1 | //////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version poly.lib 4.0.0.0 Jun_2013 "; // $Id$ |
---|
3 | category="General purpose"; |
---|
4 | info=" |
---|
5 | LIBRARY: poly.lib Procedures for Manipulating Polys, Ideals, Modules |
---|
6 | AUTHORS: O. Bachmann, G.-M. Greuel, A. Fruehbis |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | cyclic(int); ideal of cyclic n-roots |
---|
10 | elemSymmId(int); ideal of elementary symmetric polynomials |
---|
11 | katsura([i]); katsura [i] ideal |
---|
12 | freerank(poly/...) rank of coker(input) if coker is free else -1 |
---|
13 | is_zero(poly/...); int, =1 resp. =0 if coker(input) is 0 resp. not |
---|
14 | lcm(ideal); lcm of given generators of ideal |
---|
15 | maxcoef(poly/...); maximal length of coefficient occurring in poly/... |
---|
16 | maxdeg(poly/...); int/intmat = degree/s of terms of maximal order |
---|
17 | maxdeg1(poly/...); int = [weighted] maximal degree of input |
---|
18 | mindeg(poly/...); int/intmat = degree/s of terms of minimal order |
---|
19 | mindeg1(poly/...); int = [weighted] minimal degree of input |
---|
20 | normalize(poly/...); normalize poly/... such that leading coefficient is 1 |
---|
21 | rad_con(p,I); check radical containment of polynomial p in ideal I |
---|
22 | content(f); content of polynomial/vector f |
---|
23 | mod2id(M,iv); conversion of a module M to an ideal |
---|
24 | id2mod(i,iv); conversion inverse to mod2id |
---|
25 | substitute(I,...) substitute in I variables by polynomials |
---|
26 | subrInterred(i1,i2,iv);interred w.r.t. a subset of variables |
---|
27 | newtonDiag(f); Newton diagram of a polynomial |
---|
28 | hilbPoly(I); Hilbert polynomial of basering/I |
---|
29 | (parameters in square brackets [] are optional) |
---|
30 | |
---|
31 | "; |
---|
32 | |
---|
33 | LIB "general.lib"; |
---|
34 | LIB "ring.lib"; |
---|
35 | /////////////////////////////////////////////////////////////////////////////// |
---|
36 | static proc bino(int a, int b) |
---|
37 | { |
---|
38 | //computes binomial var(1)+a over b |
---|
39 | int i; |
---|
40 | if(b==0){return(1);} |
---|
41 | poly p=(var(1)+a)/b; |
---|
42 | for(i=1;i<=b-1;i++) |
---|
43 | { |
---|
44 | p=p*(var(1)+a-i)/i; |
---|
45 | } |
---|
46 | return(p); |
---|
47 | } |
---|
48 | |
---|
49 | proc hilbPoly(ideal I) |
---|
50 | "USAGE: hilbPoly(I); I a homogeneous ideal |
---|
51 | RETURN: the Hilbert polynomial of basering/I as an intvec v=v_0,...,v_r |
---|
52 | such that the Hilbert polynomial is (v_0+v_1*t+...v_r*t^r)/r! |
---|
53 | EXAMPLE: example hilbPoly; shows an example |
---|
54 | " |
---|
55 | { |
---|
56 | def R=basering; |
---|
57 | if(!attrib(I,"isSB")){I=std(I);} |
---|
58 | intvec v=hilb(I,2); |
---|
59 | int s=dim(I); |
---|
60 | intvec hp; |
---|
61 | if(s==0){return(hp);} |
---|
62 | int d=size(v)-2; |
---|
63 | ring S=0,t,dp; |
---|
64 | poly p=v[1+d]*bino(s-1-d,s-1); |
---|
65 | int i; |
---|
66 | for(i=1;i<=d;i++) |
---|
67 | { |
---|
68 | p=p+v[d-i+1]*bino(s-1-d+i,s-1); |
---|
69 | } |
---|
70 | int n=1; |
---|
71 | for(i=2;i<=s-1;i++){n=n*i;} |
---|
72 | p=n*p; |
---|
73 | hp[s]=int(leadcoef(p)); |
---|
74 | for(i=2;i<=size(p);i++) |
---|
75 | { |
---|
76 | hp[leadexp(p[i])+1]=int(leadcoef(p[i])); |
---|
77 | } |
---|
78 | setring R; |
---|
79 | return(hp); |
---|
80 | } |
---|
81 | example |
---|
82 | { "EXAMPLE:"; echo = 2; |
---|
83 | ring r = 0,(b,c,t,h),dp; |
---|
84 | ideal I= |
---|
85 | bct-t2h+2th2+h3, |
---|
86 | bt3-ct3-t4+b2th+c2th-2bt2h+2ct2h+2t3h-bch2-2bth2+2cth2+2th3, |
---|
87 | b2c2+bt2h-ct2h-t3h+b2h2+2bch2+c2h2-2bth2+2cth2+t2h2-2bh3+2ch3+2th3+3h4, |
---|
88 | c2t3+ct4-c3th-2c2t2h-2ct3h-t4h+bc2h2-2c2th2-bt2h2+4t3h2+2bth3-2cth3-t2h3 |
---|
89 | +bh4-6th4-2h5; |
---|
90 | hilbPoly(I); |
---|
91 | } |
---|
92 | |
---|
93 | /////////////////////////////////////////////////////////////////////////////// |
---|
94 | proc substitute (def I,list #) |
---|
95 | "USAGE: - case 1: typeof(#[1])==poly: |
---|
96 | substitute (I,v,f[,v1,f1,v2,f2,...]); I object of basering which |
---|
97 | can be mapped, v,v1,v2,.. ring variables, f,f1,f2,... poly |
---|
98 | @* - case 2: typeof(#[1])==ideal: |
---|
99 | substitute (I,v,f); I object of basering which can be mapped, |
---|
100 | v ideal of ring variables, f ideal |
---|
101 | RETURN: object of same type as I, |
---|
102 | @* - case 1: ring variable v,v1,v2,... substituted by polynomials |
---|
103 | f,f1,f2,..., in this order |
---|
104 | @* - case 2: ring variables in v substituted by polynomials in f: |
---|
105 | v[i] is substituted by f[i], i=1,...,i=min(size(v),ncols(f)) |
---|
106 | NOTE: this procedure extends the built-in command subst via maps |
---|
107 | EXAMPLE: example substitute; shows an example |
---|
108 | " |
---|
109 | { |
---|
110 | def bas = basering; |
---|
111 | ideal m = maxideal(1); |
---|
112 | int i,ii; |
---|
113 | if(typeof(#[1])=="poly") |
---|
114 | { |
---|
115 | poly v = #[1]; |
---|
116 | poly f = #[2]; |
---|
117 | map phi = bas,m; |
---|
118 | def J = I; |
---|
119 | for (ii=1; ii<=size(#) - 1; ii=ii+2) |
---|
120 | { |
---|
121 | m = maxideal(1); |
---|
122 | i=rvar(#[ii]); |
---|
123 | m[i] = #[ii+1]; |
---|
124 | phi = bas,m; |
---|
125 | J = phi(J); |
---|
126 | } |
---|
127 | return(J); |
---|
128 | } |
---|
129 | if(typeof(#[1])=="ideal") |
---|
130 | { |
---|
131 | ideal v = #[1]; |
---|
132 | ideal f = #[2]; |
---|
133 | int mi = ncols(v); |
---|
134 | if(ncols(f)<mi) |
---|
135 | { |
---|
136 | mi = ncols(f); |
---|
137 | } |
---|
138 | def J = I; |
---|
139 | for (ii=1; ii<=mi; ii++) |
---|
140 | { |
---|
141 | m[rvar(v[ii])]=f[ii]; |
