1 | // $Id: presolve.lib,v 1.2 1998-03-06 11:52:57 krueger Exp $ |
---|
2 | //system("random",787422842); |
---|
3 | //(GMG), last modified 97/10/07 by GMG |
---|
4 | /////////////////////////////////////////////////////////////////////////////// |
---|
5 | |
---|
6 | LIBRARY: presolve.lib PROCEDURES FOR PRE-SOLVING POLYNOMIAL EQUATIONS |
---|
7 | |
---|
8 | degreepart(id,d1,d2); elements of id of total degree >= d1 and <= d2 |
---|
9 | elimlinearpart(id); linear part eliminated from id |
---|
10 | elimpart(id[,n]); partial elimination of vars [among 1-st n vars] |
---|
11 | elimpartanyr(i,p); factors of p partially eliminated from i in any ring |
---|
12 | fastelim(i,p[..]); fast elimination of factors of p from i [options] |
---|
13 | findvars(id[..]); ideal of variables occuring in id [more information] |
---|
14 | hilbvec(id[,c,o]); intvec of Hilberseries of id [in char c and ord o] |
---|
15 | linearpart(id); elements of id of total degree <=1 |
---|
16 | tolessvars(id[,]); maps id to new basering having only vars occuring in id |
---|
17 | solvelinearpart(id); reduced std-basis of linear part of id |
---|
18 | sortandmap(id,s1,s2); map to new basering with vars sorted w.r.t. complexity |
---|
19 | sortvars(id[n1,p1..]); sort vars w.r.t. complexity in id [different blocks] |
---|
20 | valvars(id[..]); valuation of vars w.r.t. to their complexity in id |
---|
21 | (parameters in square brackets [] are optional) |
---|
22 | |
---|
23 | LIB "inout.lib"; |
---|
24 | LIB "general.lib"; |
---|
25 | LIB "matrix.lib"; |
---|
26 | LIB "ring.lib"; |
---|
27 | LIB "elim.lib"; |
---|
28 | /////////////////////////////////////////////////////////////////////////////// |
---|
29 | |
---|
30 | proc degreepart (id,int d1,int d2,list #) |
---|
31 | USAGE: degreepart(id,d1,d2[,v]); id=ideal/module, d1,d1=integers, v=intvec |
---|
32 | RETURN: generators of id of [v-weighted] total degree >= d1 and <= d2 |
---|
33 | (default: v = 1,...,1) |
---|
34 | EXAMPLE: example degreepart; shows an example |
---|
35 | { |
---|
36 | def dpart = id; |
---|
37 | int s,ii = size(id),0; |
---|
38 | if ( size(#)==0 ) |
---|
39 | { |
---|
40 | for ( ii=1; ii<=s; ii=ii+1 ) |
---|
41 | { |
---|
42 | dpart[ii] = (jet(id[ii],d1-1)==0)*(id[ii]==jet(id[ii],d2))*id[ii]; |
---|
43 | } |
---|
44 | } |
---|
45 | else |
---|
46 | { |
---|
47 | for ( ii=1; ii<=s; ii=ii+1 ) |
---|
48 | { |
---|
49 | dpart[ii]=(jet(id[ii],d1-1,#[1])==0)*(id[ii]==jet(id[ii],d2,#[1]))*id[ii]; |
---|
50 | } |
---|
51 | } |
---|
52 | return(simplify(dpart,2)); |
---|
53 | } |
---|
54 | example |
---|
55 | { "EXAMPLE:"; echo = 2; |
---|
56 | ring r=0,(x,y,z),dp; |
---|
57 | ideal i=1+x+x2+x3+x4,3,xz+y3+z4z4; |
---|
58 | degreepart(i,0,4); |
---|
59 | module m=[x,y,z],x*[x3,y2,z],[1,x2,z3,0,1]; |
---|
60 | intvec v=2,3,6; |
---|
61 | show(degreepart(m,8,8,v)); |
---|
62 | } |
---|
63 | /////////////////////////////////////////////////////////////////////////////// |
---|
64 | |
---|
65 | proc elimlinearpart (ideal i,list #) |
---|
66 | USAGE: elimlinearpart(i[,n]); i=ideal, n=integer |
---|
67 | RETURN: list of of 5 objects: |
---|
68 | [1]: (interreduced) ideal obtained from i by eliminating (sbstituting) |
---|
69 | from the first n variables those which appear in a linear part |
---|
70 | of i, by putting this part into triangular form |
---|
71 | (default: n = nvars(basering)) |
---|
72 | [2]: ideal of variables which have been eliminated (= substituted) |
---|
73 | [3]: ideal, j-th element defines substitution of j-th var in [2] |
---|
74 | [4]: ideal of variables of basering, eliminated ones are set to 0 |
---|
75 | [5]: ideal, describing the map from the basering to itself such that |
---|
76 | [1] is the image of i |
---|
77 | NOTE: the procedure does always interreduces the ideal i internally w.r.t. |
---|
78 | ordering dp |
---|
79 | // bei ** spaeter eventuell verbessern |
---|
80 | EXAMPLE: example elimlinearpart; shows an example |
---|
81 | { |
---|
82 | int ii,n,fi,k; |
---|
83 | string o, newo; |
---|
84 | intvec getoption = option(get); |
---|
85 | option(redSB); |
---|
86 | def P = basering; |
---|
87 | n = nvars(P); |
---|
88 | //--------------- replace ordering by dp-ordering if necessary ---------------- |
---|
89 | o = "dp("+string(n)+")"; |
---|
90 | fi = find(ordstr(P),o); |
---|
91 | if( fi == 0 or find(ordstr(P),"a") != 0 ) |
---|
92 | { |
---|
93 | execute "ring newP = ("+charstr(P)+"),("+varstr(P)+"),dp;"; |
---|
94 | ideal i = imap(P,i); |
---|
95 | } |
---|
96 | if ( size(#)!=0 ) { n=#[1]; } |
---|
97 | ideal max,rest = maxideal(1),0; |
---|
98 | if ( n < nvars(P) ) { rest = max[n+1..nvars(P)]; } |
---|
99 | attrib(rest,"isSB",1); |
---|
100 | //-------------------- interreduce and find linear part ---------------------- |
---|
101 | // interred does the only real work. Because of ordering dp the linear part is |
---|
102 | // within the first elements after interreduction |
---|
103 | // **: perhaps Bareiss to constant matrix of linear part instead of interred, |
---|
104 | // and/or for big systems, interred only those generators of id |
---|
105 | // which do not contain elements not to be eliminated |
---|
106 | |
---|
107 | ideal id = interred(i); |
---|
108 | for ( ii=1; ii<=size(id); ii++ ) |
---|
109 | { |
---|
110 | if( deg(id[ii]) > 1) { break; } |
---|
111 | k=ii; |
---|
112 | } |
---|
113 | if( k == 0 ) { ideal lin; } |
---|
114 | else { ideal lin = id[1..k];} |
---|
115 | if( k < size(id) ) { id = id[k+1..size(id)]; } |
---|
116 | else { id = 0; } |
---|
117 | //----- remove generators from lin containing vars not to be eliminated ------ |
---|
118 | if ( n < nvars(P) ) |
---|
119 | { |
---|
120 | for ( ii=1; ii<=size(lin); ii++ ) |
---|
121 | { |
---|
122 | if ( reduce(lead(lin[ii]),rest) == 0 ) |
---|
123 | { |
---|
124 | id=lin[ii],id; |
---|
125 | lin[ii] = 0; |
---|
126 | } |
---|
127 | } |
---|
128 | } |
---|
129 | lin = simplify(lin,2); |
---|
130 | attrib(lin,"isSB",1); |
---|
131 | ideal eva = lead(lin); |
---|
132 | attrib(eva,"isSB",1); |
---|
133 | ideal neva = reduce(maxideal(1),eva); |
---|
134 | //------------------ go back to original ring end return ---------------------- |
---|
135 | if( fi == 0 or find(ordstr(P),"a") != 0 ) |
---|
136 | { |
---|
137 | setring P; |
---|
138 | ideal id = imap(newP,id); |
---|
139 | ideal eva = imap(newP,eva); |
---|
140 | ideal lin = imap(newP,lin); |
---|
141 | ideal neva = imap(newP,neva); |
---|
142 | } |
---|
143 | eva = eva[ncols(eva)..1]; // sorting according to variables in basering |
---|
144 | lin = lin[ncols(lin)..1]; |
---|
145 | ideal phi= neva; |
---|
146 | k = 1; |
---|
147 | for( ii=1; ii<=n; ii++ ) |
---|
