1 | // $Id: normal.lib,v 1.1 1997-11-05 18:16:55 Singular Exp $ |
---|
2 | /////////////////////////////////////////////////////////////////////////////// |
---|
3 | // normal.lib |
---|
4 | // algorithms for computing the normalization based on |
---|
5 | // the ideas of De Jong,Vasconcelos |
---|
6 | // written by Gert-Martin Greuel and Gerhard Pfister |
---|
7 | /////////////////////////////////////////////////////////////////////////////// |
---|
8 | |
---|
9 | LIBRARY: normal.lib: PROCEDURE FOR NORMALIZATION (I) |
---|
10 | |
---|
11 | normal(ideal I) |
---|
12 | // computes a set of rings such that their product is the |
---|
13 | // normalization of the reduced basering/I |
---|
14 | |
---|
15 | LIB "sing.lib"; |
---|
16 | LIB "primdec.lib"; |
---|
17 | LIB "elim.lib"; |
---|
18 | LIB "presolve.lib"; |
---|
19 | /////////////////////////////////////////////////////////////////////////////// |
---|
20 | |
---|
21 | proc isR_HomJR (list Li) |
---|
22 | USAGE: isR_HomJR (Li); Li = list: ideal SBid, ideal J, poly p |
---|
23 | COMPUTE: module Hom_R(J,R) = R:J and compare with R |
---|
24 | ASSUME: R = P/SBid, P = basering |
---|
25 | SBid = standard basis of an ideal in P, |
---|
26 | J = ideal in P containing the polynomial p, |
---|
27 | p = nonzero divisor of R |
---|
28 | RETURN: 1 if R = R:J, 0 if not |
---|
29 | EXAMPLE: example isR_HomJR; shows an example |
---|
30 | { |
---|
31 | int n, ii; |
---|
32 | def P = basering; |
---|
33 | ideal SBid = Li[1]; |
---|
34 | ideal J = Li[2]; |
---|
35 | poly p = Li[3]; |
---|
36 | attrib(SBid,"isSB",1); |
---|
37 | attrib(p,"isSB",1); |
---|
38 | qring R = SBid; |
---|
39 | ideal J = fetch(P,J); |
---|
40 | poly p = fetch(P,p); |
---|
41 | ideal f = quotient(p,J); |
---|
42 | ideal lp = std(p); |
---|
43 | n=1; |
---|
44 | for (ii=1; ii<=size(f); ii++ ) |
---|
45 | { |
---|
46 | if ( reduce(f[ii],lp) != 0) |
---|
47 | { n = 0; break; } |
---|
48 | } |
---|
49 | return (n); |
---|
50 | //?spaeter hier einen Test ob Hom(I,R) = Hom(I,I)? |
---|
51 | } |
---|
52 | example |
---|
53 | {"EXAMPLE:"; echo = 2; |
---|
54 | ring r = 0,(x,y,z),dp; |
---|
55 | ideal id = y7-x5+z2; |
---|
56 | ideal J = x3,y+z; |
---|
57 | poly p = xy; |
---|
58 | list Li = std(id),J,p; |
---|
59 | isR_HomJR (Li); |
---|
60 | |
---|
61 | ring s = 0,(t,x,y),dp; |
---|
62 | ideal id = x2-y2*(y-t); |
---|
63 | ideal J = jacob(id); |
---|
64 | poly p = J[1]; |
---|
65 | list Li = std(id),J,p; |
---|
66 | isR_HomJR (Li); |
---|
67 | } |
---|
68 | /////////////////////////////////////////////////////////////////////////////// |
---|
69 | |
---|
70 | proc extraweight (list # ) |
---|
71 | USAGE: extraweight (P); P=name of an existing ring (true name, not a string) |
---|
72 | RETURN: intvec, size=nvars(P), consisting of the weights of the variables of P |
---|
73 | NOTE: This is useful when enlarging P but keeping the weights of the old |
---|
74 | variables |
---|
75 | EXAMPLE: example extraweight; shows an example |
---|
76 | { |
---|
77 | int ii,q,fi,fo,fia; |
---|
78 | intvec rw,nw; |
---|
79 | string os; |
---|
80 | def P = #[1]; |
---|
81 | string osP = ordstr(P); |
---|
82 | fo = 1; |
---|
83 | //------------------------- find weights in ordstr(P) ------------------------- |
---|
84 | fi = find(osP,"(",fo); |
---|
85 | fia = find(osP,"a",fo)+find(osP,"w",fo)+find(osP,"W",fo); |
---|
86 | while ( fia ) |
---|
87 | { |
---|
88 | os = osP[fi+1,find(osP,")",fi)-fi-1]; |
---|
89 | if( find(os,",") ) |
---|
90 | { |
---|
91 | execute "nw = "+os+";"; |
---|
92 | if( size(nw) > ii ) |
---|
93 | { |
---|
94 | rw = rw,nw[ii+1..size(nw)]; |
---|
95 | } |
---|
96 | else { ii = ii - size(nw); } |
---|
97 | |
---|
98 | if( find(osP[1,fi],"a",fo) ) { ii = size(nw); } |
---|
99 | } |
---|
100 | else |
---|
101 | { |
---|
102 | execute "q = "+os+";"; |
---|
103 | if( q > ii ) |
---|
104 | { |
---|
105 | nw = 0; nw[q-ii] = 0; |
---|
106 | nw = nw + 1; //creates an intvec 1,...,1 of length q-ii |
---|
107 | rw = rw,nw; |
---|
108 | } |
---|
109 | else { ii = ii - q; } |
---|
110 | } |
---|
111 | fo = fi+1; |
---|
112 | fi = find(osP,"(",fo); |
---|
113 | fia = find(osP,"a",fo)+find(osP,"w",fo)+find(osP,"W",fo); |
---|
114 | } |
---|
115 | //-------------- adjust weight vector to length = nvars(P) ------------------- |
---|
116 | if( fo > 1 ) |
---|
117 | { // case when weights were found |
---|
118 | rw = rw[2..size(rw)]; |
---|
119 | if( size(rw) > nvars(P) ) |
---|
120 | { |
---|
121 | rw = rw[1..nvars(P)]; |
---|
122 | } |
---|
123 | if( size(rw) < nvars(P) ) |
---|
124 | { |
---|
125 | nw=0; nw[nvars(P)-size(rw)]=0; nw=nw+1; rw=rw,nw; |
---|
126 | } |
---|
127 | } |
---|
128 | else |
---|
129 | { // case when no weights were found |
---|
130 | rw[nvars(P)]= 0; rw=rw+1; |
---|
131 | } |
---|
132 | return(rw); |
---|
133 | } |
---|
134 | example |
---|
135 | {"EXAMPLE:"; echo = 2; |
---|
136 | ring r0 = 0,(x,y,z),dp; |
---|
137 | extraweight(r0); |
---|
138 | ring r1 = 0,x(1..5),(ds(3),wp(2,3)); |
---|
139 | extraweight(r1); |
---|
140 | ring r2 = 0,x(1..5),(a(1,2,3,0),dp); |
---|
141 | extraweight(r2); |
---|