---|
142 | } |
---|
143 | map phi = bas,m; |
---|
144 | J = phi(I); |
---|
145 | return(J); |
---|
146 | } |
---|
147 | } |
---|
148 | example |
---|
149 | { "EXAMPLE:"; echo = 2; |
---|
150 | ring r = 0,(b,c,t),dp; |
---|
151 | ideal I = -bc+4b2c2t,bc2t-5b2c; |
---|
152 | substitute(I,c,b+c,t,0,b,b-1); |
---|
153 | ideal v = c,t,b; |
---|
154 | ideal f = b+c,0,b-1; |
---|
155 | substitute(I,v,f); |
---|
156 | } |
---|
157 | |
---|
158 | /////////////////////////////////////////////////////////////////////////////// |
---|
159 | proc cyclic (int n) |
---|
160 | "USAGE: cyclic(n); n integer |
---|
161 | RETURN: ideal of cyclic n-roots from 1-st n variables of basering |
---|
162 | EXAMPLE: example cyclic; shows examples |
---|
163 | " |
---|
164 | { |
---|
165 | //----------------------------- procedure body -------------------------------- |
---|
166 | ideal m = maxideal(1); |
---|
167 | m = m[1..n],m[1..n]; |
---|
168 | int i,j; |
---|
169 | ideal s; poly t; |
---|
170 | for ( j=0; j<=n-2; j++ ) |
---|
171 | { |
---|
172 | t=0; |
---|
173 | for( i=1;i<=n;i++ ) { t=t+product(m,i..i+j); } |
---|
174 | s=s+t; |
---|
175 | } |
---|
176 | s=s,product(m,1..n)-1; |
---|
177 | return (s); |
---|
178 | } |
---|
179 | //-------------------------------- examples ----------------------------------- |
---|
180 | example |
---|
181 | { "EXAMPLE:"; echo = 2; |
---|
182 | ring r=0,(u,v,w,x,y,z),lp; |
---|
183 | cyclic(nvars(basering)); |
---|
184 | homog(cyclic(5),z); |
---|
185 | } |
---|
186 | |
---|
187 | /////////////////////////////////////////////////////////////////////////////// |
---|
188 | proc elemSymmPoly(int d, int lindex, int hindex) |
---|
189 | "USAGE: elemSymmPoly(d,lindex,hindex); d,lindex,hindex integers |
---|
190 | RETURN: elementary symmetric polynomial of degree d for variables |
---|
191 | @* var(lindex),...,var(hindex) of basering |
---|
192 | EXAMPLE: example elemSymmPoly; shows an example |
---|
193 | " |
---|
194 | { |
---|
195 | if(hindex - lindex + 1 < d) |
---|
196 | { |
---|
197 | int i = hindex - lindex + 1; |
---|
198 | "========================================================"; |
---|
199 | "There is no elementary symmetric polynomial of degree "+string(d); |
---|
200 | "for just "+string(i)+" variables."; |
---|
201 | "========================================================"; |
---|
202 | return(poly(0)); |
---|
203 | } |
---|
204 | if(d == 0) |
---|
205 | { |
---|
206 | return(poly(1)); |
---|
207 | } |
---|
208 | else |
---|
209 | { |
---|
210 | int i; |
---|
211 | poly p; |
---|
212 | for (i = lindex; i <= hindex - d + 1; i++) |
---|
213 | { |
---|
214 | p = p + var(i) * elemSymmPoly(d - 1, i + 1, hindex); |
---|
215 | } |
---|
216 | return(p); |
---|
217 | } |
---|
218 | } |
---|
219 | example |
---|
220 | { "EXAMPLE:"; echo = 2; |
---|
221 | ring R = 0, (u,v,w,x,y,z), lp; |
---|
222 | elemSymmPoly(3,2,5); |
---|
223 | elemSymmPoly(6,1,6); |
---|
224 | } |
---|
225 | |
---|
226 | ////////////////////////////////////////////////////////////////////////// |
---|
227 | proc elemSymmId(int n) |
---|
228 | "USAGE: elemSymmId(n); n integer |
---|
229 | RETURN: ideal of elementary symmetric polynomials for 1-st n |
---|
230 | @* variables of basering |
---|
231 | EXAMPLE: example elemSymmId; shows an example |
---|
232 | { |
---|
233 | int i; |
---|
234 | ideal symm; |
---|
235 | for(i = 1; i <= n; i++) |
---|
236 | { |
---|
237 | symm = symm + elemSymmPoly(i, 1, n); |
---|
238 | } |
---|
239 | return(symm); |
---|
240 | } |
---|
241 | example |
---|
242 | { "EXAMPLE:"; echo = 2; |
---|
243 | ring R = 0, (v,w,x,y,z), lp; |
---|
244 | elemSymmId(3); |
---|
245 | elemSymmId(nvars(basering)); |
---|
246 | } |
---|
247 | |
---|
248 | ////////////////////////////////////////////////////////////////////////// |
---|
249 | proc katsura |
---|
250 | "USAGE: katsura([n]); n integer |
---|
251 | RETURN: katsura(n) : n-th katsura ideal of |
---|
252 | (1) newly created and set ring (32003, x(0..n), dp), if |
---|
253 | nvars(basering) < n |
---|
254 | (2) basering, if nvars(basering) >= n |
---|
255 | katsura() : katsura ideal of basering |
---|
256 | EXAMPLE: example katsura; shows examples |
---|
257 | " |
---|
258 | { |
---|
259 | int n; |
---|
260 | if ( size(#) == 1 && typeof(#[1]) == "int") |
---|
261 | { |
---|
262 | n = #[1] - 1; |
---|
263 | while (1) |
---|
264 | { |
---|
265 | if (defined(basering)) |
---|
266 | { |
---|
267 | if (nvars(basering) >= #[1]) {break;} |
---|
268 | } |
---|
269 | ring katsura_ring = 32003, x(0..#[1]), dp; |
---|
270 | keepring katsura_ring; |
---|
271 | break; |
---|
272 | } |
---|
273 | } |
---|
274 | else |
---|
275 | { |
---|
276 | n = nvars(basering) -1; |
---|
277 | } |
---|
278 | |
---|
279 | ideal s; |
---|
280 | int i, j; |
---|
281 | poly p; |
---|
282 | |
---|
283 | p = -1; |
---|
284 | for (i = -n; i <= n; i++) |
---|
285 | { |
---|
286 | p = p + kat_var(i, n); |
---|
287 | } |
---|
288 | s[1] = p; |
---|
289 | |
---|
290 | for (i = 0; i < n; i++) |
---|
291 | { |
---|
292 | p = -1 * kat_var(i,n); |
---|
293 | for (j = -n; j <= n; j++) |
---|
294 | { |
---|
295 | p = p + kat_var(j,n) * kat_var(i-j, n); |
---|
296 | } |
---|
297 | s = s,p; |
---|
298 | } |
---|
299 | return (s); |
---|
300 | } |
---|
301 | //-------------------------------- examples ----------------------------------- |
---|
302 | example |
---|
303 | { |
---|
304 | "EXAMPLE:"; echo = 2; |
---|
305 | ring r; basering; |
---|
306 | katsura(); |
---|
307 | katsura(4); basering; |
---|
308 | } |
---|
309 | |
---|
310 | proc kat_var(int i, int n) |
---|
311 | { |
---|
312 | poly p; |
---|
