1 | // $Id: poly.lib,v 1.11 1998-04-06 17:59:38 obachman Exp $ |
---|
2 | //system("random",787422842); |
---|
3 | //(GMG, last modified 22.06.96) |
---|
4 | //(obachman: 17.12.97 -- added katsura) |
---|
5 | /////////////////////////////////////////////////////////////////////////////// |
---|
6 | |
---|
7 | version="$Id: poly.lib,v 1.11 1998-04-06 17:59:38 obachman Exp $"; |
---|
8 | info=" |
---|
9 | LIBRARY: poly.lib PROCEDURES FOR MANIPULATING POLYS, IDEALS, MODULES |
---|
10 | |
---|
11 | cyclic(int); ideal of cyclic n-roots |
---|
12 | katsura([i]); katsura [i] ideal |
---|
13 | freerank(poly/...) rank of coker(input) if coker is free else -1 |
---|
14 | is_homog(poly/...); int, =1 resp. =0 if input is homogeneous resp. not |
---|
15 | is_zero(poly/...); int, =1 resp. =0 if coker(input) is 0 resp. not |
---|
16 | lcm(ideal); lcm of given generators of ideal |
---|
17 | maxcoef(poly/...); maximal length of coefficient occuring in poly/... |
---|
18 | maxdeg(poly/...); int/intmat = degree/s of terms of maximal order |
---|
19 | maxdeg1(poly/...); int = [weighted] maximal degree of input |
---|
20 | mindeg(poly/...); int/intmat = degree/s of terms of minimal order |
---|
21 | mindeg1(poly/...); int = [weighted] minimal degree of input |
---|
22 | normalize(poly/...); normalize poly/... such that leading coefficient is 1 |
---|
23 | rad_con(p,I); check radical containment of poly p in ideal I |
---|
24 | content(f); content of polynomial/vector f |
---|
25 | (parameters in square brackets [] are optional) |
---|
26 | "; |
---|
27 | |
---|
28 | LIB "general.lib"; |
---|
29 | /////////////////////////////////////////////////////////////////////////////// |
---|
30 | |
---|
31 | proc cyclic (int n) |
---|
32 | USAGE: cyclic(n); n integer |
---|
33 | RETURN: ideal of cyclic n-roots from 1-st n variables of basering |
---|
34 | EXAMPLE: example cyclic; shows examples |
---|
35 | { |
---|
36 | //----------------------------- procedure body -------------------------------- |
---|
37 | ideal m = maxideal(1); |
---|
38 | m = m[1..n],m[1..n]; |
---|
39 | int i,j; |
---|
40 | ideal s; poly t; |
---|
41 | for ( j=0; j<=n-2; j=j+1 ) |
---|
42 | { |
---|
43 | t=0; |
---|
44 | for( i=1;i<=n;i=i+1 ) { t=t+product(m,i..i+j); } |
---|
45 | s=s+t; |
---|
46 | } |
---|
47 | s=s,product(m,1..n)-1; |
---|
48 | return (s); |
---|
49 | } |
---|
50 | //-------------------------------- examples ----------------------------------- |
---|
51 | example |
---|
52 | { "EXAMPLE:"; echo = 2; |
---|
53 | ring r=0,(u,v,w,x,y,z),lp; |
---|
54 | cyclic(nvars(basering)); |
---|
55 | homog(cyclic(5),z); |
---|
56 | } |
---|
57 | /////////////////////////////////////////////////////////////////////////////// |
---|
58 | |
---|
59 | proc katsura |
---|
60 | USAGE: katsura([n]); n integer |
---|
61 | RETURN: katsura(n) : n-th katsura ideal of newly created and set ring |
---|
62 | (32003, x(0..n), dp) |
---|
63 | katsura() : katsura ideal of basering |
---|
64 | EXAMPLE: example katsura; shows examples |
---|
65 | { |
---|
66 | if ( size(#) == 1 && typeof(#[1]) == "int") |
---|
67 | { |
---|
68 | ring katsura_ring = 32003, x(0..#[1]), dp; |
---|
69 | keepring katsura_ring; |
---|
70 | } |
---|
71 | ideal s; |
---|
72 | int i, j; |
---|
