1 | //////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version primdec.lib 4.0.1.1 Nov_2014 "; // $Id$ |
---|
3 | category="Commutative Algebra"; |
---|
4 | info=" |
---|
5 | LIBRARY: primdec.lib Primary Decomposition and Radical of Ideals |
---|
6 | AUTHORS: Gerhard Pfister, pfister@mathematik.uni-kl.de (GTZ)@* |
---|
7 | Wolfram Decker, decker@math.uni-sb.de (SY)@* |
---|
8 | Hans Schoenemann, hannes@mathematik.uni-kl.de (SY)@* |
---|
9 | Santiago Laplagne, slaplagn@dm.uba.ar (GTZ) |
---|
10 | |
---|
11 | OVERVIEW: |
---|
12 | Algorithms for primary decomposition based on the ideas of |
---|
13 | Gianni, Trager and Zacharias (implementation by Gerhard Pfister), |
---|
14 | respectively based on the ideas of Shimoyama and Yokoyama (implementation |
---|
15 | by Wolfram Decker and Hans Schoenemann).@* |
---|
16 | The procedures are implemented to be used in characteristic 0.@* |
---|
17 | They also work in positive characteristic >> 0.@* |
---|
18 | In small characteristic and for algebraic extensions, primdecGTZ |
---|
19 | may not terminate.@* |
---|
20 | Algorithms for the computation of the radical based on the ideas of |
---|
21 | Krick, Logar, Laplagne and Kemper (implementation by Gerhard Pfister and Santiago Laplagne). |
---|
22 | They work in any characteristic.@* |
---|
23 | Baserings must have a global ordering and no quotient ideal. |
---|
24 | Exceptions: primdecGTZ, absPrimdecGTZ, minAssGTZ, primdecSY, minAssChar, radical accept non-global ordering. |
---|
25 | |
---|
26 | |
---|
27 | PROCEDURES: |
---|
28 | Ann(M); annihilator of R^n/M, R=basering, M in R^n |
---|
29 | primdecGTZ(I); complete primary decomposition via Gianni,Trager,Zacharias |
---|
30 | primdecSY(I...); complete primary decomposition via Shimoyama-Yokoyama |
---|
31 | minAssGTZ(I); the minimal associated primes via Gianni,Trager,Zacharias (with modifications by Laplagne) |
---|
32 | minAssChar(I...); the minimal associated primes using characteristic sets |
---|
33 | testPrimary(L,k); tests the result of the primary decomposition |
---|
34 | radical(I); computes the radical of I via Krick/Logar (with modifications by Laplagne) and Kemper |
---|
35 | radicalEHV(I); computes the radical of I via Eisenbud,Huneke,Vasconcelos |
---|
36 | equiRadical(I); the radical of the equidimensional part of the ideal I |
---|
37 | prepareAss(I); list of radicals of the equidimensional components of I |
---|
38 | equidim(I); weak equidimensional decomposition of I |
---|
39 | equidimMax(I); equidimensional locus of I |
---|
40 | equidimMaxEHV(I); equidimensional locus of I via Eisenbud,Huneke,Vasconcelos |
---|
41 | zerodec(I); zerodimensional decomposition via Monico |
---|
42 | absPrimdecGTZ(I); the absolute prime components of I |
---|
43 | sep(f,k); the separabel part of f as polynomial in Fp(t1,...,tm) |
---|
44 | "; |
---|
45 | |
---|
46 | LIB "general.lib"; |
---|
47 | LIB "elim.lib"; |
---|
48 | LIB "poly.lib"; |
---|
49 | LIB "random.lib"; |
---|
50 | LIB "inout.lib"; |
---|
51 | LIB "matrix.lib"; |
---|
52 | LIB "triang.lib"; |
---|
53 | LIB "absfact.lib"; |
---|
54 | LIB "ring.lib"; |
---|
55 | /////////////////////////////////////////////////////////////////////////////// |
---|
56 | // |
---|
57 | // Gianni/Trager/Zacharias |
---|
58 | // |
---|
59 | /////////////////////////////////////////////////////////////////////////////// |
---|
60 | |
---|
61 | static proc sat1 (ideal id, poly p) |
---|
62 | "USAGE: sat1(id,j); id ideal, j polynomial |
---|
63 | RETURN: saturation of id with respect to j (= union_(k=1...) of id:j^k) |
---|
64 | NOTE: result is a std basis in the basering |
---|
65 | " |
---|
66 | { |
---|
67 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
68 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
69 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
70 | |
---|
71 | int @k; |
---|
72 | ideal inew=std(id); |
---|
73 | ideal iold; |
---|
74 | intvec op=option(get); |
---|
75 | option(returnSB); |
---|
76 | while(specialIdealsEqual(iold,inew)==0 ) |
---|
77 | { |
---|
78 | iold=inew; |
---|
79 | inew=quotient(iold,p); |
---|
80 | @k++; |
---|
81 | } |
---|
82 | @k--; |
---|
83 | option(set,op); |
---|
84 | list L =inew,p^@k; |
---|
85 | return (L); |
---|
86 | } |
---|
87 | |
---|
88 | /////////////////////////////////////////////////////////////////////////////// |
---|
89 | |
---|
90 | static proc sat2 (ideal id, ideal h) |
---|
91 | "USAGE: sat2(id,j); id ideal, j polynomial |
---|
92 | RETURN: saturation of id with respect to j (= union_(k=1...) of id:j^k) |
---|
93 | NOTE: result is a std basis in the basering |
---|
94 | " |
---|
95 | { |
---|
96 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
97 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
98 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
99 | int @k,@i; |
---|
100 | def @P= basering; |
---|
101 | if(ordstr(basering)[1,2]!="dp") |
---|
102 | { |
---|
103 | def @Phelp=changeordTo(basering,"dp"); |
---|
104 | setring @Phelp; |
---|
105 | ideal inew=std(imap(@P,id)); |
---|
106 | ideal @h=imap(@P,h); |
---|
107 | } |
---|
108 | else |
---|
109 | { |
---|
110 | ideal @h=h; |
---|
111 | ideal inew=std(id); |
---|
112 | } |
---|
113 | ideal fac; |
---|
114 | |
---|
115 | for(@i=1;@i<=ncols(@h);@i++) |
---|
116 | { |
---|
117 | if(deg(@h[@i])>0) |
---|
118 | { |
---|
119 | fac=fac+factorize(@h[@i],1); |
---|
120 | } |
---|
121 | } |
---|
122 | fac=simplify(fac,6); |
---|
123 | poly @f=1; |
---|
124 | if(deg(fac[1])>0) |
---|
125 | { |
---|
126 | ideal iold; |
---|
127 | for(@i=1;@i<=size(fac);@i++) |
---|
128 | { |
---|
129 | @f=@f*fac[@i]; |
---|
130 | } |
---|
131 | intvec op = option(get); |
---|
132 | option(returnSB); |
---|
133 | while(specialIdealsEqual(iold,inew)==0 ) |
---|
134 | { |
---|
135 | iold=inew; |
---|
136 | if(deg(iold[size(iold)])!=1) |
---|
137 | { |
---|
138 | inew=quotient(iold,@f); |
---|
139 | } |
---|
140 | else |
---|
141 | { |
---|
142 | inew=iold; |
---|
143 | } |
---|
144 | @k++; |
---|
145 | } |
---|
146 | option(set,op); |
---|
147 | @k--; |
---|
148 | } |
---|
149 | |
---|
150 | if(ordstr(@P)[1,2]!="dp") |
---|
151 | { |
---|
152 | setring @P; |
---|
153 | ideal inew=std(imap(@Phelp,inew)); |
---|
154 | poly @f=imap(@Phelp,@f); |
---|
155 | } |
---|
156 | list L =inew,@f^@k; |
---|
157 | return (L); |
---|
158 | } |
---|
159 | |
---|
160 | /////////////////////////////////////////////////////////////////////////////// |
---|
161 | |
---|
162 | |
---|
163 | proc minSat(ideal inew, ideal h) |
---|
164 | { |
---|
165 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
166 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
167 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
168 | int i,k; |
---|
169 | poly f=1; |
---|
170 | ideal iold,fac; |
---|
171 | list quotM,l; |
---|
172 | |
---|
173 | for(i=1;i<=ncols(h);i++) |
---|
174 | { |
---|
175 | if(deg(h[i])>0) |
---|
176 | { |
---|
177 | fac=fac+factorize(h[i],1); |
---|
178 | } |
---|
179 | } |
---|
180 | fac=simplify(fac,6); |
---|
181 | if(size(fac)==0) |
---|
182 | { |
---|
183 | l=inew,1; |
---|
184 | return(l); |
---|
185 | } |
---|
186 | fac=sort(fac)[1]; |
---|
187 | for(i=1;i<=size(fac);i++) |
---|
188 | { |
---|
189 | f=f*fac[i]; |
---|
190 | } |
---|
191 | quotM[1]=inew; |
---|
192 | quotM[2]=fac; |
---|
193 | quotM[3]=f; |
---|
194 | f=1; |
---|
195 | intvec op = option(get); |
---|
196 | option(returnSB); |
---|
197 | while(specialIdealsEqual(iold,quotM[1])==0) |
---|
198 | { |
---|
199 | if(k>0) |
---|
200 | { |
---|
201 | f=f*quotM[3]; |
---|
202 | } |
---|
203 | iold=quotM[1]; |
---|
204 | quotM=quotMin(quotM); |
---|
205 | k++; |
---|
206 | } |
---|
207 | option(set,op); |
---|
208 | l=quotM[1],f; |
---|
209 | return(l); |
---|
210 | } |
---|
211 | |
---|
212 | static proc quotMin(list tsil) |
---|
213 | { |
---|
214 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
215 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
216 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
217 | int i,j,k,action; |
---|
218 | ideal verg; |
---|
219 | list l; |
---|
220 | poly g; |
---|
221 | |
---|
222 | ideal laedi=tsil[1]; |
---|
223 | ideal fac=tsil[2]; |
---|
224 | poly f=tsil[3]; |
---|
225 | |
---|
226 | ideal star=quotient(laedi,f); |
---|
227 | |
---|
228 | if(specialIdealsEqual(star,laedi)) |
---|
229 | { |
---|
230 | l=star,fac,f; |
---|
231 | return(l); |
---|
232 | } |
---|
233 | |
---|
234 | action=1; |
---|
235 | |
---|
236 | while(action==1) |
---|
237 | { |
---|
238 | if(size(fac)==1) |
---|
239 | { |
---|
240 | action=0; |
---|
241 | break; |
---|
242 | } |
---|
243 | for(i=1;i<=size(fac);i++) |
---|
244 | { |
---|
245 | g=1; |
---|
246 | verg=laedi; |
---|
247 | for(j=1;j<=size(fac);j++) |
---|
248 | { |
---|
249 | if(i!=j) |
---|
250 | { |
---|
251 | g=g*fac[j]; |
---|
252 | } |
---|
253 | } |
---|
254 | verg=quotient(laedi,g); |
---|
255 | |
---|
256 | if(specialIdealsEqual(verg,star)==1) |
---|
257 | { |
---|
258 | f=g; |
---|
259 | fac[i]=0; |
---|
260 | fac=simplify(fac,2); |
---|
261 | break; |
---|
262 | } |
---|
263 | if(i==size(fac)) |
---|
264 | { |
---|
265 | action=0; |
---|
266 | } |
---|
267 | } |
---|
268 | } |
---|
269 | l=star,fac,f; |
---|
270 | return(l); |
---|
271 | } |
---|
272 | |
---|
273 | /////////////////////////////////////////////////////////////////////////////// |
---|
274 | |
---|
275 | static proc testFactor(list act,poly p) |
---|
276 | { |
---|
277 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
278 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
279 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
280 | poly keep=p; |
---|
281 | |
---|
282 | int i; |
---|
283 | poly q=act[1][1]^act[2][1]; |
---|
284 | for(i=2;i<=size(act[1]);i++) |
---|
285 | { |
---|
286 | q=q*act[1][i]^act[2][i]; |
---|
287 | } |
---|
288 | q=1/leadcoef(q)*q; |
---|
289 | p=1/leadcoef(p)*p; |
---|
290 | if(p-q!=0) |
---|
291 | { |
---|
292 | "ERROR IN FACTOR, please inform the authors"; |
---|
293 | } |
---|
294 | } |
---|
295 | /////////////////////////////////////////////////////////////////////////////// |
---|
296 | |
---|
297 | static proc factor(poly p) |
---|
298 | "USAGE: factor(p) p poly |
---|
299 | RETURN: list=; |
---|
300 | NOTE: |
---|
301 | EXAMPLE: example factor; shows an example |
---|
302 | " |
---|
303 | { |
---|
304 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
305 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
306 | ideal @i; |
---|
307 | list @l; |
---|
308 | intvec @v,@w; |
---|
309 | int @j,@k,@n; |
---|
310 | |
---|
311 | @l=factorize(p); |
---|
312 | for(@j=1;@j<=size(@l[1]);@j++) |
---|
313 | { |
---|
314 | if(leadcoef(@l[1][@j])==@l[1][@j]) |
---|
315 | { |
---|
316 | @n++; |
---|
317 | } |
---|
318 | } |
---|
319 | if(@n>0) |
---|
320 | { |
---|
321 | if(@n==size(@l[1])) |
---|
322 | { |
---|
323 | @l[1]=ideal(1); |
---|
324 | @v=1; |
---|
325 | @l[2]=@v; |
---|
326 | } |
---|
327 | else |
---|
328 | { |
---|
329 | @k=0; |
---|
330 | int pleh; |
---|
331 | for(@j=1;@j<=size(@l[1]);@j++) |
---|
332 | { |
---|
333 | if(leadcoef(@l[1][@j])!=@l[1][@j]) |
---|
334 | { |
---|
335 | @k++; |
---|
336 | @i=@i+ideal(@l[1][@j]); |
---|
337 | if(size(@i)==pleh) |
---|
338 | { |
---|
339 | "//factorization error"; |
---|
340 | @l; |
---|
341 | @k--; |
---|
342 | @v[@k]=@v[@k]+@l[2][@j]; |
---|
343 | } |
---|
344 | else |
---|
345 | { |
---|
346 | pleh++; |
---|
347 | @v[@k]=@l[2][@j]; |
---|
348 | } |
---|
349 | } |
---|
350 | } |
---|
351 | @l[1]=@i; |
---|
352 | @l[2]=@v; |
---|
353 | } |
---|
354 | } |
---|
355 | // } |
---|
356 | return(@l); |
---|
357 | } |
---|
358 | example |
---|
359 | { "EXAMPLE:"; echo = 2; |
---|
360 | ring r = 0,(x,y,z),lp; |
---|
361 | poly p = (x+y)^2*(y-z)^3; |
---|
362 | list l = factor(p); |
---|
363 | l; |
---|
364 | ring r1 =(0,b,d,f,g),(a,c,e),lp; |
---|
365 | poly p =(1*d)*e^2+(1*d*f^2*g); |
---|
366 | list l = factor(p); |
---|
367 | l; |
---|
368 | ring r2 =(0,b,f,g),(a,c,e,d),lp; |
---|
369 | poly p =(1*d)*e^2+(1*d*f^2*g); |
---|
370 | list l = factor(p); |
---|
371 | l; |
---|
372 | } |
---|
373 | |
---|
374 | /////////////////////////////////////////////////////////////////////////////// |
---|
375 | |
---|
376 | proc idealsEqual( ideal k, ideal j) |
---|
377 | { |
---|
378 | return(stdIdealsEqual(std(k),std(j))); |
---|
379 | } |
---|
380 | |
---|
381 | static proc specialIdealsEqual( ideal k1, ideal k2) |
---|
382 | { |
---|
383 | int j; |
---|
384 | |
---|
385 | if(size(k1)==size(k2)) |
---|
386 | { |
---|
387 | for(j=1;j<=size(k1);j++) |
---|
388 | { |
---|
389 | if(leadexp(k1[j])!=leadexp(k2[j])) |
---|
390 | { |
---|
391 | return(0); |
---|
392 | } |
---|
393 | } |
---|
394 | return(1); |
---|
395 | } |
---|
396 | return(0); |
---|
397 | } |
---|
398 | |
---|
399 | static proc stdIdealsEqual( ideal k1, ideal k2) |
---|
400 | { |
---|
401 | int j; |
---|
402 | if(size(k1)==size(k2)) |
---|
403 | { |
---|
404 | for(j=1;j<=size(k1);j++) |
---|
405 | { |
---|
406 | if(leadexp(k1[j])!=leadexp(k2[j])) |
---|
407 | { |
---|
408 | return(0); |
---|
409 | } |
---|
410 | } |
---|
411 | attrib(k2,"isSB",1); |
---|
412 | if(size(reduce(k1,k2,1))==0) |
---|
413 | { |
---|
414 | return(1); |
---|
415 | } |
---|
416 | } |
---|
417 | return(0); |
---|
418 | } |
---|
419 | /////////////////////////////////////////////////////////////////////////////// |
---|
420 | |
---|
421 | proc primaryTest (ideal i, poly p) |
---|
422 | { |
---|
423 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
424 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
425 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
426 | if(i[1]==1){return(ideal(1));} |
---|
427 | int m=1; |
---|
428 | int n=nvars(basering); |
---|
429 | int e,f; |
---|
430 | poly t; |
---|
431 | ideal h; |
---|
432 | list act; |
---|
433 | |
---|
434 | ideal prm=p; |
---|
435 | attrib(prm,"isSB",1); |
---|
436 | |
---|
437 | while (n>1) |
---|
438 | { |
---|
439 | n--; |
---|
440 | m++; |
---|
441 | |
---|
442 | //search for i[m] which has a power of var(n) as leading term |
---|
443 | if (n==1) |
---|
444 | { |
---|
445 | m=size(i); |
---|
446 | } |
---|
447 | else |
---|
448 | { |
---|
449 | while (lead(i[m])/var(n-1)==0) |
---|
450 | { |
---|
451 | m++; |
---|
452 | } |
---|
453 | m--; |
---|
454 | } |
---|
455 | //check whether i[m] =(c*var(n)+h)^e modulo prm for some |
---|
456 | //h in K[var(n+1),...,var(nvars(basering))], c in K |
---|
457 | //if not (0) is returned, else var(n)+h is added to prm |
---|
458 | |
---|
459 | e=deg(lead(i[m])); |
---|
460 | if(char(basering)!=0) |
---|
461 | { |
---|
462 | f=1; |
---|
463 | if(e mod char(basering)==0) |
---|
464 | { |
---|
465 | if ( voice >=15 ) |
---|
466 | { |
---|
467 | "// WARNING: The characteristic is perhaps too small to use"; |
---|
468 | "// the algorithm of Gianni/Trager/Zacharias."; |
---|
469 | "// This may result in an infinte loop"; |
---|
470 | "// loop in primaryTest, voice:",voice;""; |
---|
471 | } |
---|
472 | while(e mod char(basering)==0) |
---|
473 | { |
---|
474 | f=f*char(basering); |
---|
475 | e=e div char(basering); |
---|
476 | } |
---|
477 | } |
---|
478 | t=leadcoef(i[m])*e*var(n)^f+(i[m]-lead(i[m]))/var(n)^((e-1)*f); |
---|
479 | i[m]=poly(e)^e*leadcoef(i[m])^(e-1)*i[m]; |
---|
480 | if (reduce(i[m]-t^e,prm,1) !=0) |
---|
481 | { |
---|
482 | return(ideal(0)); |
---|
483 | } |
---|
484 | if(f>1) |
---|
485 | { |
---|
486 | act=factorize(t); |
---|
487 | if(size(act[1])>2) |
---|
488 | { |
---|
489 | return(ideal(0)); |
---|
490 | } |
---|
491 | if(deg(act[1][2])>1) |
---|
492 | { |
---|
493 | return(ideal(0)); |
---|
494 | } |
---|
495 | t=act[1][2]; |
---|
496 | } |
---|
497 | } |
---|
498 | else |
---|
499 | { |
---|
500 | t=leadcoef(i[m])*e*var(n)+(i[m]-lead(i[m]))/var(n)^(e-1); |
---|
501 | i[m]=poly(e)^e*leadcoef(i[m])^(e-1)*i[m]; |
---|
502 | if (reduce(i[m]-t^e,prm,1) !=0) |
---|
503 | { |
---|
504 | return(ideal(0)); |
---|
505 | } |
---|
506 | } |
---|
507 | |
---|
508 | h=interred(t); |
---|
509 | t=h[1]; |
---|
510 | |
---|
511 | prm = prm,t; |
---|
512 | attrib(prm,"isSB",1); |
---|
513 | } |
---|
514 | return(prm); |
---|
515 | } |
---|
516 | |
---|
517 | /////////////////////////////////////////////////////////////////////////////// |
---|
518 | proc gcdTest(ideal act) |
---|
519 | { |
---|
520 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
521 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
522 | int i,j; |
---|
523 | if(size(act)<=1) |
---|
524 | { |
---|
525 | return(0); |
---|
526 | } |
---|
527 | for (i=1;i<size(act);i++) |
---|
528 | { |
---|
529 | for(j=i+1;j<=size(act);j++) |
---|
530 | { |
---|
531 | if(deg(std(ideal(act[i],act[j]))[1])>0) |
---|
532 | { |
---|
533 | return(0); |
---|
534 | } |
---|
535 | } |
---|
536 | } |
---|
537 | return(1); |
---|
538 | } |
---|
539 | |
---|
540 | /////////////////////////////////////////////////////////////////////////////// |
---|
541 | static proc splitPrimary(list l,ideal ser,int @wr,list sact) |
---|
542 | { |
---|
543 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
544 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
545 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
546 | int i,j,k,s,r,w; |
---|
547 | list keepresult,act,keepprime; |
---|
548 | poly @f; |
---|
549 | int sl=size(l); |
---|
550 | for(i=sl div 2;i>=1;i--) |
---|
551 | { |
---|
552 | if(sact[2][i]>1) |
---|
553 | { |
---|
554 | keepprime[i]=l[2*i-1]+ideal(sact[1][i]); |
---|
555 | } |
---|
556 | else |
---|
557 | { |
---|
558 | keepprime[i]=l[2*i-1]; |
---|
559 | } |
---|
560 | } |
---|
561 | i=0; |
---|
562 | while(i<size(l) div 2) |
---|
563 | { |
---|
564 | i++; |
---|
565 | if((size(ser)>0)&&(size(reduce(ser,l[2*i-1],1))==0)) |
---|
566 | { |
---|
567 | l[2*i-1]=ideal(1); |
---|
568 | l[2*i]=ideal(1); |
---|
569 | continue; |
---|
570 | } |
---|
571 | |
---|
572 | if(size(l[2*i])==0) |
---|
573 | { |
---|
574 | if(homog(l[2*i-1])==1) |
---|
575 | { |
---|
576 | l[2*i]=maxideal(1); |
---|
577 | continue; |
---|
578 | } |
---|
579 | j=0; |
---|
580 | /* |
---|
581 | if(i<=sl div 2) |
---|
582 | { |
---|
583 | j=1; |
---|
584 | } |
---|
585 | */ |
---|
586 | while(j<size(l[2*i-1])) |
---|
587 | { |
---|
588 | j++; |
---|
589 | act=factor(l[2*i-1][j]); |
---|
590 | r=size(act[1]); |
---|
591 | attrib(l[2*i-1],"isSB",1); |
---|
592 | if((r==1)&&(vdim(l[2*i-1])==deg(l[2*i-1][j]))) |
---|
593 | { |
---|
594 | l[2*i]=std(l[2*i-1],act[1][1]); |
---|
595 | break; |
---|
596 | } |
---|
597 | if((r==1)&&(act[2][1]>1)) |
---|
598 | { |
---|
599 | keepprime[i]=interred(keepprime[i]+ideal(act[1][1])); |
---|
600 | if(homog(keepprime[i])==1) |
---|
601 | { |
---|
602 | l[2*i]=maxideal(1); |
---|
603 | break; |
---|
604 | } |
---|
605 | } |
---|
606 | if(gcdTest(act[1])==1) |
---|
607 | { |
---|
608 | for(k=2;k<=r;k++) |
---|
609 | { |
---|
610 | keepprime[size(l) div 2+k-1]=interred(keepprime[i]+ideal(act[1][k])); |
---|
611 | } |
---|
612 | keepprime[i]=interred(keepprime[i]+ideal(act[1][1])); |
---|
613 | for(k=1;k<=r;k++) |
---|
614 | { |
---|
615 | if(@wr==0) |
---|
616 | { |
---|
617 | keepresult[k]=std(l[2*i-1],act[1][k]^act[2][k]); |
---|
618 | } |
---|
619 | else |
---|
620 | { |
---|
621 | keepresult[k]=std(l[2*i-1],act[1][k]); |
---|
622 | } |
---|
623 | } |
---|
624 | l[2*i-1]=keepresult[1]; |
---|
625 | if(vdim(keepresult[1])==deg(act[1][1])) |
---|
626 | { |
---|
627 | l[2*i]=keepresult[1]; |
---|
628 | } |
---|
629 | if((homog(keepresult[1])==1)||(homog(keepprime[i])==1)) |
---|
630 | { |
---|
631 | l[2*i]=maxideal(1); |
---|
632 | } |
---|
633 | s=size(l)-2; |
---|
634 | for(k=2;k<=r;k++) |
---|
635 | { |
---|
636 | l[s+2*k-1]=keepresult[k]; |
---|
637 | keepprime[s div 2+k]=interred(keepresult[k]+ideal(act[1][k])); |
---|
638 | if(vdim(keepresult[k])==deg(act[1][k])) |
---|
639 | { |
---|
640 | l[s+2*k]=keepresult[k]; |
---|
641 | } |
---|
642 | else |
---|
643 | { |
---|
644 | l[s+2*k]=ideal(0); |
---|
645 | } |
---|
646 | if((homog(keepresult[k])==1)||(homog(keepprime[s div 2+k])==1)) |
---|
647 | { |
---|
648 | l[s+2*k]=maxideal(1); |
---|
649 | } |
---|
650 | } |
---|
651 | i--; |
---|
652 | break; |
---|
653 | } |
---|
654 | if(r>=2) |
---|
655 | { |
---|
656 | s=size(l); |
---|
657 | @f=act[1][1]; |
---|
658 | act=sat1(l[2*i-1],act[1][1]); |
---|
659 | if(deg(act[1][1])>0) |
---|
660 | { |
---|
661 | l[s+1]=std(l[2*i-1],act[2]); |
---|
662 | if(homog(l[s+1])==1) |
---|
663 | { |
---|
664 | l[s+2]=maxideal(1); |
---|
665 | } |
---|
666 | else |
---|
667 | { |
---|
668 | l[s+2]=ideal(0); |
---|
669 | } |
---|
670 | keepprime[s div 2+1]=interred(keepprime[i]+ideal(@f)); |
---|
671 | if(homog(keepprime[s div 2+1])==1) |
---|
672 | { |
---|
673 | l[s+2]=maxideal(1); |
---|
674 | } |
---|
675 | keepprime[i]=act[1]; |
---|
676 | l[2*i-1]=act[1]; |
---|
677 | attrib(l[2*i-1],"isSB",1); |
---|
678 | if(homog(l[2*i-1])==1) |
---|
679 | { |
---|
680 | l[2*i]=maxideal(1); |
---|
681 | } |
---|
682 | i--; |
---|
683 | break; |
---|
684 | } |
---|
685 | } |
---|
686 | } |
---|
687 | } |
---|
688 | } |
---|
689 | if(sl==size(l)) |
---|
690 | { |
---|
691 | return(l); |
---|
692 | } |
---|
693 | for(i=1;i<=size(l) div 2;i++) |
---|
694 | { |
---|
695 | attrib(l[2*i-1],"isSB",1); |
---|
696 | |
---|
697 | if((size(ser)>0)&&(size(reduce(ser,l[2*i-1],1))==0)&&(deg(l[2*i-1][1])>0)) |
---|
698 | { |
---|
699 | "Achtung in split"; |
---|
700 | |
---|
701 | l[2*i-1]=ideal(1); |
---|
702 | l[2*i]=ideal(1); |
---|
703 | } |
---|
704 | if((size(l[2*i])==0)&&(specialIdealsEqual(keepprime[i],l[2*i-1])!=1)) |
---|
705 | { |
---|
706 | keepprime[i]=std(keepprime[i]); |
---|
707 | if(homog(keepprime[i])==1) |
---|
708 | { |
---|
709 | l[2*i]=maxideal(1); |
---|
710 | } |
---|
711 | else |
---|
712 | { |
---|
713 | act=zero_decomp(keepprime[i],ideal(0),@wr,1); |
---|
714 | if(size(act)==2) |
---|
715 | { |
---|
716 | l[2*i]=act[2]; |
---|
717 | } |
---|
718 | } |
---|
719 | } |
---|
720 | } |
---|
721 | return(l); |
---|
722 | } |
---|
723 | example |
---|
724 | { "EXAMPLE:"; echo=2; |
---|
725 | ring r = 32003,(x,y,z),lp; |
---|
726 | ideal i1=x*(x+1),yz,(z+1)*(z-1); |
---|
727 | ideal i2=xy,yz,(x-2)*(x+3); |
---|
728 | list l=i1,ideal(0),i2,ideal(0),i2,ideal(1); |
---|
729 | list l1=splitPrimary(l,ideal(0),0); |
---|
730 | l1; |
---|
731 | } |
---|
732 | /////////////////////////////////////////////////////////////////////////////// |
---|
733 | static proc splitCharp(list l) |
---|
734 | { |
---|
735 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
736 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
737 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
738 | if((char(basering)==0)||(npars(basering)>0)) |
---|
739 | { |
---|
740 | return(l); |
---|
741 | } |
---|
742 | def op = option(get); |
---|
743 | def P=basering; |
---|
744 | int i,j,k,m,q,d,o; |
---|
745 | int n = nvars(basering); |
---|
746 | ideal s,t,u,sact; |
---|
747 | poly ni; |
---|
748 | string minp,gnir,va; |
---|
749 | list sa,keep,rp,keep1; |
---|
750 | for(i=1;i<=size(l) div 2;i++) |
---|
751 | { |
---|
752 | if(size(l[2*i])==0) |
---|
753 | { |
---|
754 | if(deg(l[2*i-1][1])==vdim(l[2*i-1])) |
---|
755 | { |
---|
756 | l[2*i]=l[2*i-1]; |
---|
757 | } |
---|
758 | } |
---|
759 | } |
---|
760 | for(i=1;i<=size(l) div 2;i++) |
---|
761 | { |
---|
762 | if(size(l[2*i])==0) |
---|
763 | { |
---|
764 | s=factorize(l[2*i-1][1],1); //vermeiden!!! |
---|
765 | t=l[2*i-1]; |
---|
766 | m=size(t); |
---|
767 | ni=s[1]; |
---|
768 | if(deg(ni)>1) |
---|
769 | { |
---|
770 | va=varstr(P); |
---|
771 | j=size(va); |
---|
772 | while(va[j]!=","){j--;} |
---|
773 | va=va[1..j-1]; |
---|
774 | gnir="ring RL=("+string(char(P))+","+string(var(n))+"),("+va+"),lp;"; |
---|
775 | execute(gnir); |
---|
776 | minpoly=leadcoef(imap(P,ni)); |
---|
777 | ideal act; |
---|
778 | ideal t=imap(P,t); |
---|
779 | |
---|
780 | for(k=2;k<=m;k++) |
---|
781 | { |
---|
782 | act=factorize(t[k],1); |
---|
783 | if(size(act)>1){break;} |
---|
784 | } |
---|
785 | setring P; |
---|
786 | sact=imap(RL,act); |
---|
787 | |
---|
788 | if(size(sact)>1) |
---|
789 | { |
---|
790 | sa=sat1(l[2*i-1],sact[1]); |
---|
791 | keep[size(keep)+1]=std(l[2*i-1],sa[2]); |
---|
792 | if(sa[1][1]==l[2*i-1][1]) |
---|
793 | { |
---|
794 | l[2*i-1]=std(sa[1]); |
---|
795 | l[2*i]=primaryTest(sa[1],s[1]); |
---|
796 | } |
---|
797 | else |
---|
798 | { |
---|
799 | l[2*i-1]=std(sa[1]); |
---|
800 | l[2*i]=primaryTest(sa[1],factorize(sa[1][1],1)[1]); |
---|
801 | } |
---|
802 | } |
---|
803 | if((size(sact)==1)&&(m==2)) |
---|
804 | { |
---|
805 | l[2*i]=l[2*i-1]; |
---|
806 | attrib(l[2*i],"isSB",1); |
---|
807 | } |
---|
808 | if((size(sact)==1)&&(m>2)) |
---|
809 | { |
---|
810 | setring RL; |
---|
811 | |
---|
812 | option(redSB); |
---|
813 | t=std(t); |
---|
814 | |
---|
815 | list sp=zero_decomp(t,0,0); |
---|
816 | |
---|
817 | setring P; |
---|
818 | rp=imap(RL,sp); |
---|
819 | for(o=1;o<=size(rp);o++) |
---|
820 | { |
---|
821 | rp[o]=interred(simplify(rp[o],1)+ideal(ni)); |
---|
822 | } |
---|
823 | l[2*i-1]=rp[1]; |
---|
824 | l[2*i]=rp[2]; |
---|
825 | rp=delete(rp,1); |
---|
826 | rp=delete(rp,1); |
---|
827 | keep1=keep1+rp; |
---|
828 | |
---|
829 | option(set,op); |
---|
830 | } |
---|
831 | kill RL; |
---|
832 | } |
---|
833 | } |
---|
834 | } |
---|
835 | if(size(keep)>0) |
---|
836 | { |
---|
837 | for(i=1;i<=size(keep);i++) |
---|
838 | { |
---|
839 | if(deg(keep[i][1])>0) |
---|
840 | { |
---|
841 | l[size(l)+1]=keep[i]; |
---|
842 | l[size(l)+1]=primaryTest(keep[i],factorize(keep[i][1],1)[1]); |
---|
843 | } |
---|
844 | } |
---|
845 | } |
---|
846 | l=l+keep1; |
---|
847 | option(set,op); |
---|
848 | return(l); |
---|
849 | } |
---|
850 | |
---|
851 | /////////////////////////////////////////////////////////////////////////////// |
---|
852 | |
---|
853 | proc zero_decomp (ideal j,ideal ser,int @wr,list #) |
---|
854 | "USAGE: zero_decomp(j,ser,@wr); j,ser ideals, @wr=0 or 1 |
---|
855 | (@wr=0 for primary decomposition, @wr=1 for computation of associated |
---|
856 | primes) |
---|
857 | RETURN: list = list of primary ideals and their radicals (at even positions |
---|
858 | in the list) if the input is zero-dimensional and a standardbases |
---|
859 | with respect to lex-ordering |
---|
860 | If ser!=(0) and ser is contained in j or if j is not zero-dimen- |
---|
861 | sional then ideal(1),ideal(1) is returned |
---|
862 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
863 | EXAMPLE: example zero_decomp; shows an example |
---|
864 | " |
---|
865 | { |
---|
866 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
867 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
868 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
869 | |
---|
870 | def @P = basering; |
---|
871 | int uytrewq; |
---|
872 | int nva = nvars(basering); |
---|
873 | int @k,@s,@n,@k1,zz; |
---|
874 | list primary,lres0,lres1,act,@lh,@wh; |
---|
875 | map phi,psi,phi1,psi1; |
---|
876 | ideal jmap,jmap1,jmap2,helpprim,@qh,@qht,ser1; |
---|
877 | intvec @vh,@hilb; |
---|
878 | string @ri; |
---|
879 | poly @f; |
---|
880 | if (dim(j)>0) |
---|
881 | { |
---|
882 | primary[1]=ideal(1); |
---|
883 | primary[2]=ideal(1); |
---|
884 | return(primary); |
---|
885 | } |
---|
886 | intvec save=option(get); |
---|
887 | option(redSB); |
---|
888 | j=interred(j); |
---|
889 | |
---|
890 | attrib(j,"isSB",1); |
---|
891 | |
---|
892 | if(vdim(j)==deg(j[1])) |
---|
893 | { |
---|
894 | act=factor(j[1]); |
---|
895 | for(@k=1;@k<=size(act[1]);@k++) |
---|
896 | { |
---|
897 | @qh=j; |