142 | ring r3 = 0,x(1..10),(a(1..5),dp(5),a(10..13),Wp(5..9)); |
---|
143 | extraweight(r3); |
---|
144 | // an example for enlarging the ring: |
---|
145 | intvec v = 6,2,3,4,5; |
---|
146 | ring R = 0,x(1..10),(a(extraweight(r1),v),dp); |
---|
147 | ordstr(R); |
---|
148 | } |
---|
149 | /////////////////////////////////////////////////////////////////////////////// |
---|
150 | |
---|
151 | proc HomJJ (list Li,list #) |
---|
152 | USAGE: HomJJ (Li); Li = list: SBid,id,J,poly p |
---|
153 | ASSUME: R = P/id, P = basering, a polynomial ring, id an ideal of P, |
---|
154 | SBid = standard basis of id, |
---|
155 | J = ideal of P containing the polynomial p, |
---|
156 | p = nonzero divisor of R |
---|
157 | COMPUTE: Endomorphism ring End_R(J)=Hom_R(J,J) with its ring structure where |
---|
158 | R is the quotient ring of P modulo the standard basis SBid |
---|
159 | RETURN: a list of two objects |
---|
160 | _[1]: a polynomial ring, containing two ideals, 'endid' and 'endphi' |
---|
161 | s.t. _[1]/endid = Hom_R(J,J) and |
---|
162 | endphi describes the canonical map R -> Hom_R(J,J) |
---|
163 | _[2]: an integer which is 1 if phi is an isomorphism, 0 if not |
---|
164 | EXAMPLE: example HomJJ; shows an example |
---|
165 | { |
---|
166 | //---------- initialisation --------------------------------------------------- |
---|
167 | |
---|
168 | int isIso,isPr,isCo,isRe,isEq,ii,jj,q,y; |
---|
169 | intvec rw,rw1; |
---|
170 | list L; |
---|
171 | if( size(#) >=1 ) |
---|
172 | { |
---|
173 | if( typeof(#[1]) == "int" ) { y = #[1]; } |
---|
174 | } |
---|
175 | def P = basering; |
---|
176 | ideal SBid, id, J = Li[1], Li[2], Li[3]; |
---|
177 | poly p = Li[4]; |
---|
178 | attrib(SBid,"isSB",1); |
---|
179 | int homo = homog(Li[2]); //is 1 if id is homogeneous, 0 if not |
---|
180 | |
---|
181 | //---- set attributes for special cases where algorithm can be simplified ----- |
---|
182 | if( homo==1 ) |
---|
183 | { |
---|
184 | rw = extraweight(P); |
---|
185 | } |
---|
186 | if( typeof(attrib(id,"isPrim"))=="int" ) |
---|
187 | { |
---|
188 | if(attrib(id,"isPrim")==1) { isPr=1; } |
---|
189 | } |
---|
190 | if( typeof(attrib(id,"isIsolatedSingularity"))=="int" ) |
---|
191 | { |
---|
192 | if(attrib(id,"isIsolatedSingularity")==1) { isIso=1; } |
---|
193 | } |
---|
194 | if( typeof(attrib(id,"isCohenMacaulay"))=="int" ) |
---|
195 | { |
---|
196 | if(attrib(id,"isCohenMacaulay")==1) { isCo=1; } |
---|
197 | } |
---|
198 | if( typeof(attrib(id,"isRegInCodim2"))=="int" ) |
---|
199 | { |
---|
200 | if(attrib(id,"isRegInCodim2")==1) { isRe=1; } |
---|
201 | } |
---|
202 | if( typeof(attrib(id,"isEquidimensional"))=="int" ) |
---|
203 | { |
---|
204 | if(attrib(id,"isEquidimensional")==1) { isEq=1; } |
---|
205 | } |
---|
206 | //-------------------------- go to quotient ring ------------------------------ |
---|
207 | qring R = SBid; |
---|
208 | ideal id = fetch(P,id); |
---|
209 | ideal J = fetch(P,J); |
---|
210 | poly p = fetch(P,p); |
---|
211 | ideal f,rf,f2; |
---|
212 | module syzf; |
---|
213 | |
---|
214 | //---------- computation of p*Hom(J,J) as R-ideal ----------------------------- |
---|
215 | f = quotient(p*J,J); |
---|
216 | if(y==1) |
---|
217 | { |
---|
218 | "the module Hom(rad(J),rad(J)) presented by the values on"; |
---|
219 | "the non-zerodivisor"; |
---|
220 | " "; |
---|
221 | p; |
---|
222 | " "; |
---|
223 | f; |
---|
224 | } |
---|
225 | f2 = std(p); |
---|
226 | |
---|
227 | if(isIso==0) |
---|
228 | { |
---|
229 | ideal f1=std(f); |
---|
230 | attrib(f1,"isSB",1); |
---|
231 | // if( codim(f1,f2) >= 0 ) |
---|
232 | // { |
---|
233 | // dbprint(printlevel-voice+3,"// dimension of non-normal locus is zero"); |
---|
234 | // isIso=1; |
---|
235 | // } |
---|
236 | } |
---|
237 | //---------- Test: Hom(J,J) == R ?, if yes, go home --------------------------- |
---|
238 | rf = interred(reduce(f,f2)); // represents p*Hom(J,J)/p*R = Hom(J,J)/R |
---|
239 | if ( size(rf) == 0 ) |
---|
240 | { |
---|
241 | if ( homog(f) && find(ordstr(basering),"s")==0 ) |
---|
242 | { |
---|
243 | ring newR1 = char(P),(X(1..nvars(P))),(a(rw),dp); |
---|
244 | } |
---|
245 | else |
---|
246 | { |
---|
247 | ring newR1 = char(P),(X(1..nvars(P))),dp; |
---|
248 | } |
---|
249 | ideal endphi = maxideal(1); |
---|
250 | ideal endid = fetch(P,id); |
---|
251 | attrib(endid,"isCohenMacaulay",isCo); |
---|
252 | attrib(endid,"isPrim",isPr); |
---|
253 | attrib(endid,"isIsolatedSingularity",isIso); |
---|
254 | attrib(endid,"isRegInCodim2",isRe); |
---|
255 | attrib(endid,"isEqudimensional",isEq); |
---|
256 | attrib(endid,"isCompleteIntersection",0); |
---|
257 | attrib(endid,"isRad",0); |
---|
258 | export endid; |
---|
259 | export endphi; |
---|
260 | L = newR1; |
---|
261 | L = insert(L,1,1); |
---|
262 | dbprint(printlevel-voice+3,"// case R = Hom(J,J)"); |
---|
263 | if(y==1) |
---|
264 | { |
---|
265 | "R=Hom(rad(J),rad(J))"; |
---|
266 | " "; |
---|
267 | newR1; |
---|
268 | " "; |
---|
269 | "the new ideal"; |
---|
270 | endid; |
---|
271 | " "; |
---|
272 | "the old ring"; |
---|
273 | " "; |
---|
274 | P; |
---|
