1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | // normal.lib |
---|
3 | // algorithms for computing the normalization based on |
---|
4 | // the criterion of Grauert/Remmert and ideas of De Jong & Vasconcelos |
---|
5 | /////////////////////////////////////////////////////////////////////////////// |
---|
6 | |
---|
7 | version="$Id: normal.lib,v 1.26 2000-05-23 22:57:52 greuel Exp $"; |
---|
8 | info=" |
---|
9 | LIBRARY: normal.lib PROCEDURES FOR NORMALIZATION |
---|
10 | AUTHORS: Gert-Martin Greuel, email: greuel@mathematik.uni-kl.de, |
---|
11 | Gerhard Pfister, email: pfister@mathematik.uni-kl.de |
---|
12 | |
---|
13 | PROCEDURES: |
---|
14 | normal(I); computes the normalization of basering/I |
---|
15 | HomJJ(L); presentation of End_R(J) as affine ring, L a list |
---|
16 | "; |
---|
17 | |
---|
18 | LIB "general.lib"; |
---|
19 | LIB "sing.lib"; |
---|
20 | LIB "primdec.lib"; |
---|
21 | LIB "elim.lib"; |
---|
22 | LIB "presolve.lib"; |
---|
23 | LIB "inout.lib"; |
---|
24 | /////////////////////////////////////////////////////////////////////////////// |
---|
25 | static |
---|
26 | proc isR_HomJR (list Li) |
---|
27 | "USAGE: isR_HomJR (Li); Li = list: ideal SBid, ideal J, poly p |
---|
28 | COMPUTE: module Hom_R(J,R) = R:J and compare with R |
---|
29 | ASSUME: R = P/SBid, P = basering |
---|
30 | SBid = standard basis of an ideal in P, |
---|
31 | J = ideal in P containing the polynomial p, |
---|
32 | p = nonzero divisor of R |
---|
33 | RETURN: 1 if R = R:J, 0 if not |
---|
34 | EXAMPLE: example isR_HomJR; shows an example |
---|
35 | " |
---|
36 | { |
---|
37 | int n, ii; |
---|
38 | def P = basering; |
---|
39 | ideal SBid = Li[1]; |
---|
40 | ideal J = Li[2]; |
---|
41 | poly p = Li[3]; |
---|
42 | attrib(SBid,"isSB",1); |
---|
43 | attrib(p,"isSB",1); |
---|
44 | qring R = SBid; |
---|
45 | ideal J = fetch(P,J); |
---|
46 | poly p = fetch(P,p); |
---|
47 | ideal f = quotient(p,J); |
---|
48 | ideal lp = std(p); |
---|
49 | n=1; |
---|
50 | for (ii=1; ii<=size(f); ii++ ) |
---|
51 | { |
---|
52 | if ( reduce(f[ii],lp) != 0) |
---|
53 | { n = 0; break; } |
---|
54 | } |
---|
55 | return (n); |
---|
56 | //?spaeter hier einen Test ob Hom(I,R) = Hom(I,I)? |
---|
57 | } |
---|
58 | example |
---|
59 | {"EXAMPLE:"; echo = 2; |
---|
60 | ring r = 0,(x,y,z),dp; |
---|
61 | ideal id = y7-x5+z2; |
---|
62 | ideal J = x3,y+z; |
---|
63 | poly p = xy; |
---|
64 | list Li = std(id),J,p; |
---|
65 | isR_HomJR (Li); |
---|
66 | |
---|
67 | ring s = 0,(t,x,y),dp; |
---|
68 | ideal id = x2-y2*(y-t); |
---|
69 | ideal J = jacob(id); |
---|
70 | poly p = J[1]; |
---|
71 | list Li = std(id),J,p; |
---|
72 | isR_HomJR (Li); |
---|
73 | } |
---|
74 | /////////////////////////////////////////////////////////////////////////////// |
---|
75 | |
---|
76 | proc HomJJ (list Li) |
---|
77 | "USAGE: HomJJ (Li); Li = list: ideal SBid, ideal id, ideal J, poly p |
---|
78 | ASSUME: R = P/id, P = basering, a polynomial ring, id an ideal of P, |
---|
79 | SBid = standard basis of id, |
---|
80 | J = ideal of P containing the polynomial p, |
---|
81 | p = nonzero divisor of R |
---|
82 | COMPUTE: Endomorphism ring End_R(J)=Hom_R(J,J) with its ring structure where |
---|
83 | R is the quotient ring of P modulo the standard basis SBid |
---|
84 | RETURN: a list of two objects |
---|
85 | _[1]: a polynomial ring, containing two ideals, 'endid' and 'endphi' |
---|
86 | s.t. _[1]/endid = Hom_R(J,J) and |
---|
87 | endphi describes the canonical map R -> Hom_R(J,J) |
---|
88 | _[2]: an integer which is 1 if phi is an isomorphism, 0 if not |
---|
89 | NOTE: printlevel >=1: display comments (default: printlevel=0) |
---|
90 | EXAMPLE: example HomJJ; shows an example |
---|
91 | " |
---|
92 | { |
---|
93 | //---------- initialisation --------------------------------------------------- |
---|
94 | |
---|
95 | int isIso,isPr,isCo,isRe,isEq,ii,jj,q,y; |
---|
96 | intvec rw,rw1; |
---|
97 | list L; |
---|
98 | y = printlevel-voice+2; // y=printlevel (default: y=0) |
---|
99 | def P = basering; |
---|
100 | ideal SBid, id, J = Li[1], Li[2], Li[3]; |
---|
101 | poly p = Li[4]; |
---|
102 | attrib(SBid,"isSB",1); |
---|
103 | int homo = homog(Li[2]); //is 1 if id is homogeneous, 0 if not |
---|
104 | |
---|
105 | //---- set attributes for special cases where algorithm can be simplified ----- |
---|
106 | if( homo==1 ) |
---|
107 | { |
---|
108 | rw = ringweights(P); |
---|
109 | } |
---|
110 | if( typeof(attrib(id,"isPrim"))=="int" ) |
---|
111 | { |
---|
112 | if(attrib(id,"isPrim")==1) { isPr=1; } |
---|
113 | } |
---|
114 | if( typeof(attrib(id,"isIsolatedSingularity"))=="int" ) |
---|
115 | { |
---|
116 | if(attrib(id,"isIsolatedSingularity")==1) { isIso=1; } |
---|
117 | } |
---|
118 | if( typeof(attrib(id,"isCohenMacaulay"))=="int" ) |
---|
119 | { |
---|
120 | if(attrib(id,"isCohenMacaulay")==1) { isCo=1; } |
---|
121 | } |
---|
122 | if( typeof(attrib(id,"isRegInCodim2"))=="int" ) |
---|
123 | { |
---|
124 | if(attrib(id,"isRegInCodim2")==1) { isRe=1; } |
---|
125 | } |
---|
126 | if( typeof(attrib(id,"isEquidimensional"))=="int" ) |
---|
127 | { |
---|
128 | if(attrib(id,"isEquidimensional")==1) { isEq=1; } |
---|
129 | } |
---|
130 | //-------------------------- go to quotient ring ------------------------------ |
---|
131 | qring R = SBid; |
---|
132 | ideal id = fetch(P,id); |
---|
133 | ideal J = fetch(P,J); |
---|
134 | poly p = fetch(P,p); |
---|
135 | ideal f,rf,f2; |
---|
136 | module syzf; |
---|
137 | |
---|
138 | //---------- computation of p*Hom(J,J) as R-ideal ----------------------------- |
---|
139 | if ( y>=1 ) |
---|
140 | { |
---|
141 | "// compute p*Hom(J,J) = p*J:J, p a non-zerodivisor"; |
---|
142 | "// p is equal to:"; ""; |
---|
143 | p; |
---|
144 | ""; |
---|
145 | } |
---|
146 | f = quotient(p*J,J); |
---|
147 | if ( y>=1 ) |
---|
148 | { "// the module p*Hom(J,J) = p*J:J, p a non-zerodivisor"; |
---|
149 | "// p"; p; |
---|
150 | "// f=p*J:J";f; |
