1 | //////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version primdec.lib 4.0.1.1 Nov_2014 "; // $Id$ |
---|
3 | category="Commutative Algebra"; |
---|
4 | info=" |
---|
5 | LIBRARY: primdec.lib Primary Decomposition and Radical of Ideals |
---|
6 | AUTHORS: Gerhard Pfister, pfister@mathematik.uni-kl.de (GTZ)@* |
---|
7 | Wolfram Decker, decker@math.uni-sb.de (SY)@* |
---|
8 | Hans Schoenemann, hannes@mathematik.uni-kl.de (SY)@* |
---|
9 | Santiago Laplagne, slaplagn@dm.uba.ar (GTZ) |
---|
10 | |
---|
11 | OVERVIEW: |
---|
12 | Algorithms for primary decomposition based on the ideas of |
---|
13 | Gianni, Trager and Zacharias (implementation by Gerhard Pfister), |
---|
14 | respectively based on the ideas of Shimoyama and Yokoyama (implementation |
---|
15 | by Wolfram Decker and Hans Schoenemann).@* |
---|
16 | The procedures are implemented to be used in characteristic 0.@* |
---|
17 | They also work in positive characteristic >> 0.@* |
---|
18 | In small characteristic and for algebraic extensions, primdecGTZ |
---|
19 | may not terminate.@* |
---|
20 | Algorithms for the computation of the radical based on the ideas of |
---|
21 | Krick, Logar, Laplagne and Kemper (implementation by Gerhard Pfister and Santiago Laplagne). |
---|
22 | They work in any characteristic.@* |
---|
23 | Baserings must have a global ordering and no quotient ideal. |
---|
24 | Exceptions: primdecGTZ, absPrimdecGTZ, minAssGTZ, primdecSY, minAssChar, radical accept non-global ordering. |
---|
25 | |
---|
26 | |
---|
27 | PROCEDURES: |
---|
28 | Ann(M); annihilator of R^n/M, R=basering, M in R^n |
---|
29 | primdecGTZ(I); (deprecated) complete primary decomposition via Gianni,Trager,Zacharias |
---|
30 | primdecGTZE(I); complete primary decomposition via Gianni,Trager,Zacharias. Returns empty list for the unit ideal |
---|
31 | primdecSY(I...); (deprecated) complete primary decomposition via Shimoyama-Yokoyama |
---|
32 | primdecSYE(I,..); complete primary decomposition via Shimoyama-Yokoyama. Returns empty list for the unit ideal |
---|
33 | minAssGTZ(I); (deprecated) the minimal associated primes via Gianni,Trager,Zacharias (with modifications by Laplagne) |
---|
34 | minAssGTZE(I); the minimal associated primes via Gianni,Trager,Zacharias. Returns empty list for unit ideal |
---|
35 | minAssChar(I...); (deprecated) the minimal associated primes using characteristic sets |
---|
36 | minAssCharE(I..); the minimal associated primes using characteristic sets. Returns empty list for unit ideal |
---|
37 | testPrimary(L,k); (deprecated) tests the result of the primary decomposition |
---|
38 | testPrimaryE(L,k); tests the result of the primary decomposition. Handles also empty list L. |
---|
39 | radical(I); computes the radical of I via Krick/Logar (with modifications by Laplagne) and Kemper |
---|
40 | radicalEHV(I); computes the radical of I via Eisenbud,Huneke,Vasconcelos |
---|
41 | equiRadical(I); the radical of the equidimensional part of the ideal I |
---|
42 | prepareAss(I); list of radicals of the equidimensional components of I |
---|
43 | equidim(I); weak equidimensional decomposition of I |
---|
44 | equidimE(I); equidimE returns empty list for unit ideal |
---|
45 | equidimMax(I); equidimensional locus of I |
---|
46 | equidimMaxEHV(I); equidimensional locus of I via Eisenbud,Huneke,Vasconcelos |
---|
47 | zerodec(I); zerodimensional decomposition via Monico |
---|
48 | absPrimdecGTZ(I); (deprecated) the absolute prime components of I |
---|
49 | absPrimdecGTZE(I); the absolute prime components of I. Assumes I is not unit ideal. |
---|
50 | sep(f,k); the separabel part of f as polynomial in Fp(t1,...,tm) |
---|
51 | "; |
---|
52 | |
---|
53 | |
---|
54 | |
---|
55 | LIB "general.lib"; |
---|
56 | LIB "elim.lib"; |
---|
57 | LIB "poly.lib"; |
---|
58 | LIB "random.lib"; |
---|
59 | LIB "inout.lib"; |
---|
60 | LIB "matrix.lib"; |
---|
61 | LIB "triang.lib"; |
---|
62 | LIB "absfact.lib"; |
---|
63 | LIB "ring.lib"; |
---|
64 | /////////////////////////////////////////////////////////////////////////////// |
---|
65 | // |
---|
66 | // Gianni/Trager/Zacharias |
---|
67 | // |
---|
68 | /////////////////////////////////////////////////////////////////////////////// |
---|
69 | |
---|
70 | |
---|
71 | static proc sat1 (ideal id, poly p) |
---|
72 | "USAGE: sat1(id,j); id ideal, j polynomial |
---|
73 | RETURN: saturation of id with respect to j (= union_(k=1...) of id:j^k) |
---|
74 | NOTE: result is a std basis in the basering |
---|
75 | " |
---|
76 | { |
---|
77 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
78 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
79 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
80 | |
---|
81 | int @k; |
---|
82 | ideal inew=std(id); |
---|
83 | ideal iold; |
---|
84 | intvec op=option(get); |
---|
85 | option(returnSB); |
---|
86 | while(specialIdealsEqual(iold,inew)==0 ) |
---|
87 | { |
---|
88 | iold=inew; |
---|
89 | inew=quotient(iold,p); |
---|
90 | @k++; |
---|
91 | } |
---|
92 | @k--; |
---|
93 | option(set,op); |
---|
94 | list L =inew,p^@k; |
---|
95 | return (L); |
---|
96 | } |
---|
97 | |
---|
98 | /////////////////////////////////////////////////////////////////////////////// |
---|
99 | |
---|
100 | static proc sat2 (ideal id, ideal h) |
---|
101 | "USAGE: sat2(id,j); id ideal, j polynomial |
---|
102 | RETURN: saturation of id with respect to j (= union_(k=1...) of id:j^k) |
---|
103 | NOTE: result is a std basis in the basering |
---|
104 | " |
---|
105 | { |
---|
106 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
107 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
108 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
109 | int @k,@i; |
---|
110 | def @P= basering; |
---|
111 | if(ordstr(basering)[1,2]!="dp") |
---|
112 | { |
---|
113 | def @Phelp=changeordTo(basering,"dp"); |
---|
114 | setring @Phelp; |
---|
115 | ideal inew=std(imap(@P,id)); |
---|
116 | ideal @h=imap(@P,h); |
---|
117 | } |
---|
118 | else |
---|
119 | { |
---|
120 | ideal @h=h; |
---|
121 | ideal inew=std(id); |
---|
122 | } |
---|
123 | ideal fac; |
---|
124 | |
---|
125 | for(@i=1;@i<=ncols(@h);@i++) |
---|
126 | { |
---|
127 | if(deg(@h[@i])>0) |
---|
128 | { |
---|
129 | fac=fac+factorize(@h[@i],1); |
---|
130 | } |
---|
131 | } |
---|
132 | fac=simplify(fac,6); |
---|
133 | poly @f=1; |
---|
134 | if(deg(fac[1])>0) |
---|
135 | { |
---|
136 | ideal iold; |
---|
137 | for(@i=1;@i<=size(fac);@i++) |
---|
138 | { |
---|
139 | @f=@f*fac[@i]; |
---|
140 | } |
---|
141 | intvec op = option(get); |
---|
142 | option(returnSB); |
---|
143 | while(specialIdealsEqual(iold,inew)==0 ) |
---|
144 | { |
---|
145 | iold=inew; |
---|
146 | if(deg(iold[size(iold)])!=1) |
---|
147 | { |
---|
148 | inew=quotient(iold,@f); |
---|
149 | } |
---|
150 | else |
---|
151 | { |
---|
152 | inew=iold; |
---|
153 | } |
---|
154 | @k++; |
---|
155 | } |
---|
156 | option(set,op); |
---|
157 | @k--; |
---|
158 | } |
---|
159 | |
---|
160 | if(ordstr(@P)[1,2]!="dp") |
---|
161 | { |
---|
162 | setring @P; |
---|
163 | ideal inew=std(imap(@Phelp,inew)); |
---|
164 | poly @f=imap(@Phelp,@f); |
---|
165 | } |
---|
166 | list L =inew,@f^@k; |
---|
167 | return (L); |
---|
168 | } |
---|
169 | |
---|
170 | /////////////////////////////////////////////////////////////////////////////// |
---|
171 | |
---|
172 | |
---|
173 | proc minSat(ideal inew, ideal h) |
---|
174 | { |
---|
175 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
176 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
177 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
178 | int i,k; |
---|
179 | poly f=1; |
---|
180 | ideal iold,fac; |
---|
181 | list quotM,l; |
---|
182 | |
---|
183 | for(i=1;i<=ncols(h);i++) |
---|
184 | { |
---|
185 | if(deg(h[i])>0) |
---|
186 | { |
---|
187 | fac=fac+factorize(h[i],1); |
---|
188 | } |
---|
189 | } |
---|
190 | fac=simplify(fac,6); |
---|
191 | if(size(fac)==0) |
---|
192 | { |
---|
193 | l=inew,1; |
---|
194 | return(l); |
---|
195 | } |
---|
196 | fac=sort(fac)[1]; |
---|
197 | for(i=1;i<=size(fac);i++) |
---|
198 | { |
---|
199 | f=f*fac[i]; |
---|
200 | } |
---|
201 | quotM[1]=inew; |
---|
202 | quotM[2]=fac; |
---|
203 | quotM[3]=f; |
---|
204 | f=1; |
---|
205 | intvec op = option(get); |
---|
206 | option(returnSB); |
---|
207 | while(specialIdealsEqual(iold,quotM[1])==0) |
---|
208 | { |
---|
209 | if(k>0) |
---|
210 | { |
---|
211 | f=f*quotM[3]; |
---|
212 | } |
---|
213 | iold=quotM[1]; |
---|
214 | quotM=quotMin(quotM); |
---|
215 | k++; |
---|
216 | } |
---|
217 | option(set,op); |
---|
218 | l=quotM[1],f; |
---|
219 | return(l); |
---|
220 | } |
---|
221 | |
---|
222 | static proc quotMin(list tsil) |
---|
223 | { |
---|
224 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
225 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
226 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
227 | int i,j,k,action; |
---|
228 | ideal verg; |
---|
229 | list l; |
---|
230 | poly g; |
---|
231 | |
---|
232 | ideal laedi=tsil[1]; |
---|
233 | ideal fac=tsil[2]; |
---|
234 | poly f=tsil[3]; |
---|
235 | |
---|
236 | ideal star=quotient(laedi,f); |
---|
237 | |
---|
238 | if(specialIdealsEqual(star,laedi)) |
---|
239 | { |
---|
240 | l=star,fac,f; |
---|
241 | return(l); |
---|
242 | } |
---|
243 | |
---|
244 | action=1; |
---|
245 | |
---|
246 | while(action==1) |
---|
247 | { |
---|
248 | if(size(fac)==1) |
---|
249 | { |
---|
250 | action=0; |
---|
251 | break; |
---|
252 | } |
---|
253 | for(i=1;i<=size(fac);i++) |
---|
254 | { |
---|
255 | g=1; |
---|
256 | verg=laedi; |
---|
257 | for(j=1;j<=size(fac);j++) |
---|
258 | { |
---|
259 | if(i!=j) |
---|
260 | { |
---|
261 | g=g*fac[j]; |
---|
262 | } |
---|
263 | } |
---|
264 | verg=quotient(laedi,g); |
---|
265 | |
---|
266 | if(specialIdealsEqual(verg,star)==1) |
---|
267 | { |
---|
268 | f=g; |
---|
269 | fac[i]=0; |
---|
270 | fac=simplify(fac,2); |
---|
271 | break; |
---|
272 | } |
---|
273 | if(i==size(fac)) |
---|
274 | { |
---|
275 | action=0; |
---|
276 | } |
---|
277 | } |
---|
278 | } |
---|
279 | l=star,fac,f; |
---|
280 | return(l); |
---|
281 | } |
---|
282 | |
---|
283 | /////////////////////////////////////////////////////////////////////////////// |
---|
284 | |
---|
285 | static proc testFactor(list act,poly p) |
---|
286 | { |
---|
287 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
288 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
289 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
290 | poly keep=p; |
---|
291 | |
---|
292 | int i; |
---|
293 | poly q=act[1][1]^act[2][1]; |
---|
294 | for(i=2;i<=size(act[1]);i++) |
---|
295 | { |
---|
296 | q=q*act[1][i]^act[2][i]; |
---|
297 | } |
---|
298 | q=1/leadcoef(q)*q; |
---|
299 | p=1/leadcoef(p)*p; |
---|
300 | if(p-q!=0) |
---|
301 | { |
---|
302 | "ERROR IN FACTOR, please inform the authors"; |
---|
303 | } |
---|
304 | } |
---|
305 | /////////////////////////////////////////////////////////////////////////////// |
---|
306 | |
---|
307 | static proc factor(poly p) |
---|
308 | "USAGE: factor(p) p poly |
---|
309 | RETURN: list=; |
---|
310 | NOTE: |
---|
311 | EXAMPLE: example factor; shows an example |
---|
312 | " |
---|
313 | { |
---|
314 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
315 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
316 | ideal @i; |
---|
317 | list @l; |
---|
318 | intvec @v,@w; |
---|
319 | int @j,@k,@n; |
---|
320 | |
---|
321 | @l=factorize(p); |
---|
322 | for(@j=1;@j<=size(@l[1]);@j++) |
---|
323 | { |
---|
324 | if(leadcoef(@l[1][@j])==@l[1][@j]) |
---|
325 | { |
---|
326 | @n++; |
---|
327 | } |
---|
328 | } |
---|
329 | if(@n>0) |
---|
330 | { |
---|
331 | if(@n==size(@l[1])) |
---|
332 | { |
---|
333 | @l[1]=ideal(1); |
---|
334 | @v=1; |
---|
335 | @l[2]=@v; |
---|
336 | } |
---|
337 | else |
---|
338 | { |
---|
339 | @k=0; |
---|
340 | int pleh; |
---|
341 | for(@j=1;@j<=size(@l[1]);@j++) |
---|
342 | { |
---|
343 | if(leadcoef(@l[1][@j])!=@l[1][@j]) |
---|
344 | { |
---|
345 | @k++; |
---|
346 | @i=@i+ideal(@l[1][@j]); |
---|
347 | if(size(@i)==pleh) |
---|
348 | { |
---|
349 | "//factorization error"; |
---|
350 | @l; |
---|
351 | @k--; |
---|
352 | @v[@k]=@v[@k]+@l[2][@j]; |
---|
353 | } |
---|
354 | else |
---|
355 | { |
---|
356 | pleh++; |
---|
357 | @v[@k]=@l[2][@j]; |
---|
358 | } |
---|
359 | } |
---|
360 | } |
---|
361 | @l[1]=@i; |
---|
362 | @l[2]=@v; |
---|
363 | } |
---|
364 | } |
---|
365 | // } |
---|
366 | return(@l); |
---|
367 | } |
---|
368 | example |
---|
369 | { "EXAMPLE:"; echo = 2; |
---|
370 | ring r = 0,(x,y,z),lp; |
---|
371 | poly p = (x+y)^2*(y-z)^3; |
---|
372 | list l = factor(p); |
---|
373 | l; |
---|
374 | ring r1 =(0,b,d,f,g),(a,c,e),lp; |
---|
375 | poly p =(1*d)*e^2+(1*d*f^2*g); |
---|
376 | list l = factor(p); |
---|
377 | l; |
---|
378 | ring r2 =(0,b,f,g),(a,c,e,d),lp; |
---|
379 | poly p =(1*d)*e^2+(1*d*f^2*g); |
---|
380 | list l = factor(p); |
---|
381 | l; |
---|
382 | } |
---|
383 | |
---|
384 | /////////////////////////////////////////////////////////////////////////////// |
---|
385 | |
---|
386 | proc idealsEqual( ideal k, ideal j) |
---|
387 | { |
---|
388 | return(stdIdealsEqual(std(k),std(j))); |
---|
389 | } |
---|
390 | |
---|
391 | static proc specialIdealsEqual( ideal k1, ideal k2) |
---|
392 | { |
---|
393 | int j; |
---|
394 | |
---|
395 | if(size(k1)==size(k2)) |
---|
396 | { |
---|
397 | for(j=1;j<=size(k1);j++) |
---|
398 | { |
---|
399 | if(leadexp(k1[j])!=leadexp(k2[j])) |
---|
400 | { |
---|
401 | return(0); |
---|
402 | } |
---|
403 | } |
---|
404 | return(1); |
---|
405 | } |
---|
406 | return(0); |
---|
407 | } |
---|
408 | |
---|
409 | static proc stdIdealsEqual( ideal k1, ideal k2) |
---|
410 | { |
---|
411 | int j; |
---|
412 | if(size(k1)==size(k2)) |
---|
413 | { |
---|
414 | for(j=1;j<=size(k1);j++) |
---|
415 | { |
---|
416 | if(leadexp(k1[j])!=leadexp(k2[j])) |
---|
417 | { |
---|
418 | return(0); |
---|
419 | } |
---|
420 | } |
---|
421 | attrib(k2,"isSB",1); |
---|
422 | if(size(reduce(k1,k2,1))==0) |
---|
423 | { |
---|
424 | return(1); |
---|
425 | } |
---|
426 | } |
---|
427 | return(0); |
---|
428 | } |
---|
429 | /////////////////////////////////////////////////////////////////////////////// |
---|
430 | |
---|
431 | proc primaryTest (ideal i, poly p) |
---|
432 | { |
---|
433 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
434 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
435 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
436 | if(i[1]==1){return(ideal(1));} |
---|
437 | int m=1; |
---|
438 | int n=nvars(basering); |
---|
439 | int e,f; |
---|
440 | poly t; |
---|
441 | ideal h; |
---|
442 | list act; |
---|
443 | |
---|
444 | ideal prm=p; |
---|
445 | attrib(prm,"isSB",1); |
---|
446 | |
---|
447 | while (n>1) |
---|
448 | { |
---|
449 | n--; |
---|
450 | m++; |
---|
451 | |
---|
452 | //search for i[m] which has a power of var(n) as leading term |
---|
453 | if (n==1) |
---|
454 | { |
---|
455 | m=size(i); |
---|
456 | } |
---|
457 | else |
---|
458 | { |
---|
459 | while (lead(i[m])/var(n-1)==0) |
---|
460 | { |
---|
461 | m++; |
---|
462 | } |
---|
463 | m--; |
---|
464 | } |
---|
465 | //check whether i[m] =(c*var(n)+h)^e modulo prm for some |
---|
466 | //h in K[var(n+1),...,var(nvars(basering))], c in K |
---|
467 | //if not (0) is returned, else var(n)+h is added to prm |
---|
468 | |
---|
469 | e=deg(lead(i[m])); |
---|
470 | if(char(basering)!=0) |
---|
471 | { |
---|
472 | f=1; |
---|
473 | if(e mod char(basering)==0) |
---|
474 | { |
---|
475 | if ( voice >=16 ) |
---|
476 | { |
---|
477 | "// WARNING: The characteristic is perhaps too small to use"; |
---|
478 | "// the algorithm of Gianni/Trager/Zacharias."; |
---|
479 | "// This may result in an infinte loop"; |
---|
480 | "// loop in primaryTest, voice:",voice;""; |
---|
481 | } |
---|
482 | while(e mod char(basering)==0) |
---|
483 | { |
---|
484 | f=f*char(basering); |
---|
485 | e=e div char(basering); |
---|
486 | } |
---|
487 | } |
---|
488 | t=leadcoef(i[m])*e*var(n)^f+(i[m]-lead(i[m]))/var(n)^((e-1)*f); |
---|
489 | i[m]=poly(e)^e*leadcoef(i[m])^(e-1)*i[m]; |
---|
490 | if (reduce(i[m]-t^e,prm,1) !=0) |
---|
491 | { |
---|
492 | return(ideal(0)); |
---|
493 | } |
---|
494 | if(f>1) |
---|
495 | { |
---|
496 | act=factorize(t); |
---|
497 | if(size(act[1])>2) |
---|
498 | { |
---|
499 | return(ideal(0)); |
---|
500 | } |
---|
501 | if(deg(act[1][2])>1) |
---|
502 | { |
---|
503 | return(ideal(0)); |
---|
504 | } |
---|
505 | t=act[1][2]; |
---|
506 | } |
---|
507 | } |
---|
508 | else |
---|
509 | { |
---|
510 | t=leadcoef(i[m])*e*var(n)+(i[m]-lead(i[m]))/var(n)^(e-1); |
---|
511 | i[m]=poly(e)^e*leadcoef(i[m])^(e-1)*i[m]; |
---|
512 | if (reduce(i[m]-t^e,prm,1) !=0) |
---|
513 | { |
---|
514 | return(ideal(0)); |
---|
515 | } |
---|
516 | } |
---|
517 | |
---|
518 | h=interred(t); |
---|
519 | t=h[1]; |
---|
520 | |
---|
521 | prm = prm,t; |
---|
522 | attrib(prm,"isSB",1); |
---|
523 | } |
---|
524 | return(prm); |
---|
525 | } |
---|
526 | |
---|
527 | /////////////////////////////////////////////////////////////////////////////// |
---|
528 | proc gcdTest(ideal act) |
---|
529 | { |
---|
530 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
531 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
532 | int i,j; |
---|
533 | if(size(act)<=1) |
---|
534 | { |
---|
535 | return(0); |
---|
536 | } |
---|
537 | for (i=1;i<size(act);i++) |
---|
538 | { |
---|
539 | for(j=i+1;j<=size(act);j++) |
---|
540 | { |
---|
541 | if(deg(std(ideal(act[i],act[j]))[1])>0) |
---|
542 | { |
---|
543 | return(0); |
---|
544 | } |
---|
545 | } |
---|
546 | } |
---|
547 | return(1); |
---|
548 | } |
---|
549 | |
---|
550 | /////////////////////////////////////////////////////////////////////////////// |
---|
551 | static proc splitPrimary(list l,ideal ser,int @wr,list sact) |
---|
552 | { |
---|
553 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
554 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
555 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
556 | int i,j,k,s,r,w; |
---|
557 | list keepresult,act,keepprime; |
---|
558 | poly @f; |
---|
559 | int sl=size(l); |
---|
560 | for(i=sl div 2;i>=1;i--) |
---|
561 | { |
---|
562 | if(sact[2][i]>1) |
---|
563 | { |
---|
564 | keepprime[i]=l[2*i-1]+ideal(sact[1][i]); |
---|
565 | } |
---|
566 | else |
---|
567 | { |
---|
568 | keepprime[i]=l[2*i-1]; |
---|
569 | } |
---|
570 | } |
---|
571 | i=0; |
---|
572 | while(i<size(l) div 2) |
---|
573 | { |
---|
574 | i++; |
---|
575 | if((size(ser)>0)&&(size(reduce(ser,l[2*i-1],1))==0)) |
---|
576 | { |
---|
577 | l[2*i-1]=ideal(1); |
---|
578 | l[2*i]=ideal(1); |
---|
579 | continue; |
---|
580 | } |
---|
581 | |
---|
582 | if(size(l[2*i])==0) |
---|
583 | { |
---|
584 | if(homog(l[2*i-1])==1) |
---|
585 | { |
---|
586 | l[2*i]=maxideal(1); |
---|
587 | continue; |
---|
588 | } |
---|
589 | j=0; |
---|
590 | /* |
---|
591 | if(i<=sl div 2) |
---|
592 | { |
---|
593 | j=1; |
---|
594 | } |
---|
595 | */ |
---|
596 | while(j<size(l[2*i-1])) |
---|
597 | { |
---|
598 | j++; |
---|
599 | act=factor(l[2*i-1][j]); |
---|
600 | r=size(act[1]); |
---|
601 | attrib(l[2*i-1],"isSB",1); |
---|
602 | if((r==1)&&(vdim(l[2*i-1])==deg(l[2*i-1][j]))) |
---|
603 | { |
---|
604 | l[2*i]=std(l[2*i-1],act[1][1]); |
---|
605 | break; |
---|
606 | } |
---|
607 | if((r==1)&&(act[2][1]>1)) |
---|
608 | { |
---|
609 | keepprime[i]=interred(keepprime[i]+ideal(act[1][1])); |
---|
610 | if(homog(keepprime[i])==1) |
---|
611 | { |
---|
612 | l[2*i]=maxideal(1); |
---|
613 | break; |
---|
614 | } |
---|
615 | } |
---|
616 | if(gcdTest(act[1])==1) |
---|
617 | { |
---|
618 | for(k=2;k<=r;k++) |
---|
619 | { |
---|
620 | keepprime[size(l) div 2+k-1]=interred(keepprime[i]+ideal(act[1][k])); |
---|
621 | } |
---|
622 | keepprime[i]=interred(keepprime[i]+ideal(act[1][1])); |
---|
623 | for(k=1;k<=r;k++) |
---|
624 | { |
---|
625 | if(@wr==0) |
---|
626 | { |
---|
627 | keepresult[k]=std(l[2*i-1],act[1][k]^act[2][k]); |
---|
628 | } |
---|
629 | else |
---|
630 | { |
---|
631 | keepresult[k]=std(l[2*i-1],act[1][k]); |
---|
632 | } |
---|
633 | } |
---|
634 | l[2*i-1]=keepresult[1]; |
---|
635 | if(vdim(keepresult[1])==deg(act[1][1])) |
---|
636 | { |
---|
637 | l[2*i]=keepresult[1]; |
---|
638 | } |
---|
639 | if((homog(keepresult[1])==1)||(homog(keepprime[i])==1)) |
---|
640 | { |
---|
641 | l[2*i]=maxideal(1); |
---|
642 | } |
---|
643 | s=size(l)-2; |
---|
644 | for(k=2;k<=r;k++) |
---|
645 | { |
---|
646 | l[s+2*k-1]=keepresult[k]; |
---|
647 | keepprime[s div 2+k]=interred(keepresult[k]+ideal(act[1][k])); |
---|
648 | if(vdim(keepresult[k])==deg(act[1][k])) |
---|
649 | { |
---|
650 | l[s+2*k]=keepresult[k]; |
---|
651 | } |
---|
652 | else |
---|
653 | { |
---|
654 | l[s+2*k]=ideal(0); |
---|
655 | } |
---|
656 | if((homog(keepresult[k])==1)||(homog(keepprime[s div 2+k])==1)) |
---|
657 | { |
---|
658 | l[s+2*k]=maxideal(1); |
---|
659 | } |
---|
660 | } |
---|
661 | i--; |
---|
662 | break; |
---|
663 | } |
---|
664 | if(r>=2) |
---|
665 | { |
---|
666 | s=size(l); |
---|
667 | @f=act[1][1]; |
---|
668 | act=sat1(l[2*i-1],act[1][1]); |
---|
669 | if(deg(act[1][1])>0) |
---|
670 | { |
---|
671 | l[s+1]=std(l[2*i-1],act[2]); |
---|
672 | if(homog(l[s+1])==1) |
---|
673 | { |
---|
674 | l[s+2]=maxideal(1); |
---|
675 | } |
---|
676 | else |
---|
677 | { |
---|
678 | l[s+2]=ideal(0); |
---|
679 | } |
---|
680 | keepprime[s div 2+1]=interred(keepprime[i]+ideal(@f)); |
---|
681 | if(homog(keepprime[s div 2+1])==1) |
---|
682 | { |
---|
683 | l[s+2]=maxideal(1); |
---|
684 | } |
---|
685 | keepprime[i]=act[1]; |
---|
686 | l[2*i-1]=act[1]; |
---|
687 | attrib(l[2*i-1],"isSB",1); |
---|
688 | if(homog(l[2*i-1])==1) |
---|
689 | { |
---|
690 | l[2*i]=maxideal(1); |
---|
691 | } |
---|
692 | i--; |
---|
693 | break; |
---|
694 | } |
---|
695 | } |
---|
696 | } |
---|
697 | } |
---|
698 | } |
---|
699 | if(sl==size(l)) |
---|
700 | { |
---|
701 | return(l); |
---|
702 | } |
---|
703 | for(i=1;i<=size(l) div 2;i++) |
---|
704 | { |
---|
705 | attrib(l[2*i-1],"isSB",1); |
---|
706 | |
---|
707 | if((size(ser)>0)&&(size(reduce(ser,l[2*i-1],1))==0)&&(deg(l[2*i-1][1])>0)) |
---|
708 | { |
---|
709 | "Achtung in split"; |
---|
710 | |
---|
711 | l[2*i-1]=ideal(1); |
---|
712 | l[2*i]=ideal(1); |
---|
713 | } |
---|
714 | if((size(l[2*i])==0)&&(specialIdealsEqual(keepprime[i],l[2*i-1])!=1)) |
---|
715 | { |
---|
716 | keepprime[i]=std(keepprime[i]); |
---|
717 | if(homog(keepprime[i])==1) |
---|
718 | { |
---|
719 | l[2*i]=maxideal(1); |
---|
720 | } |
---|
721 | else |
---|
722 | { |
---|
723 | act=zero_decomp(keepprime[i],ideal(0),@wr,1); |
---|
724 | if(size(act)==2) |
---|
725 | { |
---|
726 | l[2*i]=act[2]; |
---|
727 | } |
---|
728 | } |
---|
729 | } |
---|
730 | } |
---|
731 | return(l); |
---|
732 | } |
---|
733 | example |
---|
734 | { "EXAMPLE:"; echo=2; |
---|
735 | ring r = 32003,(x,y,z),lp; |
---|
736 | ideal i1=x*(x+1),yz,(z+1)*(z-1); |
---|
737 | ideal i2=xy,yz,(x-2)*(x+3); |
---|
738 | list l=i1,ideal(0),i2,ideal(0),i2,ideal(1); |
---|
739 | list l1=splitPrimary(l,ideal(0),0); |
---|
740 | l1; |
---|
741 | } |
---|
742 | /////////////////////////////////////////////////////////////////////////////// |
---|
743 | static proc splitCharp(list l) |
---|
744 | { |
---|
745 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
746 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
747 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
748 | if((char(basering)==0)||(npars(basering)>0)) |
---|
749 | { |
---|
750 | return(l); |
---|
751 | } |
---|
752 | def op = option(get); |
---|
753 | def P=basering; |
---|
754 | int i,j,k,m,q,d,o; |
---|
755 | int n = nvars(basering); |
---|
756 | ideal s,t,u,sact; |
---|
757 | poly ni; |
---|
758 | string minp,gnir,va; |
---|
759 | list sa,keep,rp,keep1; |
---|
760 | for(i=1;i<=size(l) div 2;i++) |
---|
761 | { |
---|
762 | if(size(l[2*i])==0) |
---|
763 | { |
---|
764 | if(deg(l[2*i-1][1])==vdim(l[2*i-1])) |
---|
765 | { |
---|
766 | l[2*i]=l[2*i-1]; |
---|
767 | } |
---|
768 | } |
---|
769 | } |
---|
770 | for(i=1;i<=size(l) div 2;i++) |
---|
771 | { |
---|
772 | if(size(l[2*i])==0) |
---|
773 | { |
---|
774 | s=factorize(l[2*i-1][1],1); //vermeiden!!! |
---|
775 | t=l[2*i-1]; |
---|
776 | m=size(t); |
---|
777 | ni=s[1]; |
---|
778 | if(deg(ni)>1) |
---|
779 | { |
---|
780 | va=varstr(P); |
---|
781 | j=size(va); |
---|
782 | while(va[j]!=","){j--;} |
---|
783 | va=va[1..j-1]; |
---|
784 | gnir="ring RL=("+string(char(P))+","+string(var(n))+"),("+va+"),lp;"; |
---|
785 | execute(gnir); |
---|
786 | minpoly=leadcoef(imap(P,ni)); |
---|
787 | ideal act; |
---|
788 | ideal t=imap(P,t); |
---|
789 | |
---|
790 | for(k=2;k<=m;k++) |
---|
791 | { |
---|
792 | act=factorize(t[k],1); |
---|
793 | if(size(act)>1){break;} |
---|
794 | } |
---|
795 | setring P; |
---|
796 | sact=imap(RL,act); |
---|
797 | |
---|
798 | if(size(sact)>1) |
---|
799 | { |
---|
800 | sa=sat1(l[2*i-1],sact[1]); |
---|
801 | keep[size(keep)+1]=std(l[2*i-1],sa[2]); |
---|
802 | if(sa[1][1]==l[2*i-1][1]) |
---|
803 | { |
---|
804 | l[2*i-1]=std(sa[1]); |
---|
805 | l[2*i]=primaryTest(sa[1],s[1]); |
---|
806 | } |
---|
807 | else |
---|
808 | { |
---|
809 | l[2*i-1]=std(sa[1]); |
---|
810 | l[2*i]=primaryTest(sa[1],factorize(sa[1][1],1)[1]); |
---|
811 | } |
---|
812 | } |
---|
813 | if((size(sact)==1)&&(m==2)) |
---|
814 | { |
---|
815 | l[2*i]=l[2*i-1]; |
---|
816 | attrib(l[2*i],"isSB",1); |
---|
817 | } |
---|
818 | if((size(sact)==1)&&(m>2)) |
---|
819 | { |
---|
820 | setring RL; |
---|
821 | |
---|
822 | option(redSB); |
---|
823 | t=std(t); |
---|
824 | |
---|
825 | list sp=zero_decomp(t,0,0); |
---|
826 | |
---|
827 | setring P; |
---|
828 | rp=imap(RL,sp); |
---|
829 | for(o=1;o<=size(rp);o++) |
---|
830 | { |
---|
831 | rp[o]=interred(simplify(rp[o],1)+ideal(ni)); |
---|
832 | } |
---|
833 | l[2*i-1]=rp[1]; |
---|
834 | l[2*i]=rp[2]; |
---|
835 | rp=delete(rp,1); |
---|
836 | rp=delete(rp,1); |
---|
837 | keep1=keep1+rp; |
---|
838 | |
---|
839 | option(set,op); |
---|
840 | } |
---|
841 | kill RL; |
---|
842 | } |
---|
843 | } |
---|
844 | } |
---|
845 | if(size(keep)>0) |
---|
846 | { |
---|
847 | for(i=1;i<=size(keep);i++) |
---|
848 | { |
---|
849 | if(deg(keep[i][1])>0) |
---|
850 | { |
---|
851 | l[size(l)+1]=keep[i]; |
---|
852 | l[size(l)+1]=primaryTest(keep[i],factorize(keep[i][1],1)[1]); |
---|
853 | } |
---|
854 | } |
---|
855 | } |
---|
856 | l=l+keep1; |
---|
857 | option(set,op); |
---|
858 | return(l); |
---|
859 | } |
---|
860 | |
---|
861 | /////////////////////////////////////////////////////////////////////////////// |
---|
862 | |
---|
863 | proc zero_decomp (ideal j,ideal ser,int @wr,list #) |
---|
864 | "USAGE: zero_decomp(j,ser,@wr); j,ser ideals, @wr=0 or 1 |
---|
865 | (@wr=0 for primary decomposition, @wr=1 for computation of associated |
---|
866 | primes) |
---|
867 | RETURN: list = list of primary ideals and their radicals (at even positions |
---|
868 | in the list) if the input is zero-dimensional and a standardbases |
---|
869 | with respect to lex-ordering |
---|
870 | If ser!=(0) and ser is contained in j or if j is not zero-dimen- |
---|
871 | sional then ideal(1),ideal(1) is returned |
---|
872 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
873 | EXAMPLE: example zero_decomp; shows an example |
---|
874 | " |
---|
875 | { |
---|
876 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
877 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
878 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
879 | |
---|
880 | def @P = basering; |
---|
881 | int uytrewq; |
---|
882 | int nva = nvars(basering); |
---|
883 | int @k,@s,@n,@k1,zz; |
---|
884 | list primary,lres0,lres1,act,@lh,@wh; |
---|
885 | map phi,psi,phi1,psi1; |
---|
886 | ideal jmap,jmap1,jmap2,helpprim,@qh,@qht,ser1; |
---|
887 | intvec @vh,@hilb; |
---|
888 | string @ri; |
---|
889 | poly @f; |
---|
890 | if (dim(j)>0) |
---|
891 | { |
---|
892 | primary[1]=ideal(1); |
---|
893 | primary[2]=ideal(1); |
---|
894 | return(primary); |
---|
895 | } |
---|
896 | intvec save=option(get); |
---|
897 | option(redSB); |
---|
898 | j=interred(j); |
---|
899 | |
---|
900 | attrib(j,"isSB",1); |
---|
901 | |
---|
902 | if(vdim(j)==deg(j[1])) |
---|
903 | { |
---|
904 | act=factor(j[1]); |
---|
905 | for(@k=1;@k<=size(act[1]);@k++) |
---|
906 | { |
---|
907 | @qh=j; |
---|
908 | if(@wr==0) |
---|
909 | { |
---|
910 | @qh[1]=act[1][@k]^act[2][@k]; |
---|
911 | } |
---|
912 | else |
---|
913 | { |
---|
914 | @qh[1]=act[1][@k]; |
---|
915 | } |
---|
916 | primary[2*@k-1]=interred(@qh); |
---|
917 | @qh=j; |
---|
918 | @qh[1]=act[1][@k]; |
---|
919 | primary[2*@k]=interred(@qh); |
---|
920 | attrib( primary[2*@k-1],"isSB",1); |
---|
921 | |
---|
922 | if((size(ser)>0)&&(size(reduce(ser,primary[2*@k-1],1))==0)) |
---|
923 | { |
---|
924 | primary[2*@k-1]=ideal(1); |
---|
925 | primary[2*@k]=ideal(1); |
---|
926 | } |
---|
927 | } |
---|
928 | option(set,save); |
---|
929 | return(primary); |
---|
930 | } |
---|
931 | |
---|
932 | option(set,save); |
---|
933 | if(homog(j)==1) |
---|
934 | { |
---|
935 | primary[1]=j; |
---|
936 | if((size(ser)>0)&&(size(reduce(ser,j,1))==0)) |
---|
937 | { |
---|
938 | primary[1]=ideal(1); |
---|
939 | primary[2]=ideal(1); |
---|
940 | return(primary); |
---|
941 | } |
---|
942 | if(dim(j)==-1) |
---|
943 | { |
---|
944 | primary[1]=ideal(1); |
---|
945 | primary[2]=ideal(1); |
---|
946 | } |
---|
947 | else |
---|
948 | { |
---|
949 | primary[2]=maxideal(1); |
---|
950 | } |
---|
951 | return(primary); |
---|
952 | } |
---|
953 | |
---|
954 | //the first element in the standardbase is factorized |
---|
955 | if(deg(j[1])>0) |
---|
956 | { |
---|
957 | act=factor(j[1]); |
---|
958 | testFactor(act,j[1]); |
---|
959 | } |
---|
960 | else |
---|
961 | { |
---|
962 | primary[1]=ideal(1); |
---|
963 | primary[2]=ideal(1); |
---|
964 | return(primary); |
---|
965 | } |
---|
966 | |
---|
967 | //with the factors new ideals (hopefully the primary decomposition) |
---|
968 | //are created |
---|
969 | if(size(act[1])>1) |
---|
970 | { |
---|
971 | if(size(#)>1) |
---|
972 | { |
---|
973 | primary[1]=ideal(1); |
---|
974 | primary[2]=ideal(1); |
---|
975 | primary[3]=ideal(1); |
---|
976 | primary[4]=ideal(1); |
---|
977 | return(primary); |
---|
978 | } |
---|
979 | for(@k=1;@k<=size(act[1]);@k++) |
---|
980 | { |
---|
981 | if(@wr==0) |
---|
982 | { |
---|
983 | primary[2*@k-1]=std(j,act[1][@k]^act[2][@k]); |
---|
984 | } |
---|
985 | else |
---|
986 | { |
---|
987 | primary[2*@k-1]=std(j,act[1][@k]); |
---|
988 | } |
---|
989 | if((act[2][@k]==1)&&(vdim(primary[2*@k-1])==deg(act[1][@k]))) |
---|
990 | { |
---|
991 | primary[2*@k] = primary[2*@k-1]; |
---|
992 | } |
---|
993 | else |
---|
994 | { |
---|
995 | primary[2*@k] = primaryTest(primary[2*@k-1],act[1][@k]); |
---|
996 | } |
---|
997 | } |
---|
998 | } |
---|
999 | else |
---|
1000 | { |
---|
1001 | primary[1]=j; |
---|
1002 | if((size(#)>0)&&(act[2][1]>1)) |
---|
1003 | { |
---|
1004 | act[2]=1; |
---|
1005 | primary[1]=std(primary[1],act[1][1]); |
---|
1006 | } |
---|
1007 | if(@wr!=0) |
---|
1008 | { |
---|
1009 | primary[1]=std(j,act[1][1]); |
---|
1010 | } |
---|
1011 | if((act[2][1]==1)&&(vdim(primary[1])==deg(act[1][1]))) |
---|
1012 | { |
---|
1013 | primary[2]=primary[1]; |
---|
1014 | } |
---|
1015 | else |
---|
1016 | { |
---|
1017 | primary[2]=primaryTest(primary[1],act[1][1]); |
---|
1018 | } |
---|
1019 | } |
---|
1020 | |
---|
1021 | if(size(#)==0) |
---|
1022 | { |
---|
1023 | primary=splitPrimary(primary,ser,@wr,act); |
---|
1024 | } |
---|
1025 | |
---|
1026 | if((voice>=7)&&(char(basering)<=181)) |
---|
1027 | { |
---|
1028 | primary=splitCharp(primary); |
---|
1029 | } |
---|
1030 | |
---|
1031 | if((@wr==2)&&(npars(basering)>0)&&(voice>=7)&&(char(basering)>0)) |
---|
1032 | { |
---|
1033 | //the prime decomposition of Yokoyama in characteristic p |
---|
1034 | list ke,ek; |
---|
1035 | @k=0; |
---|
1036 | while(@k<size(primary) div 2) |
---|
1037 | { |
---|
1038 | @k++; |
---|
1039 | if(size(primary[2*@k])==0) |
---|
1040 | { |
---|
1041 | ek=insepDecomp_i( int(1), primary[2*@k-1] ); |
---|
1042 | primary=delete(primary,2*@k); |
---|
1043 | primary=delete(primary,2*@k-1); |
---|
1044 | @k--; |
---|
1045 | } |
---|
1046 | ke=ke+ek; |
---|
1047 | } |
---|
1048 | for(@k=1;@k<=size(ke);@k++) |
---|
1049 | { |
---|
1050 | primary[size(primary)+1]=ke[@k]; |
---|
1051 | primary[size(primary)+1]=ke[@k]; |
---|
1052 | } |
---|
1053 | } |
---|
1054 | |
---|
1055 | if(voice>=9){primary=extF(primary);}; |
---|
1056 | |
---|
1057 | //test whether all ideals in the decomposition are primary and |
---|
1058 | //in general position |
---|
1059 | //if not after a random coordinate transformation of the last |
---|
1060 | //variable the corresponding ideal is decomposed again. |
---|
1061 | if((npars(basering)>0)&&(voice>=9)) |
---|
1062 | { |
---|
1063 | poly randp; |
---|
1064 | for(zz=1;zz<nvars(basering);zz++) |
---|
1065 | { |
---|
1066 | randp=randp |
---|
1067 | +(random(0,5)*par(1)^2+random(0,5)*par(1)+random(0,5))*var(zz); |
---|
1068 | } |
---|
1069 | randp=randp+var(nvars(basering)); |
---|
1070 | } |
---|
1071 | @k=0; |
---|
1072 | while(@k<(size(primary) div 2)) |
---|
1073 | { |
---|
1074 | @k++; |
---|
1075 | if (size(primary[2*@k])==0) |
---|
1076 | { |
---|
1077 | for(zz=1;zz<size(primary[2*@k-1])-1;zz++) |
---|
1078 | { |
---|
1079 | attrib(primary[2*@k-1],"isSB",1); |
---|
1080 | if(vdim(primary[2*@k-1])==deg(primary[2*@k-1][zz])) |
---|
1081 | { |
---|
1082 | primary[2*@k]=primary[2*@k-1]; |
---|
1083 | } |
---|
1084 | } |
---|
1085 | } |
---|
1086 | } |
---|
1087 | |
---|
1088 | @k=0; |
---|
1089 | ideal keep; |
---|
1090 | while(@k<(size(primary) div 2)) |
---|
1091 | { |
---|
1092 | @k++; |
---|
1093 | if (size(primary[2*@k])==0) |
---|
1094 | { |
---|
1095 | jmap=randomLast(100); |
---|
1096 | jmap1=maxideal(1); |
---|
1097 | jmap2=maxideal(1); |
---|
1098 | @qht=primary[2*@k-1]; |
---|
1099 | if((npars(basering)>0)&&(voice>=11)) |
---|
1100 | { |
---|
1101 | jmap[size(jmap)]=randp; |
---|
1102 | } |
---|
1103 | |
---|
1104 | for(@n=2;@n<=size(primary[2*@k-1]);@n++) |
---|
1105 | { |
---|
1106 | if(deg(lead(primary[2*@k-1][@n]))==1) |
---|
1107 | { |
---|
1108 | for(zz=1;zz<=nva;zz++) |
---|
1109 | { |
---|
1110 | if(lead(primary[2*@k-1][@n])/var(zz)!=0) |
---|
1111 | { |
---|
1112 | jmap1[zz]=-1/leadcoef(primary[2*@k-1][@n])*primary[2*@k-1][@n] |
---|
1113 | +2/leadcoef(primary[2*@k-1][@n])*lead(primary[2*@k-1][@n]); |
---|
1114 | jmap2[zz]=primary[2*@k-1][@n]; |
---|
1115 | @qht[@n]=var(zz); |
---|
1116 | } |
---|
1117 | } |
---|
1118 | jmap[nva]=subst(jmap[nva],lead(primary[2*@k-1][@n]),0); |
---|
1119 | } |
---|
1120 | } |
---|
1121 | if(size(subst(jmap[nva],var(1),0)-var(nva))!=0) |
---|
1122 | { |
---|
1123 | // jmap[nva]=subst(jmap[nva],var(1),0); |
---|
1124 | //hier geaendert +untersuchen!!!!!!!!!!!!!! |
---|
1125 | } |
---|
1126 | phi1=@P,jmap1; |
---|
1127 | phi=@P,jmap; |
---|
1128 | for(@n=1;@n<=nva;@n++) |
---|
1129 | { |
---|
1130 | jmap[@n]=-(jmap[@n]-2*var(@n)); |
---|
1131 | } |
---|
1132 | psi=@P,jmap; |
---|
1133 | psi1=@P,jmap2; |
---|
1134 | @qh=phi(@qht); |
---|
1135 | |
---|
1136 | //=================== the new part ============================ |
---|
1137 | |
---|
1138 | if (npars(basering)>1) { @qh=groebner(@qh,"par2var"); } |
---|
1139 | else { @qh=groebner(@qh); } |
---|
1140 | |
---|
1141 | //============================================================= |
---|
1142 | // if(npars(@P)>0) |
---|
1143 | // { |
---|
1144 | // @ri= "ring @Phelp =" |
---|
1145 | // +string(char(@P))+", |
---|
1146 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
1147 | // } |
---|
1148 | // else |
---|
1149 | // { |
---|
1150 | // @ri= "ring @Phelp =" |
---|
1151 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
1152 | // } |
---|
1153 | // execute(@ri); |
---|
1154 | // ideal @qh=homog(imap(@P,@qht),@t); |
---|
1155 | // |
---|
1156 | // ideal @qh1=std(@qh); |
---|
1157 | // @hilb=hilb(@qh1,1); |
---|
1158 | // @ri= "ring @Phelp1 =" |
---|
1159 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
1160 | // execute(@ri); |
---|
1161 | // ideal @qh=homog(imap(@P,@qh),@t); |
---|
1162 | // kill @Phelp; |
---|
1163 | // @qh=std(@qh,@hilb); |
---|
1164 | // @qh=subst(@qh,@t,1); |
---|
1165 | // setring @P; |
---|
1166 | // @qh=imap(@Phelp1,@qh); |
---|
1167 | // kill @Phelp1; |
---|
1168 | // @qh=clearSB(@qh); |
---|
1169 | // attrib(@qh,"isSB",1); |
---|
1170 | //============================================================= |
---|
1171 | |
---|
1172 | ser1=phi1(ser); |
---|
1173 | @lh=zero_decomp (@qh,phi(ser1),@wr); |
---|
1174 | |
---|
1175 | kill lres0; |
---|
1176 | list lres0; |
---|
1177 | if((size(@lh)==2)&&(@lh[1]!=1)) |
---|
1178 | { |
---|
1179 | helpprim=@lh[2]; |
---|
1180 | lres0[1]=primary[2*@k-1]; |
---|
1181 | attrib(lres0[1],"isSB",1); |
---|
1182 | ser1=psi(helpprim); |
---|
1183 | lres0[2]=psi1(ser1); |
---|
1184 | if(size(reduce(lres0[2],lres0[1],1))==0) |
---|
1185 | { |
---|
1186 | primary[2*@k]=primary[2*@k-1]; |
---|
1187 | continue; |
---|
1188 | } |
---|
1189 | } |
---|
1190 | else |
---|
1191 | { |
---|
1192 | lres1=psi(@lh); |
---|
1193 | lres0=psi1(lres1); |
---|
1194 | } |
---|
1195 | |
---|
1196 | //=================== the new part ============================ |
---|
1197 | |
---|
1198 | primary=delete(primary,2*@k-1); |
---|
1199 | primary=delete(primary,2*@k-1); |
---|
1200 | @k--; |
---|
1201 | if(size(lres0)==2) |
---|
1202 | { |
---|
1203 | lres0[2]=groebner(lres0[2]); |
---|
1204 | } |
---|
1205 | else |
---|
1206 | { |
---|
1207 | for(@n=1;@n<=size(lres0) div 2;@n++) |
---|
1208 | { |
---|
1209 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
1210 | lres0[2*@n]=groebner(lres0[2*@n]); |
---|
1211 | } |
---|
1212 | } |
---|
1213 | primary=primary+lres0; |
---|
1214 | |
---|
1215 | //============================================================= |
---|
1216 | // if(npars(@P)>0) |
---|
1217 | // { |
---|
1218 | // @ri= "ring @Phelp =" |
---|
1219 | // +string(char(@P))+", |
---|
1220 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
1221 | // } |
---|
1222 | // else |
---|
1223 | // { |
---|
1224 | // @ri= "ring @Phelp =" |
---|
1225 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
1226 | // } |
---|
1227 | // execute(@ri); |
---|
1228 | // list @lvec; |
---|
1229 | // list @lr=imap(@P,lres0); |
---|
1230 | // ideal @lr1; |
---|
1231 | // |
---|
1232 | // if(size(@lr)==2) |
---|
1233 | // { |
---|
1234 | // @lr[2]=homog(@lr[2],@t); |
---|
1235 | // @lr1=std(@lr[2]); |
---|
1236 | // @lvec[2]=hilb(@lr1,1); |
---|
1237 | // } |
---|
1238 | // else |
---|
1239 | // { |
---|
1240 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
1241 | // { |
---|
1242 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
1243 | // { |
---|
1244 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
1245 | // @lr1=std(@lr[2*@n-1]); |
---|
1246 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
1247 | // @lvec[2*@n]=@lvec[2*@n-1]; |
---|
1248 | // } |
---|
1249 | // else |
---|
1250 | // { |
---|
1251 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
1252 | // @lr1=std(@lr[2*@n-1]); |
---|
1253 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
1254 | // @lr[2*@n]=homog(@lr[2*@n],@t); |
---|
1255 | // @lr1=std(@lr[2*@n]); |
---|
1256 | // @lvec[2*@n]=hilb(@lr1,1); |
---|
1257 | // |
---|
1258 | // } |
---|
1259 | // } |
---|
1260 | // } |
---|
1261 | // @ri= "ring @Phelp1 =" |
---|
1262 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
1263 | // execute(@ri); |
---|
1264 | // list @lr=imap(@Phelp,@lr); |
---|
1265 | // |
---|
1266 | // kill @Phelp; |
---|
1267 | // if(size(@lr)==2) |
---|
1268 | // { |
---|
1269 | // @lr[2]=std(@lr[2],@lvec[2]); |
---|
1270 | // @lr[2]=subst(@lr[2],@t,1); |
---|
1271 | // } |
---|
1272 | // else |
---|
1273 | // { |
---|
1274 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
1275 | // { |
---|
1276 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
1277 | // { |
---|
1278 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
1279 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
1280 | // @lr[2*@n]=@lr[2*@n-1]; |
---|
1281 | // attrib(@lr[2*@n],"isSB",1); |
---|
1282 | // } |
---|
1283 | // else |
---|
1284 | // { |
---|
1285 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
1286 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
1287 | // @lr[2*@n]=std(@lr[2*@n],@lvec[2*@n]); |
---|
1288 | // @lr[2*@n]=subst(@lr[2*@n],@t,1); |
---|
1289 | // } |
---|
1290 | // } |
---|
1291 | // } |
---|
1292 | // kill @lvec; |
---|
1293 | // setring @P; |
---|
1294 | // lres0=imap(@Phelp1,@lr); |
---|
1295 | // kill @Phelp1; |
---|
1296 | // for(@n=1;@n<=size(lres0);@n++) |
---|
1297 | // { |
---|
1298 | // lres0[@n]=clearSB(lres0[@n]); |
---|
1299 | // attrib(lres0[@n],"isSB",1); |
---|
1300 | // } |
---|
1301 | // |
---|
1302 | // primary[2*@k-1]=lres0[1]; |
---|
1303 | // primary[2*@k]=lres0[2]; |
---|
1304 | // @s=size(primary) div 2; |
---|
1305 | // for(@n=1;@n<=size(lres0) div 2-1;@n++) |
---|
1306 | // { |
---|
1307 | // primary[2*@s+2*@n-1]=lres0[2*@n+1]; |
---|
1308 | // primary[2*@s+2*@n]=lres0[2*@n+2]; |
---|
1309 | // } |
---|
1310 | // @k--; |
---|
1311 | //============================================================= |
---|
1312 | } |
---|
1313 | } |
---|
1314 | return(primary); |
---|
1315 | } |
---|
1316 | example |
---|
1317 | { "EXAMPLE:"; echo = 2; |
---|
1318 | ring r = 0,(x,y,z),lp; |
---|
1319 | poly p = z2+1; |
---|
1320 | poly q = z4+2; |
---|
1321 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
1322 | i=std(i); |
---|
1323 | list pr= zero_decomp(i,ideal(0),0); |
---|
1324 | pr; |
---|
1325 | } |
---|
1326 | /////////////////////////////////////////////////////////////////////////////// |
---|
1327 | proc extF(list l,list #) |
---|
1328 | { |
---|
1329 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1330 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1331 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1332 | //zero_dimensional primary decomposition after finite field extension |
---|
1333 | def R=basering; |
---|
1334 | int p=char(R); |
---|
1335 | |
---|
1336 | if((p==0)||(p>13)||(npars(R)>0)){return(l);} |
---|