148 | { |
---|
149 | if( neva[ii] == 0 ) |
---|
150 | { |
---|
151 | phi[ii] = eva[k]-lin[k]; |
---|
152 | k=k+1; |
---|
153 | } |
---|
154 | } |
---|
155 | list L = id, eva, lin, neva, phi; |
---|
156 | option(set,getoption); |
---|
157 | return(L); |
---|
158 | } |
---|
159 | example |
---|
160 | { "EXAMPLE:"; echo = 2; |
---|
161 | ring s=0,(x,y,z,t,u,v,w,a,b,c,d,f,e),ds; |
---|
162 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
163 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab, yz+uv+bc, |
---|
164 | cd+ze, x+y+z+e+1, t+u+v+f-1, w+a+b+c+d; |
---|
165 | list L= elimlinearpart(i); |
---|
166 | } |
---|
167 | /////////////////////////////////////////////////////////////////////////////// |
---|
168 | |
---|
169 | proc elimpart (ideal i,list #) |
---|
170 | USAGE: elimpart(i[,n,e]); i=ideal, n,e=integers |
---|
171 | consider 1-st n vars for elimination (better: substitution), |
---|
172 | e =0: substitute from linear part of i (same as elimlinearpart) |
---|
173 | e!=0: eliminate also by direct substitution |
---|
174 | (default: n = nvars(basering), e = 1) |
---|
175 | RETURN: list of of 5 objects: |
---|
176 | [1]: ideal obtained by substituting from the first n variables those |
---|
177 | from i which appear in the linear part of i [or, if e!=0, which |
---|
178 | can be expressed directly in the remaining vars] |
---|
179 | [2]: ideal, variables which have been substituted |
---|
180 | [3]: ideal, i-th element defines substitution of i-th var in [2] |
---|
181 | [4]: ideal of variables of basering, substituted ones are set to 0 |
---|
182 | [5]: ideal, describing the map from the basering, say k[x(1..m)], to |
---|
183 | itself onto k[..variables fom [4]..] and [1] is the image of i |
---|
184 | The ideal i is generated by [1] and [3] in k[x(1..m)], the map [5] |
---|
185 | maps [3] to 0, hence induceds an isomorhism |
---|
186 | k[x(1..m)]/i -> k[..variables fom [4]..]/[1] |
---|
187 | NOTE: If the basering has ordering (c,dp), this is faster for big ideals, |
---|
188 | since it avoids internal ring change and mapping |
---|
189 | EXAMPLE: example elimpart; shows an example |
---|
190 | { |
---|
191 | def P = basering; |
---|
192 | int n,e = nvars(P),1; |
---|
193 | if ( size(#)==1 ) { n=#[1]; } |
---|
194 | if ( size(#)==2 ) { n=#[1]; e=#[2];} |
---|
195 | //----------- interreduce linear part with proc elimlinearpart ----------------- |
---|
196 | // lin = ideal after interreduction of linear part |
---|
197 | // eva = eliminated (substituted) variables |
---|
198 | // sub = polynomials defining substitution |
---|
199 | // neva= not eliminated variables |
---|
200 | // phi = map describing substitution |
---|
201 | list L = elimlinearpart(i,n); |
---|
202 | ideal lin, eva, sub, neva, phi = L[1], L[2], L[3], L[4], L[5]; |
---|
203 | //-------- direct substitution of variables if possible and if e!=0 ------------ |
---|
204 | // first find terms lin1 of pure degree 1 in each poly of lin |
---|
205 | // k1 = pure degree 1 part, k1+k2 = those polys of lin which contained a pure |
---|
206 | // degree 1 part. |
---|
207 | // Then go to ring newP with ordering c,dp(n) and create a matrix with size(k1) |
---|
208 | // colums and 2 rows, such that if [f1,f2] is a column of M then f1+f2 is one of |
---|
209 | // the polys of lin containing a pure degree 1 part and f1 is this part |
---|
210 | // interreduce this matrix (i.e. Gauss elimination on linear part, with rest |
---|
211 | // transformed accordingly). |
---|
212 | |
---|
213 | if ( e!=0 ) |
---|
214 | { |
---|
215 | int ii,kk; |
---|
216 | ideal k1,k2; |
---|
217 | int l = size(lin); |
---|
218 | ideal lin1 = jet(lin,1) - jet(lin,0); // part of pure degree 1 |
---|
219 | lin = lin - lin1; // rest, part of degree 1 substracted |
---|
220 | |
---|
221 | for( ii=1; ii<=l; ii++ ) |
---|
222 | { |
---|
223 | if( lin1[ii] != 0 ) |
---|
224 | { |
---|
225 | kk = kk+1; |
---|
226 | k1[kk] = lin1[ii]; // part of pure degree 1, renumbered |
---|
227 | k2[kk] = lin[ii]; // rest of those polys which had a degree 1 part |
---|
228 | lin[ii] = 0; |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | if( kk != 0 ) |
---|
233 | { |
---|
234 | if( ordstr(P) != "c,dp(n)" ) |
---|
235 | { |
---|
236 | execute "ring newP = ("+charstr(P)+"),("+varstr(P)+"),(c,dp);"; |
---|
237 | ideal k1 = imap(P,k1); |
---|
238 | ideal k2 = imap(P,k2); |
---|
239 | ideal lin = imap(P,lin); |
---|
240 | ideal eva = imap(P,eva); |
---|
241 | ideal sub = imap(P,sub); |
---|
242 | ideal neva = imap(P,neva); |
---|
243 | } |
---|
244 | ideal k12 = k1,k2; |
---|
245 | matrix M = matrix(k12,2,kk); |
---|
246 | // M = interred(M); |
---|
247 | l = ncols(M); |
---|
248 | k1 = M[1,1..l]; |
---|
249 | k2 = M[2,1..l]; |
---|
250 | ideal kin = matrix(k1)+matrix(k2); |
---|
251 | lin = simplify(lin,2); |
---|
252 | |
---|
253 | l = size(kin); |
---|
254 | poly p; map phi; ideal max; |
---|
255 | for ( ii=1; ii<=n; ii++ ) |
---|
256 | { |
---|
257 | for (kk=1; kk<=l; kk++ ) |
---|
258 | { |
---|
259 | p = kin[kk]/var(ii); |
---|
260 | if ( deg(p) == 0 ) |
---|
261 | { |
---|
262 | eva = eva+var(ii); |
---|
263 | neva[ii] = 0; |
---|
264 | sub = sub+kin[kk]/p; |
---|
265 | max = maxideal(1); |
---|
266 | max[ii] = var(ii) - (kin[kk]/p); |
---|
267 | phi = basering,max; |
---|
268 | lin = phi(lin); |
---|
269 | kin = simplify(phi(kin),2); |
---|
270 | l = size(kin); |
---|
271 | ii=ii+1; |
---|
272 | break; |
---|
273 | } |
---|
274 | } |
---|
275 | } |
---|
276 | lin = kin+lin; |
---|
277 | } |
---|
278 | } |
---|
279 | for( ii=1; ii<=size(lin); ii++ ) |
---|
280 | { |
---|
281 | lin[ii] = cleardenom(lin[ii]); |
---|
282 | } |
---|
283 | if( defined(newP) ) |
---|
284 | { |
---|
285 | setring P; |
---|
286 | lin = imap(newP,lin); |
---|
287 | eva = imap(newP,eva); |
---|
288 | sub = imap(newP,sub); |
---|
289 | neva = imap(newP,neva); |
---|
290 | } |
---|
291 | for( ii=1; ii<=n; ii++ ) |
---|
292 | { |
---|
293 | for( kk=1; kk<=size(eva); kk++ ) |
---|
294 | { |
---|
295 | if (phi[ii] == eva[kk] ) |
---|
296 | { phi[ii] = eva[kk]-sub[kk]; break; } |
---|
297 | } |
---|
298 | } |
---|
299 | L = lin, eva, sub, neva, phi; |
---|
300 | return(L); |
---|
301 | } |
---|
302 | example |
---|
303 | { "EXAMPLE:"; echo = 2; |
---|
304 | ring s=0,(x,y,z,t,u,v,w,a,b,c,d,f,e),(c,ds); |
---|
305 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
306 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab, yz+uv+bc, |
---|
307 | cd+ze, x+y+z+e+1, t+u+v+f-1, w+a+b+c+d; |
---|
308 | elimpart(i,4); |
---|
309 | } |
---|
310 | |
---|
311 | /////////////////////////////////////////////////////////////////////////////// |
---|
312 | |
---|