313 | if (i < 0) { i = -i;} |
---|
314 | if (i <= n) { p = var(i+1); } |
---|
315 | return (p); |
---|
316 | } |
---|
317 | /////////////////////////////////////////////////////////////////////////////// |
---|
318 | |
---|
319 | proc freerank |
---|
320 | "USAGE: freerank(M[,any]); M=poly/ideal/vector/module/matrix |
---|
321 | COMPUTE: rank of module presented by M in case it is free. |
---|
322 | By definition this is vdim(coker(M)/m*coker(M)) if coker(M) |
---|
323 | is free, where m is the maximal ideal of the variables of the |
---|
324 | basering and M is considered to be a matrix. |
---|
325 | (the 0-module is free of rank 0) |
---|
326 | RETURN: rank of coker(M) if coker(M) is free and -1 else; |
---|
327 | in case of a second argument return a list: |
---|
328 | L[1] = rank of coker(M) or -1 |
---|
329 | L[2] = minbase(M) |
---|
330 | NOTE: freerank(syz(M)); computes the rank of M if M is free (and -1 else) |
---|
331 | EXAMPLE: example freerank; shows examples |
---|
332 | " |
---|
333 | { |
---|
334 | int rk; |
---|
335 | def M = simplify(#[1],10); |
---|
336 | resolution mre = res(M,2); |
---|
337 | intmat B = betti(mre); |
---|
338 | if ( ncols(B)>1 ) { rk = -1; } |
---|
339 | else { rk = sum(B[1..nrows(B),1]); } |
---|
340 | if (size(#) == 2) { list L=rk,mre[1]; return(L);} |
---|
341 | return(rk); |
---|
342 | } |
---|
343 | example |
---|
344 | {"EXAMPLE"; echo=2; |
---|
345 | ring r; |
---|
346 | ideal i=x; |
---|
347 | module M=[x,0,1],[-x,0,-1]; |
---|
348 | freerank(M); // should be 2, coker(M) is not free |
---|
349 | freerank(syz (M),""); |
---|
350 | // [1] should be 1, coker(syz(M))=M is free of rank 1 |
---|
351 | // [2] should be gen(2)+gen(1) (minimal relation of M) |
---|
352 | freerank(i); |
---|
353 | freerank(syz(i)); // should be 1, coker(syz(i))=i is free of rank 1 |
---|
354 | } |
---|
355 | /////////////////////////////////////////////////////////////////////////////// |
---|
356 | |
---|
357 | proc is_zero |
---|
358 | "USAGE: is_zero(M[,any]); M=poly/ideal/vector/module/matrix |
---|
359 | RETURN: integer, 1 if coker(M)=0 resp. 0 if coker(M)!=0, where M is |
---|
360 | considered as matrix. |
---|
361 | If a second argument is given, return a list: |
---|
362 | L[1] = 1 if coker(M)=0 resp. 0 if coker(M)!=0 |
---|
363 | L[2] = dim(M) |
---|
364 | EXAMPLE: example is_zero; shows examples |
---|
365 | " |
---|
366 | { |
---|
367 | int d=dim(std(#[1])); |
---|
368 | int a = ( d==-1 ); |
---|
369 | if( size(#) >1 ) { return(list(a,d)); } |
---|
370 | return(a); |
---|
371 | } |
---|
372 | example |
---|
373 | { "EXAMPLE:"; echo=2; |
---|
374 | ring r; |
---|
375 | module m = [x],[y],[1,z]; |
---|
376 | is_zero(m,1); |
---|
377 | qring q = std(ideal(x2+y3+z2)); |
---|
378 | ideal j = x2+y3+z2-37; |
---|
379 | is_zero(j); |
---|
380 | } |
---|
381 | /////////////////////////////////////////////////////////////////////////////// |
---|
382 | |
---|
383 | proc maxcoef (def f) |
---|
384 | "USAGE: maxcoef(f); f poly/ideal/vector/module/matrix |
---|
385 | RETURN: maximal length of coefficient of f of type int (by measuring the |
---|
386 | length of the string of each coefficient) |
---|
387 | EXAMPLE: example maxcoef; shows examples |
---|
388 | " |
---|
389 | { |
---|
390 | //----------------------------- procedure body -------------------------------- |
---|
391 | int max,s,ii,jj; string t; |
---|
392 | ideal i = ideal(matrix(f)); |
---|
393 | i = simplify(i,6); // delete 0's and keep first of equal elements |
---|
394 | poly m = var(1); matrix C; |
---|
395 | for (ii=2;ii<=nvars(basering);ii++) { m = m*var(ii); } |
---|
396 | for (ii=1; ii<=size(i); ii++) |
---|
397 | { |
---|
398 | C = coef(i[ii],m); |
---|
399 | for (jj=1; jj<=ncols(C); jj++) |
---|
400 | { |
---|
401 | t = string(C[2,jj]); s = size(t); |
---|
402 | if ( t[1] == "-" ) { s = s - 1; } |
---|
403 | if ( s > max ) { max = s; } |
---|
404 | } |
---|
405 | } |
---|
406 | return(max); |
---|
407 | } |
---|
408 | //-------------------------------- examples ----------------------------------- |
---|
409 | example |
---|
410 | { "EXAMPLE:"; echo = 2; |
---|
411 | ring r= 0,(x,y,z),ds; |
---|
412 | poly g = 345x2-1234567890y+7/4z; |
---|
413 | maxcoef(g); |
---|
414 | ideal i = g,10/1234567890; |
---|
415 | maxcoef(i); |
---|
416 | // since i[2]=1/123456789 |
---|
417 | } |
---|
418 | /////////////////////////////////////////////////////////////////////////////// |
---|
419 | |
---|
420 | proc maxdeg (def id) |
---|
421 | "USAGE: maxdeg(id); id poly/ideal/vector/module/matrix |
---|
422 | RETURN: int/intmat, each component equals maximal degree of monomials in the |
---|
423 | corresponding component of id, independent of ring ordering |
---|
424 | (maxdeg of each var is 1). |
---|
425 | Of type int, if id is of type poly; of type intmat otherwise |
---|
426 | SEE ALSO: maxdeg1 |
---|
427 | EXAMPLE: example maxdeg; shows examples |
---|
428 | " |
---|
429 | { |
---|
430 | //-------- subprocedure to find maximal degree of given component ---------- |
---|
431 | proc findmaxdeg |
---|
432 | { |
---|
433 | poly c = #[1]; |
---|
434 | if (c==0) { return(-1); } |
---|
435 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
436 | int d = (deg(c)>=0)*deg(c)-(deg(c)<0)*deg(c); |
---|
437 | int i = d; |
---|
438 | while ( c-jet(c,i) != 0 ) { i = 2*(i+1); } |
---|
439 | int o = i-1; |
---|
440 | int u = (d != i)*((i div 2)-1); |
---|
441 | //----------------------- "quick search" for maxdeg ------------------------ |
---|
442 | while ( (c-jet(c,i)==0)*(c-jet(c,i-1)!=0) == 0) |
---|
443 | { |
---|
444 | i = (o+1+u) div 2; |
---|
445 | if (c-jet(c,i)!=0) { u = i+1; } |