---|
151 | } |
---|
152 | f2 = std(p); |
---|
153 | |
---|
154 | if(isIso==0) |
---|
155 | { |
---|
156 | ideal f1=std(f); |
---|
157 | attrib(f1,"isSB",1); |
---|
158 | // if( codim(f1,f2) >= 0 ) |
---|
159 | // { |
---|
160 | // dbprint(printlevel-voice+3,"// dimension of non-normal locus is zero"); |
---|
161 | // isIso=1; |
---|
162 | // } |
---|
163 | } |
---|
164 | //---------- Test: Hom(J,J) == R ?, if yes, go home --------------------------- |
---|
165 | |
---|
166 | rf = interred(reduce(f,f2)); // represents p*Hom(J,J)/p*R = Hom(J,J)/R |
---|
167 | if ( size(rf) == 0 ) |
---|
168 | { |
---|
169 | if ( homog(f) && find(ordstr(basering),"s")==0 ) |
---|
170 | { |
---|
171 | ring newR1 = char(P),(X(1..nvars(P))),(a(rw),dp); |
---|
172 | } |
---|
173 | else |
---|
174 | { |
---|
175 | ring newR1 = char(P),(X(1..nvars(P))),dp; |
---|
176 | } |
---|
177 | ideal endphi = maxideal(1); |
---|
178 | ideal endid = fetch(P,id); |
---|
179 | L=substpart(endid,endphi,homo,rw); |
---|
180 | def lastRing=L[1]; |
---|
181 | setring lastRing; |
---|
182 | |
---|
183 | attrib(endid,"isCohenMacaulay",isCo); |
---|
184 | attrib(endid,"isPrim",isPr); |
---|
185 | attrib(endid,"isIsolatedSingularity",isIso); |
---|
186 | attrib(endid,"isRegInCodim2",isRe); |
---|
187 | attrib(endid,"isEqudimensional",isEq); |
---|
188 | attrib(endid,"isCompleteIntersection",0); |
---|
189 | attrib(endid,"isRad",0); |
---|
190 | // export endid; |
---|
191 | // export endphi; |
---|
192 | // L = newR1; |
---|
193 | L=lastRing; |
---|
194 | L = insert(L,1,1); |
---|
195 | dbprint(y,"// case R = Hom(J,J)"); |
---|
196 | if(y>=1) |
---|
197 | { |
---|
198 | "// R=Hom(J,J)"; |
---|
199 | " "; |
---|
200 | lastRing; |
---|
201 | " "; |
---|
202 | "// the new ideal"; |
---|
203 | endid; |
---|
204 | " "; |
---|
205 | "// the old ring"; |
---|
206 | " "; |
---|
207 | P; |
---|
208 | " "; |
---|
209 | "// the old ideal"; |
---|
210 | " "; |
---|
211 | setring P; |
---|
212 | id; |
---|
213 | " "; |
---|
214 | setring lastRing; |
---|
215 | "// the map"; |
---|
216 | " "; |
---|
217 | endphi; |
---|
218 | " "; |
---|
219 | pause(); |
---|
220 | newline; |
---|
221 | } |
---|
222 | setring P; |
---|
223 | return(L); |
---|
224 | } |
---|
225 | if(y>=1) |
---|
226 | { |
---|
227 | "// R is not equal to Hom(J,J), we have to try again"; |
---|
228 | pause(); |
---|
229 | newline; |
---|
230 | } |
---|
231 | //---------- Hom(J,J) != R: create new ring and map form old ring ------------- |
---|
232 | // the ring newR1/SBid+syzf will be isomorphic to Hom(J,J) as R-module |
---|
233 | |
---|
234 | f = p,rf; // generates pJ:J mod(p), i.e. p*Hom(J,J)/p*R as R-module |
---|
235 | q = size(f); |
---|
236 | syzf = syz(f); |
---|
237 | |
---|
238 | if ( homo==1 ) |
---|
239 | { |
---|
240 | rw1 = rw,0; |
---|
241 | for ( ii=2; ii<=q; ii++ ) |
---|
242 | { |
---|
243 | rw = rw, deg(f[ii])-deg(f[1]); |
---|
244 | rw1 = rw1, deg(f[ii])-deg(f[1]); |
---|
245 | } |
---|
246 | ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),(a(rw1),dp); |
---|
247 | } |
---|
248 | else |
---|
249 | { |
---|
250 | ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),dp; |
---|
251 | } |
---|
252 | |
---|
253 | map psi1 = P,maxideal(1); |
---|
254 | ideal SBid = psi1(SBid); |
---|
255 | attrib(SBid,"isSB",1); |
---|
256 | |
---|
257 | qring newR = std(SBid); |
---|
258 | map psi = R,ideal(X(1..nvars(R))); |
---|
259 | ideal id = psi(id); |
---|
260 | ideal f = psi(f); |
---|
261 | module syzf = psi(syzf); |
---|
262 | ideal pf,Lin,Quad,Q; |
---|
263 | matrix T,A; |
---|
264 | list L1; |
---|
265 | |
---|
266 | //---------- computation of Hom(J,J) as affine ring --------------------------- |
---|
267 | // determine kernel of: R[T1,...,Tq] -> J:J >-> R[1/p]=R[t]/(t*p-1), |
---|
268 | // Ti -> fi/p -> t*fi (p=f1=f[1]), to get ring structure. This is of course |
---|
269 | // the same as the kernel of R[T1,...,Tq] -> pJ:J >-> R, Ti -> fi. |
---|
270 | // It is a fact, that the kernel is generated by the linear and the quadratic |
---|
271 | // relations |
---|
272 | |
---|
273 | pf = f[1]*f; |
---|
274 | T = matrix(ideal(T(1..q)),1,q); |
---|
275 | Lin = ideal(T*syzf); |
---|
276 | if(y>=1) |
---|
277 | { |
---|
278 | "// the ring structure of Hom(J,J) as R-algebra"; |
---|
279 | " "; |
---|
280 | "// the linear relations"; |
---|
281 | " "; |
---|
282 | Lin; |
---|
283 | " "; |
---|
284 | } |
---|
285 | for (ii=2; ii<=q; ii++ ) |
---|
286 | { |
---|
287 | for ( jj=2; jj<=ii; jj++ ) |
---|
288 | { |
---|
289 | A = lift(pf,f[ii]*f[jj]); |
---|
290 | Quad = Quad, ideal(T(jj)*T(ii) - T*A); // quadratic relations |
---|
291 | } |
---|
292 | } |
---|
293 | if(y>=1) |
---|
294 | { |
---|
295 | "// the quadratic relations"; |
---|
296 | " "; |
---|
297 | interred(Quad); |
---|
298 | pause(); |
---|
299 | newline; |
---|
300 | } |
---|
301 | Q = Lin+Quad; |
---|
302 | Q = subst(Q,T(1),1); |
---|
303 | Q = interred(reduce(Q,std(0))); |
---|
304 | //---------- reduce number of variables by substitution, if possible ---------- |
---|
305 | if (homo==1) |
---|
306 | { |
---|
307 | ring newRing = char(R),(X(1..nvars(R)),T(2..q)),(a(rw),dp); |
---|
308 | } |
---|
309 | else |
---|
310 | { |
---|
311 | ring newRing = char(R),(X(1..nvars(R)),T(2..q)),dp; |
---|
312 | } |
---|
313 | |
---|
314 | ideal endid = imap(newR,id)+imap(newR,Q); |
---|
315 | ideal endphi = ideal(X(1..nvars(R))); |
---|
316 | |
---|
317 | L=substpart(endid,endphi,homo,rw); |
---|
318 | def lastRing=L[1]; |
---|
319 | setring lastRing; |
---|
320 | attrib(endid,"isCohenMacaulay",isCo); |
---|
321 | attrib(endid,"isPrim",isPr); |
---|
322 | attrib(endid,"isIsolatedSingularity",isIso); |
---|
323 | attrib(endid,"isRegInCodim2",isRe); |
---|
324 | attrib(endid,"isEquidimensional",isEq); |
---|
325 | attrib(endid,"isCompleteIntersection",0); |
---|
326 | attrib(endid,"isRad",0); |
---|
327 | // export(endid); |
---|
328 | // export(endphi); |
---|
329 | if(y>=1) |
---|
330 | { |
---|