313 | proc elimpartanyr (ideal i, list #) |
---|
314 | USAGE: elimpartanyr(i[,p,e]); i=ideal, p=product of vars to be eliminated, |
---|
315 | e=int (default: p=product of all vars, e=1) |
---|
316 | RETURN: list of of 6 objects: |
---|
317 | [1]: (interreduced) ideal obtained by substituting from i those vars |
---|
318 | appearing in p which occur in the linear part of i [or which can |
---|
319 | be expressed directly in the remaining variables, if e!=0] |
---|
320 | [2]: ideal, variables which have been substituted |
---|
321 | [3]: ideal, i-th element defines substitution of i-th var in [2] |
---|
322 | [4]: ideal of variables of basering, substituted ones are set to 0 |
---|
323 | [5]: ideal, describing the map from the basering, say k[x(1..m)], to |
---|
324 | itself onto k[..variables fom [4]..] and [1] is the image of i |
---|
325 | [6]: int, # of vars considered for substitution (= # of factors of p) |
---|
326 | |
---|
327 | The ideal i is generated by [1] and [3] in k[x(1..m)], the map [5] |
---|
328 | maps [3] to 0, hence induceds an isomorhism |
---|
329 | k[x(1..m)]/i -> k[..variables fom [4]..]/[1] |
---|
330 | NOTE: the proc uses 'execute' to create a ring with ordering dp and vars |
---|
331 | placed correctly and then applies 'elimpart'; |
---|
332 | EXAMPLE: example elimpartanyr; shows an example |
---|
333 | { |
---|
334 | def P = basering; |
---|
335 | int j,n,e = 0,0,1; |
---|
336 | poly p = product(maxideal(1)); |
---|
337 | if ( size(#)==1 ) { p=#[1]; } |
---|
338 | if ( size(#)==2 ) { p=#[1]; e=#[2]; } |
---|
339 | string a,b; |
---|
340 | for ( j=1; j<=nvars(P); j++ ) |
---|
341 | { |
---|
342 | if (deg(p/var(j))>=0) { a = a+varstr(j)+","; n = n+1; } |
---|
343 | else { b = b+varstr(j)+","; } |
---|
344 | } |
---|
345 | if ( size(b) != 0 ) { b = b[1,size(b)-1]; } |
---|
346 | else { a = a[1,size(a)-1]; } |
---|
347 | execute "ring gnir ="+charstr(P)+",("+a+b+"),dp;"; |
---|
348 | ideal i = imap(P,i); |
---|
349 | list L = elimpart(i,n,e)+list(n); |
---|
350 | setring P; |
---|
351 | list L = imap(gnir,L); |
---|
352 | return(L); |
---|
353 | } |
---|
354 | example |
---|
355 | { "EXAMPLE:"; echo = 2; |
---|
356 | ring s=0,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp; |
---|
357 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
358 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab, yz+uv+bc, |
---|
359 | cd+ze, x+y+z+e+1, t+u+v+f-1, w+a+b+c+d; |
---|
360 | show(elimpartanyr(i,xyztuvwabc));""; |
---|
361 | elimpartanyr(i,xyztuvwabc); |
---|
362 | } |
---|
363 | /////////////////////////////////////////////////////////////////////////////// |
---|
364 | |
---|
365 | proc fastelim (ideal i, poly p, list #) |
---|
366 | USAGE: fastelim(i,p[h,o,a,b,e,m]); i=ideal, p=product of variables to be |
---|
367 | eliminated; h,o,a,b,e integers |
---|
368 | (options for Hilbert-std, 'valvars', elimpart, minimizing) |
---|
369 | - h !=0: use Hilbert-series driven std-basis computation |
---|
370 | - o !=0: use proc 'valvars' for a - hopefully - best ordering of vars |
---|
371 | - a !=0: order vars to be eliminated w.r.t. increasing complexity |
---|
372 | - b !=0: order vars not to be eliminated w.r.t. increasing complexity |
---|
373 | - e !=0: use elimpart first to eliminate easy part |
---|
374 | - m !=0: compute a minimal system of generators |
---|
375 | replacing '!=' by '=' has the opposite meaning |
---|
376 | default: h,o,a,b,e,m = 0,1,0,0,0,0 |
---|
377 | RETURN: ideal obtained from i by eliminating those variables which occur in p |
---|
378 | EXAMPLE: example fastelim; shows an example. |
---|
379 | { |
---|
380 | def P = basering; |
---|
381 | int h,o,a,b,e,m = 0,1,0,0,0,0; |
---|
382 | if ( size(#) == 1 ) { h=#[1]; } |
---|
383 | if ( size(#) == 2 ) { h=#[1]; o=#[2]; } |
---|
384 | if ( size(#) == 3 ) { h=#[1]; o=#[2]; a=#[3]; } |
---|
385 | if ( size(#) == 4 ) { h=#[1]; o=#[2]; a=#[3]; b=#[4];} |
---|
386 | if ( size(#) == 5 ) { h=#[1]; o=#[2]; a=#[3]; b=#[4]; e=#[5]; } |
---|
387 | if ( size(#) == 6 ) { h=#[1]; o=#[2]; a=#[3]; b=#[4]; e=#[5]; m=#[6]; } |
---|
388 | list L = elimpartanyr(i,p,e); |
---|
389 | poly q = product(L[2]); //product of vars which are already eliminated |
---|
390 | if ( q==0 ) { q=1; } |
---|
391 | p = p/q; //product of vars which must still be eliminated |
---|
392 | int nu = L[5]-size(L[2]); //number of vars which must still be eliminated |
---|
393 | if ( p==1 ) //ready if no vars are left |
---|
394 | { //compute minbase if 3-rd argument !=0 |
---|
395 | if ( m != 0 ) { L[1]=minbase(L[1]); } |
---|
396 | return(L); |
---|
397 | } |
---|
398 | //---------------- create new ring with remaining variables ------------------- |
---|
399 | string newvar = string(L[4]); |
---|
400 | L = L[1],p; |
---|
401 | execute "ring r1=("+charstr(P)+"),("+newvar+"),"+"dp;"; |
---|
402 | list L = imap(P,L); |
---|
403 | //------------------- find "best" ordering of variables ---------------------- |
---|
404 | newvar = string(maxideal(1)); |
---|
405 | if ( o != 0 ) |
---|
406 | { |
---|
407 | list ordevar = valvars(L[1],a,L[2],b); |
---|
408 | intvec v = ordevar[1]; |
---|
409 | newvar=string(sort(maxideal(1),v)[1]); |
---|
410 | //------------ create new ring with "best" ordering of variables -------------- |
---|
411 | changevar("r0",newvar); |
---|
412 | list L = imap(r1,L); |
---|
413 | kill r1; |
---|
414 | def r1 = r0; |
---|
415 | kill r0; |
---|
416 | } |
---|
417 | //----------------- h==0: eliminate remaining vars directly ------------------- |
---|
418 | if ( h == 0 ) |
---|
419 | { |
---|
420 | L[1] = eliminate(L[1],L[2]); |
---|
421 | def r2 = r1; |
---|
422 | } |
---|
423 | else |
---|
424 | //------- h!=0: homogenize and compute Hilbert-series using hilbvec ---------- |
---|
425 | { |
---|
426 | intvec hi = hilbvec(L[1]); // Hilbert-series of i |
---|
427 | execute "ring r2=("+charstr(P)+"),("+varstr(basering)+",@homo),dp;"; |
---|
428 | list L = imap(r1,L); |
---|
429 | L[1] = homog(L[1],@homo); // @homo = homogenizing var |
---|
430 | //---- use Hilbert-series to eliminate variables with Hilbert-driven std ----- |
---|
431 | L[1] = eliminate(L[1],L[2],hi); |
---|
432 | L[1]=subst(L[1],@homo,1); // dehomogenize by setting @homo=1 |
---|
433 | } |
---|
434 | if ( m != 0 ) // compute minbase |
---|
435 | { |
---|
436 | if ( #[1] != 0 ) { L[1] = minbase(L[1]); } |
---|
437 | } |
---|
438 | def id = L[1]; |
---|
439 | setring P; |
---|
440 | return(imap(r2,id)); |
---|
441 | } |
---|
442 | example |
---|
443 | { "EXAMPLE:"; echo = 2; |
---|
444 | ring s=31991,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp; |
---|
445 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