73 | int n = nvars(basering) -1; |
---|
74 | poly p; |
---|
75 | |
---|
76 | p = -1; |
---|
77 | for (i = -n; i <= n; i++) |
---|
78 | { |
---|
79 | p = p + kat_var(i, n); |
---|
80 | } |
---|
81 | s[1] = p; |
---|
82 | |
---|
83 | for (i = 0; i < n; i++) |
---|
84 | { |
---|
85 | p = -1 * kat_var(i,n); |
---|
86 | for (j = -n; j <= n; j++) |
---|
87 | { |
---|
88 | p = p + kat_var(j,n) * kat_var(i-j, n); |
---|
89 | } |
---|
90 | s = s,p; |
---|
91 | } |
---|
92 | return (s); |
---|
93 | } |
---|
94 | //-------------------------------- examples ----------------------------------- |
---|
95 | example |
---|
96 | { |
---|
97 | "EXAMPLE:"; echo = 2; |
---|
98 | ring r; |
---|
99 | katsura(); |
---|
100 | katsura(3); |
---|
101 | } |
---|
102 | |
---|
103 | proc kat_var(int i, int n) |
---|
104 | { |
---|
105 | poly p; |
---|
106 | if (i < 0) { i = -i;} |
---|
107 | if (i <= n) { p = var(i+1); } |
---|
108 | return (p); |
---|
109 | } |
---|
110 | /////////////////////////////////////////////////////////////////////////////// |
---|
111 | |
---|
112 | proc freerank |
---|
113 | USAGE: freerank(M[,any]); M=poly/ideal/vector/module/matrix |
---|
114 | COMPUTE: rank of module presented by M in case it is free. By definition this |
---|
115 | is vdim(coker(M)/m*coker(M)) if coker(M) is free, where m = maximal |
---|
116 | ideal of basering and M is considered as matrix (the 0-module is |
---|
117 | free of rank 0) |
---|
118 | RETURN: rank of coker(M) if coker(M) is free and -1 else; |
---|
119 | in case of a second argument return a list: |
---|
120 | L[1] = rank of coker(M) or -1 |
---|
121 | L[2] = minbase(M) |
---|
122 | NOTE: freerank(syz(M)); computes the rank of M if M is free (and -1 else) |
---|
123 | //* Zur Zeit noch ein Bug, da erste Bettizahl falsch berechnet wird: |
---|
124 | //betti(0) ist -1 statt 0 |
---|
125 | EXAMPLE: example freerank; shows examples |
---|
126 | { |
---|
127 | int rk; |
---|
128 | def M = simplify(#[1],10); |
---|
129 | list mre = mres(M,2); |
---|
130 | intmat B = betti(mre); |
---|
131 | if ( ncols(B)>1 ) { rk = -1; } |
---|
132 | else { rk = sum(B[1..nrows(B),1]); } |
---|
133 | if (size(#) == 2) { list L=rk,mre[1]; return(L);} |
---|
134 | return(rk); |
---|
135 | } |
---|
136 | example |
---|
137 | {"EXAMPLE"; echo=2; |
---|
138 | ring r; |
---|
139 | ideal i=x; |
---|
140 | module M=[x,0,1],[-x,0,-1]; |
---|
141 | freerank(M); // should be -1, coker(M) is not free |
---|
142 | // [1] should be 1, coker(syz(M))=M is free of rank 1 |
---|
143 | freerank(syz (M),""); // [2] should be gen(2)+gen(1) (minimal relation of M) |
---|
144 | freerank(i); |
---|
145 | freerank(syz(i)); //* bug, should be 1, coker(syz(i))=i is free of rank 1 |
---|
146 | } |
---|
147 | /////////////////////////////////////////////////////////////////////////////// |
---|
148 | |
---|
149 | proc is_homog (id) |
---|
150 | USAGE: is_homog(id); id poly/ideal/vector/module/matrix |
---|
151 | RETURN: integer which is 1 if input is homogeneous (resp. weighted homogeneous |
---|
152 | if the monomial ordering consists of one block of type ws,Ws,wp or Wp, |
---|
153 | assuming that all weights are positive) and 0 otherwise |
---|
154 | NOTE: A vector is homogeneous, if the components are homogeneous of same |
---|