331 | "// the new ring after reduction of the number of variables"; |
---|
332 | " "; |
---|
333 | lastRing; |
---|
334 | " "; |
---|
335 | "// the new ideal"; |
---|
336 | " "; |
---|
337 | endid; |
---|
338 | " "; |
---|
339 | "// the old ring"; |
---|
340 | " "; |
---|
341 | P; |
---|
342 | " "; |
---|
343 | "// the old ideal"; |
---|
344 | " "; |
---|
345 | setring P; |
---|
346 | id; |
---|
347 | " "; |
---|
348 | setring lastRing; |
---|
349 | "// the map"; |
---|
350 | " "; |
---|
351 | endphi; |
---|
352 | " "; |
---|
353 | pause(); |
---|
354 | newline; |
---|
355 | } |
---|
356 | L = lastRing; |
---|
357 | L = insert(L,0,1); |
---|
358 | return(L); |
---|
359 | } |
---|
360 | example |
---|
361 | {"EXAMPLE:"; echo = 2; |
---|
362 | ring r = 0,(x,y),wp(2,3); |
---|
363 | ideal id = y^2-x^3; |
---|
364 | ideal J = x,y; |
---|
365 | poly p = x; |
---|
366 | list Li = std(id),id,J,p; |
---|
367 | list L = HomJJ(Li); |
---|
368 | def end = L[1]; // defines ring L[1], containing ideals endid and endphi |
---|
369 | setring end; // makes end the basering |
---|
370 | end; |
---|
371 | endid; // end/endid is isomorphic to End(r/id) as ring |
---|
372 | map psi = r,endphi;// defines the canonical map r/id -> End(r/id) |
---|
373 | psi; |
---|
374 | } |
---|
375 | |
---|
376 | /////////////////////////////////////////////////////////////////////////////// |
---|
377 | proc normal(ideal id, list #) |
---|
378 | "USAGE: normal(i [,choose]); i a radical ideal, choose empty or 1 |
---|
379 | if choose=1 the normalization of the associated primes is computed |
---|
380 | (which is sometimes more efficient) |
---|
381 | RETURN: a list of rings (say nor), in each ring nor[i] are two ideals |
---|
382 | norid, normap such that the direct sum of the rings nor[i]/norid is |
---|
383 | the normalization of basering/id; normap gives the normalization map |
---|
384 | from basering/id to nor[i]/norid (for each i) |
---|
385 | NOTE: to use the i-th ring type: def R=nor[i]; setring R; |
---|
386 | increasing printlevel displays more comments (default: printlevel=0) |
---|
387 | COMMENT: Not implemented for local or mixed orderings. |
---|
388 | If the input ideal i is weighted homogeneous a weighted ordering may |
---|
389 | be used (qhweight(i); computes weights). |
---|
390 | CAUTION: The proc does not check whether the input is radical, for non radical |
---|
391 | ideals the output may be wrong (i=radical(i); makes i radical) |
---|
392 | EXAMPLE: example normal; shows an example |
---|
393 | " |
---|
394 | { |
---|
395 | int i,j,y; |
---|
396 | string sr; |
---|
397 | list result,prim,keepresult; |
---|
398 | y = printlevel-voice+2; |
---|
399 | |
---|
400 | attrib(id,"isRadical",1); |
---|
401 | if ( find(ordstr(basering),"s")+find(ordstr(basering),"M") != 0) |
---|
402 | { |
---|
403 | ""; |
---|
404 | "// Not implemented for this ordering,"; |
---|
405 | "// please change to global ordering!"; |
---|
406 | return(result); |
---|
407 | } |
---|
408 | if( typeof(attrib(id,"isCompleteIntersection"))=="int" ) |
---|
409 | { |
---|
410 | if(attrib(id,"isCompleteIntersection")==1) |
---|
411 | { |
---|
412 | attrib(id,"isCohenMacaulay",1); |
---|
413 | attrib(id,"isEquidimensional",1); |
---|
414 | } |
---|
415 | } |
---|
416 | if( typeof(attrib(id,"isCohenMacaulay"))=="int" ) |
---|
417 | { |
---|
418 | if(attrib(id,"isCohenMacaulay")==1) |
---|
419 | { |
---|
420 | attrib(id,"isEquidimensional",1); |
---|
421 | } |
---|
422 | } |
---|
423 | if( typeof(attrib(id,"isPrim"))=="int" ) |
---|
424 | { |
---|
425 | if(attrib(id,"isPrim")==1) |
---|
426 | { |
---|
427 | attrib(id,"isEquidimensional",1); |
---|
428 | } |
---|
429 | } |
---|
430 | if(size(#)==0) |
---|
431 | { |
---|
432 | if( typeof(attrib(id,"isEquidimensional"))=="int" ) |
---|
433 | { |
---|
434 | if(attrib(id,"isEquidimensional")==1) |
---|
435 | { |
---|
436 | prim[1]=id; |
---|
437 | } |
---|
438 | else |
---|
439 | { |
---|
440 | prim=equidim(id); |
---|
441 | } |
---|
442 | } |
---|
443 | else |
---|
444 | { |
---|
445 | prim=equidim(id); |
---|
446 | } |
---|
447 | if(y>=1) |
---|
448 | { |
---|
449 | "// we have ",size(prim),"equidimensional components"; |
---|
450 | } |
---|
451 | } |
---|
452 | else |
---|
453 | { |
---|
454 | if( typeof(attrib(id,"isPrim"))=="int" ) |
---|
455 | { |
---|
456 | if(attrib(id,"isPrim")==1) |
---|
457 | { |
---|
458 | prim[1]=id; |
---|
459 | } |
---|
460 | else |
---|
461 | { |
---|
462 | prim=minAssPrimes(id); |
---|
463 | } |
---|
464 | } |
---|
465 | else |
---|
466 | { |
---|
467 | prim=minAssPrimes(id); |
---|
468 | } |
---|
469 | if(y>=1) |
---|
470 | { |
---|
471 | "// we have ",size(prim),"irreducible components"; |
---|
472 | } |
---|
473 | } |
---|
474 | for(i=1; i<=size(prim); i++) |
---|
475 | { |
---|
476 | if(y>=1) |
---|
477 | { |
---|
478 | "// we are in loop ",i; |
---|
479 | } |
---|
480 | attrib(prim[i],"isCohenMacaulay",0); |
---|
481 | if(size(#)!=0) |
---|
482 | { |
---|
483 | attrib(prim[i],"isPrim",1); |
---|
484 | } |
---|
485 | else |
---|
486 | { |
---|
487 | attrib(prim[i],"isPrim",0); |
---|
488 | } |
---|
489 | attrib(prim[i],"isRegInCodim2",0); |
---|
490 | attrib(prim[i],"isIsolatedSingularity",0); |
---|
491 | attrib(prim[i],"isEquidimensional",1); |
---|
492 | attrib(prim[i],"isCompleteIntersection",0); |
---|
493 | |
---|
494 | if( typeof(attrib(id,"isIsolatedSingularity"))=="int" ) |
---|
495 | { |
---|
496 | if(attrib(id,"isIsolatedSingularity")==1) |
---|
497 | {attrib(prim[i],"isIsolatedSingularity",1); } |
---|
498 | } |
---|
499 | |
---|
500 | if( typeof(attrib(id,"isCompleteIntersection"))=="int" ) |
---|
501 | { |
---|
502 | if((attrib(id,"isIsolatedSingularity")==1)&&(size(#)==0)) |
---|
503 | {attrib(prim[i],"isIsolatedSingularity",1); } |
---|
504 | } |
---|
505 | keepresult=normalizationPrimes(prim[i],maxideal(1)); |
---|
506 | for(j=1;j<=size(keepresult);j++) |
---|
507 | { |
---|
508 | result=insert(result,keepresult[j]); |
---|