---|
446 | else { o = i-1; } |
---|
447 | } |
---|
448 | return(i); |
---|
449 | } |
---|
450 | //------------------------------ main program --------------------------------- |
---|
451 | matrix M = matrix(id); |
---|
452 | int r,c = nrows(M), ncols(M); int i,j; |
---|
453 | intmat m[r][c]; |
---|
454 | for (i=r; i>0; i--) |
---|
455 | { |
---|
456 | for (j=c; j>0; j--) { m[i,j] = findmaxdeg(M[i,j]); } |
---|
457 | } |
---|
458 | if (typeof(id)=="poly") { return(m[1,1]); } |
---|
459 | return(m); |
---|
460 | } |
---|
461 | //-------------------------------- examples ----------------------------------- |
---|
462 | example |
---|
463 | { "EXAMPLE:"; echo = 2; |
---|
464 | ring r = 0,(x,y,z),wp(1,2,3); |
---|
465 | poly f = x+y2+z3; |
---|
466 | deg(f); //deg; returns weighted degree (in case of 1 block)! |
---|
467 | maxdeg(f); |
---|
468 | matrix m[2][2]=f+x10,1,0,f^2; |
---|
469 | maxdeg(m); |
---|
470 | } |
---|
471 | /////////////////////////////////////////////////////////////////////////////// |
---|
472 | |
---|
473 | proc maxdeg1 (def id,list #) |
---|
474 | "USAGE: maxdeg1(id[,v]); id=poly/ideal/vector/module/matrix, v=intvec |
---|
475 | RETURN: integer, maximal [weighted] degree of monomials of id independent of |
---|
476 | ring ordering, maxdeg1 of i-th variable is v[i] (default: v=1..1). |
---|
477 | NOTE: This proc returns one integer while maxdeg returns, in general, |
---|
478 | a matrix of integers. For one polynomial and if no intvec v is given |
---|
479 | maxdeg is faster |
---|
480 | EXAMPLE: example maxdeg1; shows examples |
---|
481 | " |
---|
482 | { |
---|
483 | //-------- subprocedure to find maximal degree of given component ---------- |
---|
484 | proc findmaxdeg |
---|
485 | { |
---|
486 | poly c = #[1]; |
---|
487 | if (c==0) { return(-1); } |
---|
488 | intvec v = #[2]; |
---|
489 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
490 | int d = (deg(c)>=0)*deg(c)-(deg(c)<0)*deg(c); |
---|
491 | int i = d; |
---|
492 | if ( c == jet(c,-1,v)) //case: maxdeg is negative |
---|
493 | { |
---|
494 | i = -d; |
---|
495 | while ( c == jet(c,i,v) ) { i = 2*(i-1); } |
---|
496 | int o = (d != -i)*((i div 2)+2) - 1; |
---|
497 | int u = i+1; |
---|
498 | int e = -1; |
---|
499 | } |
---|
500 | else //case: maxdeg is nonnegative |
---|
501 | { |
---|
502 | while ( c != jet(c,i,v) ) { i = 2*(i+1); } |
---|
503 | int o = i-1; |
---|
504 | int u = (d != i)*((i div 2)-1); |
---|
505 | int e = 1; |
---|
506 | } |
---|
507 | //----------------------- "quick search" for maxdeg ------------------------ |
---|
508 | while ( ( c==jet(c,i,v) )*( c!=jet(c,i-1,v) ) == 0 ) |
---|
509 | { |
---|
510 | i = (o+e+u) div 2; |
---|
511 | if ( c!=jet(c,i,v) ) { u = i+1; } |
---|
512 | else { o = i-1; } |
---|
513 | } |
---|
514 | return(i); |
---|
515 | } |
---|
516 | //------------------------------ main program --------------------------------- |
---|
517 | ideal M = simplify(ideal(matrix(id)),8); //delete scalar multiples from id |
---|
518 | int c = ncols(M); |
---|
519 | int i,n; |
---|
520 | if( size(#)==0 ) |
---|
521 | { |
---|
522 | int m = maxdeg(M[c]); |
---|
523 | for (i=c-1; i>0; i--) |
---|
524 | { |
---|
525 | n = maxdeg(M[i]); |
---|
526 | m = (m>=n)*m + (m<n)*n; //let m be the maximum of m and n |
---|
527 | } |
---|
528 | } |
---|
529 | else |
---|
530 | { |
---|
531 | intvec v=#[1]; //weight vector for the variables |
---|
532 | int m = findmaxdeg(M[c],v); |
---|
533 | for (i=c-1; i>0; i--) |
---|
534 | { |
---|
535 | n = findmaxdeg(M[i],v); |
---|
536 | if( n>m ) { m=n; } |
---|
537 | } |
---|
538 | } |
---|
539 | return(m); |
---|
540 | } |
---|
541 | //-------------------------------- examples ----------------------------------- |
---|
542 | example |
---|
543 | { "EXAMPLE:"; echo = 2; |
---|
544 | ring r = 0,(x,y,z),wp(1,2,3); |
---|
545 | poly f = x+y2+z3; |
---|
546 | deg(f); //deg returns weighted degree (in case of 1 block)! |
---|
547 | maxdeg1(f); |
---|
548 | intvec v = ringweights(r); |
---|
549 | maxdeg1(f,v); //weighted maximal degree |
---|
550 | matrix m[2][2]=f+x10,1,0,f^2; |
---|
551 | maxdeg1(m,v); //absolute weighted maximal degree |
---|
552 | } |
---|
553 | /////////////////////////////////////////////////////////////////////////////// |
---|
554 | |
---|
555 | proc mindeg (def id) |
---|
556 | "USAGE: mindeg(id); id poly/ideal/vector/module/matrix |
---|
557 | RETURN: minimal degree/s of monomials of id, independent of ring ordering |
---|
558 | (mindeg of each variable is 1) of type int if id of type poly, else |
---|
559 | of type intmat. |
---|
560 | SEE ALSO: mindeg1 |
---|
561 | EXAMPLE: example mindeg; shows examples |
---|
562 | " |
---|
563 | { |
---|
564 | //--------- subprocedure to find minimal degree of given component --------- |
---|
565 | proc findmindeg |
---|
566 | { |
---|
567 | poly c = #[1]; |
---|
568 | if (c==0) { return(-1); } |
---|
569 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
570 | int d = (ord(c)>=0)*ord(c)-(ord(c)<0)*ord(c); |
---|
571 | int i = d; |
---|
572 | while ( jet(c,i) == 0 ) { i = 2*(i+1); } |
---|
573 | int o = i-1; |
---|
574 | int u = (d != i)*((i div 2)-1); |
---|
575 | //----------------------- "quick search" for mindeg ------------------------ |
---|
576 | while ( (jet(c,u)==0)*(jet(c,o)!=0) ) |
---|
577 | { |
---|
578 | i = (o+u) div 2; |
---|
579 | if (jet(c,i)==0) { u = i+1; } |
---|
580 | else { o = i-1; } |
---|
581 | } |
---|
582 | if (jet(c,u)!=0) { return(u); } |
---|
583 | else { return(o+1); } |
---|
584 | } |
---|
585 | //------------------------------ main program --------------------------------- |