1337 | |
---|
1338 | int ex=3; |
---|
1339 | if(size(#)>0){ex=#[1];} |
---|
1340 | |
---|
1341 | list peek,peek1; |
---|
1342 | while(size(l)>0) |
---|
1343 | { |
---|
1344 | if(size(l[2])==0) |
---|
1345 | { |
---|
1346 | peek[size(peek)+1]=l[1]; |
---|
1347 | } |
---|
1348 | else |
---|
1349 | { |
---|
1350 | peek1[size(peek1)+1]=l[1]; |
---|
1351 | peek1[size(peek1)+1]=l[2]; |
---|
1352 | } |
---|
1353 | l=delete(l,1); |
---|
1354 | l=delete(l,1); |
---|
1355 | } |
---|
1356 | if(size(peek)==0){return(peek1);} |
---|
1357 | |
---|
1358 | string gnir="ring RH=("+string(p)+"^"+string(ex)+",a),("+varstr(R)+"),lp;"; |
---|
1359 | execute(gnir); |
---|
1360 | string mp="minpoly="+string(minpoly)+";"; |
---|
1361 | gnir="ring RL=("+string(p)+",a),("+varstr(R)+"),lp;"; |
---|
1362 | execute(gnir); |
---|
1363 | execute(mp); |
---|
1364 | list L=imap(R,peek); |
---|
1365 | list pr, keep; |
---|
1366 | int i; |
---|
1367 | for(i=1;i<=size(L);i++) |
---|
1368 | { |
---|
1369 | attrib(L[i],"isSB",1); |
---|
1370 | pr=zero_decomp(L[i],0,0); |
---|
1371 | keep=keep+pr; |
---|
1372 | } |
---|
1373 | for(i=1;i<=size(keep);i++) |
---|
1374 | { |
---|
1375 | keep[i]=simplify(keep[i],1); |
---|
1376 | } |
---|
1377 | mp="poly pp="+string(minpoly)+";"; |
---|
1378 | |
---|
1379 | string gnir1="ring RS="+string(p)+",("+varstr(R)+",a),lp;"; |
---|
1380 | execute(gnir1); |
---|
1381 | execute(mp); |
---|
1382 | list L=imap(RL,keep); |
---|
1383 | |
---|
1384 | for(i=1;i<=size(L);i++) |
---|
1385 | { |
---|
1386 | L[i]=eliminate(L[i]+ideal(pp),a); |
---|
1387 | } |
---|
1388 | i=0; |
---|
1389 | int j; |
---|
1390 | while(i<size(L) div 2-1) |
---|
1391 | { |
---|
1392 | i++; |
---|
1393 | j=i; |
---|
1394 | while(j<size(L) div 2) |
---|
1395 | { |
---|
1396 | j++; |
---|
1397 | if(idealsEqual(L[2*i-1],L[2*j-1])) |
---|
1398 | { |
---|
1399 | L=delete(L,2*j-1); |
---|
1400 | L=delete(L,2*j-1); |
---|
1401 | j--; |
---|
1402 | } |
---|
1403 | } |
---|
1404 | } |
---|
1405 | setring R; |
---|
1406 | list re=imap(RS,L); |
---|
1407 | re=re+peek1; |
---|
1408 | |
---|
1409 | return(extF(re,ex+1)); |
---|
1410 | } |
---|
1411 | |
---|
1412 | /////////////////////////////////////////////////////////////////////////////// |
---|
1413 | proc zeroSp(ideal i) |
---|
1414 | { |
---|
1415 | //preparation for the separable closure |
---|
1416 | //decomposition into ideals of special type |
---|
1417 | //i.e. the minimal polynomials of every variable mod i are irreducible |
---|
1418 | //returns a list of 2 lists: rr=pe,qe |
---|
1419 | //the ideals in pe[l] are special, their special elements are in qe[l] |
---|
1420 | //pe[l] is a dp-Groebnerbasis |
---|
1421 | //the radical of the intersection of the pe[l] is equal to the radical of i |
---|
1422 | |
---|
1423 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1424 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1425 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1426 | def R=basering; |
---|
1427 | |
---|
1428 | //i has to be a reduced groebner basis |
---|
1429 | ASSUME(1, dim(i)==0); |
---|
1430 | ideal F=finduni(i); |
---|
1431 | |
---|
1432 | int j,k,l,ready; |
---|
1433 | list fa; |
---|
1434 | fa[1]=factorize(F[1],1); |
---|
1435 | poly te,ti; |
---|
1436 | ideal tj; |
---|
1437 | //avoid factorization of the same polynomial |
---|
1438 | for(j=2;j<=size(F);j++) |
---|
1439 | { |
---|
1440 | for(k=1;k<j;k++) |
---|
1441 | { |
---|
1442 | ti=F[k]; |
---|
1443 | te=subst(ti,var(k),var(j)); |
---|
1444 | if(te==F[j]) |
---|
1445 | { |
---|
1446 | tj=fa[k]; |
---|
1447 | fa[j]=subst(tj,var(k),var(j)); |
---|
1448 | ready=1; |
---|
1449 | break; |
---|
1450 | } |
---|
1451 | } |
---|
1452 | if(!ready) |
---|
1453 | { |
---|
1454 | fa[j]=factorize(F[j],1); |
---|
1455 | } |
---|
1456 | ready=0; |
---|
1457 | } |
---|
1458 | def P=changeordTo(R,"dp"); |
---|
1459 | setring P; |
---|
1460 | ideal i=imap(R,i); |
---|
1461 | if(npars(basering)==0) |
---|
1462 | { |
---|
1463 | ideal J=fglm(R,i); |
---|
1464 | } |
---|
1465 | else |
---|
1466 | { |
---|
1467 | ideal J=groebner(i); |
---|
1468 | } |
---|
1469 | list fa=imap(R,fa); |
---|
1470 | list qe=J; //collects a dp-Groebnerbasis of the special ideals |
---|
1471 | list keep=ideal(0); //collects the special elements |
---|
1472 | |
---|
1473 | list re,em,ke; |
---|
1474 | ideal K,L; |
---|
1475 | |
---|
1476 | for(j=1;j<=nvars(basering);j++) |
---|
1477 | { |
---|
1478 | for(l=1;l<=size(qe);l++) |
---|
1479 | { |
---|
1480 | for(k=1;k<=size(fa[j]);k++) |
---|
1481 | { |
---|
1482 | L=std(qe[l],fa[j][k]); |
---|
1483 | K=keep[l],fa[j][k]; |
---|
1484 | if(deg(L[1])>0) |
---|
1485 | { |
---|
1486 | re[size(re)+1]=L; |
---|
1487 | ke[size(ke)+1]=K; |
---|
1488 | } |
---|
1489 | } |
---|
1490 | } |
---|
1491 | qe=re; |
---|
1492 | re=em; |
---|
1493 | keep=ke; |
---|
1494 | ke=em; |
---|
1495 | } |
---|
1496 | |
---|
1497 | setring R; |
---|
1498 | list qe=imap(P,keep); |
---|
1499 | list pe=imap(P,qe); |
---|
1500 | for(l=1;l<=size(qe);l++) |
---|
1501 | { |
---|
1502 | qe[l]=simplify(qe[l],2); |
---|
1503 | } |
---|
1504 | list rr=pe,qe; |
---|
1505 | return(rr); |
---|
1506 | } |
---|
1507 | /////////////////////////////////////////////////////////////////////////////// |
---|
1508 | |
---|
1509 | proc zeroSepClos(ideal I,ideal F) |
---|
1510 | { |
---|
1511 | //computes the separable closure of the special ideal I |
---|
1512 | //F is the set of special elements of I |
---|
1513 | //returns the separable closure sc(I) of I and an intvec v |
---|
1514 | //such that sc(I)=preimage(frobenius definde by v) |
---|
1515 | //i.e. var(i)----->var(i)^(p^v[i]) |
---|
1516 | |
---|
1517 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1518 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1519 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1520 | |
---|
1521 | if(homog(I)==1){return(maxideal(1));} |
---|
1522 | |
---|
1523 | //assume F[i] irreducible in I and depending only on var(i) |
---|
1524 | |
---|
1525 | def R=basering; |
---|
1526 | int n=nvars(R); |
---|
1527 | int p=char(R); |
---|
1528 | intvec v; |
---|
1529 | v[n]=0; |
---|
1530 | int i,k; |
---|
1531 | list l; |
---|
1532 | |
---|
1533 | for(i=1;i<=n;i++) |
---|
1534 | { |
---|
1535 | l[i]=sep(F[i],i); |
---|
1536 | F[i]=l[i][1]; |
---|
1537 | if(l[i][2]>k){k=l[i][2];} |
---|
1538 | } |
---|
1539 | |
---|
1540 | if(k==0){return(list(I,v));} //the separable case |
---|
1541 | ideal m; |
---|
1542 | |
---|
1543 | for(i=1;i<=n;i++) |
---|
1544 | { |
---|
1545 | m[i]=var(i)^(p^l[i][2]); |
---|
1546 | v[i]=l[i][2]; |
---|
1547 | } |
---|
1548 | map phi=R,m; |
---|
1549 | ideal J=preimage(R,phi,I); |
---|
1550 | return(list(J,v)); |
---|
1551 | } |
---|
1552 | /////////////////////////////////////////////////////////////////////////////// |
---|
1553 | |
---|
1554 | |
---|
1555 | proc insepDecomp_i(int patchPrimaryDecomposition, ideal i) |
---|
1556 | { |
---|
1557 | //decomposes i into special ideals |
---|
1558 | //computes the prime decomposition of the special ideals |
---|
1559 | //and transforms it back to a decomposition of i |
---|
1560 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
1561 | // since the unit ideal it is not prime! |
---|
1562 | |
---|
1563 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1564 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1565 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1566 | def R=basering; |
---|
1567 | list pr=zeroSp(i); |
---|
1568 | int l,k; |
---|
1569 | list re,wo,qr; |
---|
1570 | ideal m=maxideal(1); |
---|
1571 | ideal K; |
---|
1572 | map phi=R,m; |
---|
1573 | int p=char(R); |
---|
1574 | intvec op=option(get); |
---|
1575 | |
---|
1576 | for(l=1;l<=size(pr[1]);l++) |
---|
1577 | { |
---|
1578 | wo=zeroSepClos(pr[1][l],pr[2][l]); |
---|
1579 | for(k=1;k<=nvars(basering);k++) |
---|
1580 | { |
---|
1581 | m[k]=var(k)^(p^wo[2][k]); |
---|
1582 | } |
---|
1583 | phi=R,m; |
---|
1584 | qr = decomp_i(patchPrimaryDecomposition,wo[1],2); |
---|
1585 | |
---|
1586 | option(redSB); |
---|
1587 | for(k=1;k<=size(qr) div 2;k++) |
---|
1588 | { |
---|
1589 | K=qr[2*k]; |
---|
1590 | K=phi(K); |
---|
1591 | K=groebner(K); |
---|
1592 | re[size(re)+1]=zeroRad(K); |
---|
1593 | } |
---|
1594 | option(set,op); |
---|
1595 | } |
---|
1596 | option(set,op); |
---|
1597 | return(re); |
---|
1598 | } |
---|
1599 | |
---|
1600 | |
---|
1601 | /////////////////////////////////////////////////////////////////////////////// |
---|
1602 | |
---|
1603 | static proc clearSB (ideal i,list #) |
---|
1604 | "USAGE: clearSB(i); i ideal which is SB ordered by monomial ordering |
---|
1605 | RETURN: ideal = minimal SB |
---|
1606 | NOTE: |
---|
1607 | EXAMPLE: example clearSB; shows an example |
---|
1608 | " |
---|
1609 | { |
---|
1610 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1611 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1612 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1613 | int k,j; |
---|
1614 | poly m; |
---|
1615 | int c=size(i); |
---|
1616 | |
---|
1617 | if(size(#)==0) |
---|
1618 | { |
---|
1619 | for(j=1;j<c;j++) |
---|
1620 | { |
---|
1621 | if(deg(i[j])==0) |
---|
1622 | { |
---|
1623 | i=ideal(1); |
---|
1624 | return(i); |
---|
1625 | } |
---|
1626 | if(deg(i[j])>0) |
---|
1627 | { |
---|
1628 | m=lead(i[j]); |
---|
1629 | for(k=j+1;k<=c;k++) |
---|
1630 | { |
---|
1631 | if(size(lead(i[k])/m)>0) |
---|
1632 | { |
---|
1633 | i[k]=0; |
---|
1634 | } |
---|
1635 | } |
---|
1636 | } |
---|
1637 | } |
---|
1638 | } |
---|
1639 | else |
---|
1640 | { |
---|
1641 | j=0; |
---|
1642 | while(j<c-1) |
---|
1643 | { |
---|
1644 | j++; |
---|
1645 | if(deg(i[j])==0) |
---|
1646 | { |
---|
1647 | i=ideal(1); |
---|
1648 | return(i); |
---|
1649 | } |
---|
1650 | if(deg(i[j])>0) |
---|
1651 | { |
---|
1652 | m=lead(i[j]); |
---|
1653 | for(k=j+1;k<=c;k++) |
---|
1654 | { |
---|
1655 | if(size(lead(i[k])/m)>0) |
---|
1656 | { |
---|
1657 | if((leadexp(m)!=leadexp(i[k]))||(#[j]<=#[k])) |
---|
1658 | { |
---|
1659 | i[k]=0; |
---|
1660 | } |
---|
1661 | else |
---|
1662 | { |
---|
1663 | i[j]=0; |
---|
1664 | break; |
---|
1665 | } |
---|
1666 | } |
---|
1667 | } |
---|
1668 | } |
---|
1669 | } |
---|
1670 | } |
---|
1671 | return(simplify(i,2)); |
---|
1672 | } |
---|
1673 | example |
---|
1674 | { "EXAMPLE:"; echo = 2; |
---|
1675 | ring r = (0,a,b),(x,y,z),dp; |
---|
1676 | ideal i=ax2+y,a2x+y,bx; |
---|
1677 | list l=1,2,1; |
---|
1678 | ideal j=clearSB(i,l); |
---|
1679 | j; |
---|
1680 | } |
---|
1681 | |
---|
1682 | /////////////////////////////////////////////////////////////////////////////// |
---|
1683 | static proc clearSBNeu (ideal i,list #) |
---|
1684 | "USAGE: clearSB(i); i ideal which is SB ordered by monomial ordering |
---|
1685 | RETURN: ideal = minimal SB |
---|
1686 | NOTE: |
---|
1687 | EXAMPLE: example clearSB; shows an example |
---|
1688 | " |
---|
1689 | { |
---|
1690 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1691 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1692 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1693 | int k,j; |
---|
1694 | intvec m,n,v,w; |
---|
1695 | int c=size(i); |
---|
1696 | w=leadexp(0); |
---|
1697 | v[size(i)]=0; |
---|
1698 | |
---|
1699 | j=0; |
---|
1700 | while(j<c-1) |
---|
1701 | { |
---|
1702 | j++; |
---|
1703 | if(deg(i[j])>=0) |
---|
1704 | { |
---|
1705 | m=leadexp(i[j]); |
---|
1706 | for(k=j+1;k<=c;k++) |
---|
1707 | { |
---|
1708 | n=leadexp(i[k]); |
---|
1709 | if(n!=w) |
---|
1710 | { |
---|
1711 | if(((m==n)&&(#[j]>#[k]))||((teilt(n,m))&&(n!=m))) |
---|
1712 | { |
---|
1713 | i[j]=0; |
---|
1714 | v[j]=1; |
---|
1715 | break; |
---|
1716 | } |
---|
1717 | if(((m==n)&&(#[j]<=#[k]))||((teilt(m,n))&&(n!=m))) |
---|
1718 | { |
---|
1719 | i[k]=0; |
---|
1720 | v[k]=1; |
---|
1721 | } |
---|
1722 | } |
---|
1723 | } |
---|
1724 | } |
---|
1725 | } |
---|
1726 | return(v); |
---|
1727 | } |
---|
1728 | |
---|
1729 | static proc teilt(intvec aba, intvec bab) |
---|
1730 | { |
---|
1731 | int i; |
---|
1732 | for(i=1;i<=size(aba);i++) |
---|
1733 | { |
---|
1734 | if(aba[i]>bab[i]){return(0);} |
---|
1735 | } |
---|
1736 | return(1); |
---|
1737 | } |
---|
1738 | /////////////////////////////////////////////////////////////////////////////// |
---|
1739 | |
---|
1740 | static proc independSet (ideal j) |
---|
1741 | "USAGE: independentSet(i); i ideal |
---|
1742 | RETURN: list = new varstring with the independent set at the end, |
---|
1743 | ordstring with the corresponding block ordering, |
---|
1744 | the integer where the independent set starts in the varstring |
---|
1745 | NOTE: |
---|
1746 | EXAMPLE: example independentSet; shows an example |
---|
1747 | " |
---|
1748 | { |
---|
1749 | int n,k,di; |
---|
1750 | list resu,hilf; |
---|
1751 | string var1,var2; |
---|
1752 | list v=indepSet(j,1); |
---|
1753 | |
---|
1754 | for(n=1;n<=size(v);n++) |
---|
1755 | { |
---|
1756 | di=0; |
---|
1757 | var1=""; |
---|
1758 | var2=""; |
---|
1759 | for(k=1;k<=size(v[n]);k++) |
---|
1760 | { |
---|
1761 | if(v[n][k]!=0) |
---|
1762 | { |
---|
1763 | di++; |
---|
1764 | var2=var2+"var("+string(k)+"),"; |
---|
1765 | } |
---|
1766 | else |
---|
1767 | { |
---|
1768 | var1=var1+"var("+string(k)+"),"; |
---|
1769 | } |
---|
1770 | } |
---|
1771 | if(di>0) |
---|
1772 | { |
---|
1773 | var1=var1+var2; |
---|
1774 | var1=var1[1..size(var1)-1]; |
---|
1775 | hilf[1]=var1; |
---|
1776 | hilf[2]="lp"; |
---|
1777 | //"lp("+string(nvars(basering)-di)+"),dp("+string(di)+")"; |
---|
1778 | hilf[3]=di; |
---|
1779 | resu[n]=hilf; |
---|
1780 | } |
---|
1781 | else |
---|
1782 | { |
---|
1783 | resu[n]=varstr(basering),ordstr(basering),0; |
---|
1784 | } |
---|
1785 | } |
---|
1786 | return(resu); |
---|
1787 | } |
---|
1788 | example |
---|
1789 | { "EXAMPLE:"; echo = 2; |
---|
1790 | ring s1=(0,x,y),(a,b,c,d,e,f,g),lp; |
---|
1791 | ideal i=ea-fbg,fa+be,ec-fdg,fc+de; |
---|
1792 | i=std(i); |
---|
1793 | list l=independSet(i); |
---|
1794 | l; |
---|
1795 | i=i,g; |
---|
1796 | l=independSet(i); |
---|
1797 | l; |
---|
1798 | |
---|
1799 | ring s=0,(x,y,z),lp; |
---|
1800 | ideal i=z,yx; |
---|
1801 | list l=independSet(i); |
---|
1802 | l; |
---|
1803 | |
---|
1804 | |
---|
1805 | } |
---|
1806 | /////////////////////////////////////////////////////////////////////////////// |
---|
1807 | |
---|
1808 | static proc maxIndependSet (ideal j) |
---|
1809 | "USAGE: maxIndependentSet(i); i ideal |
---|
1810 | RETURN: list = new varstring with the maximal independent set at the end, |
---|
1811 | ordstring with the corresponding block ordering, |
---|
1812 | the integer where the independent set starts in the varstring |
---|
1813 | NOTE: |
---|
1814 | EXAMPLE: example maxIndependentSet; shows an example |
---|
1815 | " |
---|
1816 | { |
---|
1817 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1818 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1819 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1820 | int n,k,di; |
---|
1821 | list resu,hilf; |
---|
1822 | string var1,var2; |
---|
1823 | list v=indepSet(j,0); |
---|
1824 | |
---|
1825 | for(n=1;n<=size(v);n++) |
---|
1826 | { |
---|
1827 | di=0; |
---|
1828 | var1=""; |
---|
1829 | var2=""; |
---|
1830 | for(k=1;k<=size(v[n]);k++) |
---|
1831 | { |
---|
1832 | if(v[n][k]!=0) |
---|
1833 | { |
---|
1834 | di++; |
---|
1835 | var2=var2+"var("+string(k)+"),"; |
---|
1836 | } |
---|
1837 | else |
---|
1838 | { |
---|
1839 | var1=var1+"var("+string(k)+"),"; |
---|
1840 | } |
---|
1841 | } |
---|
1842 | if(di>0) |
---|
1843 | { |
---|
1844 | var1=var1+var2; |
---|
1845 | var1=var1[1..size(var1)-1]; |
---|
1846 | hilf[1]=var1; |
---|
1847 | hilf[2]="lp"; |
---|
1848 | hilf[3]=di; |
---|
1849 | resu[n]=hilf; |
---|
1850 | } |
---|
1851 | else |
---|
1852 | { |
---|
1853 | resu[n]=varstr(basering),ordstr(basering),0; |
---|
1854 | } |
---|
1855 | } |
---|
1856 | return(resu); |
---|
1857 | } |
---|
1858 | example |
---|
1859 | { "EXAMPLE:"; echo = 2; |
---|
1860 | ring s1=(0,x,y),(a,b,c,d,e,f,g),lp; |
---|
1861 | ideal i=ea-fbg,fa+be,ec-fdg,fc+de; |
---|
1862 | i=std(i); |
---|
1863 | list l=maxIndependSet(i); |
---|
1864 | l; |
---|
1865 | i=i,g; |
---|
1866 | l=maxIndependSet(i); |
---|
1867 | l; |
---|
1868 | |
---|
1869 | ring s=0,(x,y,z),lp; |
---|
1870 | ideal i=z,yx; |
---|
1871 | list l=maxIndependSet(i); |
---|
1872 | l; |
---|
1873 | |
---|
1874 | |
---|
1875 | } |
---|
1876 | |
---|
1877 | /////////////////////////////////////////////////////////////////////////////// |
---|
1878 | |
---|
1879 | static proc prepareQuotientring (int nnp,string order) |
---|
1880 | "USAGE: prepareQuotientring(nnp, order); nnp int, order string |
---|
1881 | RETURN: Kvar(nnp+1),...,var(nvars)[..rest ] |
---|
1882 | EXAMPLE: example prepareQuotientring; shows an example |
---|
1883 | " |
---|
1884 | { |
---|
1885 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1886 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1887 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1888 | list rl=ringlist(basering); |
---|
1889 | if (typeof(rl[1])=="int") |
---|
1890 | { |
---|
1891 | int p=rl[1]; |
---|
1892 | list rl2=rl[2]; |
---|
1893 | rl[1]=list(p, |
---|
1894 | list(rl2[nnp+1..nvars(basering)]), |
---|
1895 | list(list("lp",1:(nvars(basering)-nnp))), |
---|
1896 | ideal(0)); |
---|
1897 | rl[2]=list(rl2[1..nnp]); |
---|
1898 | rl[3]=list(list(order,1:nnp),list("C",0)); |
---|
1899 | } |
---|
1900 | else |
---|
1901 | { |
---|
1902 | if (typeof(rl[1])=="list") |
---|
1903 | { |
---|
1904 | list rl1=rl[1]; |
---|
1905 | list rl2=rl[2]; |
---|
1906 | rl1=list(rl1[1][1], |
---|
1907 | rl[1][2]+list(rl2[nnp+1..nvars(basering)]), |
---|
1908 | list(list("lp",1:(size(rl[1][2])+nvars(basering)-nnp))), |
---|
1909 | ideal(0)); |
---|
1910 | rl[1]=rl1; |
---|
1911 | rl[2]=list(rl2[1..nnp]); |
---|
1912 | rl[3]=list(list(order,1:nnp),list("C",0)); |
---|
1913 | } |
---|
1914 | else |
---|
1915 | { |
---|
1916 | ERROR("Unexpected case in prepareQuotientring. Please inform the authors"); |
---|
1917 | } |
---|
1918 | } |
---|
1919 | |
---|
1920 | def quotring=ring(rl); |
---|
1921 | return(quotring); |
---|
1922 | } |
---|
1923 | example |
---|
1924 | { "EXAMPLE:"; echo = 2; |
---|
1925 | ring s1=(0,x),(a,b,c,d,e,f,g),lp; |
---|
1926 | def Q= prepareQuotientring(3,"lp"); |
---|
1927 | Q; |
---|
1928 | } |
---|
1929 | |
---|
1930 | /////////////////////////////////////////////////////////////////////////////// |
---|
1931 | static proc cleanPrimary(list l) |
---|
1932 | { |
---|
1933 | int i,j; |
---|
1934 | list lh; |
---|
1935 | for(i=1;i<=size(l) div 2;i++) |
---|
1936 | { |
---|
1937 | if(deg(l[2*i-1][1])>0) |
---|
1938 | { |
---|
1939 | j++; |
---|
1940 | lh[j]=l[2*i-1]; |
---|
1941 | j++; |
---|
1942 | lh[j]=l[2*i]; |
---|
1943 | } |
---|
1944 | } |
---|
1945 | return(lh); |
---|
1946 | } |
---|
1947 | /////////////////////////////////////////////////////////////////////////////// |
---|
1948 | |
---|
1949 | |
---|
1950 | proc minAssPrimesoldE(ideal I, list #) |
---|
1951 | "USAGE: minAssPrimesoldE(I); I ideal |
---|
1952 | minAssPrimesold(I,1); I ideal (to use also the factorizing Groebner) |
---|
1953 | RETURN: list = the minimal associated prime ideals of I |
---|
1954 | EXAMPLE: example minAssPrimesoldE; shows an example |
---|
1955 | " |
---|
1956 | { |
---|
1957 | return(minAssPrimesold_i(int(1),I,#)); |
---|
1958 | } |
---|
1959 | example |
---|
1960 | { "EXAMPLE:"; echo = 2; |
---|
1961 | ring r = 32003,(x,y,z),lp; |
---|
1962 | poly p = z2+1; |
---|
1963 | poly q = z4+2; |
---|
1964 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
1965 | list pr= minAssPrimesoldE(i); pr; |
---|
1966 | |
---|
1967 | minAssPrimesoldE(i,1); |
---|
1968 | } |
---|
1969 | |
---|
1970 | proc minAssPrimesold(ideal I, list #) |
---|
1971 | "USAGE: minAssPrimesold(I); I ideal |
---|
1972 | minAssPrimesold(i,1); I ideal (to use also the factorizing Groebner) |
---|
1973 | RETURN: list = the minimal associated prime ideals of I. In case I is unit ideal, returns list(ideal(1)); |
---|
1974 | NOTE: deprecated. Use 'minAssPrimesoldE()' |
---|
1975 | EXAMPLE: example minAssPrimesold; shows an example |
---|
1976 | " |
---|
1977 | { |
---|
1978 | return(minAssPrimesold_i(int(0),I,#)); |
---|
1979 | } |
---|
1980 | example |
---|
1981 | { "EXAMPLE:"; echo = 2; |
---|
1982 | ring r = 32003,(x,y,z),lp; |
---|
1983 | poly p = z2+1; |
---|
1984 | poly q = z4+2; |
---|
1985 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
1986 | list pr= minAssPrimesold(i); pr; |
---|
1987 | |
---|
1988 | minAssPrimesold(i,1); |
---|
1989 | } |
---|
1990 | |
---|
1991 | static proc minAssPrimesold_i(int patchPrimaryDecomposition, ideal i, list #) |
---|
1992 | { |
---|
1993 | // |
---|
1994 | // parameter patchPrimaryDecomposition : if = 1, patch the decomposition( drop unit ideal in the decomposition), |
---|
1995 | // : if = 0, taken no special action in case the unit ideal is in the decomposition |
---|
1996 | // for other parameters see minAssPrimesold, minAssPrimesoldE |
---|
1997 | |
---|
1998 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1999 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2000 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
2001 | def @P=basering; |
---|
2002 | if(size(i)==0) { return(list(ideal(0))); } |
---|
2003 | list qr=simplifyIdeal(i); |
---|
2004 | map phi=@P,qr[2]; |
---|
2005 | i=qr[1]; |
---|
2006 | |
---|
2007 | def gnir=ring(ringlist(@P)); |
---|
2008 | setring gnir; |
---|
2009 | |
---|
2010 | ideal i=fetch(@P,i); |
---|
2011 | if(size(#)==0) |
---|
2012 | { |
---|
2013 | int @wr; |
---|
2014 | list tluser,@res; |
---|
2015 | list primary=decomp_i(patchPrimaryDecomposition,i,2); |
---|
2016 | |
---|
2017 | @res[1]=primary; |
---|
2018 | |
---|
2019 | tluser=union(@res); |
---|
2020 | |
---|
2021 | if (size(tluser)>0) |
---|
2022 | { |
---|
2023 | setring @P; |
---|
2024 | list @res=imap(gnir,tluser); |
---|
2025 | return(phi(@res)); |
---|
2026 | } |
---|
2027 | else |
---|
2028 | { |
---|
2029 | setring @P; |
---|
2030 | return(tluser); |
---|
2031 | } |
---|
2032 | } |
---|
2033 | list @res,empty; |
---|
2034 | ideal ser; |
---|
2035 | def op = option( get ); |
---|
2036 | option( redSB ); |
---|
2037 | list @pr=facstd(i); |
---|
2038 | //if(size(@pr)==1) |
---|
2039 | // { |
---|
2040 | // attrib(@pr[1],"isSB",1); |
---|
2041 | // if((dim(@pr[1])==0)&&(homog(@pr[1])==1)) |
---|
2042 | // { |
---|
2043 | // setring @P; |
---|
2044 | // list @res=maxideal(1); |
---|
2045 | // return(phi(@res)); |
---|
2046 | // } |
---|
2047 | // if(dim(@pr[1])>1) |
---|
2048 | // { |
---|
2049 | // setring @P; |
---|
2050 | // // kill gnir; |
---|
2051 | // execute ("ring gnir1 = ("+charstr(basering)+"), |
---|
2052 | // ("+varstr(basering)+"),(C,lp);"); |
---|
2053 | // ideal i=fetch(@P,i); |
---|
2054 | // list @pr=facstd(i); |
---|
2055 | // // ideal ser; |
---|
2056 | // setring gnir; |
---|
2057 | // @pr=fetch(gnir1,@pr); |
---|
2058 | // kill gnir1; |
---|
2059 | // } |
---|
2060 | // } |
---|
2061 | // option( noredSB ); |
---|
2062 | option( set, op ); |
---|
2063 | int j,k,odim,ndim,count; |
---|
2064 | attrib(@pr[1],"isSB",1); |
---|
2065 | if(#[1]==77) |
---|
2066 | { |
---|
2067 | odim=dim(@pr[1]); |
---|
2068 | count=1; |
---|
2069 | intvec pos; |
---|
2070 | pos[size(@pr)]=0; |
---|
2071 | for(j=2;j<=size(@pr);j++) |
---|
2072 | { |
---|
2073 | attrib(@pr[j],"isSB",1); |
---|
2074 | ndim=dim(@pr[j]); |
---|
2075 | if(ndim>odim) |
---|
2076 | { |
---|
2077 | for(k=count;k<j;k++) |
---|
2078 | { |
---|
2079 | pos[k]=1; |
---|
2080 | } |
---|
2081 | count=j; |
---|
2082 | odim=ndim; |
---|
2083 | } |
---|
2084 | if(ndim<odim) |
---|
2085 | { |
---|
2086 | pos[j]=1; |
---|
2087 | } |
---|
2088 | } |
---|
2089 | for(j=1;j<=size(@pr);j++) |
---|
2090 | { |
---|
2091 | if(pos[j]!=1) |
---|
2092 | { |
---|
2093 | @res[j]=decomp_i(patchPrimaryDecomposition,@pr[j],2); |
---|
2094 | } |
---|
2095 | else |
---|
2096 | { |
---|
2097 | @res[j]=empty; |
---|
2098 | } |
---|
2099 | } |
---|
2100 | } |
---|
2101 | else |
---|
2102 | { |
---|
2103 | ser=ideal(1); |
---|
2104 | for(j=1;j<=size(@pr);j++) |
---|
2105 | { |
---|
2106 | //@pr[j]; |
---|
2107 | //pause(); |
---|
2108 | @res[j]=decomp_i(patchPrimaryDecomposition,@pr[j],2); |
---|
2109 | // @res[j]=decomp_i(patchPrimaryDecomposition,@pr[j],2,@pr[j],ser); |
---|
2110 | // for(k=1;k<=size(@res[j]);k++) |
---|
2111 | // { |
---|
2112 | // ser=intersect(ser,@res[j][k]); |
---|
2113 | // } |
---|
2114 | } |
---|
2115 | } |
---|
2116 | |
---|
2117 | @res=union(@res); |
---|
2118 | setring @P; |
---|
2119 | list @res=imap(gnir,@res); |
---|
2120 | return(phi(@res)); |
---|
2121 | } |
---|
2122 | |
---|
2123 | |
---|
2124 | static proc primT(ideal i) |
---|
2125 | { |
---|
2126 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
2127 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2128 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2129 | |
---|
2130 | //assumes that all generators of i are irreducible |
---|
2131 | //i is standard basis |
---|
2132 | |
---|
2133 | attrib(i,"isSB",1); |
---|
2134 | int j=size(i); |
---|
2135 | int k; |
---|
2136 | while(j>0) |
---|
2137 | { |
---|
2138 | if(deg(i[j])>1){break;} |
---|
2139 | j--; |
---|
2140 | } |
---|
2141 | if(j==0){return(1);} |
---|
2142 | if(deg(i[j])==vdim(i)){return(1);} |
---|
2143 | return(0); |
---|
2144 | } |
---|
2145 | |
---|
2146 | |
---|
2147 | static proc minAssPrimesE(ideal I, list #) |
---|
2148 | "USAGE: minAssPrimesE(I); I ideal |
---|
2149 | Optional parameters in list #: (can be entered in any order) |
---|
2150 | 0, "facstd" -> uses facstd to first decompose the ideal |
---|
2151 | 1, "noFacstd" -> does not use facstd (default) |
---|
2152 | "SL" -> the new algorithm is used (default) |
---|
2153 | "GTZ" -> the old algorithm is used |
---|
2154 | RETURN: list = the minimal associated prime ideals of I |
---|
2155 | EXAMPLE: example minAssPrimesE; shows an example |
---|
2156 | " |
---|
2157 | { |
---|
2158 | return(minAssPrimes_i(int(1),I,#)); |
---|
2159 | } |
---|
2160 | example |
---|
2161 | { "EXAMPLE:"; echo = 2; |
---|
2162 | ring r = 32003,(x,y,z),lp; |
---|
2163 | poly p = z2+1; |
---|
2164 | poly q = z4+2; |
---|
2165 | ideal I = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
2166 | list pr= minAssPrimesE(I); pr; |
---|
2167 | |
---|
2168 | minAssPrimesE(I,1); |
---|
2169 | } |
---|
2170 | |
---|
2171 | static proc minAssPrimes(ideal I, list #) |
---|
2172 | "USAGE: minAssPrimes(I); I ideal |
---|
2173 | Optional parameters in list #: (can be entered in any order) |
---|
2174 | 0, "facstd" -> uses facstd to first decompose the ideal |
---|
2175 | 1, "noFacstd" -> does not use facstd (default) |
---|
2176 | "SL" -> the new algorithm is used (default) |
---|
2177 | "GTZ" -> the old algorithm is used |
---|
2178 | RETURN: list = the minimal associated prime ideals of I. If I is the unit ideal returns list(ideal(1)) ; |
---|
2179 | NOTE: deprecated. Use 'minAssPrimesE()' |
---|
2180 | EXAMPLE: example minAssPrimes; shows an example |
---|
2181 | " |
---|
2182 | { |
---|
2183 | return(minAssPrimes_i(int(0),I,#)); |
---|
2184 | } |
---|
2185 | example |
---|
2186 | { "EXAMPLE:"; echo = 2; |
---|
2187 | ring r = 32003,(x,y,z),lp; |
---|
2188 | poly p = z2+1; |
---|
2189 | poly q = z4+2; |
---|
2190 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
2191 | list pr= minAssPrimes(i); pr; |
---|
2192 | |
---|
2193 | minAssPrimes(i,1); |
---|
2194 | } |
---|
2195 | |
---|
2196 | |
---|
2197 | static proc minAssPrimes_i(int patchPrimaryDecomposition, ideal i, list #) |
---|
2198 | { |
---|
2199 | // parameter patchPrimaryDecomposition: 1 to patch( remove unit ideal from the decomposition) , |
---|
2200 | // 0 for no special action on unit ideal. |
---|
2201 | // for other parameters see 'minAssPrimes', 'minAssPrimesE' |
---|
2202 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
2203 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2204 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2205 | if (size(i) == 0) { return(list(ideal(0))); } |
---|
2206 | |
---|
2207 | intvec origOp = option(get); |
---|
2208 | |
---|
2209 | string algorithm; // Algorithm to be used |
---|
2210 | string facstdOption; // To uses proc facstd |
---|
2211 | int j; // Counter |
---|
2212 | def P0 = basering; |
---|
2213 | list Pl=ringlist(P0); |
---|
2214 | intvec dp_w; |
---|
2215 | for(j=nvars(P0);j>0;j--) {dp_w[j]=1;} |
---|
2216 | Pl[3]=list(list("dp",dp_w),list("C",0)); |
---|
2217 | def P=ring(Pl); |
---|
2218 | setring P; |
---|
2219 | ideal i=imap(P0,i); |
---|
2220 | |
---|
2221 | // Set input parameters |
---|
2222 | algorithm = "SL"; // Default: SL algorithm |
---|
2223 | facstdOption = "Facstd"; // Default: facstd is not used |
---|
2224 | if(size(#) > 0) |
---|
2225 | { |
---|
2226 | int valid; |
---|
2227 | for(j = 1; j <= size(#); j++) |
---|
2228 | { |
---|
2229 | valid = 0; |
---|
2230 | if((typeof(#[j]) == "int") or (typeof(#[j]) == "number")) |
---|
2231 | { |
---|
2232 | if (#[j] == 0) {facstdOption = "noFacstd"; valid = 1;} // If #[j] == 0, facstd is not used. |
---|
2233 | if (#[j] == 1) {facstdOption = "facstd"; valid = 1;} // If #[j] == 1, facstd is used. |
---|
2234 | } |
---|
2235 | if(typeof(#[j]) == "string") |
---|
2236 | { |
---|
2237 | if(#[j] == "GTZ" || #[j] == "SL") |
---|
2238 | { |
---|
2239 | algorithm = #[j]; |
---|
2240 | valid = 1; |
---|
2241 | } |
---|
2242 | if(#[j] == "noFacstd" || #[j] == "facstd") |
---|
2243 | { |
---|
2244 | facstdOption = #[j]; |
---|
2245 | valid = 1; |
---|
2246 | } |
---|
2247 | } |
---|
2248 | if(valid == 0) |
---|
2249 | { |
---|
2250 | dbprint(1, "Warning! The following input parameter was not recognized:", #[j]); |
---|
2251 | } |
---|
2252 | } |
---|
2253 | } |
---|
2254 | |
---|
2255 | list q = simplifyIdeal(i); |
---|
2256 | list re = maxideal(1); |
---|
2257 | int a, k; |
---|
2258 | intvec op = option(get); |
---|
2259 | map phi = P,q[2]; |
---|
2260 | |
---|
2261 | list result; |
---|
2262 | |
---|
2263 | if(npars(P) == 0) { option(redSB); } |
---|
2264 | |
---|
2265 | if (attrib(i,"isSB")!=1) |
---|
2266 | { |
---|
2267 | i=groebner(q[1]); |
---|
2268 | } |
---|
2269 | else |
---|
2270 | { |
---|
2271 | for(j=1;j<=nvars(basering);j++) |
---|
2272 | { |
---|
2273 | if (q[2][j]!=var(j)) {k=1;break;} |
---|
2274 | } |
---|
2275 | if(k) |
---|
2276 | { |
---|
2277 | i=groebner(q[1]); |
---|
2278 | } |
---|
2279 | } |
---|
2280 | if(size(i)==1) |
---|
2281 | { |
---|
2282 | if ( deg(lead(i[1]))==0 ) // we have the unit ideal. |
---|
2283 | { |
---|
2284 | setring P0; |
---|
2285 | option( set,origOp ); |
---|
2286 | if (patchPrimaryDecomposition==1) |
---|
2287 | { |
---|
2288 | |
---|
2289 | return( list() ); |
---|
2290 | } |
---|
2291 | else |
---|
2292 | { |
---|
2293 | return( list(ideal(1)) ); |
---|
2294 | } |
---|
2295 | } |
---|
2296 | } |
---|
2297 | |
---|
2298 | if( dim(i) == -1 ) |
---|
2299 | { |
---|
2300 | option( set,op ); |
---|
2301 | setring P0; |
---|
2302 | option( set,origOp ); |
---|
2303 | return( ideal(1) ); |
---|
2304 | } |
---|
2305 | if( (dim(i) == 0 ) && ( npars(P) == 0) ) |
---|
2306 | { |
---|
2307 | int di = vdim(i); |
---|
2308 | def gnir=changeordTo(P,"lp"); |
---|
2309 | setring gnir; |
---|
2310 | ideal J = std(imap(P,i)); |
---|
2311 | attrib(J, "isSB", 1); |
---|
2312 | if(vdim(J) != di) |
---|
2313 | { |
---|
2314 | J = fglm(P, i); |
---|
2315 | } |
---|
2316 | // list pr = triangMH(J,2); HIER KOENNEN verschiedene Mengen zu gleichen |
---|
2317 | // asoziierten Primidealen fuehren |
---|
2318 | // Aenderung |
---|
2319 | list pr = triangMH(J,2); |
---|
2320 | list qr, re; |
---|
2321 | for(k = 1; k <= size(pr); k++) |
---|
2322 | { |
---|
2323 | if(primT(pr[k])&&(0)) |
---|
2324 | { |
---|
2325 | re[size(re) + 1] = pr[k]; |
---|
2326 | } |
---|
2327 | else |
---|
2328 | { |
---|
2329 | attrib(pr[k], "isSB", 1); |
---|
2330 | // Lines changed |
---|
2331 | if (algorithm == "GTZ") |
---|
2332 | { |
---|
2333 | qr = decomp_i(patchPrimaryDecomposition,pr[k], 2); |
---|
2334 | } |
---|
2335 | else |
---|
2336 | { |
---|
2337 | qr = minAssSL(pr[k]); |
---|
2338 | } |
---|
2339 | for(j = 1; j <= size(qr) div 2; j++) |
---|
2340 | { |
---|
2341 | re[size(re) + 1] = std(qr[2 * j]); |
---|
2342 | } |
---|
2343 | } |
---|
2344 | } |
---|
2345 | setring P; |
---|
2346 | re = imap(gnir, re); |
---|
2347 | re=phi(re); |
---|
2348 | option(set, op); |
---|
2349 | setring(P0); |
---|
2350 | list re=imap(P,re); |
---|
2351 | option( set,origOp ); |
---|
2352 | return(re); |
---|
2353 | } |
---|
2354 | |
---|
2355 | // Lines changed |
---|
2356 | if ((facstdOption == "noFacstd") || (dim(i) == 0)) |
---|
2357 | { |
---|
2358 | if (algorithm == "GTZ") |
---|
2359 | { |
---|
2360 | re[1] = decomp_i(patchPrimaryDecomposition,i, 2); |
---|
2361 | } |
---|
2362 | else |
---|
2363 | { |
---|
2364 | re[1] = minAssSL(i); |
---|
2365 | } |
---|
2366 | re = union(re); |
---|
2367 | option(set, op); |
---|
2368 | re=phi(re); |
---|
2369 | setring(P0); |
---|
2370 | option( set,origOp ); |
---|
2371 | list re=imap(P,re); |
---|
2372 | return(re); |
---|
2373 | } |
---|
2374 | q = facstd(i); |
---|
2375 | |
---|
2376 | /* |
---|
2377 | if((size(q) == 1) && (dim(i) > 1)) |
---|
2378 | { |
---|
2379 | execute ("ring gnir=("+charstr(P)+"),("+varstr(P)+"),lp;"); |
---|
2380 | list p = facstd(fetch(P, i)); |
---|
2381 | if(size(p) > 1) |
---|
2382 | { |
---|
2383 | a = 1; |
---|
2384 | setring P; |
---|
2385 | q = fetch(gnir,p); |
---|
2386 | } |
---|
2387 | else |
---|
2388 | { |
---|
2389 | setring P; |
---|
2390 | } |
---|
2391 | kill gnir; |
---|
2392 | } |
---|
2393 | */ |
---|
2394 | option(set,op); |
---|
2395 | // Debug |
---|
2396 | dbprint(printlevel - voice, "Components returned by facstd", size(q), q); |
---|
2397 | for(j = 1; j <= size(q); j++) |
---|
2398 | { |
---|
2399 | if(a == 0){attrib(q[j], "isSB", 1);} |
---|
2400 | // Debug |
---|
2401 | dbprint(printlevel - voice, "We compute the decomp of component", j); |
---|
2402 | // Lines changed |
---|
2403 | if (algorithm == "GTZ") |
---|
2404 | { |
---|
2405 | re[j] = decomp_i(patchPrimaryDecomposition,q[j], 2); |
---|
2406 | } |
---|
2407 | else |
---|
2408 | { |
---|
2409 | re[j] = minAssSL(q[j]); |
---|
2410 | } |
---|
2411 | // Debug |
---|
2412 | dbprint(printlevel - voice, "Number of components obtained for this component:", size(re[j]) div 2); |
---|
2413 | dbprint(printlevel - voice, "re[j]:", re[j]); |
---|
2414 | } |
---|
2415 | re = union(re); |
---|
2416 | re=phi(re); |
---|
2417 | setring(P0); |
---|
2418 | list re=imap(P,re); |
---|
2419 | option( set,origOp ); |
---|
2420 | return(re); |
---|
2421 | } |
---|
2422 | |
---|
2423 | |
---|
2424 | static proc union(list li) |
---|
2425 | { |
---|
2426 | int i,j,k; |
---|
2427 | |
---|
2428 | def P=basering; |
---|
2429 | |
---|
2430 | int liSize=size(li); |
---|
2431 | int li1Size=0; |
---|
2432 | if (size(li)>0) |
---|
2433 | { |
---|
2434 | li1Size=size(li[1]); |
---|
2435 | } |
---|
2436 | def ir=changeordTo(basering,"lp"); |
---|
2437 | setring ir; |
---|
2438 | list l; |
---|
2439 | if ( liSize > 0) |
---|
2440 | { |
---|
2441 | if (li1Size > 0) |
---|
2442 | { |
---|
2443 | l = fetch(P,li); |
---|
2444 | } |
---|
2445 | else |
---|
2446 | { |
---|
2447 | ASSUME(1, size(li)==1); |
---|
2448 | l[1] = list(); |
---|
2449 | } |
---|
2450 | } |
---|
2451 | list @erg; |
---|
2452 | |
---|
2453 | for(k=1;k<=size(l);k++) |
---|
2454 | { |
---|
2455 | for(j=1;j<=size(l[k]) div 2;j++) |
---|
2456 | { |
---|
2457 | if(deg(l[k][2*j][1])!=0) |
---|
2458 | { |
---|
2459 | i++; |
---|
2460 | @erg[i]=l[k][2*j]; |
---|
2461 | } |
---|
2462 | } |
---|
2463 | } |
---|
2464 | |
---|
2465 | list @wos; |
---|
2466 | i=0; |
---|
2467 | ideal i1,i2; |
---|
2468 | while(i<size(@erg)-1) |
---|
2469 | { |
---|
2470 | i++; |
---|
2471 | k=i+1; |
---|
2472 | i1=lead(@erg[i]); |
---|
2473 | attrib(i1,"isSB",1); |
---|
2474 | attrib(@erg[i],"isSB",1); |
---|
2475 | |
---|
2476 | while(k<=size(@erg)) |
---|
2477 | { |
---|
2478 | if(deg(@erg[i][1])==0) |
---|
2479 | { |
---|
2480 | break; |
---|
2481 | } |
---|
2482 | i2=lead(@erg[k]); |
---|
2483 | attrib(@erg[k],"isSB",1); |
---|
2484 | attrib(i2,"isSB",1); |
---|
2485 | |
---|
2486 | if(size(reduce(i1,i2,1))==0) |
---|
2487 | { |
---|
2488 | if(size(reduce(@erg[i],@erg[k],1))==0) |
---|
2489 | { |
---|
2490 | @erg[k]=ideal(1); |
---|
2491 | i2=ideal(1); |
---|
2492 | } |
---|
2493 | } |
---|
2494 | if(size(reduce(i2,i1,1))==0) |
---|
2495 | { |
---|
2496 | if(size(reduce(@erg[k],@erg[i],1))==0) |
---|
2497 | { |
---|
2498 | break; |
---|
2499 | } |
---|
2500 | } |
---|
2501 | k++; |
---|
2502 | if(k>size(@erg)) |
---|
2503 | { |
---|
2504 | @wos[size(@wos)+1]=@erg[i]; |
---|
2505 | } |
---|
2506 | } |
---|
2507 | } |
---|
2508 | if (size(@erg)>0) |
---|
2509 | { |
---|
2510 | if(deg(@erg[size(@erg)][1])!=0) |
---|
2511 | { |
---|
2512 | @wos[size(@wos)+1]=@erg[size(@erg)]; |
---|
2513 | } |
---|
2514 | } |
---|
2515 | int @wosSize = size(@wos); |
---|
2516 | setring P; |
---|
2517 | list @ser; |
---|
2518 | if (@wosSize>0) |
---|
2519 | { |
---|
2520 | @ser=fetch(ir,@wos); |
---|
2521 | } |
---|
2522 | return(@ser); |
---|
2523 | } |
---|
2524 | |
---|
2525 | |
---|
2526 | |
---|
2527 | |
---|
2528 | proc equidim(ideal i,list #) |
---|
2529 | "USAGE: equidim(I) or equidim(I,1) ; I ideal |
---|
2530 | RETURN: list of equidimensional ideals a[1],...,a[s] with: |
---|
2531 | - a[s] the equidimensional locus of I, i.e. the intersection |
---|
2532 | of the primary ideals of dimension of I, except I is unit ideal. |
---|
2533 | - a[1],...,a[s-1] the lower dimensional equidimensional loci. |
---|
2534 | If I is the unit ideal, a list containing the unit ideal as a[1] is returned. |
---|
2535 | NOTE: An embedded component q (primary ideal) of I can be replaced in the |
---|
2536 | decomposition by a primary ideal q1 with the same radical as q. @* |
---|
2537 | @code{equidim(I,1)} uses the algorithm of Eisenbud/Huneke/Vasconcelos. |
---|
2538 | |
---|
2539 | EXAMPLE:example equidim; shows an example |
---|
2540 | " |
---|
2541 | { |
---|
2542 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
2543 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2544 | if(attrib(basering,"global")!=1) |
---|
2545 | { |
---|
2546 | ERROR( |
---|
2547 | "// Not implemented for this ordering, please change to global ordering." |
---|
2548 | ); |
---|
2549 | } |
---|
2550 | intvec op ; |
---|
2551 | def P = basering; |
---|
2552 | list eq; |
---|
2553 | intvec w; |
---|
2554 | int n,m; |
---|
2555 | int g=size(i); |
---|
2556 | int a=attrib(i,"isSB"); |
---|
2557 | int homo=homog(i); |
---|
2558 | if(size(#)!=0) |
---|
2559 | { |
---|
2560 | m=1; |
---|
2561 | } |
---|
2562 | |
---|
2563 | if(((homo==1)||(a==1))&&(find(ordstr(basering),"l")==0) |
---|
2564 | &&(find(ordstr(basering),"s")==0)) |
---|
2565 | { |
---|
2566 | def gnir=ring(ringlist(basering)); |
---|
2567 | setring gnir; |
---|
2568 | ideal i=imap(P,i); |
---|
2569 | ideal j=i; |
---|
2570 | if(a==1) |
---|
2571 | { |
---|
2572 | attrib(j,"isSB",1); |
---|
2573 | } |
---|
2574 | else |
---|
2575 | { |
---|
2576 | j=groebner(i); |
---|
2577 | } |
---|
2578 | } |
---|
2579 | else |
---|
2580 | { |
---|
2581 | def gnir=changeordTo(basering,"dp"); |
---|
2582 | setring gnir; |
---|
2583 | ideal i=imap(P,i); |
---|
2584 | ideal j=groebner(i); |
---|
2585 | } |
---|
2586 | if(homo==1) |
---|
2587 | { |
---|
2588 | for(n=1;n<=nvars(basering);n++) |
---|
2589 | { |
---|
2590 | w[n]=ord(var(n)); |
---|
2591 | } |
---|
2592 | intvec hil=hilb(j,1,w); |
---|
2593 | } |
---|
2594 | |
---|
2595 | if ((dim(j)==-1)||(size(j)==0)||(nvars(basering)==1) |
---|
2596 | ||(dim(j)==0)||(dim(j)+g==nvars(basering))) |
---|
2597 | { |
---|
2598 | setring P; |
---|
2599 | eq[1]=i; |
---|
2600 | return(eq); |
---|
2601 | } |
---|
2602 | |
---|
2603 | if(m==0) |
---|
2604 | { |
---|
2605 | ideal k=equidimMax(j); |
---|
2606 | } |
---|
2607 | else |
---|
2608 | { |
---|
2609 | ideal k=equidimMaxEHV(j); |
---|
2610 | } |
---|
2611 | if(size(reduce(k,j,1))==0) |
---|
2612 | { |
---|
2613 | setring P; |
---|
2614 | eq[1]=i; |
---|
2615 | kill gnir; |
---|
2616 | return(eq); |
---|
2617 | } |
---|
2618 | op=option(get); |
---|
2619 | option(returnSB); |
---|
2620 | j=quotient(j,k); |
---|
2621 | option(set,op); |
---|
2622 | |
---|
2623 | list equi=equidim(j); |
---|
2624 | if(deg(equi[size(equi)][1])<=0) |
---|
2625 | { |
---|
2626 | equi[size(equi)]=k; |
---|
2627 | } |
---|
2628 | else |
---|
2629 | { |
---|
2630 | equi[size(equi)+1]=k; |
---|
2631 | } |
---|
2632 | setring P; |
---|
2633 | eq=imap(gnir,equi); |
---|
2634 | kill gnir; |
---|
2635 | return(eq); |
---|
2636 | } |
---|
2637 | example |
---|
2638 | { "EXAMPLE:"; echo = 2; |
---|
2639 | ring r = 32003,(x,y,z),dp; |
---|
2640 | ideal i = intersect(ideal(z),ideal(x,y),ideal(x2,z2),ideal(x5,y5,z5)); |
---|
2641 | equidim(i); |
---|
2642 | } |
---|
2643 | |
---|
2644 | /////////////////////////////////////////////////////////////////////////////// |
---|
2645 | proc equidimMax(ideal i) |
---|
2646 | "USAGE: equidimMax(i); i ideal |
---|
2647 | RETURN: ideal of equidimensional locus (of maximal dimension) of i. |
---|
2648 | EXAMPLE: example equidimMax; shows an example |
---|
2649 | " |
---|
2650 | { |
---|
2651 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
2652 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2653 | if(attrib(basering,"global")!=1) |
---|
2654 | { |
---|
2655 | ERROR( |
---|
2656 | "Not implemented for this ordering, please change to a global ordering." |
---|
2657 | ); |
---|
2658 | } |
---|
2659 | |
---|
2660 | def P = basering; |
---|
2661 | ideal eq; |
---|
2662 | intvec w; |
---|
2663 | int n; |
---|
2664 | int g=size(i); |
---|
2665 | int a=attrib(i,"isSB"); |
---|
2666 | int homo=homog(i); |
---|
2667 | |
---|
2668 | if(((homo==1)||(a==1))&&(find(ordstr(basering),"l")==0) |
---|
2669 | &&(find(ordstr(basering),"s")==0)) |
---|
2670 | { |
---|
2671 | def gnir=ring(ringlist(basering)); |
---|
2672 | setring gnir; |
---|
2673 | ideal i=imap(P,i); |
---|
2674 | ideal j=i; |
---|
2675 | if(a==1) |
---|
2676 | { |
---|
2677 | attrib(j,"isSB",1); |
---|
2678 | } |
---|
2679 | else |
---|
2680 | { |
---|
2681 | j=groebner(i); |
---|
2682 | } |
---|