---|
898 | if(@wr==0) |
---|
899 | { |
---|
900 | @qh[1]=act[1][@k]^act[2][@k]; |
---|
901 | } |
---|
902 | else |
---|
903 | { |
---|
904 | @qh[1]=act[1][@k]; |
---|
905 | } |
---|
906 | primary[2*@k-1]=interred(@qh); |
---|
907 | @qh=j; |
---|
908 | @qh[1]=act[1][@k]; |
---|
909 | primary[2*@k]=interred(@qh); |
---|
910 | attrib( primary[2*@k-1],"isSB",1); |
---|
911 | |
---|
912 | if((size(ser)>0)&&(size(reduce(ser,primary[2*@k-1],1))==0)) |
---|
913 | { |
---|
914 | primary[2*@k-1]=ideal(1); |
---|
915 | primary[2*@k]=ideal(1); |
---|
916 | } |
---|
917 | } |
---|
918 | option(set,save); |
---|
919 | return(primary); |
---|
920 | } |
---|
921 | |
---|
922 | option(set,save); |
---|
923 | if(homog(j)==1) |
---|
924 | { |
---|
925 | primary[1]=j; |
---|
926 | if((size(ser)>0)&&(size(reduce(ser,j,1))==0)) |
---|
927 | { |
---|
928 | primary[1]=ideal(1); |
---|
929 | primary[2]=ideal(1); |
---|
930 | return(primary); |
---|
931 | } |
---|
932 | if(dim(j)==-1) |
---|
933 | { |
---|
934 | primary[1]=ideal(1); |
---|
935 | primary[2]=ideal(1); |
---|
936 | } |
---|
937 | else |
---|
938 | { |
---|
939 | primary[2]=maxideal(1); |
---|
940 | } |
---|
941 | return(primary); |
---|
942 | } |
---|
943 | |
---|
944 | //the first element in the standardbase is factorized |
---|
945 | if(deg(j[1])>0) |
---|
946 | { |
---|
947 | act=factor(j[1]); |
---|
948 | testFactor(act,j[1]); |
---|
949 | } |
---|
950 | else |
---|
951 | { |
---|
952 | primary[1]=ideal(1); |
---|
953 | primary[2]=ideal(1); |
---|
954 | return(primary); |
---|
955 | } |
---|
956 | |
---|
957 | //with the factors new ideals (hopefully the primary decomposition) |
---|
958 | //are created |
---|
959 | if(size(act[1])>1) |
---|
960 | { |
---|
961 | if(size(#)>1) |
---|
962 | { |
---|
963 | primary[1]=ideal(1); |
---|
964 | primary[2]=ideal(1); |
---|
965 | primary[3]=ideal(1); |
---|
966 | primary[4]=ideal(1); |
---|
967 | return(primary); |
---|
968 | } |
---|
969 | for(@k=1;@k<=size(act[1]);@k++) |
---|
970 | { |
---|
971 | if(@wr==0) |
---|
972 | { |
---|
973 | primary[2*@k-1]=std(j,act[1][@k]^act[2][@k]); |
---|
974 | } |
---|
975 | else |
---|
976 | { |
---|
977 | primary[2*@k-1]=std(j,act[1][@k]); |
---|
978 | } |
---|
979 | if((act[2][@k]==1)&&(vdim(primary[2*@k-1])==deg(act[1][@k]))) |
---|
980 | { |
---|
981 | primary[2*@k] = primary[2*@k-1]; |
---|
982 | } |
---|
983 | else |
---|
984 | { |
---|
985 | primary[2*@k] = primaryTest(primary[2*@k-1],act[1][@k]); |
---|
986 | } |
---|
987 | } |
---|
988 | } |
---|
989 | else |
---|
990 | { |
---|
991 | primary[1]=j; |
---|
992 | if((size(#)>0)&&(act[2][1]>1)) |
---|
993 | { |
---|
994 | act[2]=1; |
---|
995 | primary[1]=std(primary[1],act[1][1]); |
---|
996 | } |
---|
997 | if(@wr!=0) |
---|
998 | { |
---|
999 | primary[1]=std(j,act[1][1]); |
---|
1000 | } |
---|
1001 | if((act[2][1]==1)&&(vdim(primary[1])==deg(act[1][1]))) |
---|
1002 | { |
---|
1003 | primary[2]=primary[1]; |
---|
1004 | } |
---|
1005 | else |
---|
1006 | { |
---|
1007 | primary[2]=primaryTest(primary[1],act[1][1]); |
---|
1008 | } |
---|
1009 | } |
---|
1010 | |
---|
1011 | if(size(#)==0) |
---|
1012 | { |
---|
1013 | primary=splitPrimary(primary,ser,@wr,act); |
---|
1014 | } |
---|
1015 | |
---|
1016 | if((voice>=6)&&(char(basering)<=181)) |
---|
1017 | { |
---|
1018 | primary=splitCharp(primary); |
---|
1019 | } |
---|
1020 | |
---|
1021 | if((@wr==2)&&(npars(basering)>0)&&(voice>=6)&&(char(basering)>0)) |
---|
1022 | { |
---|
1023 | //the prime decomposition of Yokoyama in characteristic p |
---|
1024 | list ke,ek; |
---|
1025 | @k=0; |
---|
1026 | while(@k<size(primary) div 2) |
---|
1027 | { |
---|
1028 | @k++; |
---|
1029 | if(size(primary[2*@k])==0) |
---|
1030 | { |
---|
1031 | ek=insepDecomp(primary[2*@k-1]); |
---|
1032 | primary=delete(primary,2*@k); |
---|
1033 | primary=delete(primary,2*@k-1); |
---|
1034 | @k--; |
---|
1035 | } |
---|
1036 | ke=ke+ek; |
---|
1037 | } |
---|
1038 | for(@k=1;@k<=size(ke);@k++) |
---|
1039 | { |
---|
1040 | primary[size(primary)+1]=ke[@k]; |
---|
1041 | primary[size(primary)+1]=ke[@k]; |
---|
1042 | } |
---|
1043 | } |
---|
1044 | |
---|
1045 | if(voice>=8){primary=extF(primary);}; |
---|
1046 | |
---|
1047 | //test whether all ideals in the decomposition are primary and |
---|
1048 | //in general position |
---|
1049 | //if not after a random coordinate transformation of the last |
---|
1050 | //variable the corresponding ideal is decomposed again. |
---|
1051 | if((npars(basering)>0)&&(voice>=8)) |
---|
1052 | { |
---|
1053 | poly randp; |
---|
1054 | for(zz=1;zz<nvars(basering);zz++) |
---|
1055 | { |
---|
1056 | randp=randp |
---|
1057 | +(random(0,5)*par(1)^2+random(0,5)*par(1)+random(0,5))*var(zz); |
---|
1058 | } |
---|
1059 | randp=randp+var(nvars(basering)); |
---|
1060 | } |
---|
1061 | @k=0; |
---|
1062 | while(@k<(size(primary) div 2)) |
---|
1063 | { |
---|
1064 | @k++; |
---|
1065 | if (size(primary[2*@k])==0) |
---|
1066 | { |
---|
1067 | for(zz=1;zz<size(primary[2*@k-1])-1;zz++) |
---|
1068 | { |
---|
1069 | attrib(primary[2*@k-1],"isSB",1); |
---|
1070 | if(vdim(primary[2*@k-1])==deg(primary[2*@k-1][zz])) |
---|
1071 | { |
---|
1072 | primary[2*@k]=primary[2*@k-1]; |
---|
1073 | } |
---|
1074 | } |
---|
1075 | } |
---|
1076 | } |
---|
1077 | |
---|
1078 | @k=0; |
---|
1079 | ideal keep; |
---|
1080 | while(@k<(size(primary) div 2)) |
---|
1081 | { |
---|
1082 | @k++; |
---|
1083 | if (size(primary[2*@k])==0) |
---|
1084 | { |
---|
1085 | jmap=randomLast(100); |
---|
1086 | jmap1=maxideal(1); |
---|
1087 | jmap2=maxideal(1); |
---|
1088 | @qht=primary[2*@k-1]; |
---|
1089 | if((npars(basering)>0)&&(voice>=10)) |
---|
1090 | { |
---|
1091 | jmap[size(jmap)]=randp; |
---|
1092 | } |
---|
1093 | |
---|
1094 | for(@n=2;@n<=size(primary[2*@k-1]);@n++) |
---|
1095 | { |
---|
1096 | if(deg(lead(primary[2*@k-1][@n]))==1) |
---|
1097 | { |
---|
1098 | for(zz=1;zz<=nva;zz++) |
---|
1099 | { |
---|
1100 | if(lead(primary[2*@k-1][@n])/var(zz)!=0) |
---|
1101 | { |
---|
1102 | jmap1[zz]=-1/leadcoef(primary[2*@k-1][@n])*primary[2*@k-1][@n] |
---|
1103 | +2/leadcoef(primary[2*@k-1][@n])*lead(primary[2*@k-1][@n]); |
---|
1104 | jmap2[zz]=primary[2*@k-1][@n]; |
---|
1105 | @qht[@n]=var(zz); |
---|
1106 | } |
---|
1107 | } |
---|
1108 | jmap[nva]=subst(jmap[nva],lead(primary[2*@k-1][@n]),0); |
---|
1109 | } |
---|
1110 | } |
---|
1111 | if(size(subst(jmap[nva],var(1),0)-var(nva))!=0) |
---|
1112 | { |
---|
1113 | // jmap[nva]=subst(jmap[nva],var(1),0); |
---|
1114 | //hier geaendert +untersuchen!!!!!!!!!!!!!! |
---|
1115 | } |
---|
1116 | phi1=@P,jmap1; |
---|
1117 | phi=@P,jmap; |
---|
1118 | for(@n=1;@n<=nva;@n++) |
---|
1119 | { |
---|
1120 | jmap[@n]=-(jmap[@n]-2*var(@n)); |
---|
1121 | } |
---|
1122 | psi=@P,jmap; |
---|
1123 | psi1=@P,jmap2; |
---|
1124 | @qh=phi(@qht); |
---|
1125 | |
---|
1126 | //=================== the new part ============================ |
---|
1127 | |
---|
1128 | if (npars(basering)>1) { @qh=groebner(@qh,"par2var"); } |
---|
1129 | else { @qh=groebner(@qh); } |
---|
1130 | |
---|
1131 | //============================================================= |
---|
1132 | // if(npars(@P)>0) |
---|
1133 | // { |
---|
1134 | // @ri= "ring @Phelp =" |
---|
1135 | // +string(char(@P))+", |
---|
1136 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
1137 | // } |
---|
1138 | // else |
---|
1139 | // { |
---|
1140 | // @ri= "ring @Phelp =" |
---|
1141 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
1142 | // } |
---|
1143 | // execute(@ri); |
---|
1144 | // ideal @qh=homog(imap(@P,@qht),@t); |
---|
1145 | // |
---|
1146 | // ideal @qh1=std(@qh); |
---|
1147 | // @hilb=hilb(@qh1,1); |
---|
1148 | // @ri= "ring @Phelp1 =" |
---|
1149 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
1150 | // execute(@ri); |
---|
1151 | // ideal @qh=homog(imap(@P,@qh),@t); |
---|
1152 | // kill @Phelp; |
---|
1153 | // @qh=std(@qh,@hilb); |
---|
1154 | // @qh=subst(@qh,@t,1); |
---|
1155 | // setring @P; |
---|
1156 | // @qh=imap(@Phelp1,@qh); |
---|
1157 | // kill @Phelp1; |
---|
1158 | // @qh=clearSB(@qh); |
---|
1159 | // attrib(@qh,"isSB",1); |
---|
1160 | //============================================================= |
---|
1161 | |
---|
1162 | ser1=phi1(ser); |
---|
1163 | @lh=zero_decomp (@qh,phi(ser1),@wr); |
---|
1164 | |
---|
1165 | kill lres0; |
---|
1166 | list lres0; |
---|
1167 | if((size(@lh)==2)&&(@lh[1]!=1)) |
---|
1168 | { |
---|
1169 | helpprim=@lh[2]; |
---|
1170 | lres0[1]=primary[2*@k-1]; |
---|
1171 | attrib(lres0[1],"isSB",1); |
---|
1172 | ser1=psi(helpprim); |
---|
1173 | lres0[2]=psi1(ser1); |
---|
1174 | if(size(reduce(lres0[2],lres0[1],1))==0) |
---|
1175 | { |
---|
1176 | primary[2*@k]=primary[2*@k-1]; |
---|
1177 | continue; |
---|
1178 | } |
---|
1179 | } |
---|
1180 | else |
---|
1181 | { |
---|
1182 | lres1=psi(@lh); |
---|
1183 | lres0=psi1(lres1); |
---|
1184 | } |
---|
1185 | |
---|
1186 | //=================== the new part ============================ |
---|
1187 | |
---|
1188 | primary=delete(primary,2*@k-1); |
---|
1189 | primary=delete(primary,2*@k-1); |
---|
1190 | @k--; |
---|
1191 | if(size(lres0)==2) |
---|
1192 | { |
---|
1193 | lres0[2]=groebner(lres0[2]); |
---|
1194 | } |
---|
1195 | else |
---|
1196 | { |
---|
1197 | for(@n=1;@n<=size(lres0) div 2;@n++) |
---|
1198 | { |
---|
1199 | if(specialIdealsEqual(lres0[2*@n-1],lres0[2*@n])==1) |
---|
1200 | { |
---|
1201 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
1202 | lres0[2*@n]=lres0[2*@n-1]; |
---|
1203 | attrib(lres0[2*@n],"isSB",1); |
---|
1204 | } |
---|
1205 | else |
---|
1206 | { |
---|
1207 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
1208 | lres0[2*@n]=groebner(lres0[2*@n]); |
---|
1209 | } |
---|
1210 | } |
---|
1211 | } |
---|
1212 | primary=primary+lres0; |
---|
1213 | |
---|
1214 | //============================================================= |
---|
1215 | // if(npars(@P)>0) |
---|
1216 | // { |
---|
1217 | // @ri= "ring @Phelp =" |
---|
1218 | // +string(char(@P))+", |
---|
1219 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
1220 | // } |
---|
1221 | // else |
---|
1222 | // { |
---|
1223 | // @ri= "ring @Phelp =" |
---|
1224 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
1225 | // } |
---|
1226 | // execute(@ri); |
---|
1227 | // list @lvec; |
---|
1228 | // list @lr=imap(@P,lres0); |
---|
1229 | // ideal @lr1; |
---|
1230 | // |
---|
1231 | // if(size(@lr)==2) |
---|
1232 | // { |
---|
1233 | // @lr[2]=homog(@lr[2],@t); |
---|
1234 | // @lr1=std(@lr[2]); |
---|
1235 | // @lvec[2]=hilb(@lr1,1); |
---|
1236 | // } |
---|
1237 | // else |
---|
1238 | // { |
---|
1239 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
1240 | // { |
---|
1241 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
1242 | // { |
---|
1243 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
1244 | // @lr1=std(@lr[2*@n-1]); |
---|
1245 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
1246 | // @lvec[2*@n]=@lvec[2*@n-1]; |
---|
1247 | // } |
---|
1248 | // else |
---|
1249 | // { |
---|
1250 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
1251 | // @lr1=std(@lr[2*@n-1]); |
---|
1252 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
1253 | // @lr[2*@n]=homog(@lr[2*@n],@t); |
---|
1254 | // @lr1=std(@lr[2*@n]); |
---|
1255 | // @lvec[2*@n]=hilb(@lr1,1); |
---|
1256 | // |
---|
1257 | // } |
---|
1258 | // } |
---|
1259 | // } |
---|
1260 | // @ri= "ring @Phelp1 =" |
---|
1261 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
1262 | // execute(@ri); |
---|
1263 | // list @lr=imap(@Phelp,@lr); |
---|
1264 | // |
---|
1265 | // kill @Phelp; |
---|
1266 | // if(size(@lr)==2) |
---|
1267 | // { |
---|
1268 | // @lr[2]=std(@lr[2],@lvec[2]); |
---|
1269 | // @lr[2]=subst(@lr[2],@t,1); |
---|
1270 | // } |
---|
1271 | // else |
---|
1272 | // { |
---|
1273 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
1274 | // { |
---|
1275 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
1276 | // { |
---|
1277 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
1278 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
1279 | // @lr[2*@n]=@lr[2*@n-1]; |
---|
1280 | // attrib(@lr[2*@n],"isSB",1); |
---|
1281 | // } |
---|
1282 | // else |
---|
1283 | // { |
---|
1284 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
1285 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
1286 | // @lr[2*@n]=std(@lr[2*@n],@lvec[2*@n]); |
---|
1287 | // @lr[2*@n]=subst(@lr[2*@n],@t,1); |
---|
1288 | // } |
---|
1289 | // } |
---|
1290 | // } |
---|
1291 | // kill @lvec; |
---|
1292 | // setring @P; |
---|
1293 | // lres0=imap(@Phelp1,@lr); |
---|
1294 | // kill @Phelp1; |
---|
1295 | // for(@n=1;@n<=size(lres0);@n++) |
---|
1296 | // { |
---|
1297 | // lres0[@n]=clearSB(lres0[@n]); |
---|
1298 | // attrib(lres0[@n],"isSB",1); |
---|
1299 | // } |
---|
1300 | // |
---|
1301 | // primary[2*@k-1]=lres0[1]; |
---|
1302 | // primary[2*@k]=lres0[2]; |
---|
1303 | // @s=size(primary) div 2; |
---|
1304 | // for(@n=1;@n<=size(lres0) div 2-1;@n++) |
---|
1305 | // { |
---|
1306 | // primary[2*@s+2*@n-1]=lres0[2*@n+1]; |
---|
1307 | // primary[2*@s+2*@n]=lres0[2*@n+2]; |
---|
1308 | // } |
---|
1309 | // @k--; |
---|
1310 | //============================================================= |
---|
1311 | } |
---|
1312 | } |
---|
1313 | return(primary); |
---|
1314 | } |
---|
1315 | example |
---|
1316 | { "EXAMPLE:"; echo = 2; |
---|
1317 | ring r = 0,(x,y,z),lp; |
---|
1318 | poly p = z2+1; |
---|
1319 | poly q = z4+2; |
---|
1320 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
1321 | i=std(i); |
---|
1322 | list pr= zero_decomp(i,ideal(0),0); |
---|
1323 | pr; |
---|
1324 | } |
---|
1325 | /////////////////////////////////////////////////////////////////////////////// |
---|
1326 | proc extF(list l,list #) |
---|
1327 | { |
---|
1328 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1329 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1330 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1331 | //zero_dimensional primary decomposition after finite field extension |
---|
1332 | def R=basering; |
---|
1333 | int p=char(R); |
---|
1334 | |
---|
1335 | if((p==0)||(p>13)||(npars(R)>0)){return(l);} |
---|
1336 | |
---|
1337 | int ex=3; |
---|
1338 | if(size(#)>0){ex=#[1];} |
---|
1339 | |
---|
1340 | list peek,peek1; |
---|
1341 | while(size(l)>0) |
---|
1342 | { |
---|
1343 | if(size(l[2])==0) |
---|
1344 | { |
---|
1345 | peek[size(peek)+1]=l[1]; |
---|
1346 | } |
---|
1347 | else |
---|
1348 | { |
---|
1349 | peek1[size(peek1)+1]=l[1]; |
---|
1350 | peek1[size(peek1)+1]=l[2]; |
---|
1351 | } |
---|
1352 | l=delete(l,1); |
---|
1353 | l=delete(l,1); |
---|
1354 | } |
---|
1355 | if(size(peek)==0){return(peek1);} |
---|
1356 | |
---|
1357 | string gnir="ring RH=("+string(p)+"^"+string(ex)+",a),("+varstr(R)+"),lp;"; |
---|
1358 | execute(gnir); |
---|
1359 | string mp="minpoly="+string(minpoly)+";"; |
---|
1360 | gnir="ring RL=("+string(p)+",a),("+varstr(R)+"),lp;"; |
---|
1361 | execute(gnir); |
---|
1362 | execute(mp); |
---|
1363 | list L=imap(R,peek); |
---|
1364 | list pr, keep; |
---|
1365 | int i; |
---|
1366 | for(i=1;i<=size(L);i++) |
---|
1367 | { |
---|
1368 | attrib(L[i],"isSB",1); |
---|
1369 | pr=zero_decomp(L[i],0,0); |
---|
1370 | keep=keep+pr; |
---|
1371 | } |
---|
1372 | for(i=1;i<=size(keep);i++) |
---|
1373 | { |
---|
1374 | keep[i]=simplify(keep[i],1); |
---|
1375 | } |
---|
1376 | mp="poly pp="+string(minpoly)+";"; |
---|
1377 | |
---|
1378 | string gnir1="ring RS="+string(p)+",("+varstr(R)+",a),lp;"; |
---|
1379 | execute(gnir1); |
---|
1380 | execute(mp); |
---|
1381 | list L=imap(RL,keep); |
---|
1382 | |
---|
1383 | for(i=1;i<=size(L);i++) |
---|
1384 | { |
---|
1385 | L[i]=eliminate(L[i]+ideal(pp),a); |
---|
1386 | } |
---|
1387 | i=0; |
---|
1388 | int j; |
---|
1389 | while(i<size(L) div 2-1) |
---|
1390 | { |
---|
1391 | i++; |
---|
1392 | j=i; |
---|
1393 | while(j<size(L) div 2) |
---|
1394 | { |
---|
1395 | j++; |
---|
1396 | if(idealsEqual(L[2*i-1],L[2*j-1])) |
---|
1397 | { |
---|
1398 | L=delete(L,2*j-1); |
---|
1399 | L=delete(L,2*j-1); |
---|
1400 | j--; |
---|
1401 | } |
---|
1402 | } |
---|
1403 | } |
---|
1404 | setring R; |
---|
1405 | list re=imap(RS,L); |
---|
1406 | re=re+peek1; |
---|
1407 | |
---|
1408 | return(extF(re,ex+1)); |
---|
1409 | } |
---|
1410 | |
---|
1411 | /////////////////////////////////////////////////////////////////////////////// |
---|
1412 | proc zeroSp(ideal i) |
---|
1413 | { |
---|
1414 | //preparation for the separable closure |
---|
1415 | //decomposition into ideals of special type |
---|
1416 | //i.e. the minimal polynomials of every variable mod i are irreducible |
---|
1417 | //returns a list of 2 lists: rr=pe,qe |
---|
1418 | //the ideals in pe[l] are special, their special elements are in qe[l] |
---|
1419 | //pe[l] is a dp-Groebnerbasis |
---|
1420 | //the radical of the intersection of the pe[l] is equal to the radical of i |
---|
1421 | |
---|
1422 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1423 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1424 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1425 | def R=basering; |
---|
1426 | |
---|
1427 | //i has to be a reduced groebner basis |
---|
1428 | ASSUME(1, dim(i)==0); |
---|
1429 | ideal F=finduni(i); |
---|
1430 | |
---|
1431 | int j,k,l,ready; |
---|
1432 | list fa; |
---|
1433 | fa[1]=factorize(F[1],1); |
---|
1434 | poly te,ti; |
---|
1435 | ideal tj; |
---|
1436 | //avoid factorization of the same polynomial |
---|
1437 | for(j=2;j<=size(F);j++) |
---|
1438 | { |
---|
1439 | for(k=1;k<j;k++) |
---|
1440 | { |
---|
1441 | ti=F[k]; |
---|
1442 | te=subst(ti,var(k),var(j)); |
---|
1443 | if(te==F[j]) |
---|
1444 | { |
---|
1445 | tj=fa[k]; |
---|
1446 | fa[j]=subst(tj,var(k),var(j)); |
---|
1447 | ready=1; |
---|
1448 | break; |
---|
1449 | } |
---|
1450 | } |
---|
1451 | if(!ready) |
---|
1452 | { |
---|
1453 | fa[j]=factorize(F[j],1); |
---|
1454 | } |
---|
1455 | ready=0; |
---|
1456 | } |
---|
1457 | def P=changeordTo(R,"dp"); |
---|
1458 | setring P; |
---|
1459 | ideal i=imap(R,i); |
---|
1460 | if(npars(basering)==0) |
---|
1461 | { |
---|
1462 | ideal J=fglm(R,i); |
---|
1463 | } |
---|
1464 | else |
---|
1465 | { |
---|
1466 | ideal J=groebner(i); |
---|
1467 | } |
---|
1468 | list fa=imap(R,fa); |
---|
1469 | list qe=J; //collects a dp-Groebnerbasis of the special ideals |
---|
1470 | list keep=ideal(0); //collects the special elements |
---|
1471 | |
---|
1472 | list re,em,ke; |
---|
1473 | ideal K,L; |
---|
1474 | |
---|
1475 | for(j=1;j<=nvars(basering);j++) |
---|
1476 | { |
---|
1477 | for(l=1;l<=size(qe);l++) |
---|
1478 | { |
---|
1479 | for(k=1;k<=size(fa[j]);k++) |
---|
1480 | { |
---|
1481 | L=std(qe[l],fa[j][k]); |
---|
1482 | K=keep[l],fa[j][k]; |
---|
1483 | if(deg(L[1])>0) |
---|
1484 | { |
---|
1485 | re[size(re)+1]=L; |
---|
1486 | ke[size(ke)+1]=K; |
---|
1487 | } |
---|
1488 | } |
---|
1489 | } |
---|
1490 | qe=re; |
---|
1491 | re=em; |
---|
1492 | keep=ke; |
---|
1493 | ke=em; |
---|
1494 | } |
---|
1495 | |
---|
1496 | setring R; |
---|
1497 | list qe=imap(P,keep); |
---|
1498 | list pe=imap(P,qe); |
---|
1499 | for(l=1;l<=size(qe);l++) |
---|
1500 | { |
---|
1501 | qe[l]=simplify(qe[l],2); |
---|
1502 | } |
---|
1503 | list rr=pe,qe; |
---|
1504 | return(rr); |
---|
1505 | } |
---|
1506 | /////////////////////////////////////////////////////////////////////////////// |
---|
1507 | |
---|
1508 | proc zeroSepClos(ideal I,ideal F) |
---|
1509 | { |
---|
1510 | //computes the separable closure of the special ideal I |
---|
1511 | //F is the set of special elements of I |
---|
1512 | //returns the separable closure sc(I) of I and an intvec v |
---|
1513 | //such that sc(I)=preimage(frobenius definde by v) |
---|
1514 | //i.e. var(i)----->var(i)^(p^v[i]) |
---|
1515 | |
---|
1516 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1517 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1518 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1519 | |
---|
1520 | if(homog(I)==1){return(maxideal(1));} |
---|
1521 | |
---|
1522 | //assume F[i] irreducible in I and depending only on var(i) |
---|
1523 | |
---|
1524 | def R=basering; |
---|
1525 | int n=nvars(R); |
---|
1526 | int p=char(R); |
---|
1527 | intvec v; |
---|
1528 | v[n]=0; |
---|
1529 | int i,k; |
---|
1530 | list l; |
---|
1531 | |
---|
1532 | for(i=1;i<=n;i++) |
---|
1533 | { |
---|
1534 | l[i]=sep(F[i],i); |
---|
1535 | F[i]=l[i][1]; |
---|
1536 | if(l[i][2]>k){k=l[i][2];} |
---|
1537 | } |
---|
1538 | |
---|
1539 | if(k==0){return(list(I,v));} //the separable case |
---|
1540 | ideal m; |
---|
1541 | |
---|
1542 | for(i=1;i<=n;i++) |
---|
1543 | { |
---|
1544 | m[i]=var(i)^(p^l[i][2]); |
---|
1545 | v[i]=l[i][2]; |
---|
1546 | } |
---|
1547 | map phi=R,m; |
---|
1548 | ideal J=preimage(R,phi,I); |
---|
1549 | return(list(J,v)); |
---|
1550 | } |
---|
1551 | /////////////////////////////////////////////////////////////////////////////// |
---|
1552 | |
---|
1553 | proc insepDecomp(ideal i) |
---|
1554 | { |
---|
1555 | //decomposes i into special ideals |
---|
1556 | //computes the prime decomposition of the special ideals |
---|
1557 | //and transforms it back to a decomposition of i |
---|
1558 | |
---|
1559 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
1560 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1561 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1562 | def R=basering; |
---|
1563 | list pr=zeroSp(i); |
---|
1564 | int l,k; |
---|
1565 | list re,wo,qr; |
---|
1566 | ideal m=maxideal(1); |
---|
1567 | ideal K; |
---|
1568 | map phi=R,m; |
---|
1569 | int p=char(R); |
---|
1570 | intvec op=option(get); |
---|
1571 | |
---|
1572 | for(l=1;l<=size(pr[1]);l++) |
---|
1573 | { |
---|
1574 | wo=zeroSepClos(pr[1][l],pr[2][l]); |
---|
1575 | for(k=1;k<=nvars(basering);k++) |
---|
1576 | { |
---|
1577 | m[k]=var(k)^(p^wo[2][k]); |
---|
1578 | } |
---|
1579 | phi=R,m; |
---|
1580 | qr=decomp(wo[1],2); |
---|
1581 | |
---|
1582 | option(redSB); |
---|
1583 | for(k=1;k<=size(qr) div 2;k++) |
---|
1584 | { |
---|
1585 | K=qr[2*k]; |
---|
1586 | K=phi(K); |
---|
1587 | K=groebner(K); |
---|
1588 | re[size(re)+1]=zeroRad(K); |
---|
1589 | } |
---|
1590 | option(noredSB); |
---|
1591 | } |
---|
1592 | option(set,op); |
---|
1593 | return(re); |
---|
1594 | } |
---|
1595 | |
---|
1596 | |
---|
1597 | /////////////////////////////////////////////////////////////////////////////// |
---|
1598 | |
---|
1599 | static proc clearSB (ideal i,list #) |
---|
1600 | "USAGE: clearSB(i); i ideal which is SB ordered by monomial ordering |
---|
1601 | RETURN: ideal = minimal SB |
---|
1602 | NOTE: |
---|
1603 | EXAMPLE: example clearSB; shows an example |
---|
1604 | " |
---|
1605 | { |
---|
1606 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1607 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1608 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1609 | int k,j; |
---|
1610 | poly m; |
---|
1611 | int c=size(i); |
---|
1612 | |
---|
1613 | if(size(#)==0) |
---|
1614 | { |
---|
1615 | for(j=1;j<c;j++) |
---|
1616 | { |
---|
1617 | if(deg(i[j])==0) |
---|
1618 | { |
---|
1619 | i=ideal(1); |
---|
1620 | return(i); |
---|
1621 | } |
---|
1622 | if(deg(i[j])>0) |
---|
1623 | { |
---|
1624 | m=lead(i[j]); |
---|
1625 | for(k=j+1;k<=c;k++) |
---|
1626 | { |
---|
1627 | if(size(lead(i[k])/m)>0) |
---|
1628 | { |
---|
1629 | i[k]=0; |
---|
1630 | } |
---|
1631 | } |
---|
1632 | } |
---|
1633 | } |
---|
1634 | } |
---|
1635 | else |
---|
1636 | { |
---|
1637 | j=0; |
---|
1638 | while(j<c-1) |
---|
1639 | { |
---|
1640 | j++; |
---|
1641 | if(deg(i[j])==0) |
---|
1642 | { |
---|
1643 | i=ideal(1); |
---|
1644 | return(i); |
---|
1645 | } |
---|
1646 | if(deg(i[j])>0) |
---|
1647 | { |
---|
1648 | m=lead(i[j]); |
---|
1649 | for(k=j+1;k<=c;k++) |
---|
1650 | { |
---|
1651 | if(size(lead(i[k])/m)>0) |
---|
1652 | { |
---|
1653 | if((leadexp(m)!=leadexp(i[k]))||(#[j]<=#[k])) |
---|
1654 | { |
---|
1655 | i[k]=0; |
---|
1656 | } |
---|
1657 | else |
---|
1658 | { |
---|
1659 | i[j]=0; |
---|
1660 | break; |
---|
1661 | } |
---|
1662 | } |
---|
1663 | } |
---|
1664 | } |
---|
1665 | } |
---|
1666 | } |
---|
1667 | return(simplify(i,2)); |
---|
1668 | } |
---|
1669 | example |
---|
1670 | { "EXAMPLE:"; echo = 2; |
---|
1671 | ring r = (0,a,b),(x,y,z),dp; |
---|
1672 | ideal i=ax2+y,a2x+y,bx; |
---|
1673 | list l=1,2,1; |
---|
1674 | ideal j=clearSB(i,l); |
---|
1675 | j; |
---|
1676 | } |
---|
1677 | |
---|
1678 | /////////////////////////////////////////////////////////////////////////////// |
---|
1679 | static proc clearSBNeu (ideal i,list #) |
---|
1680 | "USAGE: clearSB(i); i ideal which is SB ordered by monomial ordering |
---|
1681 | RETURN: ideal = minimal SB |
---|
1682 | NOTE: |
---|
1683 | EXAMPLE: example clearSB; shows an example |
---|
1684 | " |
---|
1685 | { |
---|
1686 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1687 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1688 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1689 | int k,j; |
---|
1690 | intvec m,n,v,w; |
---|
1691 | int c=size(i); |
---|
1692 | w=leadexp(0); |
---|
1693 | v[size(i)]=0; |
---|
1694 | |
---|
1695 | j=0; |
---|
1696 | while(j<c-1) |
---|
1697 | { |
---|
1698 | j++; |
---|
1699 | if(deg(i[j])>=0) |
---|
1700 | { |
---|
1701 | m=leadexp(i[j]); |
---|
1702 | for(k=j+1;k<=c;k++) |
---|
1703 | { |
---|
1704 | n=leadexp(i[k]); |
---|
1705 | if(n!=w) |
---|
1706 | { |
---|
1707 | if(((m==n)&&(#[j]>#[k]))||((teilt(n,m))&&(n!=m))) |
---|
1708 | { |
---|
1709 | i[j]=0; |
---|
1710 | v[j]=1; |
---|
1711 | break; |
---|
1712 | } |
---|
1713 | if(((m==n)&&(#[j]<=#[k]))||((teilt(m,n))&&(n!=m))) |
---|
1714 | { |
---|
1715 | i[k]=0; |
---|
1716 | v[k]=1; |
---|
1717 | } |
---|
1718 | } |
---|
1719 | } |
---|
1720 | } |
---|
1721 | } |
---|
1722 | return(v); |
---|
1723 | } |
---|
1724 | |
---|
1725 | static proc teilt(intvec a, intvec b) |
---|
1726 | { |
---|
1727 | int i; |
---|
1728 | for(i=1;i<=size(a);i++) |
---|
1729 | { |
---|
1730 | if(a[i]>b[i]){return(0);} |
---|
1731 | } |
---|
1732 | return(1); |
---|
1733 | } |
---|
1734 | /////////////////////////////////////////////////////////////////////////////// |
---|
1735 | |
---|
1736 | static proc independSet (ideal j) |
---|
1737 | "USAGE: independentSet(i); i ideal |
---|
1738 | RETURN: list = new varstring with the independent set at the end, |
---|
1739 | ordstring with the corresponding block ordering, |
---|
1740 | the integer where the independent set starts in the varstring |
---|
1741 | NOTE: |
---|
1742 | EXAMPLE: example independentSet; shows an example |
---|
1743 | " |
---|
1744 | { |
---|
1745 | int n,k,di; |
---|
1746 | list resu,hilf; |
---|
1747 | string var1,var2; |
---|
1748 | list v=indepSet(j,1); |
---|
1749 | |
---|
1750 | for(n=1;n<=size(v);n++) |
---|
1751 | { |
---|
1752 | di=0; |
---|
1753 | var1=""; |
---|
1754 | var2=""; |
---|
1755 | for(k=1;k<=size(v[n]);k++) |
---|
1756 | { |
---|
1757 | if(v[n][k]!=0) |
---|
1758 | { |
---|
1759 | di++; |
---|
1760 | var2=var2+"var("+string(k)+"),"; |
---|
1761 | } |
---|
1762 | else |
---|
1763 | { |
---|
1764 | var1=var1+"var("+string(k)+"),"; |
---|
1765 | } |
---|
1766 | } |
---|
1767 | if(di>0) |
---|
1768 | { |
---|
1769 | var1=var1+var2; |
---|
1770 | var1=var1[1..size(var1)-1]; |
---|
1771 | hilf[1]=var1; |
---|
1772 | hilf[2]="lp"; |
---|
1773 | //"lp("+string(nvars(basering)-di)+"),dp("+string(di)+")"; |
---|
1774 | hilf[3]=di; |
---|
1775 | resu[n]=hilf; |