446 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab; |
---|
447 | fastelim(i,xytua); //with valvars only |
---|
448 | fastelim(i,xytua,1,1); //with hilb,valvars,minbase |
---|
449 | fastelim(i,xytua,1,0); //with hilb,minbase |
---|
450 | } |
---|
451 | /////////////////////////////////////////////////////////////////////////////// |
---|
452 | |
---|
453 | proc faststd (@id,string @s1,string @s2, list #) |
---|
454 | USAGE: faststd(id,s1,s2[,"hilb","sort","dec",o,"blocks"]); |
---|
455 | id=ideal/module, s1,s2=strings (names for new ring and maped id) |
---|
456 | o = string (allowed ordstring:"lp","dp","Dp","ls","ds","Ds") |
---|
457 | "hilb","sort","dec","block" options for Hilbert-std, sortandmap |
---|
458 | COMPUTE: create a new ring (with "best" ordering of vars) and compute a |
---|
459 | std-basis of id (hopefully faster) |
---|
460 | - If say, s1="R" and s2="j", the new basering has name R and the |
---|
461 | std-basis of the image of id in R has name j |
---|
462 | - "hilb" : use Hilbert-series driven std-basis computation |
---|
463 | - "sort" : use 'sortandmap' for a best ordering of vars |
---|
464 | - "dec" : order vars w.r.t. decreasing complexity (with "sort") |
---|
465 | - "block" : create blockordering, each block having ordstr=o, s.t. |
---|
466 | vars of same complexity are in one block (with "sort") |
---|
467 | - o : defines the basic ordering of the resulting ring |
---|
468 | default: o = ordering of 1-st block of basering - if it is allowed, |
---|
469 | else o="dp", |
---|
470 | "sort", if none of the optional parameters is given |
---|
471 | RETURN: nothing |
---|
472 | NOTE: This proc is only useful for hard problems where other methods fail. |
---|
473 | "hilb" is useful for hard orderings (as "lp") or for characteristic 0, |
---|
474 | it is correct for "lp","dp","Dp" (and for blockorderings combining |
---|
475 | these) but not for s-orderings or if the vars have different weights. |
---|
476 | There seem to be only few cases in which "dec" is fast |
---|
477 | EXAMPLE: example faststd; shows an example. |
---|
478 | { |
---|
479 | def @P = basering; |
---|
480 | int @h,@s,@n,@m,@ii = 0,0,0,0,0; |
---|
481 | string @o,@va,@c = ordstr(basering),"",""; |
---|
482 | //-------------------- prepare ordering and set options ----------------------- |
---|
483 | if ( @o[1]=="c" or @o[1]=="C") |
---|
484 | { @o = @o[3,2]; } |
---|
485 | else |
---|
486 | { @o = @o[1,2]; } |
---|
487 | if( @o[1]!="d" and @o[1]!="D" and @o[1]!="l") |
---|
488 | { @o="dp"; } |
---|
489 | |
---|
490 | if (size(#) == 0 ) |
---|
491 | { @s = 1; } |
---|
492 | for ( @ii=1; @ii<=size(#); @ii++ ) |
---|
493 | { |
---|
494 | if ( typeof(#[@ii]) != "string" ) |
---|
495 | { |
---|
496 | "// wrong syntax! type: help faststd"; |
---|
497 | return(); |
---|
498 | } |
---|
499 | else |
---|
500 | { |
---|
501 | if ( #[@ii] == "hilb" ) { @h = 1; } |
---|
502 | if ( #[@ii] == "dec" ) { @n = 1; } |
---|
503 | if ( #[@ii] == "block" ) { @m = 1; } |
---|
504 | if ( #[@ii] == "sort" ) { @s = 1; } |
---|
505 | if ( #[@ii]=="lp" or #[@ii]=="dp" or #[@ii]=="Dp" or #[@ii]=="ls" |
---|
506 | or #[@ii]=="ds" or #[@ii]=="Ds" ) { @o = #[@ii]; } |
---|
507 | } |
---|
508 | } |
---|
509 | if( voice==2 ) { "// choosen options, hilb sort dec block:",@h,@s,@n,@m; } |
---|
510 | |
---|
511 | //-------------------- nosort: create ring with new name ---------------------- |
---|
512 | if ( @s==0 ) |
---|
513 | { |
---|
514 | execute "ring "+@s1+"=("+charstr(@P)+"),("+varstr(@P)+"),("+@o+");"; |
---|
515 | def @id = imap(@P,@id); |
---|
516 | verbose(noredefine); |
---|
517 | def @P = basering; |
---|
518 | verbose(redefine); |
---|
519 | kill `@s1`; |
---|
520 | if ( @h==0 ) { @id = std(@id); } |
---|
521 | } |
---|
522 | //--------- sort: create new ring with "best" ordering of variables ----------- |
---|
523 | proc bestorder(@id,string @s1,string @s2,int @n,string @o,int @m,int @l) |
---|
524 | { |
---|
525 | intvec getoption = option(get); |
---|
526 | option(redSB); |
---|
527 | @id = interred(sort(@id)[1]); |
---|
528 | poly @p = product(maxideal(1),1..@l); |
---|
529 | def i,s1,s2,n,p,o,m = @id,@s1,@s2,@n,@p,@o,@m; |
---|
530 | sortandmap(i,s1,s2,n,p,0,o,m); |
---|
531 | option(set,getoption); |
---|
532 | keepring(basering); |
---|
533 | } |
---|
534 | //---------------------- no hilb: compute SB directly ------------------------- |
---|
535 | if ( @s != 0 and @h == 0 ) |
---|
536 | { |
---|
537 | bestorder(@id,@s1,@s2,@n,@o,@m,nvars(@P)); |
---|
538 | verbose(noredefine); |
---|
539 | def @P = basering; |
---|
540 | verbose(redefine); |
---|
541 | kill `@s1`; |
---|
542 | def @id = `@s2`; |
---|
543 | @id = std(@id); |
---|
544 | } |
---|
545 | //------- hilb: homogenize and compute Hilbert-series using hilbvec ----------- |
---|
546 | // this uses another standardbasis computation |
---|
547 | if ( @h != 0 ) |
---|
548 | { |
---|
549 | execute "ring @Q=("+charstr(@P)+"),("+varstr(@P)+",@homo),("+@o+");"; |
---|
550 | def @id = imap(@P,@id); |
---|
551 | kill @P; |
---|
552 | @id = homog(@id,@homo); // @homo = homogenizing var |
---|
553 | if ( @s != 0 ) |
---|
554 | { |
---|
555 | bestorder(@id,@s1,@s2,@n,@o,@m,nvars(@Q)-1); |
---|
556 | verbose(noredefine); |
---|
557 | def @Q= basering; |
---|
558 | kill `@s1`; |
---|
559 | def @id = `@s2`; |
---|
560 | verbose(redefine); |
---|
561 | } |
---|
562 | intvec @hi; // encoding of Hilbert-series of i |
---|
563 | @hi = hilbvec(@id); |
---|
564 | //if ( @s!=0 ) { @hi = hilbvec(@id,"32003",ordstr(@Q)); } |
---|
565 | //else { @hi = hilbvec(@id); } |
---|
566 | //-------------------------- use Hilbert-driven std -------------------------- |
---|
567 | @id = std(@id,@hi); |
---|
568 | @id = subst(@id,@homo,1); // dehomogenize by setting @homo=1 |
---|
569 | @va = varstr(@Q)[1,size(varstr(@Q))-6]; |
---|
570 | if ( @s!=0 ) |
---|
571 | { |
---|
572 | @o = ordstr(@Q); |
---|
573 | if ( @o[1]=="c" or @o[1]=="C") { @o = @o[1,size(@o)-6]; } |
---|
574 | else { @o = @o[1,size(@o)-8] + @o[size(@o)-1,2]; } |
---|
575 | } |
---|
576 | execute "ring @P=("+charstr(@Q)+"),("+@va+"),("+@o+");"; |
---|
577 | def @id = imap(@Q,@id); |
---|
578 | } |
---|
579 | def `@s1` = @P; |
---|
580 | def `@s2` = @id; |
---|
581 | attrib(`@s2`,"isSB",1); |
---|
582 | export(`@s2`); |
---|
583 | kill @P; |
---|
584 | keepring(basering); |
---|
585 | if( voice==2 ) { "// basering is now "+@s1+", std-basis has name "+@s2; } |
---|
586 | return(); |
---|
587 | } |
---|
588 | example |
---|
589 | { "EXAMPLE:"; echo = 2; |
---|
590 | ring s = 0,(e,f,x,y,z,t,u,v,w,a,b,c,d),(c,lp); |
---|
591 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