---|
586 | matrix M = matrix(id); |
---|
587 | int r,c = nrows(M), ncols(M); int i,j; |
---|
588 | intmat m[r][c]; |
---|
589 | for (i=r; i>0; i--) |
---|
590 | { |
---|
591 | for (j=c; j>0; j--) { m[i,j] = findmindeg(M[i,j]); } |
---|
592 | } |
---|
593 | if (typeof(id)=="poly") { return(m[1,1]); } |
---|
594 | return(m); |
---|
595 | } |
---|
596 | //-------------------------------- examples ----------------------------------- |
---|
597 | example |
---|
598 | { "EXAMPLE:"; echo = 2; |
---|
599 | ring r = 0,(x,y,z),ls; |
---|
600 | poly f = x5+y2+z3; |
---|
601 | ord(f); // ord returns weighted order of leading term! |
---|
602 | mindeg(f); // computes minimal degree |
---|
603 | matrix m[2][2]=x10,1,0,f^2; |
---|
604 | mindeg(m); // computes matrix of minimum degrees |
---|
605 | } |
---|
606 | /////////////////////////////////////////////////////////////////////////////// |
---|
607 | |
---|
608 | proc mindeg1 (def id, list #) |
---|
609 | "USAGE: mindeg1(id[,v]); id=poly/ideal/vector/module/matrix, v=intvec |
---|
610 | RETURN: integer, minimal [weighted] degree of monomials of id independent of |
---|
611 | ring ordering, mindeg1 of i-th variable is v[i] (default v=1..1). |
---|
612 | NOTE: This proc returns one integer while mindeg returns, in general, |
---|
613 | a matrix of integers. For one polynomial and if no intvec v is given |
---|
614 | mindeg is faster. |
---|
615 | EXAMPLE: example mindeg1; shows examples |
---|
616 | " |
---|
617 | { |
---|
618 | //--------- subprocedure to find minimal degree of given component --------- |
---|
619 | proc findmindeg |
---|
620 | { |
---|
621 | poly c = #[1]; |
---|
622 | intvec v = #[2]; |
---|
623 | if (c==0) { return(-1); } |
---|
624 | //--- guess upper 'o' and lower 'u' bound, in case of negative weights ----- |
---|
625 | int d = (ord(c)>=0)*ord(c)-(ord(c)<0)*ord(c); |
---|
626 | int i = d; |
---|
627 | if ( jet(c,-1,v) !=0 ) //case: mindeg is negative |
---|
628 | { |
---|
629 | i = -d; |
---|
630 | while ( jet(c,i,v) != 0 ) { i = 2*(i-1); } |
---|
631 | int o = (d != -i)*((i div 2)+2) - 1; |
---|
632 | int u = i+1; |
---|
633 | int e = -1; i=u; |
---|
634 | } |
---|
635 | else //case: inded is nonnegative |
---|
636 | { |
---|
637 | while ( jet(c,i,v) == 0 ) { i = 2*(i+1); } |
---|
638 | int o = i-1; |
---|
639 | int u = (d != i)*((i div 2)-1); |
---|
640 | int e = 1; i=u; |
---|
641 | } |
---|
642 | //----------------------- "quick search" for mindeg ------------------------ |
---|
643 | while ( (jet(c,i-1,v)==0)*(jet(c,i,v)!=0) == 0 ) |
---|
644 | { |
---|
645 | i = (o+e+u) div 2; |
---|
646 | if (jet(c,i,v)==0) { u = i+1; } |
---|
647 | else { o = i-1; } |
---|
648 | } |
---|
649 | return(i); |
---|
650 | } |
---|
651 | //------------------------------ main program --------------------------------- |
---|
652 | ideal M = simplify(ideal(matrix(id)),8); //delete scalar multiples from id |
---|
653 | int c = ncols(M); |
---|
654 | int i,n; |
---|
655 | if( size(#)==0 ) |
---|
656 | { |
---|
657 | int m = mindeg(M[c]); |
---|
658 | for (i=c-1; i>0; i--) |
---|
659 | { |
---|
660 | n = mindeg(M[i]); |
---|
661 | m = (m<=n)*m + (m>n)*n; //let m be the maximum of m and n |
---|
662 | } |
---|
663 | } |
---|
664 | else |
---|
665 | { |
---|
666 | intvec v=#[1]; //weight vector for the variables |
---|
667 | int m = findmindeg(M[c],v); |
---|
668 | for (i=c-1; i>0; i--) |
---|
669 | { |
---|
670 | n = findmindeg(M[i],v); |
---|
671 | m = (m<=n)*m + (m>n)*n; //let m be the maximum of m and n |
---|
672 | } |
---|
673 | } |
---|
674 | return(m); |
---|
675 | } |
---|
676 | //-------------------------------- examples ----------------------------------- |
---|
677 | example |
---|
678 | { "EXAMPLE:"; echo = 2; |
---|
679 | ring r = 0,(x,y,z),ls; |
---|
680 | poly f = x5+y2+z3; |
---|
681 | ord(f); // ord returns weighted order of leading term! |
---|
682 | intvec v = 1,-3,2; |
---|
683 | mindeg1(f,v); // computes minimal weighted degree |
---|
684 | matrix m[2][2]=x10,1,0,f^2; |
---|
685 | mindeg1(m,1..3); // computes absolute minimum of weighted degrees |
---|
686 | } |
---|
687 | /////////////////////////////////////////////////////////////////////////////// |
---|
688 | |
---|
689 | proc normalize (def id) |
---|
690 | "USAGE: normalize(id); id=poly/vector/ideal/module |
---|
691 | RETURN: object of same type |
---|
692 | each element is normalized with leading coefficient equal to 1 |
---|
693 | EXAMPLE: example normalize; shows an example |
---|
694 | " |
---|
695 | { |
---|
696 | return(simplify(id,1)); |
---|
697 | } |
---|
698 | //-------------------------------- examples ----------------------------------- |
---|
699 | example |
---|
700 | { "EXAMPLE:"; echo = 2; |
---|
701 | ring r = 0,(x,y,z),ls; |
---|
702 | poly f = 2x5+3y2+4z3; |
---|
703 | normalize(f); |
---|
704 | module m=[9xy,0,3z3],[4z,6y,2x]; |
---|
705 | normalize(m); |
---|
706 | ring s = 0,(x,y,z),(c,ls); |
---|
707 | module m=[9xy,0,3z3],[4z,6y,2x]; |
---|
708 | normalize(m); |
---|
709 | } |
---|
710 | /////////////////////////////////////////////////////////////////////////////// |
---|
711 | |
---|
712 | /////////////////////////////////////////////////////////////////////////////// |
---|
713 | // Input: <ideal>=<f1,f2,...,fm> and <polynomial> g |
---|
714 | // Question: Does g lie in the radical of <ideal>? |
---|
715 | // Solution: Compute a standard basis G for <f1,f2,...,fm,gz-1> where z is a |
---|
716 | // new variable. Then g is contained in the radical of <ideal> <=> |
---|
717 | // 1 is generator in G. |
---|
718 | /////////////////////////////////////////////////////////////////////////////// |