2683 | } |
---|
2684 | else |
---|
2685 | { |
---|
2686 | def gnir=changeordTo(basering,"dp"); |
---|
2687 | setring gnir; |
---|
2688 | ideal i=imap(P,i); |
---|
2689 | ideal j=groebner(i); |
---|
2690 | } |
---|
2691 | list indep; |
---|
2692 | ideal equ,equi; |
---|
2693 | if(homo==1) |
---|
2694 | { |
---|
2695 | for(n=1;n<=nvars(basering);n++) |
---|
2696 | { |
---|
2697 | w[n]=ord(var(n)); |
---|
2698 | } |
---|
2699 | intvec hil=hilb(j,1,w); |
---|
2700 | } |
---|
2701 | if ((dim(j)==-1)||(size(j)==0)||(nvars(basering)==1) |
---|
2702 | ||(dim(j)==0)||(dim(j)+g==nvars(basering))) |
---|
2703 | { |
---|
2704 | setring P; |
---|
2705 | return(i); |
---|
2706 | } |
---|
2707 | |
---|
2708 | indep=maxIndependSet(j); |
---|
2709 | |
---|
2710 | execute("ring gnir1 = ("+charstr(basering)+"),("+indep[1][1]+"),(" |
---|
2711 | +indep[1][2]+");"); |
---|
2712 | if(homo==1) |
---|
2713 | { |
---|
2714 | ideal j=std(imap(gnir,j),hil,w); |
---|
2715 | } |
---|
2716 | else |
---|
2717 | { |
---|
2718 | ideal j=groebner(imap(gnir,j)); |
---|
2719 | } |
---|
2720 | def quotring=prepareQuotientring(nvars(basering)-indep[1][3],"lp"); |
---|
2721 | setring quotring; |
---|
2722 | ideal j=imap(gnir1,j); |
---|
2723 | kill gnir1; |
---|
2724 | j=clearSB(j); |
---|
2725 | ideal h; |
---|
2726 | for(n=1;n<=size(j);n++) |
---|
2727 | { |
---|
2728 | h[n]=leadcoef(j[n]); |
---|
2729 | } |
---|
2730 | setring gnir; |
---|
2731 | ideal h=imap(quotring,h); |
---|
2732 | kill quotring; |
---|
2733 | |
---|
2734 | list l=minSat(j,h); |
---|
2735 | |
---|
2736 | if(deg(l[2])>0) |
---|
2737 | { |
---|
2738 | equ=l[1]; |
---|
2739 | attrib(equ,"isSB",1); |
---|
2740 | j=std(j,l[2]); |
---|
2741 | |
---|
2742 | if(dim(equ)==dim(j)) |
---|
2743 | { |
---|
2744 | equi=equidimMax(j); |
---|
2745 | equ=interred(intersect(equ,equi)); |
---|
2746 | } |
---|
2747 | } |
---|
2748 | else |
---|
2749 | { |
---|
2750 | equ=i; |
---|
2751 | } |
---|
2752 | |
---|
2753 | setring P; |
---|
2754 | eq=imap(gnir,equ); |
---|
2755 | kill gnir; |
---|
2756 | return(eq); |
---|
2757 | } |
---|
2758 | example |
---|
2759 | { "EXAMPLE:"; echo = 2; |
---|
2760 | ring r = 32003,(x,y,z),dp; |
---|
2761 | ideal i = intersect(ideal(z),ideal(x,y),ideal(x2,z2),ideal(x5,y5,z5)); |
---|
2762 | equidimMax(i); |
---|
2763 | } |
---|
2764 | /////////////////////////////////////////////////////////////////////////////// |
---|
2765 | static proc islp() |
---|
2766 | { |
---|
2767 | string s=ordstr(basering); |
---|
2768 | int n=find(s,"lp"); |
---|
2769 | if(!n){return(0);} |
---|
2770 | int k=find(s,","); |
---|
2771 | string t=s[k+1..size(s)]; |
---|
2772 | int l=find(t,","); |
---|
2773 | t=s[1..k-1]; |
---|
2774 | int m=find(t,","); |
---|
2775 | if(l+m){return(0);} |
---|
2776 | return(1); |
---|
2777 | } |
---|
2778 | /////////////////////////////////////////////////////////////////////////////// |
---|
2779 | //w=0: GTZ |
---|
2780 | //w=1: SY |
---|
2781 | //w=2: minAss |
---|
2782 | proc algeDecoE(ideal I, int w) |
---|
2783 | {//reduces primery decomposition over algebraic extensions to |
---|
2784 | //the other cases |
---|
2785 | return( algeDeco_i( int(1), I, int w) ); |
---|
2786 | } |
---|
2787 | |
---|
2788 | //w=0: GTZ |
---|
2789 | //w=1: SY |
---|
2790 | //w=2: minAss |
---|
2791 | // deprecated. use 'algeDecoE()' |
---|
2792 | proc algeDeco(ideal I, int w) |
---|
2793 | {//reduces primery decomposition over algebraic extensions to |
---|
2794 | //the other cases |
---|
2795 | return( algeDeco_i(int(0), I, int w)); |
---|
2796 | } |
---|
2797 | |
---|
2798 | |
---|
2799 | //w=0: GTZ |
---|
2800 | //w=1: SY |
---|
2801 | //w=2: minAss |
---|
2802 | static proc algeDeco_i(int patchPrimaryDecomposition, ideal i, int w) |
---|
2803 | {//reduces primery decomposition over algebraic extensions to |
---|
2804 | //the other cases |
---|
2805 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
2806 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
2807 | |
---|
2808 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
2809 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2810 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
2811 | |
---|
2812 | // the really needed things: |
---|
2813 | ASSUME(1, typeof(ringlist(basering)[1])=="list"); // in alg. extension |
---|
2814 | |
---|
2815 | //reduces primery decomposition over algebraic extensions to |
---|
2816 | //the other cases |
---|
2817 | def R=basering; |
---|
2818 | int n=nvars(R); |
---|
2819 | |
---|
2820 | def op = option(get); |
---|
2821 | |
---|
2822 | //---Anfang Provisorium |
---|
2823 | if((size(i)==2) && (w==2)) |
---|
2824 | { |
---|
2825 | //treats a special case separately which would otherwise take a lot longer in factorization |
---|
2826 | option( redSB ); |
---|
2827 | ideal J = std(i); |
---|
2828 | option( set, op ); |
---|
2829 | if(size(J)==1) |
---|
2830 | { |
---|
2831 | if ( deg(lead(J[1]))==0 ) // we have the unit ideal |
---|
2832 | { |
---|
2833 | if (patchPrimaryDecomposition==1) |
---|
2834 | { |
---|
2835 | return( list() ); |
---|
2836 | } |
---|
2837 | else |
---|
2838 | { |
---|
2839 | return( list( ideal(1) ) ); |
---|
2840 | } |
---|
2841 | } |
---|
2842 | } |
---|
2843 | if ((size(J)==2)&&(deg(J[1])==1)) |
---|
2844 | { |
---|
2845 | // minAssPrimes correspond to factorization of J[2] |
---|
2846 | ideal keep; |
---|
2847 | poly f; |
---|
2848 | int j; |
---|
2849 | for(j=1;j<=nvars(basering);j++) |
---|
2850 | { |
---|
2851 | f=J[2]; |
---|
2852 | while((f/var(j))*var(j)-f==0) |
---|
2853 | { |
---|
2854 | f=f/var(j); |
---|
2855 | keep=keep,var(j); |
---|
2856 | } |
---|
2857 | J[2]=f; |
---|
2858 | } |
---|
2859 | ideal K=factorize(J[2],1); |
---|
2860 | if(deg(K[1])==0){K=0;} |
---|
2861 | K=K+std(keep); |
---|
2862 | ideal L; |
---|
2863 | list resu; |
---|
2864 | for(j=1;j<=size(K);j++) |
---|
2865 | { |
---|
2866 | L=J[1],K[j]; |
---|
2867 | resu[j]=L; |
---|
2868 | } |
---|
2869 | option( set, op ); |
---|
2870 | return(resu); |
---|
2871 | } |
---|
2872 | } |
---|
2873 | //---Ende Provisorium |
---|
2874 | list R_l=ringlist(R); |
---|
2875 | ideal @p=R_l[1][4]; // minpoly |
---|
2876 | R_l[2]=R_l[2]+R_l[1][2]; // vars |
---|
2877 | R_l[1]=R_l[1][1]; // char |
---|
2878 | R_l[3]=list(list("dp",1:size(R_l[2])),list("C",0)); // ord |
---|
2879 | def RH=ring(R_l); kill R_l;setring RH; |
---|
2880 | ideal @pp=imap(R,@p); poly @p=@pp[1]; |
---|
2881 | ideal i=imap(R,i); |
---|
2882 | ideal I=subst(i,var(nvars(basering)),0); |
---|
2883 | int j; |
---|
2884 | for(j=1;j<=ncols(i);j++) |
---|
2885 | { |
---|
2886 | if(i[j]!=I[j]){break;} |
---|
2887 | } |
---|
2888 | if((j>ncols(i))&&(deg(@p)==1)) |
---|
2889 | { |
---|
2890 | setring R; |
---|
2891 | kill RH; |
---|
2892 | // remove extension, set order to dp: |
---|
2893 | list R_l=ringlist(R); |
---|
2894 | R_l[1]=R_l[1][1]; // char |
---|
2895 | R_l[3]=list(list("dp",1:nvars(R)),list("C",0)); // ord |
---|
2896 | def RH=ring(R_l); kill R_l; setring RH; |
---|
2897 | ideal i=imap(R,i); |
---|
2898 | ideal J; |
---|
2899 | } |
---|
2900 | else |
---|
2901 | { |
---|
2902 | i=i,@p; |
---|
2903 | } |
---|
2904 | list pr; |
---|
2905 | |
---|
2906 | if(w==0) |
---|
2907 | { |
---|
2908 | pr=decomp_i(patchPrimaryDecomposition,i); |
---|
2909 | } |
---|
2910 | if(w==1) |
---|
2911 | { |
---|
2912 | pr=prim_dec_i(patchPrimaryDecomposition,i,1); |
---|
2913 | pr=reconvList(pr); |
---|
2914 | } |
---|
2915 | if(w==2) |
---|
2916 | { |
---|
2917 | pr=minAssPrimes_i(patchPrimaryDecomposition,i); |
---|
2918 | } |
---|
2919 | |
---|
2920 | int sizepr = size(pr); |
---|
2921 | |
---|
2922 | if(n<nvars(basering)) |
---|
2923 | { |
---|
2924 | // remove extension, set order to dp(n),lp: |
---|
2925 | list R_l=ringlist(basering); |
---|
2926 | if (typeof(R_l[1])=="list") { R_l[1]=R_l[1][1]; } |
---|
2927 | R_l[3]=list(list("dp",1:n),list("lp",1:(nvars(basering)-n)),list("C",0)); |
---|
2928 | def RS=ring(R_l); kill R_l; setring RS; |
---|
2929 | if (sizepr>0) { list pr=imap(RH,pr); ASSUME(1, sizepr == size(pr)); } |
---|
2930 | ideal K; |
---|
2931 | for(j=1;j<=sizepr;j++) |
---|
2932 | { |
---|
2933 | K=groebner(pr[j]); |
---|
2934 | if (size(K)>1) |
---|
2935 | { |
---|
2936 | K = K[2..size(K)]; |
---|
2937 | } |
---|
2938 | pr[j]=K; |
---|
2939 | } |
---|
2940 | setring R; |
---|
2941 | if (sizepr>0) { list pr=imap(RS,pr); } |
---|
2942 | } |
---|
2943 | else |
---|
2944 | { |
---|
2945 | setring R; |
---|
2946 | if (sizepr>0) { list pr=imap(RH,pr); } |
---|
2947 | } |
---|
2948 | |
---|
2949 | list re; |
---|
2950 | if(w==2) |
---|
2951 | { |
---|
2952 | re=pr; |
---|
2953 | } |
---|
2954 | else |
---|
2955 | { |
---|
2956 | re=convList(pr); |
---|
2957 | } |
---|
2958 | option( set, op ); |
---|
2959 | return( re ); |
---|
2960 | } |
---|
2961 | /////////////////////////////////////////////////////////////////////////////// |
---|
2962 | static proc prepare_absprimdec(list primary) |
---|
2963 | { |
---|
2964 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2965 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2966 | |
---|
2967 | list resu,tempo; |
---|
2968 | string absotto; |
---|
2969 | resu[size(primary) div 2]=list(); |
---|
2970 | for(int ab=1;ab<=size(primary) div 2;ab++) |
---|
2971 | { |
---|
2972 | absotto= absFactorize(primary[2*ab][1],77); |
---|
2973 | tempo=primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
2974 | resu[ab]=tempo; |
---|
2975 | } |
---|
2976 | return(resu); |
---|
2977 | } |
---|
2978 | /////////////////////////////////////////////////////////////////////////////// |
---|
2979 | |
---|
2980 | static proc decompE(ideal I,list #) |
---|
2981 | "USAGE: decompE(I); I ideal (for primary decomposition) (resp. |
---|
2982 | decompE(I,1); (for the associated primes of dimension of I) ) |
---|
2983 | decompE(I,2); (for the minimal associated primes) ) |
---|
2984 | decompE(I,3); (for the absolute primary decomposition) ) |
---|
2985 | RETURN: list = list of primary ideals and their associated primes |
---|
2986 | (at even positions in the list) |
---|
2987 | (resp. a list of the minimal associated primes) |
---|
2988 | if I is unit ideal, returns emtpy list |
---|
2989 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
2990 | EXAMPLE: example decompE; shows an example |
---|
2991 | " |
---|
2992 | { |
---|
2993 | return(decomp_i(int(1),I,#)); |
---|
2994 | } |
---|
2995 | example |
---|
2996 | { "EXAMPLE:"; echo = 2; |
---|
2997 | ring r = 32003,(x,y,z),lp; |
---|
2998 | poly p = z2+1; |
---|
2999 | poly q = z4+2; |
---|
3000 | ideal I = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
3001 | list pr= decompE(I); |
---|
3002 | pr; |
---|
3003 | testPrimary( pr, I); |
---|
3004 | } |
---|
3005 | |
---|
3006 | static proc decomp(ideal I,list #) |
---|
3007 | "USAGE: decomp(I); I ideal (for primary decomposition) (resp. |
---|
3008 | decomp(I,1); (for the associated primes of dimension of I) ) |
---|
3009 | decomp(I,2); (for the minimal associated primes) ) |
---|
3010 | decomp(I,3); (for the absolute primary decomposition) ) |
---|
3011 | RETURN: list = list of primary ideals and their associated primes |
---|
3012 | (at even positions in the list) |
---|
3013 | (resp. a list of the minimal associated primes) |
---|
3014 | if I is unit ideal, returns list(ideal(1),ideal(1)) ( resp. list(ideal(1))) |
---|
3015 | NOTE: deprecated. Use 'decompE()' |
---|
3016 | EXAMPLE: example decomp; shows an example |
---|
3017 | " |
---|
3018 | { |
---|
3019 | return(decomp_i(int(0),I,#)); |
---|
3020 | } |
---|
3021 | example |
---|
3022 | { "EXAMPLE:"; echo = 2; |
---|
3023 | ring r = 32003,(x,y,z),lp; |
---|
3024 | poly p = z2+1; |
---|
3025 | poly q = z4+2; |
---|
3026 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
3027 | list pr= decomp(i); |
---|
3028 | pr; |
---|
3029 | testPrimary( pr, i); |
---|
3030 | } |
---|
3031 | |
---|
3032 | static proc decomp_i(int patchPrimaryDecomposition, ideal i,list #) |
---|
3033 | { |
---|
3034 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
3035 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
3036 | // for other parameters see 'decomp' or 'decompE' |
---|
3037 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
3038 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
3039 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
3040 | intvec initialOp,op,@vv; |
---|
3041 | initialOp = option(get); |
---|
3042 | def @P = basering; |
---|
3043 | list primary,indep,ltras; |
---|
3044 | intvec @vh,isat,@w; |
---|
3045 | int @wr,@k,@n,@m,@n1,@n2,@n3,homo,seri,keepdi,abspri,ab,nn; |
---|
3046 | ideal peek=i; |
---|
3047 | ideal ser,tras; |
---|
3048 | int isS=(attrib(i,"isSB")==1); |
---|
3049 | |
---|
3050 | if(size(#)>0) |
---|
3051 | { |
---|
3052 | if((#[1]==1)||(#[1]==2)||(#[1]==3)) |
---|
3053 | { |
---|
3054 | @wr=#[1]; |
---|
3055 | if(@wr==3){abspri=1;@wr=0;} |
---|
3056 | if(size(#)>1) |
---|
3057 | { |
---|
3058 | seri=1; |
---|
3059 | peek=#[2]; |
---|
3060 | ser=#[3]; |
---|
3061 | } |
---|
3062 | } |
---|
3063 | else |
---|
3064 | { |
---|
3065 | seri=1; |
---|
3066 | peek=#[1]; |
---|
3067 | ser=#[2]; |
---|
3068 | } |
---|
3069 | } |
---|
3070 | if(abspri) |
---|
3071 | { |
---|
3072 | list absprimary,abskeep,absprimarytmp,abskeeptmp; |
---|
3073 | } |
---|
3074 | homo=homog(i); |
---|
3075 | if(homo) |
---|
3076 | { |
---|
3077 | if(attrib(i,"isSB")!=1) |
---|
3078 | { |
---|
3079 | //ltras=mstd(i); |
---|
3080 | tras=groebner(i); |
---|
3081 | } |
---|
3082 | else |
---|
3083 | { |
---|
3084 | tras=i; |
---|
3085 | } |
---|
3086 | ltras = tras,tras; |
---|
3087 | attrib( ltras[1], "isSB", 1); |
---|
3088 | |
---|
3089 | if (size(ltras[1])>0) |
---|
3090 | { |
---|
3091 | if ( deg(lead(ltras[1]))==0 ) // we have the unit ideal. |
---|
3092 | { |
---|
3093 | option(set,initialOp); |
---|
3094 | if (patchPrimaryDecomposition==1) |
---|
3095 | { |
---|
3096 | if (abspri) { return(prepare_absprimdec(list())); } |
---|
3097 | return( list() ); |
---|
3098 | } |
---|
3099 | else |
---|
3100 | { |
---|
3101 | primary[1]=ideal(1); |
---|
3102 | primary[2]=ideal(1); |
---|
3103 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3104 | return( primary ); |
---|
3105 | } |
---|
3106 | } |
---|
3107 | } |
---|
3108 | |
---|
3109 | tras=ltras[1]; |
---|
3110 | attrib(tras,"isSB",1); |
---|
3111 | if((dim(tras)==0) && (!abspri)) |
---|
3112 | { |
---|
3113 | primary[1]=ltras[2]; |
---|
3114 | primary[2]=maxideal(1); |
---|
3115 | option(set,initialOp); |
---|
3116 | if(@wr>0) |
---|
3117 | { |
---|
3118 | list l; |
---|
3119 | l[1]=maxideal(1); |
---|
3120 | l[2]=maxideal(1); |
---|
3121 | return(l); |
---|
3122 | } |
---|
3123 | return(primary); |
---|
3124 | } |
---|
3125 | for(@n=1;@n<=nvars(basering);@n++) |
---|
3126 | { |
---|
3127 | @w[@n]=ord(var(@n)); |
---|
3128 | } |
---|
3129 | intvec @hilb=hilb(tras,1,@w); |
---|
3130 | intvec keephilb=@hilb; |
---|
3131 | } |
---|
3132 | |
---|
3133 | //---------------------------------------------------------------- |
---|
3134 | //i is the zero-ideal |
---|
3135 | //---------------------------------------------------------------- |
---|
3136 | |
---|
3137 | if(size(i)==0) |
---|
3138 | { |
---|
3139 | option(set,initialOp); |
---|
3140 | primary=ideal(0),ideal(0); |
---|
3141 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3142 | return(primary); |
---|
3143 | } |
---|
3144 | |
---|
3145 | //---------------------------------------------------------------- |
---|
3146 | //pass to the lexicographical ordering and compute a standardbasis |
---|
3147 | //---------------------------------------------------------------- |
---|
3148 | |
---|
3149 | int lp=islp(); |
---|
3150 | |
---|
3151 | def gnir=changeordTo(basering,"lp"); |
---|
3152 | setring gnir; |
---|
3153 | op=option(get); |
---|
3154 | option(redSB); |
---|
3155 | |
---|
3156 | ideal ser=fetch(@P,ser); |
---|
3157 | |
---|
3158 | if(homo==1) |
---|
3159 | { |
---|
3160 | if(!lp) |
---|
3161 | { |
---|
3162 | ideal @j=std(fetch(@P,i),@hilb,@w); |
---|
3163 | } |
---|
3164 | else |
---|
3165 | { |
---|
3166 | ideal @j=fetch(@P,tras); |
---|
3167 | attrib(@j,"isSB",1); |
---|
3168 | } |
---|
3169 | } |
---|
3170 | else |
---|
3171 | { |
---|
3172 | if(lp&&isS) |
---|
3173 | { |
---|
3174 | ideal @j=fetch(@P,i); |
---|
3175 | attrib(@j,"isSB",1); |
---|
3176 | } |
---|
3177 | else |
---|
3178 | { |
---|
3179 | ideal @j=groebner(fetch(@P,i)); |
---|
3180 | } |
---|
3181 | if(size(@j)==1) |
---|
3182 | { |
---|
3183 | if ( deg( lead(@j[1]) )==0 ) // we have the unit ideal. |
---|
3184 | { |
---|
3185 | setring @P; |
---|
3186 | option(set,initialOp); |
---|
3187 | if (patchPrimaryDecomposition==1) |
---|
3188 | { |
---|
3189 | return( list() ); |
---|
3190 | } |
---|
3191 | else |
---|
3192 | { |
---|
3193 | return( list(ideal(1),ideal(1)) ); |
---|
3194 | } |
---|
3195 | } |
---|
3196 | } |
---|
3197 | } |
---|
3198 | option(set,op); |
---|
3199 | if(seri==1) |
---|
3200 | { |
---|
3201 | ideal peek=fetch(@P,peek); |
---|
3202 | attrib(peek,"isSB",1); |
---|
3203 | } |
---|
3204 | else |
---|
3205 | { |
---|
3206 | ideal peek=@j; |
---|
3207 | } |
---|
3208 | if((size(ser)==0)&&(!abspri)) |
---|
3209 | { |
---|
3210 | ideal fried; |
---|
3211 | @n=size(@j); |
---|
3212 | for(@k=1;@k<=@n;@k++) |
---|
3213 | { |
---|
3214 | if(deg(lead(@j[@k]))==1) |
---|
3215 | { |
---|
3216 | fried[size(fried)+1]=@j[@k]; |
---|
3217 | @j[@k]=0; |
---|
3218 | } |
---|
3219 | } |
---|
3220 | if(size(fried)==nvars(basering)) |
---|
3221 | { |
---|
3222 | setring @P; |
---|
3223 | option(set,initialOp); |
---|
3224 | primary[1]=i; |
---|
3225 | primary[2]=i; |
---|
3226 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3227 | return(primary); |
---|
3228 | } |
---|
3229 | if(size(fried)>0) |
---|
3230 | { |
---|
3231 | string newva; |
---|
3232 | string newma; |
---|
3233 | poly f; |
---|
3234 | for(@k=1;@k<=nvars(basering);@k++) |
---|
3235 | { |
---|
3236 | @n1=0; |
---|
3237 | for(@n=1;@n<=size(fried);@n++) |
---|
3238 | { |
---|
3239 | if(leadmonom(fried[@n])==var(@k)) |
---|
3240 | { |
---|
3241 | @n1=1; |
---|
3242 | break; |
---|
3243 | } |
---|
3244 | } |
---|
3245 | if(@n1==0) |
---|
3246 | { |
---|
3247 | newva=newva+string(var(@k))+","; |
---|
3248 | newma=newma+string(var(@k))+","; |
---|
3249 | } |
---|
3250 | else |
---|
3251 | { |
---|
3252 | newma=newma+string(0)+","; |
---|
3253 | fried[@n]=fried[@n]/leadcoef(fried[@n]); |
---|
3254 | f=fried[@n]-lead(fried[@n]); |
---|
3255 | @j=subst(@j,var(@k),-f); |
---|
3256 | } |
---|
3257 | } |
---|
3258 | newva[size(newva)]=")"; |
---|
3259 | newma[size(newma)]=";"; |
---|
3260 | execute("ring @deirf=("+charstr(gnir)+"),("+newva+",lp;"); |
---|
3261 | execute("map @kappa=gnir,"+newma); |
---|
3262 | ideal @j= @kappa(@j); |
---|
3263 | @j=std(@j); |
---|
3264 | |
---|
3265 | list pr=decomp_i(patchPrimaryDecomposition,@j); |
---|
3266 | if (size(pr)==0) |
---|
3267 | { |
---|
3268 | setring @P; |
---|
3269 | option(set,initialOp); |
---|
3270 | if (abspri) { return(prepare_absprimdec(list()));} |
---|
3271 | return(list()); |
---|
3272 | } |
---|
3273 | |
---|
3274 | setring gnir; |
---|
3275 | list pr=imap(@deirf,pr); |
---|
3276 | for(@k=1;@k<=size(pr);@k++) |
---|
3277 | { |
---|
3278 | @j=pr[@k]+fried; |
---|
3279 | pr[@k]=@j; |
---|
3280 | } |
---|
3281 | setring @P; |
---|
3282 | option(set,initialOp); |
---|
3283 | primary=imap(gnir,pr); |
---|
3284 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3285 | return(primary); |
---|
3286 | } |
---|
3287 | } |
---|
3288 | //---------------------------------------------------------------- |
---|
3289 | //j is the ring |
---|
3290 | //---------------------------------------------------------------- |
---|
3291 | |
---|
3292 | if (dim(@j)==-1) |
---|
3293 | { |
---|
3294 | setring @P; |
---|
3295 | option(set,initialOp); |
---|
3296 | primary=ideal(1),ideal(1); |
---|
3297 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3298 | return(primary); |
---|
3299 | } |
---|
3300 | |
---|
3301 | //---------------------------------------------------------------- |
---|
3302 | // the case of one variable |
---|
3303 | //---------------------------------------------------------------- |
---|
3304 | |
---|
3305 | if(nvars(basering)==1) |
---|
3306 | { |
---|
3307 | list fac=factor(@j[1]); |
---|
3308 | list gprimary; |
---|
3309 | for(@k=1;@k<=size(fac[1]);@k++) |
---|
3310 | { |
---|
3311 | if(@wr==0) |
---|
3312 | { |
---|
3313 | gprimary[2*@k-1]=ideal(fac[1][@k]^fac[2][@k]); |
---|
3314 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
3315 | } |
---|
3316 | else |
---|
3317 | { |
---|
3318 | gprimary[2*@k-1]=ideal(fac[1][@k]); |
---|
3319 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
3320 | } |
---|
3321 | } |
---|
3322 | setring @P; |
---|
3323 | option(set,initialOp); |
---|
3324 | primary=fetch(gnir,gprimary); |
---|
3325 | //HIER |
---|
3326 | |
---|
3327 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3328 | return(primary); |
---|
3329 | } |
---|
3330 | |
---|
3331 | //------------------------------------------------------------------ |
---|
3332 | //the zero-dimensional case |
---|
3333 | //------------------------------------------------------------------ |
---|
3334 | if (dim(@j)==0) |
---|
3335 | { |
---|
3336 | op=option(get); |
---|
3337 | option(redSB); |
---|
3338 | list gprimary= zero_decomp(@j,ser,@wr); |
---|
3339 | |
---|
3340 | setring @P; |
---|
3341 | primary=fetch(gnir,gprimary); |
---|
3342 | |
---|
3343 | if(size(ser)>0) |
---|
3344 | { |
---|
3345 | primary=cleanPrimary(primary); |
---|
3346 | } |
---|
3347 | //HIER |
---|
3348 | if(abspri) |
---|
3349 | { |
---|
3350 | setring gnir; |
---|
3351 | list primary=imap(@P,primary); |
---|
3352 | list resu,tempo; |
---|
3353 | string absotto; |
---|
3354 | map sigma,invsigma; |
---|
3355 | ideal II,jmap; |
---|
3356 | nn=nvars(basering); |
---|
3357 | for(ab=1;ab<=size(primary) div 2;ab++) |
---|
3358 | { |
---|
3359 | II=primary[2*ab]; |
---|
3360 | attrib(II,"isSB",1); |
---|
3361 | if(deg(II[1])==vdim(II)) |
---|
3362 | { |
---|
3363 | absotto= absFactorize(primary[2*ab][1],77); |
---|
3364 | tempo= |
---|
3365 | primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
3366 | } |
---|
3367 | else |
---|
3368 | { |
---|
3369 | invsigma=basering,maxideal(1); |
---|
3370 | jmap=randomLast(50); |
---|
3371 | sigma=basering,jmap; |
---|
3372 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
3373 | invsigma=basering,jmap; |
---|
3374 | II=groebner(sigma(II)); |
---|
3375 | absotto = absFactorize(II[1],77); |
---|
3376 | II=var(nn); |
---|
3377 | tempo= primary[2*ab-1],primary[2*ab],absotto,string(invsigma(II)); |
---|
3378 | } |
---|
3379 | resu[ab]=tempo; |
---|
3380 | } |
---|
3381 | primary=resu; |
---|
3382 | setring @P; |
---|
3383 | primary=imap(gnir,primary); |
---|
3384 | } |
---|
3385 | option(set,initialOp); |
---|
3386 | return(primary); |
---|
3387 | } |
---|
3388 | |
---|
3389 | poly @gs,@gh,@p; |
---|
3390 | string @va; |
---|
3391 | def quotring; |
---|
3392 | list quprimary,htprimary,collectprimary,lsau,lnew,allindep,restindep; |
---|
3393 | ideal @h; |
---|
3394 | int jdim=dim(@j); |
---|
3395 | list fett; |
---|
3396 | int lauf,di,newtest; |
---|
3397 | //------------------------------------------------------------------ |
---|
3398 | //search for a maximal independent set indep,i.e. |
---|
3399 | //look for subring such that the intersection with the ideal is zero |
---|
3400 | //j intersected with K[var(indep[3]+1),...,var(nvar] is zero, |
---|
3401 | //indep[1] is the new varstring and indep[2] the string for block-ordering |
---|
3402 | //------------------------------------------------------------------ |
---|
3403 | if(@wr!=1) |
---|
3404 | { |
---|
3405 | allindep=independSet(@j); |
---|
3406 | for(@m=1;@m<=size(allindep);@m++) |
---|
3407 | { |
---|
3408 | if(allindep[@m][3]==jdim) |
---|
3409 | { |
---|
3410 | di++; |
---|
3411 | indep[di]=allindep[@m]; |
---|
3412 | } |
---|
3413 | else |
---|
3414 | { |
---|
3415 | lauf++; |
---|
3416 | restindep[lauf]=allindep[@m]; |
---|
3417 | } |
---|
3418 | } |
---|
3419 | } |
---|
3420 | else |
---|
3421 | { |
---|
3422 | indep=maxIndependSet(@j); |
---|
3423 | } |
---|
3424 | |
---|
3425 | ideal jkeep=@j; |
---|
3426 | if(ordstr(@P)[1]=="w") |
---|
3427 | { |
---|
3428 | list gnir_l=ringlist(gnir); |
---|
3429 | list @P_l=ringlist(@P); |
---|
3430 | gnir_l[3]=@P_l[3]; // ord |
---|
3431 | def @Phelp=ring(gnir_l); |
---|
3432 | setring @Phelp; |
---|
3433 | kill gnir_l,@P_l; |
---|
3434 | } |
---|
3435 | else |
---|
3436 | { |
---|
3437 | def @Phelp=changeordTo(gnir,"dp"); |
---|
3438 | setring @Phelp; |
---|
3439 | } |
---|
3440 | |
---|
3441 | if(homo==1) |
---|
3442 | { |
---|
3443 | if(((ordstr(@P)[3]=="d")||(ordstr(@P)[1]=="d")||(ordstr(@P)[1]=="w") |
---|
3444 | ||(ordstr(@P)[3]=="w"))&&(size(ringlist(@P)[3])==2)) |
---|
3445 | { |
---|
3446 | ideal jwork=imap(@P,tras); |
---|
3447 | attrib(jwork,"isSB",1); |
---|
3448 | } |
---|
3449 | else |
---|
3450 | { |
---|
3451 | ideal jwork=std(imap(gnir,@j),@hilb,@w); |
---|
3452 | } |
---|
3453 | } |
---|
3454 | else |
---|
3455 | { |
---|
3456 | ideal jwork=groebner(imap(gnir,@j)); |
---|
3457 | } |
---|
3458 | list hquprimary; |
---|
3459 | poly @p,@q; |
---|
3460 | ideal @h,fac,ser; |
---|
3461 | ideal @Ptest=1; |
---|
3462 | di=dim(jwork); |
---|
3463 | keepdi=di; |
---|
3464 | |
---|
3465 | setring gnir; |
---|
3466 | for(@m=1;@m<=size(indep);@m++) |
---|
3467 | { |
---|
3468 | isat=0; |
---|
3469 | @n2=0; |
---|
3470 | if((indep[@m][1]==varstr(basering))&&(@m==1)) |
---|
3471 | //this is the good case, nothing to do, just to have the same notations |
---|
3472 | //change the ring |
---|
3473 | { |
---|
3474 | def gnir1=ring(ringlist(basering)); |
---|
3475 | setring gnir1; |
---|
3476 | ideal @j=fetch(gnir,@j); |
---|
3477 | attrib(@j,"isSB",1); |
---|
3478 | ideal ser=fetch(gnir,ser); |
---|
3479 | } |
---|
3480 | else |
---|
3481 | { |
---|
3482 | @va=string(maxideal(1)); |
---|
3483 | if(@m==1) |
---|
3484 | { |
---|
3485 | @j=fetch(@P,i); |
---|
3486 | } |
---|
3487 | execute("ring gnir1 = ("+charstr(basering)+"),("+indep[@m][1]+"),(" |
---|
3488 | +indep[@m][2]+");"); |
---|
3489 | execute("map phi=gnir,"+@va+";"); |
---|
3490 | op=option(get); |
---|
3491 | option(redSB); |
---|
3492 | ideal @j=groebner(phi(@j)); |
---|
3493 | ideal ser=phi(ser); |
---|
3494 | |
---|
3495 | option(set,op); |
---|
3496 | } |
---|
3497 | if((deg(@j[1])==0)||(dim(@j)<jdim)) |
---|
3498 | { |
---|
3499 | setring gnir; |
---|
3500 | kill gnir1; |
---|
3501 | break; |
---|
3502 | } |
---|
3503 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
3504 | { |
---|
3505 | fett[lauf]=size(@j[lauf]); |
---|
3506 | } |
---|
3507 | //------------------------------------------------------------------------ |
---|
3508 | //we have now the following situation: |
---|
3509 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may pass |
---|
3510 | //to this quotientring, j is their still a standardbasis, the |
---|
3511 | //leading coefficients of the polynomials there (polynomials in |
---|
3512 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
3513 | //we need their ggt, gh, because of the following: let |
---|
3514 | //(j:gh^n)=(j:gh^infinity) then j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3515 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
3516 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
3517 | |
---|
3518 | //------------------------------------------------------------------------ |
---|
3519 | |
---|
3520 | //arrangement for quotientring K(var(nnp+1),..,var(nva))[..the rest..] and |
---|
3521 | //map phi:K[var(1),...,var(nva)] --->K(var(nnpr+1),..,var(nva))[..rest..] |
---|
3522 | //------------------------------------------------------------------------ |
---|
3523 | |
---|
3524 | quotring=prepareQuotientring(nvars(basering)-indep[@m][3],"lp"); |
---|
3525 | |
---|
3526 | //--------------------------------------------------------------------- |
---|
3527 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3528 | //--------------------------------------------------------------------- |
---|
3529 | |
---|
3530 | ideal @jj=lead(@j); //!! vorn vereinbaren |
---|
3531 | setring quotring; |
---|
3532 | |
---|
3533 | ideal @jj=imap(gnir1,@jj); |
---|
3534 | @vv=clearSBNeu(@jj,fett); //!! vorn vereinbaren |
---|
3535 | setring gnir1; |
---|
3536 | @k=size(@j); |
---|
3537 | for (lauf=1;lauf<=@k;lauf++) |
---|
3538 | { |
---|
3539 | if(@vv[lauf]==1) |
---|
3540 | { |
---|
3541 | @j[lauf]=0; |
---|
3542 | } |
---|
3543 | } |
---|
3544 | @j=simplify(@j,2); |
---|
3545 | setring quotring; |
---|
3546 | // @j considered in the quotientring |
---|
3547 | ideal @j=imap(gnir1,@j); |
---|
3548 | |
---|
3549 | ideal ser=imap(gnir1,ser); |
---|
3550 | |
---|
3551 | kill gnir1; |
---|
3552 | |
---|
3553 | //j is a standardbasis in the quotientring but usually not minimal |
---|
3554 | //here it becomes minimal |
---|
3555 | |
---|
3556 | attrib(@j,"isSB",1); |
---|
3557 | |
---|
3558 | //we need later ggt(h[1],...)=gh for saturation |
---|
3559 | ideal @h; |
---|
3560 | if(deg(@j[1])>0) |
---|
3561 | { |
---|
3562 | for(@n=1;@n<=size(@j);@n++) |
---|
3563 | { |
---|
3564 | @h[@n]=leadcoef(@j[@n]); |
---|
3565 | } |
---|
3566 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3567 | op=option(get); |
---|
3568 | option(redSB); |
---|
3569 | |
---|
3570 | list uprimary= zero_decomp(@j,ser,@wr); |
---|
3571 | //HIER |
---|
3572 | if(abspri) |
---|
3573 | { |
---|
3574 | ideal II; |
---|
3575 | ideal jmap; |
---|
3576 | map sigma; |
---|
3577 | nn=nvars(basering); |
---|
3578 | map invsigma=basering,maxideal(1); |
---|
3579 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
3580 | { |
---|
3581 | II=uprimary[2*ab]; |
---|
3582 | attrib(II,"isSB",1); |
---|
3583 | if(deg(II[1])!=vdim(II)) |
---|
3584 | { |
---|
3585 | jmap=randomLast(50); |
---|
3586 | sigma=basering,jmap; |
---|
3587 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
3588 | invsigma=basering,jmap; |
---|
3589 | II=groebner(sigma(II)); |
---|
3590 | } |
---|
3591 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
3592 | II=var(nn); |
---|
3593 | abskeeptmp[ab]=string(invsigma(II)); |
---|
3594 | invsigma=basering,maxideal(1); |
---|
3595 | } |
---|
3596 | } |
---|
3597 | option(set,op); |
---|
3598 | } |
---|
3599 | else |
---|
3600 | { |
---|
3601 | list uprimary; |
---|
3602 | uprimary[1]=ideal(1); |
---|
3603 | uprimary[2]=ideal(1); |
---|
3604 | } |
---|
3605 | //we need the intersection of the ideals in the list quprimary with the |
---|
3606 | //polynomialring, i.e. let q=(f1,...,fr) in the quotientring such an ideal |
---|
3607 | //but fi polynomials, then the intersection of q with the polynomialring |
---|
3608 | //is the saturation of the ideal generated by f1,...,fr with respect to |
---|
3609 | //h which is the lcm of the leading coefficients of the fi considered in |
---|
3610 | //in the quotientring: this is coded in saturn |
---|
3611 | |
---|
3612 | list saturn; |
---|
3613 | ideal hpl; |
---|
3614 | |
---|
3615 | for(@n=1;@n<=size(uprimary);@n++) |
---|
3616 | { |
---|
3617 | uprimary[@n]=interred(uprimary[@n]); // temporary fix |
---|
3618 | hpl=0; |
---|
3619 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
3620 | { |
---|
3621 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
3622 | } |
---|
3623 | saturn[@n]=hpl; |
---|
3624 | } |
---|
3625 | |
---|
3626 | //-------------------------------------------------------------------- |
---|
3627 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3628 | //back to the polynomialring |
---|
3629 | //--------------------------------------------------------------------- |
---|
3630 | setring gnir; |
---|
3631 | |
---|
3632 | collectprimary=imap(quotring,uprimary); |
---|
3633 | lsau=imap(quotring,saturn); |
---|
3634 | @h=imap(quotring,@h); |
---|
3635 | |
---|
3636 | kill quotring; |
---|
3637 | def quotring; |
---|
3638 | |
---|
3639 | @n2=size(quprimary); |
---|
3640 | @n3=@n2; |
---|
3641 | |
---|
3642 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
3643 | { |
---|
3644 | if(deg(collectprimary[2*@n1][1])>0) |
---|
3645 | { |
---|
3646 | @n2++; |
---|
3647 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
3648 | lnew[@n2]=lsau[2*@n1-1]; |
---|
3649 | @n2++; |
---|
3650 | lnew[@n2]=lsau[2*@n1]; |
---|
3651 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
3652 | if(abspri) |
---|
3653 | { |
---|
3654 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
3655 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
3656 | } |
---|
3657 | } |
---|
3658 | } |
---|
3659 | //here the intersection with the polynomialring |
---|
3660 | //mentioned above is really computed |
---|
3661 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
3662 | { |
---|
3663 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
3664 | { |
---|
3665 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3666 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
3667 | } |
---|
3668 | else |
---|
3669 | { |
---|
3670 | if(@wr==0) |
---|
3671 | { |
---|
3672 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3673 | } |
---|
3674 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
3675 | } |
---|
3676 | } |
---|
3677 | |
---|
3678 | if(size(@h)>0) |
---|
3679 | { |
---|
3680 | //--------------------------------------------------------------- |
---|
3681 | //we change to @Phelp to have the ordering dp for saturation |
---|
3682 | //--------------------------------------------------------------- |
---|
3683 | setring @Phelp; |
---|
3684 | @h=imap(gnir,@h); |
---|
3685 | if(@wr!=1) |
---|
3686 | { |
---|
3687 | if(defined(@LL)){kill @LL;} |
---|
3688 | list @LL=minSat(jwork,@h); |
---|
3689 | @Ptest=intersect(@Ptest,@LL[1]); |
---|
3690 | @q=@LL[2]; |
---|
3691 | } |
---|
3692 | else |
---|
3693 | { |
---|
3694 | fac=ideal(0); |
---|
3695 | for(lauf=1;lauf<=ncols(@h);lauf++) |
---|
3696 | { |
---|
3697 | if(deg(@h[lauf])>0) |
---|
3698 | { |
---|
3699 | fac=fac+factorize(@h[lauf],1); |
---|
3700 | } |
---|
3701 | } |
---|
3702 | fac=simplify(fac,6); |
---|
3703 | @q=1; |
---|
3704 | for(lauf=1;lauf<=size(fac);lauf++) |
---|
3705 | { |
---|
3706 | @q=@q*fac[lauf]; |
---|
3707 | } |
---|
3708 | } |
---|
3709 | jwork=std(jwork,@q); |
---|
3710 | keepdi=dim(jwork); |
---|
3711 | if(keepdi<di) |
---|
3712 | { |
---|
3713 | setring gnir; |
---|
3714 | @j=imap(@Phelp,jwork); |
---|
3715 | break; |
---|
3716 | } |
---|
3717 | if(homo==1) |
---|
3718 | { |
---|
3719 | @hilb=hilb(jwork,1,@w); |
---|
3720 | } |
---|
3721 | |
---|
3722 | setring gnir; |
---|
3723 | @j=imap(@Phelp,jwork); |
---|
3724 | } |
---|
3725 | } |
---|
3726 | |
---|
3727 | if((size(quprimary)==0)&&(@wr==1)) |
---|
3728 | { |
---|
3729 | @j=ideal(1); |
---|
3730 | quprimary[1]=ideal(1); |
---|
3731 | quprimary[2]=ideal(1); |
---|
3732 | } |
---|
3733 | if((size(quprimary)==0)) |
---|
3734 | { |
---|
3735 | keepdi=di-1; |
---|
3736 | quprimary[1]=ideal(1); |
---|
3737 | quprimary[2]=ideal(1); |
---|
3738 | } |
---|
3739 | //--------------------------------------------------------------- |
---|
3740 | //notice that j=sat(j,gh) intersected with (j,gh^n) |
---|
3741 | //we finished with sat(j,gh) and have to start with (j,gh^n) |
---|
3742 | //--------------------------------------------------------------- |
---|
3743 | if((deg(@j[1])!=0)&&(@wr!=1)) |
---|
3744 | { |
---|
3745 | if(size(quprimary)>0) |
---|
3746 | { |
---|
3747 | setring @Phelp; |
---|
3748 | ser=imap(gnir,ser); |
---|
3749 | hquprimary=imap(gnir,quprimary); |
---|
3750 | if(@wr==0) |
---|
3751 | { |
---|
3752 | //HIER STATT DURCHSCHNITT SATURIEREN! |
---|
3753 | ideal htest=@Ptest; |
---|
3754 | } |
---|
3755 | else |
---|
3756 | { |
---|
3757 | ideal htest=hquprimary[2]; |
---|
3758 | |
---|
3759 | for (@n1=2;@n1<=size(hquprimary) div 2;@n1++) |
---|
3760 | { |
---|
3761 | htest=intersect(htest,hquprimary[2*@n1]); |
---|
3762 | } |
---|
3763 | } |
---|
3764 | |
---|
3765 | if(size(ser)>0) |
---|
3766 | { |
---|
3767 | ser=intersect(htest,ser); |
---|
3768 | } |
---|
3769 | else |
---|
3770 | { |
---|
3771 | ser=htest; |
---|
3772 | } |
---|
3773 | setring gnir; |
---|
3774 | ser=imap(@Phelp,ser); |
---|
3775 | } |
---|
3776 | if(size(reduce(ser,peek,1))!=0) |
---|
3777 | { |
---|
3778 | for(@m=1;@m<=size(restindep);@m++) |
---|
3779 | { |
---|
3780 | // if(restindep[@m][3]>=keepdi) |
---|
3781 | // { |
---|
3782 | isat=0; |
---|
3783 | @n2=0; |
---|
3784 | |
---|
3785 | if(restindep[@m][1]==varstr(basering)) |
---|
3786 | //the good case, nothing to do, just to have the same notations |
---|
3787 | //change the ring |
---|
3788 | { |
---|
3789 | def gnir1=ring(ringlist(basering)); |
---|
3790 | setring gnir1; |
---|
3791 | ideal @j=fetch(gnir,jkeep); |
---|
3792 | attrib(@j,"isSB",1); |
---|
3793 | } |
---|
3794 | else |
---|
3795 | { |
---|
3796 | @va=string(maxideal(1)); |
---|
3797 | execute("ring gnir1 = ("+charstr(basering)+"),("+ |
---|
3798 | restindep[@m][1]+"),(" +restindep[@m][2]+");"); |
---|
3799 | execute("map phi=gnir,"+@va+";"); |
---|
3800 | op=option(get); |
---|
3801 | option(redSB); |
---|
3802 | if(homo==1) |
---|
3803 | { |
---|
3804 | ideal @j=std(phi(jkeep),keephilb,@w); |
---|
3805 | } |
---|
3806 | else |
---|
3807 | { |
---|
3808 | ideal @j=groebner(phi(jkeep)); |
---|
3809 | } |
---|
3810 | ideal ser=phi(ser); |
---|
3811 | option(set,op); |
---|
3812 | } |
---|
3813 | |
---|
3814 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
3815 | { |
---|
3816 | fett[lauf]=size(@j[lauf]); |
---|
3817 | } |
---|
3818 | //------------------------------------------------------------------ |
---|
3819 | //we have now the following situation: |
---|
3820 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may |
---|
3821 | //pass to this quotientring, j is their still a standardbasis, the |
---|
3822 | //leading coefficients of the polynomials there (polynomials in |
---|
3823 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
3824 | //we need their ggt, gh, because of the following: |
---|
3825 | //let (j:gh^n)=(j:gh^infinity) then |
---|
3826 | //j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3827 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
3828 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
3829 | |
---|
3830 | //------------------------------------------------------------------ |
---|
3831 | |
---|
3832 | //the arrangement for the quotientring |
---|
3833 | // K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3834 | //and the map phi:K[var(1),...,var(nva)] ----> |
---|
3835 | //--->K(var(nnpr+1),..,var(nva))[..the rest..] |
---|
3836 | //------------------------------------------------------------------ |
---|
3837 | if (defined(quotring)==voice) {kill quotring;} |
---|
3838 | def quotring=prepareQuotientring(nvars(basering)-restindep[@m][3],"lp"); |
---|
3839 | |
---|
3840 | //------------------------------------------------------------------ |
---|
3841 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
3842 | //------------------------------------------------------------------ |
---|
3843 | |
---|
3844 | setring quotring; |
---|
3845 | |
---|
3846 | // @j considered in the quotientring |
---|
3847 | ideal @j=imap(gnir1,@j); |
---|
3848 | ideal ser=imap(gnir1,ser); |
---|
3849 | |
---|
3850 | kill gnir1; |
---|
3851 | |
---|
3852 | //j is a standardbasis in the quotientring but usually not minimal |
---|
3853 | //here it becomes minimal |
---|
3854 | @j=clearSB(@j,fett); |
---|
3855 | attrib(@j,"isSB",1); |
---|
3856 | |
---|
3857 | //we need later ggt(h[1],...)=gh for saturation |
---|
3858 | ideal @h; |
---|
3859 | |
---|
3860 | for(@n=1;@n<=size(@j);@n++) |
---|
3861 | { |
---|
3862 | @h[@n]=leadcoef(@j[@n]); |
---|
3863 | } |
---|
3864 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..rest..] |
---|
3865 | |
---|
3866 | op=option(get); |
---|
3867 | option(redSB); |
---|
3868 | list uprimary= zero_decomp(@j,ser,@wr); |
---|
3869 | //HIER |
---|
3870 | if(abspri) |
---|
3871 | { |
---|
3872 | ideal II; |
---|
3873 | ideal jmap; |
---|
3874 | map sigma; |
---|
3875 | nn=nvars(basering); |
---|
3876 | map invsigma=basering,maxideal(1); |
---|
3877 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
3878 | { |
---|
3879 | II=uprimary[2*ab]; |
---|
3880 | attrib(II,"isSB",1); |
---|
3881 | if(deg(II[1])!=vdim(II)) |
---|
3882 | { |
---|
3883 | jmap=randomLast(50); |
---|
3884 | sigma=basering,jmap; |
---|
3885 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
3886 | invsigma=basering,jmap; |
---|
3887 | II=groebner(sigma(II)); |
---|
3888 | } |
---|
3889 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
3890 | II=var(nn); |
---|
3891 | abskeeptmp[ab]=string(invsigma(II)); |
---|
3892 | invsigma=basering,maxideal(1); |
---|
3893 | } |
---|
3894 | } |
---|
3895 | option(set,op); |
---|
3896 | |
---|
3897 | //we need the intersection of the ideals in the list quprimary with |
---|
3898 | //the polynomialring, i.e. let q=(f1,...,fr) in the quotientring |
---|
3899 | //such an ideal but fi polynomials, then the intersection of q with |
---|
3900 | //the polynomialring is the saturation of the ideal generated by |
---|
3901 | //f1,...,fr with respect toh which is the lcm of the leading |
---|
3902 | //coefficients of the fi considered in the quotientring: |
---|
3903 | //this is coded in saturn |
---|
3904 | |
---|
3905 | list saturn; |
---|
3906 | ideal hpl; |
---|
3907 | |
---|
3908 | for(@n=1;@n<=size(uprimary);@n++) |
---|
3909 | { |
---|
3910 | hpl=0; |
---|
3911 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
3912 | { |
---|
3913 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
3914 | } |
---|
3915 | saturn[@n]=hpl; |
---|
3916 | } |
---|
3917 | //------------------------------------------------------------------ |
---|
3918 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
3919 | //back to the polynomialring |
---|
3920 | //------------------------------------------------------------------ |
---|
3921 | setring gnir; |
---|
3922 | collectprimary=imap(quotring,uprimary); |
---|
3923 | lsau=imap(quotring,saturn); |
---|
3924 | @h=imap(quotring,@h); |
---|
3925 | |
---|
3926 | kill quotring; |
---|
3927 | |
---|
3928 | @n2=size(quprimary); |
---|
3929 | @n3=@n2; |
---|
3930 | |
---|
3931 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