---|
1776 | } |
---|
1777 | else |
---|
1778 | { |
---|
1779 | resu[n]=varstr(basering),ordstr(basering),0; |
---|
1780 | } |
---|
1781 | } |
---|
1782 | return(resu); |
---|
1783 | } |
---|
1784 | example |
---|
1785 | { "EXAMPLE:"; echo = 2; |
---|
1786 | ring s1=(0,x,y),(a,b,c,d,e,f,g),lp; |
---|
1787 | ideal i=ea-fbg,fa+be,ec-fdg,fc+de; |
---|
1788 | i=std(i); |
---|
1789 | list l=independSet(i); |
---|
1790 | l; |
---|
1791 | i=i,g; |
---|
1792 | l=independSet(i); |
---|
1793 | l; |
---|
1794 | |
---|
1795 | ring s=0,(x,y,z),lp; |
---|
1796 | ideal i=z,yx; |
---|
1797 | list l=independSet(i); |
---|
1798 | l; |
---|
1799 | |
---|
1800 | |
---|
1801 | } |
---|
1802 | /////////////////////////////////////////////////////////////////////////////// |
---|
1803 | |
---|
1804 | static proc maxIndependSet (ideal j) |
---|
1805 | "USAGE: maxIndependentSet(i); i ideal |
---|
1806 | RETURN: list = new varstring with the maximal independent set at the end, |
---|
1807 | ordstring with the corresponding block ordering, |
---|
1808 | the integer where the independent set starts in the varstring |
---|
1809 | NOTE: |
---|
1810 | EXAMPLE: example maxIndependentSet; shows an example |
---|
1811 | " |
---|
1812 | { |
---|
1813 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1814 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1815 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1816 | int n,k,di; |
---|
1817 | list resu,hilf; |
---|
1818 | string var1,var2; |
---|
1819 | list v=indepSet(j,0); |
---|
1820 | |
---|
1821 | for(n=1;n<=size(v);n++) |
---|
1822 | { |
---|
1823 | di=0; |
---|
1824 | var1=""; |
---|
1825 | var2=""; |
---|
1826 | for(k=1;k<=size(v[n]);k++) |
---|
1827 | { |
---|
1828 | if(v[n][k]!=0) |
---|
1829 | { |
---|
1830 | di++; |
---|
1831 | var2=var2+"var("+string(k)+"),"; |
---|
1832 | } |
---|
1833 | else |
---|
1834 | { |
---|
1835 | var1=var1+"var("+string(k)+"),"; |
---|
1836 | } |
---|
1837 | } |
---|
1838 | if(di>0) |
---|
1839 | { |
---|
1840 | var1=var1+var2; |
---|
1841 | var1=var1[1..size(var1)-1]; |
---|
1842 | hilf[1]=var1; |
---|
1843 | hilf[2]="lp"; |
---|
1844 | hilf[3]=di; |
---|
1845 | resu[n]=hilf; |
---|
1846 | } |
---|
1847 | else |
---|
1848 | { |
---|
1849 | resu[n]=varstr(basering),ordstr(basering),0; |
---|
1850 | } |
---|
1851 | } |
---|
1852 | return(resu); |
---|
1853 | } |
---|
1854 | example |
---|
1855 | { "EXAMPLE:"; echo = 2; |
---|
1856 | ring s1=(0,x,y),(a,b,c,d,e,f,g),lp; |
---|
1857 | ideal i=ea-fbg,fa+be,ec-fdg,fc+de; |
---|
1858 | i=std(i); |
---|
1859 | list l=maxIndependSet(i); |
---|
1860 | l; |
---|
1861 | i=i,g; |
---|
1862 | l=maxIndependSet(i); |
---|
1863 | l; |
---|
1864 | |
---|
1865 | ring s=0,(x,y,z),lp; |
---|
1866 | ideal i=z,yx; |
---|
1867 | list l=maxIndependSet(i); |
---|
1868 | l; |
---|
1869 | |
---|
1870 | |
---|
1871 | } |
---|
1872 | |
---|
1873 | /////////////////////////////////////////////////////////////////////////////// |
---|
1874 | |
---|
1875 | static proc prepareQuotientring (int nnp,string order) |
---|
1876 | "USAGE: prepareQuotientring(nnp, order); nnp int, order string |
---|
1877 | RETURN: Kvar(nnp+1),...,var(nvars)[..rest ] |
---|
1878 | EXAMPLE: example prepareQuotientring; shows an example |
---|
1879 | " |
---|
1880 | { |
---|
1881 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1882 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
1883 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
1884 | list rl=ringlist(basering); |
---|
1885 | if (typeof(rl[1])=="int") |
---|
1886 | { |
---|
1887 | int p=rl[1]; |
---|
1888 | list rl2=rl[2]; |
---|
1889 | rl[1]=list(p, |
---|
1890 | list(rl2[nnp+1..nvars(basering)]), |
---|
1891 | list(list("lp",1:(nvars(basering)-nnp))), |
---|
1892 | ideal(0)); |
---|
1893 | rl[2]=list(rl2[1..nnp]); |
---|
1894 | rl[3]=list(list(order,1:nnp),list("C",0)); |
---|
1895 | } |
---|
1896 | else |
---|
1897 | { |
---|
1898 | if (typeof(rl[1])=="list") |
---|
1899 | list rl1=rl[1]; |
---|
1900 | list rl2=rl[2]; |
---|
1901 | rl1[1]=list(rl1[1][1], |
---|
1902 | rl[1][2]+list(rl2[nnp+1..nvars(basering)]), |
---|
1903 | list(list("lp",1:(size(rl[1][2])+nvars(basering)-nnp))), |
---|
1904 | ideal(0)); |
---|
1905 | rl[1]=rl1; |
---|
1906 | rl[2]=list(rl2[1..nnp]); |
---|
1907 | rl[3]=list(list(order,1:nnp),list("C",0)); |
---|
1908 | } |
---|
1909 | def quotring=ring(rl); |
---|
1910 | return(quotring); |
---|
1911 | } |
---|
1912 | example |
---|
1913 | { "EXAMPLE:"; echo = 2; |
---|
1914 | ring s1=(0,x),(a,b,c,d,e,f,g),lp; |
---|
1915 | def Q= prepareQuotientring(3,"lp"); |
---|
1916 | Q; |
---|
1917 | } |
---|
1918 | |
---|
1919 | /////////////////////////////////////////////////////////////////////////////// |
---|
1920 | static proc cleanPrimary(list l) |
---|
1921 | { |
---|
1922 | int i,j; |
---|
1923 | list lh; |
---|
1924 | for(i=1;i<=size(l) div 2;i++) |
---|
1925 | { |
---|
1926 | if(deg(l[2*i-1][1])>0) |
---|
1927 | { |
---|
1928 | j++; |
---|
1929 | lh[j]=l[2*i-1]; |
---|
1930 | j++; |
---|
1931 | lh[j]=l[2*i]; |
---|
1932 | } |
---|
1933 | } |
---|
1934 | return(lh); |
---|
1935 | } |
---|
1936 | /////////////////////////////////////////////////////////////////////////////// |
---|
1937 | |
---|
1938 | |
---|
1939 | proc minAssPrimesold(ideal i, list #) |
---|
1940 | "USAGE: minAssPrimes(i); i ideal |
---|
1941 | minAssPrimes(i,1); i ideal (to use also the factorizing Groebner) |
---|
1942 | RETURN: list = the minimal associated prime ideals of i |
---|
1943 | EXAMPLE: example minAssPrimes; shows an example |
---|
1944 | " |
---|
1945 | { |
---|
1946 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
1947 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
1948 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
1949 | def @P=basering; |
---|
1950 | if(size(i)==0){return(list(ideal(0)));} |
---|
1951 | list qr=simplifyIdeal(i); |
---|
1952 | map phi=@P,qr[2]; |
---|
1953 | i=qr[1]; |
---|
1954 | |
---|
1955 | execute ("ring gnir = ("+charstr(basering)+"),("+varstr(basering)+"),(" |
---|
1956 | +ordstr(basering)+");"); |
---|
1957 | |
---|
1958 | |
---|
1959 | ideal i=fetch(@P,i); |
---|
1960 | if(size(#)==0) |
---|
1961 | { |
---|
1962 | int @wr; |
---|
1963 | list tluser,@res; |
---|
1964 | list primary=decomp(i,2); |
---|
1965 | |
---|
1966 | @res[1]=primary; |
---|
1967 | |
---|
1968 | tluser=union(@res); |
---|
1969 | setring @P; |
---|
1970 | list @res=imap(gnir,tluser); |
---|
1971 | return(phi(@res)); |
---|
1972 | } |
---|
1973 | list @res,empty; |
---|
1974 | ideal ser; |
---|
1975 | def op = option( get ); |
---|
1976 | option( redSB ); |
---|
1977 | list @pr=facstd(i); |
---|
1978 | //if(size(@pr)==1) |
---|
1979 | // { |
---|
1980 | // attrib(@pr[1],"isSB",1); |
---|
1981 | // if((dim(@pr[1])==0)&&(homog(@pr[1])==1)) |
---|
1982 | // { |
---|
1983 | // setring @P; |
---|
1984 | // list @res=maxideal(1); |
---|
1985 | // return(phi(@res)); |
---|
1986 | // } |
---|
1987 | // if(dim(@pr[1])>1) |
---|
1988 | // { |
---|
1989 | // setring @P; |
---|
1990 | // // kill gnir; |
---|
1991 | // execute ("ring gnir1 = ("+charstr(basering)+"), |
---|
1992 | // ("+varstr(basering)+"),(C,lp);"); |
---|
1993 | // ideal i=fetch(@P,i); |
---|
1994 | // list @pr=facstd(i); |
---|
1995 | // // ideal ser; |
---|
1996 | // setring gnir; |
---|
1997 | // @pr=fetch(gnir1,@pr); |
---|
1998 | // kill gnir1; |
---|
1999 | // } |
---|
2000 | // } |
---|
2001 | // option( noredSB ); |
---|
2002 | option( set, op ); |
---|
2003 | int j,k,odim,ndim,count; |
---|
2004 | attrib(@pr[1],"isSB",1); |
---|
2005 | if(#[1]==77) |
---|
2006 | { |
---|
2007 | odim=dim(@pr[1]); |
---|
2008 | count=1; |
---|
2009 | intvec pos; |
---|
2010 | pos[size(@pr)]=0; |
---|
2011 | for(j=2;j<=size(@pr);j++) |
---|
2012 | { |
---|
2013 | attrib(@pr[j],"isSB",1); |
---|
2014 | ndim=dim(@pr[j]); |
---|
2015 | if(ndim>odim) |
---|
2016 | { |
---|
2017 | for(k=count;k<j;k++) |
---|
2018 | { |
---|
2019 | pos[k]=1; |
---|
2020 | } |
---|
2021 | count=j; |
---|
2022 | odim=ndim; |
---|
2023 | } |
---|
2024 | if(ndim<odim) |
---|
2025 | { |
---|
2026 | pos[j]=1; |
---|
2027 | } |
---|
2028 | } |
---|
2029 | for(j=1;j<=size(@pr);j++) |
---|
2030 | { |
---|
2031 | if(pos[j]!=1) |
---|
2032 | { |
---|
2033 | @res[j]=decomp(@pr[j],2); |
---|
2034 | } |
---|
2035 | else |
---|
2036 | { |
---|
2037 | @res[j]=empty; |
---|
2038 | } |
---|
2039 | } |
---|
2040 | } |
---|
2041 | else |
---|
2042 | { |
---|
2043 | ser=ideal(1); |
---|
2044 | for(j=1;j<=size(@pr);j++) |
---|
2045 | { |
---|
2046 | //@pr[j]; |
---|
2047 | //pause(); |
---|
2048 | @res[j]=decomp(@pr[j],2); |
---|
2049 | // @res[j]=decomp(@pr[j],2,@pr[j],ser); |
---|
2050 | // for(k=1;k<=size(@res[j]);k++) |
---|
2051 | // { |
---|
2052 | // ser=intersect(ser,@res[j][k]); |
---|
2053 | // } |
---|
2054 | } |
---|
2055 | } |
---|
2056 | |
---|
2057 | @res=union(@res); |
---|
2058 | setring @P; |
---|
2059 | list @res=imap(gnir,@res); |
---|
2060 | return(phi(@res)); |
---|
2061 | } |
---|
2062 | example |
---|
2063 | { "EXAMPLE:"; echo = 2; |
---|
2064 | ring r = 32003,(x,y,z),lp; |
---|
2065 | poly p = z2+1; |
---|
2066 | poly q = z4+2; |
---|
2067 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
2068 | list pr= minAssPrimes(i); pr; |
---|
2069 | |
---|
2070 | minAssPrimes(i,1); |
---|
2071 | } |
---|
2072 | |
---|
2073 | static proc primT(ideal i) |
---|
2074 | { |
---|
2075 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
2076 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2077 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2078 | |
---|
2079 | //assumes that all generators of i are irreducible |
---|
2080 | //i is standard basis |
---|
2081 | |
---|
2082 | attrib(i,"isSB",1); |
---|
2083 | int j=size(i); |
---|
2084 | int k; |
---|
2085 | while(j>0) |
---|
2086 | { |
---|
2087 | if(deg(i[j])>1){break;} |
---|
2088 | j--; |
---|
2089 | } |
---|
2090 | if(j==0){return(1);} |
---|
2091 | if(deg(i[j])==vdim(i)){return(1);} |
---|
2092 | return(0); |
---|
2093 | } |
---|
2094 | |
---|
2095 | static proc minAssPrimes(ideal i, list #) |
---|
2096 | "USAGE: minAssPrimes(i); i ideal |
---|
2097 | Optional parameters in list #: (can be entered in any order) |
---|
2098 | 0, "facstd" -> uses facstd to first decompose the ideal |
---|
2099 | 1, "noFacstd" -> does not use facstd (default) |
---|
2100 | "SL" -> the new algorithm is used (default) |
---|
2101 | "GTZ" -> the old algorithm is used |
---|
2102 | RETURN: list = the minimal associated prime ideals of i |
---|
2103 | EXAMPLE: example minAssPrimes; shows an example |
---|
2104 | " |
---|
2105 | { |
---|
2106 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
2107 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2108 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2109 | |
---|
2110 | if(size(i) == 0){return(list(ideal(0)));} |
---|
2111 | string algorithm; // Algorithm to be used |
---|
2112 | string facstdOption; // To uses proc facstd |
---|
2113 | int j; // Counter |
---|
2114 | def P0 = basering; |
---|
2115 | list Pl=ringlist(P0); |
---|
2116 | intvec dp_w; |
---|
2117 | for(j=nvars(P0);j>0;j--) {dp_w[j]=1;} |
---|
2118 | Pl[3]=list(list("dp",dp_w),list("C",0)); |
---|
2119 | def P=ring(Pl); |
---|
2120 | setring P; |
---|
2121 | ideal i=imap(P0,i); |
---|
2122 | |
---|
2123 | // Set input parameters |
---|
2124 | algorithm = "SL"; // Default: SL algorithm |
---|
2125 | facstdOption = "Facstd"; // Default: facstd is not used |
---|
2126 | if(size(#) > 0) |
---|
2127 | { |
---|
2128 | int valid; |
---|
2129 | for(j = 1; j <= size(#); j++) |
---|
2130 | { |
---|
2131 | valid = 0; |
---|
2132 | if((typeof(#[j]) == "int") or (typeof(#[j]) == "number")) |
---|
2133 | { |
---|
2134 | if (#[j] == 0) {facstdOption = "noFacstd"; valid = 1;} // If #[j] == 0, facstd is not used. |
---|
2135 | if (#[j] == 1) {facstdOption = "facstd"; valid = 1;} // If #[j] == 1, facstd is used. |
---|
2136 | } |
---|
2137 | if(typeof(#[j]) == "string") |
---|
2138 | { |
---|
2139 | if(#[j] == "GTZ" || #[j] == "SL") |
---|
2140 | { |
---|
2141 | algorithm = #[j]; |
---|
2142 | valid = 1; |
---|
2143 | } |
---|
2144 | if(#[j] == "noFacstd" || #[j] == "facstd") |
---|
2145 | { |
---|
2146 | facstdOption = #[j]; |
---|
2147 | valid = 1; |
---|
2148 | } |
---|
2149 | } |
---|
2150 | if(valid == 0) |
---|
2151 | { |
---|
2152 | dbprint(1, "Warning! The following input parameter was not recognized:", #[j]); |
---|
2153 | } |
---|
2154 | } |
---|
2155 | } |
---|
2156 | |
---|
2157 | list q = simplifyIdeal(i); |
---|
2158 | list re = maxideal(1); |
---|
2159 | int a, k; |
---|
2160 | intvec op = option(get); |
---|
2161 | map phi = P,q[2]; |
---|
2162 | |
---|
2163 | list result; |
---|
2164 | |
---|
2165 | if(npars(P) == 0){option(redSB);} |
---|
2166 | |
---|
2167 | if(attrib(i,"isSB")!=1) |
---|
2168 | { |
---|
2169 | i=groebner(q[1]); |
---|
2170 | } |
---|
2171 | else |
---|
2172 | { |
---|
2173 | for(j=1;j<=nvars(basering);j++) |
---|
2174 | { |
---|
2175 | if(q[2][j]!=var(j)){k=1;break;} |
---|
2176 | } |
---|
2177 | if(k) |
---|
2178 | { |
---|
2179 | i=groebner(q[1]); |
---|
2180 | } |
---|
2181 | } |
---|
2182 | |
---|
2183 | if( dim(i) == -1 ) |
---|
2184 | { |
---|
2185 | option( set,op ); |
---|
2186 | setring P0; |
---|
2187 | return( ideal(1) ); |
---|
2188 | } |
---|
2189 | if( (dim(i) == 0 ) && ( npars(P) == 0) ) |
---|
2190 | { |
---|
2191 | int di = vdim(i); |
---|
2192 | def gnir=changeordTo(P,"lp"); |
---|
2193 | setring gnir; |
---|
2194 | ideal J = std(imap(P,i)); |
---|
2195 | attrib(J, "isSB", 1); |
---|
2196 | if(vdim(J) != di) |
---|
2197 | { |
---|
2198 | J = fglm(P, i); |
---|
2199 | } |
---|
2200 | // list pr = triangMH(J,2); HIER KOENNEN verschiedene Mengen zu gleichen |
---|
2201 | // asoziierten Primidealen fuehren |
---|
2202 | // Aenderung |
---|
2203 | list pr = triangMH(J,2); |
---|
2204 | list qr, re; |
---|
2205 | for(k = 1; k <= size(pr); k++) |
---|
2206 | { |
---|
2207 | if(primT(pr[k])&&(0)) |
---|
2208 | { |
---|
2209 | re[size(re) + 1] = pr[k]; |
---|
2210 | } |
---|
2211 | else |
---|
2212 | { |
---|
2213 | attrib(pr[k], "isSB", 1); |
---|
2214 | // Lines changed |
---|
2215 | if (algorithm == "GTZ") |
---|
2216 | { |
---|
2217 | qr = decomp(pr[k], 2); |
---|
2218 | } |
---|
2219 | else |
---|
2220 | { |
---|
2221 | qr = minAssSL(pr[k]); |
---|
2222 | } |
---|
2223 | for(j = 1; j <= size(qr) div 2; j++) |
---|
2224 | { |
---|
2225 | re[size(re) + 1] = std(qr[2 * j]); |
---|
2226 | } |
---|
2227 | } |
---|
2228 | } |
---|
2229 | setring P; |
---|
2230 | re = imap(gnir, re); |
---|
2231 | re=phi(re); |
---|
2232 | option(set, op); |
---|
2233 | setring(P0); |
---|
2234 | list re=imap(P,re); |
---|
2235 | return(re); |
---|
2236 | } |
---|
2237 | |
---|
2238 | // Lines changed |
---|
2239 | if ((facstdOption == "noFacstd") || (dim(i) == 0)) |
---|
2240 | { |
---|
2241 | if (algorithm == "GTZ") |
---|
2242 | { |
---|
2243 | re[1] = decomp(i, 2); |
---|
2244 | } |
---|
2245 | else |
---|
2246 | { |
---|
2247 | re[1] = minAssSL(i); |
---|
2248 | } |
---|
2249 | re = union(re); |
---|
2250 | option(set, op); |
---|
2251 | re=phi(re); |
---|
2252 | setring(P0); |
---|
2253 | list re=imap(P,re); |
---|
2254 | return(re); |
---|
2255 | } |
---|
2256 | q = facstd(i); |
---|
2257 | |
---|
2258 | /* |
---|
2259 | if((size(q) == 1) && (dim(i) > 1)) |
---|
2260 | { |
---|
2261 | execute ("ring gnir=("+charstr(P)+"),("+varstr(P)+"),lp;"); |
---|
2262 | list p = facstd(fetch(P, i)); |
---|
2263 | if(size(p) > 1) |
---|
2264 | { |
---|
2265 | a = 1; |
---|
2266 | setring P; |
---|
2267 | q = fetch(gnir,p); |
---|
2268 | } |
---|
2269 | else |
---|
2270 | { |
---|
2271 | setring P; |
---|
2272 | } |
---|
2273 | kill gnir; |
---|
2274 | } |
---|
2275 | */ |
---|
2276 | option(set,op); |
---|
2277 | // Debug |
---|
2278 | dbprint(printlevel - voice, "Components returned by facstd", size(q), q); |
---|
2279 | for(j = 1; j <= size(q); j++) |
---|
2280 | { |
---|
2281 | if(a == 0){attrib(q[j], "isSB", 1);} |
---|
2282 | // Debug |
---|
2283 | dbprint(printlevel - voice, "We compute the decomp of component", j); |
---|
2284 | // Lines changed |
---|
2285 | if (algorithm == "GTZ") |
---|
2286 | { |
---|
2287 | re[j] = decomp(q[j], 2); |
---|
2288 | } |
---|
2289 | else |
---|
2290 | { |
---|
2291 | re[j] = minAssSL(q[j]); |
---|
2292 | } |
---|
2293 | // Debug |
---|
2294 | dbprint(printlevel - voice, "Number of components obtained for this component:", size(re[j]) div 2); |
---|
2295 | dbprint(printlevel - voice, "re[j]:", re[j]); |
---|
2296 | } |
---|
2297 | re = union(re); |
---|
2298 | re=phi(re); |
---|
2299 | setring(P0); |
---|
2300 | list re=imap(P,re); |
---|
2301 | return(re); |
---|
2302 | } |
---|
2303 | example |
---|
2304 | { "EXAMPLE:"; echo = 2; |
---|
2305 | ring r = 32003,(x,y,z),lp; |
---|
2306 | poly p = z2+1; |
---|
2307 | poly q = z4+2; |
---|
2308 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
2309 | list pr= minAssPrimes(i); pr; |
---|
2310 | |
---|
2311 | minAssPrimes(i,1); |
---|
2312 | } |
---|
2313 | |
---|
2314 | static proc union(list li) |
---|
2315 | { |
---|
2316 | int i,j,k; |
---|
2317 | |
---|
2318 | def P=basering; |
---|
2319 | |
---|
2320 | def ir=changeordTo(basering,"lp"); |
---|
2321 | setring ir; |
---|
2322 | list l=fetch(P,li); |
---|
2323 | list @erg; |
---|
2324 | |
---|
2325 | for(k=1;k<=size(l);k++) |
---|
2326 | { |
---|
2327 | for(j=1;j<=size(l[k]) div 2;j++) |
---|
2328 | { |
---|
2329 | if(deg(l[k][2*j][1])!=0) |
---|
2330 | { |
---|
2331 | i++; |
---|
2332 | @erg[i]=l[k][2*j]; |
---|
2333 | } |
---|
2334 | } |
---|
2335 | } |
---|
2336 | |
---|
2337 | list @wos; |
---|
2338 | i=0; |
---|
2339 | ideal i1,i2; |
---|
2340 | while(i<size(@erg)-1) |
---|
2341 | { |
---|
2342 | i++; |
---|
2343 | k=i+1; |
---|
2344 | i1=lead(@erg[i]); |
---|
2345 | attrib(i1,"isSB",1); |
---|
2346 | attrib(@erg[i],"isSB",1); |
---|
2347 | |
---|
2348 | while(k<=size(@erg)) |
---|
2349 | { |
---|
2350 | if(deg(@erg[i][1])==0) |
---|
2351 | { |
---|
2352 | break; |
---|
2353 | } |
---|
2354 | i2=lead(@erg[k]); |
---|
2355 | attrib(@erg[k],"isSB",1); |
---|
2356 | attrib(i2,"isSB",1); |
---|
2357 | |
---|
2358 | if(size(reduce(i1,i2,1))==0) |
---|
2359 | { |
---|
2360 | if(size(reduce(@erg[i],@erg[k],1))==0) |
---|
2361 | { |
---|
2362 | @erg[k]=ideal(1); |
---|
2363 | i2=ideal(1); |
---|
2364 | } |
---|
2365 | } |
---|
2366 | if(size(reduce(i2,i1,1))==0) |
---|
2367 | { |
---|
2368 | if(size(reduce(@erg[k],@erg[i],1))==0) |
---|
2369 | { |
---|
2370 | break; |
---|
2371 | } |
---|
2372 | } |
---|
2373 | k++; |
---|
2374 | if(k>size(@erg)) |
---|
2375 | { |
---|
2376 | @wos[size(@wos)+1]=@erg[i]; |
---|
2377 | } |
---|
2378 | } |
---|
2379 | } |
---|
2380 | if(deg(@erg[size(@erg)][1])!=0) |
---|
2381 | { |
---|
2382 | @wos[size(@wos)+1]=@erg[size(@erg)]; |
---|
2383 | } |
---|
2384 | setring P; |
---|
2385 | list @ser=fetch(ir,@wos); |
---|
2386 | return(@ser); |
---|
2387 | } |
---|
2388 | /////////////////////////////////////////////////////////////////////////////// |
---|
2389 | proc equidim(ideal i,list #) |
---|
2390 | "USAGE: equidim(i) or equidim(i,1) ; i ideal |
---|
2391 | RETURN: list of equidimensional ideals a[1],...,a[s] with: |
---|
2392 | - a[s] the equidimensional locus of i, i.e. the intersection |
---|
2393 | of the primary ideals of dimension of i |
---|
2394 | - a[1],...,a[s-1] the lower dimensional equidimensional loci. |
---|
2395 | NOTE: An embedded component q (primary ideal) of i can be replaced in the |
---|
2396 | decomposition by a primary ideal q1 with the same radical as q. @* |
---|
2397 | @code{equidim(i,1)} uses the algorithm of Eisenbud/Huneke/Vasconcelos. |
---|
2398 | |
---|
2399 | EXAMPLE:example equidim; shows an example |
---|
2400 | " |
---|
2401 | { |
---|
2402 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
2403 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2404 | if(attrib(basering,"global")!=1) |
---|
2405 | { |
---|
2406 | ERROR( |
---|
2407 | "// Not implemented for this ordering, please change to global ordering." |
---|
2408 | ); |
---|
2409 | } |
---|
2410 | |
---|
2411 | intvec op ; |
---|
2412 | def P = basering; |
---|
2413 | list eq; |
---|
2414 | intvec w; |
---|
2415 | int n,m; |
---|
2416 | int g=size(i); |
---|
2417 | int a=attrib(i,"isSB"); |
---|
2418 | int homo=homog(i); |
---|
2419 | if(size(#)!=0) |
---|
2420 | { |
---|
2421 | m=1; |
---|
2422 | } |
---|
2423 | |
---|
2424 | if(((homo==1)||(a==1))&&(find(ordstr(basering),"l")==0) |
---|
2425 | &&(find(ordstr(basering),"s")==0)) |
---|
2426 | { |
---|
2427 | execute("ring gnir = ("+charstr(basering)+"),("+varstr(basering)+"),(" |
---|
2428 | +ordstr(basering)+");"); |
---|
2429 | ideal i=imap(P,i); |
---|
2430 | ideal j=i; |
---|
2431 | if(a==1) |
---|
2432 | { |
---|
2433 | attrib(j,"isSB",1); |
---|
2434 | } |
---|
2435 | else |
---|
2436 | { |
---|
2437 | j=groebner(i); |
---|
2438 | } |
---|
2439 | } |
---|
2440 | else |
---|
2441 | { |
---|
2442 | def gnir=changeordTo(basering,"dp"); |
---|
2443 | setring gnir; |
---|
2444 | ideal i=imap(P,i); |
---|
2445 | ideal j=groebner(i); |
---|
2446 | } |
---|
2447 | if(homo==1) |
---|
2448 | { |
---|
2449 | for(n=1;n<=nvars(basering);n++) |
---|
2450 | { |
---|
2451 | w[n]=ord(var(n)); |
---|
2452 | } |
---|
2453 | intvec hil=hilb(j,1,w); |
---|
2454 | } |
---|
2455 | |
---|
2456 | if ((dim(j)==-1)||(size(j)==0)||(nvars(basering)==1) |
---|
2457 | ||(dim(j)==0)||(dim(j)+g==nvars(basering))) |
---|
2458 | { |
---|
2459 | setring P; |
---|
2460 | eq[1]=i; |
---|
2461 | return(eq); |
---|
2462 | } |
---|
2463 | |
---|
2464 | if(m==0) |
---|
2465 | { |
---|
2466 | ideal k=equidimMax(j); |
---|
2467 | } |
---|
2468 | else |
---|
2469 | { |
---|
2470 | ideal k=equidimMaxEHV(j); |
---|
2471 | } |
---|
2472 | if(size(reduce(k,j,1))==0) |
---|
2473 | { |
---|
2474 | setring P; |
---|
2475 | eq[1]=i; |
---|
2476 | kill gnir; |
---|
2477 | return(eq); |
---|
2478 | } |
---|
2479 | op=option(get); |
---|
2480 | option(returnSB); |
---|
2481 | j=quotient(j,k); |
---|
2482 | option(set,op); |
---|
2483 | |
---|
2484 | list equi=equidim(j); |
---|
2485 | if(deg(equi[size(equi)][1])<=0) |
---|
2486 | { |
---|
2487 | equi[size(equi)]=k; |
---|
2488 | } |
---|
2489 | else |
---|
2490 | { |
---|
2491 | equi[size(equi)+1]=k; |
---|
2492 | } |
---|
2493 | setring P; |
---|
2494 | eq=imap(gnir,equi); |
---|
2495 | kill gnir; |
---|
2496 | return(eq); |
---|
2497 | } |
---|
2498 | example |
---|
2499 | { "EXAMPLE:"; echo = 2; |
---|
2500 | ring r = 32003,(x,y,z),dp; |
---|
2501 | ideal i = intersect(ideal(z),ideal(x,y),ideal(x2,z2),ideal(x5,y5,z5)); |
---|
2502 | equidim(i); |
---|
2503 | } |
---|
2504 | |
---|
2505 | /////////////////////////////////////////////////////////////////////////////// |
---|
2506 | proc equidimMax(ideal i) |
---|
2507 | "USAGE: equidimMax(i); i ideal |
---|
2508 | RETURN: ideal of equidimensional locus (of maximal dimension) of i. |
---|
2509 | EXAMPLE: example equidimMax; shows an example |
---|
2510 | " |
---|
2511 | { |
---|
2512 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
2513 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2514 | if(attrib(basering,"global")!=1) |
---|
2515 | { |
---|
2516 | ERROR( |
---|
2517 | "Not implemented for this ordering, please change to a global ordering." |
---|
2518 | ); |
---|
2519 | } |
---|
2520 | |
---|
2521 | def P = basering; |
---|
2522 | ideal eq; |
---|
2523 | intvec w; |
---|
2524 | int n; |
---|
2525 | int g=size(i); |
---|
2526 | int a=attrib(i,"isSB"); |
---|
2527 | int homo=homog(i); |
---|
2528 | |
---|
2529 | if(((homo==1)||(a==1))&&(find(ordstr(basering),"l")==0) |
---|
2530 | &&(find(ordstr(basering),"s")==0)) |
---|
2531 | { |
---|
2532 | execute("ring gnir = ("+charstr(basering)+"),("+varstr(basering)+"),(" |
---|
2533 | +ordstr(basering)+");"); |
---|
2534 | ideal i=imap(P,i); |
---|
2535 | ideal j=i; |
---|
2536 | if(a==1) |
---|
2537 | { |
---|
2538 | attrib(j,"isSB",1); |
---|
2539 | } |
---|
2540 | else |
---|
2541 | { |
---|
2542 | j=groebner(i); |
---|
2543 | } |
---|
2544 | } |
---|
2545 | else |
---|
2546 | { |
---|
2547 | def gnir=changeordTo(basering,"dp"); |
---|
2548 | setring gnir; |
---|
2549 | ideal i=imap(P,i); |
---|
2550 | ideal j=groebner(i); |
---|
2551 | } |
---|
2552 | list indep; |
---|
2553 | ideal equ,equi; |
---|
2554 | if(homo==1) |
---|
2555 | { |
---|
2556 | for(n=1;n<=nvars(basering);n++) |
---|
2557 | { |
---|
2558 | w[n]=ord(var(n)); |
---|
2559 | } |
---|
2560 | intvec hil=hilb(j,1,w); |
---|
2561 | } |
---|
2562 | if ((dim(j)==-1)||(size(j)==0)||(nvars(basering)==1) |
---|
2563 | ||(dim(j)==0)||(dim(j)+g==nvars(basering))) |
---|
2564 | { |
---|
2565 | setring P; |
---|
2566 | return(i); |
---|
2567 | } |
---|
2568 | |
---|
2569 | indep=maxIndependSet(j); |
---|
2570 | |
---|
2571 | execute("ring gnir1 = ("+charstr(basering)+"),("+indep[1][1]+"),(" |
---|
2572 | +indep[1][2]+");"); |
---|
2573 | if(homo==1) |
---|
2574 | { |
---|
2575 | ideal j=std(imap(gnir,j),hil,w); |
---|
2576 | } |
---|
2577 | else |
---|
2578 | { |
---|
2579 | ideal j=groebner(imap(gnir,j)); |
---|
2580 | } |
---|
2581 | def quotring=prepareQuotientring(nvars(basering)-indep[1][3],"lp"); |
---|
2582 | setring quotring; |
---|
2583 | ideal j=imap(gnir1,j); |
---|
2584 | kill gnir1; |
---|
2585 | j=clearSB(j); |
---|
2586 | ideal h; |
---|
2587 | for(n=1;n<=size(j);n++) |
---|
2588 | { |
---|
2589 | h[n]=leadcoef(j[n]); |
---|
2590 | } |
---|
2591 | setring gnir; |
---|
2592 | ideal h=imap(quotring,h); |
---|
2593 | kill quotring; |
---|
2594 | |
---|
2595 | list l=minSat(j,h); |
---|
2596 | |
---|
2597 | if(deg(l[2])>0) |
---|
2598 | { |
---|
2599 | equ=l[1]; |
---|
2600 | attrib(equ,"isSB",1); |
---|
2601 | j=std(j,l[2]); |
---|
2602 | |
---|
2603 | if(dim(equ)==dim(j)) |
---|
2604 | { |
---|
2605 | equi=equidimMax(j); |
---|
2606 | equ=interred(intersect(equ,equi)); |
---|
2607 | } |
---|
2608 | } |
---|
2609 | else |
---|
2610 | { |
---|
2611 | equ=i; |
---|
2612 | } |
---|
2613 | |
---|
2614 | setring P; |
---|
2615 | eq=imap(gnir,equ); |
---|
2616 | kill gnir; |
---|
2617 | return(eq); |
---|
2618 | } |
---|
2619 | example |
---|
2620 | { "EXAMPLE:"; echo = 2; |
---|
2621 | ring r = 32003,(x,y,z),dp; |
---|
2622 | ideal i = intersect(ideal(z),ideal(x,y),ideal(x2,z2),ideal(x5,y5,z5)); |
---|
2623 | equidimMax(i); |
---|
2624 | } |
---|
2625 | /////////////////////////////////////////////////////////////////////////////// |
---|
2626 | static proc islp() |
---|
2627 | { |
---|
2628 | string s=ordstr(basering); |
---|
2629 | int n=find(s,"lp"); |
---|
2630 | if(!n){return(0);} |
---|
2631 | int k=find(s,","); |
---|
2632 | string t=s[k+1..size(s)]; |
---|
2633 | int l=find(t,","); |
---|
2634 | t=s[1..k-1]; |
---|
2635 | int m=find(t,","); |
---|
2636 | if(l+m){return(0);} |
---|
2637 | return(1); |
---|
2638 | } |
---|
2639 | /////////////////////////////////////////////////////////////////////////////// |
---|
2640 | |
---|
2641 | proc algeDeco(ideal i, int w) |
---|
2642 | { |
---|
2643 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
2644 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
2645 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
2646 | |
---|
2647 | //reduces primery decomposition over algebraic extensions to |
---|
2648 | //the other cases |
---|
2649 | def R=basering; |
---|
2650 | int n=nvars(R); |
---|
2651 | |
---|
2652 | def op = option(get); |
---|
2653 | |
---|
2654 | //---Anfang Provisorium |
---|
2655 | if((size(i)==2) && (w==2)) |