275 | " "; |
---|
276 | "the old ideal"; |
---|
277 | " "; |
---|
278 | setring P; |
---|
279 | id; |
---|
280 | " "; |
---|
281 | setring newR1; |
---|
282 | "the map"; |
---|
283 | " "; |
---|
284 | endphi; |
---|
285 | " "; |
---|
286 | pause; |
---|
287 | } |
---|
288 | setring P; |
---|
289 | return(L); |
---|
290 | } |
---|
291 | if(y==1) |
---|
292 | { |
---|
293 | "R is not equal to Hom(rad(J),rad(J)), we have to try again"; |
---|
294 | pause; |
---|
295 | } |
---|
296 | //---------- Hom(J,j) != R: create new ring and map form old ring ------------- |
---|
297 | // the ring newR1/SBid+syzf will be isomorphic to Hom(J,J) as R-module |
---|
298 | |
---|
299 | f = mstd(f)[2]; // minimizes f (partially) |
---|
300 | f = p,rf; // generates pJ:J mod(p), i.e. p*Hom(J,J)/p*R as R-module |
---|
301 | q = size(f); |
---|
302 | syzf = syz(f); |
---|
303 | |
---|
304 | if ( homo==1 ) |
---|
305 | { |
---|
306 | rw1 = rw,0; |
---|
307 | for ( ii=2; ii<=q; ii++ ) |
---|
308 | { |
---|
309 | rw = rw, deg(f[ii])-deg(f[1]); |
---|
310 | rw1 = rw1, deg(f[ii])-deg(f[1]); |
---|
311 | } |
---|
312 | ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),(a(rw1),dp); |
---|
313 | } |
---|
314 | else |
---|
315 | { |
---|
316 | ring newR1 = char(R),(X(1..nvars(R)),T(1..q)),dp; |
---|
317 | } |
---|
318 | |
---|
319 | map psi1 = P,maxideal(1); |
---|
320 | ideal SBid = psi1(SBid); |
---|
321 | attrib(SBid,"isSB",1); |
---|
322 | |
---|
323 | qring newR = std(SBid); |
---|
324 | map psi = R,ideal(X(1..nvars(R))); |
---|
325 | ideal id = psi(id); |
---|
326 | ideal f = psi(f); |
---|
327 | module syzf = psi(syzf); |
---|
328 | ideal pf,Lin,Quad,Q; |
---|
329 | matrix T,A; |
---|
330 | list L1; |
---|
331 | |
---|
332 | //---------- computation of Hom(J,J) as ring ---------------------------------- |
---|
333 | // determine kernel of: R[T1,...,Tq] -> J:J >-> R[1/p]=R[t]/(t*p-1), |
---|
334 | // Ti -> fi/p -> t*fi (p=f1=f[1]), to get ring structure. This is of course |
---|
335 | // the same as the kernel of R[T1,...,Tq] -> pJ:J >-> R, Ti -> fi. |
---|
336 | // It is a fact, that the kernel is generated by the linear and the quadratic |
---|
337 | // relations |
---|
338 | |
---|
339 | pf = f[1]*f; |
---|
340 | T = matrix(ideal(T(1..q)),1,q); |
---|
341 | Lin = ideal(T*syzf); |
---|
342 | if(y==1) |
---|
343 | { |
---|
344 | "the ring structure of Hom(rad(J),rad(J)) as R-algebra"; |
---|
345 | " "; |
---|
346 | "the linear relations"; |
---|
347 | " "; |
---|
348 | Lin; |
---|
349 | " "; |
---|
350 | } |
---|
351 | for (ii=2; ii<=q; ii++ ) |
---|
352 | { |
---|
353 | for ( jj=2; jj<=ii; jj++ ) |
---|
354 | { |
---|
355 | A = lift(pf,f[ii]*f[jj]); |
---|
356 | Quad = Quad, ideal(T(jj)*T(ii) - T*A); // quadratic relations |
---|
357 | } |
---|
358 | } |
---|
359 | if(y==1) |
---|
360 | { |
---|
361 | "the quadratic relations"; |
---|
362 | " "; |
---|
363 | interred(Quad); |
---|
364 | pause; |
---|
365 | } |
---|
366 | Q = Lin+Quad; |
---|
367 | Q = subst(Q,T(1),1); |
---|
368 | Q = interred(reduce(Q,std(0))); |
---|
369 | //---------- reduce number of variables by substitution, if possible ---------- |
---|
370 | if (homo==1) |
---|
371 | { |
---|
372 | ring newRing = char(R),(X(1..nvars(R)),T(2..q)),(a(rw),dp); |
---|
373 | } |
---|
374 | else |
---|
375 | { |
---|
376 | ring newRing = char(R),(X(1..nvars(R)),T(2..q)),dp; |
---|
377 | } |
---|
378 | |
---|
379 | ideal endid = imap(newR,id)+imap(newR,Q); |
---|
380 | ideal endphi = ideal(X(1..nvars(R))); |
---|
381 | |
---|
382 | map phi = basering,maxideal(1); |
---|
383 | list Le = elimpart(endid); |
---|
384 | //this proc and the next loop try to |
---|
385 | q = size(Le[2]); //substitute as many variables as possible |
---|
386 | rw1 = 0; |
---|
387 | rw1[nvars(basering)] = 0; |
---|
388 | rw1 = rw1+1; |
---|
389 | |
---|
390 | while( size(Le[2]) != 0 ) |
---|
391 | { |
---|
392 | endid = Le[1]; |
---|
393 | map ps = newRing,Le[5]; |
---|
394 | phi = phi(ps); |
---|
395 | kill ps; |
---|
396 | |
---|
397 | for( ii=1; ii<=size(rw1); ii++ ) |
---|
398 | { |
---|
399 | if( Le[4][ii]==0 ) |
---|
400 | { |
---|
401 | rw1[ii]=0; //look for substituted vars |
---|
402 | } |
---|
403 | } |
---|
404 | Le=elimpart(endid); |
---|
405 | q = q + size(Le[2]); |
---|
406 | } |
---|
407 | endphi = phi(endphi); |
---|
408 | |
---|
409 | //---------- return ----------------------------------------------------------- |
---|
410 | // in the homogeneous case put weights for the remaining vars correctly, i.e. |
---|
411 | // delete from rw those weights for which the corresponding entry of rw1 is 0 |
---|
412 | |
---|
413 | if (homo==1 && nvars(newRing)-q >1 && size(endid) >0 ) |
---|
414 | { |
---|
415 | jj=1; |
---|
416 | for( ii=2; ii<size(rw1); ii++) |
---|
417 | { |
---|
418 | jj++; |
---|
419 | if( rw1[ii]==0 ) |
---|
420 | { |
---|
421 | rw=rw[1..jj-1],rw[jj+1..size(rw)]; |
---|
422 | jj=jj-1; |
---|
423 | } |
---|
424 | } |
---|
425 | if( rw1[1]==0 ) { rw=rw[2..size(rw)]; } |
---|
426 | if( rw1[size(rw1)]==0 ){ rw=rw[1..size(rw)-1]; } |
---|
427 | |
---|
428 | ring lastRing = char(R),(T(1..nvars(newRing)-q)),(a(rw),dp); |
