1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: perron.lib,v 1.12 2009-02-25 18:51:26 Singular Exp $"; |
---|
3 | category="Noncommutative"; |
---|
4 | info=" |
---|
5 | LIBRARY: perron.lib computation of algebraic dependences |
---|
6 | AUTHOR: Oleksandr Motsak |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | perron(L[, D]); relations between pairwise commuting polynomials |
---|
10 | |
---|
11 | KEYWORDS: algebraic dependence; relations |
---|
12 | "; |
---|
13 | |
---|
14 | LIB "central.lib"; |
---|
15 | |
---|
16 | ////////////////////////////////////////////////////////////////////////////// |
---|
17 | proc perron( ideal L, list # ) |
---|
18 | "USAGE: perron( L [, D] ) |
---|
19 | RETURN: commutative ring with ideal `Relations` |
---|
20 | PURPOSE: computes polynomial relations ('Relations') between pairwise |
---|
21 | commuting polynomials of L [, up to a given degree bound D] |
---|
22 | NOTE: the implementation was partially inspired by the Perron's theorem. |
---|
23 | EXAMPLE: example perron; shows an example |
---|
24 | " |
---|
25 | { |
---|
26 | int N, D, i; |
---|
27 | N = size(L); |
---|
28 | if( N == 0 ) |
---|
29 | { |
---|
30 | ERROR( "Input ideal must be non-zero!" ); |
---|
31 | } |
---|
32 | intvec W; // weights |
---|
33 | for ( i = N; i > 0; i-- ) |
---|
34 | { |
---|
35 | W[i] = deg(L[i]); |
---|
36 | } |
---|
37 | //////////////////////////////////////////////////////////////////////// |
---|
38 | D = -1; |
---|
39 | // Check whether the degree bound 'D' is given: |
---|
40 | if( size(#)>0 ) |
---|
41 | { |
---|
42 | if ( typeof(#[1]) == typeof(D) ) |
---|
43 | { |
---|
44 | D = #[1]; |
---|
45 | if( D <= 0 ) |
---|
46 | { |
---|
47 | ERROR( "An optional parameter D must be positive!" ); |
---|
48 | } |
---|
49 | } |
---|
50 | } |
---|
51 | |
---|
52 | // , otherwise we try to estimate it according to Perron's Th: |
---|
53 | if( D < 0 ) |
---|
54 | { |
---|
55 | D = 1; |
---|
56 | int d; |
---|
57 | int min = -1; |
---|
58 | |
---|
59 | for ( i = size(L); i > 0 ; i-- ) |
---|
60 | { |
---|
61 | d = W[i]; |
---|
62 | D = D * d; |
---|
63 | if( min == -1) |
---|
64 | { |
---|
65 | min = d; |
---|
66 | } |
---|
67 | else |
---|
68 | { |
---|
69 | if( min > d ) |
---|
70 | { |
---|
71 | min = d; |
---|
72 | } |
---|
73 | } |
---|
74 | } |
---|
75 | if( (D == 0) or (min <= 0) ) |
---|
76 | { |
---|
77 | ERROR( "Wrong set of polynomials!" ); |
---|
78 | } |
---|
79 | D = D / min; |
---|
80 | } |
---|
81 | //////////////////////////////////////////////////////////////////////// |
---|
82 | def NCRING = basering; |
---|
83 | def CurrentField = ringlist( NCRING )[1]; |
---|
84 | |
---|
85 | // We are going to construct a commutative ring in N variables F(i), |
---|
86 | // with the field specified by 'CurrentField': |
---|
87 | |
---|
88 | ring TEMPRING = 0, ( F(1..N) ), dp; |
---|
89 | list RingList = ringlist( TEMPRING ); |
---|
90 | setring NCRING; |
---|
91 | |
---|
92 | if( !defined(RingList) ) |
---|
93 | { |
---|
94 | list RingList = imap( TEMPRING, RingList ); |
---|
95 | } |
---|
96 | RingList[1] = CurrentField; |
---|
97 | |
---|
98 | // New Commutative Ring with correct field! |
---|
99 | def COMMUTATIVERING = ring( RingList ); |
---|
100 | |
---|
101 | //////////////////////////////////////////////////////////////////////// |
---|
102 | |
---|