---|
2656 | { |
---|
2657 | option( redSB ); |
---|
2658 | ideal J = std(i); |
---|
2659 | option( noredSB ); |
---|
2660 | if ((size(J)==2)&&(deg(J[1])==1)) |
---|
2661 | { |
---|
2662 | ideal keep; |
---|
2663 | poly f; |
---|
2664 | int j; |
---|
2665 | for(j=1;j<=nvars(basering);j++) |
---|
2666 | { |
---|
2667 | f=J[2]; |
---|
2668 | while((f/var(j))*var(j)-f==0) |
---|
2669 | { |
---|
2670 | f=f/var(j); |
---|
2671 | keep=keep,var(j); |
---|
2672 | } |
---|
2673 | J[2]=f; |
---|
2674 | } |
---|
2675 | ideal K=factorize(J[2],1); |
---|
2676 | if(deg(K[1])==0){K=0;} |
---|
2677 | K=K+std(keep); |
---|
2678 | ideal L; |
---|
2679 | list resu; |
---|
2680 | for(j=1;j<=size(K);j++) |
---|
2681 | { |
---|
2682 | L=J[1],K[j]; |
---|
2683 | resu[j]=L; |
---|
2684 | } |
---|
2685 | option( set, op ); |
---|
2686 | return(resu); |
---|
2687 | } |
---|
2688 | } |
---|
2689 | //---Ende Provisorium |
---|
2690 | string mp="poly @p="+string(minpoly)+";"; |
---|
2691 | string gnir="ring RH="+string(char(R))+",("+varstr(R)+","+string(par(1)) |
---|
2692 | +"),dp;"; |
---|
2693 | execute(gnir); |
---|
2694 | execute(mp); |
---|
2695 | ideal i=imap(R,i); |
---|
2696 | ideal I=subst(i,var(nvars(basering)),0); |
---|
2697 | int j; |
---|
2698 | for(j=1;j<=ncols(i);j++) |
---|
2699 | { |
---|
2700 | if(i[j]!=I[j]){break;} |
---|
2701 | } |
---|
2702 | if((j>ncols(i))&&(deg(@p)==1)) |
---|
2703 | { |
---|
2704 | setring R; |
---|
2705 | kill RH; |
---|
2706 | kill gnir; |
---|
2707 | string gnir="ring RH="+string(char(R))+",("+varstr(R)+"),dp;"; |
---|
2708 | execute(gnir); |
---|
2709 | ideal i=imap(R,i); |
---|
2710 | ideal J; |
---|
2711 | } |
---|
2712 | else |
---|
2713 | { |
---|
2714 | i=i,@p; |
---|
2715 | } |
---|
2716 | list pr; |
---|
2717 | |
---|
2718 | if(w==0) |
---|
2719 | { |
---|
2720 | pr=decomp(i); |
---|
2721 | } |
---|
2722 | if(w==1) |
---|
2723 | { |
---|
2724 | pr=prim_dec(i,1); |
---|
2725 | pr=reconvList(pr); |
---|
2726 | } |
---|
2727 | if(w==2) |
---|
2728 | { |
---|
2729 | pr=minAssPrimes(i); |
---|
2730 | } |
---|
2731 | |
---|
2732 | if(n<nvars(basering)) |
---|
2733 | { |
---|
2734 | gnir="ring RS="+string(char(R))+",("+varstr(RH) |
---|
2735 | +"),(dp("+string(n)+"),lp);"; |
---|
2736 | execute(gnir); |
---|
2737 | list pr=imap(RH,pr); |
---|
2738 | ideal K; |
---|
2739 | for(j=1;j<=size(pr);j++) |
---|
2740 | { |
---|
2741 | K=groebner(pr[j]); |
---|
2742 | K=K[2..size(K)]; |
---|
2743 | pr[j]=K; |
---|
2744 | } |
---|
2745 | setring R; |
---|
2746 | list pr=imap(RS,pr); |
---|
2747 | } |
---|
2748 | else |
---|
2749 | { |
---|
2750 | setring R; |
---|
2751 | list pr=imap(RH,pr); |
---|
2752 | } |
---|
2753 | |
---|
2754 | list re; |
---|
2755 | if(w==2) |
---|
2756 | { |
---|
2757 | re=pr; |
---|
2758 | } |
---|
2759 | else |
---|
2760 | { |
---|
2761 | re=convList(pr); |
---|
2762 | } |
---|
2763 | option( set, op ); |
---|
2764 | return( re ); |
---|
2765 | } |
---|
2766 | /////////////////////////////////////////////////////////////////////////////// |
---|
2767 | static proc prepare_absprimdec(list primary) |
---|
2768 | { |
---|
2769 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2770 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2771 | |
---|
2772 | list resu,tempo; |
---|
2773 | string absotto; |
---|
2774 | resu[size(primary) div 2]=list(); |
---|
2775 | for(int ab=1;ab<=size(primary) div 2;ab++) |
---|
2776 | { |
---|
2777 | absotto= absFactorize(primary[2*ab][1],77); |
---|
2778 | tempo=primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
2779 | resu[ab]=tempo; |
---|
2780 | } |
---|
2781 | return(resu); |
---|
2782 | } |
---|
2783 | /////////////////////////////////////////////////////////////////////////////// |
---|
2784 | static proc decomp(ideal i,list #) |
---|
2785 | "USAGE: decomp(i); i ideal (for primary decomposition) (resp. |
---|
2786 | decomp(i,1); (for the associated primes of dimension of i) ) |
---|
2787 | decomp(i,2); (for the minimal associated primes) ) |
---|
2788 | decomp(i,3); (for the absolute primary decomposition) ) |
---|
2789 | RETURN: list = list of primary ideals and their associated primes |
---|
2790 | (at even positions in the list) |
---|
2791 | (resp. a list of the minimal associated primes) |
---|
2792 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
2793 | EXAMPLE: example decomp; shows an example |
---|
2794 | " |
---|
2795 | { |
---|
2796 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
2797 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
2798 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
2799 | |
---|
2800 | intvec op,@vv; |
---|
2801 | def @P = basering; |
---|
2802 | list primary,indep,ltras; |
---|
2803 | intvec @vh,isat,@w; |
---|
2804 | int @wr,@k,@n,@m,@n1,@n2,@n3,homo,seri,keepdi,abspri,ab,nn; |
---|
2805 | ideal peek=i; |
---|
2806 | ideal ser,tras; |
---|
2807 | int isS=(attrib(i,"isSB")==1); |
---|
2808 | |
---|
2809 | |
---|
2810 | if(size(#)>0) |
---|
2811 | { |
---|
2812 | if((#[1]==1)||(#[1]==2)||(#[1]==3)) |
---|
2813 | { |
---|
2814 | @wr=#[1]; |
---|
2815 | if(@wr==3){abspri=1;@wr=0;} |
---|
2816 | if(size(#)>1) |
---|
2817 | { |
---|
2818 | seri=1; |
---|
2819 | peek=#[2]; |
---|
2820 | ser=#[3]; |
---|
2821 | } |
---|
2822 | } |
---|
2823 | else |
---|
2824 | { |
---|
2825 | seri=1; |
---|
2826 | peek=#[1]; |
---|
2827 | ser=#[2]; |
---|
2828 | } |
---|
2829 | } |
---|
2830 | if(abspri) |
---|
2831 | { |
---|
2832 | list absprimary,abskeep,absprimarytmp,abskeeptmp; |
---|
2833 | } |
---|
2834 | homo=homog(i); |
---|
2835 | if(homo) |
---|
2836 | { |
---|
2837 | if(attrib(i,"isSB")!=1) |
---|
2838 | { |
---|
2839 | //ltras=mstd(i); |
---|
2840 | tras=groebner(i); |
---|
2841 | ltras=tras,tras; |
---|
2842 | attrib(ltras[1],"isSB",1); |
---|
2843 | } |
---|
2844 | else |
---|
2845 | { |
---|
2846 | ltras=i,i; |
---|
2847 | attrib(ltras[1],"isSB",1); |
---|
2848 | } |
---|
2849 | tras=ltras[1]; |
---|
2850 | attrib(tras,"isSB",1); |
---|
2851 | if((dim(tras)==0) && (!abspri)) |
---|
2852 | { |
---|
2853 | primary[1]=ltras[2]; |
---|
2854 | primary[2]=maxideal(1); |
---|
2855 | if(@wr>0) |
---|
2856 | { |
---|
2857 | list l; |
---|
2858 | l[1]=maxideal(1); |
---|
2859 | l[2]=maxideal(1); |
---|
2860 | return(l); |
---|
2861 | } |
---|
2862 | return(primary); |
---|
2863 | } |
---|
2864 | for(@n=1;@n<=nvars(basering);@n++) |
---|
2865 | { |
---|
2866 | @w[@n]=ord(var(@n)); |
---|
2867 | } |
---|
2868 | intvec @hilb=hilb(tras,1,@w); |
---|
2869 | intvec keephilb=@hilb; |
---|
2870 | } |
---|
2871 | |
---|
2872 | //---------------------------------------------------------------- |
---|
2873 | //i is the zero-ideal |
---|
2874 | //---------------------------------------------------------------- |
---|
2875 | |
---|
2876 | if(size(i)==0) |
---|
2877 | { |
---|
2878 | primary=ideal(0),ideal(0); |
---|
2879 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
2880 | return(primary); |
---|
2881 | } |
---|
2882 | |
---|
2883 | //---------------------------------------------------------------- |
---|
2884 | //pass to the lexicographical ordering and compute a standardbasis |
---|
2885 | //---------------------------------------------------------------- |
---|
2886 | |
---|
2887 | int lp=islp(); |
---|
2888 | |
---|
2889 | def gnir=changeordTo(basering,"lp"); |
---|
2890 | setring gnir; |
---|
2891 | op=option(get); |
---|
2892 | option(redSB); |
---|
2893 | |
---|
2894 | ideal ser=fetch(@P,ser); |
---|
2895 | |
---|
2896 | if(homo==1) |
---|
2897 | { |
---|
2898 | if(!lp) |
---|
2899 | { |
---|
2900 | ideal @j=std(fetch(@P,i),@hilb,@w); |
---|
2901 | } |
---|
2902 | else |
---|
2903 | { |
---|
2904 | ideal @j=fetch(@P,tras); |
---|
2905 | attrib(@j,"isSB",1); |
---|
2906 | } |
---|
2907 | } |
---|
2908 | else |
---|
2909 | { |
---|
2910 | if(lp&&isS) |
---|
2911 | { |
---|
2912 | ideal @j=fetch(@P,i); |
---|
2913 | attrib(@j,"isSB",1); |
---|
2914 | } |
---|
2915 | else |
---|
2916 | { |
---|
2917 | ideal @j=groebner(fetch(@P,i)); |
---|
2918 | } |
---|
2919 | } |
---|
2920 | option(set,op); |
---|
2921 | if(seri==1) |
---|
2922 | { |
---|
2923 | ideal peek=fetch(@P,peek); |
---|
2924 | attrib(peek,"isSB",1); |
---|
2925 | } |
---|
2926 | else |
---|
2927 | { |
---|
2928 | ideal peek=@j; |
---|
2929 | } |
---|
2930 | if((size(ser)==0)&&(!abspri)) |
---|
2931 | { |
---|
2932 | ideal fried; |
---|
2933 | @n=size(@j); |
---|
2934 | for(@k=1;@k<=@n;@k++) |
---|
2935 | { |
---|
2936 | if(deg(lead(@j[@k]))==1) |
---|
2937 | { |
---|
2938 | fried[size(fried)+1]=@j[@k]; |
---|
2939 | @j[@k]=0; |
---|
2940 | } |
---|
2941 | } |
---|
2942 | if(size(fried)==nvars(basering)) |
---|
2943 | { |
---|
2944 | setring @P; |
---|
2945 | primary[1]=i; |
---|
2946 | primary[2]=i; |
---|
2947 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
2948 | return(primary); |
---|
2949 | } |
---|
2950 | if(size(fried)>0) |
---|
2951 | { |
---|
2952 | string newva; |
---|
2953 | string newma; |
---|
2954 | poly f; |
---|
2955 | for(@k=1;@k<=nvars(basering);@k++) |
---|
2956 | { |
---|
2957 | @n1=0; |
---|
2958 | for(@n=1;@n<=size(fried);@n++) |
---|
2959 | { |
---|
2960 | if(leadmonom(fried[@n])==var(@k)) |
---|
2961 | { |
---|
2962 | @n1=1; |
---|
2963 | break; |
---|
2964 | } |
---|
2965 | } |
---|
2966 | if(@n1==0) |
---|
2967 | { |
---|
2968 | newva=newva+string(var(@k))+","; |
---|
2969 | newma=newma+string(var(@k))+","; |
---|
2970 | } |
---|
2971 | else |
---|
2972 | { |
---|
2973 | newma=newma+string(0)+","; |
---|
2974 | fried[@n]=fried[@n]/leadcoef(fried[@n]); |
---|
2975 | f=fried[@n]-lead(fried[@n]); |
---|
2976 | @j=subst(@j,var(@k),-f); |
---|
2977 | } |
---|
2978 | } |
---|
2979 | newva[size(newva)]=")"; |
---|
2980 | newma[size(newma)]=";"; |
---|
2981 | execute("ring @deirf=("+charstr(gnir)+"),("+newva+",lp;"); |
---|
2982 | execute("map @kappa=gnir,"+newma); |
---|
2983 | ideal @j= @kappa(@j); |
---|
2984 | @j=std(@j); |
---|
2985 | |
---|
2986 | list pr=decomp(@j); |
---|
2987 | setring gnir; |
---|
2988 | list pr=imap(@deirf,pr); |
---|
2989 | for(@k=1;@k<=size(pr);@k++) |
---|
2990 | { |
---|
2991 | @j=pr[@k]+fried; |
---|
2992 | pr[@k]=@j; |
---|
2993 | } |
---|
2994 | setring @P; |
---|
2995 | primary=imap(gnir,pr); |
---|
2996 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
2997 | return(primary); |
---|
2998 | } |
---|
2999 | } |
---|
3000 | //---------------------------------------------------------------- |
---|
3001 | //j is the ring |
---|
3002 | //---------------------------------------------------------------- |
---|
3003 | |
---|
3004 | if (dim(@j)==-1) |
---|
3005 | { |
---|
3006 | setring @P; |
---|
3007 | primary=ideal(1),ideal(1); |
---|
3008 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3009 | return(primary); |
---|
3010 | } |
---|
3011 | |
---|
3012 | //---------------------------------------------------------------- |
---|
3013 | // the case of one variable |
---|
3014 | //---------------------------------------------------------------- |
---|
3015 | |
---|
3016 | if(nvars(basering)==1) |
---|
3017 | { |
---|
3018 | list fac=factor(@j[1]); |
---|
3019 | list gprimary; |
---|
3020 | for(@k=1;@k<=size(fac[1]);@k++) |
---|
3021 | { |
---|
3022 | if(@wr==0) |
---|
3023 | { |
---|
3024 | gprimary[2*@k-1]=ideal(fac[1][@k]^fac[2][@k]); |
---|
3025 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
3026 | } |
---|
3027 | else |
---|
3028 | { |
---|
3029 | gprimary[2*@k-1]=ideal(fac[1][@k]); |
---|
3030 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
3031 | } |
---|
3032 | } |
---|
3033 | setring @P; |
---|
3034 | primary=fetch(gnir,gprimary); |
---|
3035 | |
---|
3036 | //HIER |
---|
3037 | if (abspri) { return(prepare_absprimdec(primary));} |
---|
3038 | return(primary); |
---|
3039 | } |
---|
3040 | |
---|
3041 | //------------------------------------------------------------------ |
---|
3042 | //the zero-dimensional case |
---|
3043 | //------------------------------------------------------------------ |
---|
3044 | if (dim(@j)==0) |
---|
3045 | { |
---|
3046 | op=option(get); |
---|
3047 | option(redSB); |
---|
3048 | list gprimary= zero_decomp(@j,ser,@wr); |
---|
3049 | |
---|
3050 | setring @P; |
---|
3051 | primary=fetch(gnir,gprimary); |
---|
3052 | |
---|
3053 | if(size(ser)>0) |
---|
3054 | { |
---|
3055 | primary=cleanPrimary(primary); |
---|
3056 | } |
---|
3057 | //HIER |
---|
3058 | if(abspri) |
---|
3059 | { |
---|
3060 | setring gnir; |
---|
3061 | list primary=imap(@P,primary); |
---|
3062 | list resu,tempo; |
---|
3063 | string absotto; |
---|
3064 | map sigma,invsigma; |
---|
3065 | ideal II,jmap; |
---|
3066 | nn=nvars(basering); |
---|
3067 | for(ab=1;ab<=size(primary) div 2;ab++) |
---|
3068 | { |
---|
3069 | II=primary[2*ab]; |
---|
3070 | attrib(II,"isSB",1); |
---|
3071 | if(deg(II[1])==vdim(II)) |
---|
3072 | { |
---|
3073 | absotto= absFactorize(primary[2*ab][1],77); |
---|
3074 | tempo= |
---|
3075 | primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
3076 | } |
---|
3077 | else |
---|
3078 | { |
---|
3079 | invsigma=basering,maxideal(1); |
---|
3080 | jmap=randomLast(50); |
---|
3081 | sigma=basering,jmap; |
---|
3082 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
3083 | invsigma=basering,jmap; |
---|
3084 | II=groebner(sigma(II)); |
---|
3085 | absotto = absFactorize(II[1],77); |
---|
3086 | II=var(nn); |
---|
3087 | tempo= primary[2*ab-1],primary[2*ab],absotto,string(invsigma(II)); |
---|
3088 | } |
---|
3089 | resu[ab]=tempo; |
---|
3090 | } |
---|
3091 | primary=resu; |
---|
3092 | setring @P; |
---|
3093 | primary=imap(gnir,primary); |
---|
3094 | } |
---|
3095 | option(set,op); |
---|
3096 | return(primary); |
---|
3097 | } |
---|
3098 | |
---|
3099 | poly @gs,@gh,@p; |
---|
3100 | string @va; |
---|
3101 | def quotring; |
---|
3102 | list quprimary,htprimary,collectprimary,lsau,lnew,allindep,restindep; |
---|
3103 | ideal @h; |
---|
3104 | int jdim=dim(@j); |
---|
3105 | list fett; |
---|
3106 | int lauf,di,newtest; |
---|
3107 | //------------------------------------------------------------------ |
---|
3108 | //search for a maximal independent set indep,i.e. |
---|
3109 | //look for subring such that the intersection with the ideal is zero |
---|
3110 | //j intersected with K[var(indep[3]+1),...,var(nvar] is zero, |
---|
3111 | //indep[1] is the new varstring and indep[2] the string for block-ordering |
---|
3112 | //------------------------------------------------------------------ |
---|
3113 | if(@wr!=1) |
---|
3114 | { |
---|
3115 | allindep=independSet(@j); |
---|
3116 | for(@m=1;@m<=size(allindep);@m++) |
---|
3117 | { |
---|
3118 | if(allindep[@m][3]==jdim) |
---|
3119 | { |
---|
3120 | di++; |
---|
3121 | indep[di]=allindep[@m]; |
---|
3122 | } |
---|
3123 | else |
---|
3124 | { |
---|
3125 | lauf++; |
---|
3126 | restindep[lauf]=allindep[@m]; |
---|
3127 | } |
---|
3128 | } |
---|
3129 | } |
---|
3130 | else |
---|
3131 | { |
---|
3132 | indep=maxIndependSet(@j); |
---|
3133 | } |
---|
3134 | |
---|
3135 | ideal jkeep=@j; |
---|
3136 | if(ordstr(@P)[1]=="w") |
---|
3137 | { |
---|
3138 | execute("ring @Phelp=("+charstr(gnir)+"),("+varstr(gnir)+"),("+ordstr(@P)+");"); |
---|
3139 | } |
---|
3140 | else |
---|
3141 | { |
---|
3142 | def @Phelp=changeordTo(gnir,"dp"); |
---|
3143 | setring @Phelp; |
---|
3144 | } |
---|
3145 | |
---|
3146 | if(homo==1) |
---|
3147 | { |
---|
3148 | if(((ordstr(@P)[3]=="d")||(ordstr(@P)[1]=="d")||(ordstr(@P)[1]=="w") |
---|
3149 | ||(ordstr(@P)[3]=="w"))&&(size(ringlist(@P)[3])==2)) |
---|
3150 | { |
---|
3151 | ideal jwork=imap(@P,tras); |
---|
3152 | attrib(jwork,"isSB",1); |
---|
3153 | } |
---|
3154 | else |
---|
3155 | { |
---|
3156 | ideal jwork=std(imap(gnir,@j),@hilb,@w); |
---|
3157 | } |
---|
3158 | } |
---|
3159 | else |
---|
3160 | { |
---|
3161 | ideal jwork=groebner(imap(gnir,@j)); |
---|
3162 | } |
---|
3163 | list hquprimary; |
---|
3164 | poly @p,@q; |
---|
3165 | ideal @h,fac,ser; |
---|
3166 | ideal @Ptest=1; |
---|
3167 | di=dim(jwork); |
---|
3168 | keepdi=di; |
---|
3169 | |
---|
3170 | setring gnir; |
---|
3171 | for(@m=1;@m<=size(indep);@m++) |
---|
3172 | { |
---|
3173 | isat=0; |
---|
3174 | @n2=0; |
---|
3175 | if((indep[@m][1]==varstr(basering))&&(@m==1)) |
---|
3176 | //this is the good case, nothing to do, just to have the same notations |
---|
3177 | //change the ring |
---|
3178 | { |
---|
3179 | execute("ring gnir1 = ("+charstr(basering)+"),("+varstr(basering)+"),(" |
---|
3180 | +ordstr(basering)+");"); |
---|
3181 | ideal @j=fetch(gnir,@j); |
---|
3182 | attrib(@j,"isSB",1); |
---|
3183 | ideal ser=fetch(gnir,ser); |
---|
3184 | } |
---|
3185 | else |
---|
3186 | { |
---|
3187 | @va=string(maxideal(1)); |
---|
3188 | if(@m==1) |
---|
3189 | { |
---|
3190 | @j=fetch(@P,i); |
---|
3191 | } |
---|
3192 | execute("ring gnir1 = ("+charstr(basering)+"),("+indep[@m][1]+"),(" |
---|
3193 | +indep[@m][2]+");"); |
---|
3194 | execute("map phi=gnir,"+@va+";"); |
---|
3195 | op=option(get); |
---|
3196 | option(redSB); |
---|
3197 | ideal @j=groebner(phi(@j)); |
---|
3198 | ideal ser=phi(ser); |
---|
3199 | |
---|
3200 | option(set,op); |
---|
3201 | } |
---|
3202 | if((deg(@j[1])==0)||(dim(@j)<jdim)) |
---|
3203 | { |
---|
3204 | setring gnir; |
---|
3205 | kill gnir1; |
---|
3206 | break; |
---|
3207 | } |
---|
3208 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
3209 | { |
---|
3210 | fett[lauf]=size(@j[lauf]); |
---|
3211 | } |
---|
3212 | //------------------------------------------------------------------------ |
---|
3213 | //we have now the following situation: |
---|
3214 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may pass |
---|
3215 | //to this quotientring, j is their still a standardbasis, the |
---|
3216 | //leading coefficients of the polynomials there (polynomials in |
---|
3217 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
3218 | //we need their ggt, gh, because of the following: let |
---|
3219 | //(j:gh^n)=(j:gh^infinity) then j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3220 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
3221 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
3222 | |
---|
3223 | //------------------------------------------------------------------------ |
---|
3224 | |
---|
3225 | //arrangement for quotientring K(var(nnp+1),..,var(nva))[..the rest..] and |
---|
3226 | //map phi:K[var(1),...,var(nva)] --->K(var(nnpr+1),..,var(nva))[..rest..] |
---|
3227 | //------------------------------------------------------------------------ |
---|
3228 | |
---|
3229 | quotring=prepareQuotientring(nvars(basering)-indep[@m][3],"lp"); |
---|
3230 | |
---|
3231 | //--------------------------------------------------------------------- |
---|
3232 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3233 | //--------------------------------------------------------------------- |
---|
3234 | |
---|
3235 | ideal @jj=lead(@j); //!! vorn vereinbaren |
---|
3236 | setring quotring; |
---|
3237 | |
---|
3238 | ideal @jj=imap(gnir1,@jj); |
---|
3239 | @vv=clearSBNeu(@jj,fett); //!! vorn vereinbaren |
---|
3240 | setring gnir1; |
---|
3241 | @k=size(@j); |
---|
3242 | for (lauf=1;lauf<=@k;lauf++) |
---|
3243 | { |
---|
3244 | if(@vv[lauf]==1) |
---|
3245 | { |
---|
3246 | @j[lauf]=0; |
---|
3247 | } |
---|
3248 | } |
---|
3249 | @j=simplify(@j,2); |
---|
3250 | setring quotring; |
---|
3251 | // @j considered in the quotientring |
---|
3252 | ideal @j=imap(gnir1,@j); |
---|
3253 | |
---|
3254 | ideal ser=imap(gnir1,ser); |
---|
3255 | |
---|
3256 | kill gnir1; |
---|
3257 | |
---|
3258 | //j is a standardbasis in the quotientring but usually not minimal |
---|
3259 | //here it becomes minimal |
---|
3260 | |
---|
3261 | attrib(@j,"isSB",1); |
---|
3262 | |
---|
3263 | //we need later ggt(h[1],...)=gh for saturation |
---|
3264 | ideal @h; |
---|
3265 | if(deg(@j[1])>0) |
---|
3266 | { |
---|
3267 | for(@n=1;@n<=size(@j);@n++) |
---|
3268 | { |
---|
3269 | @h[@n]=leadcoef(@j[@n]); |
---|
3270 | } |
---|
3271 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3272 | op=option(get); |
---|
3273 | option(redSB); |
---|
3274 | |
---|
3275 | list uprimary= zero_decomp(@j,ser,@wr); |
---|
3276 | //HIER |
---|
3277 | if(abspri) |
---|
3278 | { |
---|
3279 | ideal II; |
---|
3280 | ideal jmap; |
---|
3281 | map sigma; |
---|
3282 | nn=nvars(basering); |
---|
3283 | map invsigma=basering,maxideal(1); |
---|
3284 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
3285 | { |
---|
3286 | II=uprimary[2*ab]; |
---|
3287 | attrib(II,"isSB",1); |
---|
3288 | if(deg(II[1])!=vdim(II)) |
---|
3289 | { |
---|
3290 | jmap=randomLast(50); |
---|
3291 | sigma=basering,jmap; |
---|
3292 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
3293 | invsigma=basering,jmap; |
---|
3294 | II=groebner(sigma(II)); |
---|
3295 | } |
---|
3296 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
3297 | II=var(nn); |
---|
3298 | abskeeptmp[ab]=string(invsigma(II)); |
---|
3299 | invsigma=basering,maxideal(1); |
---|
3300 | } |
---|
3301 | } |
---|
3302 | option(set,op); |
---|
3303 | } |
---|
3304 | else |
---|
3305 | { |
---|
3306 | list uprimary; |
---|
3307 | uprimary[1]=ideal(1); |
---|
3308 | uprimary[2]=ideal(1); |
---|
3309 | } |
---|
3310 | //we need the intersection of the ideals in the list quprimary with the |
---|
3311 | //polynomialring, i.e. let q=(f1,...,fr) in the quotientring such an ideal |
---|
3312 | //but fi polynomials, then the intersection of q with the polynomialring |
---|
3313 | //is the saturation of the ideal generated by f1,...,fr with respect to |
---|
3314 | //h which is the lcm of the leading coefficients of the fi considered in |
---|
3315 | //in the quotientring: this is coded in saturn |
---|
3316 | |
---|
3317 | list saturn; |
---|
3318 | ideal hpl; |
---|
3319 | |
---|
3320 | for(@n=1;@n<=size(uprimary);@n++) |
---|
3321 | { |
---|
3322 | uprimary[@n]=interred(uprimary[@n]); // temporary fix |
---|
3323 | hpl=0; |
---|
3324 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
3325 | { |
---|
3326 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
3327 | } |
---|
3328 | saturn[@n]=hpl; |
---|
3329 | } |
---|
3330 | |
---|
3331 | //-------------------------------------------------------------------- |
---|
3332 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3333 | //back to the polynomialring |
---|
3334 | //--------------------------------------------------------------------- |
---|
3335 | setring gnir; |
---|
3336 | |
---|
3337 | collectprimary=imap(quotring,uprimary); |
---|
3338 | lsau=imap(quotring,saturn); |
---|
3339 | @h=imap(quotring,@h); |
---|
3340 | |
---|
3341 | kill quotring; |
---|
3342 | def quotring; |
---|
3343 | |
---|
3344 | @n2=size(quprimary); |
---|
3345 | @n3=@n2; |
---|
3346 | |
---|
3347 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
3348 | { |
---|
3349 | if(deg(collectprimary[2*@n1][1])>0) |
---|
3350 | { |
---|
3351 | @n2++; |
---|
3352 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
3353 | lnew[@n2]=lsau[2*@n1-1]; |
---|
3354 | @n2++; |
---|
3355 | lnew[@n2]=lsau[2*@n1]; |
---|
3356 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
3357 | if(abspri) |
---|
3358 | { |
---|
3359 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
3360 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
3361 | } |
---|
3362 | } |
---|
3363 | } |
---|
3364 | //here the intersection with the polynomialring |
---|
3365 | //mentioned above is really computed |
---|
3366 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
3367 | { |
---|
3368 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
3369 | { |
---|
3370 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3371 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
3372 | } |
---|
3373 | else |
---|
3374 | { |
---|
3375 | if(@wr==0) |
---|
3376 | { |
---|
3377 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3378 | } |
---|
3379 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
3380 | } |
---|
3381 | } |
---|
3382 | |
---|
3383 | if(size(@h)>0) |
---|
3384 | { |
---|
3385 | //--------------------------------------------------------------- |
---|
3386 | //we change to @Phelp to have the ordering dp for saturation |
---|
3387 | //--------------------------------------------------------------- |
---|
3388 | setring @Phelp; |
---|
3389 | @h=imap(gnir,@h); |
---|
3390 | if(@wr!=1) |
---|
3391 | { |
---|
3392 | if(defined(@LL)){kill @LL;} |
---|
3393 | list @LL=minSat(jwork,@h); |
---|
3394 | @Ptest=intersect(@Ptest,@LL[1]); |
---|
3395 | @q=@LL[2]; |
---|
3396 | } |
---|
3397 | else |
---|
3398 | { |
---|
3399 | fac=ideal(0); |
---|
3400 | for(lauf=1;lauf<=ncols(@h);lauf++) |
---|
3401 | { |
---|
3402 | if(deg(@h[lauf])>0) |
---|
3403 | { |
---|
3404 | fac=fac+factorize(@h[lauf],1); |
---|
3405 | } |
---|
3406 | } |
---|
3407 | fac=simplify(fac,6); |
---|
3408 | @q=1; |
---|
3409 | for(lauf=1;lauf<=size(fac);lauf++) |
---|
3410 | { |
---|
3411 | @q=@q*fac[lauf]; |
---|
3412 | } |
---|
3413 | } |
---|
3414 | jwork=std(jwork,@q); |
---|
3415 | keepdi=dim(jwork); |
---|
3416 | if(keepdi<di) |
---|
3417 | { |
---|
3418 | setring gnir; |
---|
3419 | @j=imap(@Phelp,jwork); |
---|
3420 | break; |
---|
3421 | } |
---|
3422 | if(homo==1) |
---|
3423 | { |
---|
3424 | @hilb=hilb(jwork,1,@w); |
---|
3425 | } |
---|
3426 | |
---|
3427 | setring gnir; |
---|
3428 | @j=imap(@Phelp,jwork); |
---|
3429 | } |
---|
3430 | } |
---|
3431 | |
---|
3432 | if((size(quprimary)==0)&&(@wr==1)) |
---|
3433 | { |
---|
3434 | @j=ideal(1); |
---|
3435 | quprimary[1]=ideal(1); |
---|
3436 | quprimary[2]=ideal(1); |
---|
3437 | } |
---|
3438 | if((size(quprimary)==0)) |
---|
3439 | { |
---|
3440 | keepdi=di-1; |
---|
3441 | quprimary[1]=ideal(1); |
---|
3442 | quprimary[2]=ideal(1); |
---|
3443 | } |
---|
3444 | //--------------------------------------------------------------- |
---|
3445 | //notice that j=sat(j,gh) intersected with (j,gh^n) |
---|
3446 | //we finished with sat(j,gh) and have to start with (j,gh^n) |
---|
3447 | //--------------------------------------------------------------- |
---|
3448 | if((deg(@j[1])!=0)&&(@wr!=1)) |
---|
3449 | { |
---|
3450 | if(size(quprimary)>0) |
---|
3451 | { |
---|
3452 | setring @Phelp; |
---|
3453 | ser=imap(gnir,ser); |
---|
3454 | hquprimary=imap(gnir,quprimary); |
---|
3455 | if(@wr==0) |
---|
3456 | { |
---|
3457 | //HIER STATT DURCHSCHNITT SATURIEREN! |
---|
3458 | ideal htest=@Ptest; |
---|
3459 | } |
---|
3460 | else |
---|
3461 | { |
---|
3462 | ideal htest=hquprimary[2]; |
---|
3463 | |
---|
3464 | for (@n1=2;@n1<=size(hquprimary) div 2;@n1++) |
---|
3465 | { |
---|
3466 | htest=intersect(htest,hquprimary[2*@n1]); |
---|
3467 | } |
---|
3468 | } |
---|
3469 | |
---|
3470 | if(size(ser)>0) |
---|
3471 | { |
---|
3472 | ser=intersect(htest,ser); |
---|
3473 | } |
---|
3474 | else |
---|
3475 | { |
---|
3476 | ser=htest; |
---|
3477 | } |
---|
3478 | setring gnir; |
---|
3479 | ser=imap(@Phelp,ser); |
---|
3480 | } |
---|
3481 | if(size(reduce(ser,peek,1))!=0) |
---|
3482 | { |
---|
3483 | for(@m=1;@m<=size(restindep);@m++) |
---|
3484 | { |
---|
3485 | // if(restindep[@m][3]>=keepdi) |
---|
3486 | // { |
---|
3487 | isat=0; |
---|
3488 | @n2=0; |
---|
3489 | |
---|
3490 | if(restindep[@m][1]==varstr(basering)) |
---|
3491 | //the good case, nothing to do, just to have the same notations |
---|
3492 | //change the ring |
---|
3493 | { |
---|
3494 | execute("ring gnir1 = ("+charstr(basering)+"),("+ |
---|
3495 | varstr(basering)+"),("+ordstr(basering)+");"); |
---|
3496 | ideal @j=fetch(gnir,jkeep); |
---|
3497 | attrib(@j,"isSB",1); |