---|
719 | proc rad_con (poly g,ideal I) |
---|
720 | "USAGE: rad_con(g,I); g polynomial, I ideal |
---|
721 | RETURN: 1 (TRUE) (type int) if g is contained in the radical of I |
---|
722 | @* 0 (FALSE) (type int) otherwise |
---|
723 | EXAMPLE: example rad_con; shows an example |
---|
724 | " |
---|
725 | { def br=basering; |
---|
726 | int n=nvars(br); |
---|
727 | int dB=degBound; |
---|
728 | degBound=0; |
---|
729 | string mp=string(minpoly); |
---|
730 | if (attrib(br,"global")==1) |
---|
731 | { |
---|
732 | execute("ring R=("+charstr(br)+"),(@x(1..n),@z),dp;"); |
---|
733 | } |
---|
734 | else |
---|
735 | { |
---|
736 | execute("ring R=("+charstr(br)+"),(@z,@x(1..n)),(dp(1),"+ordstr(br)+");"); |
---|
737 | } |
---|
738 | if (mp!="0") |
---|
739 | { |
---|
740 | execute("minpoly=number("+mp+");"); |
---|
741 | } |
---|
742 | ideal irrel=@x(1..n); |
---|
743 | map f=br,irrel; |
---|
744 | poly p=f(g); |
---|
745 | ideal J=f(I),ideal(p*@z-1); |
---|
746 | J=std(J); |
---|
747 | degBound=dB; |
---|
748 | if (J[1]==1) |
---|
749 | { |
---|
750 | setring br; |
---|
751 | return(1); |
---|
752 | } |
---|
753 | else |
---|
754 | { |
---|
755 | setring br; |
---|
756 | return(0); |
---|
757 | } |
---|
758 | } |
---|
759 | example |
---|
760 | { "EXAMPLE:"; echo=2; |
---|
761 | ring R=0,(x,y,z),dp; |
---|
762 | ideal I=x2+y2,z2; |
---|
763 | poly f=x4+y4; |
---|
764 | rad_con(f,I); |
---|
765 | ideal J=x2+y2,z2,x4+y4; |
---|
766 | poly g=z; |
---|
767 | rad_con(g,I); |
---|
768 | } |
---|
769 | /////////////////////////////////////////////////////////////////////////////// |
---|
770 | |
---|
771 | proc lcm (def id, list #) |
---|
772 | "USAGE: lcm(p[,q]); p int/intvec q a list of integers or |
---|
773 | p poly/ideal q a list of polynomials |
---|
774 | RETURN: the least common multiple of p and q: |
---|
775 | @* - of type int if p is an int/intvec |
---|
776 | @* - of type poly if p is a poly/ideal |
---|
777 | EXAMPLE: example lcm; shows an example |
---|
778 | " |
---|
779 | { |
---|
780 | int k,j; |
---|
781 | //------------------------------ integer case -------------------------------- |
---|
782 | if( typeof(id) == "int" or typeof(id) == "intvec" ) |
---|
783 | { |
---|
784 | intvec i = id; |
---|
785 | if (size(#)!=0) |
---|
786 | { |
---|
787 | for (j = 1; j<=size(#); j++) |
---|
788 | { |
---|
789 | if (typeof(#[j]) !="int" and typeof(#[j]) !="intvec") |
---|
790 | { ERROR("// ** list element must be an integer");} |
---|
791 | else |
---|
792 | { i = i,#[j]; } |
---|
793 | } |
---|
794 | } |
---|
795 | int p,q; |
---|
796 | if( i == 0 ) |
---|
797 | { |
---|
798 | return(0); |
---|
799 | } |
---|
800 | for(j=1;j<=size(i);j++) |
---|
801 | { |
---|
802 | if( i[j] != 0 ) |
---|
803 | { |
---|
804 | p=i[j]; |
---|
805 | break; |
---|
806 | } |
---|
807 | } |
---|
808 | for (k=j+1;k<=size(i);k++) |
---|
809 | { |
---|
810 | if( i[k] !=0) |
---|
811 | { |
---|
812 | q=gcd(p,i[k]); |
---|
813 | p=p div q; |
---|
814 | p=p*i[k]; |
---|
815 | } |
---|
816 | } |
---|
817 | if(p <0 ) |
---|
818 | {return(-p);} |
---|
819 | return(p); |
---|
820 | } |
---|
821 | |
---|
822 | //----------------------------- polynomial case ------------------------------ |
---|
823 | if( typeof(id) == "poly" or typeof(id) == "ideal" ) |
---|
824 | { |
---|
825 | ideal i = id; |
---|
826 | if (size(#)!=0) |
---|
827 | { |
---|
828 | for (j = 1; j<=size(#); j++) |
---|
829 | { |
---|
830 | if (typeof(#[j]) !="poly" and typeof(#[j]) !="ideal" |
---|
831 | and typeof(#[j]) !="int" and typeof(#[j]) !="intvec") |
---|
832 | { ERROR("// ** list element must be a polynomial");} |
---|
833 | else |
---|
834 | { i = i,#[j]; } |
---|
835 | } |
---|
836 | } |
---|
837 | poly p,q; |
---|
838 | i=simplify(i,10); |
---|
839 | if(size(i) == 0) |
---|
840 | { |
---|
841 | return(0); |
---|
842 | } |
---|
843 | for(j=1;j<=size(i);j++) |
---|
844 | { |
---|
845 | if(maxdeg(i[j])!= 0) |
---|
846 | { |
---|
847 | p=i[j]; |
---|
848 | break; |
---|
849 | } |
---|
850 | } |
---|
851 | if(p==0) |
---|
852 | { |
---|
853 | return(1); |
---|
854 | } |
---|
855 | for (k=j+1;k<=size(i);k++) |
---|
856 | { |
---|
857 | if(maxdeg(i[k])!=0) |
---|
858 | { |
---|
859 | q=gcd(p,i[k]); |
---|
860 | if(maxdeg(q)==0) |
---|
861 | { |
---|
862 | p=p*i[k]; |
---|
863 | } |
---|
864 | else |
---|
865 | { |
---|
866 | p=p/q; |
---|
867 | p=p*i[k]; |
---|
868 | } |
---|
869 | } |
---|
870 | } |
---|
871 | return(p); |
---|
872 | } |
---|
873 | } |
---|
874 | example |
---|
875 | { "EXAMPLE:"; echo = 2; |
---|
876 | ring r = 0,(x,y,z),lp; |
---|
877 | poly p = (x+y)*(y+z); |
---|
878 | poly q = (z4+2)*(y+z); |
---|
879 | lcm(p,q); |
---|
880 | ideal i=p,q,y+z; |
---|
881 | lcm(i,p); |
---|
882 | lcm(2,3,6); |
---|
883 | lcm(2..6); |
---|
884 | } |
---|
885 | |
---|
886 | /////////////////////////////////////////////////////////////////////////////// |
---|
887 | |
---|
888 | proc content(def f) |
---|
889 | "USAGE: content(f); f polynomial/vector |
---|
890 | RETURN: number, the content (greatest common factor of coefficients) |
---|
891 | of the polynomial/vector f |
---|
892 | SEE ALSO: cleardenom |
---|
893 | EXAMPLE: example content; shows an example |
---|
894 | " |
---|
895 | { |
---|
896 | if (f==0) { return(number(1)); } |
---|
897 | return(leadcoef(f)/leadcoef(cleardenom(f))); |
---|
898 | } |
---|
899 | example |
---|
900 | { "EXAMPLE:"; echo = 2; |
---|
901 | ring r=0,(x,y,z),(c,lp); |
---|
902 | content(3x2+18xy-27xyz); |
---|
903 | vector v=[3x2+18xy-27xyz,15x2+12y4,3]; |
---|
904 | content(v); |
---|
905 | } |
---|
