k),p),J); |
---|
| 3424 | } |
---|
| 3425 | |
---|
| 3426 | setring R(k-1); |
---|
| 3427 | |
---|
| 3428 | if (j==1) // In the first iteration: Compute backmap:S(k)-->R(k-1) |
---|
| 3429 | { |
---|
| 3430 | ideal maxi; |
---|
| 3431 | maxi[nvars(R(k))] = 0; |
---|
| 3432 | maxi = maxi,maxideal(1); |
---|
| 3433 | map backmap = S(k),maxi; |
---|
| 3434 | |
---|
| 3435 | //mapstr=" map backmap = S(k),"; |
---|
| 3436 | //for (l=1;l<=nvars(R(k));l++) |
---|
| 3437 | //{ |
---|
| 3438 | // mapstr=mapstr+"0,"; |
---|
| 3439 | //} |
---|
| 3440 | //execute (mapstr+"maxideal(1);"); |
---|
| 3441 | |
---|
| 3442 | poly p; |
---|
| 3443 | } |
---|
| 3444 | p = NF(backmap(h),std(ker)); |
---|
| 3445 | } |
---|
| 3446 | // Whe are down to R(1), store here the result in the list preimages |
---|
| 3447 | preimages = insert(preimages,p,j-1); |
---|
| 3448 | } |
---|
| 3449 | ideal preim; //make the list preimages to an ideal preim |
---|
| 3450 | for ( i=1; i<=size(preimages); i++ ) |
---|
| 3451 | { |
---|
| 3452 | preim[i] = preimages[i]; |
---|
| 3453 | } |
---|
| 3454 | // R(1) was a copy of Rees, so we have to get back to the basering Rees from |
---|
| 3455 | // the beginning and fetch the result (the ideal preim) to this ring. |
---|
| 3456 | setring Rees; |
---|
| 3457 | return (fetch(R(1),preim)); |
---|
| 3458 | } |
---|
| 3459 | |
---|
| 3460 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 3461 | // From here: procedures for char p with Frobenius |
---|
| 3462 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 3463 | |
---|
| 3464 | proc normalP(ideal id,list #) |
---|
| 3465 | "USAGE: normalP(id [,choose]); id = radical ideal, choose = optional list of |
---|
| 3466 | strings. |
---|
| 3467 | Optional parameters in list choose (can be entered in any order):@* |
---|
| 3468 | \"withRing\", \"isPrim\", \"noFac\", \"noRed\", where@* |
---|
| 3469 | - \"noFac\" -> factorization is avoided during the computation |
---|
| 3470 | of the minimal associated primes.@* |
---|
| 3471 | - \"isPrim\" -> assumes that the ideal is prime. If the assumption |
---|
| 3472 | does not hold, output might be wrong.@* |
---|
| 3473 | - \"withRing\" -> the ring structure of the normalization is |
---|
| 3474 | computed. The number of variables in the new ring is reduced as much |
---|
| 3475 | as possible.@* |
---|
| 3476 | - \"noRed\" -> when computing the ring structure, no reduction on the |
---|
| 3477 | number of variables is done, it creates one new variable for every |
---|
| 3478 | new module generator of the integral closure in the quotient field.@* |
---|
| 3479 | ASSUME: The characteristic of the ground field must be positive. If the |
---|
| 3480 | option \"isPrim\" is not set, the minimal associated primes of id |
---|
| 3481 | are computed first and hence normalP computes the normalization of |
---|
| 3482 | the radical of id. If option \"isPrim\" is set, the ideal must be |
---|
| 3483 | a prime ideal otherwise the result may be wrong. |
---|
| 3484 | RETURN: a list, say 'nor' of size 2 (resp. 3 if \"withRing\" is set).@* |
---|
| 3485 | ** If option \"withRing\" is not set: @* |
---|
| 3486 | Only the module structure is computed: @* |
---|
| 3487 | * nor[1] is a list of ideals Ii, i=1..r, in the basering R where r |
---|
| 3488 | is the number of minimal associated prime ideals P_i of the input |
---|
| 3489 | ideal id, describing the module structure:@* |
---|
| 3490 | If Ii is given by polynomials g_1,...,g_k in R, then c:=g_k is |
---|
| 3491 | non-zero in the ring R/P_i and g_1/c,...,g_k/c generate the integral |
---|
| 3492 | closure of R/P_i as R-module in the quotient field of R/P_i.@* |
---|
| 3493 | * nor[2] shows the delta invariants: it is a list of an intvec |
---|
| 3494 | of size r, the delta invariants of the r components, and an integer, |
---|
| 3495 | the total delta invariant of R/id |
---|
| 3496 | (-1 means infinite, and 0 that R/P_i resp. R/id is normal). @* |
---|
| 3497 | ** If option \"withRing\" is set: @* |
---|
| 3498 | The ring structure is also computed, and in this case:@* |
---|
| 3499 | * nor[1] is a list of r rings.@* |
---|
| 3500 | Each ring Ri = nor[1][i], i=1..r, contains two ideals with given |
---|
| 3501 | names @code{norid} and @code{normap} such that @* |
---|
| 3502 | - Ri/norid is the normalization of R/P_i, i.e. isomorphic as |
---|
| 3503 | K-algebra (K the ground field) to the integral closure of R/P_i in |
---|
| 3504 | the field of fractions of R/P_i; @* |
---|
| 3505 | - the direct sum of the rings Ri/norid is the normalization |
---|
| 3506 | of R/id; @* |
---|
| 3507 | - @code{normap} gives the normalization map from R to Ri/norid.@* |
---|
| 3508 | * nor[2] gives the module generators of the normalization of R/P_i, |
---|
| 3509 | it is the same as nor[1] if \"withRing\" is not set.@* |
---|
| 3510 | * nor[3] shows the delta invariants, it is the same as nor[2] if |
---|
| 3511 | \"withRing\" is not set. |
---|
| 3512 | THEORY: normalP uses the Leonard-Pellikaan-Singh-Swanson algorithm (using the |
---|
| 3513 | Frobenius) cf. [A. K. Singh, I. Swanson: An algorithm for computing |
---|
| 3514 | the integral closure, arXiv:0901.0871]. |
---|
| 3515 | The delta invariant of a reduced ring A is dim_K(normalization(A)/A). |
---|
| 3516 | For A=K[x1,...,xn]/id we call this number also the delta invariant of |
---|
| 3517 | id. The procedure returns the delta invariants of the components P_i |
---|
| 3518 | and of id. |
---|
| 3519 | NOTE: To use the i-th ring type: @code{def R=nor[1][i]; setring R;}. |
---|