592 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab; |
---|
593 | option(prot); timer=1; |
---|
594 | int time = timer; |
---|
595 | ideal j=std(i); |
---|
596 | timer-time; |
---|
597 | show(R);dim(j),mult(j); |
---|
598 | int time = timer; |
---|
599 | faststd(i,"R","i"); // use "best" ordering of vars |
---|
600 | timer-time; |
---|
601 | show(R);dim(i),mult(i); |
---|
602 | setring s;time = timer; |
---|
603 | faststd(i,"R","i","hilb"); // hilb-std only |
---|
604 | timer-time; |
---|
605 | show(R);dim(i),mult(i); |
---|
606 | setring s;time = timer; |
---|
607 | faststd(i,"R","i","hilb","sort"); // hilb-std,"best" ordering |
---|
608 | timer-time; |
---|
609 | show(R);dim(i),mult(i); |
---|
610 | setring s;time = timer; |
---|
611 | faststd(i,"R","i","hilb","sort","block","dec"); // hilb-std,"best",blocks |
---|
612 | timer-time; |
---|
613 | show(R);dim(i),mult(i); |
---|
614 | setring s;time = timer; |
---|
615 | timer-time;time = timer; |
---|
616 | faststd(i,"R","i","sort","block","Dp"); //"best",decreasing,Dp-blocks |
---|
617 | timer-time; |
---|
618 | show(R);dim(i),mult(i); |
---|
619 | } |
---|
620 | /////////////////////////////////////////////////////////////////////////////// |
---|
621 | |
---|
622 | proc findvars(id, list #) |
---|
623 | USAGE: findvars(id[,any]); id poly/ideal/vector/module/matrix, any=any type |
---|
624 | RETURN: ideal of variables occuring in id, if no second argument is present |
---|
625 | list of 4 objects, if a second argument is given (of any type) |
---|
626 | -[1]: ideal of variables occuring in id |
---|
627 | -[2]: intvec of variables occuring in id |
---|
628 | -[3]: ideal of variables not occuring in id |
---|
629 | -[4]: intvec of variables not occuring in id |
---|
630 | EXAMPLE: example findvars; shows an example |
---|
631 | { |
---|
632 | int ii,n; |
---|
633 | ideal found, notfound; |
---|
634 | intvec f,nf; |
---|
635 | n = nvars(basering); |
---|
636 | ideal i = simplify(ideal(matrix(id)),10); |
---|
637 | matrix M[ncols(i)][1] = i; |
---|
638 | vector v = module(M)[1]; |
---|
639 | ideal max = maxideal(1); |
---|
640 | |
---|
641 | for (ii=1; ii<=n; ii++) |
---|
642 | { |
---|
643 | if ( v != subst(v,var(ii),0) ) |
---|
644 | { |
---|
645 | found = found+var(ii); |
---|
646 | f = f,ii; |
---|
647 | } |
---|
648 | else |
---|
649 | { |
---|
650 | notfound = notfound+var(ii); |
---|
651 | nf = nf,ii; |
---|
652 | } |
---|
653 | } |
---|
654 | if ( size(f)>1 ) { f = f[2..size(f)]; } //intvec of found vars |
---|
655 | if ( size(nf)>1 ) { nf = nf[2..size(nf)]; } //intvec of vars not found |
---|
656 | if( size(#)==0 ) { return(found); } |
---|
657 | if( size(#)!=0 ) { list L = found,f,notfound,nf; return(L); } |
---|
658 | } |
---|
659 | example |
---|
660 | { "EXAMPLE:"; echo = 2; |
---|
661 | ring s = 0,(e,f,x,y,t,u,v,w,a,d),dp; |
---|
662 | ideal i = w2+f2-1, x2+t2+a2-1; |
---|
663 | findvars(i); |
---|
664 | findvars(i,1); |
---|
665 | } |
---|
666 | /////////////////////////////////////////////////////////////////////////////// |
---|
667 | |
---|
668 | proc hilbvec (@id, list #) |
---|
669 | USAGE: hilbvec(id[,c,o]); id poly/ideal/vector/module/matrix, c,o=strings |
---|
670 | c=char, o=ord in which hilb is computed (default: c="32003", o="dp") |
---|
671 | RETURN: intvec of 1-st Hilbert-series of id, computed in char c and ordering o |
---|
672 | bei ** aendern falls ringmaps vollstaendig ? |
---|
673 | NOTE: id must be homogeneous (all vars having weight 1) |
---|
674 | EXAMPLE: example hilbvec; shows an example |
---|
675 | { |
---|
676 | def @P = basering; |
---|
677 | string @c,@o = "32003", "dp"; |
---|
678 | if ( size(#) == 1 ) { @c = #[1]; } |
---|
679 | if ( size(#) == 2 ) { @c = #[1]; @o = #[2]; } |
---|
680 | string @si = typeof(@id)+" @i = "+string(@id)+";"; //** weg |
---|
681 | execute "ring @r=("+@c+"),("+varstr(basering)+"),("+@o+");"; |
---|
682 | //**def i = imap(P,@id); |
---|
683 | execute @si; //** weg |
---|
684 | //show(basering); |
---|
685 | @i = std(@i); |
---|
686 | intvec @hi = hilb(@i,1); // intvec of 1-st Hilbert-series of id |
---|
687 | return(@hi); |
---|
688 | } |
---|
689 | example |
---|
690 | { "EXAMPLE:"; echo = 2; |
---|
691 | ring s = 0,(e,f,x,y,z,t,u,v,w,a,b,c,d,H),dp; |
---|
692 | ideal id = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
693 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab; |
---|
694 | id = homog(id,H); |
---|
695 | hilbvec(id); |
---|
696 | } |
---|
697 | /////////////////////////////////////////////////////////////////////////////// |
---|
698 | |
---|
699 | proc linearpart (id) |
---|
700 | USAGE: linearpart(id); id=ideal/module |
---|
701 | RETURN: generators of id of total degree <= 1 |
---|
702 | EXAMPLE: example linearpart; shows an example |
---|
703 | { |
---|
704 | return(degreepart(id,0,1)); |
---|
705 | } |
---|
706 | example |
---|
707 | { "EXAMPLE:"; echo = 2; |
---|
708 | ring r=0,(x,y,z),dp; |
---|
709 | ideal i=1+x+x2+x3,3,x+3y+5z; |
---|
710 | linearpart(i); |
---|
711 | module m=[x,y,z],x*[x3,y2,z],[1,x2,z3,0,1]; |
---|
712 | show(linearpart(m)); |
---|
713 | } |
---|
714 | /////////////////////////////////////////////////////////////////////////////// |
---|
715 | |
---|
716 | proc tolessvars (id ,list #) |
---|
717 | USAGE: tolessvars(id,[s1,s2]); id poly/ideal/vector/module/matrix, |
---|
718 | s1,s2=strings (names of: new ring, new ordering) |
---|
719 | CREATE: nothing, if id contains all vars of the basering. Else, create |
---|
720 | a ring with same char as the basering, but with less variables |
---|
721 | (only those variables which actually occur in id) and map id to the |
---|
722 | new ring, which will be the basering after the proc has finished. |
---|
723 | The name of the new ring is by default R(n), where n is the number of |
---|
724 | variables in the new ring. If, say, s1 = "newR" then the new ring has |
---|
725 | name newR. In s2 a different ordering for the new ring may be given |
---|
726 | as an allowed ordstring (default is "dp" resp. "ds", depending whether |
---|
727 | the first block of the old ordering is a p- resp. an s-ordering). |
---|
728 | DISPLAY: If printlevel >=0, display ideal of vars which have been ommitted from |
---|
729 | the old ring (default) |
---|
730 | RETURN: the original ideal id |
---|
731 | NOTE: You must not type, say, 'ideal id=tolessvars(id);' since the ring |
---|
732 | to which 'id' would belong will only be defined by the r.h.s.. But you |
---|
733 | may type 'def id=tolessvars(id);' or 'list id=tolessvars(id);' |
---|
734 | since then 'id' does not a priory belong to a ring, its type will |
---|
735 | be defined by the right hand side. Moreover, do not use a name which |