906 | /////////////////////////////////////////////////////////////////////////////// |
---|
907 | |
---|
908 | //////////////////////////////////////////////////////////////////////// |
---|
909 | // The idea of the procedures mod2id, id2mod and subrInterred is, to |
---|
910 | // perform standard basis computation or interreduction of a submodule |
---|
911 | // of a free module with generators gen(1),...,gen(n) over a ring R |
---|
912 | // in a ring R[t1,...,tn]/<ti*tj> with gen(i) maped to ti |
---|
913 | //////////////////////////////////////////////////////////////////////// |
---|
914 | |
---|
915 | proc mod2id(matrix M,intvec vpos) |
---|
916 | "USAGE: mod2id(M,vpos); M matrix, vpos intvec |
---|
917 | ASSUME: vpos is an integer vector such that gen(i) corresponds |
---|
918 | to var(vpos[i]). |
---|
919 | The basering contains variables var(vpos[i]) which do not occur |
---|
920 | in M. |
---|
921 | RETURN: ideal I in which each gen(i) from the module is replaced by |
---|
922 | var(vpos[i]) and all monomials var(vpos[i])*var(vpos[j]) have |
---|
923 | been added to the generating set of I. |
---|
924 | NOTE: This procedure should be used in the following situation: |
---|
925 | one wants to pass to a ring with new variables, say e(1),..,e(s), |
---|
926 | which correspond to the components gen(1),..,gen(s) of the |
---|
927 | module M such that e(i)*e(j)=0 for all i,j. |
---|
928 | The new ring should already exist and be the current ring |
---|
929 | EXAMPLE: example mod2id; shows an example" |
---|
930 | { |
---|
931 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
932 | //---------------------------------------------------------------------- |
---|
933 | // define the ideal generated by the var(vpos[i]) and set up the matrix |
---|
934 | // for the multiplication |
---|
935 | //---------------------------------------------------------------------- |
---|
936 | ideal vars=var(vpos[1]); |
---|
937 | for(int i=2;i<=size(vpos);i++) |
---|
938 | { |
---|
939 | vars=vars,var(vpos[i]); |
---|
940 | } |
---|
941 | matrix varm[1][size(vpos)]=vars; |
---|
942 | if (size(vpos) > nrows(M)) |
---|
943 | { |
---|
944 | matrix Mt[size(vpos)][ncols(M)]; |
---|
945 | Mt[1..nrows(M),1..ncols(M)]=M; |
---|
946 | kill M; |
---|
947 | matrix M=Mt; |
---|
948 | } |
---|
949 | //---------------------------------------------------------------------- |
---|
950 | // define the desired ideal |
---|
951 | //---------------------------------------------------------------------- |
---|
952 | ideal ret=vars^2,varm*M; |
---|
953 | return(ret); |
---|
954 | } |
---|
955 | example |
---|
956 | { "EXAMPLE:"; echo=2; |
---|
957 | ring r=0,(e(1),e(2),x,y,z),(dp(2),ds(3)); |
---|
958 | module mo=x*gen(1)+y*gen(2); |
---|
959 | intvec iv=2,1; |
---|
960 | mod2id(mo,iv); |
---|
961 | } |
---|
962 | //////////////////////////////////////////////////////////////////////// |
---|
963 | |
---|
964 | proc id2mod(ideal i,intvec vpos) |
---|
965 | "USAGE: id2mod(I,vpos); I ideal, vpos intvec |
---|
966 | RETURN: module corresponding to the ideal by replacing var(vpos[i]) by |
---|
967 | gen(i) and omitting all generators var(vpos[i])*var(vpos[j]) |
---|
968 | NOTE: * This procedure only makes sense if the ideal contains |
---|
969 | all var(vpos[i])*var(vpos[j]) as monomial generators and |
---|
970 | all other generators of I are linear combinations of the |
---|
971 | var(vpos[i]) over the ring in the other variables. |
---|
972 | * This is the inverse procedure to mod2id and should be applied |
---|
973 | only to ideals created by mod2id using the same intvec vpos |
---|
974 | (possibly after a standard basis computation) |
---|
975 | EXAMPLE: example id2mod; shows an example" |
---|
976 | { |
---|
977 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
978 | //--------------------------------------------------------------------- |
---|
979 | // Initialization |
---|
980 | //--------------------------------------------------------------------- |
---|
981 | int n=size(i); |
---|
982 | int v=size(vpos); |
---|
983 | matrix tempmat; |
---|
984 | matrix mm[v][n]; |
---|
985 | //--------------------------------------------------------------------- |
---|
986 | // Conversion |
---|
987 | //--------------------------------------------------------------------- |
---|
988 | for(int j=1;j<=v;j++) |
---|
989 | { |
---|
990 | tempmat=coeffs(i,var(vpos[j])); |
---|
991 | mm[j,1..n]=tempmat[2,1..n]; |
---|
992 | } |
---|
993 | for(j=1;j<=v;j++) |
---|
994 | { |
---|
995 | mm=subst(mm,var(vpos[j]),0); |
---|
996 | } |
---|
997 | module ret=simplify(mm,10); |
---|
998 | return(ret); |
---|
999 | } |
---|
1000 | example |
---|
1001 | { "EXAMPLE:"; echo=2; |
---|
1002 | ring r=0,(e(1),e(2),x,y,z),(dp(2),ds(3)); |
---|
1003 | ideal i=e(2)^2,e(1)*e(2),e(1)^2,e(1)*y+e(2)*x; |
---|
1004 | intvec iv=2,1; |
---|
1005 | id2mod(i,iv); |
---|
1006 | } |
---|
1007 | /////////////////////////////////////////////////////////////////////// |
---|
1008 | |
---|
1009 | proc subrInterred(ideal mon, ideal sm, intvec iv) |
---|
1010 | "USAGE: subrInterred(mon,sm,iv); |
---|
1011 | sm: ideal in a ring r with n + s variables, |
---|
1012 | e.g. x_1,..,x_n and t_1,..,t_s |
---|
1013 | mon: ideal with monomial generators (not divisible by |
---|
1014 | any of the t_i) such that sm is contained in the module |
---|
1015 | k[t_1,..,t_s]*mon[1]+..+k[t_1,..,t_s]*mon[size(mon)] |
---|
1016 | iv: intvec listing the variables which are supposed to be used |
---|
1017 | as x_i |
---|
1018 | RETURN: list l: |
---|
1019 | l[1]=the monomials from mon in the order used |
---|
1020 | l[2]=their coefficients after interreduction |
---|