---|
429 | } |
---|
430 | else |
---|
431 | { |
---|
432 | ring lastRing = char(R),(T(1..nvars(newRing)-q)),dp; |
---|
433 | } |
---|
434 | |
---|
435 | ideal lastmap; |
---|
436 | q = 1; |
---|
437 | for(ii=1; ii<=size(rw1); ii++ ) |
---|
438 | { |
---|
439 | if ( rw1[ii]==1 ) { lastmap[ii] = T(q); q=q+1; } |
---|
440 | if ( rw1[ii]==0 ) { lastmap[ii] = 0; } |
---|
441 | } |
---|
442 | map phi = newRing,lastmap; |
---|
443 | ideal endid = phi(endid); |
---|
444 | ideal endphi = phi(endphi); |
---|
445 | attrib(endid,"isCohenMacaulay",isCo); |
---|
446 | attrib(endid,"isPrim",isPr); |
---|
447 | attrib(endid,"isIsolatedSingularity",isIso); |
---|
448 | attrib(endid,"isRegInCodim2",isRe); |
---|
449 | attrib(endid,"isEquidimensional",isEq); |
---|
450 | attrib(endid,"isCompleteIntersection",0); |
---|
451 | attrib(endid,"isRad",0); |
---|
452 | export(endid); |
---|
453 | export(endphi); |
---|
454 | if(y==1) |
---|
455 | { |
---|
456 | "the new ring after reduction of the number of variables"; |
---|
457 | " "; |
---|
458 | lastRing; |
---|
459 | " "; |
---|
460 | "the new ideal"; |
---|
461 | endid; |
---|
462 | " "; |
---|
463 | "the old ring"; |
---|
464 | " "; |
---|
465 | P; |
---|
466 | " "; |
---|
467 | "the old ideal"; |
---|
468 | " "; |
---|
469 | setring P; |
---|
470 | id; |
---|
471 | " "; |
---|
472 | setring lastRing; |
---|
473 | "the map"; |
---|
474 | " "; |
---|
475 | endphi; |
---|
476 | " "; |
---|
477 | pause; |
---|
478 | } |
---|
479 | L = lastRing; |
---|
480 | L = insert(L,0,1); |
---|
481 | return(L); |
---|
482 | } |
---|
483 | example |
---|
484 | {"EXAMPLE:"; echo = 2; |
---|
485 | ring r = 0,(x,y),wp(2,3); |
---|
486 | ideal id = y^2-x^3; |
---|
487 | ideal J = x,y; |
---|
488 | poly p = x; |
---|
489 | list Li = std(id),id,J,p; |
---|
490 | list L = HomJJ(Li); |
---|
491 | def end = L[1]; // defines ring L[1], containing ideals endid and endphi |
---|
492 | setring end; // makes end the basering |
---|
493 | end; |
---|
494 | endid; // end/endid is isomorphic to End(r/id) as ring |
---|
495 | map psi = r,endphi; // defines the canonical map r/id -> End(r/id) |
---|
496 | psi; |
---|
497 | |
---|
498 | ring r = 32003,(x,y,z),dp; |
---|
499 | ideal id = x2-xy-xz+yz; |
---|
500 | ideal J =y-z,x-z; |
---|
501 | poly p = x+16001y+16001z; |
---|
502 | list Li = std(id),id,J,p; |
---|
503 | list L = HomJJ(Li,0); |
---|
504 | def end = L[1]; // defines ring L[1], containing ideals endid and endphi |
---|
505 | setring end; // makes end the basering |
---|
506 | end; |
---|
507 | endid; // end/endid is isomorphic to End(r/id) as ring |
---|
508 | |
---|
509 | } |
---|
510 | |
---|
511 | /////////////////////////////////////////////////////////////////////////////// |
---|
512 | proc normal(ideal id, list #) |
---|
513 | USAGE: normal(i,choose); i ideal,choose empty or 1 |
---|
514 | in case you choose 1 the factorizing Buchberger algorithm |
---|
515 | is not used which is sometimes more efficient |
---|
516 | RETURN: a list of rings L=R1,...,Rk, in each Ri are two ideals |
---|
517 | Si,Mi such that the product of Ri/Mi is the normalization |
---|
518 | Si is a standardbasis of Mi |
---|
519 | NOTE: to use the rings: def r=L[i];setring r; |
---|
520 | EXAMPLE: example normal; shows an example |
---|
521 | { |
---|
522 | int i,j,y; |
---|
523 | list result,prim,keepresult; |
---|
524 | |
---|
525 | if(size(#)==0) |
---|
526 | { |
---|
527 | prim[1]=id; |
---|
528 | if( typeof(attrib(id,"isEquidimensional"))=="int" ) |
---|
529 | { |
---|
530 | if(attrib(id,"isEquidimensional")==1) |
---|
531 | { |
---|
532 | attrib(prim[1],"isEquidimensional",1); |
---|
533 | } |
---|
534 | } |
---|
535 | else |
---|
536 | { |
---|
537 | attrib(prim[1],"isEquidimensional",0); |
---|
538 | } |
---|
539 | if( typeof(attrib(id,"isCompleteIntersection"))=="int" ) |
---|
540 | { |
---|
541 | if(attrib(id,"isCompleteIntersection")==1) |
---|
542 | { |
---|
543 | attrib(prim[1],"isCompleteIntersection",1); |
---|
544 | } |
---|
545 | } |
---|
546 | else |
---|
547 | { |
---|
548 | attrib(prim[1],"isCompleteIntersection",0); |
---|
549 | } |
---|
550 | |
---|
551 | if( typeof(attrib(id,"isPrim"))=="int" ) |
---|
552 | { |
---|
553 | if(attrib(id,"isPrim")==1) {attrib(prim[1],"isPrim",1); } |
---|
554 | } |
---|
555 | else |
---|
556 | { |
---|
557 | attrib(prim[1],"isPrim",0); |
---|
558 | } |
---|
559 | if( typeof(attrib(id,"isIsolatedSingularity"))=="int" ) |
---|
560 | { |
---|
561 | if(attrib(id,"isIsolatedSingularity")==1) |
---|
562 | {attrib(prim[1],"isIsolatedSingularity",1); } |
---|
563 | } |
---|
564 | else |
---|
565 | { |
---|
566 | attrib(prim[1],"isIsolatedSingularity",0); |
---|
567 | } |
---|
568 | if( typeof(attrib(id,"isCohenMacaulay"))=="int" ) |
---|
569 | { |
---|
570 | if(attrib(id,"isCohenMacaulay")==1) |
---|
571 | { attrib(prim[1],"isCohenMacaulay",1); } |
---|
572 | } |
---|
573 | else |
---|
574 | { |
---|
575 | attrib(prim[1],"isCohenMacaulay",0); |
---|
576 | } |
---|
577 | if( typeof(attrib(id,"isRegInCodim2"))=="int" ) |
---|
578 | { |
---|