| 3520 | @* Increasing/decreasing printlevel displays more/less comments |
---|
| 3521 | (default: printlevel = 0). |
---|
| 3522 | @* Not implemented for local or mixed orderings or quotient rings. |
---|
| 3523 | For local or mixed orderings use proc 'normal'. |
---|
| 3524 | @* If the input ideal id is weighted homogeneous a weighted ordering may |
---|
| 3525 | be used (qhweight(id); computes weights). |
---|
| 3526 | @* Works only in characteristic p > 0; use proc normal in char 0. |
---|
| 3527 | KEYWORDS: normalization; integral closure; delta invariant. |
---|
| 3528 | SEE ALSO: normal, normalC |
---|
| 3529 | EXAMPLE: example normalP; shows an example |
---|
| 3530 | " |
---|
| 3531 | { |
---|
| 3532 | int i,j,y, sr, del, co; |
---|
| 3533 | intvec deli; |
---|
| 3534 | list resu, Resu, prim, Gens, mstdid; |
---|
| 3535 | ideal gens; |
---|
| 3536 | |
---|
| 3537 | // Default options |
---|
| 3538 | int wring = 0; // The ring structure is not computed. |
---|
| 3539 | int noRed = 0; // No reduction is done in the ring structure |
---|
| 3540 | int isPrim = 0; // Ideal is not assumed to be prime |
---|
| 3541 | int noFac = 0; // Use facstd when computing the decomposition |
---|
| 3542 | |
---|
| 3543 | |
---|
| 3544 | y = printlevel-voice+2; |
---|
| 3545 | |
---|
[1e1ec4] | 3546 | if ( attrib(basering,"global") != 1) |
---|
[1598658] | 3547 | { |
---|
| 3548 | ""; |
---|
| 3549 | "// Not implemented for this ordering,"; |
---|
| 3550 | "// please change to global ordering!"; |
---|
| 3551 | return(resu); |
---|
| 3552 | } |
---|
| 3553 | if ( char(basering) <= 0) |
---|
| 3554 | { |
---|
| 3555 | ""; |
---|
| 3556 | "// Algorithm works only in positive characteristic,"; |
---|
| 3557 | "// use procedure 'normal' if the characteristic is 0"; |
---|
| 3558 | return(resu); |
---|
| 3559 | } |
---|
| 3560 | |
---|
| 3561 | //--------------------------- define the method --------------------------- |
---|
| 3562 | string method; //make all options one string in order to use |
---|
| 3563 | //all combinations of options simultaneously |
---|
| 3564 | for ( i=1; i<= size(#); i++ ) |
---|
| 3565 | { |
---|
| 3566 | if ( typeof(#[i]) == "string" ) |
---|
| 3567 | { |
---|
| 3568 | method = method + #[i]; |
---|
| 3569 | } |
---|
| 3570 | } |
---|
| 3571 | |
---|
| 3572 | if ( find(method,"withring") or find(method,"withRing") ) |
---|
| 3573 | { |
---|
| 3574 | wring=1; |
---|
| 3575 | } |
---|
| 3576 | if ( find(method,"noRed") or find(method,"nored") ) |
---|
| 3577 | { |
---|
| 3578 | noRed=1; |
---|
| 3579 | } |
---|
| 3580 | if ( find(method,"isPrim") or find(method,"isprim") ) |
---|
| 3581 | { |
---|
| 3582 | isPrim=1; |
---|
| 3583 | } |
---|
| 3584 | if ( find(method,"noFac") or find(method,"nofac")) |
---|
| 3585 | { |
---|
| 3586 | noFac=1; |
---|
| 3587 | } |
---|
| 3588 | |
---|
| 3589 | kill #; |
---|
| 3590 | list #; |
---|
| 3591 | //--------------------------- start computation --------------------------- |
---|
| 3592 | ideal II,K1,K2; |
---|
| 3593 | |
---|
| 3594 | //----------- check first (or ignore) if input id is prime ------------- |
---|
| 3595 | |
---|
| 3596 | if ( isPrim ) |
---|
| 3597 | { |
---|
| 3598 | prim[1] = id; |
---|
| 3599 | if( y >= 0 ) |
---|
| 3600 | { ""; |
---|
| 3601 | "// ** WARNING: result is correct if ideal is prime (not checked) **"; |
---|
| 3602 | "// disable option \"isPrim\" to decompose ideal into prime components";""; |
---|
| 3603 | } |
---|
| 3604 | } |
---|
| 3605 | else |
---|
| 3606 | { |
---|
| 3607 | if(y>=1) |
---|
| 3608 | { "// compute minimal associated primes"; } |
---|
| 3609 | |
---|
| 3610 | if( noFac ) |
---|
| 3611 | { prim = minAssGTZ(id,1); } |
---|
| 3612 | else |
---|
| 3613 | { prim = minAssGTZ(id); } |
---|
| 3614 | |
---|
| 3615 | if(y>=1) |
---|
| 3616 | { |
---|
| 3617 | prim;""; |
---|
| 3618 | "// number of irreducible components is", size(prim); |
---|
| 3619 | } |
---|
| 3620 | } |
---|
| 3621 | |
---|
| 3622 | //----------- compute integral closure for every component ------------- |
---|
| 3623 | |
---|
| 3624 | for(i=1; i<=size(prim); i++) |
---|
| 3625 | { |
---|
| 3626 | if(y>=1) |
---|
| 3627 | { |
---|
| 3628 | ""; pause(); ""; |
---|
| 3629 | "// start computation of component",i; |
---|
| 3630 | " --------------------------------"; |
---|
| 3631 | } |
---|
| 3632 | if(y>=1) |
---|
| 3633 | { "// compute SB of ideal"; |
---|
| 3634 | } |
---|
| 3635 | mstdid = mstd(prim[i]); |
---|
| 3636 | if(y>=1) |
---|
| 3637 | { "// dimension of component is", dim(mstdid[1]);"";} |
---|
| 3638 | |
---|
| 3639 | //------- 1-st main subprocedure: compute module generators ---------- |
---|
| 3640 | printlevel = printlevel+1; |
---|
| 3641 | II = normalityTest(mstdid); |
---|
| 3642 | |
---|
| 3643 | //------ compute also the ringstructure if "withRing" is given ------- |
---|
| 3644 | if ( wring ) |
---|
| 3645 | { |
---|
| 3646 | //------ 2-nd main subprocedure: compute ring structure ----------- |
---|
| 3647 | if(noRed == 0){ |
---|
| 3648 | resu = list(computeRing(II,prim[i])) + resu; |
---|
| 3649 | } |
---|
| 3650 | else |
---|
| 3651 | { |
---|
| 3652 | resu = list(computeRing(II,prim[i], "noRed")) + resu; |
---|
| 3653 | } |
---|
| 3654 | } |
---|
| 3655 | printlevel = printlevel-1; |
---|
| 3656 | |
---|
| 3657 | //----- rearrange module generators s.t. denominator comes last ------ |
---|
| 3658 | gens=0; |
---|
| 3659 | for( j=2; j<=size(II); j++ ) |
---|
| 3660 | { |
---|
| 3661 | gens[j-1]=II[j]; |
---|
| 3662 | } |
---|
| 3663 | gens[size(gens)+1]=II[1]; |
---|
| 3664 | Gens = list(gens) + Gens; |
---|