3932 | { |
---|
3933 | if(deg(collectprimary[2*@n1][1])>0) |
---|
3934 | { |
---|
3935 | @n2++; |
---|
3936 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
3937 | lnew[@n2]=lsau[2*@n1-1]; |
---|
3938 | @n2++; |
---|
3939 | lnew[@n2]=lsau[2*@n1]; |
---|
3940 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
3941 | if(abspri) |
---|
3942 | { |
---|
3943 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
3944 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
3945 | } |
---|
3946 | } |
---|
3947 | } |
---|
3948 | |
---|
3949 | |
---|
3950 | //here the intersection with the polynomialring |
---|
3951 | //mentioned above is really computed |
---|
3952 | |
---|
3953 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
3954 | { |
---|
3955 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
3956 | { |
---|
3957 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3958 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
3959 | } |
---|
3960 | else |
---|
3961 | { |
---|
3962 | if(@wr==0) |
---|
3963 | { |
---|
3964 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3965 | } |
---|
3966 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
3967 | } |
---|
3968 | } |
---|
3969 | if(@n2>=@n3+2) |
---|
3970 | { |
---|
3971 | setring @Phelp; |
---|
3972 | ser=imap(gnir,ser); |
---|
3973 | hquprimary=imap(gnir,quprimary); |
---|
3974 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
3975 | { |
---|
3976 | if(@wr==0) |
---|
3977 | { |
---|
3978 | ser=intersect(ser,hquprimary[2*@n-1]); |
---|
3979 | } |
---|
3980 | else |
---|
3981 | { |
---|
3982 | ser=intersect(ser,hquprimary[2*@n]); |
---|
3983 | } |
---|
3984 | } |
---|
3985 | setring gnir; |
---|
3986 | ser=imap(@Phelp,ser); |
---|
3987 | } |
---|
3988 | |
---|
3989 | // } |
---|
3990 | } |
---|
3991 | //HIER |
---|
3992 | if(abspri) |
---|
3993 | { |
---|
3994 | list resu,tempo; |
---|
3995 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
3996 | { |
---|
3997 | if (deg(quprimary[2*ab][1])!=0) |
---|
3998 | { |
---|
3999 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
4000 | absprimary[ab],abskeep[ab]; |
---|
4001 | resu[ab]=tempo; |
---|
4002 | } |
---|
4003 | } |
---|
4004 | quprimary=resu; |
---|
4005 | @wr=3; |
---|
4006 | } |
---|
4007 | if(size(reduce(ser,peek,1))!=0) |
---|
4008 | { |
---|
4009 | if(@wr>0) |
---|
4010 | { |
---|
4011 | htprimary=decomp_i(patchPrimaryDecomposition, @j,@wr,peek,ser); |
---|
4012 | } |
---|
4013 | else |
---|
4014 | { |
---|
4015 | htprimary=decomp_i(patchPrimaryDecomposition,@j,peek,ser); |
---|
4016 | } |
---|
4017 | // here we collect now both results primary(sat(j,gh)) |
---|
4018 | // and primary(j,gh^n) |
---|
4019 | @n=size(quprimary); |
---|
4020 | for (@k=1;@k<=size(htprimary);@k++) |
---|
4021 | { |
---|
4022 | quprimary[@n+@k]=htprimary[@k]; |
---|
4023 | } |
---|
4024 | } |
---|
4025 | } |
---|
4026 | } |
---|
4027 | else |
---|
4028 | { |
---|
4029 | if(abspri) |
---|
4030 | { |
---|
4031 | list resu,tempo; |
---|
4032 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
4033 | { |
---|
4034 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
4035 | absprimary[ab],abskeep[ab]; |
---|
4036 | resu[ab]=tempo; |
---|
4037 | } |
---|
4038 | quprimary=resu; |
---|
4039 | } |
---|
4040 | } |
---|
4041 | //--------------------------------------------------------------------------- |
---|
4042 | //back to the ring we started with |
---|
4043 | //the final result: primary |
---|
4044 | //--------------------------------------------------------------------------- |
---|
4045 | setring @P; |
---|
4046 | option(set,initialOp); |
---|
4047 | primary=imap(gnir,quprimary); |
---|
4048 | if(!abspri) |
---|
4049 | { |
---|
4050 | primary=cleanPrimary(primary); |
---|
4051 | } |
---|
4052 | if (size(primary)>0) |
---|
4053 | { |
---|
4054 | if (abspri && (typeof(primary[1][1])=="poly")) |
---|
4055 | { return(prepare_absprimdec(primary));} |
---|
4056 | } |
---|
4057 | return(primary); |
---|
4058 | } |
---|
4059 | |
---|
4060 | |
---|
4061 | |
---|
4062 | |
---|
4063 | /////////////////////////////////////////////////////////////////////////////// |
---|
4064 | static proc powerCoeffs(poly f,int e) |
---|
4065 | //computes a polynomial with the same monomials as f but coefficients |
---|
4066 | //the p^e th power of the coefficients of f |
---|
4067 | { |
---|
4068 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4069 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4070 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4071 | |
---|
4072 | int i; |
---|
4073 | poly g; |
---|
4074 | int ex=char(basering)^e; |
---|
4075 | for(i=1;i<=size(f);i++) |
---|
4076 | { |
---|
4077 | g=g+leadcoef(f[i])^ex*leadmonom(f[i]); |
---|
4078 | } |
---|
4079 | return(g); |
---|
4080 | } |
---|
4081 | /////////////////////////////////////////////////////////////////////////////// |
---|
4082 | |
---|
4083 | proc sep(poly f,int i, list #) |
---|
4084 | "USAGE: input: a polynomial f depending on the i-th variable and optional |
---|
4085 | an integer k considering the polynomial f defined over Fp(t1,...,tm) |
---|
4086 | as polynomial over Fp(t(1)^(p^-k),...,t(m)^(p^-k)) |
---|
4087 | RETURN: the separabel part of f as polynomial in Fp(t1,...,tm) |
---|
4088 | and an integer k to indicate that f should be considerd |
---|
4089 | as polynomial over Fp(t(1)^(p^-k),...,t(m)^(p^-k)) |
---|
4090 | EXAMPLE: example sep; shows an example |
---|
4091 | { |
---|
4092 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
4093 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
4094 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
4095 | |
---|
4096 | def R=basering; |
---|
4097 | int k; |
---|
4098 | if(size(#)>0){k=#[1];} |
---|
4099 | |
---|
4100 | |
---|
4101 | poly h=gcd(f,diff(f,var(i))); |
---|
4102 | if((reduce(f,std(h))!=0)||(reduce(diff(f,var(i)),std(h))!=0)) |
---|
4103 | { |
---|
4104 | ERROR("FEHLER IN GCD"); |
---|
4105 | } |
---|
4106 | poly g1=lift(h,f)[1][1]; // f/h |
---|
4107 | poly h1; |
---|
4108 | |
---|
4109 | while(h!=h1) |
---|
4110 | { |
---|
4111 | h1=h; |
---|
4112 | h=gcd(h,diff(h,var(i))); |
---|
4113 | } |
---|
4114 | |
---|
4115 | if(deg(h1)==0){return(list(g1,k));} //in characteristic 0 we return here |
---|
4116 | |
---|
4117 | k++; |
---|
4118 | |
---|
4119 | ideal ma=maxideal(1); |
---|
4120 | ma[i]=var(i)^char(R); |
---|
4121 | map phi=R,ma; |
---|
4122 | ideal hh=h; //this is technical because preimage works only for ideals |
---|
4123 | |
---|
4124 | poly u=preimage(R,phi,hh)[1]; //h=u(x(i)^p) |
---|
4125 | |
---|
4126 | list g2=sep(u,i,k); //we consider u(t(1)^(p^-1),...,t(m)^(p^-1)) |
---|
4127 | g1=powerCoeffs(g1,g2[2]-k+1); //to have g1 over the same field as g2[1] |
---|
4128 | |
---|
4129 | list g3=sep(g1*g2[1],i,g2[2]); |
---|
4130 | return(g3); |
---|
4131 | } |
---|
4132 | example |
---|
4133 | { "EXAMPLE:"; echo = 2; |
---|
4134 | ring R=(5,t,s),(x,y,z),dp; |
---|
4135 | poly f=(x^25-t*x^5+t)*(x^3+s); |
---|
4136 | sep(f,1); |
---|
4137 | } |
---|
4138 | |
---|
4139 | /////////////////////////////////////////////////////////////////////////////// |
---|
4140 | proc zeroRad(ideal I,list #) |
---|
4141 | "USAGE: zeroRad(I) , I a zero-dimensional ideal |
---|
4142 | RETURN: the radical of I |
---|
4143 | NOTE: Algorithm of Kemper |
---|
4144 | EXAMPLE: example zeroRad; shows an example" |
---|
4145 | { |
---|
4146 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
4147 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
4148 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
4149 | |
---|
4150 | if(homog(I)==1){return(maxideal(1));} |
---|
4151 | //I needs to be a reduced standard basis |
---|
4152 | def R=basering; |
---|
4153 | int m=npars(R); |
---|
4154 | int n=nvars(R); |
---|
4155 | int p=char(R); |
---|
4156 | int d=vdim(I); |
---|
4157 | int i,k; |
---|
4158 | list l; |
---|
4159 | if(((p==0)||(p>d))&&(d==deg(I[1]))) |
---|
4160 | { |
---|
4161 | intvec e=leadexp(I[1]); |
---|
4162 | for(i=1;i<=nvars(basering);i++) |
---|
4163 | { |
---|
4164 | if(e[i]!=0) break; |
---|
4165 | } |
---|
4166 | I[1]=sep(I[1],i)[1]; |
---|
4167 | return(interred(I)); |
---|
4168 | } |
---|
4169 | intvec op=option(get); |
---|
4170 | |
---|
4171 | option(redSB); |
---|
4172 | ASSUME(1, dim(I)==0); |
---|
4173 | ideal F=finduni(I);//F[i] generates I intersected with K[var(i)] |
---|
4174 | |
---|
4175 | option(set,op); |
---|
4176 | if(size(#)>0){I=#[1];} |
---|
4177 | |
---|
4178 | for(i=1;i<=n;i++) |
---|
4179 | { |
---|
4180 | l[i]=sep(F[i],i); |
---|
4181 | F[i]=l[i][1]; |
---|
4182 | if(l[i][2]>k){k=l[i][2];} //computation of the maximal k |
---|
4183 | } |
---|
4184 | |
---|
4185 | if((k==0)||(m==0)) //the separable case |
---|
4186 | { |
---|
4187 | intvec save=option(get); |
---|
4188 | option(redSB); |
---|
4189 | I=interred(I+F); |
---|
4190 | option(set,save); |
---|
4191 | return(I); |
---|
4192 | } |
---|
4193 | //I=simplify(I,1); |
---|
4194 | |
---|
4195 | for(i=1;i<=n;i++) //consider all polynomials over |
---|
4196 | { //Fp(t(1)^(p^-k),...,t(m)^(p^-k)) |
---|
4197 | F[i]=powerCoeffs(F[i],k-l[i][2]); |
---|
4198 | } |
---|
4199 | |
---|
4200 | string cR="ring @R="+string(p)+",("+parstr(R)+","+varstr(R)+"),dp;"; |
---|
4201 | execute(cR); |
---|
4202 | ideal F=imap(R,F); |
---|
4203 | |
---|
4204 | string nR="ring @S="+string(p)+",(@y(1..m),"+varstr(R)+","+parstr(R)+"),dp;"; |
---|
4205 | execute(nR); |
---|
4206 | |
---|
4207 | ideal G=fetch(@R,F); //G[i](t(1)^(p^-k),...,t(m)^(p^-k),x(i))=sep(F[i]) |
---|
4208 | |
---|
4209 | ideal I=imap(R,I); |
---|
4210 | ideal J=I+G; |
---|
4211 | poly el=1; |
---|
4212 | k=p^k; |
---|
4213 | for(i=1;i<=m;i++) |
---|
4214 | { |
---|
4215 | J=J,var(i)^k-var(m+n+i); |
---|
4216 | el=el*var(i); |
---|
4217 | } |
---|
4218 | |
---|
4219 | J=eliminate(J,el); |
---|
4220 | setring R; |
---|
4221 | ideal J=imap(@S,J); |
---|
4222 | return(J); |
---|
4223 | } |
---|
4224 | example |
---|
4225 | { "EXAMPLE:"; echo = 2; |
---|
4226 | ring R=(5,t),(x,y),dp; |
---|
4227 | ideal I=x^5-t,y^5-t; |
---|
4228 | zeroRad(I); |
---|
4229 | } |
---|
4230 | |
---|
4231 | /////////////////////////////////////////////////////////////////////////////// |
---|
4232 | |
---|
4233 | proc radicalEHV(ideal i) |
---|
4234 | "USAGE: radicalEHV(i); i ideal. |
---|
4235 | RETURN: ideal, the radical of i. |
---|
4236 | NOTE: Uses the algorithm of Eisenbud/Huneke/Vasconcelos, which |
---|
4237 | reduces the computation to the complete intersection case, |
---|
4238 | by taking, in the general case, a generic linear combination |
---|
4239 | of the input. |
---|
4240 | Works only in characteristic 0 or p large. |
---|
4241 | EXAMPLE: example radicalEHV; shows an example |
---|
4242 | " |
---|
4243 | { |
---|
4244 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
4245 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
4246 | if(attrib(basering,"global")!=1) |
---|
4247 | { |
---|
4248 | ERROR( |
---|
4249 | "// Not implemented for this ordering, please change to global ordering." |
---|
4250 | ); |
---|
4251 | } |
---|
4252 | |
---|
4253 | if((char(basering)<100)&&(char(basering)!=0)) |
---|
4254 | { |
---|
4255 | "WARNING: The characteristic is too small, the result may be wrong"; |
---|
4256 | } |
---|
4257 | if ( size(i)==0 ) { return(ideal(0)); } |
---|
4258 | |
---|
4259 | ideal J,I,I0,radI0,L,radI1,I2,radI2; |
---|
4260 | int l,n; |
---|
4261 | intvec op=option(get); |
---|
4262 | matrix M; |
---|
4263 | |
---|
4264 | option(redSB); |
---|
4265 | list m=mstd(i); |
---|
4266 | I=m[2]; |
---|
4267 | option(set,op); |
---|
4268 | |
---|
4269 | if ( dim(m[1])<0 ) { return(ideal(1)); } |
---|
4270 | |
---|
4271 | int cod=nvars(basering)-dim(m[1]); |
---|
4272 | //-------------------complete intersection case:---------------------- |
---|
4273 | if(cod==size(m[2])) |
---|
4274 | { |
---|
4275 | J=minor(jacob(I),cod); |
---|
4276 | return(quotient(I,J)); |
---|
4277 | } |
---|
4278 | //-----first codim elements of I are a complete intersection:--------- |
---|
4279 | for(l=1;l<=cod;l++) |
---|
4280 | { |
---|
4281 | I0[l]=I[l]; |
---|
4282 | } |
---|
4283 | n=dim(std(I0))+cod-nvars(basering); |
---|
4284 | //-----last codim elements of I are a complete intersection:---------- |
---|
4285 | if(n!=0) |
---|
4286 | { |
---|
4287 | for(l=1;l<=cod;l++) |
---|
4288 | { |
---|
4289 | I0[l]=I[size(I)-l+1]; |
---|
4290 | } |
---|
4291 | n=dim(std(I0))+cod-nvars(basering); |
---|
4292 | } |
---|
4293 | //-----taking a generic linear combination of the input:-------------- |
---|
4294 | if(n!=0) |
---|
4295 | { |
---|
4296 | M=transpose(sparsetriag(size(m[2]),cod,95,1)); |
---|
4297 | I0=ideal(M*transpose(I)); |
---|
4298 | n=dim(std(I0))+cod-nvars(basering); |
---|
4299 | } |
---|
4300 | //-----taking a more generic linear combination of the input:--------- |
---|
4301 | if(n!=0) |
---|
4302 | { |
---|
4303 | M=transpose(sparsetriag(size(m[2]),cod,0,100)); |
---|
4304 | I0=ideal(M*transpose(I)); |
---|
4305 | n=dim(std(I0))+cod-nvars(basering); |
---|
4306 | } |
---|
4307 | if(n==0) |
---|
4308 | { |
---|
4309 | J=minor(jacob(I0),cod); |
---|
4310 | radI0=quotient(I0,J); |
---|
4311 | L=quotient(radI0,I); |
---|
4312 | radI1=quotient(radI0,L); |
---|
4313 | |
---|
4314 | if(size(reduce(radI1,m[1],1))==0) |
---|
4315 | { |
---|
4316 | return(I); |
---|
4317 | } |
---|
4318 | |
---|
4319 | I2=sat(I,radI1)[1]; |
---|
4320 | |
---|
4321 | if(deg(I2[1])<=0) |
---|
4322 | { |
---|
4323 | return(radI1); |
---|
4324 | } |
---|
4325 | return(intersect(radI1,radicalEHV(I2))); |
---|
4326 | } |
---|
4327 | //---------------------general case------------------------------------- |
---|
4328 | return(radical(I)); |
---|
4329 | } |
---|
4330 | example |
---|
4331 | { "EXAMPLE:"; echo = 2; |
---|
4332 | ring r = 0,(x,y,z),dp; |
---|
4333 | poly p = z2+1; |
---|
4334 | poly q = z3+2; |
---|
4335 | ideal i = p*q^2,y-z2; |
---|
4336 | ideal pr= radicalEHV(i); |
---|
4337 | pr; |
---|
4338 | } |
---|
4339 | |
---|
4340 | /////////////////////////////////////////////////////////////////////////////// |
---|
4341 | |
---|
4342 | proc Ann(module M) |
---|
4343 | "USAGE: Ann(M); M module |
---|
4344 | RETURN: ideal, the annihilator of coker(M) |
---|
4345 | NOTE: The output is the ideal of all elements a of the basering R such that |
---|
4346 | a * R^m is contained in M (m=number of rows of M). |
---|
4347 | EXAMPLE: example Ann; shows an example |
---|
4348 | " |
---|
4349 | { |
---|
4350 | |
---|
4351 | M=prune(M); //to obtain a small embedding |
---|
4352 | ideal ann=quotient1(M,freemodule(nrows(M))); |
---|
4353 | return(ann); |
---|
4354 | } |
---|
4355 | example |
---|
4356 | { "EXAMPLE:"; echo = 2; |
---|
4357 | ring r = 0,(x,y,z),lp; |
---|
4358 | module M = x2-y2,z3; |
---|
4359 | Ann(M); |
---|
4360 | M = [1,x2],[y,x]; |
---|
4361 | Ann(M); |
---|
4362 | qring Q=std(xy-1); |
---|
4363 | module M=imap(r,M); |
---|
4364 | Ann(M); |
---|
4365 | } |
---|
4366 | |
---|
4367 | /////////////////////////////////////////////////////////////////////////////// |
---|
4368 | |
---|
4369 | //computes the equidimensional part of the ideal i of codimension e |
---|
4370 | static proc int_ass_primary_e(ideal i, int e) |
---|
4371 | { |
---|
4372 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4373 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4374 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4375 | |
---|
4376 | if(homog(i)!=1) |
---|
4377 | { |
---|
4378 | i=std(i); |
---|
4379 | } |
---|
4380 | list re=sres(i,0); //the resolution |
---|
4381 | re=minres(re); //minimized resolution |
---|
4382 | ideal ann = AnnExt_R(e,re); |
---|
4383 | if ( nvars(basering)-dim(std(ann)) != e ) |
---|
4384 | { |
---|
4385 | return( ideal(1) ); |
---|
4386 | } |
---|
4387 | return(ann); |
---|
4388 | } |
---|
4389 | |
---|
4390 | /////////////////////////////////////////////////////////////////////////////// |
---|
4391 | |
---|
4392 | //computes the annihilator of Ext^n(R/i,R) with given resolution re |
---|
4393 | //n is not necessarily the number of variables |
---|
4394 | // !! borrowed correct code from 'ehv.lib::AnnExtEHV' by Kai Dehmann !! duplicate code!! (jk) |
---|
4395 | |
---|
4396 | static proc AnnExt_R(int n,list re) |
---|
4397 | "USAGE: AnnExt_R(n,re); n integer, re resolution |
---|
4398 | RETURN: ideal, the annihilator of Ext^n(R/I,R) with given |
---|
4399 | resolution re of I |
---|
4400 | " |
---|
4401 | { |
---|
4402 | |
---|
4403 | if(n < 0) |
---|
4404 | { |
---|
4405 | return(ideal(1)); |
---|
4406 | } |
---|
4407 | int l = size(re); |
---|
4408 | |
---|
4409 | if(n < l) |
---|
4410 | { |
---|
4411 | matrix f = transpose(re[n+1]); |
---|
4412 | if(n == 0) |
---|
4413 | { |
---|
4414 | matrix g = matrix(0,1,ncols(f)); |
---|
4415 | } |
---|
4416 | else |
---|
4417 | { |
---|
4418 | matrix g = transpose(re[n]); |
---|
4419 | } |
---|
4420 | module k = syz(f); |
---|
4421 | return(quotient1(g,k)); |
---|
4422 | } |
---|
4423 | |
---|
4424 | if(n == l) |
---|
4425 | { |
---|
4426 | return(Ann(transpose(re[n]))); |
---|
4427 | } |
---|
4428 | |
---|
4429 | return(ideal(1)); |
---|
4430 | } |
---|
4431 | /////////////////////////////////////////////////////////////////////////////// |
---|
4432 | |
---|
4433 | static proc analyze(list pr) |
---|
4434 | { |
---|
4435 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4436 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4437 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4438 | |
---|
4439 | int ii,jj; |
---|
4440 | for(ii=1;ii<=size(pr) div 2;ii++) |
---|
4441 | { |
---|
4442 | dim(std(pr[2*ii])); |
---|
4443 | idealsEqual(pr[2*ii-1],pr[2*ii]); |
---|
4444 | "==========================="; |
---|
4445 | } |
---|
4446 | |
---|
4447 | for(ii=size(pr) div 2;ii>1;ii--) |
---|
4448 | { |
---|
4449 | for(jj=1;jj<ii;jj++) |
---|
4450 | { |
---|
4451 | if(size(reduce(pr[2*jj],std(pr[2*ii],1)))==0) |
---|
4452 | { |
---|
4453 | "eingebette Komponente"; |
---|
4454 | jj; |
---|
4455 | ii; |
---|
4456 | } |
---|
4457 | } |
---|
4458 | } |
---|
4459 | } |
---|
4460 | |
---|
4461 | /////////////////////////////////////////////////////////////////////////////// |
---|
4462 | // |
---|
4463 | // Shimoyama-Yokoyama |
---|
4464 | // |
---|
4465 | /////////////////////////////////////////////////////////////////////////////// |
---|
4466 | static proc simplifyIdeal(ideal i) |
---|
4467 | { |
---|
4468 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4469 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4470 | |
---|
4471 | def r=basering; |
---|
4472 | |
---|
4473 | ideal iwork=i; |
---|
4474 | ideal imap2=maxideal(1); |
---|
4475 | |
---|
4476 | int j,k; |
---|
4477 | map phi; |
---|
4478 | poly p; |
---|
4479 | ideal imap1=maxideal(1); |
---|
4480 | // first try: very simple substitutions |
---|
4481 | intvec tested=0:nvars(r); |
---|
4482 | for(j=1;j<=nvars(r);j++) |
---|
4483 | { |
---|
4484 | for(k=1;k<=ncols(i);k++) |
---|
4485 | { |
---|
4486 | if(deg(iwork[k]/var(j))==0) |
---|
4487 | { |
---|
4488 | p=-1/leadcoef(iwork[k]/var(j))*iwork[k]; |
---|
4489 | if(size(p)<=2) |
---|
4490 | { |
---|
4491 | tested[j]=1; |
---|
4492 | imap1[j]=p+2*var(j); |
---|
4493 | phi=r,imap1; |
---|
4494 | iwork=phi(iwork); |
---|
4495 | iwork=subst(iwork,var(j),0); |
---|
4496 | iwork[k]=var(j); |
---|
4497 | imap1=maxideal(1); |
---|
4498 | imap2[j]=-p; |
---|
4499 | break; |
---|
4500 | } |
---|
4501 | } |
---|
4502 | } |
---|
4503 | } |
---|
4504 | // second try: substitutions not so simple |
---|
4505 | for(j=1;j<=nvars(r);j++) |
---|
4506 | { |
---|
4507 | if (tested[j]==0) |
---|
4508 | { |
---|
4509 | for(k=1;k<=ncols(i);k++) |
---|
4510 | { |
---|
4511 | if(deg(iwork[k]/var(j))==0) |
---|
4512 | { |
---|
4513 | p=-1/leadcoef(iwork[k]/var(j))*iwork[k]; |
---|
4514 | imap1[j]=p+2*var(j); |
---|
4515 | phi=r,imap1; |
---|
4516 | iwork=phi(iwork); |
---|
4517 | iwork=subst(iwork,var(j),0); |
---|
4518 | iwork[k]=var(j); |
---|
4519 | imap1=maxideal(1); |
---|
4520 | imap2[j]=-p; |
---|
4521 | break; |
---|
4522 | } |
---|
4523 | } |
---|
4524 | } |
---|
4525 | } |
---|
4526 | return(iwork,imap2); |
---|
4527 | } |
---|
4528 | |
---|
4529 | |
---|
4530 | /////////////////////////////////////////////////////// |
---|
4531 | // ini_mod |
---|
4532 | // input: a polynomial p |
---|
4533 | // output: the initial term of p as needed |
---|
4534 | // in the context of characteristic sets |
---|
4535 | ////////////////////////////////////////////////////// |
---|
4536 | |
---|
4537 | static proc ini_mod(poly p) |
---|
4538 | { |
---|
4539 | if (p==0) |
---|
4540 | { |
---|
4541 | return(0); |
---|
4542 | } |
---|
4543 | int n; matrix m; |
---|
4544 | for( n=nvars(basering); n>0; n--) |
---|
4545 | { |
---|
4546 | m=coef(p,var(n)); |
---|
4547 | if(m[1,1]!=1) |
---|
4548 | { |
---|
4549 | p=m[2,1]; |
---|
4550 | break; |
---|
4551 | } |
---|
4552 | } |
---|
4553 | if(deg(p)==0) |
---|
4554 | { |
---|
4555 | p=0; |
---|
4556 | } |
---|
4557 | return(p); |
---|
4558 | } |
---|
4559 | /////////////////////////////////////////////////////// |
---|
4560 | // min_ass_prim_charsets |
---|
4561 | // input: generators of an ideal PS and an integer cho |
---|
4562 | // If cho=0, the given ordering of the variables is used. |
---|
4563 | // Otherwise, the system tries to find an "optimal ordering", |
---|
4564 | // which in some cases may considerably speed up the algorithm |
---|
4565 | // output: the minimal associated primes of PS |
---|
4566 | // algorithm: via characteriostic sets |
---|
4567 | ////////////////////////////////////////////////////// |
---|
4568 | |
---|
4569 | static proc min_ass_prim_charsets_i (int patchPrimaryDecomposition, ideal PS, int cho) |
---|
4570 | { |
---|
4571 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
4572 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
4573 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4574 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4575 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4576 | |
---|
4577 | if((cho<0) or (cho>1)) |
---|
4578 | { |
---|
4579 | ERROR("<int> must be 0 or 1"); |
---|
4580 | } |
---|
4581 | intvec saveopt=option(get); |
---|
4582 | option(notWarnSB); |
---|
4583 | list L; |
---|
4584 | if(cho==0) |
---|
4585 | { |
---|
4586 | L=min_ass_prim_charsets0_i(patchPrimaryDecomposition,PS); |
---|
4587 | } |
---|
4588 | else |
---|
4589 | { |
---|
4590 | L=min_ass_prim_charsets1_i(patchPrimaryDecomposition,PS); |
---|
4591 | } |
---|
4592 | option(set,saveopt); |
---|
4593 | return(L); |
---|
4594 | } |
---|
4595 | /////////////////////////////////////////////////////// |
---|
4596 | // min_ass_prim_charsets0 |
---|
4597 | // input: generators of an ideal PS |
---|
4598 | // output: the minimal associated primes of PS |
---|
4599 | // algorithm: via characteristic sets |
---|
4600 | // the given ordering of the variables is used |
---|
4601 | ////////////////////////////////////////////////////// |
---|
4602 | |
---|
4603 | |
---|
4604 | static proc min_ass_prim_charsets0_i (int patchPrimaryDecomposition, ideal PS) |
---|
4605 | { |
---|
4606 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
4607 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
4608 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4609 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4610 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4611 | |
---|
4612 | intvec op; |
---|
4613 | if (size(PS)==0) { return( list(ideal(0))); } |
---|
4614 | matrix m=char_series(PS); // We compute an irreducible |
---|
4615 | // characteristic series |
---|
4616 | if ((nrows(m)==1) |
---|
4617 | && (ncols(m)==1) |
---|
4618 | && (m[1,1]==1)) // in case of an empty series: min_ass_prim_charsets1 |
---|
4619 | { |
---|
4620 | return (min_ass_prim_charsets1_i(patchPrimaryDecomposition,PS)); |
---|
4621 | } |
---|
4622 | int i,j,k; |
---|
4623 | list PSI; |
---|
4624 | list PHI; // the ideals given by the characteristic series |
---|
4625 | for(i=nrows(m);i>=1; i--) |
---|
4626 | { |
---|
4627 | PHI[i]=ideal(m[i,1..ncols(m)]); |
---|
4628 | } |
---|
4629 | // We compute the radical of each ideal in PHI |
---|
4630 | ideal I,JS,II; |
---|
4631 | int sizeJS, sizeII; |
---|
4632 | for(i=size(PHI);i>=1; i--) |
---|
4633 | { |
---|
4634 | I=0; |
---|
4635 | for(j=size(PHI[i]);j>0;j--) |
---|
4636 | { |
---|
4637 | I=I+ini_mod(PHI[i][j]); |
---|
4638 | } |
---|
4639 | JS=std(PHI[i]); |
---|
4640 | sizeJS=size(JS); |
---|
4641 | for(j=size(I);j>0;j--) |
---|
4642 | { |
---|
4643 | II=0; |
---|
4644 | sizeII=0; |
---|
4645 | k=0; |
---|
4646 | while(k<=sizeII) // successive saturation |
---|
4647 | { |
---|
4648 | op=option(get); |
---|
4649 | option(returnSB); |
---|
4650 | II=quotient(JS,I[j]); |
---|
4651 | option(set,op); |
---|
4652 | sizeII=size(II); |
---|
4653 | if(sizeII==sizeJS) |
---|
4654 | { |
---|
4655 | for(k=1;k<=sizeII;k++) |
---|
4656 | { |
---|
4657 | if(leadexp(II[k])!=leadexp(JS[k])) break; |
---|
4658 | } |
---|
4659 | } |
---|
4660 | JS=II; |
---|
4661 | sizeJS=sizeII; |
---|
4662 | } |
---|
4663 | } |
---|
4664 | PSI=insert(PSI,JS); |
---|
4665 | } |
---|
4666 | int sizePSI=size(PSI); |
---|
4667 | // We eliminate redundant ideals |
---|
4668 | for(i=1;i<sizePSI;i++) |
---|
4669 | { |
---|
4670 | for(j=i+1;j<=sizePSI;j++) |
---|
4671 | { |
---|
4672 | if(size(PSI[i])!=0) |
---|
4673 | { |
---|
4674 | if(size(PSI[j])!=0) |
---|
4675 | { |
---|
4676 | if(size(NF(PSI[i],PSI[j],1))==0) |
---|
4677 | { |
---|
4678 | PSI[j]=ideal(0); |
---|
4679 | } |
---|
4680 | else |
---|
4681 | { |
---|
4682 | if(size(NF(PSI[j],PSI[i],1))==0) |
---|
4683 | { |
---|
4684 | PSI[i]=ideal(0); |
---|
4685 | } |
---|
4686 | } |
---|
4687 | } |
---|
4688 | } |
---|
4689 | } |
---|
4690 | } |
---|
4691 | for(i=sizePSI;i>=1;i--) |
---|
4692 | { |
---|
4693 | if(size(PSI[i])==0) |
---|
4694 | { |
---|
4695 | PSI=delete(PSI,i); |
---|
4696 | } |
---|
4697 | } |
---|
4698 | if(size(PSI)==1) |
---|
4699 | { |
---|
4700 | if (idealsEqual( PSI[1], ideal(1) )) |
---|
4701 | { |
---|
4702 | if (patchPrimaryDecomposition==1) |
---|
4703 | { |
---|
4704 | return( list() ); |
---|
4705 | } |
---|
4706 | else |
---|
4707 | { |
---|
4708 | return( list(ideal(1)) ); |
---|
4709 | } |
---|
4710 | } |
---|
4711 | } |
---|
4712 | return (PSI); |
---|
4713 | } |
---|
4714 | |
---|
4715 | /////////////////////////////////////////////////////// |
---|
4716 | // min_ass_prim_charsets1 |
---|
4717 | // input: generators of an ideal PS |
---|
4718 | // output: the minimal associated primes of PS |
---|
4719 | // algorithm: via characteristic sets |
---|
4720 | // input: generators of an ideal PS and an integer i |
---|
4721 | // The system tries to find an "optimal ordering" of |
---|
4722 | // the variables |
---|
4723 | ////////////////////////////////////////////////////// |
---|
4724 | |
---|
4725 | |
---|
4726 | static proc min_ass_prim_charsets1_i (int patchPrimaryDecomposition, ideal PS) |
---|
4727 | { |
---|
4728 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
4729 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
4730 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4731 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4732 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4733 | |
---|
4734 | intvec op; |
---|
4735 | def oldring=basering; |
---|
4736 | if (size(PS)==0) { return( list(ideal(0))); } |
---|
4737 | string n=system("neworder",PS); |
---|
4738 | execute("ring r=("+charstr(oldring)+"),("+n+"),dp;"); |
---|
4739 | ideal PS=imap(oldring,PS); |
---|
4740 | matrix m=char_series(PS); // We compute an irreducible |
---|
4741 | // characteristic series |
---|
4742 | // this series may be empty (1x1: 1) |
---|
4743 | int i,j,k,cnt; |
---|
4744 | while ((cnt<nvars(oldring)) |
---|
4745 | && (nrows(m)==1) |
---|
4746 | && (ncols(m)==1) |
---|
4747 | && (m[1,1]==1)) // in case of an empty series: permute the variables |
---|
4748 | { |
---|
4749 | cnt++; |
---|
4750 | n=string(var(nvars(oldring))); |
---|
4751 | for(i=1;i<nvars(oldring);i++) { n=n+","+string(var(i)); } |
---|
4752 | kill r; |
---|
4753 | execute("ring r=("+charstr(oldring)+"),("+n+"),dp;"); |
---|
4754 | ideal PS=imap(oldring,PS); |
---|
4755 | matrix m=char_series(PS); |
---|
4756 | } |
---|
4757 | ideal I; |
---|
4758 | list PSI; |
---|
4759 | list PHI; // the ideals given by the characteristic series |
---|
4760 | list ITPHI; // their initial terms |
---|
4761 | for(i=nrows(m);i>=1; i--) |
---|
4762 | { |
---|
4763 | PHI[i]=simplify(ideal(m[i,1..ncols(m)]),2); |
---|
4764 | I=0; |
---|
4765 | for(j=ncols(PHI[i]);j>0;j--) |
---|
4766 | { |
---|
4767 | I=I,ini_mod(PHI[i][j]); |
---|
4768 | } |
---|
4769 | if (ncols(I)>1) |
---|
4770 | { |
---|
4771 | I=I[2..ncols(I)]; |
---|
4772 | } |
---|
4773 | ITPHI[i]=I; |
---|
4774 | } |
---|
4775 | setring oldring; |
---|
4776 | matrix m=imap(r,m); |
---|
4777 | list PHI=imap(r,PHI); |
---|
4778 | list ITPHI=imap(r,ITPHI); |
---|
4779 | // We compute the radical of each ideal in PHI |
---|
4780 | ideal I,JS,II; |
---|
4781 | int sizeJS, sizeII; |
---|
4782 | for(i=size(PHI);i>=1; i--) |
---|
4783 | { |
---|
4784 | I=0; |
---|
4785 | for(j=size(PHI[i]);j>0;j--) |
---|
4786 | { |
---|
4787 | I=I+ITPHI[i][j]; |
---|
4788 | } |
---|
4789 | JS=std(PHI[i]); |
---|
4790 | sizeJS=size(JS); |
---|
4791 | for(j=size(I);j>0;j--) |
---|
4792 | { |
---|
4793 | II=0; |
---|
4794 | sizeII=0; |
---|
4795 | k=0; |
---|
4796 | while(k<=sizeII) // successive iteration |
---|
4797 | { |
---|
4798 | op=option(get); |
---|
4799 | option(returnSB); |
---|
4800 | II=quotient(JS,I[j]); |
---|
4801 | option(set,op); |
---|
4802 | //std |
---|
4803 | // II=std(II); |
---|
4804 | sizeII=size(II); |
---|
4805 | if(sizeII==sizeJS) |
---|
4806 | { |
---|
4807 | for(k=1;k<=sizeII;k++) |
---|
4808 | { |
---|
4809 | if(leadexp(II[k])!=leadexp(JS[k])) break; |
---|
4810 | } |
---|
4811 | } |
---|
4812 | JS=II; |
---|
4813 | sizeJS=sizeII; |
---|
4814 | } |
---|
4815 | } |
---|
4816 | PSI=insert(PSI,JS); |
---|
4817 | } |
---|
4818 | int sizePSI=size(PSI); |
---|
4819 | // We eliminate redundant ideals |
---|
4820 | for(i=1;i<sizePSI;i++) |
---|
4821 | { |
---|
4822 | for(j=i+1;j<=sizePSI;j++) |
---|
4823 | { |
---|
4824 | if(size(PSI[i])!=0) |
---|
4825 | { |
---|
4826 | if(size(PSI[j])!=0) |
---|
4827 | { |
---|
4828 | if(size(NF(PSI[i],PSI[j],1))==0) |
---|
4829 | { |
---|
4830 | PSI[j]=ideal(0); |
---|
4831 | } |
---|
4832 | else |
---|
4833 | { |
---|
4834 | if(size(NF(PSI[j],PSI[i],1))==0) |
---|
4835 | { |
---|
4836 | PSI[i]=ideal(0); |
---|
4837 | } |
---|
4838 | } |
---|
4839 | } |
---|
4840 | } |
---|
4841 | } |
---|
4842 | } |
---|
4843 | for(i=sizePSI;i>=1;i--) |
---|
4844 | { |
---|
4845 | if(size(PSI[i])==0) |
---|
4846 | { |
---|
4847 | PSI=delete(PSI,i); |
---|
4848 | } |
---|
4849 | } |
---|
4850 | if(size(PSI)==1) |
---|
4851 | { |
---|
4852 | if (idealsEqual( PSI[1], ideal(1) )) |
---|
4853 | { |
---|
4854 | if (patchPrimaryDecomposition==1) |
---|
4855 | { |
---|
4856 | return( list() ); |
---|
4857 | } |
---|
4858 | else |
---|
4859 | { |
---|
4860 | return( list(ideal(1)) ); |
---|
4861 | } |
---|
4862 | } |
---|
4863 | } |
---|
4864 | |
---|
4865 | return (PSI); |
---|
4866 | } |
---|
4867 | |
---|
4868 | |
---|
4869 | ///////////////////////////////////////////////////// |
---|
4870 | // proc prim_dec |
---|
4871 | // input: generators of an ideal I and an integer choose |
---|
4872 | // If choose=0, min_ass_prim_charsets with the given |
---|
4873 | // ordering of the variables is used. |
---|
4874 | // If choose=1, min_ass_prim_charsets with the "optimized" |
---|
4875 | // ordering of the variables is used. |
---|
4876 | // If choose=2, minAssPrimes from primdec.lib is used |
---|
4877 | // If choose=3, minAssPrimes+factorizing Buchberger from primdec.lib is used |
---|
4878 | // output: a primary decomposition of I, i.e., a list |
---|
4879 | // of pairs consisting of a standard basis of a primary component |
---|
4880 | // of I and a standard basis of the corresponding associated prime. |
---|
4881 | // To compute the minimal associated primes of a given ideal |
---|
4882 | // min_ass_prim_l is called, i.e., the minimal associated primes |
---|
4883 | // are computed via characteristic sets. |
---|
4884 | // In the homogeneous case, the performance of the procedure |
---|
4885 | // will be improved if I is already given by a minimal set of |
---|
4886 | // generators. Apply minbase if necessary. |
---|
4887 | ////////////////////////////////////////////////////////// |
---|
4888 | |
---|
4889 | static proc prim_dec_i(int patchPrimaryDecomposition, ideal I, int choose) |
---|
4890 | { |
---|
4891 | // if patchPrimaryDecomposition=1, drop unit ideal in the decomposition, |
---|
4892 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
4893 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4894 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4895 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4896 | if((choose<0) or (choose>3)) |
---|
4897 | { |
---|
4898 | ERROR("ERROR: <int> must be 0 or 1 or 2 or 3"); |
---|
4899 | } |
---|
4900 | ideal H=1; // The intersection of the primary components |
---|
4901 | list U; // the leaves of the decomposition tree, i.e., |
---|
4902 | // pairs consisting of a primary component of I |
---|
4903 | // and the corresponding associated prime |
---|
4904 | list W; // the non-leaf vertices in the decomposition tree. |
---|
4905 | // every entry has 6 components: |
---|
4906 | // 1- the vertex itself , i.e., a standard bais of the |
---|
4907 | // given ideal I (type 1), or a standard basis of a |
---|
4908 | // pseudo-primary component arising from |
---|
4909 | // pseudo-primary decomposition (type 2), or a |
---|
4910 | // standard basis of a remaining component arising from |
---|
4911 | // pseudo-primary decomposition or extraction (type 3) |
---|
4912 | // 2- the type of the vertex as indicated above |
---|
4913 | // 3- the weighted_tree_depth of the vertex |
---|
4914 | // 4- the tester of the vertex |
---|
4915 | // 5- a standard basis of the associated prime |
---|
4916 | // of a vertex of type 2, or 0 otherwise |
---|
4917 | // 6- a list of pairs consisting of a standard |
---|
4918 | // basis of a minimal associated prime ideal |
---|
4919 | // of the father of the vertex and the |
---|
4920 | // irreducible factors of the "minimal |
---|
4921 | // divisor" of the seperator or extractor |
---|
4922 | // corresponding to the prime ideal |
---|
4923 | // as computed by the procedure minsat, |
---|
4924 | // if the vertex is of type 3, or |
---|
4925 | // the empty list otherwise |
---|
4926 | ideal SI=std(I); |
---|
4927 | if(SI[1]==1) // primdecSY(ideal(1)) |
---|
4928 | { |
---|
4929 | ASSUME(1, ncols(SI)==1); |
---|
4930 | if (patchPrimaryDecomposition==1) |
---|
4931 | { |
---|
4932 | return( list() ); |
---|
4933 | } |
---|
4934 | else |
---|
4935 | { |
---|
4936 | return( list(list(ideal(1),ideal(1))) ); |
---|
4937 | } |
---|
4938 | } |
---|
4939 | intvec save=option(get); |
---|
4940 | option(notWarnSB); |
---|
4941 | int ncolsSI=ncols(SI); |
---|
4942 | int ncolsH=1; |
---|
4943 | W[1]=list(I,1,0,poly(1),ideal(0),list()); // The root of the tree |
---|
4944 | int weighted_tree_depth; |
---|
4945 | int i,j; |
---|
4946 | int check; |
---|
4947 | list V; // current vertex |
---|
4948 | list VV; // new vertex |
---|
4949 | list QQ; |
---|
4950 | list WI; |
---|
4951 | ideal Qi,SQ,SRest,fac; |
---|
4952 | poly tester; |
---|
4953 | |
---|
4954 | while(1) |
---|
4955 | { |
---|
4956 | i=1; |
---|
4957 | while(1) |
---|
4958 | { |
---|
4959 | while(i<=size(W)) // find vertex V of smallest weighted tree-depth |
---|
4960 | { |
---|
4961 | if (W[i][3]<=weighted_tree_depth) break; |
---|
4962 | i++; |
---|
4963 | } |
---|
4964 | if (i<=size(W)) break; |
---|
4965 | i=1; |
---|
4966 | weighted_tree_depth++; |
---|
4967 | } |
---|
4968 | V=W[i]; |
---|
4969 | W=delete(W,i); // delete V from W |
---|
4970 | |
---|
4971 | // now proceed by type of vertex V |
---|
4972 | |
---|
4973 | if (V[2]==2) // extraction needed |
---|
4974 | { |
---|
4975 | SQ,SRest,fac=extraction(V[1],V[5]); |
---|
4976 | // standard basis of primary component, |
---|
4977 | // standard basis of remaining component, |
---|
4978 | // irreducible factors of |
---|
4979 | // the "minimal divisor" of the extractor |
---|
4980 | // as computed by the procedure minsat, |
---|
4981 | check=0; |
---|
4982 | for(j=1;j<=ncolsH;j++) |
---|
4983 | { |
---|
4984 | if (NF(H[j],SQ,1)!=0) // Q is not redundant |
---|
4985 | { |
---|
4986 | check=1; |
---|
4987 | break; |
---|
4988 | } |
---|
4989 | } |
---|
4990 | if(check==1) // Q is not redundant |
---|
4991 | { |
---|
4992 | QQ=list(); |
---|
4993 | QQ[1]=list(SQ,V[5]); // primary component, associated prime, |
---|
4994 | // i.e., standard bases thereof |
---|
4995 | U=U+QQ; |
---|
4996 | H=intersect(H,SQ); |
---|
4997 | H=std(H); |
---|
4998 | ncolsH=ncols(H); |
---|
4999 | check=0; |
---|
5000 | if(ncolsH==ncolsSI) |
---|
5001 | { |
---|
5002 | for(j=1;j<=ncolsSI;j++) |
---|
5003 | { |
---|
5004 | if(leadexp(H[j])!=leadexp(SI[j])) |
---|
5005 | { |
---|
5006 | check=1; |
---|
5007 | break; |
---|
5008 | } |
---|
5009 | } |
---|
5010 | } |
---|
5011 | else |
---|
5012 | { |
---|
5013 | check=1; |
---|
5014 | } |
---|
5015 | if(check==0) // H==I => U is a primary decomposition |
---|
5016 | { |
---|
5017 | option(set,save); |
---|
5018 | return(U); |
---|
5019 | } |
---|
5020 | } |
---|
5021 | if (SRest[1]!=1) // the remaining component is not |
---|
5022 | // the whole ring |
---|
5023 | { |
---|
5024 | if (rad_con(V[4],SRest)==0) // the new vertex is not the |
---|
5025 | // root of a redundant subtree |
---|
5026 | { |
---|
5027 | VV[1]=SRest; // remaining component |
---|
5028 | VV[2]=3; // pseudoprimdec_special |
---|
5029 | VV[3]=V[3]+1; // weighted depth |
---|
5030 | VV[4]=V[4]; // the tester did not change |
---|
5031 | VV[5]=ideal(0); |
---|
5032 | VV[6]=list(list(V[5],fac)); |
---|
5033 | W=insert(W,VV,size(W)); |
---|
5034 | } |
---|
5035 | } |
---|
5036 | } |
---|
5037 | else |
---|
5038 | { |
---|
5039 | if (V[2]==3) // pseudo_prim_dec_special is needed |
---|
5040 | { |
---|
5041 | QQ,SRest=pseudo_prim_dec_special_charsets_i(patchPrimaryDecomposition,V[1],V[6],choose); |
---|
5042 | // QQ = quadruples: |
---|
5043 | // standard basis of pseudo-primary component, |
---|
5044 | // standard basis of corresponding prime, |
---|
5045 | // seperator, irreducible factors of |
---|
5046 | // the "minimal divisor" of the seperator |
---|
5047 | // as computed by the procedure minsat, |
---|
5048 | // SRest=standard basis of remaining component |
---|
5049 | } |
---|
5050 | else // V is the root, pseudo_prim_dec is needed |
---|
5051 | { |
---|
5052 | QQ,SRest=pseudo_prim_dec_charsets_i(patchPrimaryDecomposition,I,SI,choose); |
---|
5053 | // QQ = quadruples: |
---|
5054 | // standard basis of pseudo-primary component, |
---|
5055 | // standard basis of corresponding prime, |
---|
5056 | // seperator, irreducible factors of |
---|
5057 | // the "minimal divisor" of the seperator |
---|
5058 | // as computed by the procedure minsat, |
---|
5059 | // SRest=standard basis of remaining component |
---|
5060 | } |
---|
5061 | //check |
---|
5062 | for(i=size(QQ);i>=1;i--) |
---|
5063 | //for(i=1;i<=size(QQ);i++) |
---|
5064 | { |
---|
5065 | tester=QQ[i][3]*V[4]; |
---|
5066 | Qi=QQ[i][2]; |
---|
5067 | if(NF(tester,Qi,1)!=0) // the new vertex is not the |
---|
5068 | // root of a redundant subtree |
---|
5069 | { |
---|
5070 | VV[1]=QQ[i][1]; |
---|
5071 | VV[2]=2; |
---|
5072 | VV[3]=V[3]+1; |
---|
5073 | VV[4]=tester; // the new tester as computed above |
---|
5074 | VV[5]=Qi; // QQ[i][2]; |
---|
5075 | VV[6]=list(); |
---|
5076 | W=insert(W,VV,size(W)); |
---|
5077 | } |
---|
5078 | } |
---|
5079 | if (SRest[1]!=1) // the remaining component is not |
---|
5080 | // the whole ring |
---|
5081 | { |
---|
5082 | if (rad_con(V[4],SRest)==0) // the vertex is not the root |
---|
5083 | // of a redundant subtree |
---|
5084 | { |
---|
5085 | VV[1]=SRest; |
---|
5086 | VV[2]=3; |
---|
5087 | VV[3]=V[3]+2; |
---|
5088 | VV[4]=V[4]; // the tester did not change |
---|
5089 | VV[5]=ideal(0); |
---|
5090 | WI=list(); |
---|
5091 | for(i=1;i<=size(QQ);i++) |
---|
5092 | { |
---|
5093 | WI=insert(WI,list(QQ[i][2],QQ[i][4])); |
---|
5094 | } |
---|
5095 | VV[6]=WI; |
---|
5096 | W=insert(W,VV,size(W)); |
---|
5097 | } |
---|
5098 | } |
---|
5099 | } |
---|
5100 | } |
---|
5101 | option(set,save); |
---|
5102 | } |
---|
5103 | |
---|
5104 | ////////////////////////////////////////////////////////////////////////// |
---|
5105 | // proc pseudo_prim_dec_charsets |
---|
5106 | // input: Generators of an arbitrary ideal I, a standard basis SI of I, |
---|
5107 | // and an integer choo |
---|
5108 | // If choo=0, min_ass_prim_charsets with the given |
---|
5109 | // ordering of the variables is used. |
---|
5110 | // If choo=1, min_ass_prim_charsets with the "optimized" |
---|
5111 | // ordering of the variables is used. |
---|
5112 | // If choo=2, minAssPrimes from primdec.lib is used |
---|
5113 | // If choo=3, minAssPrimes+factorizing Buchberger from primdec.lib is used |
---|
5114 | // output: a pseudo primary decomposition of I, i.e., a list |
---|
5115 | // of pseudo primary components together with a standard basis of the |
---|
5116 | // remaining component. Each pseudo primary component is |
---|
5117 | // represented by a quadrupel: A standard basis of the component, |
---|
5118 | // a standard basis of the corresponding associated prime, the |
---|
5119 | // seperator of the component, and the irreducible factors of the |
---|
5120 | // "minimal divisor" of the seperator as computed by the procedure minsat, |
---|
5121 | // calls proc pseudo_prim_dec_i |
---|
5122 | ////////////////////////////////////////////////////////////////////////// |
---|
5123 | |
---|
5124 | |
---|
5125 | static proc pseudo_prim_dec_charsets_i(int patchPrimaryDecomposition, ideal I, ideal SI, int choo) |
---|
5126 | { |
---|
5127 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
5128 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
5129 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5130 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5131 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5132 | |