155 | degree, a module/matrix is homogeneous if all column vectors are |
---|
156 | homogeneous |
---|
157 | //*** ergaenzen, wenn Matrizen-Spalten Gewichte haben |
---|
158 | EXAMPLE: example is_homog; shows examples |
---|
159 | { |
---|
160 | //----------------------------- procedure body -------------------------------- |
---|
161 | module M = module(matrix(id)); |
---|
162 | M = simplify(M,2); // remove 0-columns |
---|
163 | intvec v = ringweights(basering); |
---|
164 | int i,j=1,1; |
---|
165 | for (i=1; i<=ncols(M); i=i+1) |
---|
166 | { |
---|
167 | if( M[i]!=jet(M[i],deg(lead(M[i])),v)-jet(M[i],deg(lead(M[i]))-1,v)) |
---|
168 | { return(0); } |
---|
169 | } |
---|
170 | return(1); |
---|
171 | } |
---|
172 | //-------------------------------- examples ----------------------------------- |
---|
173 | example |
---|
174 | { "EXAMPLE:"; echo = 2; |
---|
175 | ring r = 0,(x,y,z),wp(1,2,3); |
---|
176 | is_homog(x5-yz+y3); |
---|
177 | ideal i = x6+y3+z2, x9-z3; |
---|
178 | is_homog(i); |
---|
179 | ring s = 0,(a,b,c),ds; |
---|
180 | vector v = [a2,0,ac+bc]; |
---|
181 | vector w = [a3,b3,c4]; |
---|
182 | is_homog(v); |
---|
183 | is_homog(w); |
---|
184 | } |
---|
185 | /////////////////////////////////////////////////////////////////////////////// |
---|
186 | |
---|
187 | proc is_zero |
---|
188 | USAGE: is_zero(M[,any]); M=poly/ideal/vector/module/matrix |
---|
189 | RETURN: integer, 1 if coker(M)=0 resp. 0 if coker(M)!=0, where M is considered |
---|
190 | as matrix |
---|
191 | if a second argument is given, return a list: |
---|
192 | L[1] = 1 if coker(M)=0 resp. 0 if coker(M)!=0 |
---|
193 | L[2] = dim(M) |
---|
194 | EXAMPLE: example is_zero; shows examples |
---|
195 | { |
---|
196 | int d=dim(std(#[1])); |
---|
197 | int a = ( d==-1 ); |
---|
198 | if( size(#) >1 ) { list L=a,d; return(L); } |
---|
199 | return(a); |
---|
200 | } |
---|
201 | example |
---|
202 | { "EXAMPLE:"; echo=2; |
---|
203 | ring r; |
---|
204 | module m = [x],[y],[1,z]; |
---|
205 | is_zero(m,1); |
---|
206 | qring q = std(ideal(x2+y3+z2)); |
---|
207 | ideal j = x2+y3+z2-37; |
---|
208 | is_zero(j); |
---|
209 | } |
---|
210 | //////////////////////////////////////////////////////////////////////////////// |
---|
211 | |
---|
212 | proc maxcoef (f) |
---|
213 | USAGE: maxcoef(f); f poly/ideal/vector/module/matrix |
---|
214 | RETURN: maximal length of coefficient of f of type int (by counting the |
---|
215 | length of the string of each coefficient) |
---|
216 | EXAMPLE: example maxcoef; shows examples |
---|
217 | { |
---|
218 | //----------------------------- procedure body -------------------------------- |
---|
219 | int max,s,ii,jj; string t; |
---|
220 | ideal i = ideal(matrix(f)); |
---|
221 | i = simplify(i,6); // delete 0's and keep first of equal elements |
---|
222 | poly m = var(1); matrix C; |
---|
223 | for (ii=2;ii<=nvars(basering);ii=ii+1) { m = m*var(ii); } |
---|
224 | for (ii=1; ii<=size(i); ii=ii+1) |
---|
225 | { |
---|
226 | C = coef(i[ii],m); |
---|
227 | for (jj=1; jj<=ncols(C); jj=jj+1) |
---|
228 | { |
---|
229 | t = string(C[2,jj]); s = size(t); |
---|
230 | if ( t[1] == "-" ) { s = s - 1; } |
---|
231 | if ( s > max ) { max = s; } |
---|
232 | } |
---|
233 | } |
---|
234 | return(max); |
---|
235 | } |