509 | } |
---|
510 | sr = string(size(result)); |
---|
511 | } |
---|
512 | dbprint(y+1," |
---|
513 | // 'normal' created a list of "+sr+" ring(s). |
---|
514 | // To see the rings, type (if the name of your list is nor): |
---|
515 | show( nor); |
---|
516 | // To access the 1-st ring and map (and similair for the others), type: |
---|
517 | def R = nor[1]; setring R; norid; normap; |
---|
518 | // R/norid is the 1-st ring of the normalization and |
---|
519 | // normap the map from the original basering to R/norid"); |
---|
520 | |
---|
521 | //kill endphi,endid; |
---|
522 | return(result); |
---|
523 | } |
---|
524 | example |
---|
525 | { "EXAMPLE:"; echo = 2; |
---|
526 | ring r=32003,(x,y,z),wp(2,1,2); |
---|
527 | ideal i=z3-xy4; |
---|
528 | list nor=normal(i); |
---|
529 | show(nor); |
---|
530 | def r1=nor[1]; |
---|
531 | setring r1; |
---|
532 | norid; |
---|
533 | normap; |
---|
534 | } |
---|
535 | |
---|
536 | /////////////////////////////////////////////////////////////////////////////// |
---|
537 | static |
---|
538 | proc normalizationPrimes(ideal i,ideal ihp, list #) |
---|
539 | "USAGE: normalizationPrimes(i,ihp[,si]); i prime ideal, ihp map |
---|
540 | (partial normalization), si SB of singular locus |
---|
541 | RETURN: a list of one ring L=R, in R are two ideals |
---|
542 | S,M such that R/M is the normalization |
---|
543 | S is a standardbasis of M |
---|
544 | NOTE: to use the ring: def r=L[1];setring r; |
---|
545 | printlevel >= voice+1: display comments (default: printlevel=0) |
---|
546 | EXAMPLE: example normalizationPrimes; shows an example |
---|
547 | " |
---|
548 | { |
---|
549 | int y = printlevel-voice+2; // y=printlevel (default: y=0) |
---|
550 | |
---|
551 | if(y>=1) |
---|
552 | { |
---|
553 | ""; |
---|
554 | "// START a normalization loop with the ideal"; ""; |
---|
555 | i; ""; |
---|
556 | basering; ""; |
---|
557 | pause(); |
---|
558 | newline; |
---|
559 | } |
---|
560 | |
---|
561 | def BAS=basering; |
---|
562 | list result,keepresult1,keepresult2; |
---|
563 | ideal J,SB,MB; |
---|
564 | int depth,lauf,prdim; |
---|
565 | int ti=timer; |
---|
566 | |
---|
567 | if(size(i)==0) |
---|
568 | { |
---|
569 | if(y>=1) |
---|
570 | { |
---|
571 | "// the ideal was the zero-ideal"; |
---|
572 | } |
---|
573 | execute("ring newR7="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
574 | +ordstr(basering)+");"); |
---|
575 | ideal norid=ideal(0); |
---|
576 | ideal normap=fetch(BAS,ihp); |
---|
577 | export norid; |
---|
578 | export normap; |
---|
579 | result=newR7; |
---|
580 | setring BAS; |
---|
581 | return(result); |
---|
582 | } |
---|
583 | |
---|
584 | if(y>=1) |
---|
585 | { |
---|
586 | "// SB-computation of the input ideal"; |
---|
587 | } |
---|
588 | |
---|
589 | list SM=mstd(i); //here the work starts |
---|
590 | int dimSM = dim(SM[1]); //dimension of variety to normalize |
---|
591 | // Case: Get an ideal containing a unit |
---|
592 | if( dimSM == -1) |
---|
593 | { ""; |
---|
594 | " // A unit ideal was found."; |
---|
595 | " // Stop with partial result computed so far";""; |
---|
596 | |
---|
597 | MB=SM[2]; |
---|
598 | intvec rw; |
---|
599 | list LL=substpart(MB,ihp,0,rw); |
---|
600 | def newR6=LL[1]; |
---|
601 | setring newR6; |
---|
602 | ideal norid=endid; |
---|
603 | ideal normap=endphi; |
---|
604 | kill endid,endphi; |
---|
605 | export norid; |
---|
606 | export normap; |
---|
607 | result=newR6; |
---|
608 | setring BAS; |
---|
609 | return(result); |
---|
610 | } |
---|
611 | |
---|
612 | if(y>=1) |
---|
613 | { |
---|
614 | "// the dimension is:"; ""; |
---|
615 | dimSM;""; |
---|
616 | } |
---|
617 | |
---|
618 | if(size(#)>0) |
---|
619 | { |
---|
620 | list JM=mstd(#[1]); |
---|
621 | if( typeof(attrib(#[1],"isRad"))!="int" ) |
---|
622 | { |
---|
623 | attrib(JM[2],"isRad",0); |
---|
624 | } |
---|
625 | } |
---|
626 | |
---|
627 | if(attrib(i,"isPrim")==1) |
---|
628 | { |
---|
629 | attrib(SM[2],"isPrim",1); |
---|
630 | } |
---|
631 | else |
---|
632 | { |
---|
633 | attrib(SM[2],"isPrim",0); |
---|
634 | } |
---|
635 | if(attrib(i,"isIsolatedSingularity")==1) |
---|
636 | { |
---|
637 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
638 | } |
---|
639 | else |
---|
640 | { |
---|
641 | attrib(SM[2],"isIsolatedSingularity",0); |
---|
642 | } |
---|
643 | if(attrib(i,"isCohenMacaulay")==1) |
---|
644 | { |
---|
645 | attrib(SM[2],"isCohenMacaulay",1); |
---|
646 | } |
---|
647 | else |
---|
648 | { |
---|
649 | attrib(SM[2],"isCohenMacaulay",0); |
---|
650 | } |
---|
651 | if(attrib(i,"isRegInCodim2")==1) |
---|
652 | { |
---|
653 | attrib(SM[2],"isRegInCodim2",1); |
---|
654 | } |
---|
655 | else |
---|
656 | { |
---|
657 | attrib(SM[2],"isRegInCodim2",0); |
---|
658 | } |
---|
659 | if(attrib(i,"isEquidimensional")==1) |
---|
660 | { |
---|
661 | attrib(SM[2],"isEquidimensional",1); |
---|
662 | } |
---|
663 | else |
---|
664 | { |
---|
665 | attrib(SM[2],"isEquidimensional",0); |
---|
666 | } |
---|
667 | if(attrib(i,"isCompleteIntersection")==1) |
---|
668 | { |
---|
669 | attrib(SM[2],"isCompleteIntersection",1); |
---|
670 | } |
---|
671 | else |
---|
672 | { |
---|
673 | attrib(SM[2],"isCompleteIntersection",0); |
---|
674 | } |
---|
675 | |
---|
676 | //the smooth case |
---|
677 | if(size(#)>0) |
---|
678 | { |
---|
679 | if(dim(JM[1])==-1) |
---|
680 | { |
---|
681 | if(y>=1) |
---|
682 | { |
---|
683 | "// the ideal was smooth"; |
---|
684 | } |
---|
685 | MB=SM[2]; |
---|
686 | intvec rw; |
---|
687 | list LL=substpart(MB,ihp,0,rw); |
---|
688 | def newR6=LL[1]; |
---|
689 | setring newR6; |
---|
690 | ideal norid=endid; |
---|
691 | ideal normap=endphi; |
---|
692 | kill endid,endphi; |
---|
693 | export norid; |
---|
694 | export normap; |
---|
695 | result=newR6; |
---|
696 | setring BAS; |
---|
697 | return(result); |
---|
698 | } |
---|
699 | } |
---|
700 | |
---|
701 | //the zero-dimensional case |
---|
702 | if((dim(SM[1])==0)&&(homog(SM[2])==1)) |