579 | if(attrib(id,"isRegInCodim2")==1) |
---|
580 | { attrib(prim[1],"isRegInCodim2",1);} |
---|
581 | } |
---|
582 | else |
---|
583 | { |
---|
584 | attrib(prim[1],"isRegInCodim2",0); |
---|
585 | } |
---|
586 | return(normalizationPrimes(prim[1],maxideal(1))); |
---|
587 | } |
---|
588 | else |
---|
589 | { |
---|
590 | if(#[1]==0) |
---|
591 | { |
---|
592 | prim=minAssPrimes(id); |
---|
593 | } |
---|
594 | else |
---|
595 | { |
---|
596 | prim=minAssPrimes(id,1); |
---|
597 | } |
---|
598 | |
---|
599 | if(y==1) |
---|
600 | { |
---|
601 | "we have ";size(prim);"components"; |
---|
602 | } |
---|
603 | for(i=1;i<=size(prim);i++) |
---|
604 | { |
---|
605 | if(y==1) |
---|
606 | { |
---|
607 | "we are in loop";i; |
---|
608 | } |
---|
609 | attrib(prim[i],"isCohenMacaulay",0); |
---|
610 | attrib(prim[i],"isPrim",1); |
---|
611 | attrib(prim[i],"isRegInCodim2",0); |
---|
612 | attrib(prim[i],"isIsolatedSingularity",0); |
---|
613 | attrib(prim[i],"isEquidimensional",0); |
---|
614 | attrib(prim[i],"isCompleteIntersection",0); |
---|
615 | |
---|
616 | if( typeof(attrib(id,"isEquidimensional"))=="int" ) |
---|
617 | { |
---|
618 | if(attrib(id,"isEquidimensional")==1) |
---|
619 | { |
---|
620 | attrib(prim[i],"isEquidimensional",1); |
---|
621 | } |
---|
622 | } |
---|
623 | else |
---|
624 | { |
---|
625 | attrib(prim[i],"isEquidimensional",0); |
---|
626 | } |
---|
627 | if( typeof(attrib(id,"isIsolatedSingularity"))=="int" ) |
---|
628 | { |
---|
629 | if(attrib(id,"isIsolatedSingularity")==1) |
---|
630 | {attrib(prim[i],"isIsolatedSingularity",1); } |
---|
631 | } |
---|
632 | else |
---|
633 | { |
---|
634 | attrib(prim[i],"isIsolatedSingularity",0); |
---|
635 | } |
---|
636 | |
---|
637 | keepresult=normalizationPrimes(prim[i],maxideal(1)); |
---|
638 | for(j=1;j<=size(keepresult);j++) |
---|
639 | { |
---|
640 | result=insert(result,keepresult[j]); |
---|
641 | } |
---|
642 | } |
---|
643 | return(result); |
---|
644 | } |
---|
645 | } |
---|
646 | example |
---|
647 | { "EXAMPLE:"; echo = 2; |
---|
648 | ring r = 0,(x,y,z),dp; |
---|
649 | |
---|
650 | } |
---|
651 | |
---|
652 | |
---|
653 | proc normalizationPrimes(ideal i,ideal ihp, list #) |
---|
654 | USAGE: normalizationPrimes(i); i prime ideal |
---|
655 | RETURN: a list of one ring L=R, in R are two ideals |
---|
656 | S,M such that R/M is the normalization |
---|
657 | S is a standardbasis of M |
---|
658 | NOTE: to use the ring: def r=L[1];setring r; |
---|
659 | EXAMPLE: example normalizationPrimes; shows an example |
---|
660 | { |
---|
661 | int y; |
---|
662 | if(y==1) |
---|
663 | { |
---|
664 | "START one normalization loop with the ideal"; |
---|
665 | " "; |
---|
666 | i; |
---|
667 | " "; |
---|
668 | basering; |
---|
669 | " "; |
---|
670 | pause; |
---|
671 | } |
---|
672 | |
---|
673 | def BAS=basering; |
---|
674 | list result,keepresult1,keepresult2; |
---|
675 | ideal J,SB,MB,KK; |
---|
676 | int depth,lauf,prdim; |
---|
677 | int ti=timer; |
---|
678 | |
---|
679 | if(size(i)==0) |
---|
680 | { |
---|
681 | if(y==1) |
---|
682 | { |
---|
683 | "the ideal was the zero-ideal"; |
---|
684 | } |
---|
685 | execute "ring newR7="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
686 | +ordstr(basering)+");"; |
---|
687 | ideal KK=ideal(0); |
---|
688 | ideal PP=fetch(BAS,ihp); |
---|
689 | export PP; |
---|
690 | export KK; |
---|
691 | result=newR7; |
---|
692 | setring BAS; |
---|
693 | return(result); |
---|
694 | |
---|
695 | } |
---|
696 | |
---|
697 | if(y==1) |
---|
698 | { |
---|
699 | " "; |
---|
700 | " "; |
---|
701 | " SB-computation of the input ideal"; |
---|
702 | " "; |
---|
703 | } |
---|
704 | list SM=mstd(i); |
---|
705 | |
---|
706 | if(y==1) |
---|
707 | { |
---|
708 | " the dimension is "; |
---|
709 | dim(SM[1]); |
---|
710 | " "; |
---|
711 | } |
---|
712 | |
---|
713 | if(size(#)>0) |
---|
714 | { |
---|
715 | list JM=#[1],#[1]; |
---|
716 | attrib(JM[1],"isSB",1); |
---|
717 | if( typeof(attrib(#[1],"isRad"))!="int" ) |
---|
718 | { |
---|
719 | attrib(JM[2],"isRad",0); |
---|
720 | } |
---|
721 | } |
---|
722 | |
---|
723 | if(attrib(i,"isPrim")==1) |
---|
724 | { |
---|
725 | attrib(SM[2],"isPrim",1); |
---|
726 | } |
---|
727 | else |
---|
728 | { |
---|
729 | attrib(SM[2],"isPrim",0); |
---|
730 | } |
---|
731 | if(attrib(i,"isIsolatedSingularity")==1) |
---|
732 | { |
---|
733 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
734 | } |
---|
735 | else |
---|
736 | { |
---|
737 | attrib(SM[2],"isIsolatedSingularity",0); |
---|
738 | } |
---|
739 | if(attrib(i,"isCohenMacaulay")==1) |
---|
740 | { |
---|
741 | attrib(SM[2],"isCohenMacaulay",1); |
---|
742 | } |
---|
743 | else |
---|
744 | { |
---|
745 | attrib(SM[2],"isCohenMacaulay",0); |
---|
746 | } |
---|
747 | if(attrib(i,"isRegInCodim2")==1) |
---|
748 | { |
---|
749 | attrib(SM[2],"isRegInCodim2",1); |
---|
750 | } |
---|
751 | else |
---|
752 | { |
---|
753 | attrib(SM[2],"isRegInCodim2",0); |
---|
754 | } |
---|
755 | if(attrib(i,"isEquidimensional")==1) |
---|
756 | { |
---|
757 | attrib(SM[2],"isEquidimensional",1); |
---|
758 | } |
---|
759 | else |