| 3665 | //------------------------------ compute delta ----------------------- |
---|
| 3666 | K1 = mstdid[1]+II; |
---|
| 3667 | K1 = std(K1); |
---|
| 3668 | K2 = mstdid[1]+II[1]; |
---|
| 3669 | K2 = std(K2); |
---|
| 3670 | // K1 = std(mstdid[1],II); //### besser |
---|
| 3671 | // K2 = std(mstdid[1],II[1]); //### besser: Hannes, fixen! |
---|
| 3672 | co = codim(K1,K2); |
---|
| 3673 | deli = co,deli; |
---|
| 3674 | if ( co >= 0 && del >= 0 ) |
---|
| 3675 | { |
---|
| 3676 | del = del + co; |
---|
| 3677 | } |
---|
| 3678 | else |
---|
| 3679 | { del = -1; } |
---|
| 3680 | } |
---|
| 3681 | |
---|
| 3682 | if ( del >= 0 ) |
---|
| 3683 | { |
---|
| 3684 | int mul = iMult(prim); |
---|
| 3685 | del = del + mul; |
---|
| 3686 | } |
---|
| 3687 | else |
---|
| 3688 | { del = -1; } |
---|
| 3689 | |
---|
| 3690 | deli = deli[1..size(deli)-1]; |
---|
| 3691 | if ( wring ) |
---|
| 3692 | { Resu = resu,Gens,list(deli,del); } |
---|
| 3693 | else |
---|
| 3694 | { Resu = Gens,list(deli,del); } |
---|
| 3695 | |
---|
| 3696 | sr = size(prim); |
---|
| 3697 | |
---|
| 3698 | //-------------------- Finally print comments and return -------------------- |
---|
| 3699 | if(y >= 0) |
---|
| 3700 | {""; |
---|
| 3701 | if ( wring ) |
---|
| 3702 | { |
---|
| 3703 | "// 'normalP' created a list, say nor, of three lists: |
---|
| 3704 | // To see the result, type |
---|
| 3705 | nor; |
---|
| 3706 | |
---|
| 3707 | // * nor[1] is a list of",sr,"ring(s): |
---|
| 3708 | // To access the i-th ring nor[1][i] give it a name, say Ri, and type e.g. |
---|
| 3709 | def R1 = nor[1][1]; setring R1; norid; normap; |
---|
| 3710 | // for the other rings type first setring R; (if R is the name of your |
---|
| 3711 | // original basering) and then continue as for R1; |
---|
| 3712 | // Ri/norid is the affine algebra of the normalization of the i-th |
---|
| 3713 | // component R/P_i (where P_i is a min. associated prime of the input ideal) |
---|
| 3714 | // and normap the normalization map from R to Ri/norid; |
---|
| 3715 | |
---|
| 3716 | // * nor[2] is a list of",sr,"ideal(s), each ideal nor[2][i] consists of |
---|
| 3717 | // elements g1..gk of r such that the gj/gk generate the integral |
---|
| 3718 | // closure of R/P_i as R-module in the quotient field of R/P_i. |
---|
| 3719 | |
---|
| 3720 | // * nor[3] shows the delta-invariant of each component and of the input |
---|
| 3721 | // ideal (-1 means infinite, and 0 that r/P_i is normal)."; |
---|
| 3722 | } |
---|
| 3723 | else |
---|
| 3724 | { |
---|
| 3725 | "// 'normalP' computed a list, say nor, of two lists: |
---|
| 3726 | // To see the result, type |
---|
| 3727 | nor; |
---|
| 3728 | |
---|
| 3729 | // * nor[1] is a list of",sr,"ideal(s), where each ideal nor[1][i] consists |
---|
| 3730 | // of elements g1..gk of the basering R such that gj/gk generate the integral |
---|
| 3731 | // closure of R/P_i (where P_i is a min. associated prime of the input ideal) |
---|
| 3732 | // as R-module in the quotient field of R/P_i; |
---|
| 3733 | |
---|
| 3734 | // * nor[2] shows the delta-invariant of each component and of the input ideal |
---|
| 3735 | // (-1 means infinite, and 0 that R/P_i is normal)."; |
---|
| 3736 | } |
---|
| 3737 | } |
---|
| 3738 | |
---|
| 3739 | return(Resu); |
---|
| 3740 | } |
---|
| 3741 | example |
---|
| 3742 | { "EXAMPLE:"; echo = 2; |
---|
| 3743 | ring r = 11,(x,y,z),wp(2,1,2); |
---|
| 3744 | ideal i = x*(z3 - xy4 + x2); |
---|
| 3745 | list nor= normalP(i); nor; |
---|
| 3746 | //the result says that both components of i are normal, but i itself |
---|
| 3747 | //has infinite delta |
---|
| 3748 | pause("hit return to continue"); |
---|
| 3749 | |
---|
| 3750 | ring s = 2,(x,y),dp; |
---|
| 3751 | ideal i = y*((x-y^2)^2 - x^3); |
---|
| 3752 | list nor = normalP(i,"withRing"); nor; |
---|
| 3753 | |
---|
| 3754 | def R2 = nor[1][2]; setring R2; |
---|
| 3755 | norid; normap; |
---|
| 3756 | } |
---|
| 3757 | |
---|
| 3758 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 3759 | // Assume: mstdid is the result of mstd(prim[i]), prim[i] a prime component of |
---|
| 3760 | // the input ideal id of normalP. |
---|
| 3761 | // Output is an ideal U s.t. U[i]/U[1] are module generators. |
---|
| 3762 | |
---|
| 3763 | static proc normalityTest(list mstdid) |
---|
| 3764 | { |
---|
| 3765 | int y = printlevel-voice+2; |
---|
| 3766 | intvec op = option(get); |
---|
| 3767 | option(redSB); |
---|
| 3768 | def R = basering; |
---|
| 3769 | int n, p = nvars(R), char(R); |
---|
| 3770 | int ii; |
---|
| 3771 | |
---|
| 3772 | ideal J = mstdid[1]; //J is the SB of I |
---|
| 3773 | ideal I = mstdid[2]; |
---|
| 3774 | int h = n-dim(J); //codimension of V(I), I is a prime ideal |
---|
| 3775 | |
---|
| 3776 | //-------------------------- compute singular locus ---------------------- |
---|
| 3777 | qring Q = J; //pass to quotient ring |
---|
| 3778 | ideal I = imap(R,I); |
---|
| 3779 | ideal J = imap(R,J); |
---|
| 3780 | attrib(J,"isSB",1); |
---|
| 3781 | if ( y >= 1) |
---|
| 3782 | { "start normality test"; "compute singular locus";} |
---|
| 3783 | |
---|
| 3784 | ideal M = minor(jacob(I),h,J); //use the command minor modulo J (hence J=0) |
---|
| 3785 | M = std(M); //this makes M much smaller |
---|
| 3786 | //keep only minors which are not 0 mod I (!) this is important since we |
---|
| 3787 | //need a nzd mod I |
---|
| 3788 | |
---|
| 3789 | //---------------- choose nzd from ideal of singular locus -------------- |
---|
| 3790 | ideal D = M[1]; |
---|
| 3791 | for( ii=2; ii<=size(M); ii++ ) //look for the shortest one |