---|
3498 | } |
---|
3499 | else |
---|
3500 | { |
---|
3501 | @va=string(maxideal(1)); |
---|
3502 | execute("ring gnir1 = ("+charstr(basering)+"),("+ |
---|
3503 | restindep[@m][1]+"),(" +restindep[@m][2]+");"); |
---|
3504 | execute("map phi=gnir,"+@va+";"); |
---|
3505 | op=option(get); |
---|
3506 | option(redSB); |
---|
3507 | if(homo==1) |
---|
3508 | { |
---|
3509 | ideal @j=std(phi(jkeep),keephilb,@w); |
---|
3510 | } |
---|
3511 | else |
---|
3512 | { |
---|
3513 | ideal @j=groebner(phi(jkeep)); |
---|
3514 | } |
---|
3515 | ideal ser=phi(ser); |
---|
3516 | option(set,op); |
---|
3517 | } |
---|
3518 | |
---|
3519 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
3520 | { |
---|
3521 | fett[lauf]=size(@j[lauf]); |
---|
3522 | } |
---|
3523 | //------------------------------------------------------------------ |
---|
3524 | //we have now the following situation: |
---|
3525 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may |
---|
3526 | //pass to this quotientring, j is their still a standardbasis, the |
---|
3527 | //leading coefficients of the polynomials there (polynomials in |
---|
3528 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
3529 | //we need their ggt, gh, because of the following: |
---|
3530 | //let (j:gh^n)=(j:gh^infinity) then |
---|
3531 | //j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3532 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
3533 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
3534 | |
---|
3535 | //------------------------------------------------------------------ |
---|
3536 | |
---|
3537 | //the arrangement for the quotientring |
---|
3538 | // K(var(nnp+1),..,var(nva))[..the rest..] |
---|
3539 | //and the map phi:K[var(1),...,var(nva)] ----> |
---|
3540 | //--->K(var(nnpr+1),..,var(nva))[..the rest..] |
---|
3541 | //------------------------------------------------------------------ |
---|
3542 | if (defined(quotring)==voice) {kill quotring;} |
---|
3543 | def quotring=prepareQuotientring(nvars(basering)-restindep[@m][3],"lp"); |
---|
3544 | |
---|
3545 | //------------------------------------------------------------------ |
---|
3546 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
3547 | //------------------------------------------------------------------ |
---|
3548 | |
---|
3549 | setring quotring; |
---|
3550 | |
---|
3551 | // @j considered in the quotientring |
---|
3552 | ideal @j=imap(gnir1,@j); |
---|
3553 | ideal ser=imap(gnir1,ser); |
---|
3554 | |
---|
3555 | kill gnir1; |
---|
3556 | |
---|
3557 | //j is a standardbasis in the quotientring but usually not minimal |
---|
3558 | //here it becomes minimal |
---|
3559 | @j=clearSB(@j,fett); |
---|
3560 | attrib(@j,"isSB",1); |
---|
3561 | |
---|
3562 | //we need later ggt(h[1],...)=gh for saturation |
---|
3563 | ideal @h; |
---|
3564 | |
---|
3565 | for(@n=1;@n<=size(@j);@n++) |
---|
3566 | { |
---|
3567 | @h[@n]=leadcoef(@j[@n]); |
---|
3568 | } |
---|
3569 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..rest..] |
---|
3570 | |
---|
3571 | op=option(get); |
---|
3572 | option(redSB); |
---|
3573 | list uprimary= zero_decomp(@j,ser,@wr); |
---|
3574 | //HIER |
---|
3575 | if(abspri) |
---|
3576 | { |
---|
3577 | ideal II; |
---|
3578 | ideal jmap; |
---|
3579 | map sigma; |
---|
3580 | nn=nvars(basering); |
---|
3581 | map invsigma=basering,maxideal(1); |
---|
3582 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
3583 | { |
---|
3584 | II=uprimary[2*ab]; |
---|
3585 | attrib(II,"isSB",1); |
---|
3586 | if(deg(II[1])!=vdim(II)) |
---|
3587 | { |
---|
3588 | jmap=randomLast(50); |
---|
3589 | sigma=basering,jmap; |
---|
3590 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
3591 | invsigma=basering,jmap; |
---|
3592 | II=groebner(sigma(II)); |
---|
3593 | } |
---|
3594 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
3595 | II=var(nn); |
---|
3596 | abskeeptmp[ab]=string(invsigma(II)); |
---|
3597 | invsigma=basering,maxideal(1); |
---|
3598 | } |
---|
3599 | } |
---|
3600 | option(set,op); |
---|
3601 | |
---|
3602 | //we need the intersection of the ideals in the list quprimary with |
---|
3603 | //the polynomialring, i.e. let q=(f1,...,fr) in the quotientring |
---|
3604 | //such an ideal but fi polynomials, then the intersection of q with |
---|
3605 | //the polynomialring is the saturation of the ideal generated by |
---|
3606 | //f1,...,fr with respect toh which is the lcm of the leading |
---|
3607 | //coefficients of the fi considered in the quotientring: |
---|
3608 | //this is coded in saturn |
---|
3609 | |
---|
3610 | list saturn; |
---|
3611 | ideal hpl; |
---|
3612 | |
---|
3613 | for(@n=1;@n<=size(uprimary);@n++) |
---|
3614 | { |
---|
3615 | hpl=0; |
---|
3616 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
3617 | { |
---|
3618 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
3619 | } |
---|
3620 | saturn[@n]=hpl; |
---|
3621 | } |
---|
3622 | //------------------------------------------------------------------ |
---|
3623 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
3624 | //back to the polynomialring |
---|
3625 | //------------------------------------------------------------------ |
---|
3626 | setring gnir; |
---|
3627 | collectprimary=imap(quotring,uprimary); |
---|
3628 | lsau=imap(quotring,saturn); |
---|
3629 | @h=imap(quotring,@h); |
---|
3630 | |
---|
3631 | kill quotring; |
---|
3632 | |
---|
3633 | @n2=size(quprimary); |
---|
3634 | @n3=@n2; |
---|
3635 | |
---|
3636 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
3637 | { |
---|
3638 | if(deg(collectprimary[2*@n1][1])>0) |
---|
3639 | { |
---|
3640 | @n2++; |
---|
3641 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
3642 | lnew[@n2]=lsau[2*@n1-1]; |
---|
3643 | @n2++; |
---|
3644 | lnew[@n2]=lsau[2*@n1]; |
---|
3645 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
3646 | if(abspri) |
---|
3647 | { |
---|
3648 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
3649 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
3650 | } |
---|
3651 | } |
---|
3652 | } |
---|
3653 | |
---|
3654 | |
---|
3655 | //here the intersection with the polynomialring |
---|
3656 | //mentioned above is really computed |
---|
3657 | |
---|
3658 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
3659 | { |
---|
3660 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
3661 | { |
---|
3662 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3663 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
3664 | } |
---|
3665 | else |
---|
3666 | { |
---|
3667 | if(@wr==0) |
---|
3668 | { |
---|
3669 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
3670 | } |
---|
3671 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
3672 | } |
---|
3673 | } |
---|
3674 | if(@n2>=@n3+2) |
---|
3675 | { |
---|
3676 | setring @Phelp; |
---|
3677 | ser=imap(gnir,ser); |
---|
3678 | hquprimary=imap(gnir,quprimary); |
---|
3679 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
3680 | { |
---|
3681 | if(@wr==0) |
---|
3682 | { |
---|
3683 | ser=intersect(ser,hquprimary[2*@n-1]); |
---|
3684 | } |
---|
3685 | else |
---|
3686 | { |
---|
3687 | ser=intersect(ser,hquprimary[2*@n]); |
---|
3688 | } |
---|
3689 | } |
---|
3690 | setring gnir; |
---|
3691 | ser=imap(@Phelp,ser); |
---|
3692 | } |
---|
3693 | |
---|
3694 | // } |
---|
3695 | } |
---|
3696 | //HIER |
---|
3697 | if(abspri) |
---|
3698 | { |
---|
3699 | list resu,tempo; |
---|
3700 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
3701 | { |
---|
3702 | if (deg(quprimary[2*ab][1])!=0) |
---|
3703 | { |
---|
3704 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
3705 | absprimary[ab],abskeep[ab]; |
---|
3706 | resu[ab]=tempo; |
---|
3707 | } |
---|
3708 | } |
---|
3709 | quprimary=resu; |
---|
3710 | @wr=3; |
---|
3711 | } |
---|
3712 | if(size(reduce(ser,peek,1))!=0) |
---|
3713 | { |
---|
3714 | if(@wr>0) |
---|
3715 | { |
---|
3716 | htprimary=decomp(@j,@wr,peek,ser); |
---|
3717 | } |
---|
3718 | else |
---|
3719 | { |
---|
3720 | htprimary=decomp(@j,peek,ser); |
---|
3721 | } |
---|
3722 | // here we collect now both results primary(sat(j,gh)) |
---|
3723 | // and primary(j,gh^n) |
---|
3724 | @n=size(quprimary); |
---|
3725 | for (@k=1;@k<=size(htprimary);@k++) |
---|
3726 | { |
---|
3727 | quprimary[@n+@k]=htprimary[@k]; |
---|
3728 | } |
---|
3729 | } |
---|
3730 | } |
---|
3731 | } |
---|
3732 | else |
---|
3733 | { |
---|
3734 | if(abspri) |
---|
3735 | { |
---|
3736 | list resu,tempo; |
---|
3737 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
3738 | { |
---|
3739 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
3740 | absprimary[ab],abskeep[ab]; |
---|
3741 | resu[ab]=tempo; |
---|
3742 | } |
---|
3743 | quprimary=resu; |
---|
3744 | } |
---|
3745 | } |
---|
3746 | //--------------------------------------------------------------------------- |
---|
3747 | //back to the ring we started with |
---|
3748 | //the final result: primary |
---|
3749 | //--------------------------------------------------------------------------- |
---|
3750 | setring @P; |
---|
3751 | primary=imap(gnir,quprimary); |
---|
3752 | if(!abspri) |
---|
3753 | { |
---|
3754 | primary=cleanPrimary(primary); |
---|
3755 | } |
---|
3756 | if (size(primary)>0) |
---|
3757 | { |
---|
3758 | if (abspri && (typeof(primary[1][1])=="poly")) |
---|
3759 | { return(prepare_absprimdec(primary));} |
---|
3760 | } |
---|
3761 | return(primary); |
---|
3762 | } |
---|
3763 | |
---|
3764 | |
---|
3765 | example |
---|
3766 | { "EXAMPLE:"; echo = 2; |
---|
3767 | ring r = 32003,(x,y,z),lp; |
---|
3768 | poly p = z2+1; |
---|
3769 | poly q = z4+2; |
---|
3770 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
3771 | list pr= decomp(i); |
---|
3772 | pr; |
---|
3773 | testPrimary( pr, i); |
---|
3774 | } |
---|
3775 | |
---|
3776 | /////////////////////////////////////////////////////////////////////////////// |
---|
3777 | static proc powerCoeffs(poly f,int e) |
---|
3778 | //computes a polynomial with the same monomials as f but coefficients |
---|
3779 | //the p^e th power of the coefficients of f |
---|
3780 | { |
---|
3781 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
3782 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
3783 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
3784 | |
---|
3785 | int i; |
---|
3786 | poly g; |
---|
3787 | int ex=char(basering)^e; |
---|
3788 | for(i=1;i<=size(f);i++) |
---|
3789 | { |
---|
3790 | g=g+leadcoef(f[i])^ex*leadmonom(f[i]); |
---|
3791 | } |
---|
3792 | return(g); |
---|
3793 | } |
---|
3794 | /////////////////////////////////////////////////////////////////////////////// |
---|
3795 | |
---|
3796 | proc sep(poly f,int i, list #) |
---|
3797 | "USAGE: input: a polynomial f depending on the i-th variable and optional |
---|
3798 | an integer k considering the polynomial f defined over Fp(t1,...,tm) |
---|
3799 | as polynomial over Fp(t(1)^(p^-k),...,t(m)^(p^-k)) |
---|
3800 | RETURN: the separabel part of f as polynomial in Fp(t1,...,tm) |
---|
3801 | and an integer k to indicate that f should be considerd |
---|
3802 | as polynomial over Fp(t(1)^(p^-k),...,t(m)^(p^-k)) |
---|
3803 | EXAMPLE: example sep; shows an example |
---|
3804 | { |
---|
3805 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
3806 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
3807 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
3808 | |
---|
3809 | def R=basering; |
---|
3810 | int k; |
---|
3811 | if(size(#)>0){k=#[1];} |
---|
3812 | |
---|
3813 | |
---|
3814 | poly h=gcd(f,diff(f,var(i))); |
---|
3815 | if((reduce(f,std(h))!=0)||(reduce(diff(f,var(i)),std(h))!=0)) |
---|
3816 | { |
---|
3817 | ERROR("FEHLER IN GCD"); |
---|
3818 | } |
---|
3819 | poly g1=lift(h,f)[1][1]; // f/h |
---|
3820 | poly h1; |
---|
3821 | |
---|
3822 | while(h!=h1) |
---|
3823 | { |
---|
3824 | h1=h; |
---|
3825 | h=gcd(h,diff(h,var(i))); |
---|
3826 | } |
---|
3827 | |
---|
3828 | if(deg(h1)==0){return(list(g1,k));} //in characteristic 0 we return here |
---|
3829 | |
---|
3830 | k++; |
---|
3831 | |
---|
3832 | ideal ma=maxideal(1); |
---|
3833 | ma[i]=var(i)^char(R); |
---|
3834 | map phi=R,ma; |
---|
3835 | ideal hh=h; //this is technical because preimage works only for ideals |
---|
3836 | |
---|
3837 | poly u=preimage(R,phi,hh)[1]; //h=u(x(i)^p) |
---|
3838 | |
---|
3839 | list g2=sep(u,i,k); //we consider u(t(1)^(p^-1),...,t(m)^(p^-1)) |
---|
3840 | g1=powerCoeffs(g1,g2[2]-k+1); //to have g1 over the same field as g2[1] |
---|
3841 | |
---|
3842 | list g3=sep(g1*g2[1],i,g2[2]); |
---|
3843 | return(g3); |
---|
3844 | } |
---|
3845 | example |
---|
3846 | { "EXAMPLE:"; echo = 2; |
---|
3847 | ring R=(5,t,s),(x,y,z),dp; |
---|
3848 | poly f=(x^25-t*x^5+t)*(x^3+s); |
---|
3849 | sep(f,1); |
---|
3850 | } |
---|
3851 | |
---|
3852 | /////////////////////////////////////////////////////////////////////////////// |
---|
3853 | proc zeroRad(ideal I,list #) |
---|
3854 | "USAGE: zeroRad(I) , I a zero-dimensional ideal |
---|
3855 | RETURN: the radical of I |
---|
3856 | NOTE: Algorithm of Kemper |
---|
3857 | EXAMPLE: example zeroRad; shows an example |
---|
3858 | { |
---|
3859 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
3860 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
3861 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
3862 | |
---|
3863 | if(homog(I)==1){return(maxideal(1));} |
---|
3864 | //I needs to be a reduced standard basis |
---|
3865 | def R=basering; |
---|
3866 | int m=npars(R); |
---|
3867 | int n=nvars(R); |
---|
3868 | int p=char(R); |
---|
3869 | int d=vdim(I); |
---|
3870 | int i,k; |
---|
3871 | list l; |
---|
3872 | if(((p==0)||(p>d))&&(d==deg(I[1]))) |
---|
3873 | { |
---|
3874 | intvec e=leadexp(I[1]); |
---|
3875 | for(i=1;i<=nvars(basering);i++) |
---|
3876 | { |
---|
3877 | if(e[i]!=0) break; |
---|
3878 | } |
---|
3879 | I[1]=sep(I[1],i)[1]; |
---|
3880 | return(interred(I)); |
---|
3881 | } |
---|
3882 | intvec op=option(get); |
---|
3883 | |
---|
3884 | option(redSB); |
---|
3885 | ASSUME(1, dim(I)==0); |
---|
3886 | ideal F=finduni(I);//F[i] generates I intersected with K[var(i)] |
---|
3887 | |
---|
3888 | option(set,op); |
---|
3889 | if(size(#)>0){I=#[1];} |
---|
3890 | |
---|
3891 | for(i=1;i<=n;i++) |
---|
3892 | { |
---|
3893 | l[i]=sep(F[i],i); |
---|
3894 | F[i]=l[i][1]; |
---|
3895 | if(l[i][2]>k){k=l[i][2];} //computation of the maximal k |
---|
3896 | } |
---|
3897 | |
---|
3898 | if((k==0)||(m==0)) //the separable case |
---|
3899 | { |
---|
3900 | intvec save=option(get);option(redSB); |
---|
3901 | I=interred(I+F);option(set,save);return(I); |
---|
3902 | } |
---|
3903 | //I=simplify(I,1); |
---|
3904 | |
---|
3905 | for(i=1;i<=n;i++) //consider all polynomials over |
---|
3906 | { //Fp(t(1)^(p^-k),...,t(m)^(p^-k)) |
---|
3907 | F[i]=powerCoeffs(F[i],k-l[i][2]); |
---|
3908 | } |
---|
3909 | |
---|
3910 | string cR="ring @R="+string(p)+",("+parstr(R)+","+varstr(R)+"),dp;"; |
---|
3911 | execute(cR); |
---|
3912 | ideal F=imap(R,F); |
---|
3913 | |
---|
3914 | string nR1="ring @S1="+string(p)+",("+varstr(R)+","+parstr(R)+",@y(1..m)),dp;"; |
---|
3915 | execute(nR1); |
---|
3916 | list lR=ringlist(@S1)[2]; |
---|
3917 | lR=lR[(size(lR)-m+1)..(size(lR))]; |
---|
3918 | |
---|
3919 | string nR="ring @S="+string(p)+",("+string(lR)+","+varstr(R)+","+parstr(R)+"),dp;"; |
---|
3920 | execute(nR); |
---|
3921 | |
---|
3922 | ideal G=fetch(@R,F); //G[i](t(1)^(p^-k),...,t(m)^(p^-k),x(i))=sep(F[i]) |
---|
3923 | |
---|
3924 | ideal I=imap(R,I); |
---|
3925 | ideal J=I+G; |
---|
3926 | poly el=1; |
---|
3927 | k=p^k; |
---|
3928 | for(i=1;i<=m;i++) |
---|
3929 | { |
---|
3930 | J=J,var(i)^k-var(m+n+i); |
---|
3931 | el=el*var(i); |
---|
3932 | } |
---|
3933 | |
---|
3934 | J=eliminate(J,el); |
---|
3935 | setring R; |
---|
3936 | ideal J=imap(@S,J); |
---|
3937 | return(J); |
---|
3938 | } |
---|
3939 | example |
---|
3940 | { "EXAMPLE:"; echo = 2; |
---|
3941 | ring R=(5,t),(x,y),dp; |
---|
3942 | ideal I=x^5-t,y^5-t; |
---|
3943 | zeroRad(I); |
---|
3944 | } |
---|
3945 | |
---|
3946 | /////////////////////////////////////////////////////////////////////////////// |
---|
3947 | |
---|
3948 | proc radicalEHV(ideal i) |
---|
3949 | "USAGE: radicalEHV(i); i ideal. |
---|
3950 | RETURN: ideal, the radical of i. |
---|
3951 | NOTE: Uses the algorithm of Eisenbud/Huneke/Vasconcelos, which |
---|
3952 | reduces the computation to the complete intersection case, |
---|
3953 | by taking, in the general case, a generic linear combination |
---|
3954 | of the input. |
---|
3955 | Works only in characteristic 0 or p large. |
---|
3956 | EXAMPLE: example radicalEHV; shows an example |
---|
3957 | " |
---|
3958 | { |
---|
3959 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
3960 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
3961 | if(attrib(basering,"global")!=1) |
---|
3962 | { |
---|
3963 | ERROR( |
---|
3964 | "// Not implemented for this ordering, please change to global ordering." |
---|
3965 | ); |
---|
3966 | } |
---|
3967 | |
---|
3968 | if((char(basering)<100)&&(char(basering)!=0)) |
---|
3969 | { |
---|
3970 | "WARNING: The characteristic is too small, the result may be wrong"; |
---|
3971 | } |
---|
3972 | if ( size(i)==0 ) { return(ideal(0)); } |
---|
3973 | |
---|
3974 | ideal J,I,I0,radI0,L,radI1,I2,radI2; |
---|
3975 | int l,n; |
---|
3976 | intvec op=option(get); |
---|
3977 | matrix M; |
---|
3978 | |
---|
3979 | option(redSB); |
---|
3980 | list m=mstd(i); |
---|
3981 | I=m[2]; |
---|
3982 | option(set,op); |
---|
3983 | |
---|
3984 | if ( dim(m[1])<0 ) { return(ideal(1)); } |
---|
3985 | |
---|
3986 | int cod=nvars(basering)-dim(m[1]); |
---|
3987 | //-------------------complete intersection case:---------------------- |
---|
3988 | if(cod==size(m[2])) |
---|
3989 | { |
---|
3990 | J=minor(jacob(I),cod); |
---|
3991 | return(quotient(I,J)); |
---|
3992 | } |
---|
3993 | //-----first codim elements of I are a complete intersection:--------- |
---|
3994 | for(l=1;l<=cod;l++) |
---|
3995 | { |
---|
3996 | I0[l]=I[l]; |
---|
3997 | } |
---|
3998 | n=dim(std(I0))+cod-nvars(basering); |
---|
3999 | //-----last codim elements of I are a complete intersection:---------- |
---|
4000 | if(n!=0) |
---|
4001 | { |
---|
4002 | for(l=1;l<=cod;l++) |
---|
4003 | { |
---|
4004 | I0[l]=I[size(I)-l+1]; |
---|
4005 | } |
---|
4006 | n=dim(std(I0))+cod-nvars(basering); |
---|
4007 | } |
---|
4008 | //-----taking a generic linear combination of the input:-------------- |
---|
4009 | if(n!=0) |
---|
4010 | { |
---|
4011 | M=transpose(sparsetriag(size(m[2]),cod,95,1)); |
---|
4012 | I0=ideal(M*transpose(I)); |
---|
4013 | n=dim(std(I0))+cod-nvars(basering); |
---|
4014 | } |
---|
4015 | //-----taking a more generic linear combination of the input:--------- |
---|
4016 | if(n!=0) |
---|
4017 | { |
---|
4018 | M=transpose(sparsetriag(size(m[2]),cod,0,100)); |
---|
4019 | I0=ideal(M*transpose(I)); |
---|
4020 | n=dim(std(I0))+cod-nvars(basering); |
---|
4021 | } |
---|
4022 | if(n==0) |
---|
4023 | { |
---|
4024 | J=minor(jacob(I0),cod); |
---|
4025 | radI0=quotient(I0,J); |
---|
4026 | L=quotient(radI0,I); |
---|
4027 | radI1=quotient(radI0,L); |
---|
4028 | |
---|
4029 | if(size(reduce(radI1,m[1],1))==0) |
---|
4030 | { |
---|
4031 | return(I); |
---|
4032 | } |
---|
4033 | |
---|
4034 | I2=sat(I,radI1)[1]; |
---|
4035 | |
---|
4036 | if(deg(I2[1])<=0) |
---|
4037 | { |
---|
4038 | return(radI1); |
---|
4039 | } |
---|
4040 | return(intersect(radI1,radicalEHV(I2))); |
---|
4041 | } |
---|
4042 | //---------------------general case------------------------------------- |
---|
4043 | return(radical(I)); |
---|
4044 | } |
---|
4045 | example |
---|
4046 | { "EXAMPLE:"; echo = 2; |
---|
4047 | ring r = 0,(x,y,z),dp; |
---|
4048 | poly p = z2+1; |
---|
4049 | poly q = z3+2; |
---|
4050 | ideal i = p*q^2,y-z2; |
---|
4051 | ideal pr= radicalEHV(i); |
---|
4052 | pr; |
---|
4053 | } |
---|
4054 | |
---|
4055 | /////////////////////////////////////////////////////////////////////////////// |
---|
4056 | |
---|
4057 | proc Ann(module M) |
---|
4058 | "USAGE: Ann(M); M module |
---|
4059 | RETURN: ideal, the annihilator of coker(M) |
---|
4060 | NOTE: The output is the ideal of all elements a of the basering R such that |
---|
4061 | a * R^m is contained in M (m=number of rows of M). |
---|
4062 | EXAMPLE: example Ann; shows an example |
---|
4063 | " |
---|
4064 | { |
---|
4065 | |
---|
4066 | M=prune(M); //to obtain a small embedding |
---|
4067 | ideal ann=quotient1(M,freemodule(nrows(M))); |
---|
4068 | return(ann); |
---|
4069 | } |
---|
4070 | example |
---|
4071 | { "EXAMPLE:"; echo = 2; |
---|
4072 | ring r = 0,(x,y,z),lp; |
---|
4073 | module M = x2-y2,z3; |
---|
4074 | Ann(M); |
---|
4075 | M = [1,x2],[y,x]; |
---|
4076 | Ann(M); |
---|
4077 | qring Q=std(xy-1); |
---|
4078 | module M=imap(r,M); |
---|
4079 | Ann(M); |
---|
4080 | } |
---|
4081 | |
---|
4082 | /////////////////////////////////////////////////////////////////////////////// |
---|
4083 | |
---|
4084 | //computes the equidimensional part of the ideal i of codimension e |
---|
4085 | static proc int_ass_primary_e(ideal i, int e) |
---|
4086 | { |
---|
4087 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4088 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4089 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4090 | |
---|
4091 | if(homog(i)!=1) |
---|
4092 | { |
---|
4093 | i=std(i); |
---|
4094 | } |
---|
4095 | list re=sres(i,0); //the resolution |
---|
4096 | re=minres(re); //minimized resolution |
---|
4097 | ideal ann = AnnExt_R(e,re); |
---|
4098 | if ( nvars(basering)-dim(std(ann)) != e ) |
---|
4099 | { |
---|
4100 | return( ideal(1) ); |
---|
4101 | } |
---|
4102 | return(ann); |
---|
4103 | } |
---|
4104 | |
---|
4105 | /////////////////////////////////////////////////////////////////////////////// |
---|
4106 | |
---|
4107 | //computes the annihilator of Ext^n(R/i,R) with given resolution re |
---|
4108 | //n is not necessarily the number of variables |
---|
4109 | // !! borrowed correct code from 'ehv.lib::AnnExtEHV' by Kai Dehmann !! duplicate code!! (jk) |
---|
4110 | |
---|
4111 | static proc AnnExt_R(int n,list re) |
---|
4112 | "USAGE: AnnExt_R(n,re); n integer, re resolution |
---|
4113 | RETURN: ideal, the annihilator of Ext^n(R/I,R) with given |
---|
4114 | resolution re of I |
---|
4115 | " |
---|
4116 | { |
---|
4117 | |
---|
4118 | if(n < 0) |
---|
4119 | { |
---|
4120 | ideal ann = ideal(1); |
---|
4121 | return(ann); |
---|
4122 | } |
---|
4123 | int l = size(re); |
---|
4124 | |
---|
4125 | if(n < l) |
---|
4126 | { |
---|
4127 | matrix f = transpose(re[n+1]); |
---|
4128 | if(n == 0) |
---|
4129 | { |
---|
4130 | matrix g = 0*gen(ncols(f)); |
---|
4131 | } |
---|
4132 | else |
---|
4133 | { |
---|
4134 | matrix g = transpose(re[n]); |
---|
4135 | } |
---|
4136 | module k = syz(f); |
---|
4137 | ideal ann = quotient1(g,k); |
---|
4138 | return(ann); |
---|
4139 | } |
---|
4140 | |
---|
4141 | if(n == l) |
---|
4142 | { |
---|
4143 | ideal ann = Ann(transpose(re[n])); |
---|
4144 | return(ann); |
---|
4145 | } |
---|
4146 | |
---|
4147 | ideal ann = ideal(1); |
---|
4148 | return(ann); |
---|
4149 | } |
---|
4150 | /////////////////////////////////////////////////////////////////////////////// |
---|
4151 | |
---|
4152 | static proc analyze(list pr) |
---|
4153 | { |
---|
4154 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4155 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4156 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4157 | |
---|
4158 | int ii,jj; |
---|
4159 | for(ii=1;ii<=size(pr) div 2;ii++) |
---|
4160 | { |
---|
4161 | dim(std(pr[2*ii])); |
---|
4162 | idealsEqual(pr[2*ii-1],pr[2*ii]); |
---|
4163 | "==========================="; |
---|
4164 | } |
---|
4165 | |
---|
4166 | for(ii=size(pr) div 2;ii>1;ii--) |
---|
4167 | { |
---|
4168 | for(jj=1;jj<ii;jj++) |
---|
4169 | { |
---|
4170 | if(size(reduce(pr[2*jj],std(pr[2*ii],1)))==0) |
---|
4171 | { |
---|
4172 | "eingebette Komponente"; |
---|
4173 | jj; |
---|
4174 | ii; |
---|
4175 | } |
---|
4176 | } |
---|
4177 | } |
---|
4178 | } |
---|
4179 | |
---|
4180 | /////////////////////////////////////////////////////////////////////////////// |
---|
4181 | // |
---|
4182 | // Shimoyama-Yokoyama |
---|
4183 | // |
---|
4184 | /////////////////////////////////////////////////////////////////////////////// |
---|
4185 | static proc simplifyIdeal(ideal i) |
---|
4186 | { |
---|
4187 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4188 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4189 | |
---|
4190 | def r=basering; |
---|
4191 | |
---|
4192 | ideal iwork=i; |
---|
4193 | ideal imap2=maxideal(1); |
---|
4194 | |
---|
4195 | int j,k; |
---|
4196 | map phi; |
---|
4197 | poly p; |
---|
4198 | ideal imap1=maxideal(1); |
---|
4199 | // first try: very simple substitutions |
---|
4200 | intvec tested=0:nvars(r); |
---|
4201 | for(j=1;j<=nvars(r);j++) |
---|
4202 | { |
---|
4203 | for(k=1;k<=ncols(i);k++) |
---|
4204 | { |
---|
4205 | if(deg(iwork[k]/var(j))==0) |
---|
4206 | { |
---|
4207 | p=-1/leadcoef(iwork[k]/var(j))*iwork[k]; |
---|
4208 | if(size(p)<=2) |
---|
4209 | { |
---|
4210 | tested[j]=1; |
---|
4211 | imap1[j]=p+2*var(j); |
---|
4212 | phi=r,imap1; |
---|
4213 | iwork=phi(iwork); |
---|
4214 | iwork=subst(iwork,var(j),0); |
---|
4215 | iwork[k]=var(j); |
---|
4216 | imap1=maxideal(1); |
---|
4217 | imap2[j]=-p; |
---|
4218 | break; |
---|
4219 | } |
---|
4220 | } |
---|
4221 | } |
---|
4222 | } |
---|
4223 | // second try: substitutions not so simple |
---|
4224 | for(j=1;j<=nvars(r);j++) |
---|
4225 | { |
---|
4226 | if (tested[j]==0) |
---|
4227 | { |
---|
4228 | for(k=1;k<=ncols(i);k++) |
---|
4229 | { |
---|
4230 | if(deg(iwork[k]/var(j))==0) |
---|
4231 | { |
---|
4232 | p=-1/leadcoef(iwork[k]/var(j))*iwork[k]; |
---|
4233 | imap1[j]=p+2*var(j); |
---|
4234 | phi=r,imap1; |
---|
4235 | iwork=phi(iwork); |
---|
4236 | iwork=subst(iwork,var(j),0); |
---|
4237 | iwork[k]=var(j); |
---|
4238 | imap1=maxideal(1); |
---|
4239 | imap2[j]=-p; |
---|
4240 | break; |
---|
4241 | } |
---|
4242 | } |
---|
4243 | } |
---|
4244 | } |
---|
4245 | return(iwork,imap2); |
---|
4246 | } |
---|
4247 | |
---|
4248 | |
---|
4249 | /////////////////////////////////////////////////////// |
---|
4250 | // ini_mod |
---|
4251 | // input: a polynomial p |
---|
4252 | // output: the initial term of p as needed |
---|
4253 | // in the context of characteristic sets |
---|
4254 | ////////////////////////////////////////////////////// |
---|
4255 | |
---|
4256 | static proc ini_mod(poly p) |
---|
4257 | { |
---|
4258 | if (p==0) |
---|
4259 | { |
---|
4260 | return(0); |
---|
4261 | } |
---|
4262 | int n; matrix m; |
---|
4263 | for( n=nvars(basering); n>0; n--) |
---|
4264 | { |
---|
4265 | m=coef(p,var(n)); |
---|
4266 | if(m[1,1]!=1) |
---|
4267 | { |
---|
4268 | p=m[2,1]; |
---|
4269 | break; |
---|
4270 | } |
---|
4271 | } |
---|
4272 | if(deg(p)==0) |
---|
4273 | { |
---|
4274 | p=0; |
---|
4275 | } |
---|
4276 | return(p); |
---|
4277 | } |
---|
4278 | /////////////////////////////////////////////////////// |
---|
4279 | // min_ass_prim_charsets |
---|
4280 | // input: generators of an ideal PS and an integer cho |
---|
4281 | // If cho=0, the given ordering of the variables is used. |
---|
4282 | // Otherwise, the system tries to find an "optimal ordering", |
---|
4283 | // which in some cases may considerably speed up the algorithm |
---|
4284 | // output: the minimal associated primes of PS |
---|