---|
703 | { |
---|
704 | if(y>=1) |
---|
705 | { |
---|
706 | "// the ideal was zero-dimensional and homogeneous"; |
---|
707 | } |
---|
708 | MB=maxideal(1); |
---|
709 | intvec rw; |
---|
710 | list LL=substpart(MB,ihp,0,rw); |
---|
711 | def newR5=LL[1]; |
---|
712 | setring newR5; |
---|
713 | ideal norid=endid; |
---|
714 | ideal normap=endphi; |
---|
715 | kill endid,endphi; |
---|
716 | export norid; |
---|
717 | export normap; |
---|
718 | result=newR5; |
---|
719 | setring BAS; |
---|
720 | return(result); |
---|
721 | } |
---|
722 | |
---|
723 | //the one-dimensional case |
---|
724 | //in this case it is a line because |
---|
725 | //it is irreducible and homogeneous |
---|
726 | if((dim(SM[1])==1)&&(attrib(SM[2],"isPrim")==1) |
---|
727 | &&(homog(SM[2])==1)) |
---|
728 | { |
---|
729 | if(y>=1) |
---|
730 | { |
---|
731 | "// the ideal defines a line"; |
---|
732 | } |
---|
733 | MB=SM[2]; |
---|
734 | intvec rw; |
---|
735 | list LL=substpart(MB,ihp,0,rw); |
---|
736 | def newR4=LL[1]; |
---|
737 | setring newR4; |
---|
738 | ideal norid=endid; |
---|
739 | ideal normap=endphi; |
---|
740 | kill endid,endphi; |
---|
741 | export norid; |
---|
742 | export normap; |
---|
743 | result=newR4; |
---|
744 | setring BAS; |
---|
745 | return(result); |
---|
746 | } |
---|
747 | |
---|
748 | //the higher dimensional case |
---|
749 | //we test first of all CohenMacaulay and |
---|
750 | //complete intersection |
---|
751 | if(((size(SM[2])+dim(SM[1]))==nvars(basering))&&(homog(SM[2])==1)) |
---|
752 | { |
---|
753 | //test for complete intersection |
---|
754 | attrib(SM[2],"isCohenMacaulay",1); |
---|
755 | attrib(SM[2],"isCompleteIntersection",1); |
---|
756 | attrib(SM[2],"isEquidimensional",1); |
---|
757 | if(y>=1) |
---|
758 | { |
---|
759 | "// the ideal is a complete intersection"; |
---|
760 | } |
---|
761 | } |
---|
762 | |
---|
763 | //compute the singular locus+lower dimensional components |
---|
764 | if(((attrib(SM[2],"isIsolatedSingularity")==0)||(homog(SM[2])==0)) |
---|
765 | &&(size(#)==0)) |
---|
766 | { |
---|
767 | /* |
---|
768 | write (":a normal-fehler" , |
---|
769 | "basering:",string(basering),"nvars:", nvars(basering), |
---|
770 | "dim(SM[1]):",dim(SM[1]),"ncols(jacob(SM[2]))",ncols(jacob(SM[2])), |
---|
771 | "SM:", SM); |
---|
772 | |
---|
773 | pause(); |
---|
774 | */ |
---|
775 | J=minor(jacob(SM[2]),nvars(basering)-dim(SM[1])); |
---|
776 | //ti=timer; |
---|
777 | if(y >=1 ) |
---|
778 | { |
---|
779 | "// SB of singular locus will be computed"; |
---|
780 | } |
---|
781 | ideal sin=J+SM[2]; |
---|
782 | |
---|
783 | //kills the embeded components |
---|
784 | |
---|
785 | list JM=mstd(sin); |
---|
786 | //JM[1] SB os singular locus, JM[2]=minbasis of singular locus |
---|
787 | //SM[1] SB of irreducible component, SM[2] minbasis |
---|
788 | if(y>=1) |
---|
789 | { |
---|
790 | "// the dimension of the singular locus is:";""; |
---|
791 | dim(JM[1]); ""; |
---|
792 | } |
---|
793 | attrib(JM[2],"isRad",0); |
---|
794 | // timer-ti; |
---|
795 | attrib(JM[1],"isSB",1); |
---|
796 | if(dim(JM[1])==-1) |
---|
797 | { |
---|
798 | if(y>=1) |
---|
799 | { |
---|
800 | "// the ideal is smooth"; |
---|
801 | } |
---|
802 | MB=SM[2]; |
---|
803 | intvec rw; |
---|
804 | list LL=substpart(MB,ihp,0,rw); |
---|
805 | def newR3=LL[1]; |
---|
806 | setring newR3; |
---|
807 | ideal norid=endid; |
---|
808 | ideal normap=endphi; |
---|
809 | kill endid,endphi; |
---|
810 | export norid; |
---|
811 | export normap; |
---|
812 | result=newR3; |
---|
813 | setring BAS; |
---|
814 | return(result); |
---|
815 | } |
---|
816 | if(dim(JM[1])==0) |
---|
817 | { |
---|
818 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
819 | } |
---|
820 | if(dim(JM[1])<=dim(SM[1])-2) |
---|
821 | { |
---|
822 | attrib(SM[2],"isRegInCodim2",1); |
---|
823 | } |
---|
824 | } |
---|
825 | else |
---|
826 | { |
---|
827 | if(size(#)==0) |
---|
828 | { |
---|
829 | list JM=maxideal(1),maxideal(1); |
---|
830 | attrib(JM[1],"isSB",1); |
---|
831 | attrib(SM[2],"isRegInCodim2",1); |
---|
832 | } |
---|
833 | } |
---|
834 | if((attrib(SM[2],"isRegInCodim2")==1)&&(attrib(SM[2],"isCohenMacaulay")==1)) |
---|
835 | { |
---|
836 | if(y>=1) |
---|
837 | { |
---|
838 | "// the ideal was CohenMacaulay and regular in codimension 2"; |
---|
839 | } |
---|
840 | MB=SM[2]; |
---|
841 | intvec rw; |
---|
842 | list LL=substpart(MB,ihp,0,rw); |
---|
843 | def newR6=LL[1]; |
---|
844 | setring newR6; |
---|
845 | ideal norid=endid; |
---|
846 | ideal normap=endphi; |
---|
847 | kill endid,endphi; |
---|
848 | export norid; |
---|
849 | export normap; |
---|
850 | result=newR6; |
---|
851 | setring BAS; |
---|
852 | return(result); |
---|
853 | } |
---|
854 | //if it is an isolated singularity things are easier |
---|
855 | //JM ideal of singular locus, SM ideal of variety |
---|
856 | if((dim(JM[1])==0)&&(homog(SM[2])==1)) //isolated sing. case |
---|
857 | { |
---|
858 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
859 | ideal SL=simplify(reduce(maxideal(1),SM[1]),2); |
---|
860 | //vars not contained in ideal |
---|
861 | ideal Ann=quotient(SM[2],SL[1]); |
---|
862 | ideal qAnn=simplify(reduce(Ann,SM[1]),2); |
---|
863 | |
---|
864 | //qAnn=0 ==> the first var(=SL[1]) not contained in SM is a nzd of R/SM |
---|
865 | if(size(qAnn)==0) |
---|
866 | { |
---|
867 | if(y>=1) |
---|
868 | { |
---|
869 | ""; |
---|
870 | "// the ideal rad(J):"; |
---|
871 | ""; |
---|
872 | maxideal(1); |
---|
873 | newline; |
---|
874 | } |
---|
875 | //again test for normality |
---|
876 | //Hom(I,R)=R |
---|
877 | list RR; |
---|
878 | RR=SM[1],SM[2],maxideal(1),SL[1]; |
---|
879 | ti=timer; |
---|
880 | RR=HomJJ(RR,y); |
---|
881 | if(RR[2]==0) |
---|
882 | { |
---|
883 | def newR=RR[1]; |
---|
884 | setring newR; |
---|
885 | map psi=BAS,endphi; |
---|
886 | // ti=timer; |
---|
887 | list tluser=normalizationPrimes(endid,psi(ihp)); |
---|
888 | |
---|
889 | // timer-ti; |
---|