---|
736 | occurs in the old ring, for the same reason. |
---|
737 | EXAMPLE: example tolessvars; shows an example |
---|
738 | { |
---|
739 | //---------------- initialisation and check occurence of vars ----------------- |
---|
740 | int s,ii,n,fp,fs; |
---|
741 | string s1,s2,newvar; |
---|
742 | int pr = printlevel-voice+3; // p = printlevel+1 (default: p=1) |
---|
743 | def P = basering; |
---|
744 | s2 = ordstr(P); |
---|
745 | |
---|
746 | list L = findvars(id,1); |
---|
747 | newvar = string(L[1]); // string of new variables |
---|
748 | n = size(L[1]); // number of new variables |
---|
749 | if( n == 0 ) |
---|
750 | { |
---|
751 | dbprint( pr,"","// no variable occured in "+typeof(id)+", no change of ring!"); |
---|
752 | return(id); |
---|
753 | } |
---|
754 | if( n == nvars(P) ) |
---|
755 | { |
---|
756 | dbprint( pr,"","// all variables occured in "+typeof(id)+", no change of ring!"); |
---|
757 | return(id); |
---|
758 | } |
---|
759 | //----------------- prepare new ring, map to it and return -------------------- |
---|
760 | s1 = "R("+string(n)+")"; |
---|
761 | if ( size(#) == 0 ) |
---|
762 | { |
---|
763 | fp = find(s2,"p"); |
---|
764 | fs = find(s2,"s"); |
---|
765 | if( fs==0 or (fs>=fp && fp!=0) ) { s2="dp"; } |
---|
766 | else { s2="ds"; } |
---|
767 | } |
---|
768 | if ( size(#) ==1 ) { s1=#[1]; } |
---|
769 | if ( size(#) ==2 ) { s1=#[1]; s2=#[2]; } |
---|
770 | //dbprint( pr,"","// variables which did not occur:",simplify(max,2) ); |
---|
771 | dbprint( pr,"","// variables which did not occur:",L[3] ); |
---|
772 | |
---|
773 | execute "ring "+s1+"=("+charstr(P)+"),("+newvar+"),("+s2+");"; |
---|
774 | def id = imap(P,id); |
---|
775 | export(basering); |
---|
776 | keepring (basering); |
---|
777 | dbprint( pr,"// basering is now "+s1 ); |
---|
778 | return(id); |
---|
779 | } |
---|
780 | example |
---|
781 | { "EXAMPLE:"; echo = 2; |
---|
782 | ring r = 0,(x,y,z),dp; |
---|
783 | ideal i = y2-x3,x-3,y-2x; |
---|
784 | def j = tolessvars(i); |
---|
785 | show(basering); |
---|
786 | j; |
---|
787 | setring r; |
---|
788 | list j = tolessvars(i,"R_r","lp"); |
---|
789 | R_r; |
---|
790 | kill R_r, R(2); |
---|
791 | } |
---|
792 | /////////////////////////////////////////////////////////////////////////////// |
---|
793 | |
---|
794 | proc solvelinearpart (id,list #) |
---|
795 | USAGE: solvelinearpart(id[,n]); id=ideal/module, n=integer |
---|
796 | RETURN: (interreduced) generators of id of degree <=1 in reduced triangular |
---|
797 | form (default) or if n=0 [non-reduced triangular form if n!=0] |
---|
798 | ASSUME: monomial ordering is a global ordering (p-ordering) |
---|
799 | NOTE: may be used to solve a system of linear equations |
---|
800 | see proc 'gauss_row' from 'matrix.lib' for a different method |
---|
801 | WARNING: the result is very likely to be false for 'real' coefficients, use |
---|
802 | char 0 instead! |
---|
803 | EXAMPLE: example solvelinearpart; shows an example |
---|
804 | { |
---|
805 | intvec getoption = option(get); |
---|
806 | option(redSB); |
---|
807 | if ( size(#)!=0 ) |
---|
808 | { |
---|
809 | if(#[1]!=0) { option(noredSB); } |
---|
810 | } |
---|
811 | def lin = interred(degreepart(id,0,1)); |
---|
812 | if ( size(#)!=0 ) |
---|
813 | { |
---|
814 | if(#[1]!=0) |
---|
815 | { |
---|
816 | return(lin); |
---|
817 | } |
---|
818 | } |
---|
819 | option(set,getoption); |
---|
820 | return(simplify(lin,1)); |
---|
821 | } |
---|
822 | example |
---|
823 | { "EXAMPLE:"; echo = 2; |
---|
824 | // Solve the system of linear equations: |
---|
825 | // 3x + y + z - u = 2 |
---|
826 | // 3x + 8y + 6z - 7u = 1 |
---|
827 | // 14x + 10y + 6z - 7u = 0 |
---|
828 | // 7x + 4y + 3z - 3u = 3 |
---|
829 | ring r = 0,(x,y,z,u),lp; |
---|
830 | ideal i= 3x + y + z - u, |
---|
831 | 13x + 8y + 6z - 7u, |
---|
832 | 14x + 10y + 6z - 7u, |
---|
833 | 7x + 4y + 3z - 3u; |
---|
834 | ideal j= 2,1,0,3; |
---|
835 | j = i-j; // difference of 1x4 matrices |
---|
836 | // compute reduced triangular form, setting |
---|
837 | solvelinearpart(j); // the RHS equal 0 gives the solutions! |
---|
838 | solvelinearpart(j,1); ""; // triangular form, not reduced |
---|
839 | // Solve the same system simultaneously for two RHS's: 2,1,0,3 and 1,2,3,4 |
---|
840 | matrix b[2][size(i)]=2,1,0,3,1,2,3,4; |
---|
841 | module m = i*[1,1]-b; |
---|
842 | show(solvelinearpart(m));""; |
---|
843 | // Solve the same system but with parametric values for the RHS: |
---|
844 | ring r1 = (0,a,b,c,d),(x,y,z,u),dp; |
---|
845 | ideal i = 3x + y + z - u - a, |
---|
846 | 13x + 8y + 6z - 7u - b, |
---|
847 | 14x + 10y + 6z - 7u - c, |
---|
848 | 7x + 4y + 3z - 3u - d; |
---|
849 | solvelinearpart(i); |
---|
850 | } |
---|
851 | /////////////////////////////////////////////////////////////////////////////// |
---|
852 | |
---|
853 | proc sortandmap (@id,string @s1,string @s2, list #) |
---|
854 | USAGE: sortandmap(id,s1,s2[,n1,p1,n2,p2...,o1,m1,o2,m2...]); |
---|
855 | id=poly/ideal/vector/module |
---|
856 | s1,s2=strings (names for new ring and maped id) |
---|
857 | p1,p2,...= product of vars, n1,n2,...=integers |
---|
858 | o1,o2,...= allowed ordstrings, m1,m2,...=integers |
---|
859 | (default: p1=product of all vars, n1=0, o1="dp",m1=0) |
---|
860 | the last pi (containing the remaining vars) may be omitted |
---|
861 | CREATE: a new ring and map id into it, the new ring has same char as basering |
---|
862 | but with new ordering and vars sorted in the following manner: |
---|
863 | - each block of vars occuring in pi is sorted w.r.t its complexity in |
---|
864 | id, ni controls the sorting in i-th block (= vars occuring in pi): |
---|
865 | ni=0 (resp.!=0) means that less (resp. more) complex vars come first |
---|
866 | - If say, s1="R" and s2="j", the new basering has name R and the image |
---|
867 | of id in R has name j |
---|
868 | - oi and mi define the monomial ordering of the i-th block: |
---|
869 | if mi =0, oi=ordstr(i-th block) |
---|
870 | if mi!=0, the ordering of the i-th block itself is a blockordering, |
---|
871 | each subblock having ordstr=oi, such that vars of same complexity |
---|
872 | are in one block |
---|
873 | default: oi="dp", mi=0 |
---|
874 | - only simple ordstrings oi are allowed:"lp","dp","Dp","ls","ds","Ds" |
---|
875 | RETURN: nothing |
---|
876 | NOTE: We define a variable x to be more complex than y (with respect to id) |
---|
877 | if val(x) > val(y) lexicographically, where val(x) denotes the |
---|
878 | valuation vector of x: consider id as list of polynomials in x with |
---|
879 | coefficients in the remaining variables. Then val(x) = |
---|