---|
| 3792 | { |
---|
| 3793 | if( size(M[ii]) < size(D[1]) ) |
---|
| 3794 | { |
---|
| 3795 | D = M[ii]; |
---|
| 3796 | } |
---|
| 3797 | } |
---|
| 3798 | |
---|
| 3799 | //--------------- start p-th power algorithm and return ---------------- |
---|
| 3800 | ideal F = var(1)^p; |
---|
| 3801 | for(ii=2; ii<=n; ii++) |
---|
| 3802 | { |
---|
| 3803 | F=F,var(ii)^p; |
---|
| 3804 | } |
---|
| 3805 | |
---|
| 3806 | ideal Dp=D^(p-1); |
---|
| 3807 | ideal U=1; |
---|
| 3808 | ideal K,L; |
---|
| 3809 | map phi=Q,F; |
---|
| 3810 | if ( y >= 1) |
---|
| 3811 | { "compute module generators of integral closure"; |
---|
| 3812 | "denominator D is:"; D; |
---|
| 3813 | pause(); |
---|
| 3814 | } |
---|
| 3815 | |
---|
| 3816 | ii=0; |
---|
| 3817 | list LK; |
---|
| 3818 | while(1) |
---|
| 3819 | { |
---|
| 3820 | ii=ii+1; |
---|
| 3821 | if ( y >= 1) |
---|
| 3822 | { "iteration", ii; } |
---|
| 3823 | L = U*Dp + I; |
---|
| 3824 | //### L=interred(L) oder mstd(L)[2]? |
---|
| 3825 | //Wird dadurch kleiner aber string(L) wird groesser |
---|
| 3826 | K = preimage(Q,phi,L); //### Improvement by block ordering? |
---|
| 3827 | option(returnSB); |
---|
| 3828 | K = intersect(U,K); //K is the new U, it is a SB |
---|
| 3829 | LK = mstd(K); |
---|
| 3830 | K = LK[2]; |
---|
| 3831 | |
---|
| 3832 | //---------------------------- simplify output -------------------------- |
---|
| 3833 | if(size(reduce(U,LK[1]))==0) //previous U coincides with new U |
---|
| 3834 | { //i.e. we reached the integral closure |
---|
| 3835 | U=simplify(reduce(U,groebner(D)),2); |
---|
| 3836 | U = D,U; |
---|
| 3837 | poly gg = gcd(U[1],U[size(U)]); |
---|
| 3838 | for(ii=2; ii<=size(U)-1 ;ii++) |
---|
| 3839 | { |
---|
| 3840 | gg = gcd(gg,U[ii]); |
---|
| 3841 | } |
---|
| 3842 | for(ii=1; ii<=size(U); ii++) |
---|
| 3843 | { |
---|
| 3844 | U[ii]=U[ii]/gg; |
---|
| 3845 | } |
---|
| 3846 | U = simplify(U,6); |
---|
| 3847 | //if ( y >= 1) |
---|
| 3848 | //{ "module generators are U[i]/U[1], with U:"; U; |
---|
| 3849 | // ""; pause(); } |
---|
| 3850 | option(set,op); |
---|
| 3851 | setring R; |
---|
| 3852 | ideal U = imap(Q,U); |
---|
| 3853 | return(U); |
---|
| 3854 | } |
---|
| 3855 | U=K; |
---|
| 3856 | } |
---|
| 3857 | } |
---|
| 3858 | |
---|
| 3859 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 3860 | |
---|
| 3861 | static proc substpartSpecial(ideal endid, ideal endphi) |
---|
| 3862 | { |
---|
| 3863 | //Note: newRing is of the form (R the original basering): |
---|
| 3864 | //char(R),(T(1..N),X(1..nvars(R))),(dp(N),...); |
---|
| 3865 | |
---|
| 3866 | int ii,jj,kk; |
---|
| 3867 | def BAS = basering; |
---|
| 3868 | int n = nvars(basering); |
---|
| 3869 | |
---|
| 3870 | list Le = elimpart(endid); |
---|
| 3871 | int q = size(Le[2]); //q variables have been substituted |
---|
| 3872 | //Le;""; |
---|
| 3873 | if ( q == 0 ) |
---|
| 3874 | { |
---|
| 3875 | ideal normap = endphi; |
---|
| 3876 | ideal norid = endid; |
---|
| 3877 | export(norid); |
---|
| 3878 | export(normap); |
---|
| 3879 | list L = BAS; |
---|
| 3880 | return(L); |
---|
| 3881 | } |
---|
| 3882 | |
---|
| 3883 | list gnirlist = ringlist(basering); |
---|
| 3884 | endid = Le[1]; |
---|
| 3885 | //endphi;""; |
---|
| 3886 | for( ii=1; ii<=n; ii++) |
---|
| 3887 | { |
---|
| 3888 | if( Le[4][ii] == 0 ) //ii=index of substituted var |
---|
| 3889 | { |
---|
| 3890 | endphi = subst(endphi,var(ii),Le[5][ii]); |
---|
| 3891 | } |
---|
| 3892 | } |
---|
| 3893 | //endphi;""; |
---|
| 3894 | list g2 = gnirlist[2]; //the varlist |
---|
| 3895 | list g3 = gnirlist[3]; //contains blocks of orderings |
---|
| 3896 | int n3 = size(g3); |
---|
| 3897 | |
---|
| 3898 | //----------------- first identify module ordering ------------------ |
---|
| 3899 | if ( g3[n3][1]== "c" or g3[n3][1] == "C" ) |
---|
| 3900 | { |
---|
| 3901 | list gm = g3[n3]; //last blockis module ordering |
---|
| 3902 | g3 = delete(g3,n3); |
---|
| 3903 | int m = 0; |
---|
| 3904 | } |
---|
| 3905 | else |
---|
| 3906 | { |
---|
| 3907 | list gm = g3[1]; //first block is module ordering |
---|
| 3908 | g3 = delete(g3,1); |
---|
| 3909 | int m = 1; |
---|
| 3910 | } |
---|
| 3911 | //---- delete variables which were substituted and weights -------- |
---|
| 3912 | intvec V; |
---|
| 3913 | int n(0); |
---|
| 3914 | list newg2; |
---|
| 3915 | list newg3; |
---|
| 3916 | for ( ii=1; ii<=n3-1; ii++ ) |
---|
| 3917 | { |
---|
| 3918 | // If order is a matrix ordering, it is replaced by dp ordering. |
---|
| 3919 | // TODO: replace it only when some of the original |
---|
| 3920 | // variables are eliminated. |
---|
| 3921 | if(g3[ii][1] == "M"){ |
---|
| 3922 | g3[ii][1] = "dp"; |
---|
| 3923 | g3[ii][2] = (1..sqroot(size(g3[ii][2])))*0+1; |
---|
| 3924 | } |
---|
| 3925 | V = V,g3[ii][2]; //copy weights for ordering in each block |
---|
| 3926 | if ( ii==1 ) //into one intvector |
---|
| 3927 | { |
---|
| 3928 | V = V[2..size(V)]; |
---|
| 3929 | } |
---|
| 3930 | // int n(ii) = size(g3[ii][2]); |
---|
| 3931 | int n(ii) = size(V); |
---|
| 3932 | intvec V(ii); |
---|
| 3933 | |
---|
| 3934 | for ( jj = n(ii-1)+1; jj<=n(ii); jj++) |
---|
| 3935 | { |
---|
| 3936 | if( Le[4][jj] !=0 ) //jj=index of var which was not substituted |
---|
| 3937 | { |
---|
| 3938 | kk=kk+1; |
---|
| 3939 | newg2[kk] = g2[jj]; //not substituted var from varlist |
---|
| 3940 | V(ii)=V(ii),V[jj]; //weight of not substituted variable |
---|
| 3941 | } |
---|
| 3942 | } |
---|
| 3943 | if ( size(V(ii)) >= 2 ) |
---|
| 3944 | { |
---|
| 3945 | V(ii) = V(ii)[2..size(V(ii))]; |