---|
760 | { |
---|
761 | attrib(SM[2],"isEquidimensional",0); |
---|
762 | } |
---|
763 | if(attrib(i,"isCompleteIntersection")==1) |
---|
764 | { |
---|
765 | attrib(SM[2],"isCompleteIntersection",1); |
---|
766 | } |
---|
767 | else |
---|
768 | { |
---|
769 | attrib(SM[2],"isCompleteIntersection",0); |
---|
770 | } |
---|
771 | |
---|
772 | //the smooth case |
---|
773 | if(size(#)>0) |
---|
774 | { |
---|
775 | if(dim(JM[1])==-1) |
---|
776 | { |
---|
777 | if(y==1) |
---|
778 | { |
---|
779 | "the ideal was smooth"; |
---|
780 | } |
---|
781 | MB=SM[2]; |
---|
782 | execute "ring newR6="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
783 | +ordstr(basering)+");"; |
---|
784 | ideal KK=fetch(BAS,MB); |
---|
785 | ideal PP=fetch(BAS,ihp); |
---|
786 | export PP; |
---|
787 | export KK; |
---|
788 | result=newR6; |
---|
789 | setring BAS; |
---|
790 | return(result); |
---|
791 | } |
---|
792 | } |
---|
793 | |
---|
794 | //the zero-dimensional case |
---|
795 | if((dim(SM[1])==0)&&(homog(SM[2])==1)) |
---|
796 | { |
---|
797 | if(y==1) |
---|
798 | { |
---|
799 | "the ideal was zero-dimensional and homogeneous"; |
---|
800 | } |
---|
801 | MB=maxideal(1); |
---|
802 | execute "ring newR5="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
803 | +ordstr(basering)+");"; |
---|
804 | ideal KK=fetch(BAS,MB); |
---|
805 | ideal PP=fetch(BAS,ihp); |
---|
806 | export PP; |
---|
807 | export KK; |
---|
808 | result=newR5; |
---|
809 | setring BAS; |
---|
810 | return(result); |
---|
811 | } |
---|
812 | |
---|
813 | //the one-dimensional case |
---|
814 | //in this case it is a line because |
---|
815 | //it is irreducible and homogeneous |
---|
816 | if((dim(SM[1])==1)&&(attrib(SM[2],"isPrim")==1) |
---|
817 | &&(homog(SM[2])==1)) |
---|
818 | { |
---|
819 | if(y==1) |
---|
820 | { |
---|
821 | "the ideal defines a line"; |
---|
822 | } |
---|
823 | MB=SM[2]; |
---|
824 | execute "ring newR4="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
825 | +ordstr(basering)+");"; |
---|
826 | ideal KK=fetch(BAS,MB); |
---|
827 | ideal PP=fetch(BAS,ihp); |
---|
828 | export PP; |
---|
829 | export KK; |
---|
830 | result=newR4; |
---|
831 | setring BAS; |
---|
832 | return(result); |
---|
833 | } |
---|
834 | |
---|
835 | //the higher dimensional case |
---|
836 | //we test first of all CohenMacaulay and |
---|
837 | //complete intersection |
---|
838 | if(((size(SM[2])+dim(SM[1]))==nvars(basering))&&(homog(SM[2])==1)) |
---|
839 | { |
---|
840 | //test for complete intersection |
---|
841 | attrib(SM[2],"isCohenMacaulay",1); |
---|
842 | attrib(SM[2],"isCompleteIntersection",1); |
---|
843 | attrib(SM[2],"isEquidimensional",1); |
---|
844 | if(y==1) |
---|
845 | { |
---|
846 | "it is a complete Intersection"; |
---|
847 | } |
---|
848 | } |
---|
849 | // if(attrib(i,"isIsolatedSingularity")==0) |
---|
850 | // { |
---|
851 | // list L=sres(SM[2],0); |
---|
852 | // prdim=ncols(betti(L))-1; |
---|
853 | // depth=nvars(basering)-prdim; |
---|
854 | // } |
---|
855 | |
---|
856 | // if(attrib(SM[2],"isCohenMacaulay")==0) |
---|
857 | // { |
---|
858 | // test for CohenMacaulay |
---|
859 | // if((dim(SM[1]))==depth) |
---|
860 | // { |
---|
861 | // attrib(SM[2],"isCohenMacaulay",1); |
---|
862 | // "it is CohenMacaulay"; |
---|
863 | // } |
---|
864 | // } |
---|
865 | |
---|
866 | //compute the singular locus+lower dimensional components |
---|
867 | if(((attrib(SM[2],"isIsolatedSingularity")==0)||(homog(SM[2])==0)) |
---|
868 | &&(size(#)==0)) |
---|
869 | { |
---|
870 | |
---|
871 | J=minor(jacob(SM[2]),nvars(basering)-dim(SM[1])); |
---|
872 | //ti=timer; |
---|
873 | if(y==1) |
---|
874 | { |
---|
875 | "SB of singular locus will be computed"; |
---|
876 | } |
---|
877 | ideal sin=J+SM[2]; |
---|
878 | |
---|
879 | //kills the embeded components |
---|
880 | // if(homog(SM[2])==1) |
---|
881 | // { |
---|
882 | // sin=sat(sin,maxideal(1))[1]; |
---|
883 | // } |
---|
884 | |
---|
885 | list JM=mstd(sin); |
---|
886 | if(y==1) |
---|
887 | { |
---|
888 | " "; |
---|
889 | "the dimension of the singular locus is"; |
---|
890 | dim(JM[1]); |
---|
891 | " "; |
---|
892 | } |
---|
893 | |
---|
894 | attrib(JM[2],"isRad",0); |
---|
895 | // timer-ti; |
---|
896 | attrib(JM[1],"isSB",1); |
---|
897 | if(dim(JM[1])==-1) |
---|
898 | { |
---|
899 | if(y==1) |
---|
900 | { |
---|
901 | "it is smooth"; |
---|
902 | } |
---|
903 | MB=SM[2]; |
---|
904 | execute "ring newR3="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
905 | +ordstr(basering)+");"; |
---|
906 | ideal KK=fetch(BAS,MB); |
---|
907 | ideal PP=fetch(BAS,ihp); |
---|
908 | export PP; |
---|
909 | export KK; |
---|
910 | result=newR3; |
---|
911 | setring BAS; |
---|
912 | return(result); |
---|
913 | } |
---|
914 | if(dim(JM[1])==0) |
---|
915 | { |
---|
916 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
917 | } |
---|
918 | if(dim(JM[1])<=nvars(basering)-2) |
---|
919 | { |
---|
920 | attrib(SM[2],"isRegInCodim2",1); |
---|
921 | } |
---|
922 | } |
---|
923 | else |
---|
924 | { |
---|
925 | if(size(#)==0) |
---|
926 | { |
---|