890 | setring BAS; |
---|
891 | return(tluser); |
---|
892 | } |
---|
893 | MB=SM[2]; |
---|
894 | execute("ring newR7="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
895 | +ordstr(basering)+");"); |
---|
896 | ideal norid=fetch(BAS,MB); |
---|
897 | ideal normap=fetch(BAS,ihp); |
---|
898 | export norid; |
---|
899 | export normap; |
---|
900 | result=newR7; |
---|
901 | // the following 2 lines don't work : nor is not defined |
---|
902 | //def R = nor[1]; setring R; //make the 1-st ring the basering |
---|
903 | //norid; normap; //data of the normalization) |
---|
904 | setring BAS; |
---|
905 | return(result); |
---|
906 | |
---|
907 | } |
---|
908 | //Now the case where qAnn!=0, i.e.SL[1] is a zero divisor of R/SM |
---|
909 | //and we have found a splitting: id and id1 |
---|
910 | //id=qAnn+SM[2] defines components of R/SM in the complement of V(SL[1]) |
---|
911 | //id1 defines components of R/SM in the complement of V(id) |
---|
912 | //?????instead of id1 we can take SL[1]+Ann+SM[2]??????????? |
---|
913 | else |
---|
914 | { |
---|
915 | ideal id=qAnn+SM[2]; |
---|
916 | |
---|
917 | attrib(id,"isCohenMacaulay",0); |
---|
918 | attrib(id,"isPrim",0); |
---|
919 | attrib(id,"isIsolatedSingularity",1); |
---|
920 | attrib(id,"isRegInCodim2",0); |
---|
921 | attrib(id,"isCompleteIntersection",0); |
---|
922 | attrib(id,"isEquidimensional",0); |
---|
923 | |
---|
924 | keepresult1=normalizationPrimes(id,ihp); |
---|
925 | ideal id1=quotient(SM[2],Ann)+SM[2]; |
---|
926 | // evtl. qAnn statt Ann nehmen |
---|
927 | // ideal id=SL[1]+SM[2]; |
---|
928 | |
---|
929 | attrib(id1,"isCohenMacaulay",0); |
---|
930 | attrib(id1,"isPrim",0); |
---|
931 | attrib(id1,"isIsolatedSingularity",1); |
---|
932 | attrib(id1,"isRegInCodim2",0); |
---|
933 | attrib(id1,"isCompleteIntersection",0); |
---|
934 | attrib(id1,"isEquidimensional",0); |
---|
935 | |
---|
936 | keepresult2=normalizationPrimes(id1,ihp); |
---|
937 | |
---|
938 | for(lauf=1;lauf<=size(keepresult2);lauf++) |
---|
939 | { |
---|
940 | keepresult1=insert(keepresult1,keepresult2[lauf]); |
---|
941 | } |
---|
942 | return(keepresult1); |
---|
943 | } |
---|
944 | } |
---|
945 | |
---|
946 | //test for non-normality |
---|
947 | //Hom(I,I)<>R |
---|
948 | //we can use Hom(I,I) to continue |
---|
949 | |
---|
950 | ideal SL=simplify(reduce(JM[2],SM[1]),2); |
---|
951 | ideal Ann=quotient(SM[2],SL[1]); |
---|
952 | ideal qAnn=simplify(reduce(Ann,SM[1]),2); |
---|
953 | |
---|
954 | if(size(qAnn)==0) |
---|
955 | { |
---|
956 | list RR; |
---|
957 | list RS; |
---|
958 | //now we have to compute the radical |
---|
959 | if(y>=1) |
---|
960 | { |
---|
961 | "// radical computation of singular locus"; |
---|
962 | } |
---|
963 | |
---|
964 | if((attrib(JM[2],"isRad")==0)&&(attrib(SM[2],"isEquidimensional")==0)) |
---|
965 | { |
---|
966 | //J=radical(JM[2]); |
---|
967 | J=radical(SM[2]+ideal(SL[1])); |
---|
968 | |
---|
969 | // evtl. test auf J=SM[2]+ideal(SL[1]) dann schon normal |
---|
970 | } |
---|
971 | if((attrib(JM[2],"isRad")==0)&&(attrib(SM[2],"isEquidimensional")==1)) |
---|
972 | { |
---|
973 | ideal JJ=SM[2]+ideal(SL[1]); |
---|
974 | // evtl. test auf J=SM[2]+ideal(SL[1]) dann schon normal |
---|
975 | if(attrib(SM[2],"isCompleteIntersection")==0) |
---|
976 | { |
---|
977 | J=equiRadical(JM[2]); |
---|
978 | //J=equiRadical(JJ); |
---|
979 | } |
---|
980 | else |
---|
981 | { |
---|
982 | //J=radical(JM[2]); |
---|
983 | J=quotient(JJ,minor(jacob(JJ),size(JJ))); |
---|
984 | } |
---|
985 | } |
---|
986 | if(y>=1) |
---|
987 | { |
---|
988 | "// radical is equal to:";""; |
---|
989 | J; |
---|
990 | ""; |
---|
991 | } |
---|
992 | |
---|
993 | JM=J,J; |
---|
994 | |
---|
995 | //evtl. fuer SL[1] anderen Nichtnullteiler aus J waehlen |
---|
996 | RR=SM[1],SM[2],JM[2],SL[1]; |
---|
997 | |
---|
998 | // evtl eine geeignete Potenz von JM? |
---|
999 | if(y>=1) |
---|
1000 | { |
---|
1001 | "// compute Hom(rad(J),rad(J))"; |
---|
1002 | } |
---|
1003 | |
---|
1004 | RS=HomJJ(RR,y); |
---|
1005 | |
---|
1006 | if(RS[2]==1) |
---|
1007 | { |
---|
1008 | def lastR=RS[1]; |
---|
1009 | setring lastR; |
---|
1010 | map psi1=BAS,endphi; |
---|
1011 | ideal norid=endid; |
---|
1012 | ideal normap=psi1(ihp); |
---|
1013 | kill endid,endphi; |
---|
1014 | export norid; |
---|
1015 | export normap; |
---|
1016 | setring BAS; |
---|
1017 | return(lastR); |
---|
1018 | } |
---|
1019 | int n=nvars(basering); |
---|
1020 | ideal MJ=JM[2]; |
---|
1021 | |
---|
1022 | def newR=RS[1]; |
---|
1023 | setring newR; |
---|
1024 | |
---|
1025 | map psi=BAS,endphi; |
---|
1026 | list tluser= |
---|
1027 | normalizationPrimes(endid,psi(ihp),simplify(psi(MJ)+endid,4)); |
---|
1028 | setring BAS; |
---|
1029 | return(tluser); |
---|
1030 | } |
---|
1031 | // A component with singular locus the whole component found |
---|
1032 | if( Ann == 1) |
---|
1033 | { |
---|
1034 | "// Input appeared not to be a radical ideal!"; |
---|
1035 | "// A (everywhere singular) component with ideal"; |
---|
1036 | "// equal to its Jacobian ideal was found"; |
---|
1037 | "// Procedure will stop with partial result computed so far";""; |
---|
1038 | |
---|
1039 | MB=SM[2]; |
---|
1040 | intvec rw; |
---|
1041 | list LL=substpart(MB,ihp,0,rw); |
---|
1042 | def newR6=LL[1]; |
---|
1043 | setring newR6; |
---|
1044 | ideal norid=endid; |
---|
1045 | ideal normap=endphi; |
---|
1046 | kill endid,endphi; |
---|
1047 | export norid; |
---|
1048 | export normap; |
---|
1049 | result=newR6; |
---|
1050 | setring BAS; |
---|
1051 | return(result); |
---|
1052 | } |
---|
1053 | else |
---|
1054 | { |
---|
1055 | int equi=attrib(SM[2],"isEquidimensional"); |
---|
1056 | ideal new1=qAnn+SM[2]; |
---|
1057 | execute("ring newR1="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
1058 | +ordstr(basering)+");"); |
---|
1059 | if(y>=1) |
---|
1060 | { |
---|
1061 | "// zero-divisor found"; |
---|
1062 | } |
---|
1063 | ideal vid=fetch(BAS,new1); |