---|
| 3946 | list g3(ii)=g3[ii][1],V(ii); |
---|
| 3947 | newg3 = insert(newg3,g3(ii),size(newg3)); |
---|
| 3948 | //"newg3"; newg3; |
---|
| 3949 | } |
---|
| 3950 | } |
---|
| 3951 | //"newg3"; newg3; |
---|
| 3952 | //newg3 = delete(newg3,1); //delete empty list |
---|
| 3953 | |
---|
| 3954 | /* |
---|
| 3955 | //### neue Ordnung, 1 Block fuer alle vars, aber Gewichte erhalten; |
---|
| 3956 | //vorerst nicht realisiert, da bei leonhard1 alte Version (neue Variable T(i) |
---|
| 3957 | //ein neuer Block) ein kuerzeres Ergebnis liefert |
---|
| 3958 | kill g3; |
---|
| 3959 | list g3; |
---|
| 3960 | V=0; |
---|
| 3961 | for ( ii= 1; ii<=n3-1; ii++ ) |
---|
| 3962 | { |
---|
| 3963 | V=V,V(ii); |
---|
| 3964 | } |
---|
| 3965 | V = V[2..size(V)]; |
---|
| 3966 | |
---|
| 3967 | if ( V==1 ) |
---|
| 3968 | { |
---|
| 3969 | g3[1] = list("dp",V); |
---|
| 3970 | } |
---|
| 3971 | else |
---|
| 3972 | { |
---|
| 3973 | g3[1] = lis("wp",V); |
---|
| 3974 | } |
---|
| 3975 | newg3 = g3; |
---|
| 3976 | |
---|
| 3977 | //"newg3";newg3;""; |
---|
| 3978 | //### Ende neue Ordnung |
---|
| 3979 | */ |
---|
| 3980 | |
---|
| 3981 | if ( m == 0 ) |
---|
| 3982 | { |
---|
| 3983 | newg3 = insert(newg3,gm,size(newg3)); |
---|
| 3984 | } |
---|
| 3985 | else |
---|
| 3986 | { |
---|
| 3987 | newg3 = insert(newg3,gm); |
---|
| 3988 | } |
---|
| 3989 | gnirlist[2] = newg2; |
---|
| 3990 | gnirlist[3] = newg3; |
---|
| 3991 | |
---|
| 3992 | //gnirlist; |
---|
| 3993 | def newBAS = ring(gnirlist); //change of ring to less vars |
---|
| 3994 | setring newBAS; |
---|
| 3995 | ideal normap = imap(BAS,endphi); |
---|
| 3996 | //normap = simplify(normap,2); |
---|
| 3997 | ideal norid = imap(BAS,endid); |
---|
| 3998 | export(norid); |
---|
| 3999 | export(normap); |
---|
| 4000 | list L = newBAS; |
---|
| 4001 | return(L); |
---|
| 4002 | |
---|
| 4003 | //Hier scheint interred gut zu sein, da es Ergebnis relativ schnell |
---|
| 4004 | //verkleinert. Hier wird z.B. bei leonard1 size(norid) verkleinert aber |
---|
| 4005 | //size(string(norid)) stark vergroessert, aber es hat keine Auswirkungen |
---|
| 4006 | //da keine map mehr folgt. |
---|
| 4007 | //### Bei Leonard2 haengt interred (BUG) |
---|
| 4008 | //mstd[2] verkleinert norid nocheinmal um die Haelfte, dauert aber 3.71 sec |
---|
| 4009 | //### Ev. Hinweis auf mstd in der Hilfe? |
---|
| 4010 | |
---|
| 4011 | } |
---|
| 4012 | |
---|
| 4013 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 4014 | // Computes the ring structure of a ring given by module generators. |
---|
| 4015 | // Assume: J[i]/J[1] are the module generators in the quotient field |
---|
| 4016 | // with J[1] as universal denominator. |
---|
| 4017 | // If option "noRed" is not given, a reduction in the number of variables is |
---|
| 4018 | // attempted. |
---|
| 4019 | static proc computeRing(ideal J, ideal I, list #) |
---|
| 4020 | { |
---|
[9ebd82] | 4021 | int i, ii,jj; |
---|
[1598658] | 4022 | intvec V; // to be used for variable weights |
---|
[9ebd82] | 4023 | int y = printlevel-voice+2; |
---|
[1598658] | 4024 | def R = basering; |
---|
| 4025 | poly c = J[1]; // the denominator |
---|
| 4026 | list gnirlist = ringlist(basering); |
---|
| 4027 | string svars = varstr(basering); |
---|
| 4028 | int nva = nvars(basering); |
---|
| 4029 | string svar; |
---|
| 4030 | ideal maxid = maxideal(1); |
---|
| 4031 | |
---|
| 4032 | int noRed = 0; // By default, we try to reduce the number of generators. |
---|
| 4033 | if(size(#) > 0){ |
---|
| 4034 | if ( typeof(#[1]) == "string" ) |
---|
| 4035 | { |
---|
| 4036 | if (#[1] == "noRed"){noRed = 1;} |
---|
| 4037 | } |
---|
| 4038 | } |
---|
| 4039 | |
---|
| 4040 | if ( y >= 1){"// computing the ring structure...";} |
---|
| 4041 | |
---|
| 4042 | if(c==1) |
---|
| 4043 | { |
---|
| 4044 | /* if( defined(norid) ) { kill norid; } |
---|
| 4045 | if( defined(normap) ) { kill normap; } |
---|
| 4046 | ideal norid = I; |
---|
| 4047 | ideal normap = maxid; */ |
---|
| 4048 | |
---|
| 4049 | list gnirlist = ringlist(R); |
---|
| 4050 | def R1 = ring(gnirlist); |
---|
| 4051 | setring R1; |
---|
| 4052 | ideal norid = imap(R, I); |
---|
| 4053 | ideal normap = imap(R, maxid); |
---|
| 4054 | export norid; |
---|
| 4055 | export normap; |
---|
| 4056 | |
---|
| 4057 | if(noRed == 1){ |
---|
| 4058 | setring R; |
---|
| 4059 | return(R1); |
---|
| 4060 | } |
---|
| 4061 | else |
---|
| 4062 | { |
---|
| 4063 | list L = substpartSpecial(norid,normap); |
---|
| 4064 | def lastRing = L[1]; |
---|
| 4065 | setring R; |
---|
| 4066 | return(lastRing); |
---|
| 4067 | } |
---|
| 4068 | } |
---|
| 4069 | |
---|
| 4070 | |
---|
| 4071 | //-------------- Enlarge ring by creating new variables ------------------ |
---|
| 4072 | //check first whether variables T(i) and then whether Z(i),...,A(i) exist |
---|
| 4073 | //old variable names are not touched |
---|
| 4074 | |
---|
| 4075 | if ( find(svars,"T(") == 0 ) |
---|
| 4076 | { |
---|
| 4077 | svar = "T"; |
---|
| 4078 | } |
---|
| 4079 | else |
---|
| 4080 | { |
---|
| 4081 | for (ii=90; ii>=65; ii--) |
---|
| 4082 | { |
---|
| 4083 | if ( find(svars,ASCII(ii)+"(") == 0 ) |
---|
| 4084 | { |
---|
| 4085 | svar = ASCII(ii); break; |
---|
| 4086 | } |
---|
| 4087 | } |
---|
| 4088 | } |
---|
| 4089 | |
---|
| 4090 | int q = size(J)-1; |
---|
| 4091 | if ( size(svar) != 0 ) |
---|
| 4092 | { |
---|
| 4093 | for ( ii=q; ii>=1; ii-- ) |
---|
| 4094 | { |
---|
| 4095 | gnirlist[2] = insert(gnirlist[2],svar+"("+string(ii)+")"); |
---|
| 4096 | } |
---|
| 4097 | } |
---|
| 4098 | else |
---|