880 | (maximal occuring power of x, # of monomials in leading coefficient, |
---|
881 | # of monomials in coefficient of next smaller power of x,...) |
---|
882 | EXAMPLE: example sortandmap; shows an example |
---|
883 | { |
---|
884 | def @P = basering; |
---|
885 | int @ii,@jj; |
---|
886 | intvec @v; |
---|
887 | string @o; |
---|
888 | //----------------- find o in # and split # into 2 lists --------------------- |
---|
889 | # = # +list("dp",0); |
---|
890 | for ( @ii=1; @ii<=size(#); @ii++) |
---|
891 | { |
---|
892 | if ( typeof(#[@ii])=="string" ) break; |
---|
893 | } |
---|
894 | if ( @ii==1 ) { list @L1 = list(); } |
---|
895 | else { list @L1 = #[1..@ii-1]; } |
---|
896 | list @L2 = #[@ii..size(#)]; |
---|
897 | list @L = sortvars(@id,@L1); |
---|
898 | string @va = string(@L[1]); |
---|
899 | list @l = @L[2]; //e.g. @l[4]=intvec describing permutation of 1-st block |
---|
900 | //----------------- construct correct ordering with oi and mi ---------------- |
---|
901 | for ( @ii=4; @ii<=size(@l); @ii=@ii+4 ) |
---|
902 | { |
---|
903 | @L2=@L2+list("dp",0); |
---|
904 | if ( @L2[@ii/2] != 0) |
---|
905 | { |
---|
906 | @v = @l[@ii]; |
---|
907 | for ( @jj=1; @jj<=size(@v); @jj++ ) |
---|
908 | { |
---|
909 | @o = @o+@L2[@ii/2 -1]+"("+string(@v[@jj])+"),"; |
---|
910 | } |
---|
911 | } |
---|
912 | else |
---|
913 | { |
---|
914 | @o = @o+@L2[@ii/2 -1]+"("+string(size(@l[@ii/2]))+"),"; |
---|
915 | } |
---|
916 | } |
---|
917 | @o=@o[1..size(@o)-1]; |
---|
918 | //------------------ create new ring and make objects global ----------------- |
---|
919 | execute "ring "+@s1+"=("+charstr(@P)+"),("+@va+"),("+@o+");"; |
---|
920 | def @id = imap(@P,@id); |
---|
921 | execute "def "+ @s2+"=@id;"; |
---|
922 | execute("export("+@s1+");"); |
---|
923 | execute("export("+@s2+");"); |
---|
924 | keepring(basering); |
---|
925 | return(); |
---|
926 | } |
---|
927 | example |
---|
928 | { "EXAMPLE:"; echo = 2; |
---|
929 | ring s = 32003,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp; |
---|
930 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
931 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab, yz+uv+bc, |
---|
932 | cd+ze, x+y+z+e+1, t+u+v+f-1, w+a+b+c+d; |
---|
933 | sortandmap(i,"R_r","i"); |
---|
934 | // i is now an ideal in the new basering R_r |
---|
935 | show(R_r); |
---|
936 | kill R_r; setring s; |
---|
937 | sortandmap(i,"R_r","i",1,"lp",0); |
---|
938 | show(R_r); |
---|
939 | kill R_r; setring s; |
---|
940 | sortandmap(i,"R_r","i",1,abc,0,xyztuvw,0,"lp",0,"Dp",1); |
---|
941 | show(R_r); |
---|
942 | kill R_r; |
---|
943 | } |
---|
944 | /////////////////////////////////////////////////////////////////////////////// |
---|
945 | |
---|
946 | proc sortvars (id, list #) |
---|
947 | USAGE: sortvars(id[,n1,p1,n2,p2,...]); id=poly/ideal/vector/module, |
---|
948 | p1,p2,...= product of vars, n1,n2,...=integers |
---|
949 | (default: p1=product of all vars, n1=0) |
---|
950 | the last pi (containing the remaining vars) may be omitted |
---|
951 | COMPUTE: sort variables with respect to their complexity in id |
---|
952 | RETURN: list of two elements, an ideal and a list: |
---|
953 | [1]: ideal, variables of basering sorted w.r.t their complexity in id |
---|
954 | ni controls the ordering in i-th block (= vars occuring in pi): |
---|
955 | ni=0 (resp.!=0) means that less (resp. more) complex vars come |
---|
956 | first |
---|
957 | [2]: a list with 4 elements for each pi: |
---|
958 | ideal ai : vars of pi in correct order, |
---|
959 | intvec vi: permutation vector describing the ordering in ai, |
---|
960 | intmat Mi: valuation matrix of ai, the columns of Mi being the |
---|
961 | valuation vectors of the vars in ai |
---|
962 | intvec wi: 1-st,2-nd,...entry = size of 1-st,2-nd,... block of |
---|
963 | identically columns of Mi (vars with same valuation) |
---|
964 | NOTE: We define a variable x to be more complex than y (w.r.t. id) |
---|
965 | if val(x) > val(y) lexicographically, where val(x) denotes the |
---|
966 | valuation vector of x: consider id as list of polynomials in x with |
---|
967 | coefficients in the remaining variables. Then val(x) = |
---|
968 | (maximal occuring power of x, # of monomials in leading coefficient, |
---|
969 | # of monomials in coefficient of next smaller power of x,...) |
---|
970 | EXAMPLE: example sortvars; shows an example |
---|
971 | { |
---|
972 | int ii,jj,n,s; |
---|
973 | list L = valvars(id,#); |
---|
974 | list L2, L3 = L[2], L[3]; |
---|
975 | list K; intmat M; intvec v1,v2,w; |
---|
976 | ideal i = sort(maxideal(1),L[1])[1]; |
---|
977 | for ( ii=1; ii<=size(L2); ii++ ) |
---|
978 | { |
---|
979 | M = transpose(L3[2*ii]); |
---|
980 | M = M[L2[ii],1..nrows(L3[2*ii])]; |
---|
981 | w = 0; s = 0; |
---|
982 | for ( jj=1; jj<=nrows(M)-1; jj++ ) |
---|
983 | { |
---|
984 | v1 = M[jj,1..ncols(M)]; |
---|
985 | v2 = M[jj+1,1..ncols(M)]; |
---|
986 | if ( v1 != v2 ) { n=jj-s; s=s+n; w = w,n; } |
---|
987 | } |
---|
988 | w=w,nrows(M)-s; w=w[2..size(w)]; |
---|
989 | K = K+sort(L3[2*ii-1],L2[ii])+list(transpose(M))+list(w); |
---|
990 | } |
---|
991 | L = i,K; |
---|
992 | return(L); |
---|
993 | } |
---|
994 | example |
---|
995 | { "EXAMPLE:"; echo = 2; |
---|
996 | ring r=0,(a,b,c,x,y,z),lp; |
---|
997 | poly f=a3+b4+xyz2+xyz+yz+1; |
---|
998 | show(sortvars( f,1,abc,1)[1]);""; |
---|
999 | ring s=31991,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp; |
---|
1000 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
1001 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab, yz+uv+bc, |
---|
1002 | cd+ze, x+y+z+e+1, t+u+v+f-1, w+a+b+c+d; |
---|
1003 | show(sortvars(i,1,uybcazt,0,fewdvx)); |
---|
1004 | } |
---|
1005 | /////////////////////////////////////////////////////////////////////////////// |
---|
1006 | |
---|
1007 | proc valvars (id, list #) |
---|
1008 | USAGE: valvars(id[,n1,p1,n2,p2,...]); id=poly/ideal/vector/module, |
---|
1009 | p1,p2,...= product of vars, n1,n2,...=integers |
---|
1010 | ni controls the ordering of vars occuring in pi: |
---|
1011 | ni=0 (resp.!=0) means that less (resp. more) complex vars come first |
---|
1012 | (default: p1=product of all vars, n1=0) |
---|
1013 | the last pi (containing the remaining vars) may be omitted |
---|
1014 | COMPUTE: valuation (complexity) of variables with respect to id |
---|
1015 | RETURN: list consisting of 3 objects: |
---|
1016 | [1]: intvec, say v, describing the permutation such that the permuted |
---|
1017 | ringvariables are ordered with respect to their complexity in id |
---|
1018 | [2]: list of intvecs, i-th intvec, say v(i) describing prmutation |
---|
1019 | of vars in a(i) such that v=v(1),v(2),... |