---|
5133 | list L; // The list of minimal associated primes, |
---|
5134 | // each one given by a standard basis |
---|
5135 | if((choo==0) or (choo==1)) |
---|
5136 | { |
---|
5137 | L=min_ass_prim_charsets_i(patchPrimaryDecomposition,I,choo); |
---|
5138 | } |
---|
5139 | else |
---|
5140 | { |
---|
5141 | if(choo==2) |
---|
5142 | { |
---|
5143 | L=minAssPrimes_i(patchPrimaryDecomposition,I); |
---|
5144 | } |
---|
5145 | else |
---|
5146 | { |
---|
5147 | L=minAssPrimes_i(patchPrimaryDecomposition,I,1); |
---|
5148 | } |
---|
5149 | for(int i=size(L);i>=1;i--) |
---|
5150 | { |
---|
5151 | L[i]=std(L[i]); |
---|
5152 | } |
---|
5153 | } |
---|
5154 | return (pseudo_prim_dec_i_i(patchPrimaryDecomposition,SI,L)); |
---|
5155 | } |
---|
5156 | |
---|
5157 | //////////////////////////////////////////////////////////////// |
---|
5158 | // proc pseudo_prim_dec_special_charsets |
---|
5159 | // input: a standard basis of an ideal I whose radical is the |
---|
5160 | // intersection of the radicals of ideals generated by one prime ideal |
---|
5161 | // P_i together with one polynomial f_i, the list V6 must be the list of |
---|
5162 | // pairs (standard basis of P_i, irreducible factors of f_i), |
---|
5163 | // and an integer choo |
---|
5164 | // If choo=0, min_ass_prim_charsets with the given |
---|
5165 | // ordering of the variables is used. |
---|
5166 | // If choo=1, min_ass_prim_charsets with the "optimized" |
---|
5167 | // ordering of the variables is used. |
---|
5168 | // If choo=2, minAssPrimes from primdec.lib is used |
---|
5169 | // If choo=3, minAssPrimes+factorizing Buchberger from primdec.lib is used |
---|
5170 | // output: a pseudo primary decomposition of I, i.e., a list |
---|
5171 | // of pseudo primary components together with a standard basis of the |
---|
5172 | // remaining component. Each pseudo primary component is |
---|
5173 | // represented by a quadrupel: A standard basis of the component, |
---|
5174 | // a standard basis of the corresponding associated prime, the |
---|
5175 | // seperator of the component, and the irreducible factors of the |
---|
5176 | // "minimal divisor" of the seperator as computed by the procedure minsat, |
---|
5177 | // calls proc pseudo_prim_dec_i |
---|
5178 | //////////////////////////////////////////////////////////////// |
---|
5179 | |
---|
5180 | static proc pseudo_prim_dec_special_charsets_i (int patchPrimaryDecomposition, ideal SI,list V6, int choo) |
---|
5181 | { |
---|
5182 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
5183 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
5184 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5185 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5186 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5187 | int i,j,l; |
---|
5188 | list m; |
---|
5189 | list L; |
---|
5190 | int sizeL; |
---|
5191 | ideal P,SP; ideal fac; |
---|
5192 | int dimSP; |
---|
5193 | for(l=size(V6);l>=1;l--) // creates a list of associated primes |
---|
5194 | // of I, possibly redundant |
---|
5195 | { |
---|
5196 | P=V6[l][1]; |
---|
5197 | fac=V6[l][2]; |
---|
5198 | for(i=ncols(fac);i>=1;i--) |
---|
5199 | { |
---|
5200 | SP=P+fac[i]; |
---|
5201 | SP=std(SP); |
---|
5202 | if(SP[1]!=1) |
---|
5203 | { |
---|
5204 | if((choo==0) or (choo==1)) |
---|
5205 | { |
---|
5206 | m=min_ass_prim_charsets_i(patchPrimaryDecomposition,SP,choo); // a list of SB |
---|
5207 | } |
---|
5208 | else |
---|
5209 | { |
---|
5210 | if(choo==2) |
---|
5211 | { |
---|
5212 | m=minAssPrimes_i(patchPrimaryDecomposition,SP); |
---|
5213 | } |
---|
5214 | else |
---|
5215 | { |
---|
5216 | m=minAssPrimes_i(patchPrimaryDecomposition,SP,1); |
---|
5217 | } |
---|
5218 | for(j=size(m);j>=1;j--) |
---|
5219 | { |
---|
5220 | m[j]=std(m[j]); |
---|
5221 | } |
---|
5222 | } |
---|
5223 | dimSP=dim(SP); |
---|
5224 | for(j=size(m);j>=1; j--) |
---|
5225 | { |
---|
5226 | if(dim(m[j])==dimSP) |
---|
5227 | { |
---|
5228 | L=insert(L,m[j],size(L)); |
---|
5229 | } |
---|
5230 | } |
---|
5231 | } |
---|
5232 | } |
---|
5233 | } |
---|
5234 | sizeL=size(L); |
---|
5235 | for(i=1;i<sizeL;i++) // get rid of redundant primes |
---|
5236 | { |
---|
5237 | for(j=i+1;j<=sizeL;j++) |
---|
5238 | { |
---|
5239 | if(size(L[i])!=0) |
---|
5240 | { |
---|
5241 | if(size(L[j])!=0) |
---|
5242 | { |
---|
5243 | if(size(NF(L[i],L[j],1))==0) |
---|
5244 | { |
---|
5245 | L[j]=ideal(0); |
---|
5246 | } |
---|
5247 | else |
---|
5248 | { |
---|
5249 | if(size(NF(L[j],L[i],1))==0) |
---|
5250 | { |
---|
5251 | L[i]=ideal(0); |
---|
5252 | } |
---|
5253 | } |
---|
5254 | } |
---|
5255 | } |
---|
5256 | } |
---|
5257 | } |
---|
5258 | for(i=sizeL;i>=1;i--) |
---|
5259 | { |
---|
5260 | if(size(L[i])==0) |
---|
5261 | { |
---|
5262 | L=delete(L,i); |
---|
5263 | } |
---|
5264 | } |
---|
5265 | return (pseudo_prim_dec_i_i(patchPrimaryDecomposition,SI,L)); |
---|
5266 | } |
---|
5267 | |
---|
5268 | |
---|
5269 | //////////////////////////////////////////////////////////////// |
---|
5270 | // proc pseudo_prim_dec_i_i |
---|
5271 | // input: A standard basis of an arbitrary ideal I, and standard bases |
---|
5272 | // of the minimal associated primes of I |
---|
5273 | // output: a pseudo primary decomposition of I, i.e., a list |
---|
5274 | // of pseudo primary components together with a standard basis of the |
---|
5275 | // remaining component. Each pseudo primary component is |
---|
5276 | // represented by a quadrupel: A standard basis of the component Q_i, |
---|
5277 | // a standard basis of the corresponding associated prime P_i, the |
---|
5278 | // seperator of the component, and the irreducible factors of the |
---|
5279 | // "minimal divisor" of the seperator as computed by the procedure minsat, |
---|
5280 | //////////////////////////////////////////////////////////////// |
---|
5281 | |
---|
5282 | static proc pseudo_prim_dec_i_i (int patchPrimaryDecomposition, ideal SI, list L) |
---|
5283 | { |
---|
5284 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
5285 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
5286 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5287 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5288 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5289 | list Q; |
---|
5290 | if (size(L)==1) // one minimal associated prime only |
---|
5291 | // the ideal is already pseudo primary |
---|
5292 | { |
---|
5293 | Q=SI,L[1],1; |
---|
5294 | list QQ; |
---|
5295 | QQ[1]=Q; |
---|
5296 | return (QQ,ideal(1)); |
---|
5297 | } |
---|
5298 | |
---|
5299 | poly f0,f,g; |
---|
5300 | ideal fac; |
---|
5301 | int i,j,k,l; |
---|
5302 | ideal SQi; |
---|
5303 | ideal I'=SI; |
---|
5304 | list QP; |
---|
5305 | int sizeL=size(L); |
---|
5306 | for(i=1;i<=sizeL;i++) |
---|
5307 | { |
---|
5308 | fac=0; |
---|
5309 | for(j=1;j<=sizeL;j++) // compute the seperator sep_i |
---|
5310 | // of the i-th component |
---|
5311 | { |
---|
5312 | if (i!=j) // search g not in L[i], but L[j] |
---|
5313 | { |
---|
5314 | for(k=1;k<=ncols(L[j]);k++) |
---|
5315 | { |
---|
5316 | if(NF(L[j][k],L[i],1)!=0) |
---|
5317 | { |
---|
5318 | break; |
---|
5319 | } |
---|
5320 | } |
---|
5321 | fac=fac+L[j][k]; |
---|
5322 | } |
---|
5323 | } |
---|
5324 | // delete superfluous polynomials |
---|
5325 | fac=simplify(fac,8+2); |
---|
5326 | // saturation |
---|
5327 | SQi,f0,f,fac=minsat_ppd(SI,fac); |
---|
5328 | I'=I',f; |
---|
5329 | QP=SQi,L[i],f0,fac; |
---|
5330 | // the quadrupel: |
---|
5331 | // a standard basis of Q_i, |
---|
5332 | // a standard basis of P_i, |
---|
5333 | // sep_i, |
---|
5334 | // irreducible factors of |
---|
5335 | // the "minimal divisor" of the seperator |
---|
5336 | // as computed by the procedure minsat, |
---|
5337 | Q[i]=QP; |
---|
5338 | } |
---|
5339 | I'=std(I'); |
---|
5340 | return (Q, I'); |
---|
5341 | // I' = remaining component |
---|
5342 | } |
---|
5343 | |
---|
5344 | |
---|
5345 | //////////////////////////////////////////////////////////////// |
---|
5346 | // proc extraction |
---|
5347 | // input: A standard basis of a pseudo primary ideal I, and a standard |
---|
5348 | // basis of the unique minimal associated prime P of I |
---|
5349 | // output: an extraction of I, i.e., a standard basis of the primary |
---|
5350 | // component Q of I with associated prime P, a standard basis of the |
---|
5351 | // remaining component, and the irreducible factors of the |
---|
5352 | // "minimal divisor" of the extractor as computed by the procedure minsat |
---|
5353 | //////////////////////////////////////////////////////////////// |
---|
5354 | |
---|
5355 | |
---|
5356 | static proc extraction (ideal SI, ideal SP) |
---|
5357 | { |
---|
5358 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5359 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5360 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5361 | |
---|
5362 | list indsets=indepSet(SP,0); |
---|
5363 | poly f; |
---|
5364 | if(size(indsets)!=0) //check, whether dim P != 0 |
---|
5365 | { |
---|
5366 | intvec v; // a maximal independent set of variables |
---|
5367 | // modulo P |
---|
5368 | string U; // the independent variables |
---|
5369 | string A; // the dependent variables |
---|
5370 | int j,k; |
---|
5371 | int a; // the size of A |
---|
5372 | int degf; |
---|
5373 | ideal g; |
---|
5374 | list polys; |
---|
5375 | int sizepolys; |
---|
5376 | list newpoly; |
---|
5377 | def R=basering; |
---|
5378 | //intvec hv=hilb(SI,1); |
---|
5379 | for (k=1;k<=size(indsets);k++) |
---|
5380 | { |
---|
5381 | v=indsets[k]; |
---|
5382 | for (j=1;j<=nvars(R);j++) |
---|
5383 | { |
---|
5384 | if (v[j]==1) |
---|
5385 | { |
---|
5386 | U=U+varstr(j)+","; |
---|
5387 | } |
---|
5388 | else |
---|
5389 | { |
---|
5390 | A=A+varstr(j)+","; |
---|
5391 | a++; |
---|
5392 | } |
---|
5393 | } |
---|
5394 | |
---|
5395 | U[size(U)]=")"; // we compute the extractor of I (w.r.t. U) |
---|
5396 | execute("ring RAU=("+charstr(basering)+"),("+A+U+",(dp("+string(a)+"),dp);"); |
---|
5397 | ideal I=imap(R,SI); |
---|
5398 | //I=std(I,hv); // the standard basis in (R[U])[A] |
---|
5399 | I=std(I); // the standard basis in (R[U])[A] |
---|
5400 | A[size(A)]=")"; |
---|
5401 | execute("ring Rloc=("+charstr(basering)+","+U+",("+A+",dp;"); |
---|
5402 | ideal I=imap(RAU,I); |
---|
5403 | //"std in lokalisierung:"+newline,I; |
---|
5404 | ideal h; |
---|
5405 | for(j=ncols(I);j>=1;j--) |
---|
5406 | { |
---|
5407 | h[j]=leadcoef(I[j]); // consider I in (R(U))[A] |
---|
5408 | } |
---|
5409 | setring R; |
---|
5410 | g=imap(Rloc,h); |
---|
5411 | kill RAU,Rloc; |
---|
5412 | U=""; |
---|
5413 | A=""; |
---|
5414 | a=0; |
---|
5415 | f=lcm(g); |
---|
5416 | newpoly[1]=f; |
---|
5417 | polys=polys+newpoly; |
---|
5418 | newpoly=list(); |
---|
5419 | } |
---|
5420 | f=polys[1]; |
---|
5421 | degf=deg(f); |
---|
5422 | sizepolys=size(polys); |
---|
5423 | for (k=2;k<=sizepolys;k++) |
---|
5424 | { |
---|
5425 | if (deg(polys[k])<degf) |
---|
5426 | { |
---|
5427 | f=polys[k]; |
---|
5428 | degf=deg(f); |
---|
5429 | } |
---|
5430 | } |
---|
5431 | } |
---|
5432 | else |
---|
5433 | { |
---|
5434 | f=1; |
---|
5435 | } |
---|
5436 | poly f0,h0; ideal SQ; ideal fac; |
---|
5437 | if(f!=1) |
---|
5438 | { |
---|
5439 | SQ,f0,h0,fac=minsat(SI,f); |
---|
5440 | return(SQ,std(SI+h0),fac); |
---|
5441 | // the tripel |
---|
5442 | // a standard basis of Q, |
---|
5443 | // a standard basis of remaining component, |
---|
5444 | // irreducible factors of |
---|
5445 | // the "minimal divisor" of the extractor |
---|
5446 | // as computed by the procedure minsat |
---|
5447 | } |
---|
5448 | else |
---|
5449 | { |
---|
5450 | return(SI,ideal(1),ideal(1)); |
---|
5451 | } |
---|
5452 | } |
---|
5453 | |
---|
5454 | ///////////////////////////////////////////////////// |
---|
5455 | // proc minsat |
---|
5456 | // input: a standard basis of an ideal I and a polynomial p |
---|
5457 | // output: a standard basis IS of the saturation of I w.r. to p, |
---|
5458 | // the maximal squarefree factor f0 of p, |
---|
5459 | // the "minimal divisor" f of f0 such that the saturation of |
---|
5460 | // I w.r. to f equals the saturation of I w.r. to f0 (which is IS), |
---|
5461 | // the irreducible factors of f |
---|
5462 | ////////////////////////////////////////////////////////// |
---|
5463 | |
---|
5464 | |
---|
5465 | static proc minsat(ideal SI, poly p) |
---|
5466 | { |
---|
5467 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5468 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5469 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5470 | |
---|
5471 | ideal fac=factorize(p,1); //the irreducible factors of p |
---|
5472 | fac=sort(fac)[1]; |
---|
5473 | int i,k; |
---|
5474 | poly f0=1; |
---|
5475 | for(i=ncols(fac);i>=1;i--) |
---|
5476 | { |
---|
5477 | f0=f0*fac[i]; |
---|
5478 | } |
---|
5479 | poly f=1; |
---|
5480 | ideal iold; |
---|
5481 | list quotM; |
---|
5482 | quotM[1]=SI; |
---|
5483 | quotM[2]=fac; |
---|
5484 | quotM[3]=f0; |
---|
5485 | // we deal seperately with the first quotient; |
---|
5486 | // factors, which do not contribute to this one, |
---|
5487 | // are omitted |
---|
5488 | iold=quotM[1]; |
---|
5489 | quotM=minquot(quotM); |
---|
5490 | fac=quotM[2]; |
---|
5491 | if(quotM[3]==1) |
---|
5492 | { |
---|
5493 | return(quotM[1],f0,f,fac); |
---|
5494 | } |
---|
5495 | while(special_ideals_equal(iold,quotM[1])==0) |
---|
5496 | { |
---|
5497 | f=f*quotM[3]; |
---|
5498 | iold=quotM[1]; |
---|
5499 | quotM=minquot(quotM); |
---|
5500 | } |
---|
5501 | return(quotM[1],f0,f,fac); // the quadrupel ((I:p),f0,f, irr. factors of f) |
---|
5502 | } |
---|
5503 | |
---|
5504 | ///////////////////////////////////////////////////// |
---|
5505 | // proc minsat_ppd |
---|
5506 | // input: a standard basis of an ideal I and a polynomial p |
---|
5507 | // output: a standard basis IS of the saturation of I w.r. to p, |
---|
5508 | // the maximal squarefree factor f0 of p, |
---|
5509 | // the "minimal divisor" f of f0 such that the saturation of |
---|
5510 | // I w.r. to f equals the saturation of I w.r. to f0 (which is IS), |
---|
5511 | // the irreducible factors of f |
---|
5512 | ////////////////////////////////////////////////////////// |
---|
5513 | |
---|
5514 | |
---|
5515 | static proc minsat_ppd(ideal SI, ideal fac) |
---|
5516 | { |
---|
5517 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5518 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5519 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5520 | |
---|
5521 | fac=sort(fac)[1]; |
---|
5522 | int i,k; |
---|
5523 | poly f0=1; |
---|
5524 | for(i=ncols(fac);i>=1;i--) |
---|
5525 | { |
---|
5526 | f0=f0*fac[i]; |
---|
5527 | } |
---|
5528 | poly f=1; |
---|
5529 | ideal iold; |
---|
5530 | list quotM; |
---|
5531 | quotM[1]=SI; |
---|
5532 | quotM[2]=fac; |
---|
5533 | quotM[3]=f0; |
---|
5534 | // we deal seperately with the first quotient; |
---|
5535 | // factors, which do not contribute to this one, |
---|
5536 | // are omitted |
---|
5537 | iold=quotM[1]; |
---|
5538 | quotM=minquot(quotM); |
---|
5539 | fac=quotM[2]; |
---|
5540 | if(quotM[3]==1) |
---|
5541 | { |
---|
5542 | return(quotM[1],f0,f,fac); |
---|
5543 | } |
---|
5544 | while(special_ideals_equal(iold,quotM[1])==0) |
---|
5545 | { |
---|
5546 | f=f*quotM[3]; |
---|
5547 | iold=quotM[1]; |
---|
5548 | quotM=minquot(quotM); |
---|
5549 | k++; |
---|
5550 | } |
---|
5551 | return(quotM[1],f0,f,fac); // the quadrupel ((I:p),f0,f, irr. factors of f) |
---|
5552 | } |
---|
5553 | ///////////////////////////////////////////////////////////////// |
---|
5554 | // proc minquot |
---|
5555 | // input: a list with 3 components: a standard basis |
---|
5556 | // of an ideal I, a set of irreducible polynomials, and |
---|
5557 | // there product f0 |
---|
5558 | // output: a standard basis of the ideal (I:f0), the irreducible |
---|
5559 | // factors of the "minimal divisor" f of f0 with (I:f0) = (I:f), |
---|
5560 | // the "minimal divisor" f |
---|
5561 | ///////////////////////////////////////////////////////////////// |
---|
5562 | |
---|
5563 | static proc minquot(list tsil) |
---|
5564 | { |
---|
5565 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5566 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5567 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5568 | |
---|
5569 | intvec op; |
---|
5570 | int i,j,k,action; |
---|
5571 | ideal verg; |
---|
5572 | list l; |
---|
5573 | poly g; |
---|
5574 | ideal laedi=tsil[1]; |
---|
5575 | ideal fac=tsil[2]; |
---|
5576 | poly f=tsil[3]; |
---|
5577 | |
---|
5578 | //std |
---|
5579 | // ideal star=quotient(laedi,f); |
---|
5580 | // star=std(star); |
---|
5581 | op=option(get); |
---|
5582 | option(returnSB); |
---|
5583 | ideal star=quotient(laedi,f); |
---|
5584 | option(set,op); |
---|
5585 | if(special_ideals_equal(laedi,star)==1) |
---|
5586 | { |
---|
5587 | return(laedi,ideal(1),1); |
---|
5588 | } |
---|
5589 | action=1; |
---|
5590 | while(action==1) |
---|
5591 | { |
---|
5592 | if(size(fac)==1) |
---|
5593 | { |
---|
5594 | action=0; |
---|
5595 | break; |
---|
5596 | } |
---|
5597 | for(i=1;i<=size(fac);i++) |
---|
5598 | { |
---|
5599 | g=1; |
---|
5600 | for(j=1;j<=size(fac);j++) |
---|
5601 | { |
---|
5602 | if(i!=j) |
---|
5603 | { |
---|
5604 | g=g*fac[j]; |
---|
5605 | } |
---|
5606 | } |
---|
5607 | //std |
---|
5608 | // verg=quotient(laedi,g); |
---|
5609 | // verg=std(verg); |
---|
5610 | op=option(get); |
---|
5611 | option(returnSB); |
---|
5612 | verg=quotient(laedi,g); |
---|
5613 | option(set,op); |
---|
5614 | if(special_ideals_equal(verg,star)==1) |
---|
5615 | { |
---|
5616 | f=g; |
---|
5617 | fac[i]=0; |
---|
5618 | fac=simplify(fac,2); |
---|
5619 | break; |
---|
5620 | } |
---|
5621 | if(i==size(fac)) |
---|
5622 | { |
---|
5623 | action=0; |
---|
5624 | } |
---|
5625 | } |
---|
5626 | } |
---|
5627 | l=star,fac,f; |
---|
5628 | return(l); |
---|
5629 | } |
---|
5630 | ///////////////////////////////////////////////// |
---|
5631 | // proc special_ideals_equal |
---|
5632 | // input: standard bases of ideal k1 and k2 such that |
---|
5633 | // k1 is contained in k2, or k2 is contained ink1 |
---|
5634 | // output: 1, if k1 equals k2, 0 otherwise |
---|
5635 | ////////////////////////////////////////////////// |
---|
5636 | |
---|
5637 | static proc special_ideals_equal( ideal k1, ideal k2) |
---|
5638 | { |
---|
5639 | int j; |
---|
5640 | if(size(k1)==size(k2)) |
---|
5641 | { |
---|
5642 | for(j=1;j<=size(k1);j++) |
---|
5643 | { |
---|
5644 | if(leadexp(k1[j])!=leadexp(k2[j])) |
---|
5645 | { |
---|
5646 | return(0); |
---|
5647 | } |
---|
5648 | } |
---|
5649 | return(1); |
---|
5650 | } |
---|
5651 | return(0); |
---|
5652 | } |
---|
5653 | |
---|
5654 | |
---|
5655 | /////////////////////////////////////////////////////////////////////////////// |
---|
5656 | |
---|
5657 | static proc convList(list l) |
---|
5658 | { |
---|
5659 | int i; |
---|
5660 | list re,he; |
---|
5661 | for(i=1;i<=size(l) div 2;i++) |
---|
5662 | { |
---|
5663 | he=l[2*i-1],l[2*i]; |
---|
5664 | re[i]=he; |
---|
5665 | } |
---|
5666 | return(re); |
---|
5667 | } |
---|
5668 | /////////////////////////////////////////////////////////////////////////////// |
---|
5669 | |
---|
5670 | static proc reconvList(list l) |
---|
5671 | { |
---|
5672 | int i; |
---|
5673 | list re; |
---|
5674 | for(i=size(l);i>0;i--) |
---|
5675 | { |
---|
5676 | re[2*i-1]=l[i][1]; |
---|
5677 | re[2*i]=l[i][2]; |
---|
5678 | } |
---|
5679 | return(re); |
---|
5680 | } |
---|
5681 | |
---|
5682 | /////////////////////////////////////////////////////////////////////////////// |
---|
5683 | // |
---|
5684 | // The main procedures |
---|
5685 | // |
---|
5686 | /////////////////////////////////////////////////////////////////////////////// |
---|
5687 | proc primdecGTZE(ideal I, list #) |
---|
5688 | "USAGE: primdecGTZE(I); i ideal |
---|
5689 | RETURN: a list pr of primary ideals and their associated primes for a proper ideal, and an empty list for the unit ideal. |
---|
5690 | @format |
---|
5691 | pr[i][1] the i-th primary component, |
---|
5692 | pr[i][2] the i-th prime component. |
---|
5693 | @end format |
---|
5694 | NOTE: - Algorithm of Gianni/Trager/Zacharias. |
---|
5695 | - Designed for characteristic 0, works also in char k > 0, if it |
---|
5696 | terminates (may result in an infinite loop in small characteristic!) |
---|
5697 | - For local orderings, the result is considered in the localization |
---|
5698 | of the polynomial ring, not in the power series ring |
---|
5699 | - For local and mixed orderings, the decomposition in the |
---|
5700 | corresponding global ring is returned if the string 'global' |
---|
5701 | is specified as second argument |
---|
5702 | EXAMPLE: example primdecGTZE; shows an example |
---|
5703 | " |
---|
5704 | { |
---|
5705 | return (primdecGTZ_i(int(1),I, #)); |
---|
5706 | } |
---|
5707 | example |
---|
5708 | { "EXAMPLE:"; echo = 2; |
---|
5709 | ring r = 0,(x,y,z),lp; |
---|
5710 | poly p = z2+1; |
---|
5711 | poly q = z3+2; |
---|
5712 | ideal I = p*q^2,y-z2; |
---|
5713 | list pr = primdecGTZE(I); |
---|
5714 | pr; |
---|
5715 | ideal J = 1; |
---|
5716 | list prempty = primdecGTZE(J); |
---|
5717 | prempty; |
---|
5718 | } |
---|
5719 | |
---|
5720 | proc primdecGTZ(ideal I, list #) |
---|
5721 | "USAGE: primdecGTZ(I); I ideal |
---|
5722 | RETURN: a list pr of primary ideals and their associated primes for a proper ideal I, otherwise pr = list( list( ideal(1), ideal(1) ) |
---|
5723 | @format |
---|
5724 | pr[i][1] the i-th primary component, |
---|
5725 | pr[i][2] the i-th prime component. |
---|
5726 | @end format |
---|
5727 | NOTE: deprecated. use 'primdecGTZE()' |
---|
5728 | - Algorithm of Gianni/Trager/Zacharias. |
---|
5729 | - Designed for characteristic 0, works also in char k > 0, if it |
---|
5730 | terminates (may result in an infinite loop in small characteristic!) |
---|
5731 | - For local orderings, the result is considered in the localization |
---|
5732 | of the polynomial ring, not in the power series ring |
---|
5733 | - For local and mixed orderings, the decomposition in the |
---|
5734 | corresponding global ring is returned if the string 'global' |
---|
5735 | is specified as second argument |
---|
5736 | EXAMPLE: example primdecGTZ; shows an example |
---|
5737 | " |
---|
5738 | { |
---|
5739 | return (primdecGTZ_i(int(0), I , #)); |
---|
5740 | } |
---|
5741 | example |
---|
5742 | { "EXAMPLE:"; echo = 2; |
---|
5743 | ring r = 0,(x,y,z),lp; |
---|
5744 | poly p = z2+1; |
---|
5745 | poly q = z3+2; |
---|
5746 | ideal i = p*q^2,y-z2; |
---|
5747 | list pr = primdecGTZ(i); |
---|
5748 | pr; |
---|
5749 | } |
---|
5750 | |
---|
5751 | static proc primdecGTZ_i(int patchPrimaryDecomposition,ideal i, list #) |
---|
5752 | { |
---|
5753 | // if parameter patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
5754 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
5755 | // For other parameters see 'primdecGTZ' or 'primdecGTZE'. |
---|
5756 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5757 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5758 | if(size(#)>0) |
---|
5759 | { |
---|
5760 | int keep_comp=1; |
---|
5761 | } |
---|
5762 | if(attrib(basering,"global")!=1) |
---|
5763 | { |
---|
5764 | // algorithms only work in global case! |
---|
5765 | // pass to appropriate global ring |
---|
5766 | def r=basering; |
---|
5767 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5768 | setring s; |
---|
5769 | ideal i=imap(r,i); |
---|
5770 | // decompose and go back |
---|
5771 | list li=primdecGTZ_i(patchPrimaryDecomposition,i); |
---|
5772 | int sizeli = size(li); |
---|
5773 | setring r; |
---|
5774 | if (sizeli==0) |
---|
5775 | { |
---|
5776 | return ( list() ); |
---|
5777 | } |
---|
5778 | def li=imap(s,li); |
---|
5779 | // clean up |
---|
5780 | if(!defined(keep_comp)) |
---|
5781 | { |
---|
5782 | for(int k=size(li);k>=1;k--) |
---|
5783 | { |
---|
5784 | if(mindeg(std(lead(li[k][2]))[1])==0) |
---|
5785 | { |
---|
5786 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5787 | li=delete(li,k); |
---|
5788 | } |
---|
5789 | } |
---|
5790 | } |
---|
5791 | return(li); |
---|
5792 | } |
---|
5793 | |
---|
5794 | if(minpoly!=0) |
---|
5795 | { |
---|
5796 | return(algeDeco_i(patchPrimaryDecomposition,i,0)); |
---|
5797 | ERROR( |
---|
5798 | "// Not implemented yet for algebraic extensions.Simulate the ring extension by adding the minpoly to the ideal" |
---|
5799 | ); |
---|
5800 | } |
---|
5801 | return(convList(decomp_i(patchPrimaryDecomposition,i))); |
---|
5802 | } |
---|
5803 | |
---|
5804 | /////////////////////////////////////////////////////////////////////////////// |
---|
5805 | proc absPrimdecGTZE(ideal I, list #) |
---|
5806 | "USAGE: absPrimdecGTZE(I); I ideal |
---|
5807 | ASSUME: Ground field has characteristic 0. |
---|
5808 | RETURN: a ring containing two lists: @code{absolute_primes}, the absolute |
---|
5809 | prime components of I, and @code{primary_decomp}, the output of |
---|
5810 | @code{primdecGTZ(I)}. Will fail for unit ideal. |
---|
5811 | The list absolute_primes has to be interpreted as follows: |
---|
5812 | each entry describes a class of conjugated absolute primes, |
---|
5813 | @format |
---|
5814 | absolute_primes[i][1] the absolute prime component, |
---|
5815 | absolute_primes[i][2] the number of conjugates. |
---|
5816 | @end format |
---|
5817 | The first entry of @code{absolute_primes[i][1]} is the minimal |
---|
5818 | polynomial of a minimal finite field extension over which the |
---|
5819 | absolute prime component is defined. |
---|
5820 | For local orderings, the result is considered in the localization |
---|
5821 | of the polynomial ring, not in the power series ring. |
---|
5822 | For local and mixed orderings, the decomposition in the |
---|
5823 | corresponding global ring is returned if the string 'global' |
---|
5824 | is specified as second argument |
---|
5825 | NOTE: Algorithm of Gianni/Trager/Zacharias combined with the |
---|
5826 | @code{absFactorize} command. |
---|
5827 | SEE ALSO: primdecGTZ; absFactorize |
---|
5828 | EXAMPLE: example absPrimdecGTZE; shows an example |
---|
5829 | " |
---|
5830 | { |
---|
5831 | return(absPrimdecGTZ_i(int(1),I,#)); |
---|
5832 | } |
---|
5833 | example |
---|
5834 | { "EXAMPLE:"; echo = 2; |
---|
5835 | ring r = 0,(x,y,z),lp; |
---|
5836 | poly p = z2+1; |
---|
5837 | poly q = z3+2; |
---|
5838 | ideal I = p*q^2,y-z2; |
---|
5839 | def S = absPrimdecGTZE(I); |
---|
5840 | setring S; |
---|
5841 | absolute_primes; |
---|
5842 | } |
---|
5843 | |
---|
5844 | proc absPrimdecGTZ(ideal I, list #) |
---|
5845 | "USAGE: absPrimdecGTZ(I); I ideal |
---|
5846 | ASSUME: Ground field has characteristic 0. |
---|
5847 | RETURN: a ring containing two lists: @code{absolute_primes}, the absolute |
---|
5848 | prime components of I, and @code{primary_decomp}, the output of |
---|
5849 | @code{primdecGTZ(I)}. |
---|
5850 | The list absolute_primes has to be interpreted as follows: |
---|
5851 | each entry describes a class of conjugated absolute primes, |
---|
5852 | @format |
---|
5853 | absolute_primes[i][1] the absolute prime component, |
---|
5854 | absolute_primes[i][2] the number of conjugates. |
---|
5855 | @end format |
---|
5856 | The first entry of @code{absolute_primes[i][1]} is the minimal |
---|
5857 | polynomial of a minimal finite field extension over which the |
---|
5858 | absolute prime component is defined. |
---|
5859 | For local orderings, the result is considered in the localization |
---|
5860 | of the polynomial ring, not in the power series ring. |
---|
5861 | For local and mixed orderings, the decomposition in the |
---|
5862 | corresponding global ring is returned if the string 'global' |
---|
5863 | is specified as second argument |
---|
5864 | NOTE: deprecated. Use 'absPrimdecGTZE()'. |
---|
5865 | Algorithm of Gianni/Trager/Zacharias combined with the |
---|
5866 | @code{absFactorize} command. |
---|
5867 | SEE ALSO: primdecGTZ; absFactorize |
---|
5868 | EXAMPLE: example absPrimdecGTZ; shows an example |
---|
5869 | " |
---|
5870 | { |
---|
5871 | |
---|
5872 | return(absPrimdecGTZ_i(int(0),I,#)); |
---|
5873 | } |
---|
5874 | example |
---|
5875 | { "EXAMPLE:"; echo = 2; |
---|
5876 | ring r = 0,(x,y,z),lp; |
---|
5877 | poly p = z2+1; |
---|
5878 | poly q = z3+2; |
---|
5879 | ideal i = p*q^2,y-z2; |
---|
5880 | def S = absPrimdecGTZ(i); |
---|
5881 | setring S; |
---|
5882 | absolute_primes; |
---|
5883 | } |
---|
5884 | |
---|
5885 | |
---|
5886 | |
---|
5887 | static proc absPrimdecGTZ_i(int patchPrimaryDecomposition, ideal I, list #) |
---|
5888 | { |
---|
5889 | // if parameter patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
5890 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
5891 | // For other parameters see 'absPrimdecGTZ' or 'absPrimdecGTZE'. |
---|
5892 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5893 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5894 | if (char(basering) != 0) |
---|
5895 | { |
---|
5896 | ERROR("primdec.lib::absPrimdecGTZ is only implemented for "+ |
---|
5897 | +"characteristic 0"); |
---|
5898 | } |
---|
5899 | |
---|
5900 | if(size(#)>0) |
---|
5901 | { |
---|
5902 | int keep_comp=1; |
---|
5903 | } |
---|
5904 | |
---|
5905 | if(attrib(basering,"global")!=1) |
---|
5906 | { |
---|
5907 | // algorithm automatically passes to the global case |
---|
5908 | // hence prepare to go back to an appropriate new ring |
---|
5909 | def r=basering; |
---|
5910 | ideal max_of_r=maxideal(1); |
---|
5911 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5912 | setring s; |
---|
5913 | def I=imap(r,I); |
---|
5914 | def S=absPrimdecGTZ_i(patchPrimaryDecomposition,I); |
---|
5915 | setring S; |
---|
5916 | ring r1=char(basering),var(nvars(r)+1),dp; |
---|
5917 | def rS=r+r1; |
---|
5918 | // move objects to appropriate ring and clean up |
---|
5919 | setring rS; |
---|
5920 | def max_of_r=imap(r,max_of_r); |
---|
5921 | attrib(max_of_r,"isSB",1); |
---|
5922 | def absolute_primes=imap(S,absolute_primes); |
---|
5923 | def primary_decomp=imap(S,primary_decomp); |
---|
5924 | if(!defined(keep_comp)) |
---|
5925 | { |
---|
5926 | ideal tempid; |
---|
5927 | for(int k=size(absolute_primes);k>=1;k--) |
---|
5928 | { |
---|
5929 | tempid=absolute_primes[k][1]; |
---|
5930 | tempid[1]=0; // ignore minimal polynomial |
---|
5931 | if(size(reduce(lead(tempid),max_of_r))!=0) |
---|
5932 | { |
---|
5933 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5934 | absolute_primes=delete(absolute_primes,k); |
---|
5935 | } |
---|
5936 | } |
---|
5937 | for(k=size(primary_decomp);k>=1;k--) |
---|
5938 | { |
---|
5939 | if(mindeg(std(lead(primary_decomp[k][2]))[1])==0) |
---|
5940 | { |
---|
5941 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5942 | primary_decomp=delete(primary_decomp,k); |
---|
5943 | } |
---|
5944 | } |
---|
5945 | kill tempid; |
---|
5946 | } |
---|
5947 | export(primary_decomp); |
---|
5948 | export(absolute_primes); |
---|
5949 | return(rS); |
---|
5950 | } |
---|
5951 | if(minpoly!=0) |
---|
5952 | { |
---|
5953 | //return(algeDeco_i(patchPrimaryDecomposition,I,0)); |
---|
5954 | ERROR( |
---|
5955 | "// Not implemented yet for algebraic extensions.Simulate the ring extension by adding the minpoly to the ideal" |
---|
5956 | ); |
---|
5957 | } |
---|
5958 | def R=basering; |
---|
5959 | int n=nvars(R); |
---|
5960 | list L=decomp_i(patchPrimaryDecomposition,I,3); |
---|
5961 | if (patchPrimaryDecomposition && size(L)==0 ) |
---|
5962 | { |
---|
5963 | ERROR("will not handle case with unit ideal"); |
---|
5964 | } |
---|
5965 | string newvar=L[1][3]; |
---|
5966 | int k=find(newvar,",",find(newvar,",")+1); |
---|
5967 | newvar=newvar[k+1..size(newvar)]; |
---|
5968 | list lR=ringlist(R); |
---|
5969 | int i,de,ii; |
---|
5970 | intvec vv=1:n; |
---|
5971 | //for(i=1;i<=n;i++){vv[i]=1;} |
---|
5972 | |
---|
5973 | list orst; |
---|
5974 | orst[1]=list("dp",vv); |
---|
5975 | orst[2]=list("dp",intvec(1)); |
---|
5976 | orst[3]=list("C",0); |
---|
5977 | lR[3]=orst; |
---|
5978 | lR[2][n+1] = newvar; |
---|
5979 | def Rz = ring(lR); |
---|
5980 | setring Rz; |
---|
5981 | list L=imap(R,L); |
---|
5982 | list absolute_primes,primary_decomp; |
---|
5983 | ideal I,M,N,K; |
---|
5984 | M=maxideal(1); |
---|
5985 | N=maxideal(1); |
---|
5986 | poly p,q,f,g; |
---|
5987 | map phi,psi; |
---|
5988 | string tvar; |
---|
5989 | for(i=1;i<=size(L);i++) |
---|
5990 | { |
---|
5991 | tvar=L[i][4]; |
---|
5992 | ii=find(tvar,"+"); |
---|
5993 | while(ii) |
---|
5994 | { |
---|
5995 | tvar=tvar[ii+1..size(tvar)]; |
---|
5996 | ii=find(tvar,"+"); |
---|
5997 | } |
---|
5998 | for(ii=1;ii<=nvars(basering);ii++) |
---|
5999 | { |
---|
6000 | if(tvar==string(var(ii))) break; |
---|
6001 | } |
---|
6002 | I=L[i][2]; |
---|
6003 | execute("K="+L[i][3]+";"); |
---|
6004 | p=K[1]; |
---|
6005 | q=K[2]; |
---|
6006 | execute("f="+L[i][4]+";"); |
---|
6007 | g=2*var(ii)-f; |
---|
6008 | M[ii]=f; |
---|
6009 | N[ii]=g; |
---|
6010 | de=deg(p); |
---|
6011 | psi=Rz,M; |
---|
6012 | phi=Rz,N; |
---|
6013 | I=phi(I),p,q; |
---|
6014 | I=std(I); |
---|
6015 | absolute_primes[i]=list(psi(I),de); |
---|
6016 | primary_decomp[i]=list(L[i][1],L[i][2]); |
---|
6017 | } |
---|
6018 | export(primary_decomp); |
---|
6019 | export(absolute_primes); |
---|
6020 | setring R; |
---|
6021 | dbprint( printlevel-voice+4," |
---|
6022 | // 'absPrimdecGTZ' created a ring, in which two lists absolute_primes (the |
---|
6023 | // absolute prime components) and primary_decomp (the primary and prime |
---|
6024 | // components over the current basering) are stored. |
---|
6025 | // To access the list of absolute prime components, type (if the name S was |
---|
6026 | // assigned to the return value): |
---|
6027 | setring S; absolute_primes; "); |
---|
6028 | |
---|
6029 | return(Rz); |
---|
6030 | } |
---|
6031 | |
---|
6032 | |
---|
6033 | /////////////////////////////////////////////////////////////////////////////// |
---|
6034 | proc primdecSYE(ideal I, list #) |
---|
6035 | "USAGE: primdecSYE(I, c); I ideal, c int (optional) |
---|
6036 | RETURN: a list pr of primary ideals and their associated primes: |
---|
6037 | @format |
---|
6038 | pr[i][1] the i-th primary component, |
---|
6039 | pr[i][2] the i-th prime component. |
---|
6040 | @end format |
---|
6041 | If I is the unit ideal returns an empty list. |
---|
6042 | NOTE: Algorithm of Shimoyama/Yokoyama. |
---|
6043 | @format |
---|
6044 | if c=0, the given ordering of the variables is used, |
---|
6045 | if c=1, minAssChar tries to use an optimal ordering (default), |
---|
6046 | if c=2, minAssGTZ is used, |
---|
6047 | if c=3, minAssGTZ and facstd are used. |
---|
6048 | @end format |
---|
6049 | For local orderings, the result is considered in the localization |
---|
6050 | of the polynomial ring, not in the power series ring. |
---|
6051 | For local and mixed orderings, the decomposition in the |
---|
6052 | corresponding global ring is returned if the string 'global' |
---|
6053 | is specified as third argument |
---|
6054 | EXAMPLE: example primdecSY; shows an example |
---|
6055 | " |
---|
6056 | { |
---|
6057 | return (primdecSY_i(int(1),I,#)); |
---|
6058 | } |
---|
6059 | example |
---|
6060 | { "EXAMPLE:"; echo = 2; |
---|
6061 | ring r = 0,(x,y,z),lp; |
---|
6062 | poly p = z2+1; |
---|
6063 | poly q = z3+2; |
---|
6064 | ideal I = p*q^2,y-z2; |
---|
6065 | list pr = primdecSYE(I); |
---|
6066 | pr; |
---|
6067 | ideal J = x; |
---|
6068 | list prUnit = primdecSYE(J); |
---|
6069 | prUnit; |
---|
6070 | } |
---|
6071 | |
---|
6072 | proc primdecSY( ideal I, list #) |
---|
6073 | "USAGE: primdecSY(I, c); I ideal, c int (optional) |
---|
6074 | RETURN: a list pr of primary ideals and their associated primes for proper ideal I, otherwise pr[1] is list( ideal(1),ideal(1) )' |
---|
6075 | @format |
---|
6076 | pr[i][1] the i-th primary component, |
---|
6077 | pr[i][2] the i-th prime component. |
---|
6078 | @end format |
---|
6079 | NOTE: deprecated. Use 'primdecSYE()'. |
---|
6080 | Algorithm of Shimoyama/Yokoyama. |
---|
6081 | @format |
---|
6082 | if c=0, the given ordering of the variables is used, |
---|
6083 | if c=1, minAssChar tries to use an optimal ordering (default), |
---|
6084 | if c=2, minAssGTZ is used, |
---|
6085 | if c=3, minAssGTZ and facstd are used. |
---|
6086 | @end format |
---|
6087 | For local orderings, the result is considered in the localization |
---|
6088 | of the polynomial ring, not in the power series ring. |
---|
6089 | For local and mixed orderings, the decomposition in the |
---|
6090 | corresponding global ring is returned if the string 'global' |
---|
6091 | is specified as third argument |
---|
6092 | EXAMPLE: example primdecSY; shows an example |
---|
6093 | " |
---|
6094 | { |
---|
6095 | return (primdecSY_i(int(0),I,#)); |
---|
6096 | } |
---|
6097 | example |
---|
6098 | { "EXAMPLE:"; echo = 2; |
---|
6099 | ring r = 0,(x,y,z),lp; |
---|
6100 | poly p = z2+1; |
---|
6101 | poly q = z3+2; |
---|
6102 | ideal i = p*q^2,y-z2; |
---|
6103 | list pr = primdecSY(i); |
---|
6104 | pr; |
---|
6105 | } |
---|
6106 | |
---|
6107 | |
---|
6108 | static proc primdecSY_i(int patchPrimaryDecomposition, ideal i, list #) |
---|
6109 | { |
---|
6110 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
6111 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
6112 | // For other paremetes see 'primdecSY' or 'primdecSYE' |
---|
6113 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6114 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6115 | if(size(#)>1) |
---|
6116 | { |
---|
6117 | int keep_comp=1; |
---|
6118 | } |
---|
6119 | if(attrib(basering,"global")!=1) |
---|
6120 | { |
---|
6121 | // algorithms only work in global case! |
---|
6122 | // pass to appropriate global ring |
---|
6123 | def r=basering; |
---|
6124 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
6125 | setring s; |
---|
6126 | ideal i=imap(r,i); |
---|
6127 | // decompose and go back |
---|
6128 | list li=primdecSY_i(patchPrimaryDecomposition,i); |
---|
6129 | int sizeli = size(li); |
---|
6130 | setring r; |
---|
6131 | if (sizeli==0) { return ( list() ); } |
---|
6132 | def li=imap(s,li); |
---|
6133 | // clean up |
---|
6134 | if(!defined(keep_comp)) |
---|
6135 | { |
---|
6136 | for(int k=size(li);k>=1;k--) |
---|
6137 | { |
---|
6138 | if(mindeg(std(lead(li[k][2]))[1])==0) |
---|
6139 | { |
---|
6140 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
6141 | li=delete(li,k); |
---|
6142 | } |
---|
6143 | } |
---|
6144 | } |
---|
6145 | return(li); |
---|
6146 | } |
---|
6147 | i=simplify(i,2); |
---|
6148 | |
---|
6149 | //if ((i[1]==0)||(i[1]==1)) // would not work anyway, since i cannot be assumed to be in standard basis form; |
---|
6150 | // // but why return list(1,1) in case i=1 ?? |
---|
6151 | if ( (i[1]==0) ) |
---|
6152 | |
---|
6153 | { |
---|
6154 | list L = list(ideal(i[1]), ideal(i[1]) ); |
---|
6155 | return(list(L)); |
---|
6156 | } |
---|
6157 | |
---|
6158 | if(minpoly!=0) |
---|
6159 | { |
---|
6160 | return(algeDeco_i(patchPrimaryDecomposition,i,1)); |
---|
6161 | } |
---|
6162 | if (size(#)!=0) |
---|
6163 | { return(prim_dec_i(patchPrimaryDecomposition,i,#[1])); } |
---|
6164 | else |
---|
6165 | { return(prim_dec_i(patchPrimaryDecomposition,i,1)); } |
---|
6166 | } |
---|
6167 | |
---|
6168 | |
---|
6169 | |
---|
6170 | proc minAssGTZE(ideal I,list #) |
---|
6171 | "USAGE: minAssGTZE(I[, l]); I ideal, l list (optional) |
---|
6172 | @* Optional parameters in list l (can be entered in any order): |
---|
6173 | @* 0, \"facstd\" -> uses facstd to first decompose the ideal (default) |
---|
6174 | @* 1, \"noFacstd\" -> does not use facstd |
---|
6175 | @* \"GTZ\" -> the original algorithm by Gianni, Trager and Zacharias is used |
---|
6176 | @* \"SL\" -> GTZ algorithm with modificiations by Laplagne is used (default) |
---|
6177 | |
---|
6178 | RETURN: a list, the minimal associated prime ideals of I. |
---|
6179 | NOTE: - Designed for characteristic 0, works also in char k > 0 based |
---|
6180 | on an algorithm of Yokoyama |
---|
6181 | - For local orderings, the result is considered in the localization |
---|
6182 | of the polynomial ring, not in the power series ring |
---|
6183 | - For local and mixed orderings, the decomposition in the |
---|
6184 | corresponding global ring is returned if the string 'global' |
---|
6185 | is specified as second argument |
---|
6186 | EXAMPLE: example minAssGTZE; shows an example |
---|
6187 | " |
---|
6188 | { |
---|
6189 | list result = minAssGTZ_i(int(1),I,#); |
---|
6190 | return(result); |
---|
6191 | |
---|
6192 | } |
---|
6193 | example |
---|
6194 | { "EXAMPLE:"; echo = 2; |
---|
6195 | ring r = 0,(x,y,z),dp; |
---|
6196 | poly p = z2+1; |
---|
6197 | poly q = z3+2; |
---|
6198 | ideal I = p*q^2,y-z2; |
---|
6199 | list pr = minAssGTZE(I); |
---|
6200 | pr; |
---|
6201 | ideal J = 1; |
---|
6202 | list prempty = minAssGTZE(J); |
---|
6203 | prempty; |
---|
6204 | |
---|
6205 | } |
---|
6206 | |
---|
6207 | |
---|
6208 | proc minAssGTZ(ideal I,list #) |
---|
6209 | "USAGE: minAssGTZ(I[, l]); I ideal, l list (optional) |
---|
6210 | @* Optional parameters in list l (can be entered in any order): |
---|
6211 | @* 0, \"facstd\" -> uses facstd to first decompose the ideal (default) |
---|
6212 | @* 1, \"noFacstd\" -> does not use facstd |
---|
6213 | @* \"GTZ\" -> the original algorithm by Gianni, Trager and Zacharias is used |
---|
6214 | @* \"SL\" -> GTZ algorithm with modificiations by Laplagne is used (default) |
---|
6215 | |
---|
6216 | RETURN: a list, the minimal associated prime ideals of proper ideal I, otherwise ideal(1) |
---|
6217 | NOTE: deprecated. Use 'minAssGTZE()'. |
---|
6218 | - Designed for characteristic 0, works also in char k > 0 based |
---|
6219 | on an algorithm of Yokoyama |
---|
6220 | - For local orderings, the result is considered in the localization |
---|
6221 | of the polynomial ring, not in the power series ring |
---|
6222 | - For local and mixed orderings, the decomposition in the |
---|
6223 | corresponding global ring is returned if the string 'global' |
---|
6224 | is specified as second argument |
---|