| 4099 | { |
---|
| 4100 | for ( ii=q; ii>=1; ii-- ) |
---|
| 4101 | { |
---|
| 4102 | gnirlist[2] = insert(gnirlist[2],"T("+string(100*nva+ii)+")"); |
---|
| 4103 | } |
---|
| 4104 | } |
---|
| 4105 | |
---|
| 4106 | V[q]=0; //create intvec of variable weights |
---|
| 4107 | V=V+1; |
---|
| 4108 | gnirlist[3] = insert(gnirlist[3],list("dp",V)); |
---|
| 4109 | |
---|
| 4110 | //this is a block ordering with one dp-block (1st block) for new vars |
---|
| 4111 | //the remaining weights and blocks for old vars are kept |
---|
| 4112 | //### perhaps better to make only one block, keeping weights ? |
---|
| 4113 | //this might effect syz below |
---|
| 4114 | //alt: ring newR = char(R),(X(1..nvars(R)),T(1..q)),dp; |
---|
| 4115 | //Reihenfolge geaendert:neue Variablen kommen zuerst, Namen ev. nicht T(i) |
---|
| 4116 | |
---|
| 4117 | def newR = ring(gnirlist); |
---|
| 4118 | setring newR; //new extended ring |
---|
| 4119 | ideal I = imap(R,I); |
---|
| 4120 | |
---|
| 4121 | //------------- Compute linear and quadratic relations --------------- |
---|
| 4122 | if(y>=1) |
---|
| 4123 | { |
---|
| 4124 | "// compute linear relations:"; |
---|
| 4125 | } |
---|
| 4126 | qring newQ = std(I); |
---|
| 4127 | |
---|
| 4128 | ideal f = imap(R,J); |
---|
| 4129 | module syzf = syz(f); |
---|
| 4130 | ideal pf = f[1]*f; |
---|
| 4131 | //f[1] is the denominator D from normalityTest, a non zero divisor of R/I |
---|
| 4132 | |
---|
| 4133 | ideal newT = maxideal(1); |
---|
| 4134 | newT = 1,newT[1..q]; |
---|
| 4135 | //matrix T = matrix(ideal(1,T(1..q)),1,q+1); //alt |
---|
| 4136 | matrix T = matrix(newT,1,q+1); |
---|
| 4137 | ideal Lin = ideal(T*syzf); |
---|
| 4138 | //Lin=interred(Lin); |
---|
| 4139 | //### interred reduziert ev size aber size(string(LIN)) wird groesser |
---|
| 4140 | |
---|
| 4141 | if(y>=1) |
---|
| 4142 | { |
---|
| 4143 | if(y>=3) |
---|
| 4144 | { |
---|
| 4145 | "// the linear relations:"; Lin; pause();""; |
---|
| 4146 | } |
---|
| 4147 | "// the ring structure of the normalization as affine algebra"; |
---|
| 4148 | "// number of linear relations:", size(Lin); |
---|
| 4149 | } |
---|
| 4150 | |
---|
| 4151 | if(y>=1) |
---|
| 4152 | { |
---|
| 4153 | "// compute quadratic relations:"; |
---|
| 4154 | } |
---|
| 4155 | matrix A; |
---|
| 4156 | ideal Quad; |
---|
| 4157 | poly ff; |
---|
| 4158 | newT = newT[2..size(newT)]; |
---|
| 4159 | matrix u; // The units for non-global orderings. |
---|
| 4160 | |
---|
| 4161 | // Quadratic relations |
---|
| 4162 | for (ii=2; ii<=q+1; ii++ ) |
---|
| 4163 | { |
---|
| 4164 | for ( jj=2; jj<=ii; jj++ ) |
---|
| 4165 | { |
---|
| 4166 | ff = NF(f[ii]*f[jj],std(0)); // this makes lift much faster |
---|
| 4167 | // For non-global orderings, we have to take care of the units. |
---|
[1e1ec4] | 4168 | if(attrib(basering,"global") != 1) |
---|
| 4169 | { |
---|
[1598658] | 4170 | A = lift(pf, ff, u); |
---|
| 4171 | Quad = Quad,ideal(newT[jj-1]*newT[ii-1] * u[1, 1]- T*A); |
---|
| 4172 | } |
---|
| 4173 | else |
---|
| 4174 | { |
---|
| 4175 | A = lift(pf,ff); // ff lin. comb. of elts of pf mod I |
---|
| 4176 | Quad = Quad,ideal(newT[jj-1]*newT[ii-1] - T*A); |
---|
| 4177 | } |
---|
| 4178 | //A = lift(pf, f[ii]*f[jj]); |
---|
| 4179 | //Quad = Quad, ideal(T(jj-1)*T(ii-1) - T*A); |
---|
| 4180 | } |
---|
| 4181 | } |
---|
| 4182 | Quad = Quad[2..ncols(Quad)]; |
---|
| 4183 | |
---|
| 4184 | if(y>=1) |
---|
| 4185 | { |
---|
| 4186 | if(y>=3) |
---|
| 4187 | { |
---|
| 4188 | "// the quadratic relations"; Quad; pause();""; |
---|
| 4189 | } |
---|
| 4190 | "// number of quadratic relations:", size(Quad); |
---|
| 4191 | } |
---|
| 4192 | ideal Q1 = Lin,Quad; //elements of Q1 are in NF w.r.t. I |
---|
| 4193 | |
---|
| 4194 | //Q1 = mstd(Q1)[2]; |
---|
| 4195 | //### weglassen, ist sehr zeitaufwendig. |
---|
| 4196 | //Ebenso interred, z.B. bei Leonard1 (1. Komponente von Leonard): |
---|
| 4197 | //"size Q1:", size(Q1), size(string(Q1)); //75 60083 |
---|
| 4198 | //Q1 = interred(Q1); |
---|
| 4199 | //"size Q1:", size(Q1), size(string(Q1)); //73 231956 (!) |
---|
| 4200 | //### Speicherueberlauf bei substpartSpecial bei 'ideal norid = phi1(endid)' |
---|
| 4201 | //Beispiel fuer Hans um map zu testen! |
---|
| 4202 | |
---|
| 4203 | setring newR; |
---|
| 4204 | ideal endid = imap(newQ,Q1),I; |
---|
| 4205 | ideal endphi = imap(R,maxid); |
---|
| 4206 | |
---|
| 4207 | if(noRed == 0){ |
---|
| 4208 | list L=substpartSpecial(endid,endphi); |
---|
| 4209 | def lastRing=L[1]; |
---|
| 4210 | if(y>=1) |
---|
| 4211 | { |
---|
| 4212 | "// number of substituted variables:", nvars(newR)-nvars(lastRing); |
---|
| 4213 | pause();""; |
---|
| 4214 | } |
---|
| 4215 | return(lastRing); |
---|
| 4216 | } |
---|
| 4217 | else |
---|
| 4218 | { |
---|
| 4219 | ideal norid = endid; |
---|
| 4220 | ideal normap = endphi; |
---|
| 4221 | export(norid); |
---|
| 4222 | export(normap); |
---|
| 4223 | setring R; |
---|
| 4224 | return(newR); |
---|
| 4225 | } |
---|
| 4226 | } |
---|
| 4227 | |
---|
| 4228 | // Up to here: procedures for char p with Frobenius |
---|
| 4229 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 4230 | |
---|
| 4231 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 4232 | // From here: subprocedures for normal |
---|
| 4233 | |
---|
| 4234 | // inputJ is used in parametrization of rational curves algorithms, to specify |
---|
| 4235 | // a different test ideal. |
---|
| 4236 | |
---|
| 4237 | static proc normalM(ideal I, int decomp, int withDelta, int denomOption, ideal inputJ, ideal inputC){ |
---|