---|
236 | //-------------------------------- examples ----------------------------------- |
---|
237 | example |
---|
238 | { "EXAMPLE:"; echo = 2; |
---|
239 | ring r= 0,(x,y,z),ds; |
---|
240 | poly g = 345x2-1234567890y+7/4z; |
---|
241 | maxcoef(g); |
---|
242 | ideal i = g,10/1234567890; |
---|
243 | maxcoef(i); |
---|
244 | // since i[2]=1/123456789 |
---|
245 | } |
---|
246 | /////////////////////////////////////////////////////////////////////////////// |
---|
247 | |
---|
248 | proc maxdeg (id) |
---|
249 | USAGE: maxdeg(id); id poly/ideal/vector/module/matrix |
---|
250 | RETURN: int/intmat, each component equals maximal degree of monomials in the |
---|
251 | corresponding component of id, independent of ring ordering |
---|
252 | (maxdeg of each var is 1) |
---|
253 | of type int if id is of type poly, of type intmat else |
---|
254 | NOTE: proc maxdeg1 returns 1 integer, the absolut maximum; moreover, it has |
---|
255 | an option for computing weighted degrees |
---|
256 | EXAMPLE: example maxdeg; shows examples |
---|
257 | { |
---|
258 | //-------- subprocedure to find maximal degree of given component ---------- |
---|
259 | proc findmaxdeg |
---|
260 | { |
---|
261 | poly c = #[1]; |
---|
262 | if (c==0) { return(-1); } |
---|
263 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
264 | int d = (deg(c)>=0)*deg(c)-(deg(c)<0)*deg(c); |
---|
265 | int i = d; |
---|
266 | while ( c-jet(c,i) != 0 ) { i = 2*(i+1); } |
---|
267 | int o = i-1; |
---|
268 | int u = (d != i)*((i div 2)-1); |
---|
269 | //----------------------- "quick search" for maxdeg ------------------------ |
---|
270 | while ( (c-jet(c,i)==0)*(c-jet(c,i-1)!=0) == 0) |
---|
271 | { |
---|
272 | i = (o+1+u) div 2; |
---|
273 | if (c-jet(c,i)!=0) { u = i+1; } |
---|
274 | else { o = i-1; } |
---|
275 | } |
---|
276 | return(i); |
---|
277 | } |
---|
278 | //------------------------------ main program --------------------------------- |
---|
279 | matrix M = matrix(id); |
---|
280 | int r,c = nrows(M), ncols(M); int i,j; |
---|
281 | intmat m[r][c]; |
---|
282 | for (i=r; i>0; i=i-1) |
---|
283 | { |
---|
284 | for (j=c; j>0; j=j-1) { m[i,j] = findmaxdeg(M[i,j]); } |
---|
285 | } |
---|
286 | if (typeof(id)=="poly") { return(m[1,1]); } |
---|
287 | return(m); |
---|
288 | } |
---|
289 | //-------------------------------- examples ----------------------------------- |
---|
290 | example |
---|
291 | { "EXAMPLE:"; echo = 2; |
---|
292 | ring r = 0,(x,y,z),wp(-1,-2,-3); |
---|
293 | poly f = x+y2+z3; |
---|
294 | deg(f); //deg; returns weighted degree (in case of 1 block)! |
---|
295 | maxdeg(f); |
---|
296 | matrix m[2][2]=f+x10,1,0,f^2; |
---|
297 | maxdeg(m); |
---|
298 | } |
---|
299 | /////////////////////////////////////////////////////////////////////////////// |
---|
300 | |
---|
301 | proc maxdeg1 (id,list #) |
---|
302 | USAGE: maxdeg1(id[,v]); id=poly/ideal/vector/module/matrix, v=intvec |
---|
303 | RETURN: integer, maximal [weighted] degree of monomials of id independent of |
---|
304 | ring ordering, maxdeg1 of i-th variable is v[i] (default: v=1..1). |
---|
305 | NOTE: This proc returns one integer while maxdeg returns, in general, |
---|
306 | a matrix of integers. For one polynomial and if no intvec v is given |
---|