6225 | EXAMPLE: example minAssGTZ; shows an example |
---|
6226 | " |
---|
6227 | { |
---|
6228 | list result = minAssGTZ_i(int(0),I,#); |
---|
6229 | return(result); |
---|
6230 | } |
---|
6231 | example |
---|
6232 | { "EXAMPLE:"; echo = 2; |
---|
6233 | ring r = 0,(x,y,z),dp; |
---|
6234 | poly p = z2+1; |
---|
6235 | poly q = z3+2; |
---|
6236 | ideal i = p*q^2,y-z2; |
---|
6237 | list pr = minAssGTZ(i); |
---|
6238 | pr; |
---|
6239 | } |
---|
6240 | |
---|
6241 | |
---|
6242 | /////////////////////////////////////////////////////////////////////////////// |
---|
6243 | static proc minAssGTZ_i(int patchPrimaryDecomposition, ideal i,list #) |
---|
6244 | { |
---|
6245 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
6246 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
6247 | // For other parameters see 'minAssGTZ' or 'minAssGTZE' |
---|
6248 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6249 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6250 | if(size(#)>0) |
---|
6251 | { |
---|
6252 | int keep_comp=1; |
---|
6253 | } |
---|
6254 | |
---|
6255 | if(attrib(basering,"global")!=1) |
---|
6256 | { |
---|
6257 | // algorithms only work in global case! |
---|
6258 | // pass to appropriate global ring |
---|
6259 | def r=basering; |
---|
6260 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
6261 | setring s; |
---|
6262 | ideal i=imap(r,i); |
---|
6263 | // decompose and go back |
---|
6264 | list li=minAssGTZ_i(patchPrimaryDecomposition,i); |
---|
6265 | int sizeli = size(li); |
---|
6266 | setring r; |
---|
6267 | if (sizeli==0) { return(list()); } |
---|
6268 | def li=imap(s,li); |
---|
6269 | // clean up |
---|
6270 | if(!defined(keep_comp)) |
---|
6271 | { |
---|
6272 | for(int k=size(li);k>=1;k--) |
---|
6273 | { |
---|
6274 | if(mindeg(std(lead(li[k]))[1])==0) |
---|
6275 | { |
---|
6276 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
6277 | li=delete(li,k); |
---|
6278 | } |
---|
6279 | } |
---|
6280 | } |
---|
6281 | return(li); |
---|
6282 | } |
---|
6283 | |
---|
6284 | int j; |
---|
6285 | string algorithm; |
---|
6286 | string facstdOption; |
---|
6287 | int useFac; |
---|
6288 | |
---|
6289 | // Set input parameters |
---|
6290 | algorithm = "SL"; // Default: SL algorithm |
---|
6291 | facstdOption = "facstd"; |
---|
6292 | if(size(#) > 0) |
---|
6293 | { |
---|
6294 | int valid; |
---|
6295 | for(j = 1; j <= size(#); j++) |
---|
6296 | { |
---|
6297 | valid = 0; |
---|
6298 | if((typeof(#[j]) == "int") or (typeof(#[j]) == "number")) |
---|
6299 | { |
---|
6300 | if (#[j] == 1) {facstdOption = "noFacstd"; valid = 1;} // If #[j] == 1, facstd is not used. |
---|
6301 | if (#[j] == 0) {facstdOption = "facstd"; valid = 1;} // If #[j] == 0, facstd is used. |
---|
6302 | } |
---|
6303 | if(typeof(#[j]) == "string") |
---|
6304 | { |
---|
6305 | if((#[j] == "GTZ") || (#[j] == "SL")) |
---|
6306 | { |
---|
6307 | algorithm = #[j]; |
---|
6308 | valid = 1; |
---|
6309 | } |
---|
6310 | if((#[j] == "noFacstd") || (#[j] == "facstd")) |
---|
6311 | { |
---|
6312 | facstdOption = #[j]; |
---|
6313 | valid = 1; |
---|
6314 | } |
---|
6315 | } |
---|
6316 | if(valid == 0) |
---|
6317 | { |
---|
6318 | dbprint(1, "Warning! The following input parameter was not recognized:", #[j]); |
---|
6319 | } |
---|
6320 | } |
---|
6321 | } |
---|
6322 | |
---|
6323 | if(minpoly!=0) |
---|
6324 | { |
---|
6325 | return(algeDeco_i(patchPrimaryDecomposition,i,2)); |
---|
6326 | } |
---|
6327 | |
---|
6328 | list result = minAssPrimes_i(patchPrimaryDecomposition,i, facstdOption, algorithm); |
---|
6329 | return(result); |
---|
6330 | } |
---|
6331 | |
---|
6332 | |
---|
6333 | /////////////////////////////////////////////////////////////////////////////// |
---|
6334 | proc minAssCharE(ideal I, list #) |
---|
6335 | "USAGE: minAssCharE(I[,c]); i ideal, c int (optional). |
---|
6336 | RETURN: list, the minimal associated prime ideals of I. If I is the unit ideal returns an empty list. |
---|
6337 | NOTE: If c=0, the given ordering of the variables is used. @* |
---|
6338 | Otherwise, the system tries to find an optimal ordering, |
---|
6339 | which in some cases may considerably speed up the algorithm. @* |
---|
6340 | For local orderings, the result is considered in the localization |
---|
6341 | of the polynomial ring, not in the power series ring |
---|
6342 | For local and mixed orderings, the decomposition in the |
---|
6343 | corresponding global ring is returned if the string 'global' |
---|
6344 | is specified as third argument |
---|
6345 | EXAMPLE: example minAssCharE; shows an example |
---|
6346 | " |
---|
6347 | { |
---|
6348 | return(minAssChar_i(int(1),I,#)); |
---|
6349 | } |
---|
6350 | example |
---|
6351 | { "EXAMPLE:"; echo = 2; |
---|
6352 | ring r = 0,(x,y,z),dp; |
---|
6353 | poly p = z2+1; |
---|
6354 | poly q = z3+2; |
---|
6355 | ideal I = p*q^2,y-z2; |
---|
6356 | list pr = minAssCharE(I); |
---|
6357 | pr; |
---|
6358 | ideal J = 5; |
---|
6359 | list prempty = minAssCharE(J); |
---|
6360 | prempty; |
---|
6361 | } |
---|
6362 | |
---|
6363 | proc minAssChar(ideal I, list #) |
---|
6364 | "USAGE: minAssChar(I[,c]); i ideal, c int (optional). |
---|
6365 | RETURN: list, the minimal associated prime ideals of I. If I is the unit ideal returns list( ideal(1) ) |
---|
6366 | NOTE: deprecated. Use 'minAssCharE'. |
---|
6367 | If c=0, the given ordering of the variables is used. @* |
---|
6368 | Otherwise, the system tries to find an optimal ordering, |
---|
6369 | which in some cases may considerably speed up the algorithm. @* |
---|
6370 | For local orderings, the result is considered in the localization |
---|
6371 | of the polynomial ring, not in the power series ring |
---|
6372 | For local and mixed orderings, the decomposition in the |
---|
6373 | corresponding global ring is returned if the string 'global' |
---|
6374 | is specified as third argument |
---|
6375 | EXAMPLE: example minAssChar; shows an example |
---|
6376 | " |
---|
6377 | { |
---|
6378 | return(minAssChar_i(int(0),I,#)); |
---|
6379 | } |
---|
6380 | example |
---|
6381 | { "EXAMPLE:"; echo = 2; |
---|
6382 | ring r = 0,(x,y,z),dp; |
---|
6383 | poly p = z2+1; |
---|
6384 | poly q = z3+2; |
---|
6385 | ideal i = p*q^2,y-z2; |
---|
6386 | list pr = minAssChar(i); |
---|
6387 | pr; |
---|
6388 | } |
---|
6389 | |
---|
6390 | proc minAssChar_i(int patchPrimaryDecomposition, ideal i, list #) |
---|
6391 | { |
---|
6392 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
6393 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
6394 | // For other parameters see 'minAssChar' or 'minAssCharE' |
---|
6395 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6396 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6397 | ASSUME(0,size(#)<3); |
---|
6398 | if(size(#)>1) |
---|
6399 | { |
---|
6400 | int keep_comp=1; |
---|
6401 | } |
---|
6402 | if(attrib(basering,"global")!=1) |
---|
6403 | { |
---|
6404 | // algorithms only work in global case! |
---|
6405 | // pass to appropriate global ring |
---|
6406 | def r=basering; |
---|
6407 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
6408 | setring s; |
---|
6409 | ideal i=imap(r,i); |
---|
6410 | // decompose and go back |
---|
6411 | list li=minAssChar_i(patchPrimaryDecomposition,i); |
---|
6412 | int sizeli = size(li); |
---|
6413 | setring r; |
---|
6414 | if (sizeli==0) { return(list()); } |
---|
6415 | def li=imap(s,li); |
---|
6416 | // clean up |
---|
6417 | if(!defined(keep_comp)) |
---|
6418 | { |
---|
6419 | for(int k=size(li);k>=1;k--) |
---|
6420 | { |
---|
6421 | if(mindeg(std(lead(li[k]))[1])==0) |
---|
6422 | { |
---|
6423 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
6424 | li=delete(li,k); |
---|
6425 | } |
---|
6426 | } |
---|
6427 | } |
---|
6428 | return(li); |
---|
6429 | } |
---|
6430 | if (size(#)>0) |
---|
6431 | { return(min_ass_prim_charsets_i(patchPrimaryDecomposition,i,#[1])); } |
---|
6432 | else |
---|
6433 | { return(min_ass_prim_charsets_i(patchPrimaryDecomposition,i,1)); } |
---|
6434 | } |
---|
6435 | |
---|
6436 | /////////////////////////////////////////////////////////////////////////////// |
---|
6437 | proc equiRadical(ideal i) |
---|
6438 | "USAGE: equiRadical(I); I ideal |
---|
6439 | RETURN: ideal, intersection of associated primes of I of maximal dimension. |
---|
6440 | NOTE: A combination of the algorithms of Krick/Logar (with modifications by Laplagne) and Kemper is used. |
---|
6441 | Works also in positive characteristic (Kempers algorithm). |
---|
6442 | EXAMPLE: example equiRadical; shows an example |
---|
6443 | " |
---|
6444 | { |
---|
6445 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6446 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6447 | if(attrib(basering,"global")!=1) |
---|
6448 | { |
---|
6449 | ERROR( |
---|
6450 | "// Not implemented for this ordering, please change to global ordering." |
---|
6451 | ); |
---|
6452 | } |
---|
6453 | |
---|
6454 | return(radical(i, 1)); |
---|
6455 | } |
---|
6456 | example |
---|
6457 | { "EXAMPLE:"; echo = 2; |
---|
6458 | ring r = 0,(x,y,z),dp; |
---|
6459 | poly p = z2+1; |
---|
6460 | poly q = z3+2; |
---|
6461 | ideal i = p*q^2,y-z2; |
---|
6462 | ideal pr= equiRadical(i); |
---|
6463 | pr; |
---|
6464 | } |
---|
6465 | |
---|
6466 | /////////////////////////////////////////////////////////////////////////////// |
---|
6467 | proc radical(ideal i, list #) |
---|
6468 | "USAGE: radical(I[, l]); I ideal, l list (optional) |
---|
6469 | @* Optional parameters in list l (can be entered in any order): |
---|
6470 | @* 0, \"fullRad\" -> full radical is computed (default) |
---|
6471 | @* 1, \"equiRad\" -> equiRadical is computed |
---|
6472 | @* \"KL\" -> Krick/Logar algorithm is used |
---|
6473 | @* \"SL\" -> modifications by Laplagne are used (default) |
---|
6474 | @* \"facstd\" -> uses facstd to first decompose the ideal (default for non homogeneous ideals) |
---|
6475 | @* \"noFacstd\" -> does not use facstd (default for homogeneous ideals) |
---|
6476 | RETURN: ideal, the radical of I (or the equiradical if required in the input parameters) |
---|
6477 | NOTE: A combination of the algorithms of Krick/Logar (with modifications by Laplagne) and Kemper is used. |
---|
6478 | Works also in positive characteristic (Kempers algorithm). |
---|
6479 | EXAMPLE: example radical; shows an example |
---|
6480 | " |
---|
6481 | { |
---|
6482 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6483 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6484 | dbprint(printlevel - voice, "Radical, version 2006.05.08"); |
---|
6485 | if(size(i) == 0){return(ideal(0));} |
---|
6486 | if(attrib(basering,"global")!=1) |
---|
6487 | { |
---|
6488 | // algorithms only work in global case! |
---|
6489 | // pass to appropriate global ring |
---|
6490 | def r=basering; |
---|
6491 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
6492 | setring s; |
---|
6493 | ideal i=imap(r,i); |
---|
6494 | // compute radical and go back |
---|
6495 | def j=radical(i); |
---|
6496 | setring r; |
---|
6497 | def j=imap(s,j); |
---|
6498 | return(j); |
---|
6499 | } |
---|
6500 | int j; |
---|
6501 | def P0 = basering; |
---|
6502 | list Pl=ringlist(P0); |
---|
6503 | intvec dp_w; |
---|
6504 | for(j=nvars(P0);j>0;j--) {dp_w[j]=1;} |
---|
6505 | Pl[3]=list(list("dp",dp_w),list("C",0)); |
---|
6506 | def @P=ring(Pl); |
---|
6507 | setring @P; |
---|
6508 | ideal i=imap(P0,i); |
---|
6509 | |
---|
6510 | int il; |
---|
6511 | string algorithm; |
---|
6512 | int useFac; |
---|
6513 | |
---|
6514 | // Set input parameters |
---|
6515 | algorithm = "SL"; // Default: SL algorithm |
---|
6516 | il = 0; // Default: Full radical (not only equiRadical) |
---|
6517 | if (homog(i) == 1) |
---|
6518 | { // Default: facStd is used, except if the ideal is homogeneous. |
---|
6519 | useFac = 0; |
---|
6520 | } |
---|
6521 | else |
---|
6522 | { |
---|
6523 | useFac = 1; |
---|
6524 | } |
---|
6525 | if(size(#) > 0) |
---|
6526 | { |
---|
6527 | int valid; |
---|
6528 | for(j = 1; j <= size(#); j++) |
---|
6529 | { |
---|
6530 | valid = 0; |
---|
6531 | if((typeof(#[j]) == "int") or (typeof(#[j]) == "number")) |
---|
6532 | { |
---|
6533 | il = #[j]; // If il == 1, equiRadical is computed |
---|
6534 | valid = 1; |
---|
6535 | } |
---|
6536 | if(typeof(#[j]) == "string") |
---|
6537 | { |
---|
6538 | if(#[j] == "KL") |
---|
6539 | { |
---|
6540 | algorithm = "KL"; |
---|
6541 | valid = 1; |
---|
6542 | } |
---|
6543 | if(#[j] == "SL") |
---|
6544 | { |
---|
6545 | algorithm = "SL"; |
---|
6546 | valid = 1; |
---|
6547 | } |
---|
6548 | if(#[j] == "noFacstd") |
---|
6549 | { |
---|
6550 | useFac = 0; |
---|
6551 | valid = 1; |
---|
6552 | } |
---|
6553 | if(#[j] == "facstd") |
---|
6554 | { |
---|
6555 | useFac = 1; |
---|
6556 | valid = 1; |
---|
6557 | } |
---|
6558 | if(#[j] == "equiRad") |
---|
6559 | { |
---|
6560 | il = 1; |
---|
6561 | valid = 1; |
---|
6562 | } |
---|
6563 | if(#[j] == "fullRad") |
---|
6564 | { |
---|
6565 | il = 0; |
---|
6566 | valid = 1; |
---|
6567 | } |
---|
6568 | } |
---|
6569 | if(valid == 0) |
---|
6570 | { |
---|
6571 | dbprint(1, "Warning! The following input parameter was not recognized:", #[j]); |
---|
6572 | } |
---|
6573 | } |
---|
6574 | } |
---|
6575 | |
---|
6576 | ideal rad = 1; |
---|
6577 | intvec op = option(get); |
---|
6578 | list qr = simplifyIdeal(i); |
---|
6579 | map phi = @P, qr[2]; |
---|
6580 | |
---|
6581 | option(redSB); |
---|
6582 | i = groebner(qr[1]); |
---|
6583 | option(set, op); |
---|
6584 | int di = dim(i); |
---|
6585 | |
---|
6586 | if(di == 0) |
---|
6587 | { |
---|
6588 | i = zeroRad(i, qr[1]); |
---|
6589 | option(redSB); |
---|
6590 | i=interred(phi(i)); |
---|
6591 | option(set, op); |
---|
6592 | setring(P0); |
---|
6593 | i=imap(@P,i); |
---|
6594 | return(i); |
---|
6595 | } |
---|
6596 | |
---|
6597 | option(redSB); |
---|
6598 | list pr; |
---|
6599 | if(useFac == 1) |
---|
6600 | { |
---|
6601 | pr = facstd(i); |
---|
6602 | } |
---|
6603 | else |
---|
6604 | { |
---|
6605 | pr = i; |
---|
6606 | } |
---|
6607 | option(set, op); |
---|
6608 | int s = size(pr); |
---|
6609 | if(useFac == 1) |
---|
6610 | { |
---|
6611 | dbprint(printlevel - voice, "Number of components returned by facstd: ", s); |
---|
6612 | } |
---|
6613 | for(j = 1; j <= s; j++) |
---|
6614 | { |
---|
6615 | attrib(pr[s + 1 - j], "isSB", 1); |
---|
6616 | if((size(reduce(rad, pr[s + 1 - j], 1)) != 0) && ((dim(pr[s + 1 - j]) == di) || !il)) |
---|
6617 | { |
---|
6618 | // SL Debug messages |
---|
6619 | dbprint(printlevel-voice, "We shall compute the radical of ", pr[s + 1 - j]); |
---|
6620 | dbprint(printlevel-voice, "The dimension is: ", dim(pr[s+1-j])); |
---|
6621 | |
---|
6622 | if(algorithm == "KL") |
---|
6623 | { |
---|
6624 | rad = intersect(rad, radicalKL(pr[s + 1 - j], rad, il)); |
---|
6625 | } |
---|
6626 | if(algorithm == "SL") |
---|
6627 | { |
---|
6628 | rad = intersect(rad, radicalSL(pr[s + 1 - j], il)); |
---|
6629 | } |
---|
6630 | } |
---|
6631 | else |
---|
6632 | { |
---|
6633 | // SL Debug |
---|
6634 | dbprint(printlevel-voice, "The radical of this component is not needed."); |
---|
6635 | dbprint(printlevel-voice, "size(reduce(rad, pr[s + 1 - j], 1))", |
---|
6636 | size(reduce(rad, pr[s + 1 - j], 1))); |
---|
6637 | dbprint(printlevel-voice, "dim(pr[s + 1 - j])", dim(pr[s + 1 - j])); |
---|
6638 | dbprint(printlevel-voice, "il", il); |
---|
6639 | } |
---|
6640 | } |
---|
6641 | rad=interred(phi(rad)); |
---|
6642 | setring(P0); |
---|
6643 | i=imap(@P,rad); |
---|
6644 | return(i); |
---|
6645 | } |
---|
6646 | example |
---|
6647 | { "EXAMPLE:"; echo = 2; |
---|
6648 | ring r = 0,(x,y,z),dp; |
---|
6649 | poly p = z2+1; |
---|
6650 | poly q = z3+2; |
---|
6651 | ideal i = p*q^2,y-z2; |
---|
6652 | ideal pr = radical(i); |
---|
6653 | pr; |
---|
6654 | } |
---|
6655 | |
---|
6656 | /////////////////////////////////////////////////////////////////////////////// |
---|
6657 | // |
---|
6658 | // Computes the radical of I using KL algorithm. |
---|
6659 | // The only difference with the previous implementation of KL algorithm is |
---|
6660 | // that now it uses block dp instead of lp ordering for the reduction to the |
---|
6661 | // zerodimensional case. |
---|
6662 | // The reduction step has been moved to the new routine radicalReduction, so that it can be |
---|
6663 | // used also by radicalSL procedure. |
---|
6664 | // |
---|
6665 | static proc radicalKL(ideal I, ideal ser, list #) |
---|
6666 | { |
---|
6667 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6668 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6669 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6670 | |
---|
6671 | // ideal I The ideal for which the radical is computed |
---|
6672 | // ideal ser Used to reduce components already obtained |
---|
6673 | // list # If #[1] = 1, equiradical is computed. |
---|
6674 | |
---|
6675 | // I needs to be a Groebner basis. |
---|
6676 | if (attrib(I, "isSB") != 1) |
---|
6677 | { |
---|
6678 | I = groebner(I); |
---|
6679 | } |
---|
6680 | |
---|
6681 | ideal rad; // The radical |
---|
6682 | int allIndep = 1; // All max independent sets are used |
---|
6683 | |
---|
6684 | list result = radicalReduction(I, ser, allIndep, #); |
---|
6685 | int done = result[3]; |
---|
6686 | rad = result[1]; |
---|
6687 | if (done == 0) |
---|
6688 | { |
---|
6689 | rad = intersect(rad, radicalKL(result[2], ideal(1), #)); |
---|
6690 | } |
---|
6691 | return(rad); |
---|
6692 | } |
---|
6693 | |
---|
6694 | |
---|
6695 | /////////////////////////////////////////////////////////////////////////////// |
---|
6696 | // |
---|
6697 | // Computes the radical of I via Laplagne algorithm, using zerodimensional radical in |
---|
6698 | // the zero dimensional case. |
---|
6699 | // For the reduction to the zerodimensional case, it uses the procedure |
---|
6700 | // radical, with some modifications to avoid the recursion. |
---|
6701 | // |
---|
6702 | static proc radicalSL(ideal I, list #) |
---|
6703 | // Input = I, ideal |
---|
6704 | // #, list. If #[1] = 1, then computes only the equiradical. |
---|
6705 | // Output = (P, primaryDec) where P = rad(I) and primaryDec is the list of the radicals |
---|
6706 | // obtained in intermediate steps. |
---|
6707 | { |
---|
6708 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6709 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6710 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6711 | |
---|
6712 | ideal rad = 1; |
---|
6713 | ideal equiRad = 1; |
---|
6714 | list primes; |
---|
6715 | int k; // Counter |
---|
6716 | int il; // If il = 1, only the equiradical is required. |
---|
6717 | int iDim; // The dimension of I |
---|
6718 | int stop = 0; // Checks if the radical has been obtained |
---|
6719 | |
---|
6720 | if (attrib(I, "isSB") != 1) |
---|
6721 | { |
---|
6722 | I = groebner(I); |
---|
6723 | } |
---|
6724 | iDim = dim(I); |
---|
6725 | |
---|
6726 | // Checks if only equiradical is required |
---|
6727 | if (size(#) > 0) |
---|
6728 | { |
---|
6729 | il = #[1]; |
---|
6730 | } |
---|
6731 | |
---|
6732 | while(stop == 0) |
---|
6733 | { |
---|
6734 | dbprint (printlevel-voice, "// We call radLoopR to find new prime ideals."); |
---|
6735 | primes = radicalSLIteration(I, rad); // A list of primes or intersections of primes, not included in P |
---|
6736 | dbprint (printlevel - voice, "// Output of Iteration Step:"); |
---|
6737 | dbprint (printlevel - voice, primes); |
---|
6738 | if (size(primes) > 0) |
---|
6739 | { |
---|
6740 | dbprint (printlevel - voice, "// We intersect P with the ideal just obtained."); |
---|
6741 | for(k = 1; k <= size(primes); k++) |
---|
6742 | { |
---|
6743 | rad = intersect(rad, primes[k]); |
---|
6744 | if (il == 1) |
---|
6745 | { |
---|
6746 | if (attrib(primes[k], "isSB") != 1) |
---|
6747 | { |
---|
6748 | primes[k] = groebner(primes[k]); |
---|
6749 | } |
---|
6750 | if (iDim == dim(primes[k])) |
---|
6751 | { |
---|
6752 | equiRad = intersect(equiRad, primes[k]); |
---|
6753 | } |
---|
6754 | } |
---|
6755 | } |
---|
6756 | } |
---|
6757 | else |
---|
6758 | { |
---|
6759 | stop = 1; |
---|
6760 | } |
---|
6761 | } |
---|
6762 | if (il == 0) |
---|
6763 | { |
---|
6764 | return(rad); |
---|
6765 | } |
---|
6766 | else |
---|
6767 | { |
---|
6768 | return(equiRad); |
---|
6769 | } |
---|
6770 | } |
---|
6771 | |
---|
6772 | ////////////////////////////////////////////////////////////////////////// |
---|
6773 | // Based on radicalKL. |
---|
6774 | // It contains all of old version of proc radicalKL except the recursion call. |
---|
6775 | // |
---|
6776 | // Output: |
---|
6777 | // #1 -> output ideal, the part of the radical that has been computed |
---|
6778 | // #2 -> complementary ideal, the part of the ideal I whose radical remains to be computed |
---|
6779 | // = (I, h) in KL algorithm |
---|
6780 | // This is not used in the new algorithm. It is part of KL algorithm |
---|
6781 | // #3 -> done, 1: output = radical, there is no need to continue |
---|
6782 | // 0: radical = output \cap \sqrt{complementary ideal} |
---|
6783 | // This is not used in the new algorithm. It is part of KL algorithm |
---|
6784 | |
---|
6785 | static proc radicalReduction(ideal I, ideal ser, int allIndep, list #) |
---|
6786 | { |
---|
6787 | // allMaximal 1 -> Indicates that the reduction to the zerodim case |
---|
6788 | // must be done for all indep set of the leading terms ideal |
---|
6789 | // 0 -> Otherwise |
---|
6790 | // ideal ser Only for radicalKL. (Same as in radicalKL) |
---|
6791 | // list # Only for radicalKL (If #[1] = 1, |
---|
6792 | // only equiradical is required. |
---|
6793 | // It is used to set the value of done.) |
---|
6794 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6795 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6796 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6797 | |
---|
6798 | attrib(I, "isSB", 1); // I needs to be a reduced standard basis |
---|
6799 | list indep, fett; |
---|
6800 | intvec @w, @hilb, op; |
---|
6801 | int @wr, @n, @m, lauf, di; |
---|
6802 | ideal fac, @h, collectrad, lsau; |
---|
6803 | poly @q; |
---|
6804 | string @va; def quotring; |
---|
6805 | |
---|
6806 | def @P = basering; |
---|
6807 | int jdim = dim(I); // Computes the dimension of I |
---|
6808 | int homo = homog(I); // Finds out if I is homogeneous |
---|
6809 | ideal rad = ideal(1); // The unit ideal |
---|
6810 | ideal te = ser; |
---|
6811 | if(size(#) > 0) |
---|
6812 | { |
---|
6813 | @wr = #[1]; |
---|
6814 | } |
---|
6815 | if(homo == 1) |
---|
6816 | { |
---|
6817 | for(@n = 1; @n <= nvars(basering); @n++) |
---|
6818 | { |
---|
6819 | @w[@n] = ord(var(@n)); |
---|
6820 | } |
---|
6821 | @hilb = hilb(I, 1, @w); |
---|
6822 | } |
---|
6823 | |
---|
6824 | // SL 2006.04.11 1 Debug messages |
---|
6825 | dbprint(printlevel-voice, "//Computes the radical of the ideal:", I); |
---|
6826 | // SL 2006.04.11 2 Debug messages |
---|
6827 | |
---|
6828 | //--------------------------------------------------------------------------- |
---|
6829 | //j is the ring |
---|
6830 | //--------------------------------------------------------------------------- |
---|
6831 | |
---|
6832 | if (jdim==-1) |
---|
6833 | { |
---|
6834 | return(ideal(1), ideal(1), 1); |
---|
6835 | } |
---|
6836 | |
---|
6837 | //--------------------------------------------------------------------------- |
---|
6838 | //the zero-dimensional case |
---|
6839 | //--------------------------------------------------------------------------- |
---|
6840 | |
---|
6841 | if (jdim==0) |
---|
6842 | { |
---|
6843 | return(zeroRad(I), ideal(1), 1); |
---|
6844 | } |
---|
6845 | |
---|
6846 | //------------------------------------------------------------------------- |
---|
6847 | //search for a maximal independent set indep,i.e. |
---|
6848 | //look for subring such that the intersection with the ideal is zero |
---|
6849 | //j intersected with K[var(indep[3]+1),...,var(nvar)] is zero, |
---|
6850 | //indep[1] is the new varstring, indep[2] the string for the block-ordering |
---|
6851 | //------------------------------------------------------------------------- |
---|
6852 | |
---|
6853 | // SL 2006-04-24 1 If allIndep = 0, then it only computes one maximal |
---|
6854 | // independent set. |
---|
6855 | // This looks better for the new algorithm but not for KL |
---|
6856 | // algorithm |
---|
6857 | list parameters = allIndep; |
---|
6858 | indep = newMaxIndependSetDp(I, parameters); |
---|
6859 | // SL 2006-04-24 2 |
---|
6860 | |
---|
6861 | for(@m = 1; @m <= size(indep); @m++) |
---|
6862 | { |
---|
6863 | if((indep[@m][1] == varstr(basering)) && (@m == 1)) |
---|
6864 | //this is the good case, nothing to do, just to have the same notations |
---|
6865 | //change the ring |
---|
6866 | { |
---|
6867 | def gnir1=ring(ringlist(basering)); |
---|
6868 | setring gnir1; |
---|
6869 | ideal @j = fetch(@P, I); |
---|
6870 | attrib(@j, "isSB", 1); |
---|
6871 | } |
---|
6872 | else |
---|
6873 | { |
---|
6874 | @va = string(maxideal(1)); |
---|
6875 | |
---|
6876 | execute("ring gnir1 = (" + charstr(basering) + "), (" + indep[@m][1] + "),(" |
---|
6877 | + indep[@m][2] + ");"); |
---|
6878 | execute("map phi = @P," + @va + ";"); |
---|
6879 | if(homo == 1) |
---|
6880 | { |
---|
6881 | ideal @j = std(phi(I), @hilb, @w); |
---|
6882 | } |
---|
6883 | else |
---|
6884 | { |
---|
6885 | ideal @j = groebner(phi(I)); |
---|
6886 | } |
---|
6887 | } |
---|
6888 | if((deg(@j[1]) == 0) || (dim(@j) < jdim)) |
---|
6889 | { |
---|
6890 | setring @P; |
---|
6891 | break; |
---|
6892 | } |
---|
6893 | for (lauf = 1; lauf <= size(@j); lauf++) |
---|
6894 | { |
---|
6895 | fett[lauf] = size(@j[lauf]); |
---|
6896 | } |
---|
6897 | //------------------------------------------------------------------------ |
---|
6898 | // We have now the following situation: |
---|
6899 | // j intersected with K[var(nnp+1),..,var(nva)] is zero so we may pass |
---|
6900 | // to this quotientring, j is there still a standardbasis, the |
---|
6901 | // leading coefficients of the polynomials there (polynomials in |
---|
6902 | // K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
6903 | // we need their LCM, gh, because of the following: |
---|
6904 | // let (j:gh^n)=(j:gh^infinity) then j*K(var(nnp+1),..,var(nva))[..rest..] |
---|
6905 | // intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
6906 | // on the other hand j = ((j, gh^n) intersected with (j : gh^n)) |
---|
6907 | |
---|
6908 | //------------------------------------------------------------------------ |
---|
6909 | // The arrangement for the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
6910 | // and the map phi:K[var(1),...,var(nva)] -----> |
---|
6911 | // K(var(nnpr+1),..,var(nva))[..the rest..] |
---|
6912 | //------------------------------------------------------------------------ |
---|
6913 | quotring = prepareQuotientring(nvars(basering) - indep[@m][3],"dp"); |
---|
6914 | //------------------------------------------------------------------------ |
---|
6915 | // We pass to the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
6916 | //------------------------------------------------------------------------ |
---|
6917 | |
---|
6918 | setring quotring; |
---|
6919 | |
---|
6920 | // @j considered in the quotientring |
---|
6921 | ideal @j = imap(gnir1, @j); |
---|
6922 | |
---|
6923 | kill gnir1; |
---|
6924 | |
---|
6925 | // j is a standardbasis in the quotientring but usually not minimal |
---|
6926 | // here it becomes minimal |
---|
6927 | |
---|
6928 | @j = clearSB(@j, fett); |
---|
6929 | |
---|
6930 | // We need later LCM(h[1],...) = gh for saturation |
---|
6931 | ideal @h; |
---|
6932 | if(deg(@j[1]) > 0) |
---|
6933 | { |
---|
6934 | for(@n = 1; @n <= size(@j); @n++) |
---|
6935 | { |
---|
6936 | @h[@n] = leadcoef(@j[@n]); |
---|
6937 | } |
---|
6938 | op = option(get); |
---|
6939 | option(redSB); |
---|
6940 | @j = std(@j); //to obtain a reduced standardbasis |
---|
6941 | option(set, op); |
---|
6942 | |
---|
6943 | // SL 1 Debug messages |
---|
6944 | dbprint(printlevel - voice, "zero_rad", basering, @j, dim(groebner(@j))); |
---|
6945 | ideal zero_rad = zeroRad(@j); |
---|
6946 | dbprint(printlevel - voice, "zero_rad passed"); |
---|
6947 | // SL 2 |
---|
6948 | } |
---|
6949 | else |
---|
6950 | { |
---|
6951 | ideal zero_rad = ideal(1); |
---|
6952 | } |
---|
6953 | |
---|
6954 | // We need the intersection of the ideals in the list quprimary with the |
---|
6955 | // polynomialring, i.e. let q=(f1,...,fr) in the quotientring such an ideal |
---|
6956 | // but fi polynomials, then the intersection of q with the polynomialring |
---|
6957 | // is the saturation of the ideal generated by f1,...,fr with respect to |
---|
6958 | // h which is the lcm of the leading coefficients of the fi considered in |
---|
6959 | // the quotientring: this is coded in saturn |
---|
6960 | |
---|
6961 | zero_rad = std(zero_rad); |
---|
6962 | |
---|
6963 | ideal hpl; |
---|
6964 | |
---|
6965 | for(@n = 1; @n <= size(zero_rad); @n++) |
---|
6966 | { |
---|
6967 | hpl = hpl, leadcoef(zero_rad[@n]); |
---|
6968 | } |
---|
6969 | |
---|
6970 | //------------------------------------------------------------------------ |
---|
6971 | // We leave the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
6972 | // back to the polynomialring |
---|
6973 | //------------------------------------------------------------------------ |
---|
6974 | setring @P; |
---|
6975 | |
---|
6976 | collectrad = imap(quotring, zero_rad); |
---|
6977 | lsau = simplify(imap(quotring, hpl), 2); |
---|
6978 | @h = imap(quotring, @h); |
---|
6979 | |
---|
6980 | kill quotring; |
---|
6981 | |
---|
6982 | // Here the intersection with the polynomialring |
---|
6983 | // mentioned above is really computed |
---|
6984 | |
---|
6985 | collectrad = sat2(collectrad, lsau)[1]; |
---|
6986 | if(deg(@h[1])>=0) |
---|
6987 | { |
---|
6988 | fac = ideal(0); |
---|
6989 | for(lauf = 1; lauf <= ncols(@h); lauf++) |
---|
6990 | { |
---|
6991 | if(deg(@h[lauf]) > 0) |
---|
6992 | { |
---|
6993 | fac = fac + factorize(@h[lauf], 1); |
---|
6994 | } |
---|
6995 | } |
---|
6996 | fac = simplify(fac, 6); |
---|
6997 | @q = 1; |
---|
6998 | for(lauf = 1; lauf <= size(fac); lauf++) |
---|
6999 | { |
---|
7000 | @q = @q * fac[lauf]; |
---|
7001 | } |
---|
7002 | op = option(get); |
---|
7003 | option(returnSB); |
---|
7004 | option(redSB); |
---|
7005 | I = quotient(I + ideal(@q), rad); |
---|
7006 | attrib(I, "isSB", 1); |
---|
7007 | option(set, op); |
---|
7008 | } |
---|
7009 | if((deg(rad[1]) > 0) && (deg(collectrad[1]) > 0)) |
---|
7010 | { |
---|
7011 | rad = intersect(rad, collectrad); |
---|
7012 | te = intersect(te, collectrad); |
---|
7013 | te = simplify(reduce(te, I, 1), 2); |
---|
7014 | } |
---|
7015 | else |
---|
7016 | { |
---|
7017 | if(deg(collectrad[1]) > 0) |
---|
7018 | { |
---|
7019 | rad = collectrad; |
---|
7020 | te = intersect(te, collectrad); |
---|
7021 | te = simplify(reduce(te, I, 1), 2); |
---|
7022 | } |
---|
7023 | } |
---|
7024 | |
---|
7025 | if((dim(I) < jdim)||(size(te) == 0)) |
---|
7026 | { |
---|
7027 | break; |
---|
7028 | } |
---|
7029 | if(homo==1) |
---|
7030 | { |
---|
7031 | @hilb = hilb(I, 1, @w); |
---|
7032 | } |
---|
7033 | } |
---|
7034 | |
---|
7035 | // SL 2006.04.11 1 Debug messages |
---|
7036 | dbprint (printlevel-voice, "// Part of the Radical already computed:", rad); |
---|
7037 | dbprint (printlevel-voice, "// Dimension:", dim(groebner(rad))); |
---|
7038 | // SL 2006.04.11 2 Debug messages |
---|
7039 | |
---|
7040 | // SL 2006.04.21 1 New variable "done". |
---|
7041 | // It tells if the radical is already computed or |
---|
7042 | // if it still has to be computed the radical of the new ideal I |
---|
7043 | int done; |
---|
7044 | if(((@wr == 1) && (dim(I)<jdim)) || (deg(I[1])==0) || (size(te) == 0)) |
---|
7045 | { |
---|
7046 | done = 1; |
---|
7047 | } |
---|
7048 | else |
---|
7049 | { |
---|
7050 | done = 0; |
---|
7051 | } |
---|
7052 | // SL 2006.04.21 2 |
---|
7053 | |
---|
7054 | // SL 2006.04.21 1 See details of the output at the beginning of this proc. |
---|
7055 | list result = rad, I, done; |
---|
7056 | return(result); |
---|
7057 | // SL 2006.04.21 2 |
---|
7058 | } |
---|
7059 | |
---|
7060 | /////////////////////////////////////////////////////////////////////////////// |
---|
7061 | // Given an ideal I and an ideal P (intersection of some minimal prime ideals |
---|
7062 | // associated to I), it calculates the intersection of new minimal prime ideals |
---|
7063 | // associated to I which where not used to calculate P. P = 1 represents empty intersection. |
---|
7064 | // This version uses ZD Radical in the zerodimensional case. |
---|
7065 | static proc radicalSLIteration (ideal I, ideal P); |
---|
7066 | // Input: I, ideal. The ideal from which new prime components will be obtained. |
---|
7067 | // P, ideal. Intersection of some prime ideals of I. |
---|
7068 | // Output: ideal. Intersection of some primes of I different from the ones in P. |
---|
7069 | { |
---|
7070 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
7071 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
7072 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
7073 | |
---|
7074 | int k = 1; // Counter |
---|
7075 | int good = 0; // Checks if an element of P is in rad(I) |
---|
7076 | |
---|
7077 | dbprint (printlevel-voice, "// We search for an element in P - sqrt(I)."); |
---|
7078 | while ((k <= size(P)) and (good == 0)) |
---|
7079 | { |
---|
7080 | dbprint (printlevel-voice, "// We try with:", P[k]); |
---|
7081 | good = 1 - rad_con(P[k], I); |
---|
7082 | k++; |
---|
7083 | } |
---|
7084 | k--; |
---|
7085 | if (good == 0) |
---|
7086 | { |
---|
7087 | dbprint (printlevel-voice, "// No element was found, P = sqrt(I)."); |
---|
7088 | list emptyList = list(); |
---|
7089 | return (emptyList); |
---|
7090 | } |
---|
7091 | dbprint(printlevel - voice, "// That one was good!"); |
---|
7092 | dbprint(printlevel - voice, "// We saturate I with respect to this element."); |
---|
7093 | if (P[k] != 1) |
---|
7094 | { |
---|
7095 | intvec oo=option(get); |
---|
7096 | option(redSB); |
---|
7097 | ideal J = sat(I, P[k])[1]; |
---|
7098 | option(set,oo); |
---|
7099 | |
---|
7100 | } |
---|
7101 | else |
---|
7102 | { |
---|
7103 | dbprint(printlevel - voice, "// The polynomial is 1, the saturation in not actually computed."); |
---|
7104 | ideal J = I; |
---|
7105 | } |
---|
7106 | |
---|
7107 | // We now call proc radicalNew; |
---|
7108 | dbprint(printlevel - voice, "// We do the reduction to the zerodimensional case, via radical."); |
---|
7109 | dbprint(printlevel - voice, "// The ideal is ", J); |
---|
7110 | dbprint(printlevel - voice, "// The dimension is ", dim(groebner(J))); |
---|
7111 | |
---|
7112 | int allMaximal = 0; // Compute the zerodim reduction for only one indep set. |
---|
7113 | ideal re = 1; // No reduction is need, |
---|
7114 | // there are not redundant components. |
---|
7115 | list emptyList = list(); // Look for primes of any dimension, |
---|
7116 | // not only of max dimension. |
---|
7117 | list result = radicalReduction(J, re, allMaximal, emptyList); |
---|
7118 | |
---|
7119 | return(result[1]); |
---|
7120 | } |
---|
7121 | |
---|
7122 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7123 | // Based on maxIndependSet |
---|
7124 | // Added list # as parameter |
---|
7125 | // If the first element of # is 0, the output is only 1 max indep set. |
---|
7126 | // If no list is specified or #[1] = 1, the output is all the max indep set of the |
---|
7127 | // leading terms ideal. This is the original output of maxIndependSet |
---|
7128 | |
---|
7129 | // The ordering given in the output has been changed to block dp instead of lp. |
---|
7130 | |
---|
7131 | proc newMaxIndependSetDp(ideal j, list #) |
---|
7132 | "USAGE: newMaxIndependentSetDp(I); I ideal (returns all maximal independent sets of the corresponding leading terms ideal) |
---|
7133 | newMaxIndependentSetDp(I, 0); I ideal (returns only one maximal independent set) |
---|
7134 | RETURN: list = #1. new varstring with the maximal independent set at the end, |
---|
7135 | #2. ordstring with the corresponding dp block ordering, |
---|
7136 | #3. the number of independent variables |
---|
7137 | NOTE: |
---|
7138 | EXAMPLE: example newMaxIndependentSetDp; shows an example |
---|
7139 | " |
---|
7140 | { |
---|
7141 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
7142 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
7143 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
7144 | |
---|
7145 | int n, k, di; |
---|
7146 | list resu, hilf; |
---|
7147 | string var1, var2; |
---|
7148 | list v = indepSet(j, 0); |
---|
7149 | |
---|
7150 | // SL 2006.04.21 1 Lines modified to use only one independent Set |
---|
7151 | int allMaximal; |
---|
7152 | if (size(#) > 0) |
---|
7153 | { |
---|
7154 | allMaximal = #[1]; |
---|
7155 | } |
---|
7156 | else |
---|
7157 | { |
---|
7158 | allMaximal = 1; |
---|
7159 | } |
---|
7160 | |
---|
7161 | int nMax; |
---|
7162 | if (allMaximal == 1) |
---|
7163 | { |
---|
7164 | nMax = size(v); |
---|
7165 | } |
---|
7166 | else |
---|
7167 | { |
---|
7168 | nMax = 1; |
---|
7169 | } |
---|
7170 | |
---|
7171 | for(n = 1; n <= nMax; n++) |
---|
7172 | // SL 2006.04.21 2 |
---|
7173 | { |
---|
7174 | di = 0; |
---|
7175 | var1 = ""; |
---|
7176 | var2 = ""; |
---|
7177 | for(k = 1; k <= size(v[n]); k++) |
---|
7178 | { |
---|
7179 | if(v[n][k] != 0) |
---|
7180 | { |
---|
7181 | di++; |
---|
7182 | var2 = var2 + "var(" + string(k) + "), "; |
---|
7183 | } |
---|
7184 | else |
---|
7185 | { |
---|
7186 | var1 = var1 + "var(" + string(k) + "), "; |
---|
7187 | } |
---|
7188 | } |
---|
7189 | if(di > 0) |
---|
7190 | { |
---|
7191 | var1 = var1 + var2; |
---|
7192 | var1 = var1[1..size(var1) - 2]; // The "- 2" removes the trailer comma |
---|
7193 | hilf[1] = var1; |
---|
7194 | // SL 2006.21.04 1 The order is now block dp instead of lp |
---|
7195 | hilf[2] = "dp(" + string(nvars(basering) - di) + "), dp(" + string(di) + ")"; |
---|
7196 | // SL 2006.21.04 2 |
---|
7197 | hilf[3] = di; |
---|
7198 | resu[n] = hilf; |
---|
7199 | } |
---|
7200 | else |
---|
7201 | { |
---|
7202 | resu[n] = varstr(basering), ordstr(basering), 0; |
---|
7203 | } |
---|
7204 | } |
---|
7205 | return(resu); |
---|
7206 | } |
---|
7207 | example |
---|
7208 | { "EXAMPLE:"; echo = 2; |
---|
7209 | ring s1 = (0, x, y), (a, b, c, d, e, f, g), lp; |
---|
7210 | ideal i = ea - fbg, fa + be, ec - fdg, fc + de; |
---|
7211 | i = std(i); |
---|
7212 | list l = newMaxIndependSetDp(i); |
---|
7213 | l; |
---|
7214 | i = i, g; |
---|
7215 | l = newMaxIndependSetDp(i); |
---|
7216 | l; |
---|
7217 | |
---|
7218 | ring s = 0, (x, y, z), lp; |
---|
7219 | ideal i = z, yx; |
---|
7220 | list l = newMaxIndependSetDp(i); |
---|
7221 | l; |
---|
7222 | } |
---|
7223 | |
---|
7224 | |
---|
7225 | /////////////////////////////////////////////////////////////////////////////// |
---|
7226 | proc prepareAss(ideal i) |
---|
7227 | "USAGE: prepareAss(I); I ideal |
---|
7228 | RETURN: list, the radicals of the maximal dimensional components of I. |
---|
7229 | NOTE: Uses algorithm of Eisenbud/Huneke/Vasconcelos. |
---|
7230 | EXAMPLE: example prepareAss; shows an example |
---|
7231 | " |
---|
7232 | { |
---|
7233 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
7234 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
7235 | if(attrib(basering,"global")!=1) |
---|
7236 | { |
---|
7237 | ERROR( |
---|
7238 | "// Not implemented for this ordering, please change to global ordering." |
---|
7239 | ); |
---|
7240 | } |
---|
7241 | |
---|
7242 | ideal j=std(i); |
---|
7243 | int cod=nvars(basering)-dim(j); |
---|
7244 | int e; |
---|
7245 | list er; |
---|
7246 | ideal ann; |
---|
7247 | if(homog(i)==1) |
---|
7248 | { |
---|
7249 | resolution re=sres(j,0); //the resolution |
---|
7250 | re=minres(re); //minimized resolution |
---|
7251 | } |
---|
7252 | else |
---|
7253 | { |
---|
7254 | list re=mres(i,0); |
---|
7255 | } |
---|
7256 | for(e=cod;e<=nvars(basering);e++) |
---|
7257 | { |
---|
7258 | ann=AnnExt_R(e,re); |
---|
7259 | |
---|
7260 | if(nvars(basering)-dim(std(ann))==e) |
---|
7261 | { |
---|
7262 | er[size(er)+1]=equiRadical(ann); |
---|
7263 | } |
---|
7264 | } |
---|
7265 | return(er); |
---|
7266 | } |
---|
7267 | example |
---|
7268 | { "EXAMPLE:"; echo = 2; |
---|
7269 | ring r = 0,(x,y,z),dp; |
---|
7270 | poly p = z2+1; |
---|
7271 | poly q = z3+2; |
---|
7272 | ideal i = p*q^2,y-z2; |
---|
7273 | list pr = prepareAss(i); |
---|
7274 | pr; |
---|
7275 | } |
---|
7276 | /////////////////////////////////////////////////////////////////////////////// |
---|
7277 | proc equidimMaxEHV(ideal i) |
---|
7278 | "USAGE: equidimMaxEHV(I); I ideal |
---|
7279 | RETURN: ideal, the equidimensional component (of maximal dimension) of I. |
---|
7280 | NOTE: Uses algorithm of Eisenbud, Huneke and Vasconcelos. |
---|
7281 | EXAMPLE: example equidimMaxEHV; shows an example |
---|
7282 | " |
---|
7283 | { |
---|
7284 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
7285 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
7286 | if(attrib(basering,"global")!=1) |
---|
7287 | { |
---|
7288 | ERROR( |
---|
7289 | "// Not implemented for this ordering, please change to global ordering." |
---|
7290 | ); |
---|
7291 | } |
---|
7292 | |
---|
7293 | ideal j=groebner(i); |
---|
7294 | int cod=nvars(basering)-dim(j); |
---|
7295 | |
---|
7296 | |
---|
7297 | if(cod > nvars(basering)) |
---|
7298 | { |
---|
7299 | dbprint(printlevel,"//If I is the entire ring..."); |
---|
7300 | dbprint(printlevel,"//...then return the ideal generated by 1."); |
---|
7301 | return(ideal(1)); |
---|
7302 | } |
---|
7303 | |
---|
7304 | int e; |
---|
7305 | ideal ann; |
---|
7306 | if(homog(i)==1) |
---|
7307 | { |
---|
7308 | resolution re=sres(j,0); //the resolution |
---|
7309 | re=minres(re); //minimized resolution |
---|
7310 | } |
---|
7311 | else |
---|
7312 | { |
---|
7313 | resolution re=mres(j,0); |
---|
7314 | } |
---|
7315 | ann = AnnExt_R(cod,re); |
---|
7316 | if( nvars(basering)-dim(std(ann) ) != cod) |
---|
7317 | { |
---|
7318 | return( ideal(1) ); |
---|
7319 | } |
---|
7320 | |
---|
7321 | return(ann); |
---|