| 4238 | // Computes the normalization of a ring R / I using the module structure as far |
---|
| 4239 | // as possible. |
---|
| 4240 | // The ring R is the basering. |
---|
| 4241 | // Input: ideal I |
---|
| 4242 | // Output: a list of 3 elements (resp 4 if withDelta = 1), say nor. |
---|
| 4243 | // - nor[1] = U, an ideal of R. |
---|
| 4244 | // - nor[2] = c, an element of R. |
---|
| 4245 | // U and c satisfy that 1/c * U is the normalization of R / I in the |
---|
| 4246 | // quotient field Q(R/I). |
---|
| 4247 | // - nor[3] = ring say T, containing two ideals norid and normap such that |
---|
| 4248 | // normap gives the normalization map from R / I to T / norid. |
---|
| 4249 | // - nor[4] = the delta invariant, if withDelta = 1. |
---|
| 4250 | |
---|
| 4251 | // Details: |
---|
| 4252 | // -------- |
---|
| 4253 | // Computes the ideal of the minors in the first step and then reuses it in all |
---|
| 4254 | // steps. |
---|
| 4255 | // In step s, the denominator is D^s, where D is a nzd of the original quotient |
---|
| 4256 | // ring, contained in the radical of the singular locus. |
---|
| 4257 | // This denominator is used except when the degree of D^i is greater than the |
---|
| 4258 | // degree of a universal denominator. |
---|
| 4259 | // The nzd is taken as the smallest degree polynomial in the radical of the |
---|
| 4260 | // singular locus. |
---|
| 4261 | |
---|
| 4262 | // It assumes that the ideal I is equidimensional radical. This is not checked |
---|
| 4263 | // in the procedure! |
---|
| 4264 | // If decomp = 0 or decomp = 3 it assumes further that I is prime. Therefore |
---|
| 4265 | // any non-zero element in the jacobian ideal is assumed to be a |
---|
| 4266 | // non-zerodivisor. |
---|
| 4267 | |
---|
| 4268 | // It works over the given basering. |
---|
| 4269 | // If it has a non-global ordering, it changes it to dp global only for |
---|
| 4270 | // computing radical. |
---|
| 4271 | |
---|
| 4272 | // The delta invariant is only computed if withDelta = 1, and decomp = 0 or |
---|
| 4273 | // decomp = 3 (meaning that the ideal is prime). |
---|
| 4274 | |
---|
| 4275 | // denomOption = 0 -> Uses the smallest degree polynomial |
---|
| 4276 | // denomOption = i > 0 -> Uses a polynomial in the i-th variable |
---|
| 4277 | |
---|
[651cce] | 4278 | intvec save_opt=option(get); |
---|
| 4279 | option(redSB); |
---|
| 4280 | option(returnSB); |
---|
[1598658] | 4281 | int step = 0; // Number of steps. (for debugging) |
---|
| 4282 | int dbg = printlevel - voice + 2; // dbg = printlevel (default: dbg = 0) |
---|
| 4283 | int i; // counter |
---|
[1e1ec4] | 4284 | int isGlobal = attrib(basering,"global"); |
---|
[1598658] | 4285 | |
---|
| 4286 | poly c; // The common denominator. |
---|
| 4287 | |
---|
| 4288 | def R = basering; |
---|
| 4289 | |
---|
| 4290 | //------------------------ Groebner bases and dimension of I----------------- |
---|
[651cce] | 4291 | if(isGlobal == 1) |
---|
| 4292 | { |
---|
[1598658] | 4293 | list IM = mstd(I); |
---|
| 4294 | I = IM[1]; |
---|
| 4295 | ideal IMin = IM[2]; // A minimal set of generators in the groebner basis. |
---|
| 4296 | } |
---|
| 4297 | else |
---|
| 4298 | { |
---|
| 4299 | // The minimal set of generators is not computed by mstd for |
---|
| 4300 | // non-global orderings. |
---|
| 4301 | I = groebner(I); |
---|
| 4302 | ideal IMin = I; |
---|
| 4303 | } |
---|
| 4304 | int d = dim(I); |
---|
| 4305 | |
---|
| 4306 | // ---------------- computation of the singular locus --------------------- |
---|
| 4307 | // We compute the radical of the ideal of minors modulo the original ideal. |
---|
| 4308 | // This is done only in the first step. |
---|
| 4309 | qring Q = I; // We work in the quotient by the groebner base of the ideal I |
---|
[651cce] | 4310 | option(redSB); |
---|
| 4311 | option(returnSB); |
---|
[1598658] | 4312 | |
---|
| 4313 | // If a conductor ideal was given as input, we use it instead of the |
---|
| 4314 | // singular locus. If a test ideal was given as input, we do not compute the |
---|
| 4315 | // singular locus. |
---|
| 4316 | ideal inputC = fetch(R, inputC); |
---|
| 4317 | ideal inputJ = fetch(R, inputJ); |
---|
[651cce] | 4318 | if((inputC == 0) && (inputJ == 0)) |
---|
| 4319 | { |
---|
[1598658] | 4320 | // We compute the radical of the ideal of minors modulo the original ideal. |
---|
| 4321 | // This is done only in the first step. |
---|
| 4322 | ideal I = fetch(R, I); |
---|
| 4323 | attrib(I, "isSB", 1); |
---|
| 4324 | ideal IMin = fetch(R, IMin); |
---|
| 4325 | |
---|
| 4326 | dbprint(dbg, "Computing the jacobian ideal..."); |
---|
| 4327 | |
---|
| 4328 | // If a given conductor ideal is given, we use it. |
---|
| 4329 | // If a given test ideal is given, we don't need to compute the jacobian |
---|
[1e1ec4] | 4330 | |
---|
| 4331 | // reduction mod I in 'minor' is not working for local orderings! |
---|
| 4332 | if(attrib(basering,"global")) |
---|
| 4333 | { |
---|
| 4334 | ideal J = minor(jacob(IMin), nvars(basering) - d, I); |
---|
| 4335 | } |
---|
| 4336 | else |
---|
| 4337 | { |
---|
| 4338 | ideal J = minor(jacob(IMin), nvars(basering) - d); |
---|
| 4339 | J = reduce(J, groebner(I)); |
---|
| 4340 | } |
---|
[1598658] | 4341 | J = groebner(J); |
---|
[651cce] | 4342 | } |
---|
| 4343 | else |
---|
| 4344 | { |
---|
[1598658] | 4345 | ideal J = fetch(R, inputC); |
---|
| 4346 | J = groebner(J); |
---|
| 4347 | } |
---|
| 4348 | |
---|
| 4349 | //------------------ We check if the singular locus is empty ------------- |
---|
[651cce] | 4350 | if(J[1] == 1) |