927 | list JM=maxideal(1),maxideal(1); |
---|
928 | attrib(JM[1],"isSB",1); |
---|
929 | attrib(SM[2],"isRegInCodim2",1); |
---|
930 | } |
---|
931 | } |
---|
932 | //if it is an isolated singularity things are easier |
---|
933 | if((dim(JM[1])==0)&&(homog(SM[2])==1)) |
---|
934 | { |
---|
935 | attrib(SM[2],"isIsolatedSingularity",1); |
---|
936 | ideal SL=simplify(reduce(maxideal(1),SM[1]),2); |
---|
937 | ideal Ann=quotient(SM[2],SL[1]); |
---|
938 | ideal qAnn=simplify(reduce(Ann,SM[1]),2); |
---|
939 | |
---|
940 | if(size(qAnn)==0) |
---|
941 | { |
---|
942 | if(y==1) |
---|
943 | { |
---|
944 | " "; |
---|
945 | "the ideal rad(J): "; |
---|
946 | " "; |
---|
947 | maxideal(1); |
---|
948 | " "; |
---|
949 | " "; |
---|
950 | } |
---|
951 | //again test for normality |
---|
952 | //Hom(I,R)=R |
---|
953 | list RR; |
---|
954 | // list RR=SM[1],maxideal(1),SL[1]; |
---|
955 | // "test with Hom(I,R)"; |
---|
956 | // ti=timer; |
---|
957 | // if(isR_HomJR(RR)==1) |
---|
958 | // { |
---|
959 | // "it was normal"; |
---|
960 | // timer-ti; |
---|
961 | // SB=SM[1]; |
---|
962 | // SM=SM[2]; |
---|
963 | // export SB,MB; |
---|
964 | // result=BAS; |
---|
965 | // return(result); |
---|
966 | // } |
---|
967 | // timer-ti; |
---|
968 | RR=SM[1],SM[2],maxideal(1),SL[1]; |
---|
969 | ti=timer; |
---|
970 | RR=HomJJ(RR,y); |
---|
971 | // timer-ti; |
---|
972 | if(RR[2]==0) |
---|
973 | { |
---|
974 | def newR=RR[1]; |
---|
975 | setring newR; |
---|
976 | map psi=BAS,endphi; |
---|
977 | // ti=timer; |
---|
978 | list tluser=normalizationPrimes(endid,psi(ihp)); |
---|
979 | |
---|
980 | // timer-ti; |
---|
981 | setring BAS; |
---|
982 | return(tluser); |
---|
983 | } |
---|
984 | MB=SM[2]; |
---|
985 | execute "ring newR7="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
986 | +ordstr(basering)+");"; |
---|
987 | ideal KK=fetch(BAS,MB); |
---|
988 | ideal PP=fetch(BAS,ihp); |
---|
989 | export PP; |
---|
990 | export KK; |
---|
991 | result=newR7; |
---|
992 | setring BAS; |
---|
993 | return(result); |
---|
994 | |
---|
995 | } |
---|
996 | else |
---|
997 | { |
---|
998 | ideal id=qAnn+SM[2]; |
---|
999 | |
---|
1000 | attrib(id,"isCohenMacaulay",0); |
---|
1001 | attrib(id,"isPrim",0); |
---|
1002 | attrib(id,"isIsolatedSingularity",1); |
---|
1003 | attrib(id,"isRegInCodim2",0); |
---|
1004 | attrib(id,"isCompleteIntersection",0); |
---|
1005 | attrib(id,"isEquidimensional",0); |
---|
1006 | |
---|
1007 | keepresult1=normalizationPrimes(id,ihp); |
---|
1008 | ideal id1=quotient(SM[2],Ann)+SM[2]; |
---|
1009 | // evtl. qAnn nehmen |
---|
1010 | // ideal id=SL[1]+SM[2]; |
---|
1011 | |
---|
1012 | attrib(id1,"isCohenMacaulay",0); |
---|
1013 | attrib(id1,"isPrim",0); |
---|
1014 | attrib(id1,"isIsolatedSingularity",1); |
---|
1015 | attrib(id1,"isRegInCodim2",0); |
---|
1016 | attrib(id1,"isCompleteIntersection",0); |
---|
1017 | attrib(id1,"isEquidimensional",0); |
---|
1018 | |
---|
1019 | keepresult2=normalizationPrimes(id1,ihp); |
---|
1020 | |
---|
1021 | for(lauf=1;lauf<=size(keepresult2);lauf++) |
---|
1022 | { |
---|
1023 | keepresult1=insert(keepresult1,keepresult2[lauf]); |
---|
1024 | } |
---|
1025 | return(keepresult1); |
---|
1026 | } |
---|
1027 | } |
---|
1028 | |
---|
1029 | //test for non-normality |
---|
1030 | //Hom(I,I)<>R |
---|
1031 | //we can use Hom(I,I) to continue |
---|
1032 | |
---|
1033 | ideal SL=simplify(reduce(JM[2],SM[1]),2); |
---|
1034 | ideal Ann=quotient(SM[2],SL[1]); |
---|
1035 | ideal qAnn=simplify(reduce(Ann,SM[1]),2); |
---|
1036 | |
---|
1037 | if(size(qAnn)==0) |
---|
1038 | { |
---|
1039 | list RR; |
---|
1040 | // "test with Hom(I,I) before the radical computation"; |
---|
1041 | //again test for normality |
---|
1042 | //Hom(I,R)=R |
---|
1043 | // list RR=SM[1],JM[2],SL[1]; |
---|
1044 | // "test with Hom(I,R)"; |
---|
1045 | // ti=timer; |
---|
1046 | // if(isR_HomJR(RR)==1) |
---|
1047 | // { |
---|
1048 | // "it was normal"; |
---|
1049 | // timer-ti; |
---|
1050 | // SB=SM[1]; |
---|
1051 | // SM=SM[2]; |
---|
1052 | // export SB,MB; |
---|
1053 | // result=BAS; |
---|
1054 | // return(result); |
---|
1055 | // } |
---|
1056 | // timer-ti; |
---|
1057 | |
---|
1058 | // list RR=SM[1],SM[2],JM[2],SL[1]; |
---|
1059 | // ti=timer; |
---|
1060 | list RS; |
---|
1061 | // list RS=HomJJ(RR); |
---|
1062 | // timer-ti; |
---|
1063 | // if(RS[2]==0) |
---|
1064 | // { |
---|
1065 | // "Hom(I,I) was sucessfull without radical"; |
---|
1066 | // def newR=RS[1]; |
---|
1067 | // setring newR; |
---|
1068 | // list tluser=normalizationPrimes(SM); |
---|
1069 | // setring BAS; |
---|
1070 | // return(tluser); |
---|
1071 | // } |
---|
1072 | |
---|
1073 | //now we have to compute the radical |
---|
1074 | if(y==1) |
---|
1075 | { |
---|
1076 | "radical computation"; |
---|
1077 | } |
---|
1078 | // ti=timer; |
---|
1079 | |
---|
1080 | |
---|
1081 | if((attrib(JM[2],"isRad")==0)&&(attrib(SM[2],"isEquidimensional")==0)) |
---|
1082 | { |
---|
1083 | //J=radical(JM[2]); |
---|
1084 | J=radical(SM[2]+ideal(SL[1])); |
---|
1085 | |
---|
1086 | // evtl. test auf J=SM[2]+ideal(SL[1]) dann schon normal |