7322 | } |
---|
7323 | example |
---|
7324 | { "EXAMPLE:"; echo = 2; |
---|
7325 | ring r = 0,(x,y,z),dp; |
---|
7326 | ideal i=intersect(ideal(z),ideal(x,y),ideal(x2,z2),ideal(x5,y5,z5)); |
---|
7327 | equidimMaxEHV(i); |
---|
7328 | } |
---|
7329 | |
---|
7330 | |
---|
7331 | proc testPrimaryE(list pr, ideal k) |
---|
7332 | "USAGE: testPrimaryE(pr,k); pr a list, k an ideal. |
---|
7333 | ASSUME: pr is the result of a primary decomposition and may be empty ( for the unit ideal) |
---|
7334 | RETURN: int, 1 if the intersection of the ideals in pr is k, 0 if not |
---|
7335 | EXAMPLE: example testPrimaryE; shows an example |
---|
7336 | " |
---|
7337 | { |
---|
7338 | return(testPrimary_i(int(1),pr,k)); |
---|
7339 | } |
---|
7340 | example |
---|
7341 | { "EXAMPLE:"; echo = 2; |
---|
7342 | ring r = 32003,(x,y,z),dp; |
---|
7343 | poly p = z2+1; |
---|
7344 | poly q = z4+2; |
---|
7345 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
7346 | list pr = primdecGTZ(i); |
---|
7347 | testPrimaryE(pr,i); |
---|
7348 | } |
---|
7349 | |
---|
7350 | proc testPrimary(list pr, ideal k) |
---|
7351 | "USAGE: testPrimary(pr,k); pr a list, k an ideal. |
---|
7352 | ASSUME: pr is the result of primdecGTZ(k) or primdecSY(k). |
---|
7353 | RETURN: int, 1 if the intersection of the ideals in pr is k, 0 if not |
---|
7354 | NOTE: deprecated. Use 'testPrimaryE()' |
---|
7355 | EXAMPLE: example testPrimary; shows an example |
---|
7356 | " |
---|
7357 | { |
---|
7358 | return(testPrimary_i(int(0),pr,k)); |
---|
7359 | } |
---|
7360 | example |
---|
7361 | { "EXAMPLE:"; echo = 2; |
---|
7362 | ring r = 32003,(x,y,z),dp; |
---|
7363 | poly p = z2+1; |
---|
7364 | poly q = z4+2; |
---|
7365 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
7366 | list pr = primdecGTZ(i); |
---|
7367 | testPrimary(pr,i); |
---|
7368 | } |
---|
7369 | |
---|
7370 | |
---|
7371 | static proc testPrimary_i(int patchPrimaryDecomposition,list pr, ideal k) |
---|
7372 | { |
---|
7373 | // if patchPrimaryDecomposition=1, handle the case of an empty decomposition list. |
---|
7374 | // For other parameters see 'testPrimary' |
---|
7375 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
7376 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
7377 | |
---|
7378 | int i; |
---|
7379 | pr=reconvList(pr); |
---|
7380 | if (patchPrimaryDecomposition==1) |
---|
7381 | { |
---|
7382 | if (idealsEqual( k, ideal(1)) ) |
---|
7383 | { |
---|
7384 | return( size(pr)==0 ); //list expected to be empty. |
---|
7385 | } |
---|
7386 | } |
---|
7387 | ideal j=pr[1]; |
---|
7388 | |
---|
7389 | |
---|
7390 | for (i=2;i<=size(pr) div 2;i++) |
---|
7391 | { |
---|
7392 | j=intersect(j,pr[2*i-1]); |
---|
7393 | } |
---|
7394 | return(idealsEqual(j,k)); |
---|
7395 | } |
---|
7396 | |
---|
7397 | |
---|
7398 | /////////////////////////////////////////////////////////////////////////////// |
---|
7399 | proc zerodec(ideal I) |
---|
7400 | "USAGE: zerodec(I); I ideal |
---|
7401 | ASSUME: I is zero-dimensional, the characteristic of the ground field is 0 |
---|
7402 | RETURN: list of primary ideals, the zero-dimensional decomposition of I |
---|
7403 | NOTE: The algorithm (of Monico), works well only for a small total number |
---|
7404 | of solutions (@code{vdim(std(I))} should be < 100) and without |
---|
7405 | parameters. In practice, it works also in large characteristic p>0 |
---|
7406 | but may fail for small p. |
---|
7407 | @* If printlevel > 0 (default = 0) additional information is displayed. |
---|
7408 | EXAMPLE: example zerodec; shows an example |
---|
7409 | " |
---|
7410 | { |
---|
7411 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
7412 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
7413 | ASSUME(2, dim(groebner(I))==1 ); |
---|
7414 | if(attrib(basering,"global")!=1) |
---|
7415 | { |
---|
7416 | ERROR( |
---|
7417 | "// Not implemented for this ordering, please change to global ordering." |
---|
7418 | ); |
---|
7419 | } |
---|
7420 | |
---|
7421 | def R=basering; |
---|
7422 | poly q; |
---|
7423 | int j,time; |
---|
7424 | matrix m; |
---|
7425 | list re; |
---|
7426 | poly va=var(1); |
---|
7427 | ideal J=groebner(I); |
---|
7428 | ideal ba=kbase(J); |
---|
7429 | int d=vdim(J); |
---|
7430 | dbprint(printlevel-voice+2,"// multiplicity of ideal : "+ string(d)); |
---|
7431 | //------ compute matrix of multiplication on R/I with generic element p ----- |
---|
7432 | int e=nvars(basering); |
---|
7433 | poly p=randomLast(100)[e]+random(-50,50); //the generic element |
---|
7434 | matrix n[d][d]; |
---|
7435 | time = timer; |
---|
7436 | for(j=2;j<=e;j++) |
---|
7437 | { |
---|
7438 | va=va*var(j); |
---|
7439 | } |
---|
7440 | for(j=1;j<=d;j++) |
---|
7441 | { |
---|
7442 | q=reduce(p*ba[j],J); |
---|
7443 | m=coeffs(q,ba,va); |
---|
7444 | n[j,1..d]=m[1..d,1]; |
---|
7445 | } |
---|
7446 | dbprint(printlevel-voice+2, |
---|
7447 | "// time for computing multiplication matrix (with generic element) : "+ |
---|
7448 | string(timer-time)); |
---|
7449 | //---------------- compute characteristic polynomial of matrix -------------- |
---|
7450 | execute("ring P1=("+charstr(R)+"),T,dp;"); |
---|
7451 | matrix n=imap(R,n); |
---|
7452 | time = timer; |
---|
7453 | poly charpol=det(n-var(1)*freemodule(d)); |
---|
7454 | dbprint(printlevel-voice+2,"// time for computing char poly: "+ |
---|
7455 | string(timer-time)); |
---|
7456 | //------------------- factorize characteristic polynomial ------------------- |
---|
7457 | //check first if constant term of charpoly is != 0 (which is true for |
---|
7458 | //sufficiently generic element) |
---|
7459 | if(charpol[size(charpol)]!=0) |
---|
7460 | { |
---|
7461 | time = timer; |
---|
7462 | list fac=factor(charpol); |
---|
7463 | testFactor(fac,charpol); |
---|
7464 | dbprint(printlevel-voice+2,"// time for factorizing char poly: "+ |
---|
7465 | string(timer-time)); |
---|
7466 | int f=size(fac[1]); |
---|
7467 | //--------------------------- the irreducible case -------------------------- |
---|
7468 | if(f==1) |
---|
7469 | { |
---|
7470 | setring R; |
---|
7471 | re=I; |
---|
7472 | return(re); |
---|
7473 | } |
---|
7474 | //---------------------------- the reducible case --------------------------- |
---|
7475 | //if f_i are the irreducible factors of charpoly, mult=ri, then <I,g_i^ri> |
---|
7476 | //are the primary components where g_i = f_i(p). However, substituting p in |
---|
7477 | //f_i may result in a huge object although the final result may be small. |
---|
7478 | //Hence it is better to simultaneously reduce with I. For this we need a new |
---|
7479 | //ring. |
---|
7480 | execute("ring P=("+charstr(R)+"),(T,"+varstr(R)+"),(dp(1),dp);"); |
---|
7481 | list rfac=imap(P1,fac); |
---|
7482 | intvec ov=option(get);; |
---|
7483 | option(redSB); |
---|
7484 | list re1; |
---|
7485 | ideal new = var(1)-imap(R,p),imap(R,J); |
---|
7486 | attrib(new, "isSB",1); //we know that new is a standard basis |
---|
7487 | for(j=1;j<=f;j++) |
---|
7488 | { |
---|
7489 | re1[j]=reduce(rfac[1][j]^rfac[2][j],new); |
---|
7490 | } |
---|
7491 | setring R; |
---|
7492 | re = imap(P,re1); |
---|
7493 | for(j=1;j<=f;j++) |
---|
7494 | { |
---|
7495 | J=I,re[j]; |
---|
7496 | re[j]=interred(J); |
---|
7497 | } |
---|
7498 | option(set,ov); |
---|
7499 | return(re); |
---|
7500 | } |
---|
7501 | else |
---|
7502 | //------------------- choice of generic element failed ------------------- |
---|
7503 | { |
---|
7504 | dbprint(printlevel-voice+2,"// try new generic element!"); |
---|
7505 | setring R; |
---|
7506 | return(zerodec(I)); |
---|
7507 | } |
---|
7508 | } |
---|
7509 | example |
---|
7510 | { "EXAMPLE:"; echo = 2; |
---|
7511 | ring r = 0,(x,y),dp; |
---|
7512 | ideal i = x2-2,y2-2; |
---|
7513 | list pr = zerodec(i); |
---|
7514 | pr; |
---|
7515 | } |
---|
7516 | |
---|
7517 | |
---|
7518 | static proc newDecompStepE(ideal I, list #) |
---|
7519 | { |
---|
7520 | return(newDecompStep_i(int(1),I,#)); |
---|
7521 | } |
---|
7522 | |
---|
7523 | static proc newDecompStep(ideal I, list #) |
---|
7524 | { |
---|
7525 | return(newDecompStep_i(int(0),I,#)); |
---|
7526 | } |
---|
7527 | |
---|
7528 | /////////////////////////////////////////////////////////////////////////////// |
---|
7529 | static proc newDecompStep_i(int patchPrimaryDecomposition, ideal i, list #) |
---|
7530 | "USAGE: newDecompStep_i(patchPrimaryDecomposition, I); I ideal (for primary decomposition) |
---|
7531 | newDecompStep_i(patchPrimaryDecomposition, I,1); (for the associated primes of dimension of i) |
---|
7532 | newDecompStep_i(patchPrimaryDecomposition, I,2); (for the minimal associated primes) |
---|
7533 | newDecompStep_i(patchPrimaryDecomposition, I,3); (for the absolute primary decomposition (not tested!)) |
---|
7534 | "oneIndep"; (for using only one max indep set) |
---|
7535 | "intersect"; (returns alse the intersection of the components founded) |
---|
7536 | |
---|
7537 | RETURN: list = list of primary ideals and their associated primes |
---|
7538 | (at even positions in the list) |
---|
7539 | (resp. a list of the minimal associated primes) |
---|
7540 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
7541 | if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
7542 | since the unit ideal it is not prime, otherwise take no special action. |
---|
7543 | EXAMPLE: example newDecompStep; shows an example |
---|
7544 | " |
---|
7545 | { |
---|
7546 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
7547 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
7548 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
7549 | |
---|
7550 | intvec op@P, op,@vv; |
---|
7551 | def @P = basering; |
---|
7552 | list primary,indep,ltras; |
---|
7553 | intvec @vh,isat,@w; |
---|
7554 | int @wr,@k,@n,@m,@n1,@n2,@n3,homo,seri,keepdi,abspri,ab,nn; |
---|
7555 | ideal peek=i; |
---|
7556 | ideal ser,tras; |
---|
7557 | list data; |
---|
7558 | list result; |
---|
7559 | intvec @hilb; |
---|
7560 | int isS=(attrib(i,"isSB")==1); |
---|
7561 | |
---|
7562 | // Debug |
---|
7563 | dbprint(printlevel - voice, "newDecompStep, v2.0"); |
---|
7564 | |
---|
7565 | string indepOption = "allIndep"; |
---|
7566 | string intersectOption = "noIntersect"; |
---|
7567 | |
---|
7568 | if(size(#)>0) |
---|
7569 | { |
---|
7570 | int count = 1; |
---|
7571 | if(typeof(#[count]) == "string") |
---|
7572 | { |
---|
7573 | if ((#[count] == "oneIndep") or (#[count] == "allIndep")) |
---|
7574 | { |
---|
7575 | indepOption = #[count]; |
---|
7576 | count++; |
---|
7577 | } |
---|
7578 | } |
---|
7579 | if(typeof(#[count]) == "string") |
---|
7580 | { |
---|
7581 | if ((#[count] == "intersect") or (#[count] == "noIntersect")) |
---|
7582 | { |
---|
7583 | intersectOption = #[count]; |
---|
7584 | count++; |
---|
7585 | } |
---|
7586 | } |
---|
7587 | if((typeof(#[count]) == "int") or (typeof(#[count]) == "number")) |
---|
7588 | { |
---|
7589 | if ((#[count]==1)||(#[count]==2)||(#[count]==3)) |
---|
7590 | { |
---|
7591 | @wr=#[count]; |
---|
7592 | if(@wr==3){abspri = 1; @wr = 0;} |
---|
7593 | count++; |
---|
7594 | } |
---|
7595 | } |
---|
7596 | if(size(#)>count) |
---|
7597 | { |
---|
7598 | seri=1; |
---|
7599 | peek=#[count + 1]; |
---|
7600 | ser=#[count + 2]; |
---|
7601 | } |
---|
7602 | } |
---|
7603 | if(abspri) |
---|
7604 | { |
---|
7605 | list absprimary,abskeep,absprimarytmp,abskeeptmp; |
---|
7606 | } |
---|
7607 | homo=homog(i); |
---|
7608 | if(homo==1) |
---|
7609 | { |
---|
7610 | if(attrib(i,"isSB")!=1) |
---|
7611 | { |
---|
7612 | //ltras=mstd(i); |
---|
7613 | tras=groebner(i); |
---|
7614 | ltras=tras,tras; |
---|
7615 | attrib(ltras[1],"isSB",1); |
---|
7616 | } |
---|
7617 | else |
---|
7618 | { |
---|
7619 | ltras=i,i; |
---|
7620 | attrib(ltras[1],"isSB",1); |
---|
7621 | } |
---|
7622 | tras = ltras[1]; |
---|
7623 | attrib(tras,"isSB",1); |
---|
7624 | if(dim(tras)==0) |
---|
7625 | { |
---|
7626 | primary[1]=ltras[2]; |
---|
7627 | primary[2]=maxideal(1); |
---|
7628 | if(@wr>0) |
---|
7629 | { |
---|
7630 | list l; |
---|
7631 | l[2]=maxideal(1); |
---|
7632 | l[1]=maxideal(1); |
---|
7633 | if (intersectOption == "intersect") |
---|
7634 | { |
---|
7635 | return(list(l, maxideal(1))); |
---|
7636 | } |
---|
7637 | else |
---|
7638 | { |
---|
7639 | return(l); |
---|
7640 | } |
---|
7641 | } |
---|
7642 | if (intersectOption == "intersect") |
---|
7643 | { |
---|
7644 | return(list(primary, primary[1])); |
---|
7645 | } |
---|
7646 | else |
---|
7647 | { |
---|
7648 | return(primary); |
---|
7649 | } |
---|
7650 | } |
---|
7651 | for(@n=1;@n<=nvars(basering);@n++) |
---|
7652 | { |
---|
7653 | @w[@n]=ord(var(@n)); |
---|
7654 | } |
---|
7655 | @hilb=hilb(tras,1,@w); |
---|
7656 | intvec keephilb=@hilb; |
---|
7657 | } |
---|
7658 | |
---|
7659 | //---------------------------------------------------------------- |
---|
7660 | //i is the zero-ideal |
---|
7661 | //---------------------------------------------------------------- |
---|
7662 | |
---|
7663 | if(size(i)==0) |
---|
7664 | { |
---|
7665 | primary=i,i; |
---|
7666 | if (intersectOption == "intersect") |
---|
7667 | { |
---|
7668 | return(list(primary, i)); |
---|
7669 | } |
---|
7670 | else |
---|
7671 | { |
---|
7672 | return(primary); |
---|
7673 | } |
---|
7674 | } |
---|
7675 | |
---|
7676 | //---------------------------------------------------------------- |
---|
7677 | //pass to the lexicographical ordering and compute a standardbasis |
---|
7678 | //---------------------------------------------------------------- |
---|
7679 | |
---|
7680 | int lp=islp(); |
---|
7681 | |
---|
7682 | op@P = option(get); |
---|
7683 | def gnir=changeordTo(basering,"lp"); |
---|
7684 | setring gnir; |
---|
7685 | |
---|
7686 | op=option(get); |
---|
7687 | option(redSB); |
---|
7688 | |
---|
7689 | ideal ser=fetch(@P,ser); |
---|
7690 | if(homo==1) |
---|
7691 | { |
---|
7692 | if(!lp) |
---|
7693 | { |
---|
7694 | ideal @j=std(fetch(@P,i),@hilb,@w); |
---|
7695 | } |
---|
7696 | else |
---|
7697 | { |
---|
7698 | ideal @j=fetch(@P,tras); |
---|
7699 | attrib(@j,"isSB",1); |
---|
7700 | } |
---|
7701 | } |
---|
7702 | else |
---|
7703 | { |
---|
7704 | if(lp&&isS) |
---|
7705 | { |
---|
7706 | ideal @j=fetch(@P,i); |
---|
7707 | attrib(@j,"isSB",1); |
---|
7708 | } |
---|
7709 | else |
---|
7710 | { |
---|
7711 | ideal @j=groebner(fetch(@P,i)); |
---|
7712 | } |
---|
7713 | } |
---|
7714 | option(set,op); |
---|
7715 | if(seri==1) |
---|
7716 | { |
---|
7717 | ideal peek=fetch(@P,peek); |
---|
7718 | attrib(peek,"isSB",1); |
---|
7719 | } |
---|
7720 | else |
---|
7721 | { |
---|
7722 | ideal peek=@j; |
---|
7723 | } |
---|
7724 | if((size(ser)==0)&&(!abspri)) |
---|
7725 | { |
---|
7726 | ideal fried; |
---|
7727 | @n=size(@j); |
---|
7728 | for(@k=1;@k<=@n;@k++) |
---|
7729 | { |
---|
7730 | if(deg(lead(@j[@k]))==1) |
---|
7731 | { |
---|
7732 | fried[size(fried)+1]=@j[@k]; |
---|
7733 | @j[@k]=0; |
---|
7734 | } |
---|
7735 | } |
---|
7736 | if(size(fried)==nvars(basering)) |
---|
7737 | { |
---|
7738 | setring @P; |
---|
7739 | option(set,op@P); |
---|
7740 | primary[1]=i; |
---|
7741 | primary[2]=i; |
---|
7742 | if (intersectOption == "intersect") |
---|
7743 | { |
---|
7744 | return(list(primary, i)); |
---|
7745 | } |
---|
7746 | else |
---|
7747 | { |
---|
7748 | return(primary); |
---|
7749 | } |
---|
7750 | } |
---|
7751 | if(size(fried)>0) |
---|
7752 | { |
---|
7753 | string newva; |
---|
7754 | string newma; |
---|
7755 | for(@k=1;@k<=nvars(basering);@k++) |
---|
7756 | { |
---|
7757 | @n1=0; |
---|
7758 | for(@n=1;@n<=size(fried);@n++) |
---|
7759 | { |
---|
7760 | if(leadmonom(fried[@n])==var(@k)) |
---|
7761 | { |
---|
7762 | @n1=1; |
---|
7763 | break; |
---|
7764 | } |
---|
7765 | } |
---|
7766 | if(@n1==0) |
---|
7767 | { |
---|
7768 | newva=newva+string(var(@k))+","; |
---|
7769 | newma=newma+string(var(@k))+","; |
---|
7770 | } |
---|
7771 | else |
---|
7772 | { |
---|
7773 | newma=newma+string(0)+","; |
---|
7774 | } |
---|
7775 | } |
---|
7776 | newva[size(newva)]=")"; |
---|
7777 | newma[size(newma)]=";"; |
---|
7778 | execute("ring @deirf=("+charstr(gnir)+"),("+newva+",lp;"); |
---|
7779 | execute("map @kappa=gnir,"+newma); |
---|
7780 | ideal @j= @kappa(@j); |
---|
7781 | @j=simplify(@j, 2); |
---|
7782 | attrib(@j,"isSB",1); |
---|
7783 | result = newDecompStep_i(patchPrimaryDecomposition, @j, indepOption, intersectOption, @wr); |
---|
7784 | if (intersectOption == "intersect") |
---|
7785 | { |
---|
7786 | list pr = result[1]; |
---|
7787 | ideal intersection = result[2]; |
---|
7788 | } |
---|
7789 | else |
---|
7790 | { |
---|
7791 | list pr = result; |
---|
7792 | } |
---|
7793 | |
---|
7794 | setring gnir; |
---|
7795 | list pr=imap(@deirf,pr); |
---|
7796 | for(@k=1;@k<=size(pr);@k++) |
---|
7797 | { |
---|
7798 | @j=pr[@k]+fried; |
---|
7799 | pr[@k]=@j; |
---|
7800 | } |
---|
7801 | if (intersectOption == "intersect") |
---|
7802 | { |
---|
7803 | ideal intersection = imap(@deirf, intersection); |
---|
7804 | @j = intersection + fried; |
---|
7805 | intersection = @j; |
---|
7806 | } |
---|
7807 | setring @P; |
---|
7808 | option(set,op@P); |
---|
7809 | if (intersectOption == "intersect") |
---|
7810 | { |
---|
7811 | return(list(imap(gnir,pr), imap(gnir,intersection))); |
---|
7812 | } |
---|
7813 | else |
---|
7814 | { |
---|
7815 | return(imap(gnir,pr)); |
---|
7816 | } |
---|
7817 | } |
---|
7818 | } |
---|
7819 | //---------------------------------------------------------------- |
---|
7820 | //j is the ring |
---|
7821 | //---------------------------------------------------------------- |
---|
7822 | |
---|
7823 | if (dim(@j)==-1) |
---|
7824 | { |
---|
7825 | setring @P; |
---|
7826 | option(set,op@P); |
---|
7827 | primary=ideal(1),ideal(1); |
---|
7828 | if (intersectOption == "intersect") |
---|
7829 | { |
---|
7830 | return(list(primary, ideal(1))); |
---|
7831 | } |
---|
7832 | else |
---|
7833 | { |
---|
7834 | return(primary); |
---|
7835 | } |
---|
7836 | } |
---|
7837 | |
---|
7838 | //---------------------------------------------------------------- |
---|
7839 | // the case of one variable |
---|
7840 | //---------------------------------------------------------------- |
---|
7841 | |
---|
7842 | if(nvars(basering)==1) |
---|
7843 | { |
---|
7844 | list fac=factor(@j[1]); |
---|
7845 | list gprimary; |
---|
7846 | poly generator; |
---|
7847 | ideal gIntersection; |
---|
7848 | for(@k=1;@k<=size(fac[1]);@k++) |
---|
7849 | { |
---|
7850 | if(@wr==0) |
---|
7851 | { |
---|
7852 | gprimary[2*@k-1]=ideal(fac[1][@k]^fac[2][@k]); |
---|
7853 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
7854 | } |
---|
7855 | else |
---|
7856 | { |
---|
7857 | gprimary[2*@k-1]=ideal(fac[1][@k]); |
---|
7858 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
7859 | } |
---|
7860 | if (intersectOption == "intersect") |
---|
7861 | { |
---|
7862 | generator = generator * fac[1][@k]; |
---|
7863 | } |
---|
7864 | } |
---|
7865 | if (intersectOption == "intersect") |
---|
7866 | { |
---|
7867 | gIntersection = generator; |
---|
7868 | } |
---|
7869 | setring @P; |
---|
7870 | primary=fetch(gnir,gprimary); |
---|
7871 | if (intersectOption == "intersect") |
---|
7872 | { |
---|
7873 | ideal intersection = fetch(gnir,gIntersection); |
---|
7874 | } |
---|
7875 | |
---|
7876 | //HIER |
---|
7877 | if(abspri) |
---|
7878 | { |
---|
7879 | list resu,tempo; |
---|
7880 | string absotto; |
---|
7881 | for(ab=1;ab<=size(primary) div 2;ab++) |
---|
7882 | { |
---|
7883 | absotto= absFactorize(primary[2*ab][1],77); |
---|
7884 | tempo=primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
7885 | resu[ab]=tempo; |
---|
7886 | } |
---|
7887 | primary=resu; |
---|
7888 | intersection = 1; |
---|
7889 | for(ab=1;ab<=size(primary);ab++) |
---|
7890 | { |
---|
7891 | intersection = intersect(intersection, primary[ab][2]); |
---|
7892 | } |
---|
7893 | } |
---|
7894 | if (intersectOption == "intersect") |
---|
7895 | { |
---|
7896 | return(list(primary, intersection)); |
---|
7897 | } |
---|
7898 | else |
---|
7899 | { |
---|
7900 | return(primary); |
---|
7901 | } |
---|
7902 | } |
---|
7903 | |
---|
7904 | //------------------------------------------------------------------ |
---|
7905 | //the zero-dimensional case |
---|
7906 | //------------------------------------------------------------------ |
---|
7907 | if (dim(@j)==0) |
---|
7908 | { |
---|
7909 | op=option(get); |
---|
7910 | option(redSB); |
---|
7911 | list gprimary= newZero_decomp(@j,ser,@wr); |
---|
7912 | |
---|
7913 | setring @P; |
---|
7914 | primary=fetch(gnir,gprimary); |
---|
7915 | |
---|
7916 | if(size(ser)>0) |
---|
7917 | { |
---|
7918 | primary=cleanPrimary(primary); |
---|
7919 | } |
---|
7920 | //HIER |
---|
7921 | if(abspri) |
---|
7922 | { |
---|
7923 | list resu,tempo; |
---|
7924 | string absotto; |
---|
7925 | for(ab=1;ab<=size(primary) div 2;ab++) |
---|
7926 | { |
---|
7927 | absotto= absFactorize(primary[2*ab][1],77); |
---|
7928 | tempo=primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
7929 | resu[ab]=tempo; |
---|
7930 | } |
---|
7931 | primary=resu; |
---|
7932 | } |
---|
7933 | option(set,op@P); |
---|
7934 | if (intersectOption == "intersect") |
---|
7935 | { |
---|
7936 | return(list(primary, fetch(gnir,@j))); |
---|
7937 | } |
---|
7938 | else |
---|
7939 | { |
---|
7940 | return(primary); |
---|
7941 | } |
---|
7942 | } |
---|
7943 | |
---|
7944 | poly @gs,@gh,@p; |
---|
7945 | string @va; |
---|
7946 | list quprimary,htprimary,collectprimary,lsau,lnew,allindep,restindep; |
---|
7947 | ideal @h; |
---|
7948 | int jdim=dim(@j); |
---|
7949 | list fett; |
---|
7950 | int lauf,di,newtest; |
---|
7951 | //------------------------------------------------------------------ |
---|
7952 | //search for a maximal independent set indep,i.e. |
---|
7953 | //look for subring such that the intersection with the ideal is zero |
---|
7954 | //j intersected with K[var(indep[3]+1),...,var(nvar] is zero, |
---|
7955 | //indep[1] is the new varstring and indep[2] the string for block-ordering |
---|
7956 | //------------------------------------------------------------------ |
---|
7957 | if(@wr!=1) |
---|
7958 | { |
---|
7959 | allindep = newMaxIndependSetLp(@j, indepOption); |
---|
7960 | for(@m=1;@m<=size(allindep);@m++) |
---|
7961 | { |
---|
7962 | if(allindep[@m][3]==jdim) |
---|
7963 | { |
---|
7964 | di++; |
---|
7965 | indep[di]=allindep[@m]; |
---|
7966 | } |
---|
7967 | else |
---|
7968 | { |
---|
7969 | lauf++; |
---|
7970 | restindep[lauf]=allindep[@m]; |
---|
7971 | } |
---|
7972 | } |
---|
7973 | } |
---|
7974 | else |
---|
7975 | { |
---|
7976 | indep = newMaxIndependSetLp(@j, indepOption); |
---|
7977 | } |
---|
7978 | |
---|
7979 | ideal jkeep=@j; |
---|
7980 | if(ordstr(@P)[1]=="w") |
---|
7981 | { |
---|
7982 | def @Phelp=ring(ringlist(gnir)); |
---|
7983 | setring @Phelp; |
---|
7984 | } |
---|
7985 | else |
---|
7986 | { |
---|
7987 | def @Phelp=changeordTo(gnir,"dp"); |
---|
7988 | setring @Phelp; |
---|
7989 | } |
---|
7990 | |
---|
7991 | if(homo==1) |
---|
7992 | { |
---|
7993 | if((ordstr(@P)[3]=="d")||(ordstr(@P)[1]=="d")||(ordstr(@P)[1]=="w") |
---|
7994 | ||(ordstr(@P)[3]=="w")) |
---|
7995 | { |
---|
7996 | ideal jwork=imap(@P,tras); |
---|
7997 | attrib(jwork,"isSB",1); |
---|
7998 | } |
---|
7999 | else |
---|
8000 | { |
---|
8001 | ideal jwork=std(imap(gnir,@j),@hilb,@w); |
---|
8002 | } |
---|
8003 | } |
---|
8004 | else |
---|
8005 | { |
---|
8006 | ideal jwork=groebner(imap(gnir,@j)); |
---|
8007 | } |
---|
8008 | list hquprimary; |
---|
8009 | poly @p,@q; |
---|
8010 | ideal @h,fac,ser; |
---|
8011 | //Aenderung================ |
---|
8012 | ideal @Ptest=1; |
---|
8013 | //========================= |
---|
8014 | di=dim(jwork); |
---|
8015 | keepdi=di; |
---|
8016 | |
---|
8017 | ser = 1; |
---|
8018 | |
---|
8019 | setring gnir; |
---|
8020 | for(@m=1; @m<=size(indep); @m++) |
---|
8021 | { |
---|
8022 | data[1] = indep[@m]; |
---|
8023 | result = newReduction(@j, ser, @hilb, @w, jdim, abspri, @wr, data); |
---|
8024 | quprimary = quprimary + result[1]; |
---|
8025 | if(abspri) |
---|
8026 | { |
---|
8027 | absprimary = absprimary + result[2]; |
---|
8028 | abskeep = abskeep + result[3]; |
---|
8029 | } |
---|
8030 | @h = result[5]; |
---|
8031 | ser = result[4]; |
---|
8032 | if(size(@h)>0) |
---|
8033 | { |
---|
8034 | //--------------------------------------------------------------- |
---|
8035 | //we change to @Phelp to have the ordering dp for saturation |
---|
8036 | //--------------------------------------------------------------- |
---|
8037 | |
---|
8038 | setring @Phelp; |
---|
8039 | @h=imap(gnir,@h); |
---|
8040 | //Aenderung================================== |
---|
8041 | if(defined(@LL)){kill @LL;} |
---|
8042 | list @LL=minSat(jwork,@h); |
---|
8043 | @Ptest=intersect(@Ptest,@LL[1]); |
---|
8044 | ser = intersect(ser, @LL[1]); |
---|
8045 | //=========================================== |
---|
8046 | |
---|
8047 | if(@wr!=1) |
---|
8048 | { |
---|
8049 | //Aenderung================================== |
---|
8050 | @q=@LL[2]; |
---|
8051 | //=========================================== |
---|
8052 | //@q=minSat(jwork,@h)[2]; |
---|
8053 | } |
---|
8054 | else |
---|
8055 | { |
---|
8056 | fac=ideal(0); |
---|
8057 | for(lauf=1;lauf<=ncols(@h);lauf++) |
---|
8058 | { |
---|
8059 | if(deg(@h[lauf])>0) |
---|
8060 | { |
---|
8061 | fac=fac+factorize(@h[lauf],1); |
---|
8062 | } |
---|
8063 | } |
---|
8064 | fac=simplify(fac,6); |
---|
8065 | @q=1; |
---|
8066 | for(lauf=1;lauf<=size(fac);lauf++) |
---|
8067 | { |
---|
8068 | @q=@q*fac[lauf]; |
---|
8069 | } |
---|
8070 | } |
---|
8071 | jwork = std(jwork,@q); |
---|
8072 | keepdi = dim(jwork); |
---|
8073 | if(keepdi < di) |
---|
8074 | { |
---|
8075 | setring gnir; |
---|
8076 | @j = imap(@Phelp, jwork); |
---|
8077 | ser = imap(@Phelp, ser); |
---|
8078 | break; |
---|
8079 | } |
---|
8080 | if(homo == 1) |
---|
8081 | { |
---|
8082 | @hilb = hilb(jwork, 1, @w); |
---|
8083 | } |
---|
8084 | |
---|
8085 | setring gnir; |
---|
8086 | ser = imap(@Phelp, ser); |
---|
8087 | @j = imap(@Phelp, jwork); |
---|
8088 | } |
---|
8089 | } |
---|
8090 | |
---|
8091 | if((size(quprimary)==0)&&(@wr==1)) |
---|
8092 | { |
---|
8093 | @j=ideal(1); |
---|
8094 | quprimary[1]=ideal(1); |
---|
8095 | quprimary[2]=ideal(1); |
---|
8096 | } |
---|
8097 | if((size(quprimary)==0)) |
---|
8098 | { |
---|
8099 | keepdi = di - 1; |
---|
8100 | quprimary[1]=ideal(1); |
---|
8101 | quprimary[2]=ideal(1); |
---|
8102 | } |
---|
8103 | //--------------------------------------------------------------- |
---|
8104 | //notice that j=sat(j,gh) intersected with (j,gh^n) |
---|
8105 | //we finished with sat(j,gh) and have to start with (j,gh^n) |
---|
8106 | //--------------------------------------------------------------- |
---|
8107 | if((deg(@j[1])!=0)&&(@wr!=1)) |
---|
8108 | { |
---|
8109 | if(size(quprimary)>0) |
---|
8110 | { |
---|
8111 | setring @Phelp; |
---|
8112 | ser=imap(gnir,ser); |
---|
8113 | |
---|
8114 | hquprimary=imap(gnir,quprimary); |
---|
8115 | if(@wr==0) |
---|
8116 | { |
---|
8117 | //Aenderung==================================================== |
---|
8118 | //HIER STATT DURCHSCHNITT SATURIEREN! |
---|
8119 | ideal htest=@Ptest; |
---|
8120 | /* |
---|
8121 | ideal htest=hquprimary[1]; |
---|
8122 | for (@n1=2;@n1<=size(hquprimary) div 2;@n1++) |
---|
8123 | { |
---|
8124 | htest=intersect(htest,hquprimary[2*@n1-1]); |
---|
8125 | } |
---|
8126 | */ |
---|
8127 | //============================================================= |
---|
8128 | } |
---|
8129 | else |
---|
8130 | { |
---|
8131 | ideal htest=hquprimary[2]; |
---|
8132 | |
---|
8133 | for (@n1=2;@n1<=size(hquprimary) div 2;@n1++) |
---|
8134 | { |
---|
8135 | htest=intersect(htest,hquprimary[2*@n1]); |
---|
8136 | } |
---|
8137 | } |
---|
8138 | |
---|
8139 | if(size(ser)>0) |
---|
8140 | { |
---|
8141 | ser=intersect(htest,ser); |
---|
8142 | } |
---|
8143 | else |
---|
8144 | { |
---|
8145 | ser=htest; |
---|
8146 | } |
---|
8147 | setring gnir; |
---|
8148 | ser=imap(@Phelp,ser); |
---|
8149 | } |
---|
8150 | if(size(reduce(ser,peek,1))!=0) |
---|
8151 | { |
---|
8152 | for(@m=1;@m<=size(restindep);@m++) |
---|
8153 | { |
---|
8154 | // if(restindep[@m][3]>=keepdi) |
---|
8155 | // { |
---|
8156 | isat=0; |
---|
8157 | @n2=0; |
---|
8158 | |
---|
8159 | if(restindep[@m][1]==varstr(basering)) |
---|
8160 | //the good case, nothing to do, just to have the same notations |
---|
8161 | //change the ring |
---|
8162 | { |
---|
8163 | def gnir1=ring(ringlist(basering)); |
---|
8164 | setring gnir1; |
---|
8165 | ideal @j=fetch(gnir,jkeep); |
---|
8166 | attrib(@j,"isSB",1); |
---|
8167 | } |
---|
8168 | else |
---|
8169 | { |
---|
8170 | @va=string(maxideal(1)); |
---|
8171 | execute("ring gnir1 = ("+charstr(basering)+"),("+ |
---|
8172 | restindep[@m][1]+"),(" +restindep[@m][2]+");"); |
---|
8173 | execute("map phi=gnir,"+@va+";"); |
---|
8174 | op=option(get); |
---|
8175 | option(redSB); |
---|
8176 | if(homo==1) |
---|
8177 | { |
---|
8178 | ideal @j=std(phi(jkeep),keephilb,@w); |
---|
8179 | } |
---|
8180 | else |
---|
8181 | { |
---|
8182 | ideal @j=groebner(phi(jkeep)); |
---|
8183 | } |
---|
8184 | ideal ser=phi(ser); |
---|
8185 | option(set,op); |
---|
8186 | } |
---|
8187 | |
---|
8188 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
8189 | { |
---|
8190 | fett[lauf]=size(@j[lauf]); |
---|
8191 | } |
---|
8192 | //------------------------------------------------------------------ |
---|
8193 | //we have now the following situation: |
---|
8194 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may |
---|
8195 | //pass to this quotientring, j is their still a standardbasis, the |
---|
8196 | //leading coefficients of the polynomials there (polynomials in |
---|
8197 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
8198 | //we need their ggt, gh, because of the following: |
---|
8199 | //let (j:gh^n)=(j:gh^infinity) then |
---|
8200 | //j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8201 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
8202 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
8203 | |
---|
8204 | //------------------------------------------------------------------ |
---|
8205 | |
---|
8206 | //the arrangement for the quotientring |
---|
8207 | // K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8208 | //and the map phi:K[var(1),...,var(nva)] ----> |
---|
8209 | //--->K(var(nnpr+1),..,var(nva))[..the rest..] |
---|
8210 | //------------------------------------------------------------------ |
---|
8211 | |
---|
8212 | quotring=prepareQuotientring(nvars(basering)-restindep[@m][3],"lp"); |
---|
8213 | |
---|
8214 | //------------------------------------------------------------------ |
---|
8215 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
8216 | //------------------------------------------------------------------ |
---|
8217 | |
---|
8218 | setring quotring; |
---|
8219 | |
---|
8220 | // @j considered in the quotientring |
---|
8221 | ideal @j=imap(gnir1,@j); |
---|
8222 | ideal ser=imap(gnir1,ser); |
---|
8223 | |
---|
8224 | kill gnir1; |
---|
8225 | |
---|
8226 | //j is a standardbasis in the quotientring but usually not minimal |
---|
8227 | //here it becomes minimal |
---|
8228 | @j=clearSB(@j,fett); |
---|
8229 | attrib(@j,"isSB",1); |
---|
8230 | |
---|
8231 | //we need later ggt(h[1],...)=gh for saturation |
---|
8232 | ideal @h; |
---|
8233 | |
---|
8234 | for(@n=1;@n<=size(@j);@n++) |
---|
8235 | { |
---|
8236 | @h[@n]=leadcoef(@j[@n]); |
---|
8237 | } |
---|
8238 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..rest..] |
---|
8239 | |
---|
8240 | op=option(get); |
---|
8241 | option(redSB); |
---|
8242 | list uprimary= newZero_decomp(@j,ser,@wr); |
---|
8243 | //HIER |
---|
8244 | if(abspri) |
---|
8245 | { |
---|
8246 | ideal II; |
---|
8247 | ideal jmap; |
---|
8248 | map sigma; |
---|
8249 | nn=nvars(basering); |
---|
8250 | map invsigma=basering,maxideal(1); |
---|
8251 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
8252 | { |
---|
8253 | II=uprimary[2*ab]; |
---|
8254 | attrib(II,"isSB",1); |
---|
8255 | if(deg(II[1])!=vdim(II)) |
---|
8256 | { |
---|
8257 | jmap=randomLast(50); |
---|
8258 | sigma=basering,jmap; |
---|
8259 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
8260 | invsigma=basering,jmap; |
---|
8261 | II=groebner(sigma(II)); |
---|
8262 | } |
---|
8263 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
8264 | II=var(nn); |
---|
8265 | abskeeptmp[ab]=string(invsigma(II)); |
---|
8266 | invsigma=basering,maxideal(1); |
---|
8267 | } |
---|
8268 | } |
---|
8269 | option(set,op); |
---|
8270 | |
---|
8271 | //we need the intersection of the ideals in the list quprimary with |
---|
8272 | //the polynomialring, i.e. let q=(f1,...,fr) in the quotientring |
---|
8273 | //such an ideal but fi polynomials, then the intersection of q with |
---|
8274 | //the polynomialring is the saturation of the ideal generated by |
---|
8275 | //f1,...,fr with respect toh which is the lcm of the leading |
---|
8276 | //coefficients of the fi considered in the quotientring: |
---|
8277 | //this is coded in saturn |
---|
8278 | |
---|
8279 | list saturn; |
---|
8280 | ideal hpl; |
---|
8281 | |
---|
8282 | for(@n=1;@n<=size(uprimary);@n++) |
---|
8283 | { |
---|
8284 | hpl=0; |
---|
8285 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
8286 | { |
---|
8287 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
8288 | } |
---|
8289 | saturn[@n]=hpl; |
---|
8290 | } |
---|
8291 | //------------------------------------------------------------------ |
---|
8292 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
8293 | //back to the polynomialring |
---|
8294 | //------------------------------------------------------------------ |
---|
8295 | setring gnir; |
---|
8296 | collectprimary=imap(quotring,uprimary); |
---|
8297 | lsau=imap(quotring,saturn); |
---|
8298 | @h=imap(quotring,@h); |
---|
8299 | |
---|
8300 | kill quotring; |
---|
8301 | |
---|
8302 | |
---|
8303 | @n2=size(quprimary); |
---|
8304 | //================NEU========================================= |
---|
8305 | if(deg(quprimary[1][1])<=0){ @n2=0; } |
---|
8306 | //============================================================ |
---|
8307 | |
---|
8308 | @n3=@n2; |
---|
8309 | |
---|
8310 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
8311 | { |
---|
8312 | if(deg(collectprimary[2*@n1][1])>0) |
---|
8313 | { |
---|
8314 | @n2++; |
---|
8315 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
8316 | lnew[@n2]=lsau[2*@n1-1]; |
---|
8317 | @n2++; |
---|
8318 | lnew[@n2]=lsau[2*@n1]; |
---|
8319 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
8320 | if(abspri) |
---|
8321 | { |
---|
8322 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
8323 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
8324 | } |
---|
8325 | } |
---|
8326 | } |
---|
8327 | |
---|
8328 | |
---|
8329 | //here the intersection with the polynomialring |
---|
8330 | //mentioned above is really computed |
---|
8331 | |
---|
8332 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
8333 | { |
---|
8334 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
8335 | { |
---|
8336 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
8337 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
8338 | } |
---|
8339 | else |
---|
8340 | { |
---|
8341 | if(@wr==0) |
---|
8342 | { |
---|
8343 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
8344 | } |
---|
8345 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
8346 | } |
---|
8347 | } |
---|
8348 | if(@n2>=@n3+2) |
---|
8349 | { |
---|
8350 | setring @Phelp; |
---|
8351 | ser=imap(gnir,ser); |
---|
8352 | hquprimary=imap(gnir,quprimary); |
---|
8353 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
8354 | { |
---|
8355 | if(@wr==0) |
---|
8356 | { |
---|
8357 | ser=intersect(ser,hquprimary[2*@n-1]); |
---|
8358 | } |
---|
8359 | else |
---|
8360 | { |
---|
8361 | ser=intersect(ser,hquprimary[2*@n]); |
---|
8362 | } |
---|
8363 | } |
---|
8364 | setring gnir; |
---|
8365 | ser=imap(@Phelp,ser); |
---|
8366 | } |
---|
8367 | |
---|
8368 | // } |
---|
8369 | } |
---|
8370 | //HIER |
---|
8371 | if(abspri) |
---|
8372 | { |
---|
8373 | list resu,tempo; |
---|
8374 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
8375 | { |
---|
8376 | if (deg(quprimary[2*ab][1])!=0) |
---|
8377 | { |
---|
8378 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
8379 | absprimary[ab],abskeep[ab]; |
---|
8380 | resu[ab]=tempo; |
---|
8381 | } |
---|
8382 | } |
---|
8383 | quprimary=resu; |
---|
8384 | @wr=3; |
---|
8385 | } |
---|
8386 | if(size(reduce(ser,peek,1))!=0) |
---|
8387 | { |
---|
8388 | if(@wr>0) |
---|
8389 | { |
---|
8390 | // The following line was dropped to avoid the recursion step: |
---|
8391 | //htprimary=newDecompStep_i(patchPrimaryDecomposition, @j,@wr,peek,ser); |
---|
8392 | htprimary = list(); |
---|
8393 | } |
---|
8394 | else |
---|
8395 | { |
---|
8396 | // The following line was dropped to avoid the recursion step: |
---|
8397 | //htprimary=newDecompStep_i(patchPrimaryDecomposition,@j,peek,ser); |
---|
8398 | htprimary = list(); |
---|
8399 | } |
---|
8400 | // here we collect now both results primary(sat(j,gh)) |
---|
8401 | // and primary(j,gh^n) |
---|
8402 | @n=size(quprimary); |
---|
8403 | if (deg(quprimary[1][1])<=0) { @n=0; } |
---|
8404 | for (@k=1;@k<=size(htprimary);@k++) |
---|
8405 | { |
---|
8406 | quprimary[@n+@k]=htprimary[@k]; |
---|
8407 | } |
---|
8408 | } |
---|
8409 | } |
---|
8410 | } |
---|
8411 | else |
---|
8412 | { |
---|
8413 | if(abspri) |
---|
8414 | { |
---|
8415 | list resu,tempo; |
---|
8416 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
8417 | { |
---|
8418 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
8419 | absprimary[ab],abskeep[ab]; |
---|
8420 | resu[ab]=tempo; |
---|
8421 | } |
---|
8422 | quprimary=resu; |
---|
8423 | } |
---|
8424 | } |
---|
8425 | //--------------------------------------------------------------------------- |
---|
8426 | //back to the ring we started with |
---|
8427 | //the final result: primary |
---|
8428 | //--------------------------------------------------------------------------- |
---|
8429 | |
---|
8430 | setring @P; |
---|
8431 | option(set,op@P); |
---|
8432 | primary=imap(gnir,quprimary); |
---|
8433 | |
---|
8434 | if (intersectOption == "intersect") |
---|
8435 | { |
---|
8436 | return(list(primary, imap(gnir, ser))); |
---|
8437 | } |
---|
8438 | else |
---|
8439 | { |
---|
8440 | return(primary); |
---|
8441 | } |
---|
8442 | } |
---|
8443 | example |
---|
8444 | { "EXAMPLE:"; echo = 2; |
---|
8445 | ring r = 32003,(x,y,z),lp; |
---|
8446 | poly p = z2+1; |
---|
8447 | poly q = z4+2; |
---|
8448 | ideal I = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
8449 | int patchDecomposition = 1; |
---|
8450 | list pr = newDecompStep_i(patchDecomposition, I); |
---|
8451 | pr; |
---|
8452 | testPrimary( pr, I); |
---|
8453 | } |
---|
8454 | |
---|
8455 | // This was part of proc decomp. |
---|
8456 | // In proc newDecompStep, used for the computation of the minimal associated primes, |
---|
8457 | // this part was separated as a soubrutine to make the code more clear. |
---|
8458 | // Also, since the reduction is performed twice in proc newDecompStep, it should use both times this routine. |
---|
8459 | // This is not yet implemented, since the reduction is not exactly the same and some changes should be made. |
---|
8460 | static proc newReduction(ideal @j, ideal ser, intvec @hilb, intvec @w, int jdim, int abspri, int @wr, list data) |
---|
8461 | { |
---|
8462 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
8463 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
8464 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
8465 | |
---|
8466 | |
---|
8467 | string @va; |
---|
8468 | def quotring; |
---|
8469 | intvec op; |
---|
8470 | intvec @vv; |
---|
8471 | def gnir = basering; |
---|
8472 | ideal isat=0; |
---|
8473 | int @n; |
---|
8474 | int @n1 = 0; |
---|
8475 | int @n2 = 0; |
---|
8476 | int @n3 = 0; |
---|
8477 | int homo = homog(@j); |
---|
8478 | int lauf; |
---|
8479 | int @k; |
---|
8480 | list fett; |
---|
8481 | int keepdi; |
---|
8482 | list collectprimary; |
---|
8483 | list lsau; |
---|
8484 | list lnew; |
---|
8485 | ideal @h; |
---|
8486 | |
---|
8487 | list indepInfo = data[1]; |
---|
8488 | list quprimary = list(); |
---|
8489 | |
---|
8490 | //if(abspri) |
---|
8491 | //{ |
---|
8492 | int ab; |
---|
8493 | list absprimarytmp,abskeeptmp; |
---|
8494 | list absprimary, abskeep; |
---|
8495 | //} |
---|
8496 | // Debug |
---|
8497 | dbprint(printlevel - voice, "newReduction, v2.0"); |
---|
8498 | |
---|
8499 | if((indepInfo[1]==varstr(basering))) // &&(@m==1) |
---|
8500 | //this is the good case, nothing to do, just to have the same notations |
---|
8501 | //change the ring |
---|
8502 | { |
---|
8503 | def gnir1=ring(ringlist(basering)); |
---|
8504 | setring gnir1; |
---|
8505 | ideal @j = fetch(gnir, @j); |
---|
8506 | attrib(@j,"isSB",1); |
---|
8507 | ideal ser = fetch(gnir, ser); |
---|
8508 | } |
---|
8509 | else |
---|
8510 | { |
---|
8511 | @va=string(maxideal(1)); |
---|
8512 | //Aenderung============== |
---|
8513 | //if(@m==1) |
---|
8514 | //{ |
---|
8515 | // @j=fetch(@P,i); |
---|
8516 | //} |
---|
8517 | //======================= |
---|
8518 | execute("ring gnir1 = ("+charstr(basering)+"),("+indepInfo[1]+"),(" |
---|
8519 | +indepInfo[2]+");"); |
---|
8520 | execute("map phi=gnir,"+@va+";"); |
---|
8521 | op=option(get); |
---|
8522 | option(redSB); |
---|
8523 | if(homo==1) |
---|
8524 | { |
---|
8525 | ideal @j=std(phi(@j),@hilb,@w); |
---|
8526 | } |
---|
8527 | else |
---|
8528 | { |
---|
8529 | ideal @j=groebner(phi(@j)); |
---|
8530 | } |
---|
8531 | ideal ser=phi(ser); |
---|
8532 | |
---|
8533 | option(set,op); |
---|
8534 | } |
---|
8535 | if((deg(@j[1])==0)||(dim(@j)<jdim)) |
---|
8536 | { |
---|
8537 | setring gnir; |
---|
8538 | break; |
---|
8539 | } |
---|
8540 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
8541 | { |
---|
8542 | fett[lauf]=size(@j[lauf]); |
---|
8543 | } |
---|
8544 | //------------------------------------------------------------------------ |
---|
8545 | //we have now the following situation: |
---|
8546 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may pass |