1021 | l[3]=l[1]*l[2] |
---|
1022 | PURPOSE: Do interred only w.r.t. a subset of variables. |
---|
1023 | The procedure returns an interreduced system of generators of |
---|
1024 | sm considered as a k[t_1,..,t_s]-submodule of the free module |
---|
1025 | k[t_1,..,t_s]*mon[1]+..+k[t_1,..,t_s]*mon[size(mon)]). |
---|
1026 | EXAMPLE: example subrInterred; shows an example |
---|
1027 | " |
---|
1028 | { |
---|
1029 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
1030 | //----------------------------------------------------------------------- |
---|
1031 | // check that mon is really generated by monomials |
---|
1032 | // and sort its generators with respect to the monomial ordering |
---|
1033 | //----------------------------------------------------------------------- |
---|
1034 | int err; |
---|
1035 | for(int i=1;i<=ncols(mon);i++) |
---|
1036 | { |
---|
1037 | if ( size(mon[i]) > 1 ) |
---|
1038 | { |
---|
1039 | err=1; |
---|
1040 | } |
---|
1041 | } |
---|
1042 | if (err==1) |
---|
1043 | { |
---|
1044 | ERROR("mon has to be generated by monomials"); |
---|
1045 | } |
---|
1046 | intvec sv=sortvec(mon); |
---|
1047 | ideal mons; |
---|
1048 | for(i=1;i<=size(sv);i++) |
---|
1049 | { |
---|
1050 | mons[i]=mon[sv[i]]; |
---|
1051 | } |
---|
1052 | ideal itemp=maxideal(1); |
---|
1053 | for(i=1;i<=size(iv);i++) |
---|
1054 | { |
---|
1055 | itemp=subst(itemp,var(iv[i]),0); |
---|
1056 | } |
---|
1057 | itemp=simplify(itemp,10); |
---|
1058 | def r=basering; |
---|
1059 | string tempstr="ring rtemp=" + charstr(basering) + ",(" + string(itemp) |
---|
1060 | + "),(C,dp);"; |
---|
1061 | //----------------------------------------------------------------------- |
---|
1062 | // express m in terms of the generators of mon and check whether m |
---|
1063 | // can be considered as a submodule of k[t_1,..,t_n]*mon |
---|
1064 | //----------------------------------------------------------------------- |
---|
1065 | module motemp; |
---|
1066 | motemp[ncols(sm)]=0; |
---|
1067 | poly ptemp; |
---|
1068 | int j; |
---|
1069 | for(i=1;i<=ncols(mons);i++) |
---|
1070 | { |
---|
1071 | for(j=1;j<=ncols(sm);j++) |
---|
1072 | { |
---|
1073 | ptemp=sm[j]/mons[i]; |
---|
1074 | motemp[j]=motemp[j]+ptemp*gen(i); |
---|
1075 | } |
---|
1076 | } |
---|
1077 | for(i=1;i<=size(iv);i++) |
---|
1078 | { |
---|
1079 | motemp=subst(motemp,var(iv[i]),0); |
---|
1080 | } |
---|
1081 | matrix monmat[1][ncols(mons)]=mons; |
---|
1082 | ideal dummy=monmat*motemp; |
---|
1083 | for(i=1;i<=size(sm);i++) |
---|
1084 | { |
---|
1085 | if(sm[i]-dummy[i]!=0) |
---|
1086 | { |
---|
1087 | ERROR("the second argument is not a submodule of the assumed structure"); |
---|
1088 | } |
---|
1089 | } |
---|
1090 | //---------------------------------------------------------------------- |
---|
1091 | // do the interreduction and convert back |
---|
1092 | //---------------------------------------------------------------------- |
---|
1093 | execute(tempstr); |
---|
1094 | def motemp=imap(r,motemp); |
---|
1095 | intvec save=option(get); |
---|
1096 | option(redSB); |
---|
1097 | motemp=interred(motemp); |
---|
1098 | option(set,save); |
---|
1099 | setring r; |
---|
1100 | kill motemp; |
---|
1101 | def motemp=imap(rtemp,motemp); |
---|
1102 | //list ret=monmat,motemp,monmat*motemp; |
---|
1103 | module motemp2=motemp; |
---|
1104 | for(i=1;i<=ncols(motemp2);i++) |
---|
1105 | { |
---|
1106 | motemp2[i]=cleardenom(motemp2[i]); |
---|
1107 | } |
---|
1108 | module motemp3=monmat*motemp; |
---|
1109 | for(i=1;i<=ncols(motemp3);i++) |
---|
1110 | { |
---|
1111 | motemp3[i]=cleardenom(motemp3[i]); |
---|
1112 | } |
---|
1113 | list ret=monmat,motemp2,matrix(motemp3); |
---|
1114 | return(ret); |
---|
1115 | } |
---|
1116 | example |
---|
1117 | { "EXAMPLE:"; echo=2; |
---|
1118 | ring r=0,(x,y,z),dp; |
---|
1119 | ideal i=x^2+x*y^2,x*y+x^2*y,z; |
---|
1120 | ideal j=x^2+x*y^2,x*y,z; |
---|
1121 | ideal mon=x^2,z,x*y; |
---|
1122 | intvec iv=1,3; |
---|
1123 | subrInterred(mon,i,iv); |
---|
1124 | subrInterred(mon,j,iv); |
---|
1125 | } |
---|
1126 | |
---|
1127 | /////////////////////////////////////////////////////////////////////////////// |
---|
1128 | // moved here from nctools.lib |
---|
1129 | // This procedure calculates the Newton diagram of the polynomial f |
---|
1130 | // The output is a intmat M, each row of M is the exp of a monomial in f |
---|
1131 | //////////////////////////////////////////////////////////////////////// |
---|
1132 | proc newtonDiag(poly f) |
---|
1133 | "USAGE: newtonDiag(f); f a poly |
---|
1134 | RETURN: intmat |
---|
1135 | PURPOSE: compute the Newton diagram of f |
---|
1136 | NOTE: each row is the exponent of a monomial of f |
---|
1137 | EXAMPLE: example newtonDiag; shows examples |
---|
1138 | "{ |
---|
1139 | int n = nvars(basering); |
---|
1140 | intvec N=0; |
---|
1141 | if ( f != 0 ) |
---|
1142 | { |
---|
1143 | while ( f != 0 ) |
---|
1144 | { |
---|
1145 | N = N, leadexp(f); |
---|
1146 | f = f-lead(f); |
---|
1147 | } |
---|
1148 | } |
---|
1149 | else |
---|
1150 | { |
---|
1151 | N=N, leadexp(f); |
---|
1152 | } |
---|
1153 | N = N[2..size(N)]; // Deletes the zero added in the definition of T |
---|
1154 | intmat M=intmat(N,(size(N) div n),n); // Conversion from vector to matrix |
---|
1155 | return (M); |
---|
1156 | } |
---|
1157 | example |
---|
1158 | { |
---|
1159 | "EXAMPLE:";echo=2; |
---|
1160 | ring r = 0,(x,y,z),lp; |
---|
1161 | poly f = x2y+3xz-5y+3; |
---|
1162 | newtonDiag(f); |
---|
1163 | } |
---|
1164 | |
---|
1165 | //////////////////////////////////////////////////////////////////////// |
---|