307 | maxdeg is faster |
---|
308 | EXAMPLE: example maxdeg1; shows examples |
---|
309 | { |
---|
310 | //-------- subprocedure to find maximal degree of given component ---------- |
---|
311 | proc findmaxdeg |
---|
312 | { |
---|
313 | poly c = #[1]; |
---|
314 | if (c==0) { return(-1); } |
---|
315 | intvec v = #[2]; |
---|
316 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
317 | int d = (deg(c)>=0)*deg(c)-(deg(c)<0)*deg(c); |
---|
318 | int i = d; |
---|
319 | if ( c == jet(c,-1,v)) //case: maxdeg is negative |
---|
320 | { |
---|
321 | i = -d; |
---|
322 | while ( c == jet(c,i,v) ) { i = 2*(i-1); } |
---|
323 | int o = (d != -i)*((i div 2)+2) - 1; |
---|
324 | int u = i+1; |
---|
325 | int e = -1; |
---|
326 | } |
---|
327 | else //case: maxdeg is nonnegative |
---|
328 | { |
---|
329 | while ( c != jet(c,i,v) ) { i = 2*(i+1); } |
---|
330 | int o = i-1; |
---|
331 | int u = (d != i)*((i div 2)-1); |
---|
332 | int e = 1; |
---|
333 | } |
---|
334 | //----------------------- "quick search" for maxdeg ------------------------ |
---|
335 | while ( ( c==jet(c,i,v) )*( c!=jet(c,i-1,v) ) == 0 ) |
---|
336 | { |
---|
337 | i = (o+e+u) div 2; |
---|
338 | if ( c!=jet(c,i,v) ) { u = i+1; } |
---|
339 | else { o = i-1; } |
---|
340 | } |
---|
341 | return(i); |
---|
342 | } |
---|
343 | //------------------------------ main program --------------------------------- |
---|
344 | ideal M = simplify(ideal(matrix(id)),8); //delete scalar multiples from id |
---|
345 | int c = ncols(M); |
---|
346 | int i,n; |
---|
347 | if( size(#)==0 ) |
---|
348 | { |
---|
349 | int m = maxdeg(M[c]); |
---|
350 | for (i=c-1; i>0; i=i-1) |
---|
351 | { |
---|
352 | n = maxdeg(M[i]); |
---|
353 | m = (m>=n)*m + (m<n)*n; //let m be the maximum of m and n |
---|
354 | } |
---|
355 | } |
---|
356 | else |
---|
357 | { |
---|
358 | intvec v=#[1]; //weight vector for the variables |
---|
359 | int m = findmaxdeg(M[c],v); |
---|
360 | for (i=c-1; i>0; i--) |
---|
361 | { |
---|
362 | n = findmaxdeg(M[i],v); |
---|
363 | if( n>m ) { m=n; } |
---|
364 | } |
---|
365 | } |
---|
366 | return(m); |
---|
367 | } |
---|
368 | //-------------------------------- examples ----------------------------------- |
---|
369 | example |
---|
370 | { "EXAMPLE:"; echo = 2; |
---|
371 | ring r = 0,(x,y,z),wp(-1,-2,-3); |
---|
372 | poly f = x+y2+z3; |
---|
373 | deg(f); //deg returns weighted degree (in case of 1 block)! |
---|
374 | maxdeg1(f); |
---|
375 | intvec v = ringweights(r); |
---|
376 | maxdeg1(f,v); //weighted maximal degree |
---|
377 | matrix m[2][2]=f+x10,1,0,f^2; |
---|
378 | maxdeg1(m,v); //absolut weighted maximal degree |
---|
379 | } |
---|
380 | /////////////////////////////////////////////////////////////////////////////// |
---|
381 | |
---|
382 | proc mindeg (id) |
---|
383 | USAGE: mindeg(id); id poly/ideal/vector/module/matrix |
---|
384 | RETURN: minimal degree/s of monomials of id, independent of ring ordering |
---|
385 | (mindeg of each variable is 1) of type int if id of type poly, else |
---|
386 | of type intmat. |
---|
387 | NOTE: proc mindeg1 returns one integer, the absolut minimum; moreover it |
---|
388 | has an option for computing weighted degrees. |
---|
389 | EXAMPLE: example mindeg; shows examples |
---|
390 | { |