4285 | // algorithm: via characteriostic sets |
---|
4286 | ////////////////////////////////////////////////////// |
---|
4287 | |
---|
4288 | |
---|
4289 | static proc min_ass_prim_charsets (ideal PS, int cho) |
---|
4290 | { |
---|
4291 | if((cho<0) and (cho>1)) |
---|
4292 | { |
---|
4293 | ERROR("<int> must be 0 or 1"); |
---|
4294 | } |
---|
4295 | intvec saveopt=option(get); |
---|
4296 | option(notWarnSB); |
---|
4297 | list L; |
---|
4298 | if(cho==0) |
---|
4299 | { |
---|
4300 | L=min_ass_prim_charsets0(PS); |
---|
4301 | } |
---|
4302 | else |
---|
4303 | { |
---|
4304 | L=min_ass_prim_charsets1(PS); |
---|
4305 | } |
---|
4306 | option(set,saveopt); |
---|
4307 | return(L); |
---|
4308 | } |
---|
4309 | /////////////////////////////////////////////////////// |
---|
4310 | // min_ass_prim_charsets0 |
---|
4311 | // input: generators of an ideal PS |
---|
4312 | // output: the minimal associated primes of PS |
---|
4313 | // algorithm: via characteristic sets |
---|
4314 | // the given ordering of the variables is used |
---|
4315 | ////////////////////////////////////////////////////// |
---|
4316 | |
---|
4317 | |
---|
4318 | static proc min_ass_prim_charsets0 (ideal PS) |
---|
4319 | { |
---|
4320 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4321 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4322 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4323 | |
---|
4324 | intvec op; |
---|
4325 | matrix m=char_series(PS); // We compute an irreducible |
---|
4326 | // characteristic series |
---|
4327 | if ((nrows(m)==1) |
---|
4328 | && (ncols(m)==1) |
---|
4329 | && (m[1,1]==1)) // in case of an empty series: min_ass_prim_charsets1 |
---|
4330 | { |
---|
4331 | return min_ass_prim_charsets1(PS); |
---|
4332 | } |
---|
4333 | int i,j,k; |
---|
4334 | list PSI; |
---|
4335 | list PHI; // the ideals given by the characteristic series |
---|
4336 | for(i=nrows(m);i>=1; i--) |
---|
4337 | { |
---|
4338 | PHI[i]=ideal(m[i,1..ncols(m)]); |
---|
4339 | } |
---|
4340 | // We compute the radical of each ideal in PHI |
---|
4341 | ideal I,JS,II; |
---|
4342 | int sizeJS, sizeII; |
---|
4343 | for(i=size(PHI);i>=1; i--) |
---|
4344 | { |
---|
4345 | I=0; |
---|
4346 | for(j=size(PHI[i]);j>0;j--) |
---|
4347 | { |
---|
4348 | I=I+ini_mod(PHI[i][j]); |
---|
4349 | } |
---|
4350 | JS=std(PHI[i]); |
---|
4351 | sizeJS=size(JS); |
---|
4352 | for(j=size(I);j>0;j--) |
---|
4353 | { |
---|
4354 | II=0; |
---|
4355 | sizeII=0; |
---|
4356 | k=0; |
---|
4357 | while(k<=sizeII) // successive saturation |
---|
4358 | { |
---|
4359 | op=option(get); |
---|
4360 | option(returnSB); |
---|
4361 | II=quotient(JS,I[j]); |
---|
4362 | option(set,op); |
---|
4363 | sizeII=size(II); |
---|
4364 | if(sizeII==sizeJS) |
---|
4365 | { |
---|
4366 | for(k=1;k<=sizeII;k++) |
---|
4367 | { |
---|
4368 | if(leadexp(II[k])!=leadexp(JS[k])) break; |
---|
4369 | } |
---|
4370 | } |
---|
4371 | JS=II; |
---|
4372 | sizeJS=sizeII; |
---|
4373 | } |
---|
4374 | } |
---|
4375 | PSI=insert(PSI,JS); |
---|
4376 | } |
---|
4377 | int sizePSI=size(PSI); |
---|
4378 | // We eliminate redundant ideals |
---|
4379 | for(i=1;i<sizePSI;i++) |
---|
4380 | { |
---|
4381 | for(j=i+1;j<=sizePSI;j++) |
---|
4382 | { |
---|
4383 | if(size(PSI[i])!=0) |
---|
4384 | { |
---|
4385 | if(size(PSI[j])!=0) |
---|
4386 | { |
---|
4387 | if(size(NF(PSI[i],PSI[j],1))==0) |
---|
4388 | { |
---|
4389 | PSI[j]=ideal(0); |
---|
4390 | } |
---|
4391 | else |
---|
4392 | { |
---|
4393 | if(size(NF(PSI[j],PSI[i],1))==0) |
---|
4394 | { |
---|
4395 | PSI[i]=ideal(0); |
---|
4396 | } |
---|
4397 | } |
---|
4398 | } |
---|
4399 | } |
---|
4400 | } |
---|
4401 | } |
---|
4402 | for(i=sizePSI;i>=1;i--) |
---|
4403 | { |
---|
4404 | if(size(PSI[i])==0) |
---|
4405 | { |
---|
4406 | PSI=delete(PSI,i); |
---|
4407 | } |
---|
4408 | } |
---|
4409 | return (PSI); |
---|
4410 | } |
---|
4411 | |
---|
4412 | /////////////////////////////////////////////////////// |
---|
4413 | // min_ass_prim_charsets1 |
---|
4414 | // input: generators of an ideal PS |
---|
4415 | // output: the minimal associated primes of PS |
---|
4416 | // algorithm: via characteristic sets |
---|
4417 | // input: generators of an ideal PS and an integer i |
---|
4418 | // The system tries to find an "optimal ordering" of |
---|
4419 | // the variables |
---|
4420 | ////////////////////////////////////////////////////// |
---|
4421 | |
---|
4422 | |
---|
4423 | static proc min_ass_prim_charsets1 (ideal PS) |
---|
4424 | { |
---|
4425 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4426 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4427 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4428 | |
---|
4429 | intvec op; |
---|
4430 | def oldring=basering; |
---|
4431 | string n=system("neworder",PS); |
---|
4432 | execute("ring r=("+charstr(oldring)+"),("+n+"),dp;"); |
---|
4433 | ideal PS=imap(oldring,PS); |
---|
4434 | matrix m=char_series(PS); // We compute an irreducible |
---|
4435 | // characteristic series |
---|
4436 | // this series may be empty (1x1: 1) |
---|
4437 | int i,j,k,cnt; |
---|
4438 | while ((cnt<nvars(oldring)) |
---|
4439 | && (nrows(m)==1) |
---|
4440 | && (ncols(m)==1) |
---|
4441 | && (m[1,1]==1)) // in case of an empty series: permute the variables |
---|
4442 | { |
---|
4443 | cnt++; |
---|
4444 | n=string(var(nvars(oldring))); |
---|
4445 | for(i=1;i<nvars(oldring);i++) { n=n+","+string(var(i)); } |
---|
4446 | kill r; |
---|
4447 | execute("ring r=("+charstr(oldring)+"),("+n+"),dp;"); |
---|
4448 | ideal PS=imap(oldring,PS); |
---|
4449 | matrix m=char_series(PS); |
---|
4450 | } |
---|
4451 | ideal I; |
---|
4452 | list PSI; |
---|
4453 | list PHI; // the ideals given by the characteristic series |
---|
4454 | list ITPHI; // their initial terms |
---|
4455 | for(i=nrows(m);i>=1; i--) |
---|
4456 | { |
---|
4457 | PHI[i]=simplify(ideal(m[i,1..ncols(m)]),2); |
---|
4458 | I=0; |
---|
4459 | for(j=ncols(PHI[i]);j>0;j--) |
---|
4460 | { |
---|
4461 | I=I,ini_mod(PHI[i][j]); |
---|
4462 | } |
---|
4463 | I=I[2..ncols(I)]; |
---|
4464 | ITPHI[i]=I; |
---|
4465 | } |
---|
4466 | setring oldring; |
---|
4467 | matrix m=imap(r,m); |
---|
4468 | list PHI=imap(r,PHI); |
---|
4469 | list ITPHI=imap(r,ITPHI); |
---|
4470 | // We compute the radical of each ideal in PHI |
---|
4471 | ideal I,JS,II; |
---|
4472 | int sizeJS, sizeII; |
---|
4473 | for(i=size(PHI);i>=1; i--) |
---|
4474 | { |
---|
4475 | I=0; |
---|
4476 | for(j=size(PHI[i]);j>0;j--) |
---|
4477 | { |
---|
4478 | I=I+ITPHI[i][j]; |
---|
4479 | } |
---|
4480 | JS=std(PHI[i]); |
---|
4481 | sizeJS=size(JS); |
---|
4482 | for(j=size(I);j>0;j--) |
---|
4483 | { |
---|
4484 | II=0; |
---|
4485 | sizeII=0; |
---|
4486 | k=0; |
---|
4487 | while(k<=sizeII) // successive iteration |
---|
4488 | { |
---|
4489 | op=option(get); |
---|
4490 | option(returnSB); |
---|
4491 | II=quotient(JS,I[j]); |
---|
4492 | option(set,op); |
---|
4493 | //std |
---|
4494 | // II=std(II); |
---|
4495 | sizeII=size(II); |
---|
4496 | if(sizeII==sizeJS) |
---|
4497 | { |
---|
4498 | for(k=1;k<=sizeII;k++) |
---|
4499 | { |
---|
4500 | if(leadexp(II[k])!=leadexp(JS[k])) break; |
---|
4501 | } |
---|
4502 | } |
---|
4503 | JS=II; |
---|
4504 | sizeJS=sizeII; |
---|
4505 | } |
---|
4506 | } |
---|
4507 | PSI=insert(PSI,JS); |
---|
4508 | } |
---|
4509 | int sizePSI=size(PSI); |
---|
4510 | // We eliminate redundant ideals |
---|
4511 | for(i=1;i<sizePSI;i++) |
---|
4512 | { |
---|
4513 | for(j=i+1;j<=sizePSI;j++) |
---|
4514 | { |
---|
4515 | if(size(PSI[i])!=0) |
---|
4516 | { |
---|
4517 | if(size(PSI[j])!=0) |
---|
4518 | { |
---|
4519 | if(size(NF(PSI[i],PSI[j],1))==0) |
---|
4520 | { |
---|
4521 | PSI[j]=ideal(0); |
---|
4522 | } |
---|
4523 | else |
---|
4524 | { |
---|
4525 | if(size(NF(PSI[j],PSI[i],1))==0) |
---|
4526 | { |
---|
4527 | PSI[i]=ideal(0); |
---|
4528 | } |
---|
4529 | } |
---|
4530 | } |
---|
4531 | } |
---|
4532 | } |
---|
4533 | } |
---|
4534 | for(i=sizePSI;i>=1;i--) |
---|
4535 | { |
---|
4536 | if(size(PSI[i])==0) |
---|
4537 | { |
---|
4538 | PSI=delete(PSI,i); |
---|
4539 | } |
---|
4540 | } |
---|
4541 | return (PSI); |
---|
4542 | } |
---|
4543 | |
---|
4544 | |
---|
4545 | ///////////////////////////////////////////////////// |
---|
4546 | // proc prim_dec |
---|
4547 | // input: generators of an ideal I and an integer choose |
---|
4548 | // If choose=0, min_ass_prim_charsets with the given |
---|
4549 | // ordering of the variables is used. |
---|
4550 | // If choose=1, min_ass_prim_charsets with the "optimized" |
---|
4551 | // ordering of the variables is used. |
---|
4552 | // If choose=2, minAssPrimes from primdec.lib is used |
---|
4553 | // If choose=3, minAssPrimes+factorizing Buchberger from primdec.lib is used |
---|
4554 | // output: a primary decomposition of I, i.e., a list |
---|
4555 | // of pairs consisting of a standard basis of a primary component |
---|
4556 | // of I and a standard basis of the corresponding associated prime. |
---|
4557 | // To compute the minimal associated primes of a given ideal |
---|
4558 | // min_ass_prim_l is called, i.e., the minimal associated primes |
---|
4559 | // are computed via characteristic sets. |
---|
4560 | // In the homogeneous case, the performance of the procedure |
---|
4561 | // will be improved if I is already given by a minimal set of |
---|
4562 | // generators. Apply minbase if necessary. |
---|
4563 | ////////////////////////////////////////////////////////// |
---|
4564 | |
---|
4565 | |
---|
4566 | static proc prim_dec(ideal I, int choose) |
---|
4567 | { |
---|
4568 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4569 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4570 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4571 | |
---|
4572 | if((choose<0) or (choose>3)) |
---|
4573 | { |
---|
4574 | ERROR("ERROR: <int> must be 0 or 1 or 2 or 3"); |
---|
4575 | } |
---|
4576 | ideal H=1; // The intersection of the primary components |
---|
4577 | list U; // the leaves of the decomposition tree, i.e., |
---|
4578 | // pairs consisting of a primary component of I |
---|
4579 | // and the corresponding associated prime |
---|
4580 | list W; // the non-leaf vertices in the decomposition tree. |
---|
4581 | // every entry has 6 components: |
---|
4582 | // 1- the vertex itself , i.e., a standard bais of the |
---|
4583 | // given ideal I (type 1), or a standard basis of a |
---|
4584 | // pseudo-primary component arising from |
---|
4585 | // pseudo-primary decomposition (type 2), or a |
---|
4586 | // standard basis of a remaining component arising from |
---|
4587 | // pseudo-primary decomposition or extraction (type 3) |
---|
4588 | // 2- the type of the vertex as indicated above |
---|
4589 | // 3- the weighted_tree_depth of the vertex |
---|
4590 | // 4- the tester of the vertex |
---|
4591 | // 5- a standard basis of the associated prime |
---|
4592 | // of a vertex of type 2, or 0 otherwise |
---|
4593 | // 6- a list of pairs consisting of a standard |
---|
4594 | // basis of a minimal associated prime ideal |
---|
4595 | // of the father of the vertex and the |
---|
4596 | // irreducible factors of the "minimal |
---|
4597 | // divisor" of the seperator or extractor |
---|
4598 | // corresponding to the prime ideal |
---|
4599 | // as computed by the procedure minsat, |
---|
4600 | // if the vertex is of type 3, or |
---|
4601 | // the empty list otherwise |
---|
4602 | ideal SI=std(I); |
---|
4603 | if(SI[1]==1) // primdecSY(ideal(1)) |
---|
4604 | { |
---|
4605 | return(list()); |
---|
4606 | } |
---|
4607 | intvec save=option(get); |
---|
4608 | option(notWarnSB); |
---|
4609 | int ncolsSI=ncols(SI); |
---|
4610 | int ncolsH=1; |
---|
4611 | W[1]=list(I,1,0,poly(1),ideal(0),list()); // The root of the tree |
---|
4612 | int weighted_tree_depth; |
---|
4613 | int i,j; |
---|
4614 | int check; |
---|
4615 | list V; // current vertex |
---|
4616 | list VV; // new vertex |
---|
4617 | list QQ; |
---|
4618 | list WI; |
---|
4619 | ideal Qi,SQ,SRest,fac; |
---|
4620 | poly tester; |
---|
4621 | |
---|
4622 | while(1) |
---|
4623 | { |
---|
4624 | i=1; |
---|
4625 | while(1) |
---|
4626 | { |
---|
4627 | while(i<=size(W)) // find vertex V of smallest weighted tree-depth |
---|
4628 | { |
---|
4629 | if (W[i][3]<=weighted_tree_depth) break; |
---|
4630 | i++; |
---|
4631 | } |
---|
4632 | if (i<=size(W)) break; |
---|
4633 | i=1; |
---|
4634 | weighted_tree_depth++; |
---|
4635 | } |
---|
4636 | V=W[i]; |
---|
4637 | W=delete(W,i); // delete V from W |
---|
4638 | |
---|
4639 | // now proceed by type of vertex V |
---|
4640 | |
---|
4641 | if (V[2]==2) // extraction needed |
---|
4642 | { |
---|
4643 | SQ,SRest,fac=extraction(V[1],V[5]); |
---|
4644 | // standard basis of primary component, |
---|
4645 | // standard basis of remaining component, |
---|
4646 | // irreducible factors of |
---|
4647 | // the "minimal divisor" of the extractor |
---|
4648 | // as computed by the procedure minsat, |
---|
4649 | check=0; |
---|
4650 | for(j=1;j<=ncolsH;j++) |
---|
4651 | { |
---|
4652 | if (NF(H[j],SQ,1)!=0) // Q is not redundant |
---|
4653 | { |
---|
4654 | check=1; |
---|
4655 | break; |
---|
4656 | } |
---|
4657 | } |
---|
4658 | if(check==1) // Q is not redundant |
---|
4659 | { |
---|
4660 | QQ=list(); |
---|
4661 | QQ[1]=list(SQ,V[5]); // primary component, associated prime, |
---|
4662 | // i.e., standard bases thereof |
---|
4663 | U=U+QQ; |
---|
4664 | H=intersect(H,SQ); |
---|
4665 | H=std(H); |
---|
4666 | ncolsH=ncols(H); |
---|
4667 | check=0; |
---|
4668 | if(ncolsH==ncolsSI) |
---|
4669 | { |
---|
4670 | for(j=1;j<=ncolsSI;j++) |
---|
4671 | { |
---|
4672 | if(leadexp(H[j])!=leadexp(SI[j])) |
---|
4673 | { |
---|
4674 | check=1; |
---|
4675 | break; |
---|
4676 | } |
---|
4677 | } |
---|
4678 | } |
---|
4679 | else |
---|
4680 | { |
---|
4681 | check=1; |
---|
4682 | } |
---|
4683 | if(check==0) // H==I => U is a primary decomposition |
---|
4684 | { |
---|
4685 | option(set,save); |
---|
4686 | return(U); |
---|
4687 | } |
---|
4688 | } |
---|
4689 | if (SRest[1]!=1) // the remaining component is not |
---|
4690 | // the whole ring |
---|
4691 | { |
---|
4692 | if (rad_con(V[4],SRest)==0) // the new vertex is not the |
---|
4693 | // root of a redundant subtree |
---|
4694 | { |
---|
4695 | VV[1]=SRest; // remaining component |
---|
4696 | VV[2]=3; // pseudoprimdec_special |
---|
4697 | VV[3]=V[3]+1; // weighted depth |
---|
4698 | VV[4]=V[4]; // the tester did not change |
---|
4699 | VV[5]=ideal(0); |
---|
4700 | VV[6]=list(list(V[5],fac)); |
---|
4701 | W=insert(W,VV,size(W)); |
---|
4702 | } |
---|
4703 | } |
---|
4704 | } |
---|
4705 | else |
---|
4706 | { |
---|
4707 | if (V[2]==3) // pseudo_prim_dec_special is needed |
---|
4708 | { |
---|
4709 | QQ,SRest=pseudo_prim_dec_special_charsets(V[1],V[6],choose); |
---|
4710 | // QQ = quadruples: |
---|
4711 | // standard basis of pseudo-primary component, |
---|
4712 | // standard basis of corresponding prime, |
---|
4713 | // seperator, irreducible factors of |
---|
4714 | // the "minimal divisor" of the seperator |
---|
4715 | // as computed by the procedure minsat, |
---|
4716 | // SRest=standard basis of remaining component |
---|
4717 | } |
---|
4718 | else // V is the root, pseudo_prim_dec is needed |
---|
4719 | { |
---|
4720 | QQ,SRest=pseudo_prim_dec_charsets(I,SI,choose); |
---|
4721 | // QQ = quadruples: |
---|
4722 | // standard basis of pseudo-primary component, |
---|
4723 | // standard basis of corresponding prime, |
---|
4724 | // seperator, irreducible factors of |
---|
4725 | // the "minimal divisor" of the seperator |
---|
4726 | // as computed by the procedure minsat, |
---|
4727 | // SRest=standard basis of remaining component |
---|
4728 | } |
---|
4729 | //check |
---|
4730 | for(i=size(QQ);i>=1;i--) |
---|
4731 | //for(i=1;i<=size(QQ);i++) |
---|
4732 | { |
---|
4733 | tester=QQ[i][3]*V[4]; |
---|
4734 | Qi=QQ[i][2]; |
---|
4735 | if(NF(tester,Qi,1)!=0) // the new vertex is not the |
---|
4736 | // root of a redundant subtree |
---|
4737 | { |
---|
4738 | VV[1]=QQ[i][1]; |
---|
4739 | VV[2]=2; |
---|
4740 | VV[3]=V[3]+1; |
---|
4741 | VV[4]=tester; // the new tester as computed above |
---|
4742 | VV[5]=Qi; // QQ[i][2]; |
---|
4743 | VV[6]=list(); |
---|
4744 | W=insert(W,VV,size(W)); |
---|
4745 | } |
---|
4746 | } |
---|
4747 | if (SRest[1]!=1) // the remaining component is not |
---|
4748 | // the whole ring |
---|
4749 | { |
---|
4750 | if (rad_con(V[4],SRest)==0) // the vertex is not the root |
---|
4751 | // of a redundant subtree |
---|
4752 | { |
---|
4753 | VV[1]=SRest; |
---|
4754 | VV[2]=3; |
---|
4755 | VV[3]=V[3]+2; |
---|
4756 | VV[4]=V[4]; // the tester did not change |
---|
4757 | VV[5]=ideal(0); |
---|
4758 | WI=list(); |
---|
4759 | for(i=1;i<=size(QQ);i++) |
---|
4760 | { |
---|
4761 | WI=insert(WI,list(QQ[i][2],QQ[i][4])); |
---|
4762 | } |
---|
4763 | VV[6]=WI; |
---|
4764 | W=insert(W,VV,size(W)); |
---|
4765 | } |
---|
4766 | } |
---|
4767 | } |
---|
4768 | } |
---|
4769 | option(set,save); |
---|
4770 | } |
---|
4771 | |
---|
4772 | ////////////////////////////////////////////////////////////////////////// |
---|
4773 | // proc pseudo_prim_dec_charsets |
---|
4774 | // input: Generators of an arbitrary ideal I, a standard basis SI of I, |
---|
4775 | // and an integer choo |
---|
4776 | // If choo=0, min_ass_prim_charsets with the given |
---|
4777 | // ordering of the variables is used. |
---|
4778 | // If choo=1, min_ass_prim_charsets with the "optimized" |
---|
4779 | // ordering of the variables is used. |
---|
4780 | // If choo=2, minAssPrimes from primdec.lib is used |
---|
4781 | // If choo=3, minAssPrimes+factorizing Buchberger from primdec.lib is used |
---|
4782 | // output: a pseudo primary decomposition of I, i.e., a list |
---|
4783 | // of pseudo primary components together with a standard basis of the |
---|
4784 | // remaining component. Each pseudo primary component is |
---|
4785 | // represented by a quadrupel: A standard basis of the component, |
---|
4786 | // a standard basis of the corresponding associated prime, the |
---|
4787 | // seperator of the component, and the irreducible factors of the |
---|
4788 | // "minimal divisor" of the seperator as computed by the procedure minsat, |
---|
4789 | // calls proc pseudo_prim_dec_i |
---|
4790 | ////////////////////////////////////////////////////////////////////////// |
---|
4791 | |
---|
4792 | |
---|
4793 | static proc pseudo_prim_dec_charsets (ideal I, ideal SI, int choo) |
---|
4794 | { |
---|
4795 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4796 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4797 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4798 | |
---|
4799 | list L; // The list of minimal associated primes, |
---|
4800 | // each one given by a standard basis |
---|
4801 | if((choo==0) or (choo==1)) |
---|
4802 | { |
---|
4803 | L=min_ass_prim_charsets(I,choo); |
---|
4804 | } |
---|
4805 | else |
---|
4806 | { |
---|
4807 | if(choo==2) |
---|
4808 | { |
---|
4809 | L=minAssPrimes(I); |
---|
4810 | } |
---|
4811 | else |
---|
4812 | { |
---|
4813 | L=minAssPrimes(I,1); |
---|
4814 | } |
---|
4815 | for(int i=size(L);i>=1;i--) |
---|
4816 | { |
---|
4817 | L[i]=std(L[i]); |
---|
4818 | } |
---|
4819 | } |
---|
4820 | return (pseudo_prim_dec_i(SI,L)); |
---|
4821 | } |
---|
4822 | |
---|
4823 | //////////////////////////////////////////////////////////////// |
---|
4824 | // proc pseudo_prim_dec_special_charsets |
---|
4825 | // input: a standard basis of an ideal I whose radical is the |
---|
4826 | // intersection of the radicals of ideals generated by one prime ideal |
---|
4827 | // P_i together with one polynomial f_i, the list V6 must be the list of |
---|
4828 | // pairs (standard basis of P_i, irreducible factors of f_i), |
---|
4829 | // and an integer choo |
---|
4830 | // If choo=0, min_ass_prim_charsets with the given |
---|
4831 | // ordering of the variables is used. |
---|
4832 | // If choo=1, min_ass_prim_charsets with the "optimized" |
---|
4833 | // ordering of the variables is used. |
---|
4834 | // If choo=2, minAssPrimes from primdec.lib is used |
---|
4835 | // If choo=3, minAssPrimes+factorizing Buchberger from primdec.lib is used |
---|
4836 | // output: a pseudo primary decomposition of I, i.e., a list |
---|
4837 | // of pseudo primary components together with a standard basis of the |
---|
4838 | // remaining component. Each pseudo primary component is |
---|
4839 | // represented by a quadrupel: A standard basis of the component, |
---|
4840 | // a standard basis of the corresponding associated prime, the |
---|
4841 | // seperator of the component, and the irreducible factors of the |
---|
4842 | // "minimal divisor" of the seperator as computed by the procedure minsat, |
---|
4843 | // calls proc pseudo_prim_dec_i |
---|
4844 | //////////////////////////////////////////////////////////////// |
---|
4845 | |
---|
4846 | |
---|
4847 | static proc pseudo_prim_dec_special_charsets (ideal SI,list V6, int choo) |
---|
4848 | { |
---|
4849 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4850 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4851 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4852 | |
---|
4853 | int i,j,l; |
---|
4854 | list m; |
---|
4855 | list L; |
---|
4856 | int sizeL; |
---|
4857 | ideal P,SP; ideal fac; |
---|
4858 | int dimSP; |
---|
4859 | for(l=size(V6);l>=1;l--) // creates a list of associated primes |
---|
4860 | // of I, possibly redundant |
---|
4861 | { |
---|
4862 | P=V6[l][1]; |
---|
4863 | fac=V6[l][2]; |
---|
4864 | for(i=ncols(fac);i>=1;i--) |
---|
4865 | { |
---|
4866 | SP=P+fac[i]; |
---|
4867 | SP=std(SP); |
---|
4868 | if(SP[1]!=1) |
---|
4869 | { |
---|
4870 | if((choo==0) or (choo==1)) |
---|
4871 | { |
---|
4872 | m=min_ass_prim_charsets(SP,choo); // a list of SB |
---|
4873 | } |
---|
4874 | else |
---|
4875 | { |
---|
4876 | if(choo==2) |
---|
4877 | { |
---|
4878 | m=minAssPrimes(SP); |
---|
4879 | } |
---|
4880 | else |
---|
4881 | { |
---|
4882 | m=minAssPrimes(SP,1); |
---|
4883 | } |
---|
4884 | for(j=size(m);j>=1;j--) |
---|
4885 | { |
---|
4886 | m[j]=std(m[j]); |
---|
4887 | } |
---|
4888 | } |
---|
4889 | dimSP=dim(SP); |
---|
4890 | for(j=size(m);j>=1; j--) |
---|
4891 | { |
---|
4892 | if(dim(m[j])==dimSP) |
---|
4893 | { |
---|
4894 | L=insert(L,m[j],size(L)); |
---|
4895 | } |
---|
4896 | } |
---|
4897 | } |
---|
4898 | } |
---|
4899 | } |
---|
4900 | sizeL=size(L); |
---|
4901 | for(i=1;i<sizeL;i++) // get rid of redundant primes |
---|
4902 | { |
---|
4903 | for(j=i+1;j<=sizeL;j++) |
---|
4904 | { |
---|
4905 | if(size(L[i])!=0) |
---|
4906 | { |
---|
4907 | if(size(L[j])!=0) |
---|
4908 | { |
---|
4909 | if(size(NF(L[i],L[j],1))==0) |
---|
4910 | { |
---|
4911 | L[j]=ideal(0); |
---|
4912 | } |
---|
4913 | else |
---|
4914 | { |
---|
4915 | if(size(NF(L[j],L[i],1))==0) |
---|
4916 | { |
---|
4917 | L[i]=ideal(0); |
---|
4918 | } |
---|
4919 | } |
---|
4920 | } |
---|
4921 | } |
---|
4922 | } |
---|
4923 | } |
---|
4924 | for(i=sizeL;i>=1;i--) |
---|
4925 | { |
---|
4926 | if(size(L[i])==0) |
---|
4927 | { |
---|
4928 | L=delete(L,i); |
---|
4929 | } |
---|
4930 | } |
---|
4931 | return (pseudo_prim_dec_i(SI,L)); |
---|
4932 | } |
---|
4933 | |
---|
4934 | |
---|
4935 | //////////////////////////////////////////////////////////////// |
---|
4936 | // proc pseudo_prim_dec_i |
---|
4937 | // input: A standard basis of an arbitrary ideal I, and standard bases |
---|
4938 | // of the minimal associated primes of I |
---|
4939 | // output: a pseudo primary decomposition of I, i.e., a list |
---|
4940 | // of pseudo primary components together with a standard basis of the |
---|
4941 | // remaining component. Each pseudo primary component is |
---|
4942 | // represented by a quadrupel: A standard basis of the component Q_i, |
---|
4943 | // a standard basis of the corresponding associated prime P_i, the |
---|
4944 | // seperator of the component, and the irreducible factors of the |
---|
4945 | // "minimal divisor" of the seperator as computed by the procedure minsat, |
---|
4946 | //////////////////////////////////////////////////////////////// |
---|
4947 | |
---|
4948 | |
---|
4949 | static proc pseudo_prim_dec_i (ideal SI, list L) |
---|
4950 | { |
---|
4951 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
4952 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
4953 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
4954 | |
---|
4955 | list Q; |
---|
4956 | if (size(L)==1) // one minimal associated prime only |
---|
4957 | // the ideal is already pseudo primary |
---|
4958 | { |
---|
4959 | Q=SI,L[1],1; |
---|
4960 | list QQ; |
---|
4961 | QQ[1]=Q; |
---|
4962 | return (QQ,ideal(1)); |
---|
4963 | } |
---|
4964 | |
---|
4965 | poly f0,f,g; |
---|
4966 | ideal fac; |
---|
4967 | int i,j,k,l; |
---|
4968 | ideal SQi; |
---|
4969 | ideal I'=SI; |
---|
4970 | list QP; |
---|
4971 | int sizeL=size(L); |
---|
4972 | for(i=1;i<=sizeL;i++) |
---|
4973 | { |
---|
4974 | fac=0; |
---|
4975 | for(j=1;j<=sizeL;j++) // compute the seperator sep_i |
---|
4976 | // of the i-th component |
---|
4977 | { |
---|
4978 | if (i!=j) // search g not in L[i], but L[j] |
---|
4979 | { |
---|
4980 | for(k=1;k<=ncols(L[j]);k++) |
---|
4981 | { |
---|
4982 | if(NF(L[j][k],L[i],1)!=0) |
---|
4983 | { |
---|
4984 | break; |
---|
4985 | } |
---|
4986 | } |
---|
4987 | fac=fac+L[j][k]; |
---|
4988 | } |
---|
4989 | } |
---|
4990 | // delete superfluous polynomials |
---|
4991 | fac=simplify(fac,8+2); |
---|
4992 | // saturation |
---|
4993 | SQi,f0,f,fac=minsat_ppd(SI,fac); |
---|
4994 | I'=I',f; |
---|
4995 | QP=SQi,L[i],f0,fac; |
---|
4996 | // the quadrupel: |
---|
4997 | // a standard basis of Q_i, |
---|
4998 | // a standard basis of P_i, |
---|
4999 | // sep_i, |
---|
5000 | // irreducible factors of |
---|
5001 | // the "minimal divisor" of the seperator |
---|
5002 | // as computed by the procedure minsat, |
---|
5003 | Q[i]=QP; |
---|
5004 | } |
---|
5005 | I'=std(I'); |
---|
5006 | return (Q, I'); |
---|
5007 | // I' = remaining component |
---|
5008 | } |
---|
5009 | |
---|
5010 | |
---|
5011 | //////////////////////////////////////////////////////////////// |
---|
5012 | // proc extraction |
---|
5013 | // input: A standard basis of a pseudo primary ideal I, and a standard |
---|
5014 | // basis of the unique minimal associated prime P of I |
---|
5015 | // output: an extraction of I, i.e., a standard basis of the primary |
---|
5016 | // component Q of I with associated prime P, a standard basis of the |
---|
5017 | // remaining component, and the irreducible factors of the |
---|
5018 | // "minimal divisor" of the extractor as computed by the procedure minsat |
---|
5019 | //////////////////////////////////////////////////////////////// |
---|
5020 | |
---|
5021 | |
---|
5022 | static proc extraction (ideal SI, ideal SP) |
---|
5023 | { |
---|
5024 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5025 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5026 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5027 | |
---|
5028 | list indsets=indepSet(SP,0); |
---|
5029 | poly f; |
---|
5030 | if(size(indsets)!=0) //check, whether dim P != 0 |
---|
5031 | { |
---|
5032 | intvec v; // a maximal independent set of variables |
---|
5033 | // modulo P |
---|
5034 | string U; // the independent variables |
---|
5035 | string A; // the dependent variables |
---|
5036 | int j,k; |
---|
5037 | int a; // the size of A |
---|