---|
1064 | ideal ihp=fetch(BAS,ihp); |
---|
1065 | attrib(vid,"isCohenMacaulay",0); |
---|
1066 | attrib(vid,"isPrim",0); |
---|
1067 | attrib(vid,"isIsolatedSingularity",0); |
---|
1068 | attrib(vid,"isRegInCodim2",0); |
---|
1069 | if(equi==1) |
---|
1070 | { |
---|
1071 | attrib(vid,"isEquidimensional",1); |
---|
1072 | } |
---|
1073 | else |
---|
1074 | { |
---|
1075 | attrib(vid,"isEquidimensional",0); |
---|
1076 | } |
---|
1077 | attrib(vid,"isCompleteIntersection",0); |
---|
1078 | |
---|
1079 | keepresult1=normalizationPrimes(vid,ihp); |
---|
1080 | |
---|
1081 | setring BAS; |
---|
1082 | ideal new2=quotient(SM[2],Ann)+SM[2]; |
---|
1083 | // evtl. qAnn nehmen |
---|
1084 | execute("ring newR2="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
1085 | +ordstr(basering)+");"); |
---|
1086 | |
---|
1087 | ideal vid=fetch(BAS,new2); |
---|
1088 | ideal ihp=fetch(BAS,ihp); |
---|
1089 | attrib(vid,"isCohenMacaulay",0); |
---|
1090 | attrib(vid,"isPrim",0); |
---|
1091 | attrib(vid,"isIsolatedSingularity",0); |
---|
1092 | attrib(vid,"isRegInCodim2",0); |
---|
1093 | if(equi==1) |
---|
1094 | { |
---|
1095 | attrib(vid,"isEquidimensional",1); |
---|
1096 | } |
---|
1097 | else |
---|
1098 | { |
---|
1099 | attrib(vid,"isEquidimensional",0); |
---|
1100 | } |
---|
1101 | attrib(vid,"isCompleteIntersection",0); |
---|
1102 | |
---|
1103 | keepresult2=normalizationPrimes(vid,ihp); |
---|
1104 | |
---|
1105 | setring BAS; |
---|
1106 | for(lauf=1;lauf<=size(keepresult2);lauf++) |
---|
1107 | { |
---|
1108 | keepresult1=insert(keepresult1,keepresult2[lauf]); |
---|
1109 | } |
---|
1110 | return(keepresult1); |
---|
1111 | } |
---|
1112 | } |
---|
1113 | example |
---|
1114 | { "EXAMPLE:";echo = 2; |
---|
1115 | //Huneke |
---|
1116 | ring qr=31991,(a,b,c,d,e),dp; |
---|
1117 | ideal i= |
---|
1118 | 5abcde-a5-b5-c5-d5-e5, |
---|
1119 | ab3c+bc3d+a3be+cd3e+ade3, |
---|
1120 | a2bc2+b2cd2+a2d2e+ab2e2+c2de2, |
---|
1121 | abc5-b4c2d-2a2b2cde+ac3d2e-a4de2+bcd2e3+abe5, |
---|
1122 | ab2c4-b5cd-a2b3de+2abc2d2e+ad4e2-a2bce3-cde5, |
---|
1123 | a3b2cd-bc2d4+ab2c3e-b5de-d6e+3abcd2e2-a2be4-de6, |
---|
1124 | a4b2c-abc2d3-ab5e-b3c2de-ad5e+2a2bcde2+cd2e4, |
---|
1125 | b6c+bc6+a2b4e-3ab2c2de+c4d2e-a3cde2-abd3e2+bce5; |
---|
1126 | |
---|
1127 | list pr=normalizationPrimes(i); |
---|
1128 | def r1=pr[1]; |
---|
1129 | setring r1; |
---|
1130 | norid; |
---|
1131 | normap; |
---|
1132 | } |
---|
1133 | /////////////////////////////////////////////////////////////////////////////// |
---|
1134 | static |
---|
1135 | proc substpart(ideal endid, ideal endphi, int homo, intvec rw) |
---|
1136 | |
---|
1137 | "//Repeated application of elimpart to endid, until no variables can be |
---|
1138 | //directy substituded. homo=1 if input is homogeneous, rw contains |
---|
1139 | //original weights, endphi (partial) normalization map"; |
---|
1140 | |
---|
1141 | { |
---|
1142 | def newRing=basering; |
---|
1143 | int ii,jj; |
---|
1144 | map phi = basering,maxideal(1); |
---|
1145 | |
---|
1146 | //endid=diagon(endid); |
---|
1147 | |
---|
1148 | list Le = elimpart(endid); |
---|
1149 | //this proc and the next loop try to |
---|
1150 | int q = size(Le[2]); //substitute as many variables as possible |
---|
1151 | intvec rw1 = 0; //indices of substituted variables |
---|
1152 | rw1[nvars(basering)] = 0; |
---|
1153 | rw1 = rw1+1; |
---|
1154 | |
---|
1155 | while( size(Le[2]) != 0 ) |
---|
1156 | { |
---|
1157 | endid = Le[1]; |
---|
1158 | map ps = newRing,Le[5]; |
---|
1159 | |
---|
1160 | phi = ps(phi); |
---|
1161 | for(ii=1;ii<=size(Le[2])-1;ii++) |
---|
1162 | { |
---|
1163 | phi=phi(phi); |
---|
1164 | } |
---|
1165 | //eingefuegt wegen x2-y2z2+z3 |
---|
1166 | kill ps; |
---|
1167 | |
---|
1168 | for( ii=1; ii<=size(rw1); ii++ ) |
---|
1169 | { |
---|
1170 | if( Le[4][ii]==0 ) |
---|
1171 | { |
---|
1172 | rw1[ii]=0; //look for substituted vars |
---|
1173 | } |
---|
1174 | } |
---|
1175 | Le=elimpart(endid); |
---|
1176 | q = q + size(Le[2]); |
---|
1177 | } |
---|
1178 | endphi = phi(endphi); |
---|
1179 | |
---|
1180 | //---------- return ----------------------------------------------------------- |
---|
1181 | // in the homogeneous case put weights for the remaining vars correctly, i.e. |
---|
1182 | // delete from rw those weights for which the corresponding entry of rw1 is 0 |
---|
1183 | |
---|
1184 | if (homo==1 && nvars(newRing)-q >1 && size(endid) >0 ) |
---|
1185 | { |
---|
1186 | jj=1; |
---|
1187 | for( ii=2; ii<size(rw1); ii++) |
---|
1188 | { |
---|
1189 | jj++; |
---|
1190 | if( rw1[ii]==0 ) |
---|
1191 | { |
---|
1192 | rw=rw[1..jj-1],rw[jj+1..size(rw)]; |
---|
1193 | jj=jj-1; |
---|
1194 | } |
---|
1195 | } |
---|
1196 | if( rw1[1]==0 ) { rw=rw[2..size(rw)]; } |
---|
1197 | if( rw1[size(rw1)]==0 ){ rw=rw[1..size(rw)-1]; } |
---|
1198 | |
---|
1199 | ring lastRing = char(basering),(T(1..nvars(newRing)-q)),(a(rw),dp); |
---|
1200 | } |
---|
1201 | else |
---|
1202 | { |
---|
1203 | ring lastRing = char(basering),(T(1..nvars(newRing)-q)),dp; |
---|
1204 | } |
---|
1205 | |
---|
1206 | ideal lastmap; |
---|
1207 | q = 1; |
---|
1208 | for(ii=1; ii<=size(rw1); ii++ ) |
---|
1209 | { |
---|
1210 | if ( rw1[ii]==1 ) { lastmap[ii] = T(q); q=q+1; } |
---|
1211 | if ( rw1[ii]==0 ) { lastmap[ii] = 0; } |
---|
1212 | } |
---|
1213 | map phi1 = newRing,lastmap; |
---|
1214 | ideal endid = phi1(endid); |
---|
1215 | ideal endphi = phi1(endphi); |
---|
1216 | export(endid); |
---|
1217 | export(endphi); |
---|
1218 | list L = lastRing; |
---|
1219 | setring newRing; |
---|
1220 | return(L); |
---|
1221 | } |
---|
1222 | /////////////////////////////////////////////////////////////////////////////// |
---|
1223 | static |
---|
1224 | proc diagon(ideal i) |
---|
1225 | { |
---|
1226 | matrix m; |
---|
1227 | intvec iv = option(get); |
---|
1228 | option(redSB); |
---|
1229 | ideal j=liftstd(jet(i,1),m); |
---|
1230 | option(set,iv); |
---|
1231 | return(ideal(matrix(i)*m)); |