---|
391 | //--------- subprocedure to find minimal degree of given component --------- |
---|
392 | proc findmindeg |
---|
393 | { |
---|
394 | poly c = #[1]; |
---|
395 | if (c==0) { return(-1); } |
---|
396 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
397 | int d = (ord(c)>=0)*ord(c)-(ord(c)<0)*ord(c); |
---|
398 | int i = d; |
---|
399 | while ( jet(c,i) == 0 ) { i = 2*(i+1); } |
---|
400 | int o = i-1; |
---|
401 | int u = (d != i)*((i div 2)-1); |
---|
402 | //----------------------- "quick search" for mindeg ------------------------ |
---|
403 | while ( (jet(c,u)==0)*(jet(c,o)!=0) ) |
---|
404 | { |
---|
405 | i = (o+u) div 2; |
---|
406 | if (jet(c,i)==0) { u = i+1; } |
---|
407 | else { o = i-1; } |
---|
408 | } |
---|
409 | if (jet(c,u)!=0) { return(u); } |
---|
410 | else { return(o+1); } |
---|
411 | } |
---|
412 | //------------------------------ main program --------------------------------- |
---|
413 | matrix M = matrix(id); |
---|
414 | int r,c = nrows(M), ncols(M); int i,j; |
---|
415 | intmat m[r][c]; |
---|
416 | for (i=r; i>0; i=i-1) |
---|
417 | { |
---|
418 | for (j=c; j>0; j=j-1) { m[i,j] = findmindeg(M[i,j]); } |
---|
419 | } |
---|
420 | if (typeof(id)=="poly") { return(m[1,1]); } |
---|
421 | return(m); |
---|
422 | } |
---|
423 | //-------------------------------- examples ----------------------------------- |
---|
424 | example |
---|
425 | { "EXAMPLE:"; echo = 2; |
---|
426 | ring r = 0,(x,y,z),ls; |
---|
427 | poly f = x5+y2+z3; |
---|
428 | ord(f); // ord returns weighted order of leading term! |
---|
429 | mindeg(f); // computes minimal degree |
---|
430 | matrix m[2][2]=x10,1,0,f^2; |
---|
431 | mindeg(m); // computes matrix of minimum degrees |
---|
432 | } |
---|
433 | /////////////////////////////////////////////////////////////////////////////// |
---|
434 | |
---|
435 | proc mindeg1 (id, list #) |
---|
436 | USAGE: mindeg1(id[,v]); id=poly/ideal/vector/module/matrix, v=intvec |
---|
437 | RETURN: integer, minimal [weighted] degree of monomials of id independent of |
---|
438 | ring ordering, mindeg1 of i-th variable is v[i] (default v=1..1). |
---|
439 | NOTE: This proc returns one integer while mindeg returns, in general, |
---|
440 | a matrix of integers. For one polynomial and if no intvec v is given |
---|
441 | mindeg is faster. |
---|
442 | EXAMPLE: example mindeg1; shows examples |
---|
443 | { |
---|
444 | //--------- subprocedure to find minimal degree of given component --------- |
---|
445 | proc findmindeg |
---|
446 | { |
---|
447 | poly c = #[1]; |
---|
448 | intvec v = #[2]; |
---|
449 | if (c==0) { return(-1); } |
---|
450 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
451 | int d = (ord(c)>=0)*ord(c)-(ord(c)<0)*ord(c); |
---|
452 | int i = d; |
---|
453 | if ( jet(c,-1,v) !=0 ) //case: mindeg is negative |
---|
454 | { |
---|
455 | i = -d; |
---|
456 | while ( jet(c,i,v) != 0 ) { i = 2*(i-1); } |
---|
457 | int o = (d != -i)*((i div 2)+2) - 1; |
---|
458 | int u = i+1; |
---|
459 | int e = -1; i=u; |
---|
460 | } |
---|
461 | else //case: inded is nonnegative |
---|
462 | { |
---|
463 | while ( jet(c,i,v) == 0 ) { i = 2*(i+1); } |
---|
464 | int o = i-1; |
---|
465 | int u = (d != i)*((i div 2)-1); |
---|
466 | int e = 1; i=u; |
---|