5038 | int degf; |
---|
5039 | ideal g; |
---|
5040 | list polys; |
---|
5041 | int sizepolys; |
---|
5042 | list newpoly; |
---|
5043 | def R=basering; |
---|
5044 | //intvec hv=hilb(SI,1); |
---|
5045 | for (k=1;k<=size(indsets);k++) |
---|
5046 | { |
---|
5047 | v=indsets[k]; |
---|
5048 | for (j=1;j<=nvars(R);j++) |
---|
5049 | { |
---|
5050 | if (v[j]==1) |
---|
5051 | { |
---|
5052 | U=U+varstr(j)+","; |
---|
5053 | } |
---|
5054 | else |
---|
5055 | { |
---|
5056 | A=A+varstr(j)+","; |
---|
5057 | a++; |
---|
5058 | } |
---|
5059 | } |
---|
5060 | |
---|
5061 | U[size(U)]=")"; // we compute the extractor of I (w.r.t. U) |
---|
5062 | execute("ring RAU=("+charstr(basering)+"),("+A+U+",(dp("+string(a)+"),dp);"); |
---|
5063 | ideal I=imap(R,SI); |
---|
5064 | //I=std(I,hv); // the standard basis in (R[U])[A] |
---|
5065 | I=std(I); // the standard basis in (R[U])[A] |
---|
5066 | A[size(A)]=")"; |
---|
5067 | execute("ring Rloc=("+charstr(basering)+","+U+",("+A+",dp;"); |
---|
5068 | ideal I=imap(RAU,I); |
---|
5069 | //"std in lokalisierung:"+newline,I; |
---|
5070 | ideal h; |
---|
5071 | for(j=ncols(I);j>=1;j--) |
---|
5072 | { |
---|
5073 | h[j]=leadcoef(I[j]); // consider I in (R(U))[A] |
---|
5074 | } |
---|
5075 | setring R; |
---|
5076 | g=imap(Rloc,h); |
---|
5077 | kill RAU,Rloc; |
---|
5078 | U=""; |
---|
5079 | A=""; |
---|
5080 | a=0; |
---|
5081 | f=lcm(g); |
---|
5082 | newpoly[1]=f; |
---|
5083 | polys=polys+newpoly; |
---|
5084 | newpoly=list(); |
---|
5085 | } |
---|
5086 | f=polys[1]; |
---|
5087 | degf=deg(f); |
---|
5088 | sizepolys=size(polys); |
---|
5089 | for (k=2;k<=sizepolys;k++) |
---|
5090 | { |
---|
5091 | if (deg(polys[k])<degf) |
---|
5092 | { |
---|
5093 | f=polys[k]; |
---|
5094 | degf=deg(f); |
---|
5095 | } |
---|
5096 | } |
---|
5097 | } |
---|
5098 | else |
---|
5099 | { |
---|
5100 | f=1; |
---|
5101 | } |
---|
5102 | poly f0,h0; ideal SQ; ideal fac; |
---|
5103 | if(f!=1) |
---|
5104 | { |
---|
5105 | SQ,f0,h0,fac=minsat(SI,f); |
---|
5106 | return(SQ,std(SI+h0),fac); |
---|
5107 | // the tripel |
---|
5108 | // a standard basis of Q, |
---|
5109 | // a standard basis of remaining component, |
---|
5110 | // irreducible factors of |
---|
5111 | // the "minimal divisor" of the extractor |
---|
5112 | // as computed by the procedure minsat |
---|
5113 | } |
---|
5114 | else |
---|
5115 | { |
---|
5116 | return(SI,ideal(1),ideal(1)); |
---|
5117 | } |
---|
5118 | } |
---|
5119 | |
---|
5120 | ///////////////////////////////////////////////////// |
---|
5121 | // proc minsat |
---|
5122 | // input: a standard basis of an ideal I and a polynomial p |
---|
5123 | // output: a standard basis IS of the saturation of I w.r. to p, |
---|
5124 | // the maximal squarefree factor f0 of p, |
---|
5125 | // the "minimal divisor" f of f0 such that the saturation of |
---|
5126 | // I w.r. to f equals the saturation of I w.r. to f0 (which is IS), |
---|
5127 | // the irreducible factors of f |
---|
5128 | ////////////////////////////////////////////////////////// |
---|
5129 | |
---|
5130 | |
---|
5131 | static proc minsat(ideal SI, poly p) |
---|
5132 | { |
---|
5133 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5134 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5135 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5136 | |
---|
5137 | ideal fac=factorize(p,1); //the irreducible factors of p |
---|
5138 | fac=sort(fac)[1]; |
---|
5139 | int i,k; |
---|
5140 | poly f0=1; |
---|
5141 | for(i=ncols(fac);i>=1;i--) |
---|
5142 | { |
---|
5143 | f0=f0*fac[i]; |
---|
5144 | } |
---|
5145 | poly f=1; |
---|
5146 | ideal iold; |
---|
5147 | list quotM; |
---|
5148 | quotM[1]=SI; |
---|
5149 | quotM[2]=fac; |
---|
5150 | quotM[3]=f0; |
---|
5151 | // we deal seperately with the first quotient; |
---|
5152 | // factors, which do not contribute to this one, |
---|
5153 | // are omitted |
---|
5154 | iold=quotM[1]; |
---|
5155 | quotM=minquot(quotM); |
---|
5156 | fac=quotM[2]; |
---|
5157 | if(quotM[3]==1) |
---|
5158 | { |
---|
5159 | return(quotM[1],f0,f,fac); |
---|
5160 | } |
---|
5161 | while(special_ideals_equal(iold,quotM[1])==0) |
---|
5162 | { |
---|
5163 | f=f*quotM[3]; |
---|
5164 | iold=quotM[1]; |
---|
5165 | quotM=minquot(quotM); |
---|
5166 | } |
---|
5167 | return(quotM[1],f0,f,fac); // the quadrupel ((I:p),f0,f, irr. factors of f) |
---|
5168 | } |
---|
5169 | |
---|
5170 | ///////////////////////////////////////////////////// |
---|
5171 | // proc minsat_ppd |
---|
5172 | // input: a standard basis of an ideal I and a polynomial p |
---|
5173 | // output: a standard basis IS of the saturation of I w.r. to p, |
---|
5174 | // the maximal squarefree factor f0 of p, |
---|
5175 | // the "minimal divisor" f of f0 such that the saturation of |
---|
5176 | // I w.r. to f equals the saturation of I w.r. to f0 (which is IS), |
---|
5177 | // the irreducible factors of f |
---|
5178 | ////////////////////////////////////////////////////////// |
---|
5179 | |
---|
5180 | |
---|
5181 | static proc minsat_ppd(ideal SI, ideal fac) |
---|
5182 | { |
---|
5183 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5184 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5185 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5186 | |
---|
5187 | fac=sort(fac)[1]; |
---|
5188 | int i,k; |
---|
5189 | poly f0=1; |
---|
5190 | for(i=ncols(fac);i>=1;i--) |
---|
5191 | { |
---|
5192 | f0=f0*fac[i]; |
---|
5193 | } |
---|
5194 | poly f=1; |
---|
5195 | ideal iold; |
---|
5196 | list quotM; |
---|
5197 | quotM[1]=SI; |
---|
5198 | quotM[2]=fac; |
---|
5199 | quotM[3]=f0; |
---|
5200 | // we deal seperately with the first quotient; |
---|
5201 | // factors, which do not contribute to this one, |
---|
5202 | // are omitted |
---|
5203 | iold=quotM[1]; |
---|
5204 | quotM=minquot(quotM); |
---|
5205 | fac=quotM[2]; |
---|
5206 | if(quotM[3]==1) |
---|
5207 | { |
---|
5208 | return(quotM[1],f0,f,fac); |
---|
5209 | } |
---|
5210 | while(special_ideals_equal(iold,quotM[1])==0) |
---|
5211 | { |
---|
5212 | f=f*quotM[3]; |
---|
5213 | iold=quotM[1]; |
---|
5214 | quotM=minquot(quotM); |
---|
5215 | k++; |
---|
5216 | } |
---|
5217 | return(quotM[1],f0,f,fac); // the quadrupel ((I:p),f0,f, irr. factors of f) |
---|
5218 | } |
---|
5219 | ///////////////////////////////////////////////////////////////// |
---|
5220 | // proc minquot |
---|
5221 | // input: a list with 3 components: a standard basis |
---|
5222 | // of an ideal I, a set of irreducible polynomials, and |
---|
5223 | // there product f0 |
---|
5224 | // output: a standard basis of the ideal (I:f0), the irreducible |
---|
5225 | // factors of the "minimal divisor" f of f0 with (I:f0) = (I:f), |
---|
5226 | // the "minimal divisor" f |
---|
5227 | ///////////////////////////////////////////////////////////////// |
---|
5228 | |
---|
5229 | static proc minquot(list tsil) |
---|
5230 | { |
---|
5231 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
5232 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
5233 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
5234 | |
---|
5235 | intvec op; |
---|
5236 | int i,j,k,action; |
---|
5237 | ideal verg; |
---|
5238 | list l; |
---|
5239 | poly g; |
---|
5240 | ideal laedi=tsil[1]; |
---|
5241 | ideal fac=tsil[2]; |
---|
5242 | poly f=tsil[3]; |
---|
5243 | |
---|
5244 | //std |
---|
5245 | // ideal star=quotient(laedi,f); |
---|
5246 | // star=std(star); |
---|
5247 | op=option(get); |
---|
5248 | option(returnSB); |
---|
5249 | ideal star=quotient(laedi,f); |
---|
5250 | option(set,op); |
---|
5251 | if(special_ideals_equal(laedi,star)==1) |
---|
5252 | { |
---|
5253 | return(laedi,ideal(1),1); |
---|
5254 | } |
---|
5255 | action=1; |
---|
5256 | while(action==1) |
---|
5257 | { |
---|
5258 | if(size(fac)==1) |
---|
5259 | { |
---|
5260 | action=0; |
---|
5261 | break; |
---|
5262 | } |
---|
5263 | for(i=1;i<=size(fac);i++) |
---|
5264 | { |
---|
5265 | g=1; |
---|
5266 | for(j=1;j<=size(fac);j++) |
---|
5267 | { |
---|
5268 | if(i!=j) |
---|
5269 | { |
---|
5270 | g=g*fac[j]; |
---|
5271 | } |
---|
5272 | } |
---|
5273 | //std |
---|
5274 | // verg=quotient(laedi,g); |
---|
5275 | // verg=std(verg); |
---|
5276 | op=option(get); |
---|
5277 | option(returnSB); |
---|
5278 | verg=quotient(laedi,g); |
---|
5279 | option(set,op); |
---|
5280 | if(special_ideals_equal(verg,star)==1) |
---|
5281 | { |
---|
5282 | f=g; |
---|
5283 | fac[i]=0; |
---|
5284 | fac=simplify(fac,2); |
---|
5285 | break; |
---|
5286 | } |
---|
5287 | if(i==size(fac)) |
---|
5288 | { |
---|
5289 | action=0; |
---|
5290 | } |
---|
5291 | } |
---|
5292 | } |
---|
5293 | l=star,fac,f; |
---|
5294 | return(l); |
---|
5295 | } |
---|
5296 | ///////////////////////////////////////////////// |
---|
5297 | // proc special_ideals_equal |
---|
5298 | // input: standard bases of ideal k1 and k2 such that |
---|
5299 | // k1 is contained in k2, or k2 is contained ink1 |
---|
5300 | // output: 1, if k1 equals k2, 0 otherwise |
---|
5301 | ////////////////////////////////////////////////// |
---|
5302 | |
---|
5303 | static proc special_ideals_equal( ideal k1, ideal k2) |
---|
5304 | { |
---|
5305 | int j; |
---|
5306 | if(size(k1)==size(k2)) |
---|
5307 | { |
---|
5308 | for(j=1;j<=size(k1);j++) |
---|
5309 | { |
---|
5310 | if(leadexp(k1[j])!=leadexp(k2[j])) |
---|
5311 | { |
---|
5312 | return(0); |
---|
5313 | } |
---|
5314 | } |
---|
5315 | return(1); |
---|
5316 | } |
---|
5317 | return(0); |
---|
5318 | } |
---|
5319 | |
---|
5320 | |
---|
5321 | /////////////////////////////////////////////////////////////////////////////// |
---|
5322 | |
---|
5323 | static proc convList(list l) |
---|
5324 | { |
---|
5325 | int i; |
---|
5326 | list re,he; |
---|
5327 | for(i=1;i<=size(l) div 2;i++) |
---|
5328 | { |
---|
5329 | he=l[2*i-1],l[2*i]; |
---|
5330 | re[i]=he; |
---|
5331 | } |
---|
5332 | return(re); |
---|
5333 | } |
---|
5334 | /////////////////////////////////////////////////////////////////////////////// |
---|
5335 | |
---|
5336 | static proc reconvList(list l) |
---|
5337 | { |
---|
5338 | int i; |
---|
5339 | list re; |
---|
5340 | for(i=size(l);i>0;i--) |
---|
5341 | { |
---|
5342 | re[2*i-1]=l[i][1]; |
---|
5343 | re[2*i]=l[i][2]; |
---|
5344 | } |
---|
5345 | return(re); |
---|
5346 | } |
---|
5347 | |
---|
5348 | /////////////////////////////////////////////////////////////////////////////// |
---|
5349 | // |
---|
5350 | // The main procedures |
---|
5351 | // |
---|
5352 | /////////////////////////////////////////////////////////////////////////////// |
---|
5353 | |
---|
5354 | proc primdecGTZ(ideal i, list #) |
---|
5355 | "USAGE: primdecGTZ(i); i ideal |
---|
5356 | RETURN: a list pr of primary ideals and their associated primes: |
---|
5357 | @format |
---|
5358 | pr[i][1] the i-th primary component, |
---|
5359 | pr[i][2] the i-th prime component. |
---|
5360 | @end format |
---|
5361 | NOTE: - Algorithm of Gianni/Trager/Zacharias. |
---|
5362 | - Designed for characteristic 0, works also in char k > 0, if it |
---|
5363 | terminates (may result in an infinite loop in small characteristic!) |
---|
5364 | - For local orderings, the result is considered in the localization |
---|
5365 | of the polynomial ring, not in the power series ring |
---|
5366 | - For local and mixed orderings, the decomposition in the |
---|
5367 | corresponding global ring is returned if the string 'global' |
---|
5368 | is specified as second argument |
---|
5369 | EXAMPLE: example primdecGTZ; shows an example |
---|
5370 | " |
---|
5371 | { |
---|
5372 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5373 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5374 | if(size(#)>0) |
---|
5375 | { |
---|
5376 | int keep_comp=1; |
---|
5377 | } |
---|
5378 | if(attrib(basering,"global")!=1) |
---|
5379 | { |
---|
5380 | // algorithms only work in global case! |
---|
5381 | // pass to appropriate global ring |
---|
5382 | def r=basering; |
---|
5383 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5384 | setring s; |
---|
5385 | ideal i=imap(r,i); |
---|
5386 | // decompose and go back |
---|
5387 | list li=primdecGTZ(i); |
---|
5388 | setring r; |
---|
5389 | def li=imap(s,li); |
---|
5390 | // clean up |
---|
5391 | if(!defined(keep_comp)) |
---|
5392 | { |
---|
5393 | for(int k=size(li);k>=1;k--) |
---|
5394 | { |
---|
5395 | if(mindeg(std(lead(li[k][2]))[1])==0) |
---|
5396 | { |
---|
5397 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5398 | li=delete(li,k); |
---|
5399 | } |
---|
5400 | } |
---|
5401 | } |
---|
5402 | return(li); |
---|
5403 | } |
---|
5404 | |
---|
5405 | if(minpoly!=0) |
---|
5406 | { |
---|
5407 | return(algeDeco(i,0)); |
---|
5408 | ERROR( |
---|
5409 | "// Not implemented yet for algebraic extensions.Simulate the ring extension by adding the minpoly to the ideal" |
---|
5410 | ); |
---|
5411 | } |
---|
5412 | return(convList(decomp(i))); |
---|
5413 | } |
---|
5414 | example |
---|
5415 | { "EXAMPLE:"; echo = 2; |
---|
5416 | ring r = 0,(x,y,z),lp; |
---|
5417 | poly p = z2+1; |
---|
5418 | poly q = z3+2; |
---|
5419 | ideal i = p*q^2,y-z2; |
---|
5420 | list pr = primdecGTZ(i); |
---|
5421 | pr; |
---|
5422 | } |
---|
5423 | /////////////////////////////////////////////////////////////////////////////// |
---|
5424 | proc absPrimdecGTZ(ideal I, list #) |
---|
5425 | "USAGE: absPrimdecGTZ(I); I ideal |
---|
5426 | ASSUME: Ground field has characteristic 0. |
---|
5427 | RETURN: a ring containing two lists: @code{absolute_primes}, the absolute |
---|
5428 | prime components of I, and @code{primary_decomp}, the output of |
---|
5429 | @code{primdecGTZ(I)}. |
---|
5430 | The list absolute_primes has to be interpreted as follows: |
---|
5431 | each entry describes a class of conjugated absolute primes, |
---|
5432 | @format |
---|
5433 | absolute_primes[i][1] the absolute prime component, |
---|
5434 | absolute_primes[i][2] the number of conjugates. |
---|
5435 | @end format |
---|
5436 | The first entry of @code{absolute_primes[i][1]} is the minimal |
---|
5437 | polynomial of a minimal finite field extension over which the |
---|
5438 | absolute prime component is defined. |
---|
5439 | For local orderings, the result is considered in the localization |
---|
5440 | of the polynomial ring, not in the power series ring. |
---|
5441 | For local and mixed orderings, the decomposition in the |
---|
5442 | corresponding global ring is returned if the string 'global' |
---|
5443 | is specified as second argument |
---|
5444 | NOTE: Algorithm of Gianni/Trager/Zacharias combined with the |
---|
5445 | @code{absFactorize} command. |
---|
5446 | SEE ALSO: primdecGTZ; absFactorize |
---|
5447 | EXAMPLE: example absPrimdecGTZ; shows an example |
---|
5448 | " |
---|
5449 | { |
---|
5450 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5451 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5452 | if (char(basering) != 0) |
---|
5453 | { |
---|
5454 | ERROR("primdec.lib::absPrimdecGTZ is only implemented for "+ |
---|
5455 | +"characteristic 0"); |
---|
5456 | } |
---|
5457 | |
---|
5458 | if(size(#)>0) |
---|
5459 | { |
---|
5460 | int keep_comp=1; |
---|
5461 | } |
---|
5462 | |
---|
5463 | if(attrib(basering,"global")!=1) |
---|
5464 | { |
---|
5465 | // algorithm automatically passes to the global case |
---|
5466 | // hence prepare to go back to an appropriate new ring |
---|
5467 | def r=basering; |
---|
5468 | ideal max_of_r=maxideal(1); |
---|
5469 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5470 | setring s; |
---|
5471 | def I=imap(r,I); |
---|
5472 | def S=absPrimdecGTZ(I); |
---|
5473 | setring S; |
---|
5474 | ring r1=char(basering),var(nvars(r)+1),dp; |
---|
5475 | def rS=r+r1; |
---|
5476 | // move objects to appropriate ring and clean up |
---|
5477 | setring rS; |
---|
5478 | def max_of_r=imap(r,max_of_r); |
---|
5479 | attrib(max_of_r,"isSB",1); |
---|
5480 | def absolute_primes=imap(S,absolute_primes); |
---|
5481 | def primary_decomp=imap(S,primary_decomp); |
---|
5482 | if(!defined(keep_comp)) |
---|
5483 | { |
---|
5484 | ideal tempid; |
---|
5485 | for(int k=size(absolute_primes);k>=1;k--) |
---|
5486 | { |
---|
5487 | tempid=absolute_primes[k][1]; |
---|
5488 | tempid[1]=0; // ignore minimal polynomial |
---|
5489 | if(size(reduce(lead(tempid),max_of_r))!=0) |
---|
5490 | { |
---|
5491 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5492 | absolute_primes=delete(absolute_primes,k); |
---|
5493 | } |
---|
5494 | } |
---|
5495 | for(k=size(primary_decomp);k>=1;k--) |
---|
5496 | { |
---|
5497 | if(mindeg(std(lead(primary_decomp[k][2]))[1])==0) |
---|
5498 | { |
---|
5499 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5500 | primary_decomp=delete(primary_decomp,k); |
---|
5501 | } |
---|
5502 | } |
---|
5503 | kill tempid; |
---|
5504 | } |
---|
5505 | export(primary_decomp); |
---|
5506 | export(absolute_primes); |
---|
5507 | return(rS); |
---|
5508 | } |
---|
5509 | if(minpoly!=0) |
---|
5510 | { |
---|
5511 | //return(algeDeco(i,0)); |
---|
5512 | ERROR( |
---|
5513 | "// Not implemented yet for algebraic extensions.Simulate the ring extension by adding the minpoly to the ideal" |
---|
5514 | ); |
---|
5515 | } |
---|
5516 | def R=basering; |
---|
5517 | int n=nvars(R); |
---|
5518 | list L=decomp(I,3); |
---|
5519 | string newvar=L[1][3]; |
---|
5520 | int k=find(newvar,",",find(newvar,",")+1); |
---|
5521 | newvar=newvar[k+1..size(newvar)]; |
---|
5522 | list lR=ringlist(R); |
---|
5523 | int i,de,ii; |
---|
5524 | intvec vv=1:n; |
---|
5525 | //for(i=1;i<=n;i++){vv[i]=1;} |
---|
5526 | |
---|
5527 | list orst; |
---|
5528 | orst[1]=list("dp",vv); |
---|
5529 | orst[2]=list("dp",intvec(1)); |
---|
5530 | orst[3]=list("C",0); |
---|
5531 | lR[3]=orst; |
---|
5532 | lR[2][n+1] = newvar; |
---|
5533 | def Rz = ring(lR); |
---|
5534 | setring Rz; |
---|
5535 | list L=imap(R,L); |
---|
5536 | list absolute_primes,primary_decomp; |
---|
5537 | ideal I,M,N,K; |
---|
5538 | M=maxideal(1); |
---|
5539 | N=maxideal(1); |
---|
5540 | poly p,q,f,g; |
---|
5541 | map phi,psi; |
---|
5542 | string tvar; |
---|
5543 | for(i=1;i<=size(L);i++) |
---|
5544 | { |
---|
5545 | tvar=L[i][4]; |
---|
5546 | ii=find(tvar,"+"); |
---|
5547 | while(ii) |
---|
5548 | { |
---|
5549 | tvar=tvar[ii+1..size(tvar)]; |
---|
5550 | ii=find(tvar,"+"); |
---|
5551 | } |
---|
5552 | for(ii=1;ii<=nvars(basering);ii++) |
---|
5553 | { |
---|
5554 | if(tvar==string(var(ii))) break; |
---|
5555 | } |
---|
5556 | I=L[i][2]; |
---|
5557 | execute("K="+L[i][3]+";"); |
---|
5558 | p=K[1]; |
---|
5559 | q=K[2]; |
---|
5560 | execute("f="+L[i][4]+";"); |
---|
5561 | g=2*var(ii)-f; |
---|
5562 | M[ii]=f; |
---|
5563 | N[ii]=g; |
---|
5564 | de=deg(p); |
---|
5565 | psi=Rz,M; |
---|
5566 | phi=Rz,N; |
---|
5567 | I=phi(I),p,q; |
---|
5568 | I=std(I); |
---|
5569 | absolute_primes[i]=list(psi(I),de); |
---|
5570 | primary_decomp[i]=list(L[i][1],L[i][2]); |
---|
5571 | } |
---|
5572 | export(primary_decomp); |
---|
5573 | export(absolute_primes); |
---|
5574 | setring R; |
---|
5575 | dbprint( printlevel-voice+3," |
---|
5576 | // 'absPrimdecGTZ' created a ring, in which two lists absolute_primes (the |
---|
5577 | // absolute prime components) and primary_decomp (the primary and prime |
---|
5578 | // components over the current basering) are stored. |
---|
5579 | // To access the list of absolute prime components, type (if the name S was |
---|
5580 | // assigned to the return value): |
---|
5581 | setring S; absolute_primes; "); |
---|
5582 | |
---|
5583 | return(Rz); |
---|
5584 | } |
---|
5585 | example |
---|
5586 | { "EXAMPLE:"; echo = 2; |
---|
5587 | ring r = 0,(x,y,z),lp; |
---|
5588 | poly p = z2+1; |
---|
5589 | poly q = z3+2; |
---|
5590 | ideal i = p*q^2,y-z2; |
---|
5591 | def S = absPrimdecGTZ(i); |
---|
5592 | setring S; |
---|
5593 | absolute_primes; |
---|
5594 | } |
---|
5595 | |
---|
5596 | /////////////////////////////////////////////////////////////////////////////// |
---|
5597 | |
---|
5598 | proc primdecSY(ideal i, list #) |
---|
5599 | "USAGE: primdecSY(I, c); I ideal, c int (optional) |
---|
5600 | RETURN: a list pr of primary ideals and their associated primes: |
---|
5601 | @format |
---|
5602 | pr[i][1] the i-th primary component, |
---|
5603 | pr[i][2] the i-th prime component. |
---|
5604 | @end format |
---|
5605 | NOTE: Algorithm of Shimoyama/Yokoyama. |
---|
5606 | @format |
---|
5607 | if c=0, the given ordering of the variables is used, |
---|
5608 | if c=1, minAssChar tries to use an optimal ordering (default), |
---|
5609 | if c=2, minAssGTZ is used, |
---|
5610 | if c=3, minAssGTZ and facstd are used. |
---|
5611 | @end format |
---|
5612 | For local orderings, the result is considered in the localization |
---|
5613 | of the polynomial ring, not in the power series ring. |
---|
5614 | For local and mixed orderings, the decomposition in the |
---|
5615 | corresponding global ring is returned if the string 'global' |
---|
5616 | is specified as third argument |
---|
5617 | EXAMPLE: example primdecSY; shows an example |
---|
5618 | " |
---|
5619 | { |
---|
5620 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5621 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5622 | if(size(#)>1) |
---|
5623 | { |
---|
5624 | int keep_comp=1; |
---|
5625 | } |
---|
5626 | if(attrib(basering,"global")!=1) |
---|
5627 | { |
---|
5628 | // algorithms only work in global case! |
---|
5629 | // pass to appropriate global ring |
---|
5630 | def r=basering; |
---|
5631 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5632 | setring s; |
---|
5633 | ideal i=imap(r,i); |
---|
5634 | // decompose and go back |
---|
5635 | list li=primdecSY(i); |
---|
5636 | setring r; |
---|
5637 | def li=imap(s,li); |
---|
5638 | // clean up |
---|
5639 | if(!defined(keep_comp)) |
---|
5640 | { |
---|
5641 | for(int k=size(li);k>=1;k--) |
---|
5642 | { |
---|
5643 | if(mindeg(std(lead(li[k][2]))[1])==0) |
---|
5644 | { |
---|
5645 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5646 | li=delete(li,k); |
---|
5647 | } |
---|
5648 | } |
---|
5649 | } |
---|
5650 | return(li); |
---|
5651 | } |
---|
5652 | i=simplify(i,2); |
---|
5653 | if ((i[1]==0)||(i[1]==1)) |
---|
5654 | { |
---|
5655 | list L=list(ideal(i[1]),ideal(i[1])); |
---|
5656 | return(list(L)); |
---|
5657 | } |
---|
5658 | |
---|
5659 | if(minpoly!=0) |
---|
5660 | { |
---|
5661 | return(algeDeco(i,1)); |
---|
5662 | } |
---|
5663 | if (size(#)!=0) |
---|
5664 | { return(prim_dec(i,#[1])); } |
---|
5665 | else |
---|
5666 | { return(prim_dec(i,1)); } |
---|
5667 | } |
---|
5668 | example |
---|
5669 | { "EXAMPLE:"; echo = 2; |
---|
5670 | ring r = 0,(x,y,z),lp; |
---|
5671 | poly p = z2+1; |
---|
5672 | poly q = z3+2; |
---|
5673 | ideal i = p*q^2,y-z2; |
---|
5674 | list pr = primdecSY(i); |
---|
5675 | pr; |
---|
5676 | } |
---|
5677 | /////////////////////////////////////////////////////////////////////////////// |
---|
5678 | proc minAssGTZ(ideal i,list #) |
---|
5679 | "USAGE: minAssGTZ(I[, l]); I ideal, l list (optional) |
---|
5680 | @* Optional parameters in list l (can be entered in any order): |
---|
5681 | @* 0, \"facstd\" -> uses facstd to first decompose the ideal (default) |
---|
5682 | @* 1, \"noFacstd\" -> does not use facstd |
---|
5683 | @* \"GTZ\" -> the original algorithm by Gianni, Trager and Zacharias is used |
---|
5684 | @* \"SL\" -> GTZ algorithm with modificiations by Laplagne is used (default) |
---|
5685 | |
---|
5686 | RETURN: a list, the minimal associated prime ideals of I. |
---|
5687 | NOTE: - Designed for characteristic 0, works also in char k > 0 based |
---|
5688 | on an algorithm of Yokoyama |
---|
5689 | - For local orderings, the result is considered in the localization |
---|
5690 | of the polynomial ring, not in the power series ring |
---|
5691 | - For local and mixed orderings, the decomposition in the |
---|
5692 | corresponding global ring is returned if the string 'global' |
---|
5693 | is specified as second argument |
---|
5694 | EXAMPLE: example minAssGTZ; shows an example |
---|
5695 | " |
---|
5696 | { |
---|
5697 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5698 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5699 | if(size(#)>0) |
---|
5700 | { |
---|
5701 | int keep_comp=1; |
---|
5702 | } |
---|
5703 | |
---|
5704 | if(attrib(basering,"global")!=1) |
---|
5705 | { |
---|
5706 | // algorithms only work in global case! |
---|
5707 | // pass to appropriate global ring |
---|
5708 | def r=basering; |
---|
5709 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5710 | setring s; |
---|
5711 | ideal i=imap(r,i); |
---|
5712 | // decompose and go back |
---|
5713 | list li=minAssGTZ(i); |
---|
5714 | setring r; |
---|
5715 | def li=imap(s,li); |
---|
5716 | // clean up |
---|
5717 | if(!defined(keep_comp)) |
---|
5718 | { |
---|
5719 | for(int k=size(li);k>=1;k--) |
---|
5720 | { |
---|
5721 | if(mindeg(std(lead(li[k]))[1])==0) |
---|
5722 | { |
---|
5723 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5724 | li=delete(li,k); |
---|
5725 | } |
---|
5726 | } |
---|
5727 | } |
---|
5728 | return(li); |
---|
5729 | } |
---|
5730 | |
---|
5731 | int j; |
---|
5732 | string algorithm; |
---|
5733 | string facstdOption; |
---|
5734 | int useFac; |
---|
5735 | |
---|
5736 | // Set input parameters |
---|
5737 | algorithm = "SL"; // Default: SL algorithm |
---|
5738 | facstdOption = "facstd"; |
---|
5739 | if(size(#) > 0) |
---|
5740 | { |
---|
5741 | int valid; |
---|
5742 | for(j = 1; j <= size(#); j++) |
---|
5743 | { |
---|
5744 | valid = 0; |
---|
5745 | if((typeof(#[j]) == "int") or (typeof(#[j]) == "number")) |
---|
5746 | { |
---|
5747 | if (#[j] == 1) {facstdOption = "noFacstd"; valid = 1;} // If #[j] == 1, facstd is not used. |
---|
5748 | if (#[j] == 0) {facstdOption = "facstd"; valid = 1;} // If #[j] == 0, facstd is used. |
---|
5749 | } |
---|
5750 | if(typeof(#[j]) == "string") |
---|
5751 | { |
---|
5752 | if((#[j] == "GTZ") || (#[j] == "SL")) |
---|
5753 | { |
---|
5754 | algorithm = #[j]; |
---|
5755 | valid = 1; |
---|
5756 | } |
---|
5757 | if((#[j] == "noFacstd") || (#[j] == "facstd")) |
---|
5758 | { |
---|
5759 | facstdOption = #[j]; |
---|
5760 | valid = 1; |
---|
5761 | } |
---|
5762 | } |
---|
5763 | if(valid == 0) |
---|
5764 | { |
---|
5765 | dbprint(1, "Warning! The following input parameter was not recognized:", #[j]); |
---|
5766 | } |
---|
5767 | } |
---|
5768 | } |
---|
5769 | |
---|
5770 | if(minpoly!=0) |
---|
5771 | { |
---|
5772 | return(algeDeco(i,2)); |
---|
5773 | } |
---|
5774 | |
---|
5775 | list result = minAssPrimes(i, facstdOption, algorithm); |
---|
5776 | return(result); |
---|
5777 | } |
---|
5778 | example |
---|
5779 | { "EXAMPLE:"; echo = 2; |
---|
5780 | ring r = 0,(x,y,z),dp; |
---|
5781 | poly p = z2+1; |
---|
5782 | poly q = z3+2; |
---|
5783 | ideal i = p*q^2,y-z2; |
---|
5784 | list pr = minAssGTZ(i); |
---|
5785 | pr; |
---|
5786 | } |
---|
5787 | |
---|
5788 | /////////////////////////////////////////////////////////////////////////////// |
---|
5789 | proc minAssChar(ideal i, list #) |
---|
5790 | "USAGE: minAssChar(I[,c]); i ideal, c int (optional). |
---|
5791 | RETURN: list, the minimal associated prime ideals of i. |
---|
5792 | NOTE: If c=0, the given ordering of the variables is used. @* |
---|
5793 | Otherwise, the system tries to find an optimal ordering, |
---|
5794 | which in some cases may considerably speed up the algorithm. @* |
---|
5795 | For local orderings, the result is considered in the localization |
---|
5796 | of the polynomial ring, not in the power series ring |