---|
1020 | [3]: list of ideals and intmat's, say a(i) and M(i), where ideal a(i) |
---|
1021 | = factors of pi, M(i) = valuation matrix of a(i), such that the |
---|
1022 | j-th column of M(i) is the valuation vector of j-th generator of a(i) |
---|
1023 | NOTE: Use proc 'sortvars' for the actual sorting of vars! |
---|
1024 | We define a variable x to be more complex than y (with respect to id) |
---|
1025 | if val(x) > val(y) lexicographically, where val(x) denotes the |
---|
1026 | valuation vector of x: consider id as list of polynomials in x with |
---|
1027 | coefficients in the remaining variables. Then val(x) = |
---|
1028 | (maximal occuring power of x, # of monomials in leading coefficient, |
---|
1029 | # of monomials in coefficient of next smaller power of x,...) |
---|
1030 | EXAMPLE: example valvars; shows an example |
---|
1031 | { |
---|
1032 | //---------------------------- initialization --------------------------------- |
---|
1033 | int ii,jj,kk,n; |
---|
1034 | list L; // list of valuation vectors in one block |
---|
1035 | intvec vec; // describes permutation of vars (in one block) |
---|
1036 | list blockvec; // i-th element = vec of i-th block |
---|
1037 | intvec varvec; // result intvector |
---|
1038 | list Li; // result list of ideals |
---|
1039 | list LM; // result list of intmat's |
---|
1040 | intvec v,w,s; // w valuation vector for one variable |
---|
1041 | matrix C; // coefficient matrix for different variables |
---|
1042 | ideal i = simplify(ideal(matrix(id)),10); |
---|
1043 | |
---|
1044 | //---- for each pii in # create ideal a(ii) intvec v(ii) and list L(ii) ------- |
---|
1045 | // a(ii) = ideal of vars in product, v(ii)[j]=k <=> a(ii)[j]=var(k) |
---|
1046 | |
---|
1047 | v = 1..nvars(basering); |
---|
1048 | int l = size(#); |
---|
1049 | if ( l >= 2 ) |
---|
1050 | { |
---|
1051 | ideal m=maxideal(1); |
---|
1052 | for ( ii=2; ii<=l; ii=ii+2 ) |
---|
1053 | { |
---|
1054 | int n(ii) = #[ii-1]; |
---|
1055 | ideal a(ii); |
---|
1056 | intvec v(ii); |
---|
1057 | for ( jj=1; jj<=nvars(basering); jj++ ) |
---|
1058 | { |
---|
1059 | if ( #[ii]/var(jj) != 0) |
---|
1060 | { |
---|
1061 | a(ii) = a(ii) + var(jj); |
---|
1062 | v(ii)=v(ii),jj; |
---|
1063 | m[jj]=0; |
---|
1064 | v[jj]=0; |
---|
1065 | } |
---|
1066 | } |
---|
1067 | v(ii)=v(ii)[2..size(v(ii))]; |
---|
1068 | } |
---|
1069 | if ( size(m)!=0 ) |
---|
1070 | { |
---|
1071 | l = 2*(l/2)+2; |
---|
1072 | ideal a(l) = simplify(m,2); |
---|
1073 | intvec v(l) = compress(v); |
---|
1074 | int n(l); |
---|
1075 | if ( size(#)==l-1 ) { n(l) = #[l-1]; } |
---|
1076 | } |
---|
1077 | } |
---|
1078 | else |
---|
1079 | { |
---|
1080 | l = 2; |
---|
1081 | ideal a(2) = maxideal(1); |
---|
1082 | intvec v(2) = v; |
---|
1083 | int n(2); |
---|
1084 | if ( size(#)==1 ) { n(2) = #[1]; } |
---|
1085 | } |
---|
1086 | //------------- start loop to order variables in each a(ii) ------------------- |
---|
1087 | |
---|
1088 | for ( kk=2; kk<=l; kk=kk+2 ) |
---|
1089 | { |
---|
1090 | L = list(); |
---|
1091 | n = 0; |
---|
1092 | //---------------- get valuation of all variables in a(kk) -------------------- |
---|
1093 | for ( ii=1; ii<=size(a(kk)); ii++ ) |
---|
1094 | { |
---|
1095 | C = coeffs(i,a(kk)[ii]); |
---|
1096 | w = nrows(C); |
---|
1097 | for ( jj=w[1]; jj>1; jj-- ) |
---|
1098 | { |
---|
1099 | s = size(C[jj,1..ncols(C)]); |
---|
1100 | w[w[1]-jj+2] = sum(s); |
---|
1101 | } |
---|
1102 | L[ii]=w; |
---|
1103 | n = size(w)*(size(w) > n) + n*(size(w) <= n); |
---|
1104 | } |
---|
1105 | intmat M(kk)[size(a(kk))][n]; |
---|
1106 | for ( ii=1; ii<=size(a(kk)); ii++ ) |
---|
1107 | { |
---|
1108 | if ( n==1 ) { w = L[ii]; M(kk)[ii,1] = w[1]; } |
---|
1109 | else { M(kk)[ii,1..n] = L[ii]; } |
---|
1110 | } |
---|
1111 | LM[kk-1] = a(kk); |
---|
1112 | LM[kk] = transpose(compress(M(kk))); |
---|
1113 | //------------------- compare valuation and insert in vec --------------------- |
---|
1114 | vec = sort(L)[2]; |
---|
1115 | if ( n(kk) != 0 ) { vec = vec[size(vec)..1]; } |
---|
1116 | blockvec[kk/2] = vec; |
---|
1117 | vec = sort(v(kk),vec)[1]; |
---|
1118 | varvec = varvec,vec; |
---|
1119 | } |
---|
1120 | varvec = varvec[2..size(varvec)]; |
---|
1121 | list result = varvec,blockvec,LM; |
---|
1122 | return(result); |
---|
1123 | } |
---|
1124 | example |
---|
1125 | { "EXAMPLE:"; echo = 2; |
---|
1126 | ring r=0,(a,b,c,x,y,z),lp; |
---|
1127 | poly f=a3+b4+xyz2+xyz+yz+1; |
---|
1128 | show(valvars(f,1,abc)[1]);""; |
---|
1129 | ring s=31991,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp; |
---|
1130 | ideal i = w2+f2-1, x2+t2+a2-1, y2+u2+b2-1, z2+v2+c2-1, |
---|
1131 | d2+e2-1, f4+2u, wa+tf, xy+tu+ab, yz+uv+bc, |
---|
1132 | cd+ze, x+y+z+e+1, t+u+v+f-1, w+a+b+c+d; |
---|
1133 | list v6=valvars(i,1,uybcazt,0,efwdvx); |
---|
1134 | show(v6); |
---|
1135 | } |
---|
1136 | /////////////////////////////////////////////////////////////////////////////// |
---|
1137 | /* |
---|
1138 | |
---|
1139 | ring s=31991,(e,f,x,y,z,t,u,v,w,a,b,c,d),dp; |
---|
1140 | ring s=31991,(x,y,z,t,u,v,w,a,b,c,d,f,e,h),dp; //standard |
---|
1141 | ring s1=31991,(y,u,b,c,a,z,t,x,v,d,w,e,f,h),dp; //gut |
---|
1142 | v; |
---|
1143 | 13,12,11,10,8,7,6,5,4,3,2,1,9,14 |
---|
1144 | print(matrix(sort(maxideal(1),v))); |
---|
1145 | f,e,w,d,x,t,z,a,c,b,u,y,v,h |
---|
1146 | print(matrix(maxideal(1))); |
---|
1147 | y,u,b,c,a,z,t,x,v,d,w,e,f,h |
---|
1148 | v0; |
---|
1149 | 14,9,12,11,10,8,7,6,5,4,3,2,1,13 |
---|
1150 | print(matrix(sort(maxideal(1),v0))); |
---|
1151 | h,v,e,w,d,x,t,z,a,c,b,u,y,f |
---|
1152 | v1;v2; |
---|
1153 | 9,12,11,10,8,7,6,5,4,3,2,1,13,14 |
---|
1154 | 13,12,11,10,8,7,6,5,4,3,2,1,9,14 |
---|
1155 | |
---|
1156 | Ev. Gute Ordnung fuer i: |
---|
1157 | ======================== |
---|
1158 | i=ad*x^d+ad-1*x^(d-1)+...+a1*x+a0, ad!=0 |
---|
1159 | mit ar=(ar1,...,ark), k=size(i) |
---|
1160 | arj in K[..x^..] |
---|
1161 | d=deg_x(i) := max{deg_x(i[k]) | k=1..size(i)} |
---|
1162 | size_x(i,deg_x(i)..0) := size(ad),...,size(a0) |
---|
1163 | x>y <== |
---|
1164 | 1. deg_x(i)>deg_y(i) |
---|
1165 | 2. "=" in 1. und size_x lexikographisch |
---|
1166 | |
---|
1167 | hier im Beispiel: |
---|
1168 | f: 5,1,0,1,2 |
---|
1169 | |
---|
1170 | u: 3,1,4 |
---|
1171 | |
---|
1172 | y: 3,1,3 |
---|
1173 | b: 3,1,3 |
---|
1174 | c: 3,1,3 |
---|
1175 | a: 3,1,3 |
---|
1176 | z: 3,1,3 |
---|
1177 | t: 3,1,3 |
---|
1178 | |
---|
1179 | x: 3,1,2 |
---|
1180 | v: 3,1,2 |
---|
1181 | d: 3,1,2 |
---|
1182 | w: 3,1,2 |
---|
1183 | e: 3,1,2 |
---|
1184 | probier mal: |
---|
1185 | ring s=31991,(f,u,y,z,t,a,b,c,v,w,d,e,h),dp; //standard |
---|
1186 | |
---|
1187 | */ |
---|