467 | } |
---|
468 | //----------------------- "quick search" for mindeg ------------------------ |
---|
469 | while ( (jet(c,i-1,v)==0)*(jet(c,i,v)!=0) == 0 ) |
---|
470 | { |
---|
471 | i = (o+e+u) div 2; |
---|
472 | if (jet(c,i,v)==0) { u = i+1; } |
---|
473 | else { o = i-1; } |
---|
474 | } |
---|
475 | return(i); |
---|
476 | } |
---|
477 | //------------------------------ main program --------------------------------- |
---|
478 | ideal M = simplify(ideal(matrix(id)),8); //delete scalar multiples from id |
---|
479 | int c = ncols(M); |
---|
480 | int i,n; |
---|
481 | if( size(#)==0 ) |
---|
482 | { |
---|
483 | int m = mindeg(M[c]); |
---|
484 | for (i=c-1; i>0; i=i-1) |
---|
485 | { |
---|
486 | n = mindeg(M[i]); |
---|
487 | m = (m<=n)*m + (m>n)*n; //let m be the maximum of m and n |
---|
488 | } |
---|
489 | } |
---|
490 | else |
---|
491 | { |
---|
492 | intvec v=#[1]; //weight vector for the variables |
---|
493 | int m = findmindeg(M[c],v); |
---|
494 | for (i=c-1; i>0; i=i-1) |
---|
495 | { |
---|
496 | n = findmindeg(M[i],v); |
---|
497 | m = (m<=n)*m + (m>n)*n; //let m be the maximum of m and n |
---|
498 | } |
---|
499 | } |
---|
500 | return(m); |
---|
501 | } |
---|
502 | //-------------------------------- examples ----------------------------------- |
---|
503 | example |
---|
504 | { "EXAMPLE:"; echo = 2; |
---|
505 | ring r = 0,(x,y,z),ls; |
---|
506 | poly f = x5+y2+z3; |
---|
507 | ord(f); // ord returns weighted order of leading term! |
---|
508 | intvec v = 1,-3,2; |
---|
509 | mindeg1(f,v); // computes minimal weighted degree |
---|
510 | matrix m[2][2]=x10,1,0,f^2; |
---|
511 | mindeg1(m,1..3); // computes absolut minimum of weighted degrees |
---|
512 | } |
---|
513 | /////////////////////////////////////////////////////////////////////////////// |
---|
514 | |
---|
515 | proc normalize (id) |
---|
516 | USAGE: normalize(id); id=poly/vector/ideal/module |
---|
517 | RETURN: object of same type with leading coefficient equal to 1 |
---|
518 | EXAMPLE: example normalize; shows an example |
---|
519 | { |
---|
520 | return(simplify(id,1)); |
---|
521 | } |
---|
522 | //-------------------------------- examples ----------------------------------- |
---|
523 | example |
---|
524 | { "EXAMPLE:"; echo = 2; |
---|
525 | ring r = 0,(x,y,z),ls; |
---|
526 | poly f = 2x5+3y2+4z3; |
---|
527 | normalize(f); |
---|
528 | module m=[9xy,0,3z3],[4z,6y,2x]; |
---|
529 | normalize(m); |
---|
530 | ring s = 0,(x,y,z),(c,ls); |
---|
531 | module m=[9xy,0,3z3],[4z,6y,2x]; |
---|
532 | normalize(m); |
---|
533 | normalize(matrix(m)); // by automatic type conversion to module! |
---|
534 | } |
---|
535 | /////////////////////////////////////////////////////////////////////////////// |
---|
536 | |
---|
537 | //////////////////////////////////////////////////////////////////////////////// |
---|
538 | // Input: <ideal>=<f1,f2,...,fm> and <polynomial> g |
---|
539 | // Question: Does g lie in the radical of <ideal>? |
---|
540 | // Solution: Compute a standard basis G for <f1,f2,...,fm,gz-1> where z is a new |
---|
541 | // variable. Then g is contained in the radical of <ideal> <=> 1 is |
---|
542 | // generator in G. |
---|
543 | //////////////////////////////////////////////////////////////////////////////// |