103 | setring COMMUTATIVERING; // we are in COMMUTATIVERING now |
---|
104 | |
---|
105 | ideal PBWBasis = PBW_maxDeg( D ); // All monomials of degree(!) <= D. |
---|
106 | |
---|
107 | // TODO: it would be better to compute weighted monomials of weight |
---|
108 | // <= W[1] \cdots W[N]. |
---|
109 | |
---|
110 | setring NCRING; // and back to NCRING |
---|
111 | |
---|
112 | map Psi = COMMUTATIVERING, L; // F(i) \mapsto L[i] |
---|
113 | |
---|
114 | ideal Images = Psi( PBWBasis ); // Corresponding products of polynomials |
---|
115 | // from L |
---|
116 | |
---|
117 | // ::MAIN STEP:: // Compute relations in NC ring: |
---|
118 | def T = linearMapKernel( Images ); |
---|
119 | |
---|
120 | //////////////////////////////////////////////////////////////////////// |
---|
121 | |
---|
122 | // check the output of 'linearMapKernel': |
---|
123 | int t = 0; |
---|
124 | |
---|
125 | if( (typeof(T) != "module") and (typeof(T) != "int" ) ) |
---|
126 | { |
---|
127 | ERROR( "Wrong output from function 'linearMapKernel'!" ); |
---|
128 | } |
---|
129 | |
---|
130 | if( typeof(T) == "int" ) |
---|
131 | { |
---|
132 | t = 1; |
---|
133 | if( T != 0 ) |
---|
134 | { |
---|
135 | ERROR( "Wrong output from function 'linearMapKernel'!" ); |
---|
136 | } |
---|
137 | } |
---|
138 | |
---|
139 | //////////////////////////////////////////////////////////////////////// |
---|
140 | |
---|
141 | // Go back to commutative case in both cases: |
---|
142 | setring COMMUTATIVERING; |
---|
143 | |
---|
144 | ideal Relations; // And generate Relations: |
---|
145 | |
---|
146 | if( t == 0 ) // T is a module |
---|
147 | { |
---|
148 | module KER = imap( NCRING, T ); |
---|
149 | Relations = linearCombinations( PBWBasis, KER ); |
---|
150 | } |
---|
151 | else |
---|
152 | { // T == int(0) => all images are zero => |
---|
153 | Relations = PBWBasis; |
---|
154 | } |
---|
155 | |
---|
156 | //////////////////////////////////////////////////////////////////////// |
---|
157 | |
---|
158 | // we compute an std basis of the relations: |
---|
159 | |
---|
160 | // save options |
---|
161 | intvec v = option( get ); |
---|
162 | |
---|
163 | // set right options |
---|
164 | option( redSB ); |
---|
165 | option( redTail ); |
---|
166 | |
---|
167 | // reduce everything in as far as possible |
---|
168 | Relations = simplify( groebner( Relations ), 1 + 2 + 8 ); |
---|
169 | |
---|
170 | // restore options |
---|
171 | option( set, v ); |
---|
172 | |
---|
173 | // Relations; |
---|
174 | export Relations; |
---|
175 | |
---|
176 | return( COMMUTATIVERING ); |
---|
177 | } |
---|
178 | example |
---|
179 | { "EXAMPLE:"; echo = 2; |
---|
180 | int p = 3; |
---|
181 | ring AA = p,(x,y,z),dp; |
---|
182 | matrix D[3][3]=0; |
---|
183 | D[1,2]=-z; D[1,3]=2*x; D[2,3]=-2*y; |
---|
184 | def A = nc_algebra(1,D); setring A; // this algebra is U(sl_2) |
---|
185 | ideal I = x^p, y^p, z^p-z, 4*x*y+z^2-2*z; // the center |
---|
186 | def RA = perron( I, p ); |
---|
187 | setring RA; |
---|
188 | RA; |
---|
189 | Relations; // it was exported from perron to be in the returned ring. |
---|
190 | |
---|
191 | // perron can be also used in a commutative case, for example: |
---|
192 | ring B = 0,(x,y,z),dp; |
---|
193 | ideal J = xy+z2, z2+y2, x2y2-2xy3+y4; |
---|
194 | def RB = perron(J); |
---|
195 | setring RB; |
---|
196 | Relations; |
---|
197 | } |
---|
198 | |
---|