---|
| 4351 | { |
---|
[1598658] | 4352 | // The original ring R/I was normal. Nothing to do. |
---|
| 4353 | // We define anyway a new ring, equal to R, to be able to return it. |
---|
| 4354 | setring R; |
---|
| 4355 | list lR = ringlist(R); |
---|
| 4356 | def ROut = ring(lR); |
---|
| 4357 | setring ROut; |
---|
| 4358 | ideal norid = fetch(R, I); |
---|
| 4359 | ideal normap = maxideal(1); |
---|
| 4360 | export norid; |
---|
| 4361 | export normap; |
---|
| 4362 | setring R; |
---|
[651cce] | 4363 | if(withDelta) |
---|
| 4364 | { |
---|
[1598658] | 4365 | list output = ideal(1), poly(1), ROut, 0; |
---|
| 4366 | } |
---|
| 4367 | else |
---|
| 4368 | { |
---|
| 4369 | list output = ideal(1), poly(1), ROut; |
---|
| 4370 | } |
---|
[651cce] | 4371 | option(set,save_opt); |
---|
[1598658] | 4372 | return(list(output)); |
---|
| 4373 | } |
---|
| 4374 | |
---|
| 4375 | |
---|
| 4376 | // -------------------- election of the universal denominator---------------- |
---|
| 4377 | // We first check if a conductor ideal was computed. If not, we don't |
---|
| 4378 | // compute a universal denominator. |
---|
| 4379 | ideal Id1; |
---|
[651cce] | 4380 | if(J != 0) |
---|
| 4381 | { |
---|
| 4382 | if(denomOption == 0) |
---|
| 4383 | { |
---|
[1598658] | 4384 | poly condu = getSmallest(J); // Choses the polynomial of smallest degree |
---|
| 4385 | // of J as universal denominator. |
---|
[651cce] | 4386 | } |
---|
| 4387 | else |
---|
| 4388 | { |
---|
[1598658] | 4389 | poly condu = getOneVar(J, denomOption); |
---|
| 4390 | } |
---|
[651cce] | 4391 | if(dbg >= 1) |
---|
| 4392 | { |
---|
[1598658] | 4393 | ""; |
---|
| 4394 | "The universal denominator is ", condu; |
---|
| 4395 | } |
---|
| 4396 | |
---|
| 4397 | // ----- splitting the ideal by the universal denominator (if possible) ----- |
---|
| 4398 | // If the ideal is equidimensional, but not necessarily prime, we check if |
---|
| 4399 | // the universal denominator is a non-zerodivisor of R/I. |
---|
| 4400 | // If not, we split I. |
---|
[651cce] | 4401 | if((decomp == 1) or (decomp == 2)) |
---|
| 4402 | { |
---|
[1598658] | 4403 | Id1 = quotient(0, condu); |
---|
[651cce] | 4404 | if(size(Id1) > 0) |
---|
| 4405 | { |
---|
[1598658] | 4406 | // We have to split. |
---|
[651cce] | 4407 | if(dbg >= 1) |
---|
| 4408 | { |
---|
[1598658] | 4409 | "A zerodivisor was found. We split the ideal. The zerodivisor is ", condu; |
---|
| 4410 | } |
---|
| 4411 | setring R; |
---|
| 4412 | ideal Id1 = fetch(Q, Id1), I; |
---|
| 4413 | Id1 = groebner(Id1); |
---|
| 4414 | ideal Id2 = quotient(I, Id1); |
---|
| 4415 | // I = I1 \cap I2 |
---|
| 4416 | printlevel = printlevel + 1; |
---|
[c623f27] | 4417 | ideal JDefault = 0; // Now it uses the default J; |
---|
[1598658] | 4418 | list nor1 = normalM(Id1, decomp, withDelta, denomOption, JDefault, JDefault)[1]; |
---|
| 4419 | list nor2 = normalM(Id2, decomp, withDelta, denomOption, JDefault, JDefault)[1]; |
---|
| 4420 | printlevel = printlevel - 1; |
---|
[651cce] | 4421 | option(set,save_opt); |
---|
[1598658] | 4422 | return(list(nor1, nor2)); |
---|
| 4423 | } |
---|
| 4424 | } |
---|
[651cce] | 4425 | } |
---|
| 4426 | else |
---|
| 4427 | { |
---|
[1598658] | 4428 | poly condu = 0; |
---|
| 4429 | } |
---|
| 4430 | |
---|
| 4431 | // --------------- computation of the first test ideal --------------------- |
---|
| 4432 | // To compute the radical we go back to the original ring. |
---|
| 4433 | // If we are using a non-global ordering, we must change to the global |
---|
| 4434 | // ordering. |
---|
| 4435 | setring R; |
---|
| 4436 | // If a test ideal is given at the input, we use it. |
---|
[651cce] | 4437 | if(inputJ == 0) |
---|
| 4438 | { |
---|
| 4439 | if(isGlobal == 1) |
---|
| 4440 | { |
---|
[1598658] | 4441 | ideal J = fetch(Q, J); |
---|
| 4442 | J = J, I; |
---|
[651cce] | 4443 | if(dbg >= 1) |
---|
| 4444 | { |
---|
[1598658] | 4445 | "The original singular locus is"; |
---|
| 4446 | groebner(J); |
---|
| 4447 | if(dbg >= 2){pause();} |
---|
| 4448 | ""; |
---|
| 4449 | } |
---|
| 4450 | // We check if the only singular point is the origin. |
---|
| 4451 | // If so, the radical is the maximal ideal at the origin. |
---|
| 4452 | J = groebner(J); |
---|
[651cce] | 4453 | if(locAtZero(J)) |
---|
| 4454 | { |
---|
[1598658] | 4455 | J = maxideal(1); |
---|
[651cce] | 4456 | } |
---|
| 4457 | else |
---|
| 4458 | { |
---|
[1598658] | 4459 | J = radical(J); |
---|
| 4460 | } |
---|
[651cce] | 4461 | } |
---|
| 4462 | else |
---|
| 4463 | { |
---|
[1598658] | 4464 | // We change to global dp ordering. |
---|
| 4465 | list rl = ringlist(R); |
---|
| 4466 | list origOrd = rl[3]; |
---|
| 4467 | list newOrd = list("dp", intvec(1:nvars(R))), list("C", 0); |
---|
| 4468 | rl[3] = newOrd; |
---|
| 4469 | def globR = ring(rl); |
---|
| 4470 | setring globR; |
---|
| 4471 | ideal J = fetch(Q, J); |
---|
| 4472 | ideal I = fetch(R, I); |
---|
| 4473 | J = J, I; |
---|
[651cce] | 4474 | if(dbg >= 1) |
---|
| 4475 | { |
---|
[1598658] | 4476 | "The original singular locus is"; |
---|
| 4477 | groebner(J); |
---|
| 4478 | if(dbg>=2){pause();} |
---|
| 4479 | ""; |
---|
| 4480 | } |
---|
| 4481 | J = radical(J); |
---|
| 4482 | setring R; |
---|
| 4483 | ideal J = fetch(globR, J); |
---|
| 4484 | } |
---|
[651cce] | 4485 | } |
---|
| 4486 | else |
---|
| 4487 | { |
---|
[1598658] | 4488 | ideal J = inputJ; |
---|
| 4489 | } |
---|
| 4490 | |
---|
[651cce] | 4491 | if(dbg >= 1) |
---|
| 4492 | { |
---|
[1598658] | 4493 | "The radical of the original singular locus is"; |
---|
|
---|