---|
544 | proc rad_con (poly g,ideal I) |
---|
545 | USAGE: rad_con(<poly>,<ideal>); |
---|
546 | RETURNS: 1 (TRUE) (type <int>) if <poly> is contained in the radical of |
---|
547 | <ideal>, 0 (FALSE) (type <int>) otherwise |
---|
548 | EXAMPLE: example rad_con; shows an example |
---|
549 | { def br=basering; |
---|
550 | int n=nvars(br); |
---|
551 | int dB=degBound; |
---|
552 | degBound=0; |
---|
553 | string mp=string(minpoly); |
---|
554 | execute "ring R=("+charstr(br)+"),(x(1..n),z),dp;"; |
---|
555 | execute "minpoly=number("+mp+");"; |
---|
556 | ideal irrel=x(1..n); |
---|
557 | map f=br,irrel; |
---|
558 | poly p=f(g); |
---|
559 | ideal J=f(I)+ideal(p*z-1); |
---|
560 | J=std(J); |
---|
561 | degBound=dB; |
---|
562 | if (J[1]==1) |
---|
563 | { return(1); |
---|
564 | } |
---|
565 | else |
---|
566 | { return(0); |
---|
567 | } |
---|
568 | } |
---|
569 | example |
---|
570 | { " EXAMPLE: Sturmfels: Algorithms in Invariant Theory 2.3.7."; |
---|
571 | echo=2; |
---|
572 | ring R=0,(x,y,z),dp; |
---|
573 | ideal I=x2+y2,z2; |
---|
574 | poly f=x4+y4; |
---|
575 | rad_con(f,I); |
---|
576 | ideal J=x2+y2,z2,x4+y4; |
---|
577 | poly g=z; |
---|
578 | rad_con(g,I); |
---|
579 | } |
---|
580 | |
---|
581 | /////////////////////////////////////////////////////////////////////////////// |
---|
582 | |
---|
583 | proc lcm (ideal i) |
---|
584 | USAGE: lcm(i); i ideal |
---|
585 | RETURN: poly = lcm(i[1],...,i[size(i)]) |
---|
586 | NOTE: |
---|
587 | EXAMPLE: example lcm; shows an example |
---|
588 | { |
---|
589 | int k,j; |
---|
590 | poly p,q; |
---|
591 | i=simplify(i,10); |
---|
592 | for(j=1;j<=size(i);j++) |
---|
593 | { |
---|
594 | if(deg(i[j])>0) |
---|
595 | { |
---|
596 | p=i[j]; |
---|
597 | break; |
---|
598 | } |
---|
599 | } |
---|
600 | if(deg(p)==-1) |
---|
601 | { |
---|
602 | return(1); |
---|
603 | } |
---|
604 | for (k=j+1;k<=size(i);k++) |
---|
605 | { |
---|
606 | if(deg(i[k])!=0) |
---|
607 | { |
---|
608 | q=gcd(p,i[k]); |
---|
609 | if(deg(q)==0) |
---|
610 | { |
---|
611 | p=p*i[k]; |
---|
612 | } |
---|
613 | else |
---|
614 | { |
---|
615 | p=p/q; |
---|
616 | p=p*i[k]; |
---|
617 | } |
---|
618 | } |
---|
619 | } |
---|
620 | return(p); |
---|
621 | } |
---|
622 | example |
---|
623 | { "EXAMPLE:"; echo = 2; |
---|
624 | ring r = 0,(x,y,z),lp; |
---|
625 | poly p = (x+y)*(y+z); |
---|
626 | poly q = (z4+2)*(y+z); |
---|
627 | ideal l=p,q; |
---|
628 | poly pr= lcm(l); |
---|
629 | pr; |
---|
630 | l=1,-1,p,1,-1,q,1; |
---|
631 | pr=lcm(l); |
---|
632 | pr; |
---|
633 | } |
---|
634 | |
---|
635 | /////////////////////////////////////////////////////////////////////////////// |
---|
636 | |
---|
637 | proc content(f) |
---|
638 | USAGE: content(f); f polynomial/vector |
---|
639 | RETURN: number, the content (greatest common factor of coefficients) |
---|
640 | of the polynomial/vector f |
---|
641 | EXAMPLE: example content; shows an example |
---|
642 | { |
---|
643 | return(leadcoef(f)/leadcoef(cleardenom(f))); |
---|
644 | } |
---|
645 | example |
---|
646 | { "EXAMPLE:"; echo = 2; |
---|
647 | ring r=0,(x,y,z),(c,lp); |
---|
648 | content(3x2+18xy-27xyz); |
---|
649 | vector v=[3x2+18xy-27xyz,15x2+12y4,3]; |
---|
650 | content(v); |
---|
651 | } |
---|
652 | |
---|