---|
8547 | //to this quotientring, j is their still a standardbasis, the |
---|
8548 | //leading coefficients of the polynomials there (polynomials in |
---|
8549 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
8550 | //we need their ggt, gh, because of the following: let |
---|
8551 | //(j:gh^n)=(j:gh^infinity) then j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8552 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
8553 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
8554 | |
---|
8555 | //------------------------------------------------------------------------ |
---|
8556 | |
---|
8557 | //arrangement for quotientring K(var(nnp+1),..,var(nva))[..the rest..] and |
---|
8558 | //map phi:K[var(1),...,var(nva)] --->K(var(nnpr+1),..,var(nva))[..rest..] |
---|
8559 | //------------------------------------------------------------------------ |
---|
8560 | |
---|
8561 | quotring=prepareQuotientring(nvars(basering)-indepInfo[3],"lp"); |
---|
8562 | |
---|
8563 | //--------------------------------------------------------------------- |
---|
8564 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8565 | //--------------------------------------------------------------------- |
---|
8566 | |
---|
8567 | ideal @jj=lead(@j); //!! vorn vereinbaren |
---|
8568 | setring quotring; |
---|
8569 | |
---|
8570 | ideal @jj=imap(gnir1,@jj); |
---|
8571 | @vv=clearSBNeu(@jj,fett); //!! vorn vereinbaren |
---|
8572 | setring gnir1; |
---|
8573 | @k=size(@j); |
---|
8574 | for (lauf=1;lauf<=@k;lauf++) |
---|
8575 | { |
---|
8576 | if(@vv[lauf]==1) |
---|
8577 | { |
---|
8578 | @j[lauf]=0; |
---|
8579 | } |
---|
8580 | } |
---|
8581 | @j=simplify(@j,2); |
---|
8582 | setring quotring; |
---|
8583 | // @j considered in the quotientring |
---|
8584 | ideal @j=imap(gnir1,@j); |
---|
8585 | |
---|
8586 | ideal ser=imap(gnir1,ser); |
---|
8587 | |
---|
8588 | kill gnir1; |
---|
8589 | |
---|
8590 | //j is a standardbasis in the quotientring but usually not minimal |
---|
8591 | //here it becomes minimal |
---|
8592 | |
---|
8593 | attrib(@j,"isSB",1); |
---|
8594 | |
---|
8595 | //we need later ggt(h[1],...)=gh for saturation |
---|
8596 | ideal @h; |
---|
8597 | if(deg(@j[1])>0) |
---|
8598 | { |
---|
8599 | for(@n=1;@n<=size(@j);@n++) |
---|
8600 | { |
---|
8601 | @h[@n]=leadcoef(@j[@n]); |
---|
8602 | } |
---|
8603 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8604 | op=option(get); |
---|
8605 | option(redSB); |
---|
8606 | |
---|
8607 | int zeroMinAss = @wr; |
---|
8608 | if (@wr == 2) {zeroMinAss = 1;} |
---|
8609 | list uprimary= newZero_decomp(@j, ser, zeroMinAss); |
---|
8610 | |
---|
8611 | //HIER |
---|
8612 | if(abspri) |
---|
8613 | { |
---|
8614 | ideal II; |
---|
8615 | ideal jmap; |
---|
8616 | map sigma; |
---|
8617 | nn=nvars(basering); |
---|
8618 | map invsigma=basering,maxideal(1); |
---|
8619 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
8620 | { |
---|
8621 | II=uprimary[2*ab]; |
---|
8622 | attrib(II,"isSB",1); |
---|
8623 | if(deg(II[1])!=vdim(II)) |
---|
8624 | { |
---|
8625 | jmap=randomLast(50); |
---|
8626 | sigma=basering,jmap; |
---|
8627 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
8628 | invsigma=basering,jmap; |
---|
8629 | II=groebner(sigma(II)); |
---|
8630 | } |
---|
8631 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
8632 | II=var(nn); |
---|
8633 | abskeeptmp[ab]=string(invsigma(II)); |
---|
8634 | invsigma=basering,maxideal(1); |
---|
8635 | } |
---|
8636 | } |
---|
8637 | option(set,op); |
---|
8638 | } |
---|
8639 | else |
---|
8640 | { |
---|
8641 | list uprimary; |
---|
8642 | uprimary[1]=ideal(1); |
---|
8643 | uprimary[2]=ideal(1); |
---|
8644 | } |
---|
8645 | //we need the intersection of the ideals in the list quprimary with the |
---|
8646 | //polynomialring, i.e. let q=(f1,...,fr) in the quotientring such an ideal |
---|
8647 | //but fi polynomials, then the intersection of q with the polynomialring |
---|
8648 | //is the saturation of the ideal generated by f1,...,fr with respect to |
---|
8649 | //h which is the lcm of the leading coefficients of the fi considered in |
---|
8650 | //in the quotientring: this is coded in saturn |
---|
8651 | |
---|
8652 | list saturn; |
---|
8653 | ideal hpl; |
---|
8654 | |
---|
8655 | for(@n=1;@n<=size(uprimary);@n++) |
---|
8656 | { |
---|
8657 | uprimary[@n]=interred(uprimary[@n]); // temporary fix |
---|
8658 | hpl=0; |
---|
8659 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
8660 | { |
---|
8661 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
8662 | } |
---|
8663 | saturn[@n]=hpl; |
---|
8664 | } |
---|
8665 | |
---|
8666 | //-------------------------------------------------------------------- |
---|
8667 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8668 | //back to the polynomialring |
---|
8669 | //--------------------------------------------------------------------- |
---|
8670 | setring gnir; |
---|
8671 | |
---|
8672 | collectprimary=imap(quotring,uprimary); |
---|
8673 | lsau=imap(quotring,saturn); |
---|
8674 | @h=imap(quotring,@h); |
---|
8675 | |
---|
8676 | kill quotring; |
---|
8677 | |
---|
8678 | @n2=size(quprimary); |
---|
8679 | @n3=@n2; |
---|
8680 | |
---|
8681 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
8682 | { |
---|
8683 | if(deg(collectprimary[2*@n1][1])>0) |
---|
8684 | { |
---|
8685 | @n2++; |
---|
8686 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
8687 | lnew[@n2]=lsau[2*@n1-1]; |
---|
8688 | @n2++; |
---|
8689 | lnew[@n2]=lsau[2*@n1]; |
---|
8690 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
8691 | if(abspri) |
---|
8692 | { |
---|
8693 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
8694 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
8695 | } |
---|
8696 | } |
---|
8697 | } |
---|
8698 | |
---|
8699 | //here the intersection with the polynomialring |
---|
8700 | //mentioned above is really computed |
---|
8701 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
8702 | { |
---|
8703 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
8704 | { |
---|
8705 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
8706 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
8707 | } |
---|
8708 | else |
---|
8709 | { |
---|
8710 | if(@wr==0) |
---|
8711 | { |
---|
8712 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
8713 | } |
---|
8714 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
8715 | } |
---|
8716 | } |
---|
8717 | |
---|
8718 | return(quprimary, absprimary, abskeep, ser, @h); |
---|
8719 | } |
---|
8720 | |
---|
8721 | |
---|
8722 | //////////////////////////////////////////////////////////////////////////// |
---|
8723 | |
---|
8724 | |
---|
8725 | |
---|
8726 | |
---|
8727 | /////////////////////////////////////////////////////////////////////////////// |
---|
8728 | // Based on minAssGTZ |
---|
8729 | proc minAssE(ideal I,list #) |
---|
8730 | "USAGE: minAssE(I[, l]); I ideal, l list (optional) of parameters, same as minAssGTZ |
---|
8731 | RETURN: a list, the minimal associated prime ideals of I. |
---|
8732 | NOTE: Designed for characteristic 0, works also in char k > 0 based |
---|
8733 | on an algorithm of Yokoyama |
---|
8734 | EXAMPLE: example minAssE; shows an example |
---|
8735 | " |
---|
8736 | { |
---|
8737 | return(minAss_i(int(1),I,#)); |
---|
8738 | } |
---|
8739 | example |
---|
8740 | { "EXAMPLE:"; echo = 2; |
---|
8741 | ring r = 0, (x, y, z), dp; |
---|
8742 | poly p = z2 + 1; |
---|
8743 | poly q = z3 + 2; |
---|
8744 | ideal i = p * q^2, y - z2; |
---|
8745 | list pr = minAssE(i); |
---|
8746 | pr; |
---|
8747 | ideal j = 1; |
---|
8748 | list prempty = minAssE(j); |
---|
8749 | prempty; |
---|
8750 | } |
---|
8751 | |
---|
8752 | proc minAss(ideal I,list #) |
---|
8753 | "USAGE: minAss(I[, l]); I ideal, l list (optional) of parameters, same as minAssGTZ |
---|
8754 | RETURN: a list, the minimal associated prime ideals of I. If I is the unit ideal, returns list(ideal(1)); |
---|
8755 | NOTE: deprecated. Use 'minAssE()'. |
---|
8756 | Designed for characteristic 0, works also in char k > 0 based |
---|
8757 | on an algorithm of Yokoyama |
---|
8758 | EXAMPLE: example minAss; shows an example |
---|
8759 | " |
---|
8760 | { |
---|
8761 | return(minAss_i(int(0),I,#)); |
---|
8762 | } |
---|
8763 | example |
---|
8764 | { "EXAMPLE:"; echo = 2; |
---|
8765 | ring r = 0, (x, y, z), dp; |
---|
8766 | poly p = z2 + 1; |
---|
8767 | poly q = z3 + 2; |
---|
8768 | ideal i = p * q^2, y - z2; |
---|
8769 | list pr = minAss(i); |
---|
8770 | pr; |
---|
8771 | } |
---|
8772 | |
---|
8773 | static proc minAss_i(int patchPrimaryDecomposition,ideal I,list #) |
---|
8774 | { |
---|
8775 | // if patchPrimaryDecomposition=1, drop the unit ideal in the decomposition, |
---|
8776 | // since the unit ideal it is not prime, otherwise take no special action. |
---|
8777 | // For other parameters see 'minAss' or 'minAssE' |
---|
8778 | return(minAssGTZ_i(patchPrimaryDecomposition,I,#)); |
---|
8779 | } |
---|
8780 | |
---|
8781 | |
---|
8782 | |
---|
8783 | /////////////////////////////////////////////////////////////////////////////// |
---|
8784 | // |
---|
8785 | // Computes the minimal associated primes of I via Laplagne algorithm, |
---|
8786 | // using primary decomposition in the zero dimensional case. |
---|
8787 | // For reduction to the zerodimensional case, it uses the procedure |
---|
8788 | // decomp, with some modifications to avoid the recursion. |
---|
8789 | // |
---|
8790 | |
---|
8791 | static proc minAssSL(ideal I) |
---|
8792 | // Input = I, ideal |
---|
8793 | // Output = primaryDec where primaryDec is the list of the minimal |
---|
8794 | // associated primes and the primary components corresponding to these primes. |
---|
8795 | { |
---|
8796 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
8797 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
8798 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
8799 | |
---|
8800 | ideal P = 1; |
---|
8801 | list pd = list(); |
---|
8802 | int k; |
---|
8803 | int stop = 0; |
---|
8804 | list primaryDec = list(); |
---|
8805 | |
---|
8806 | while (stop == 0) |
---|
8807 | { |
---|
8808 | // Debug |
---|
8809 | dbprint(printlevel - voice, "// We call minAssSLIteration to find new prime ideals!"); |
---|
8810 | pd = minAssSLIteration(I, P); |
---|
8811 | // Debug |
---|
8812 | dbprint(printlevel - voice, "// Output of minAssSLIteration:"); |
---|
8813 | dbprint(printlevel - voice, pd); |
---|
8814 | if (size(pd[1]) > 0) |
---|
8815 | { |
---|
8816 | primaryDec = primaryDec + pd[1]; |
---|
8817 | // Debug |
---|
8818 | dbprint(printlevel - voice, "// We intersect the prime ideals obtained."); |
---|
8819 | P = intersect(P, pd[2]); |
---|
8820 | // Debug |
---|
8821 | dbprint(printlevel - voice, "// Intersection finished."); |
---|
8822 | } |
---|
8823 | else |
---|
8824 | { |
---|
8825 | stop = 1; |
---|
8826 | } |
---|
8827 | } |
---|
8828 | |
---|
8829 | // Returns only the primary components, not the radical. |
---|
8830 | return(primaryDec); |
---|
8831 | } |
---|
8832 | |
---|
8833 | /////////////////////////////////////////////////////////////////////////////// |
---|
8834 | // Given an ideal I and an ideal P (intersection of some minimal prime ideals |
---|
8835 | // associated to I), it calculates new minimal prime ideals associated to I |
---|
8836 | // which were not used to calculate P. P = 1 represents empty intersetion. |
---|
8837 | // This version uses Primary Decomposition in the zerodimensional case. |
---|
8838 | static proc minAssSLIteration(ideal I, ideal P); |
---|
8839 | { |
---|
8840 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
8841 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
8842 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
8843 | |
---|
8844 | int k = 1; |
---|
8845 | int good = 0; |
---|
8846 | list primaryDec = list(); |
---|
8847 | // Debug |
---|
8848 | dbprint (printlevel-voice, "// We search for an element in P - sqrt(I)."); |
---|
8849 | while ((k <= size(P)) and (good == 0)) |
---|
8850 | { |
---|
8851 | good = 1 - rad_con(P[k], I); |
---|
8852 | k++; |
---|
8853 | } |
---|
8854 | k--; |
---|
8855 | if (good == 0) |
---|
8856 | { |
---|
8857 | // Debug |
---|
8858 | dbprint (printlevel - voice, "// No element was found, P = sqrt(I)."); |
---|
8859 | return (list(primaryDec, ideal(0))); |
---|
8860 | } |
---|
8861 | // Debug |
---|
8862 | dbprint (printlevel - voice, "// We found h = ", P[k]); |
---|
8863 | dbprint (printlevel - voice, "// We calculate the saturation of I with respect to the element just founded."); |
---|
8864 | ideal J = sat(I, P[k])[1]; |
---|
8865 | |
---|
8866 | // Uses decomp from primdec, modified to avoid the recursion. |
---|
8867 | // Debug |
---|
8868 | dbprint(printlevel - voice, "// We do the reduction to the zerodimensional case, via decomp."); |
---|
8869 | |
---|
8870 | primaryDec = newDecompStep_i( int(1), J, "oneIndep", "intersect", 2); |
---|
8871 | // Debug |
---|
8872 | dbprint(printlevel - voice, "// Proc decomp has found", size(primaryDec) div 2, "new primary components."); |
---|
8873 | |
---|
8874 | return(primaryDec); |
---|
8875 | } |
---|
8876 | |
---|
8877 | |
---|
8878 | |
---|
8879 | /////////////////////////////////////////////////////////////////////////////////// |
---|
8880 | // Based on maxIndependSet |
---|
8881 | // Added list # as parameter |
---|
8882 | // If the first element of # is 0, the output is only 1 max indep set. |
---|
8883 | // If no list is specified or #[1] = 1, the output is all the max indep set of the |
---|
8884 | // leading terms ideal. This is the original output of maxIndependSet |
---|
8885 | |
---|
8886 | proc newMaxIndependSetLp(ideal j, list #) |
---|
8887 | "USAGE: newMaxIndependentSetLp(i); i ideal (returns all maximal independent sets of the corresponding leading terms ideal) |
---|
8888 | newMaxIndependentSetLp(i, 0); i ideal (returns only one maximal independent set) |
---|
8889 | RETURN: list = #1. new varstring with the maximal independent set at the end, |
---|
8890 | #2. ordstring with the lp ordering, |
---|
8891 | #3. the number of independent variables |
---|
8892 | NOTE: |
---|
8893 | EXAMPLE: example newMaxIndependentSetLp; shows an example |
---|
8894 | " |
---|
8895 | { |
---|
8896 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
8897 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
8898 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
8899 | |
---|
8900 | int n, k, di; |
---|
8901 | list resu, hilf; |
---|
8902 | string var1, var2; |
---|
8903 | list v = indepSet(j, 0); |
---|
8904 | |
---|
8905 | // SL 2006.04.21 1 Lines modified to use only one independent Set |
---|
8906 | string indepOption; |
---|
8907 | if (size(#) > 0) |
---|
8908 | { |
---|
8909 | indepOption = #[1]; |
---|
8910 | } |
---|
8911 | else |
---|
8912 | { |
---|
8913 | indepOption = "allIndep"; |
---|
8914 | } |
---|
8915 | |
---|
8916 | int nMax; |
---|
8917 | if (indepOption == "allIndep") |
---|
8918 | { |
---|
8919 | nMax = size(v); |
---|
8920 | } |
---|
8921 | else |
---|
8922 | { |
---|
8923 | nMax = 1; |
---|
8924 | } |
---|
8925 | |
---|
8926 | for(n = 1; n <= nMax; n++) |
---|
8927 | // SL 2006.04.21 2 |
---|
8928 | { |
---|
8929 | di = 0; |
---|
8930 | var1 = ""; |
---|
8931 | var2 = ""; |
---|
8932 | for(k = 1; k <= size(v[n]); k++) |
---|
8933 | { |
---|
8934 | if(v[n][k] != 0) |
---|
8935 | { |
---|
8936 | di++; |
---|
8937 | var2 = var2 + "var(" + string(k) + "), "; |
---|
8938 | } |
---|
8939 | else |
---|
8940 | { |
---|
8941 | var1 = var1 + "var(" + string(k) + "), "; |
---|
8942 | } |
---|
8943 | } |
---|
8944 | if(di > 0) |
---|
8945 | { |
---|
8946 | var1 = var1 + var2; |
---|
8947 | var1 = var1[1..size(var1) - 2]; // The "- 2" removes the trailer comma |
---|
8948 | hilf[1] = var1; |
---|
8949 | // SL 2006.21.04 1 The order is now block dp instead of lp |
---|
8950 | //hilf[2] = "dp(" + string(nvars(basering) - di) + "), dp(" + string(di) + ")"; |
---|
8951 | // SL 2006.21.04 2 |
---|
8952 | // For decomp, lp ordering is needed. Nothing is changed. |
---|
8953 | hilf[2] = "lp"; |
---|
8954 | hilf[3] = di; |
---|
8955 | resu[n] = hilf; |
---|
8956 | } |
---|
8957 | else |
---|
8958 | { |
---|
8959 | resu[n] = varstr(basering), ordstr(basering), 0; |
---|
8960 | } |
---|
8961 | } |
---|
8962 | return(resu); |
---|
8963 | } |
---|
8964 | example |
---|
8965 | { "EXAMPLE:"; echo = 2; |
---|
8966 | ring s1 = (0, x, y), (a, b, c, d, e, f, g), lp; |
---|
8967 | ideal i = ea - fbg, fa + be, ec - fdg, fc + de; |
---|
8968 | i = std(i); |
---|
8969 | list l = newMaxIndependSetLp(i); |
---|
8970 | l; |
---|
8971 | i = i, g; |
---|
8972 | l = newMaxIndependSetLp(i); |
---|
8973 | l; |
---|
8974 | |
---|
8975 | ring s = 0, (x, y, z), lp; |
---|
8976 | ideal i = z, yx; |
---|
8977 | list l = newMaxIndependSetLp(i); |
---|
8978 | l; |
---|
8979 | } |
---|
8980 | |
---|
8981 | |
---|
8982 | /////////////////////////////////////////////////////////////////////////////// |
---|
8983 | |
---|
8984 | proc newZero_decomp (ideal j, ideal ser, int @wr, list #) |
---|
8985 | "USAGE: newZero_decomp(j,ser,@wr); j,ser ideals, @wr=0 or 1 |
---|
8986 | (@wr=0 for primary decomposition, @wr=1 for computation of associated |
---|
8987 | primes) |
---|
8988 | if #[1] = "nest", then #[2] indicates the nest level (number of recursive calls) |
---|
8989 | When the nest level is high it indicates that the computation is difficult, |
---|
8990 | and different methods are applied. |
---|
8991 | RETURN: list = list of primary ideals and their radicals (at even positions |
---|
8992 | in the list) if the input is zero-dimensional and a standardbases |
---|
8993 | with respect to lex-ordering |
---|
8994 | If ser!=(0) and ser is contained in j or if j is not zero-dimen- |
---|
8995 | sional then ideal(1),ideal(1) is returned |
---|
8996 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
8997 | EXAMPLE: example newZero_decomp; shows an example |
---|
8998 | " |
---|
8999 | { |
---|
9000 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
9001 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
9002 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
9003 | |
---|
9004 | def @P = basering; |
---|
9005 | int uytrewq; |
---|
9006 | int nva = nvars(basering); |
---|
9007 | int @k,@s,@n,@k1,zz; |
---|
9008 | list primary,lres0,lres1,act,@lh,@wh; |
---|
9009 | map phi,psi,phi1,psi1; |
---|
9010 | ideal jmap,jmap1,jmap2,helpprim,@qh,@qht,ser1; |
---|
9011 | intvec @vh,@hilb; |
---|
9012 | string @ri; |
---|
9013 | poly @f; |
---|
9014 | |
---|
9015 | // Debug |
---|
9016 | dbprint(printlevel - voice, "proc newZero_decomp"); |
---|
9017 | |
---|
9018 | if (dim(j)>0) |
---|
9019 | { |
---|
9020 | ERROR("dim(j)>0 . Please send the failing example to the authors"); |
---|
9021 | primary[1]=ideal(1); |
---|
9022 | primary[2]=ideal(1); |
---|
9023 | return(primary); |
---|
9024 | } |
---|
9025 | j=interred(j); |
---|
9026 | |
---|
9027 | attrib(j,"isSB",1); |
---|
9028 | |
---|
9029 | int nestLevel = 0; |
---|
9030 | if (size(#) > 0) |
---|
9031 | { |
---|
9032 | if (typeof(#[1]) == "string") |
---|
9033 | { |
---|
9034 | if (#[1] == "nest") |
---|
9035 | { |
---|
9036 | nestLevel = #[2]; |
---|
9037 | } |
---|
9038 | # = list(); |
---|
9039 | } |
---|
9040 | } |
---|
9041 | |
---|
9042 | if(vdim(j)==deg(j[1])) |
---|
9043 | { |
---|
9044 | act=factor(j[1]); |
---|
9045 | for(@k=1;@k<=size(act[1]);@k++) |
---|
9046 | { |
---|
9047 | @qh=j; |
---|
9048 | if(@wr==0) |
---|
9049 | { |
---|
9050 | @qh[1]=act[1][@k]^act[2][@k]; |
---|
9051 | } |
---|
9052 | else |
---|
9053 | { |
---|
9054 | @qh[1]=act[1][@k]; |
---|
9055 | } |
---|
9056 | primary[2*@k-1]=interred(@qh); |
---|
9057 | @qh=j; |
---|
9058 | @qh[1]=act[1][@k]; |
---|
9059 | primary[2*@k]=interred(@qh); |
---|
9060 | attrib( primary[2*@k-1],"isSB",1); |
---|
9061 | |
---|
9062 | if((size(ser)>0)&&(size(reduce(ser,primary[2*@k-1],1))==0)) |
---|
9063 | { |
---|
9064 | primary[2*@k-1]=ideal(1); |
---|
9065 | primary[2*@k]=ideal(1); |
---|
9066 | } |
---|
9067 | } |
---|
9068 | return(primary); |
---|
9069 | } |
---|
9070 | |
---|
9071 | if(homog(j)==1) |
---|
9072 | { |
---|
9073 | primary[1]=j; |
---|
9074 | if((size(ser)>0)&&(size(reduce(ser,j,1))==0)) |
---|
9075 | { |
---|
9076 | ERROR("dim(j)==-1 unexpected. Please send the failing example to the authors"); |
---|
9077 | primary[1]=ideal(1); |
---|
9078 | primary[2]=ideal(1); |
---|
9079 | return(primary); |
---|
9080 | } |
---|
9081 | if(dim(j)==-1) |
---|
9082 | { |
---|
9083 | ERROR("dim(j)==-1 unexpected. Please send the failing example to the authors"); |
---|
9084 | primary[1]=ideal(1); |
---|
9085 | primary[2]=ideal(1); |
---|
9086 | } |
---|
9087 | else |
---|
9088 | { |
---|
9089 | primary[2]=maxideal(1); |
---|
9090 | } |
---|
9091 | return(primary); |
---|
9092 | } |
---|
9093 | |
---|
9094 | //the first element in the standardbase is factorized |
---|
9095 | if(deg(j[1])>0) |
---|
9096 | { |
---|
9097 | act=factor(j[1]); |
---|
9098 | testFactor(act,j[1]); |
---|
9099 | } |
---|
9100 | else |
---|
9101 | { |
---|
9102 | ERROR("failure in newZero_decomp. Please send the failing example to the authors"); |
---|
9103 | primary[1]=ideal(1); |
---|
9104 | primary[2]=ideal(1); |
---|
9105 | return(primary); |
---|
9106 | } |
---|
9107 | |
---|
9108 | //with the factors new ideals (hopefully the primary decomposition) |
---|
9109 | //are created |
---|
9110 | if(size(act[1])>1) |
---|
9111 | { |
---|
9112 | if(size(#)>1) |
---|
9113 | { |
---|
9114 | ERROR("failure in newZero_decomp. Please send the failing example to the authors"); |
---|
9115 | primary[1]=ideal(1); |
---|
9116 | primary[2]=ideal(1); |
---|
9117 | primary[3]=ideal(1); |
---|
9118 | primary[4]=ideal(1); |
---|
9119 | return(primary); |
---|
9120 | } |
---|
9121 | for(@k=1;@k<=size(act[1]);@k++) |
---|
9122 | { |
---|
9123 | if(@wr==0) |
---|
9124 | { |
---|
9125 | primary[2*@k-1]=std(j,act[1][@k]^act[2][@k]); |
---|
9126 | } |
---|
9127 | else |
---|
9128 | { |
---|
9129 | primary[2*@k-1]=std(j,act[1][@k]); |
---|
9130 | } |
---|
9131 | if((act[2][@k]==1)&&(vdim(primary[2*@k-1])==deg(act[1][@k]))) |
---|
9132 | { |
---|
9133 | primary[2*@k] = primary[2*@k-1]; |
---|
9134 | } |
---|
9135 | else |
---|
9136 | { |
---|
9137 | primary[2*@k] = primaryTest(primary[2*@k-1],act[1][@k]); |
---|
9138 | } |
---|
9139 | } |
---|
9140 | } |
---|
9141 | else |
---|
9142 | { |
---|
9143 | primary[1]=j; |
---|
9144 | if((size(#)>0)&&(act[2][1]>1)) |
---|
9145 | { |
---|
9146 | act[2]=1; |
---|
9147 | primary[1]=std(primary[1],act[1][1]); |
---|
9148 | } |
---|
9149 | if(@wr!=0) |
---|
9150 | { |
---|
9151 | primary[1]=std(j,act[1][1]); |
---|
9152 | } |
---|
9153 | if((act[2][1]==1)&&(vdim(primary[1])==deg(act[1][1]))) |
---|
9154 | { |
---|
9155 | primary[2]=primary[1]; |
---|
9156 | } |
---|
9157 | else |
---|
9158 | { |
---|
9159 | primary[2]=primaryTest(primary[1],act[1][1]); |
---|
9160 | } |
---|
9161 | } |
---|
9162 | |
---|
9163 | if(size(#)==0) |
---|
9164 | { |
---|
9165 | primary=splitPrimary(primary,ser,@wr,act); |
---|
9166 | } |
---|
9167 | |
---|
9168 | if((voice>=7)&&(char(basering)<=181)) |
---|
9169 | { |
---|
9170 | primary=splitCharp(primary); |
---|
9171 | } |
---|
9172 | |
---|
9173 | if((@wr==2)&&(npars(basering)>0)&&(voice>=7)&&(char(basering)>0)) |
---|
9174 | { |
---|
9175 | //the prime decomposition of Yokoyama in characteristic p |
---|
9176 | list ke,ek; |
---|
9177 | @k=0; |
---|
9178 | while(@k<size(primary) div 2) |
---|
9179 | { |
---|
9180 | @k++; |
---|
9181 | if(size(primary[2*@k])==0) |
---|
9182 | { |
---|
9183 | ek=insepDecomp_i(int(1), primary[2*@k-1]); |
---|
9184 | primary=delete(primary,2*@k); |
---|
9185 | primary=delete(primary,2*@k-1); |
---|
9186 | @k--; |
---|
9187 | } |
---|
9188 | ke=ke+ek; |
---|
9189 | } |
---|
9190 | for(@k=1;@k<=size(ke);@k++) |
---|
9191 | { |
---|
9192 | primary[size(primary)+1]=ke[@k]; |
---|
9193 | primary[size(primary)+1]=ke[@k]; |
---|
9194 | } |
---|
9195 | } |
---|
9196 | |
---|
9197 | if(nestLevel > 1){primary=extF(primary);} |
---|
9198 | |
---|
9199 | //test whether all ideals in the decomposition are primary and |
---|
9200 | //in general position |
---|
9201 | //if not after a random coordinate transformation of the last |
---|
9202 | //variable the corresponding ideal is decomposed again. |
---|
9203 | if((npars(basering)>0)&&(nestLevel > 1)) |
---|
9204 | { |
---|
9205 | poly randp; |
---|
9206 | for(zz=1;zz<nvars(basering);zz++) |
---|
9207 | { |
---|
9208 | randp=randp |
---|
9209 | +(random(0,5)*par(1)^2+random(0,5)*par(1)+random(0,5))*var(zz); |
---|
9210 | } |
---|
9211 | randp=randp+var(nvars(basering)); |
---|
9212 | } |
---|
9213 | @k=0; |
---|
9214 | while(@k<(size(primary) div 2)) |
---|
9215 | { |
---|
9216 | @k++; |
---|
9217 | if (size(primary[2*@k])==0) |
---|
9218 | { |
---|
9219 | for(zz=1;zz<size(primary[2*@k-1])-1;zz++) |
---|
9220 | { |
---|
9221 | attrib(primary[2*@k-1],"isSB",1); |
---|
9222 | if(vdim(primary[2*@k-1])==deg(primary[2*@k-1][zz])) |
---|
9223 | { |
---|
9224 | primary[2*@k]=primary[2*@k-1]; |
---|
9225 | } |
---|
9226 | } |
---|
9227 | } |
---|
9228 | } |
---|
9229 | |
---|
9230 | @k=0; |
---|
9231 | ideal keep; |
---|
9232 | while(@k<(size(primary) div 2)) |
---|
9233 | { |
---|
9234 | @k++; |
---|
9235 | if (size(primary[2*@k])==0) |
---|
9236 | { |
---|
9237 | jmap=randomLast(100); |
---|
9238 | jmap1=maxideal(1); |
---|
9239 | jmap2=maxideal(1); |
---|
9240 | @qht=primary[2*@k-1]; |
---|
9241 | if((npars(basering)>0)&&(nestLevel > 1)) |
---|
9242 | { |
---|
9243 | jmap[size(jmap)]=randp; |
---|
9244 | } |
---|
9245 | |
---|
9246 | for(@n=2;@n<=size(primary[2*@k-1]);@n++) |
---|
9247 | { |
---|
9248 | if(deg(lead(primary[2*@k-1][@n]))==1) |
---|
9249 | { |
---|
9250 | for(zz=1;zz<=nva;zz++) |
---|
9251 | { |
---|
9252 | if(lead(primary[2*@k-1][@n])/var(zz)!=0) |
---|
9253 | { |
---|
9254 | jmap1[zz]=-1/leadcoef(primary[2*@k-1][@n])*primary[2*@k-1][@n] |
---|
9255 | +2/leadcoef(primary[2*@k-1][@n])*lead(primary[2*@k-1][@n]); |
---|
9256 | jmap2[zz]=primary[2*@k-1][@n]; |
---|
9257 | @qht[@n]=var(zz); |
---|
9258 | } |
---|
9259 | } |
---|
9260 | jmap[nva]=subst(jmap[nva],lead(primary[2*@k-1][@n]),0); |
---|
9261 | } |
---|
9262 | } |
---|
9263 | if(size(subst(jmap[nva],var(1),0)-var(nva))!=0) |
---|
9264 | { |
---|
9265 | // jmap[nva]=subst(jmap[nva],var(1),0); |
---|
9266 | //hier geaendert +untersuchen!!!!!!!!!!!!!! |
---|
9267 | } |
---|
9268 | phi1=@P,jmap1; |
---|
9269 | phi=@P,jmap; |
---|
9270 | for(@n=1;@n<=nva;@n++) |
---|
9271 | { |
---|
9272 | jmap[@n]=-(jmap[@n]-2*var(@n)); |
---|
9273 | } |
---|
9274 | psi=@P,jmap; |
---|
9275 | psi1=@P,jmap2; |
---|
9276 | @qh=phi(@qht); |
---|
9277 | |
---|
9278 | //=================== the new part ============================ |
---|
9279 | |
---|
9280 | if (npars(basering)>1) { @qh=groebner(@qh,"par2var"); } |
---|
9281 | else { @qh=groebner(@qh); } |
---|
9282 | |
---|
9283 | //============================================================= |
---|
9284 | // if(npars(@P)>0) |
---|
9285 | // { |
---|
9286 | // @ri= "ring @Phelp =" |
---|
9287 | // +string(char(@P))+", |
---|
9288 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
9289 | // } |
---|
9290 | // else |
---|
9291 | // { |
---|
9292 | // @ri= "ring @Phelp =" |
---|
9293 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
9294 | // } |
---|
9295 | // execute(@ri); |
---|
9296 | // ideal @qh=homog(imap(@P,@qht),@t); |
---|
9297 | // |
---|
9298 | // ideal @qh1=std(@qh); |
---|
9299 | // @hilb=hilb(@qh1,1); |
---|
9300 | // @ri= "ring @Phelp1 =" |
---|
9301 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
9302 | // execute(@ri); |
---|
9303 | // ideal @qh=homog(imap(@P,@qh),@t); |
---|
9304 | // kill @Phelp; |
---|
9305 | // @qh=std(@qh,@hilb); |
---|
9306 | // @qh=subst(@qh,@t,1); |
---|
9307 | // setring @P; |
---|
9308 | // @qh=imap(@Phelp1,@qh); |
---|
9309 | // kill @Phelp1; |
---|
9310 | // @qh=clearSB(@qh); |
---|
9311 | // attrib(@qh,"isSB",1); |
---|
9312 | //============================================================= |
---|
9313 | |
---|
9314 | ser1=phi1(ser); |
---|
9315 | @lh=newZero_decomp (@qh,phi(ser1),@wr, list("nest", nestLevel + 1)); |
---|
9316 | |
---|
9317 | kill lres0; |
---|
9318 | list lres0; |
---|
9319 | if(size(@lh)==2) |
---|
9320 | { |
---|
9321 | helpprim=@lh[2]; |
---|
9322 | lres0[1]=primary[2*@k-1]; |
---|
9323 | attrib(lres0[1],"isSB",1); |
---|
9324 | ser1=psi(helpprim); |
---|
9325 | lres0[2]=psi1(ser1); |
---|
9326 | if(size(reduce(lres0[2],lres0[1],1))==0) |
---|
9327 | { |
---|
9328 | primary[2*@k]=primary[2*@k-1]; |
---|
9329 | continue; |
---|
9330 | } |
---|
9331 | } |
---|
9332 | else |
---|
9333 | { |
---|
9334 | lres1=psi(@lh); |
---|
9335 | lres0=psi1(lres1); |
---|
9336 | } |
---|
9337 | |
---|
9338 | //=================== the new part ============================ |
---|
9339 | |
---|
9340 | primary=delete(primary,2*@k-1); |
---|
9341 | primary=delete(primary,2*@k-1); |
---|
9342 | @k--; |
---|
9343 | if(size(lres0)==2) |
---|
9344 | { |
---|
9345 | if (npars(basering)>1) { lres0[2]=groebner(lres0[2],"par2var"); } |
---|
9346 | else { lres0[2]=groebner(lres0[2]); } |
---|
9347 | } |
---|
9348 | else |
---|
9349 | { |
---|
9350 | for(@n=1;@n<=size(lres0) div 2;@n++) |
---|
9351 | { |
---|
9352 | if(specialIdealsEqual(lres0[2*@n-1],lres0[2*@n])==1) |
---|
9353 | { |
---|
9354 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
9355 | lres0[2*@n]=lres0[2*@n-1]; |
---|
9356 | attrib(lres0[2*@n],"isSB",1); |
---|
9357 | } |
---|
9358 | else |
---|
9359 | { |
---|
9360 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
9361 | lres0[2*@n]=groebner(lres0[2*@n]); |
---|
9362 | } |
---|
9363 | } |
---|
9364 | } |
---|
9365 | primary=primary+lres0; |
---|
9366 | |
---|
9367 | //============================================================= |
---|
9368 | // if(npars(@P)>0) |
---|
9369 | // { |
---|
9370 | // @ri= "ring @Phelp =" |
---|
9371 | // +string(char(@P))+", |
---|
9372 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
9373 | // } |
---|
9374 | // else |
---|
9375 | // { |
---|
9376 | // @ri= "ring @Phelp =" |
---|
9377 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
9378 | // } |
---|
9379 | // execute(@ri); |
---|
9380 | // list @lvec; |
---|
9381 | // list @lr=imap(@P,lres0); |
---|
9382 | // ideal @lr1; |
---|
9383 | // |
---|
9384 | // if(size(@lr)==2) |
---|
9385 | // { |
---|
9386 | // @lr[2]=homog(@lr[2],@t); |
---|
9387 | // @lr1=std(@lr[2]); |
---|
9388 | // @lvec[2]=hilb(@lr1,1); |
---|
9389 | // } |
---|
9390 | // else |
---|
9391 | // { |
---|
9392 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
9393 | // { |
---|
9394 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
9395 | // { |
---|
9396 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
9397 | // @lr1=std(@lr[2*@n-1]); |
---|
9398 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
9399 | // @lvec[2*@n]=@lvec[2*@n-1]; |
---|
9400 | // } |
---|
9401 | // else |
---|
9402 | // { |
---|
9403 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
9404 | // @lr1=std(@lr[2*@n-1]); |
---|
9405 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
9406 | // @lr[2*@n]=homog(@lr[2*@n],@t); |
---|
9407 | // @lr1=std(@lr[2*@n]); |
---|
9408 | // @lvec[2*@n]=hilb(@lr1,1); |
---|
9409 | // |
---|
9410 | // } |
---|
9411 | // } |
---|
9412 | // } |
---|
9413 | // @ri= "ring @Phelp1 =" |
---|
9414 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
9415 | // execute(@ri); |
---|
9416 | // list @lr=imap(@Phelp,@lr); |
---|
9417 | // |
---|
9418 | // kill @Phelp; |
---|
9419 | // if(size(@lr)==2) |
---|
9420 | // { |
---|
9421 | // @lr[2]=std(@lr[2],@lvec[2]); |
---|
9422 | // @lr[2]=subst(@lr[2],@t,1); |
---|
9423 | // |
---|
9424 | // } |
---|
9425 | // else |
---|
9426 | // { |
---|
9427 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
9428 | // { |
---|
9429 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
9430 | // { |
---|
9431 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
9432 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
9433 | // @lr[2*@n]=@lr[2*@n-1]; |
---|
9434 | // attrib(@lr[2*@n],"isSB",1); |
---|
9435 | // } |
---|
9436 | // else |
---|
9437 | // { |
---|
9438 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
9439 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
9440 | // @lr[2*@n]=std(@lr[2*@n],@lvec[2*@n]); |
---|
9441 | // @lr[2*@n]=subst(@lr[2*@n],@t,1); |
---|
9442 | // } |
---|
9443 | // } |
---|
9444 | // } |
---|
9445 | // kill @lvec; |
---|
9446 | // setring @P; |
---|
9447 | // lres0=imap(@Phelp1,@lr); |
---|
9448 | // kill @Phelp1; |
---|
9449 | // for(@n=1;@n<=size(lres0);@n++) |
---|
9450 | // { |
---|
9451 | // lres0[@n]=clearSB(lres0[@n]); |
---|
9452 | // attrib(lres0[@n],"isSB",1); |
---|
9453 | // } |
---|
9454 | // |
---|
9455 | // primary[2*@k-1]=lres0[1]; |
---|
9456 | // primary[2*@k]=lres0[2]; |
---|
9457 | // @s=size(primary) div 2; |
---|
9458 | // for(@n=1;@n<=size(lres0) div 2-1;@n++) |
---|
9459 | // { |
---|
9460 | // primary[2*@s+2*@n-1]=lres0[2*@n+1]; |
---|
9461 | // primary[2*@s+2*@n]=lres0[2*@n+2]; |
---|
9462 | // } |
---|
9463 | // @k--; |
---|
9464 | //============================================================= |
---|
9465 | } |
---|
9466 | } |
---|
9467 | return(primary); |
---|
9468 | } |
---|
9469 | example |
---|
9470 | { "EXAMPLE:"; echo = 2; |
---|
9471 | ring r = 0,(x,y,z),lp; |
---|
9472 | poly p = z2+1; |
---|
9473 | poly q = z4+2; |
---|
9474 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
9475 | i=std(i); |
---|
9476 | list pr= newZero_decomp(i,ideal(0),0); |
---|
9477 | pr; |
---|
9478 | } |
---|
9479 | /////////////////////////////////////////////////////////////////////////////// |
---|
9480 | |
---|
9481 | //////////////////////////////////////////////////////////////////////////// |
---|
9482 | /* |
---|
9483 | //Beispiele Wenk-Dipl (in ~/Texfiles/Diplom/Wenk/Examples/) |
---|
9484 | //Zeiten: Singular/Singular/Singular -r123456789 -v :wilde13 (PentiumPro200) |
---|
9485 | //Singular for HPUX-9 version 1-3-8 (2000060214) Jun 2 2000 15:31:26 |
---|
9486 | //(wilde13) |
---|
9487 | |
---|
9488 | //1. vdim=20, 3 Komponenten |
---|
9489 | //zerodec-time:2(1) (matrix:1 charpoly:0 factor:1) |
---|
9490 | //primdecGTZ-time: 1(0) |
---|
9491 | ring rs= 0,(a,b,c),dp; |
---|
9492 | poly f1= a^2*b*c + a*b^2*c + a*b*c^2 + a*b*c + a*b + a*c + b*c; |
---|
9493 | poly f2= a^2*b^2*c + a*b^2*c^2 + a^2*b*c + a*b*c + b*c + a + c; |
---|
9494 | poly f3= a^2*b^2*c^2 + a^2*b^2*c + a*b^2*c + a*b*c + a*c + c + 1; |
---|
9495 | ideal gls=f1,f2,f3; |
---|
9496 | int time=timer; |
---|
9497 | printlevel =1; |
---|
9498 | time=timer; list pr1=zerodec(gls); timer-time;size(pr1); |
---|
9499 | time=timer; list pr =primdecGTZ(gls); timer-time;size(pr); |
---|
9500 | time=timer; ideal ra =radical(gls); timer-time;size(pr); |
---|
9501 | |
---|
9502 | //2.cyclic5 vdim=70, 20 Komponenten |
---|
9503 | //zerodec-time:36(28) (matrix:1(0) charpoly:18(19) factor:17(9) |
---|
9504 | //primdecGTZ-time: 28(5) |
---|
9505 | //radical : 0 |
---|
9506 | ring rs= 0,(a,b,c,d,e),dp; |
---|
9507 | poly f0= a + b + c + d + e + 1; |
---|
9508 | poly f1= a + b + c + d + e; |
---|
9509 | poly f2= a*b + b*c + c*d + a*e + d*e; |
---|
9510 | poly f3= a*b*c + b*c*d + a*b*e + a*d*e + c*d*e; |
---|
9511 | poly f4= a*b*c*d + a*b*c*e + a*b*d*e + a*c*d*e + b*c*d*e; |
---|
9512 | poly f5= a*b*c*d*e - 1; |
---|
9513 | ideal gls= f1,f2,f3,f4,f5; |
---|
9514 | |
---|
9515 | //3. random vdim=40, 1 Komponente |
---|
9516 | //zerodec-time:126(304) (matrix:1 charpoly:115(298) factor:10(5)) |
---|
9517 | //primdecGTZ-time:17 (11) |
---|
9518 | ring rs=0,(x,y,z),dp; |
---|
9519 | poly f1=2*x^2 + 4*x + 3*y^2 + 7*x*z + 9*y*z + 5*z^2; |
---|
9520 | poly f2=7*x^3 + 8*x*y + 12*y^2 + 18*x*z + 3*y^4*z + 10*z^3 + 12; |
---|
9521 | poly f3=3*x^4 + 1*x*y*z + 6*y^3 + 3*x*z^2 + 2*y*z^2 + 4*z^2 + 5; |
---|
9522 | ideal gls=f1,f2,f3; |
---|
9523 | |
---|
9524 | //4. introduction into resultants, sturmfels, vdim=28, 1 Komponente |
---|
9525 | //zerodec-time:4 (matrix:0 charpoly:0 factor:4) |
---|
9526 | //primdecGTZ-time:1 |
---|
9527 | ring rs=0,(x,y),dp; |
---|
9528 | poly f1= x4+y4-1; |
---|
9529 | poly f2= x5y2-4x3y3+x2y5-1; |
---|
9530 | ideal gls=f1,f2; |
---|
9531 | |
---|
9532 | //5. 3 quadratic equations with random coeffs, vdim=8, 1 Komponente |
---|
9533 | //zerodec-time:0(0) (matrix:0 charpoly:0 factor:0) |
---|
9534 | //primdecGTZ-time:1(0) |
---|
9535 | ring rs=0,(x,y,z),dp; |
---|
9536 | poly f1=2*x^2 + 4*x*y + 3*y^2 + 7*x*z + 9*y*z + 5*z^2 + 2; |
---|
9537 | poly f2=7*x^2 + 8*x*y + 12*y^2 + 18*x*z + 3*y*z + 10*z^2 + 12; |
---|
9538 | poly f3=3*x^2 + 1*x*y + 6*y^2 + 3*x*z + 2*y*z + 4*z^2 + 5; |
---|
9539 | ideal gls=f1,f2,f3; |
---|
9540 | |
---|
9541 | //6. 3 polys vdim=24, 1 Komponente |
---|
9542 | // run("ex14",2); |
---|
9543 | //zerodec-time:5(4) (matrix:0 charpoly:3(3) factor:2(1)) |
---|
9544 | //primdecGTZ-time:4 (2) |
---|
9545 | ring rs=0,(x1,x2,x3,x4),dp; |
---|
9546 | poly f1=16*x1^2 + 3*x2^2 + 5*x3^4 - 1 - 4*x4 + x4^3; |
---|
9547 | poly f2=5*x1^3 + 3*x2^2 + 4*x3^2*x4 + 2*x1*x4 - 1 + x4 + 4*x1 + x2 + x3 + x4; |
---|
9548 | poly f3=-4*x1^2 + x2^2 + x3^2 - 3 + x4^2 + 4*x1 + x2 + x3 + x4; |
---|
9549 | poly f4=-4*x1 + x2 + x3 + x4; |
---|
9550 | ideal gls=f1,f2,f3,f4; |
---|
9551 | |
---|
9552 | //7. ex43, PoSSo, caprasse vdim=56, 16 Komponenten |
---|
9553 | //zerodec-time:23(15) (matrix:0 charpoly:16(13) factor:3(2)) |
---|
9554 | //primdecGTZ-time:3 (2) |
---|
9555 | ring rs= 0,(y,z,x,t),dp; |
---|
9556 | ideal gls=y^2*z+2*y*x*t-z-2*x, |
---|
9557 | 4*y^2*z*x-z*x^3+2*y^3*t+4*y*x^2*t-10*y^2+4*z*x+4*x^2-10*y*t+2, |
---|
9558 | 2*y*z*t+x*t^2-2*z-x, |
---|
9559 | -z^3*x+4*y*z^2*t+4*z*x*t^2+2*y*t^3+4*z^2+4*z*x-10*y*t-10*t^2+2; |
---|
9560 | |
---|
9561 | //8. Arnborg-System, n=6 (II), vdim=156, 90 Komponenten |
---|
9562 | //zerodec-time (char32003):127(45)(matrix:2(0) charpoly:106(37) factor:16(7)) |
---|
9563 | //primdecGTZ-time(char32003) :81 (18) |
---|
9564 | //ring rs= 0,(a,b,c,d,x,f),dp; |
---|
9565 | ring rs= 32003,(a,b,c,d,x,f),dp; |
---|
9566 | ideal gls=a+b+c+d+x+f, ab+bc+cd+dx+xf+af, abc+bcd+cdx+d*xf+axf+abf, |
---|
9567 | abcd+bcdx+cd*xf+ad*xf+abxf+abcf, abcdx+bcd*xf+acd*xf+abd*xf+abcxf+abcdf, |
---|
9568 | abcd*xf-1; |
---|
9569 | |
---|
9570 | //9. ex42, PoSSo, Methan6_1, vdim=27, 2 Komponenten |
---|
9571 | //zerodec-time:610 (matrix:10 charpoly:557 factor:26) |
---|
9572 | //primdecGTZ-time: 118 |
---|
9573 | //zerodec-time(char32003):2 |
---|
9574 | //primdecGTZ-time(char32003):4 |
---|
9575 | //ring rs= 0,(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10),dp; |
---|
9576 | ring rs= 32003,(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10),dp; |
---|
9577 | ideal gls=64*x2*x7-10*x1*x8+10*x7*x9+11*x7*x10-320000*x1, |
---|
9578 | -32*x2*x7-5*x2*x8-5*x2*x10+160000*x1-5000*x2, |
---|
9579 | -x3*x8+x6*x8+x9*x10+210*x6+1300000, |
---|
9580 | -x4*x8+700000, |
---|
9581 | x10^2-2*x5, |
---|
9582 | -x6*x8+x7*x9-210*x6, |
---|
9583 | -64*x2*x7-10*x7*x9-11*x7*x10+320000*x1-16*x7+7000000, |
---|
9584 | -10*x1*x8-10*x2*x8-10*x3*x8-10*x4*x8-10*x6*x8+10*x2*x10+11*x7*x10 |
---|
9585 | +20000*x2+14*x5, |
---|
9586 | x4*x8-x7*x9-x9*x10-410*x9, |
---|
9587 | 10*x2*x8+10*x3*x8+10*x6*x8+10*x7*x9-10*x2*x10-11*x7*x10-10*x9*x10 |
---|
9588 | -10*x10^2+1400*x6-4200*x10; |
---|
9589 | |
---|
9590 | //10. ex33, walk-s7, Diplomarbeit von Tim, vdim=114 |
---|
9591 | //zerfaellt in unterschiedlich viele Komponenten in versch. Charkteristiken: |
---|
9592 | //char32003:30, char0:3(2xdeg1,1xdeg112!), char181:4(2xdeg1,1xdeg28,1xdeg84) |
---|
9593 | //char 0: zerodec-time:10075 (ca 3h) (matrix:3 charpoly:9367, factor:680 |
---|
9594 | // + 24 sec fuer Normalform (anstatt einsetzen), total [29623k]) |
---|
9595 | // primdecGTZ-time: 214 |
---|
9596 | //char 32003:zerodec-time:197(68) (matrix:2(1) charpoly:173(60) factor:15(6)) |
---|
9597 | // primdecGTZ-time:14 (5) |
---|
9598 | //char 181:zerodec-time:(87) (matrix:(1) charpoly:(58) factor:(25)) |
---|
9599 | // primdecGTZ-time:(2) |
---|
9600 | //in char181 stimmen Ergebnisse von zerodec und primdecGTZ ueberein (gecheckt) |
---|
9601 | |
---|
9602 | //ring rs= 0,(a,b,c,d,e,f,g),dp; |
---|
9603 | ring rs= 32003,(a,b,c,d,e,f,g),dp; |
---|
9604 | poly f1= 2gb + 2fc + 2ed + a2 + a; |
---|
9605 | poly f2= 2gc + 2fd + e2 + 2ba + b; |
---|
9606 | poly f3= 2gd + 2fe + 2ca + c + b2; |
---|
9607 | poly f4= 2ge + f2 + 2da + d + 2cb; |
---|
9608 | poly f5= 2fg + 2ea + e + 2db + c2; |
---|
9609 | poly f6= g2 + 2fa + f + 2eb + 2dc; |
---|
9610 | poly f7= 2ga + g + 2fb + 2ec + d2; |
---|
9611 | ideal gls= f1,f2,f3,f4,f5,f6,f7; |
---|
9612 | |
---|
9613 | ~/Singular/Singular/Singular -r123456789 -v |
---|
9614 | LIB"./primdec.lib"; |
---|
9615 | timer=1; |
---|
9616 | int time=timer; |
---|
9617 | printlevel =1; |
---|
9618 | option(prot,mem); |
---|
9619 | time=timer; list pr1=zerodec(gls); timer-time; |
---|
9620 | |
---|
9621 | time=timer; list pr =primdecGTZ(gls); timer-time; |
---|
9622 | time=timer; list pr =primdecSY(gls); timer-time; |
---|
9623 | time=timer; ideal ra =radical(gls); timer-time;size(pr); |
---|
9624 | LIB"all.lib"; |
---|
9625 | |
---|
9626 | ring R=0,(a,b,c,d,e,f),dp; |
---|
9627 | ideal I=cyclic(6); |
---|
9628 | minAssGTZ(I); |
---|
9629 | |
---|
9630 | |
---|
9631 | ring S=(2,a,b),(x,y),lp; |
---|
9632 | ideal I=x8-b,y4+a; |
---|
9633 | minAssGTZ(I); |
---|
9634 | |
---|
9635 | ring S1=2,(x,y,a,b),lp; |
---|
9636 | ideal I=x8-b,y4+a; |
---|
9637 | minAssGTZ(I); |
---|
9638 | |
---|
9639 | |
---|
9640 | ring S2=(2,z),(x,y),dp; |
---|
9641 | minpoly=z2+z+1; |
---|
9642 | ideal I=y3+y+1,x4+x+1; |
---|
9643 | primdecGTZ(I); |
---|
9644 | minAssGTZ(I); |
---|
9645 | |
---|
9646 | ring S3=2,(x,y,z),dp; |
---|
9647 | ideal I=y3+y+1,x4+x+1,z2+z+1; |
---|
9648 | primdecGTZ(I); |
---|
9649 | minAssGTZ(I); |
---|
9650 | |
---|
9651 | |
---|
9652 | ring R1=2,(x,y,z),lp; |
---|
9653 | ideal I=y6+y5+y3+y2+1,x4+x+1,z2+z+1; |
---|
9654 | primdecGTZ(I); |
---|
9655 | minAssGTZ(I); |
---|
9656 | |
---|
9657 | |
---|
9658 | ring R2=(2,z),(x,y),lp; |
---|
9659 | minpoly=z3+z+1; |
---|
9660 | ideal I=y2+y+(z2+z+1),x4+x+1; |
---|
9661 | primdecGTZ(I); |
---|
9662 | minAssGTZ(I); |
---|
9663 | |
---|
9664 | */ |
---|