---|
1232 | } |
---|
1233 | ///////////////////////////////////////////////////////////////////////////// |
---|
1234 | /* |
---|
1235 | Examples: |
---|
1236 | LIB"normal.lib"; |
---|
1237 | //Huneke |
---|
1238 | ring qr=31991,(a,b,c,d,e),dp; |
---|
1239 | ideal i= |
---|
1240 | 5abcde-a5-b5-c5-d5-e5, |
---|
1241 | ab3c+bc3d+a3be+cd3e+ade3, |
---|
1242 | a2bc2+b2cd2+a2d2e+ab2e2+c2de2, |
---|
1243 | abc5-b4c2d-2a2b2cde+ac3d2e-a4de2+bcd2e3+abe5, |
---|
1244 | ab2c4-b5cd-a2b3de+2abc2d2e+ad4e2-a2bce3-cde5, |
---|
1245 | a3b2cd-bc2d4+ab2c3e-b5de-d6e+3abcd2e2-a2be4-de6, |
---|
1246 | a4b2c-abc2d3-ab5e-b3c2de-ad5e+2a2bcde2+cd2e4, |
---|
1247 | b6c+bc6+a2b4e-3ab2c2de+c4d2e-a3cde2-abd3e2+bce5; |
---|
1248 | |
---|
1249 | |
---|
1250 | //Vasconcelos |
---|
1251 | ring r=32003,(x,y,z,w,t),dp; |
---|
1252 | ideal i= |
---|
1253 | x2+zw, |
---|
1254 | y3+xwt, |
---|
1255 | xw3+z3t+ywt2, |
---|
1256 | y2w4-xy2z2t-w3t3; |
---|
1257 | |
---|
1258 | //Theo1 |
---|
1259 | ring r=32003,(x,y,z),wp(2,3,6); |
---|
1260 | ideal i=zy2-zx3-x6; |
---|
1261 | |
---|
1262 | //Theo1a (CohenMacaulay and regular in codimension 2) |
---|
1263 | ring r=32003,(x,y,z,u),wp(2,3,6,6); |
---|
1264 | ideal i=zy2-zx3-x6+u2; |
---|
1265 | |
---|
1266 | |
---|
1267 | //Theo2 |
---|
1268 | ring r=32003,(x,y,z),wp(3,4,12); |
---|
1269 | ideal i=z*(y3-x4)+x8; |
---|
1270 | |
---|
1271 | //Theo2a |
---|
1272 | ring r=32003,(T(1..4)),wp(3,4,12,17); |
---|
1273 | ideal i= |
---|
1274 | T(1)^8-T(1)^4*T(3)+T(2)^3*T(3), |
---|
1275 | T(1)^4*T(2)^2-T(2)^2*T(3)+T(1)*T(4), |
---|
1276 | T(1)^7+T(1)^3*T(2)^3-T(1)^3*T(3)+T(2)*T(4), |
---|
1277 | T(1)^6*T(2)*T(3)+T(1)^2*T(2)^4*T(3)+T(1)^3*T(2)^2*T(4)-T(1)^2*T(2)*T(3)^2+T(4)^2; |
---|
1278 | |
---|
1279 | //Theo3 |
---|
1280 | ring r=32003,(x,y,z),wp(3,5,15); |
---|
1281 | ideal i=z*(y3-x5)+x10; |
---|
1282 | |
---|
1283 | |
---|
1284 | //Theo4 |
---|
1285 | ring r=32003,(x,y,z),dp; |
---|
1286 | ideal i=(x-y)*(x-z)*(y-z); |
---|
1287 | |
---|
1288 | //Theo5 |
---|
1289 | ring r=32003,(x,y,z),wp(2,1,2); |
---|
1290 | ideal i=z3-xy4; |
---|
1291 | |
---|
1292 | //Theo6 |
---|
1293 | ring r=32003,(x,y,z),dp; |
---|
1294 | ideal i=x2y2+x2z2+y2z2; |
---|
1295 | |
---|
1296 | ring r=32003,(a,b,c,d,e,f),dp; |
---|
1297 | ideal i= |
---|
1298 | bf, |
---|
1299 | af, |
---|
1300 | bd, |
---|
1301 | ad; |
---|
1302 | |
---|
1303 | //Beispiel, wo vorher Primaerzerlegung schneller |
---|
1304 | //ist CM |
---|
1305 | //Sturmfels |
---|
1306 | ring r=32003,(b,s,t,u,v,w,x,y,z),dp; |
---|
1307 | ideal i= |
---|
1308 | bv+su, |
---|
1309 | bw+tu, |
---|
1310 | sw+tv, |
---|
1311 | by+sx, |
---|
1312 | bz+tx, |
---|
1313 | sz+ty, |
---|
1314 | uy+vx, |
---|
1315 | uz+wx, |
---|
1316 | vz+wy, |
---|
1317 | bvz; |
---|
1318 | |
---|
1319 | //J S/Y |
---|
1320 | ring r=32003,(x,y,z,t),dp; |
---|
1321 | ideal i= |
---|
1322 | x2z+xzt, |
---|
1323 | xyz, |
---|
1324 | xy2-xyt, |
---|
1325 | x2y+xyt; |
---|
1326 | |
---|
1327 | //St_S/Y |
---|
1328 | ring r=32003,(b,s,t,u,v,w,x,y,z),dp; |
---|
1329 | ideal i= |
---|
1330 | wy-vz, |
---|
1331 | vx-uy, |
---|
1332 | tv-sw, |
---|
1333 | su-bv, |
---|
1334 | tuy-bvz; |
---|
1335 | |
---|
1336 | //dauert laenger |
---|
1337 | //Horrocks: |
---|
1338 | ring r=32003,(a,b,c,d,e,f),dp; |
---|
1339 | ideal i= |
---|
1340 | adef-16000be2f+16001cef2, |
---|
1341 | ad2f+8002bdef+8001cdf2, |
---|
1342 | abdf-16000b2ef+16001bcf2, |
---|
1343 | a2df+8002abef+8001acf2, |
---|
1344 | ad2e-8000bde2-7999cdef, |
---|
1345 | acde-16000bce2+16001c2ef, |
---|
1346 | a2de-8000abe2-7999acef, |
---|
1347 | acd2+8002bcde+8001c2df, |
---|
1348 | abd2-8000b2de-7999bcdf, |
---|
1349 | a2d2+9603abde-10800b2e2-9601acdf+800bcef+11601c2f2, |
---|
1350 | abde-8000b2e2-acdf-16001bcef-8001c2f2, |
---|
1351 | abcd-16000b2ce+16001bc2f, |
---|
1352 | a2cd+8002abce+8001ac2f, |
---|
1353 | a2bd-8000ab2e-7999abcf, |
---|
1354 | ab3f-3bdf3, |
---|
1355 | a2b2f-2adf3-16000bef3+16001cf4, |
---|
1356 | a3bf+4aef3, |
---|
1357 | ac3e-10668cde3, |
---|
1358 | a2c2e+10667ade3+16001be4+5334ce3f, |
---|
1359 | a3ce+10669ae3f, |
---|
1360 | bc3d+8001cd3e, |
---|
1361 | ac3d+8000bc3e+16001cd2e2+8001c4f, |
---|
1362 | b2c2d+16001ad4+4000bd3e+12001cd3f, |
---|
1363 | b2c2e-10668bc3f-10667cd2ef, |
---|
1364 | abc2e-cde2f, |
---|
1365 | b3cd-8000bd3f, |
---|
1366 | b3ce-10668b2c2f-10667bd2ef, |
---|
1367 | abc2f-cdef2, |
---|
1368 | a2bce-16000be3f+16001ce2f2, |
---|
1369 | ab3d-8000b4e-8001b3cf+16000bd2f2, |
---|
1370 | ab2cf-bdef2, |
---|
1371 | a2bcf-16000be2f2+16001cef3, |
---|
1372 | a4d-8000a3be+8001a3cf-2ae2f2; |
---|
1373 | |
---|
1374 | |
---|
1375 | ring r=32003,(b,s,t,u,v,w,x,y,z),dp; |
---|
1376 | |
---|
1377 | ideal k= |
---|
1378 | wy-vz, |
---|
1379 | vx-uy, |
---|
1380 | tv-sw, |
---|
1381 | su-bv, |
---|
1382 | tuy-bvz; |
---|
1383 | ideal j=x2y2+x2z2+y2z2; |
---|
1384 | ideal i=mstd(intersect(j,k))[2]; |
---|
1385 | |
---|
1386 | //22 |
---|
1387 | ring r=32003,(b,s,t,u,v,w,x,y,z),dp; |
---|
1388 | ideal i= |
---|
1389 | wx2y3-vx2y2z+wx2yz2+wy3z2-vx2z3-vy2z3, |
---|
1390 | vx3y2-ux2y3+vx3z2-ux2yz2+vxy2z2-uy3z2, |
---|
1391 | tvx2y2-swx2y2+tvx2z2-swx2z2+tvy2z2-swy2z2, |
---|
1392 | sux2y2-bvx2y2+sux2z2-bvx2z2+suy2z2-bvy2z2, |
---|
1393 | tux2y3-bvx2y2z+tux2yz2+tuy3z2-bvx2z3-bvy2z3; |
---|
1394 | |
---|
1395 | |
---|
1396 | //riemenschneider |
---|
1397 | //33 |
---|
1398 | //normal+primary 3 |
---|
1399 | //primary 9 |
---|
1400 | //radical 1 |
---|
1401 | //minAssPrimes 2 |
---|
1402 | ring r=32000,(p,q,s,t,u,v,w,x,y,z),wp(1,1,1,1,1,1,2,1,1,1); |
---|
1403 | ideal i= |
---|
1404 | xz, |
---|
1405 | vx, |
---|
1406 | ux, |
---|
1407 | su, |
---|
1408 | qu, |
---|
1409 | txy, |
---|
1410 | stx, |
---|
1411 | qtx, |
---|
1412 | uv2z-uwz, |
---|
1413 | uv3-uvw, |
---|
1414 | puv2-puw; |
---|
1415 | |
---|
1416 | ring r=0,(u,v,w,x,y,z),wp(1,1,1,3,2,1); |
---|
1417 | ideal i=wx,wy,wz,vx,vy,vz,ux,uy,uz,y3-x2; |
---|
1418 | |
---|
1419 | |
---|
1420 | |
---|
1421 | */ |
---|
1422 | |
---|