---|
1087 | } |
---|
1088 | if((attrib(JM[2],"isRad")==0)&&(attrib(SM[2],"isEquidimensional")==1)) |
---|
1089 | { |
---|
1090 | ideal JJ=SM[2]+ideal(SL[1]); |
---|
1091 | // evtl. test auf J=SM[2]+ideal(SL[1]) dann schon normal |
---|
1092 | if(attrib(SM[2],"isCompleteIntersection")==0) |
---|
1093 | { |
---|
1094 | J=equiRadical(JM[2]); |
---|
1095 | //J=equiRadical(JJ); |
---|
1096 | } |
---|
1097 | else |
---|
1098 | { |
---|
1099 | //J=radical(JM[2]); |
---|
1100 | J=quotient(JJ,minor(jacob(JJ),size(JJ))); |
---|
1101 | } |
---|
1102 | } |
---|
1103 | // timer-ti; |
---|
1104 | |
---|
1105 | JM=J,J; |
---|
1106 | |
---|
1107 | //evtl. fuer SL[1] anderen Nichtnullteiler aus J waehlen |
---|
1108 | // SL=simplify(reduce(J,SM[1]),2); |
---|
1109 | // Ann=quotient(SM[2],SL[1]); |
---|
1110 | // qAnn=simplify(reduce(Ann,SM[1]),2); |
---|
1111 | // if(size(qAnn)!=0) |
---|
1112 | // { |
---|
1113 | // keepresult1=normalizationPrimes(qAnn+SM[2]); |
---|
1114 | // keepresult2=normalizationPrimes(SL[1]+SM[2]); |
---|
1115 | // for(lauf=1;lauf<=size(keepresult2);j++) |
---|
1116 | // { |
---|
1117 | // keepresult1=insert(keepresult1,keepresult2[lauf]); |
---|
1118 | // } |
---|
1119 | // return(keepresult1); |
---|
1120 | // } |
---|
1121 | RR=SM[1],SM[2],JM[2],SL[1]; |
---|
1122 | |
---|
1123 | // evtl eine geeignete Potenz von JM? |
---|
1124 | if(y==1) |
---|
1125 | { |
---|
1126 | "compute Hom(rad(J),rad(J)):"; |
---|
1127 | } |
---|
1128 | // ti=timer; |
---|
1129 | |
---|
1130 | RS=HomJJ(RR,y); |
---|
1131 | // timer-ti; |
---|
1132 | |
---|
1133 | if(RS[2]==1) |
---|
1134 | { |
---|
1135 | def lastR=RS[1]; |
---|
1136 | setring lastR; |
---|
1137 | ideal KK=endid; |
---|
1138 | ideal PP=fetch(BAS,ihp); |
---|
1139 | export PP; |
---|
1140 | export KK; |
---|
1141 | setring BAS; |
---|
1142 | // return(RS[1]); |
---|
1143 | return(lastR); |
---|
1144 | } |
---|
1145 | int n=nvars(basering); |
---|
1146 | ideal MJ=JM[2]; |
---|
1147 | def newR=RS[1]; |
---|
1148 | setring newR; |
---|
1149 | |
---|
1150 | map psi=BAS,endphi; |
---|
1151 | list tluser= |
---|
1152 | normalizationPrimes(endid,psi(ihp),simplify(psi(MJ)+endid,4)); |
---|
1153 | // normalizationPrimes(endid); |
---|
1154 | setring BAS; |
---|
1155 | return(tluser); |
---|
1156 | } |
---|
1157 | else |
---|
1158 | { |
---|
1159 | int equi=attrib(SM[2],"isEquidimensional"); |
---|
1160 | ideal new1=qAnn+SM[2]; |
---|
1161 | execute "ring newR1="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
1162 | +ordstr(basering)+");"; |
---|
1163 | if(y==1) |
---|
1164 | { |
---|
1165 | "zero-divisor found"; |
---|
1166 | } |
---|
1167 | ideal vid=fetch(BAS,new1); |
---|
1168 | ideal ihp=fetch(BAS,ihp); |
---|
1169 | attrib(vid,"isCohenMacaulay",0); |
---|
1170 | attrib(vid,"isPrim",0); |
---|
1171 | attrib(vid,"isIsolatedSingularity",0); |
---|
1172 | attrib(vid,"isRegInCodim2",0); |
---|
1173 | if(equi==1) |
---|
1174 | { |
---|
1175 | attrib(vid,"isEquidimensional",1); |
---|
1176 | } |
---|
1177 | else |
---|
1178 | { |
---|
1179 | attrib(vid,"isEquidimensional",0); |
---|
1180 | } |
---|
1181 | attrib(vid,"isCompleteIntersection",0); |
---|
1182 | |
---|
1183 | keepresult1=normalizationPrimes(vid,ihp); |
---|
1184 | |
---|
1185 | setring BAS; |
---|
1186 | ideal new2=quotient(SM[2],Ann)+SM[2]; |
---|
1187 | // evtl. qAnn nehmen |
---|
1188 | // ideal new2=SL[1]+SM[2]; |
---|
1189 | execute "ring newR2="+charstr(basering)+",("+varstr(basering)+"),(" |
---|
1190 | +ordstr(basering)+");"; |
---|
1191 | |
---|
1192 | ideal vid=fetch(BAS,new2); |
---|
1193 | ideal ihp=fetch(BAS,ihp); |
---|
1194 | attrib(vid,"isCohenMacaulay",0); |
---|
1195 | attrib(vid,"isPrim",0); |
---|
1196 | attrib(vid,"isIsolatedSingularity",0); |
---|
1197 | attrib(vid,"isRegInCodim2",0); |
---|
1198 | if(equi==1) |
---|
1199 | { |
---|
1200 | attrib(vid,"isEquidimensional",1); |
---|
1201 | } |
---|
1202 | else |
---|
1203 | { |
---|
1204 | attrib(vid,"isEquidimensional",0); |
---|
1205 | } |
---|
1206 | attrib(vid,"isCompleteIntersection",0); |
---|
1207 | |
---|
1208 | keepresult2=normalizationPrimes(vid,ihp); |
---|
1209 | |
---|
1210 | setring BAS; |
---|
1211 | for(lauf=1;lauf<=size(keepresult2);lauf++) |
---|
1212 | { |
---|
1213 | keepresult1=insert(keepresult1,keepresult2[lauf]); |
---|
1214 | } |
---|
1215 | return(keepresult1); |
---|
1216 | } |
---|
1217 | } |
---|
1218 | example |
---|
1219 | { "EXAMPLE:";echo = 2; |
---|
1220 | //Huneke |
---|
1221 | ring qr=31991,(a,b,c,d,e),dp; |
---|
1222 | ideal i= |
---|
1223 | 5abcde-a5-b5-c5-d5-e5, |
---|
1224 | ab3c+bc3d+a3be+cd3e+ade3, |
---|
1225 | a2bc2+b2cd2+a2d2e+ab2e2+c2de2, |
---|
1226 | abc5-b4c2d-2a2b2cde+ac3d2e-a4de2+bcd2e3+abe5, |
---|
1227 | ab2c4-b5cd-a2b3de+2abc2d2e+ad4e2-a2bce3-cde5, |
---|
1228 | a3b2cd-bc2d4+ab2c3e-b5de-d6e+3abcd2e2-a2be4-de6, |
---|
1229 | a4b2c-abc2d3-ab5e-b3c2de-ad5e+2a2bcde2+cd2e4, |
---|
1230 | b6c+bc6+a2b4e-3ab2c2de+c4d2e-a3cde2-abd3e2+bce5; |
---|
1231 | |
---|
1232 | list pr=normal(i); |
---|
1233 | def r1=pr[1]; |
---|
1234 | setring r1; |
---|
1235 | KK; |
---|
1236 | } |
---|