---|
5797 | For local and mixed orderings, the decomposition in the |
---|
5798 | corresponding global ring is returned if the string 'global' |
---|
5799 | is specified as third argument |
---|
5800 | EXAMPLE: example minAssChar; shows an example |
---|
5801 | " |
---|
5802 | { |
---|
5803 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5804 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5805 | if(size(#)>1) |
---|
5806 | { |
---|
5807 | int keep_comp=1; |
---|
5808 | } |
---|
5809 | if(attrib(basering,"global")!=1) |
---|
5810 | { |
---|
5811 | // algorithms only work in global case! |
---|
5812 | // pass to appropriate global ring |
---|
5813 | def r=basering; |
---|
5814 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5815 | setring s; |
---|
5816 | ideal i=imap(r,i); |
---|
5817 | // decompose and go back |
---|
5818 | list li=minAssChar(i); |
---|
5819 | setring r; |
---|
5820 | def li=imap(s,li); |
---|
5821 | // clean up |
---|
5822 | if(!defined(keep_comp)) |
---|
5823 | { |
---|
5824 | for(int k=size(li);k>=1;k--) |
---|
5825 | { |
---|
5826 | if(mindeg(std(lead(li[k]))[1])==0) |
---|
5827 | { |
---|
5828 | // 1 contained in ideal, i.e. component does not meet origin in local ordering |
---|
5829 | li=delete(li,k); |
---|
5830 | } |
---|
5831 | } |
---|
5832 | } |
---|
5833 | return(li); |
---|
5834 | } |
---|
5835 | if (size(#)>0) |
---|
5836 | { return(min_ass_prim_charsets(i,#[1])); } |
---|
5837 | else |
---|
5838 | { return(min_ass_prim_charsets(i,1)); } |
---|
5839 | } |
---|
5840 | example |
---|
5841 | { "EXAMPLE:"; echo = 2; |
---|
5842 | ring r = 0,(x,y,z),dp; |
---|
5843 | poly p = z2+1; |
---|
5844 | poly q = z3+2; |
---|
5845 | ideal i = p*q^2,y-z2; |
---|
5846 | list pr = minAssChar(i); |
---|
5847 | pr; |
---|
5848 | } |
---|
5849 | /////////////////////////////////////////////////////////////////////////////// |
---|
5850 | proc equiRadical(ideal i) |
---|
5851 | "USAGE: equiRadical(I); I ideal |
---|
5852 | RETURN: ideal, intersection of associated primes of I of maximal dimension. |
---|
5853 | NOTE: A combination of the algorithms of Krick/Logar (with modifications by Laplagne) and Kemper is used. |
---|
5854 | Works also in positive characteristic (Kempers algorithm). |
---|
5855 | EXAMPLE: example equiRadical; shows an example |
---|
5856 | " |
---|
5857 | { |
---|
5858 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5859 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5860 | if(attrib(basering,"global")!=1) |
---|
5861 | { |
---|
5862 | ERROR( |
---|
5863 | "// Not implemented for this ordering, please change to global ordering." |
---|
5864 | ); |
---|
5865 | } |
---|
5866 | |
---|
5867 | return(radical(i, 1)); |
---|
5868 | } |
---|
5869 | example |
---|
5870 | { "EXAMPLE:"; echo = 2; |
---|
5871 | ring r = 0,(x,y,z),dp; |
---|
5872 | poly p = z2+1; |
---|
5873 | poly q = z3+2; |
---|
5874 | ideal i = p*q^2,y-z2; |
---|
5875 | ideal pr= equiRadical(i); |
---|
5876 | pr; |
---|
5877 | } |
---|
5878 | |
---|
5879 | /////////////////////////////////////////////////////////////////////////////// |
---|
5880 | proc radical(ideal i, list #) |
---|
5881 | "USAGE: radical(I[, l]); I ideal, l list (optional) |
---|
5882 | @* Optional parameters in list l (can be entered in any order): |
---|
5883 | @* 0, \"fullRad\" -> full radical is computed (default) |
---|
5884 | @* 1, \"equiRad\" -> equiRadical is computed |
---|
5885 | @* \"KL\" -> Krick/Logar algorithm is used |
---|
5886 | @* \"SL\" -> modifications by Laplagne are used (default) |
---|
5887 | @* \"facstd\" -> uses facstd to first decompose the ideal (default for non homogeneous ideals) |
---|
5888 | @* \"noFacstd\" -> does not use facstd (default for homogeneous ideals) |
---|
5889 | RETURN: ideal, the radical of I (or the equiradical if required in the input parameters) |
---|
5890 | NOTE: A combination of the algorithms of Krick/Logar (with modifications by Laplagne) and Kemper is used. |
---|
5891 | Works also in positive characteristic (Kempers algorithm). |
---|
5892 | EXAMPLE: example radical; shows an example |
---|
5893 | " |
---|
5894 | { |
---|
5895 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
5896 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
5897 | dbprint(printlevel - voice, "Radical, version 2006.05.08"); |
---|
5898 | if(size(i) == 0){return(ideal(0));} |
---|
5899 | if(attrib(basering,"global")!=1) |
---|
5900 | { |
---|
5901 | // algorithms only work in global case! |
---|
5902 | // pass to appropriate global ring |
---|
5903 | def r=basering; |
---|
5904 | def s=changeord(list(list("dp",1:nvars(basering)))); |
---|
5905 | setring s; |
---|
5906 | ideal i=imap(r,i); |
---|
5907 | // compute radical and go back |
---|
5908 | def j=radical(i); |
---|
5909 | setring r; |
---|
5910 | def j=imap(s,j); |
---|
5911 | return(j); |
---|
5912 | } |
---|
5913 | int j; |
---|
5914 | def P0 = basering; |
---|
5915 | list Pl=ringlist(P0); |
---|
5916 | intvec dp_w; |
---|
5917 | for(j=nvars(P0);j>0;j--) {dp_w[j]=1;} |
---|
5918 | Pl[3]=list(list("dp",dp_w),list("C",0)); |
---|
5919 | def @P=ring(Pl); |
---|
5920 | setring @P; |
---|
5921 | ideal i=imap(P0,i); |
---|
5922 | |
---|
5923 | int il; |
---|
5924 | string algorithm; |
---|
5925 | int useFac; |
---|
5926 | |
---|
5927 | // Set input parameters |
---|
5928 | algorithm = "SL"; // Default: SL algorithm |
---|
5929 | il = 0; // Default: Full radical (not only equiRadical) |
---|
5930 | if (homog(i) == 1) |
---|
5931 | { // Default: facStd is used, except if the ideal is homogeneous. |
---|
5932 | useFac = 0; |
---|
5933 | } |
---|
5934 | else |
---|
5935 | { |
---|
5936 | useFac = 1; |
---|
5937 | } |
---|
5938 | if(size(#) > 0) |
---|
5939 | { |
---|
5940 | int valid; |
---|
5941 | for(j = 1; j <= size(#); j++) |
---|
5942 | { |
---|
5943 | valid = 0; |
---|
5944 | if((typeof(#[j]) == "int") or (typeof(#[j]) == "number")) |
---|
5945 | { |
---|
5946 | il = #[j]; // If il == 1, equiRadical is computed |
---|
5947 | valid = 1; |
---|
5948 | } |
---|
5949 | if(typeof(#[j]) == "string") |
---|
5950 | { |
---|
5951 | if(#[j] == "KL") |
---|
5952 | { |
---|
5953 | algorithm = "KL"; |
---|
5954 | valid = 1; |
---|
5955 | } |
---|
5956 | if(#[j] == "SL") |
---|
5957 | { |
---|
5958 | algorithm = "SL"; |
---|
5959 | valid = 1; |
---|
5960 | } |
---|
5961 | if(#[j] == "noFacstd") |
---|
5962 | { |
---|
5963 | useFac = 0; |
---|
5964 | valid = 1; |
---|
5965 | } |
---|
5966 | if(#[j] == "facstd") |
---|
5967 | { |
---|
5968 | useFac = 1; |
---|
5969 | valid = 1; |
---|
5970 | } |
---|
5971 | if(#[j] == "equiRad") |
---|
5972 | { |
---|
5973 | il = 1; |
---|
5974 | valid = 1; |
---|
5975 | } |
---|
5976 | if(#[j] == "fullRad") |
---|
5977 | { |
---|
5978 | il = 0; |
---|
5979 | valid = 1; |
---|
5980 | } |
---|
5981 | } |
---|
5982 | if(valid == 0) |
---|
5983 | { |
---|
5984 | dbprint(1, "Warning! The following input parameter was not recognized:", #[j]); |
---|
5985 | } |
---|
5986 | } |
---|
5987 | } |
---|
5988 | |
---|
5989 | ideal rad = 1; |
---|
5990 | intvec op = option(get); |
---|
5991 | list qr = simplifyIdeal(i); |
---|
5992 | map phi = @P, qr[2]; |
---|
5993 | |
---|
5994 | option(redSB); |
---|
5995 | i = groebner(qr[1]); |
---|
5996 | option(set, op); |
---|
5997 | int di = dim(i); |
---|
5998 | |
---|
5999 | if(di == 0) |
---|
6000 | { |
---|
6001 | i = zeroRad(i, qr[1]); |
---|
6002 | option(redSB); |
---|
6003 | i=interred(phi(i)); |
---|
6004 | option(set, op); |
---|
6005 | setring(P0); |
---|
6006 | i=imap(@P,i); |
---|
6007 | return(i); |
---|
6008 | } |
---|
6009 | |
---|
6010 | option(redSB); |
---|
6011 | list pr; |
---|
6012 | if(useFac == 1) |
---|
6013 | { |
---|
6014 | pr = facstd(i); |
---|
6015 | } |
---|
6016 | else |
---|
6017 | { |
---|
6018 | pr = i; |
---|
6019 | } |
---|
6020 | option(set, op); |
---|
6021 | int s = size(pr); |
---|
6022 | if(useFac == 1) |
---|
6023 | { |
---|
6024 | dbprint(printlevel - voice, "Number of components returned by facstd: ", s); |
---|
6025 | } |
---|
6026 | for(j = 1; j <= s; j++) |
---|
6027 | { |
---|
6028 | attrib(pr[s + 1 - j], "isSB", 1); |
---|
6029 | if((size(reduce(rad, pr[s + 1 - j], 1)) != 0) && ((dim(pr[s + 1 - j]) == di) || !il)) |
---|
6030 | { |
---|
6031 | // SL Debug messages |
---|
6032 | dbprint(printlevel-voice, "We shall compute the radical of ", pr[s + 1 - j]); |
---|
6033 | dbprint(printlevel-voice, "The dimension is: ", dim(pr[s+1-j])); |
---|
6034 | |
---|
6035 | if(algorithm == "KL") |
---|
6036 | { |
---|
6037 | rad = intersect(rad, radicalKL(pr[s + 1 - j], rad, il)); |
---|
6038 | } |
---|
6039 | if(algorithm == "SL") |
---|
6040 | { |
---|
6041 | rad = intersect(rad, radicalSL(pr[s + 1 - j], il)); |
---|
6042 | } |
---|
6043 | } |
---|
6044 | else |
---|
6045 | { |
---|
6046 | // SL Debug |
---|
6047 | dbprint(printlevel-voice, "The radical of this component is not needed."); |
---|
6048 | dbprint(printlevel-voice, "size(reduce(rad, pr[s + 1 - j], 1))", |
---|
6049 | size(reduce(rad, pr[s + 1 - j], 1))); |
---|
6050 | dbprint(printlevel-voice, "dim(pr[s + 1 - j])", dim(pr[s + 1 - j])); |
---|
6051 | dbprint(printlevel-voice, "il", il); |
---|
6052 | } |
---|
6053 | } |
---|
6054 | rad=interred(phi(rad)); |
---|
6055 | setring(P0); |
---|
6056 | i=imap(@P,rad); |
---|
6057 | return(i); |
---|
6058 | } |
---|
6059 | example |
---|
6060 | { "EXAMPLE:"; echo = 2; |
---|
6061 | ring r = 0,(x,y,z),dp; |
---|
6062 | poly p = z2+1; |
---|
6063 | poly q = z3+2; |
---|
6064 | ideal i = p*q^2,y-z2; |
---|
6065 | ideal pr = radical(i); |
---|
6066 | pr; |
---|
6067 | } |
---|
6068 | |
---|
6069 | /////////////////////////////////////////////////////////////////////////////// |
---|
6070 | // |
---|
6071 | // Computes the radical of I using KL algorithm. |
---|
6072 | // The only difference with the previous implementation of KL algorithm is |
---|
6073 | // that now it uses block dp instead of lp ordering for the reduction to the |
---|
6074 | // zerodimensional case. |
---|
6075 | // The reduction step has been moved to the new routine radicalReduction, so that it can be |
---|
6076 | // used also by radicalSL procedure. |
---|
6077 | // |
---|
6078 | static proc radicalKL(ideal I, ideal ser, list #) |
---|
6079 | { |
---|
6080 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6081 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6082 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6083 | |
---|
6084 | // ideal I The ideal for which the radical is computed |
---|
6085 | // ideal ser Used to reduce components already obtained |
---|
6086 | // list # If #[1] = 1, equiradical is computed. |
---|
6087 | |
---|
6088 | // I needs to be a Groebner basis. |
---|
6089 | if (attrib(I, "isSB") != 1) |
---|
6090 | { |
---|
6091 | I = groebner(I); |
---|
6092 | } |
---|
6093 | |
---|
6094 | ideal rad; // The radical |
---|
6095 | int allIndep = 1; // All max independent sets are used |
---|
6096 | |
---|
6097 | list result = radicalReduction(I, ser, allIndep, #); |
---|
6098 | int done = result[3]; |
---|
6099 | rad = result[1]; |
---|
6100 | if (done == 0) |
---|
6101 | { |
---|
6102 | rad = intersect(rad, radicalKL(result[2], ideal(1), #)); |
---|
6103 | } |
---|
6104 | return(rad); |
---|
6105 | } |
---|
6106 | |
---|
6107 | |
---|
6108 | /////////////////////////////////////////////////////////////////////////////// |
---|
6109 | // |
---|
6110 | // Computes the radical of I via Laplagne algorithm, using zerodimensional radical in |
---|
6111 | // the zero dimensional case. |
---|
6112 | // For the reduction to the zerodimensional case, it uses the procedure |
---|
6113 | // radical, with some modifications to avoid the recursion. |
---|
6114 | // |
---|
6115 | static proc radicalSL(ideal I, list #) |
---|
6116 | // Input = I, ideal |
---|
6117 | // #, list. If #[1] = 1, then computes only the equiradical. |
---|
6118 | // Output = (P, primaryDec) where P = rad(I) and primaryDec is the list of the radicals |
---|
6119 | // obtained in intermediate steps. |
---|
6120 | { |
---|
6121 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6122 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6123 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6124 | |
---|
6125 | ideal rad = 1; |
---|
6126 | ideal equiRad = 1; |
---|
6127 | list primes; |
---|
6128 | int k; // Counter |
---|
6129 | int il; // If il = 1, only the equiradical is required. |
---|
6130 | int iDim; // The dimension of I |
---|
6131 | int stop = 0; // Checks if the radical has been obtained |
---|
6132 | |
---|
6133 | if (attrib(I, "isSB") != 1) |
---|
6134 | { |
---|
6135 | I = groebner(I); |
---|
6136 | } |
---|
6137 | iDim = dim(I); |
---|
6138 | |
---|
6139 | // Checks if only equiradical is required |
---|
6140 | if (size(#) > 0) |
---|
6141 | { |
---|
6142 | il = #[1]; |
---|
6143 | } |
---|
6144 | |
---|
6145 | while(stop == 0) |
---|
6146 | { |
---|
6147 | dbprint (printlevel-voice, "// We call radLoopR to find new prime ideals."); |
---|
6148 | primes = radicalSLIteration(I, rad); // A list of primes or intersections of primes, not included in P |
---|
6149 | dbprint (printlevel - voice, "// Output of Iteration Step:"); |
---|
6150 | dbprint (printlevel - voice, primes); |
---|
6151 | if (size(primes) > 0) |
---|
6152 | { |
---|
6153 | dbprint (printlevel - voice, "// We intersect P with the ideal just obtained."); |
---|
6154 | for(k = 1; k <= size(primes); k++) |
---|
6155 | { |
---|
6156 | rad = intersect(rad, primes[k]); |
---|
6157 | if (il == 1) |
---|
6158 | { |
---|
6159 | if (attrib(primes[k], "isSB") != 1) |
---|
6160 | { |
---|
6161 | primes[k] = groebner(primes[k]); |
---|
6162 | } |
---|
6163 | if (iDim == dim(primes[k])) |
---|
6164 | { |
---|
6165 | equiRad = intersect(equiRad, primes[k]); |
---|
6166 | } |
---|
6167 | } |
---|
6168 | } |
---|
6169 | } |
---|
6170 | else |
---|
6171 | { |
---|
6172 | stop = 1; |
---|
6173 | } |
---|
6174 | } |
---|
6175 | if (il == 0) |
---|
6176 | { |
---|
6177 | return(rad); |
---|
6178 | } |
---|
6179 | else |
---|
6180 | { |
---|
6181 | return(equiRad); |
---|
6182 | } |
---|
6183 | } |
---|
6184 | |
---|
6185 | ////////////////////////////////////////////////////////////////////////// |
---|
6186 | // Based on radicalKL. |
---|
6187 | // It contains all of old version of proc radicalKL except the recursion call. |
---|
6188 | // |
---|
6189 | // Output: |
---|
6190 | // #1 -> output ideal, the part of the radical that has been computed |
---|
6191 | // #2 -> complementary ideal, the part of the ideal I whose radical remains to be computed |
---|
6192 | // = (I, h) in KL algorithm |
---|
6193 | // This is not used in the new algorithm. It is part of KL algorithm |
---|
6194 | // #3 -> done, 1: output = radical, there is no need to continue |
---|
6195 | // 0: radical = output \cap \sqrt{complementary ideal} |
---|
6196 | // This is not used in the new algorithm. It is part of KL algorithm |
---|
6197 | |
---|
6198 | static proc radicalReduction(ideal I, ideal ser, int allIndep, list #) |
---|
6199 | { |
---|
6200 | // allMaximal 1 -> Indicates that the reduction to the zerodim case |
---|
6201 | // must be done for all indep set of the leading terms ideal |
---|
6202 | // 0 -> Otherwise |
---|
6203 | // ideal ser Only for radicalKL. (Same as in radicalKL) |
---|
6204 | // list # Only for radicalKL (If #[1] = 1, |
---|
6205 | // only equiradical is required. |
---|
6206 | // It is used to set the value of done.) |
---|
6207 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6208 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6209 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6210 | |
---|
6211 | attrib(I, "isSB", 1); // I needs to be a reduced standard basis |
---|
6212 | list indep, fett; |
---|
6213 | intvec @w, @hilb, op; |
---|
6214 | int @wr, @n, @m, lauf, di; |
---|
6215 | ideal fac, @h, collectrad, lsau; |
---|
6216 | poly @q; |
---|
6217 | string @va; def quotring; |
---|
6218 | |
---|
6219 | def @P = basering; |
---|
6220 | int jdim = dim(I); // Computes the dimension of I |
---|
6221 | int homo = homog(I); // Finds out if I is homogeneous |
---|
6222 | ideal rad = ideal(1); // The unit ideal |
---|
6223 | ideal te = ser; |
---|
6224 | if(size(#) > 0) |
---|
6225 | { |
---|
6226 | @wr = #[1]; |
---|
6227 | } |
---|
6228 | if(homo == 1) |
---|
6229 | { |
---|
6230 | for(@n = 1; @n <= nvars(basering); @n++) |
---|
6231 | { |
---|
6232 | @w[@n] = ord(var(@n)); |
---|
6233 | } |
---|
6234 | @hilb = hilb(I, 1, @w); |
---|
6235 | } |
---|
6236 | |
---|
6237 | // SL 2006.04.11 1 Debug messages |
---|
6238 | dbprint(printlevel-voice, "//Computes the radical of the ideal:", I); |
---|
6239 | // SL 2006.04.11 2 Debug messages |
---|
6240 | |
---|
6241 | //--------------------------------------------------------------------------- |
---|
6242 | //j is the ring |
---|
6243 | //--------------------------------------------------------------------------- |
---|
6244 | |
---|
6245 | if (jdim==-1) |
---|
6246 | { |
---|
6247 | return(ideal(1), ideal(1), 1); |
---|
6248 | } |
---|
6249 | |
---|
6250 | //--------------------------------------------------------------------------- |
---|
6251 | //the zero-dimensional case |
---|
6252 | //--------------------------------------------------------------------------- |
---|
6253 | |
---|
6254 | if (jdim==0) |
---|
6255 | { |
---|
6256 | return(zeroRad(I), ideal(1), 1); |
---|
6257 | } |
---|
6258 | |
---|
6259 | //------------------------------------------------------------------------- |
---|
6260 | //search for a maximal independent set indep,i.e. |
---|
6261 | //look for subring such that the intersection with the ideal is zero |
---|
6262 | //j intersected with K[var(indep[3]+1),...,var(nvar)] is zero, |
---|
6263 | //indep[1] is the new varstring, indep[2] the string for the block-ordering |
---|
6264 | //------------------------------------------------------------------------- |
---|
6265 | |
---|
6266 | // SL 2006-04-24 1 If allIndep = 0, then it only computes one maximal |
---|
6267 | // independent set. |
---|
6268 | // This looks better for the new algorithm but not for KL |
---|
6269 | // algorithm |
---|
6270 | list parameters = allIndep; |
---|
6271 | indep = newMaxIndependSetDp(I, parameters); |
---|
6272 | // SL 2006-04-24 2 |
---|
6273 | |
---|
6274 | for(@m = 1; @m <= size(indep); @m++) |
---|
6275 | { |
---|
6276 | if((indep[@m][1] == varstr(basering)) && (@m == 1)) |
---|
6277 | //this is the good case, nothing to do, just to have the same notations |
---|
6278 | //change the ring |
---|
6279 | { |
---|
6280 | execute("ring gnir1 = ("+charstr(basering)+"),("+varstr(basering)+"),(" |
---|
6281 | +ordstr(basering)+");"); |
---|
6282 | ideal @j = fetch(@P, I); |
---|
6283 | attrib(@j, "isSB", 1); |
---|
6284 | } |
---|
6285 | else |
---|
6286 | { |
---|
6287 | @va = string(maxideal(1)); |
---|
6288 | |
---|
6289 | execute("ring gnir1 = (" + charstr(basering) + "), (" + indep[@m][1] + "),(" |
---|
6290 | + indep[@m][2] + ");"); |
---|
6291 | execute("map phi = @P," + @va + ";"); |
---|
6292 | if(homo == 1) |
---|
6293 | { |
---|
6294 | ideal @j = std(phi(I), @hilb, @w); |
---|
6295 | } |
---|
6296 | else |
---|
6297 | { |
---|
6298 | ideal @j = groebner(phi(I)); |
---|
6299 | } |
---|
6300 | } |
---|
6301 | if((deg(@j[1]) == 0) || (dim(@j) < jdim)) |
---|
6302 | { |
---|
6303 | setring @P; |
---|
6304 | break; |
---|
6305 | } |
---|
6306 | for (lauf = 1; lauf <= size(@j); lauf++) |
---|
6307 | { |
---|
6308 | fett[lauf] = size(@j[lauf]); |
---|
6309 | } |
---|
6310 | //------------------------------------------------------------------------ |
---|
6311 | // We have now the following situation: |
---|
6312 | // j intersected with K[var(nnp+1),..,var(nva)] is zero so we may pass |
---|
6313 | // to this quotientring, j is there still a standardbasis, the |
---|
6314 | // leading coefficients of the polynomials there (polynomials in |
---|
6315 | // K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
6316 | // we need their LCM, gh, because of the following: |
---|
6317 | // let (j:gh^n)=(j:gh^infinity) then j*K(var(nnp+1),..,var(nva))[..rest..] |
---|
6318 | // intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
6319 | // on the other hand j = ((j, gh^n) intersected with (j : gh^n)) |
---|
6320 | |
---|
6321 | //------------------------------------------------------------------------ |
---|
6322 | // The arrangement for the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
6323 | // and the map phi:K[var(1),...,var(nva)] -----> |
---|
6324 | // K(var(nnpr+1),..,var(nva))[..the rest..] |
---|
6325 | //------------------------------------------------------------------------ |
---|
6326 | quotring = prepareQuotientring(nvars(basering) - indep[@m][3],"dp"); |
---|
6327 | //------------------------------------------------------------------------ |
---|
6328 | // We pass to the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
6329 | //------------------------------------------------------------------------ |
---|
6330 | |
---|
6331 | setring quotring; |
---|
6332 | |
---|
6333 | // @j considered in the quotientring |
---|
6334 | ideal @j = imap(gnir1, @j); |
---|
6335 | |
---|
6336 | kill gnir1; |
---|
6337 | |
---|
6338 | // j is a standardbasis in the quotientring but usually not minimal |
---|
6339 | // here it becomes minimal |
---|
6340 | |
---|
6341 | @j = clearSB(@j, fett); |
---|
6342 | |
---|
6343 | // We need later LCM(h[1],...) = gh for saturation |
---|
6344 | ideal @h; |
---|
6345 | if(deg(@j[1]) > 0) |
---|
6346 | { |
---|
6347 | for(@n = 1; @n <= size(@j); @n++) |
---|
6348 | { |
---|
6349 | @h[@n] = leadcoef(@j[@n]); |
---|
6350 | } |
---|
6351 | op = option(get); |
---|
6352 | option(redSB); |
---|
6353 | @j = std(@j); //to obtain a reduced standardbasis |
---|
6354 | option(set, op); |
---|
6355 | |
---|
6356 | // SL 1 Debug messages |
---|
6357 | dbprint(printlevel - voice, "zero_rad", basering, @j, dim(groebner(@j))); |
---|
6358 | ideal zero_rad = zeroRad(@j); |
---|
6359 | dbprint(printlevel - voice, "zero_rad passed"); |
---|
6360 | // SL 2 |
---|
6361 | } |
---|
6362 | else |
---|
6363 | { |
---|
6364 | ideal zero_rad = ideal(1); |
---|
6365 | } |
---|
6366 | |
---|
6367 | // We need the intersection of the ideals in the list quprimary with the |
---|
6368 | // polynomialring, i.e. let q=(f1,...,fr) in the quotientring such an ideal |
---|
6369 | // but fi polynomials, then the intersection of q with the polynomialring |
---|
6370 | // is the saturation of the ideal generated by f1,...,fr with respect to |
---|
6371 | // h which is the lcm of the leading coefficients of the fi considered in |
---|
6372 | // the quotientring: this is coded in saturn |
---|
6373 | |
---|
6374 | zero_rad = std(zero_rad); |
---|
6375 | |
---|
6376 | ideal hpl; |
---|
6377 | |
---|
6378 | for(@n = 1; @n <= size(zero_rad); @n++) |
---|
6379 | { |
---|
6380 | hpl = hpl, leadcoef(zero_rad[@n]); |
---|
6381 | } |
---|
6382 | |
---|
6383 | //------------------------------------------------------------------------ |
---|
6384 | // We leave the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
6385 | // back to the polynomialring |
---|
6386 | //------------------------------------------------------------------------ |
---|
6387 | setring @P; |
---|
6388 | |
---|
6389 | collectrad = imap(quotring, zero_rad); |
---|
6390 | lsau = simplify(imap(quotring, hpl), 2); |
---|
6391 | @h = imap(quotring, @h); |
---|
6392 | |
---|
6393 | kill quotring; |
---|
6394 | |
---|
6395 | // Here the intersection with the polynomialring |
---|
6396 | // mentioned above is really computed |
---|
6397 | |
---|
6398 | collectrad = sat2(collectrad, lsau)[1]; |
---|
6399 | if(deg(@h[1])>=0) |
---|
6400 | { |
---|
6401 | fac = ideal(0); |
---|
6402 | for(lauf = 1; lauf <= ncols(@h); lauf++) |
---|
6403 | { |
---|
6404 | if(deg(@h[lauf]) > 0) |
---|
6405 | { |
---|
6406 | fac = fac + factorize(@h[lauf], 1); |
---|
6407 | } |
---|
6408 | } |
---|
6409 | fac = simplify(fac, 6); |
---|
6410 | @q = 1; |
---|
6411 | for(lauf = 1; lauf <= size(fac); lauf++) |
---|
6412 | { |
---|
6413 | @q = @q * fac[lauf]; |
---|
6414 | } |
---|
6415 | op = option(get); |
---|
6416 | option(returnSB); |
---|
6417 | option(redSB); |
---|
6418 | I = quotient(I + ideal(@q), rad); |
---|
6419 | attrib(I, "isSB", 1); |
---|
6420 | option(set, op); |
---|
6421 | } |
---|
6422 | if((deg(rad[1]) > 0) && (deg(collectrad[1]) > 0)) |
---|
6423 | { |
---|
6424 | rad = intersect(rad, collectrad); |
---|
6425 | te = intersect(te, collectrad); |
---|
6426 | te = simplify(reduce(te, I, 1), 2); |
---|
6427 | } |
---|
6428 | else |
---|
6429 | { |
---|
6430 | if(deg(collectrad[1]) > 0) |
---|
6431 | { |
---|
6432 | rad = collectrad; |
---|
6433 | te = intersect(te, collectrad); |
---|
6434 | te = simplify(reduce(te, I, 1), 2); |
---|
6435 | } |
---|
6436 | } |
---|
6437 | |
---|
6438 | if((dim(I) < jdim)||(size(te) == 0)) |
---|
6439 | { |
---|
6440 | break; |
---|
6441 | } |
---|
6442 | if(homo==1) |
---|
6443 | { |
---|
6444 | @hilb = hilb(I, 1, @w); |
---|
6445 | } |
---|
6446 | } |
---|
6447 | |
---|
6448 | // SL 2006.04.11 1 Debug messages |
---|
6449 | dbprint (printlevel-voice, "// Part of the Radical already computed:", rad); |
---|
6450 | dbprint (printlevel-voice, "// Dimension:", dim(groebner(rad))); |
---|
6451 | // SL 2006.04.11 2 Debug messages |
---|
6452 | |
---|
6453 | // SL 2006.04.21 1 New variable "done". |
---|
6454 | // It tells if the radical is already computed or |
---|
6455 | // if it still has to be computed the radical of the new ideal I |
---|
6456 | int done; |
---|
6457 | if(((@wr == 1) && (dim(I)<jdim)) || (deg(I[1])==0) || (size(te) == 0)) |
---|
6458 | { |
---|
6459 | done = 1; |
---|
6460 | } |
---|
6461 | else |
---|
6462 | { |
---|
6463 | done = 0; |
---|
6464 | } |
---|
6465 | // SL 2006.04.21 2 |
---|
6466 | |
---|
6467 | // SL 2006.04.21 1 See details of the output at the beginning of this proc. |
---|
6468 | list result = rad, I, done; |
---|
6469 | return(result); |
---|
6470 | // SL 2006.04.21 2 |
---|
6471 | } |
---|
6472 | |
---|
6473 | /////////////////////////////////////////////////////////////////////////////// |
---|
6474 | // Given an ideal I and an ideal P (intersection of some minimal prime ideals |
---|
6475 | // associated to I), it calculates the intersection of new minimal prime ideals |
---|
6476 | // associated to I which where not used to calculate P. |
---|
6477 | // This version uses ZD Radical in the zerodimensional case. |
---|
6478 | static proc radicalSLIteration (ideal I, ideal P); |
---|
6479 | // Input: I, ideal. The ideal from which new prime components will be obtained. |
---|
6480 | // P, ideal. Intersection of some prime ideals of I. |
---|
6481 | // Output: ideal. Intersection of some primes of I different from the ones in P. |
---|
6482 | { |
---|
6483 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6484 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6485 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6486 | |
---|
6487 | int k = 1; // Counter |
---|
6488 | int good = 0; // Checks if an element of P is in rad(I) |
---|
6489 | |
---|
6490 | dbprint (printlevel-voice, "// We search for an element in P - sqrt(I)."); |
---|
6491 | while ((k <= size(P)) and (good == 0)) |
---|
6492 | { |
---|
6493 | dbprint (printlevel-voice, "// We try with:", P[k]); |
---|
6494 | good = 1 - rad_con(P[k], I); |
---|
6495 | k++; |
---|
6496 | } |
---|
6497 | k--; |
---|
6498 | if (good == 0) |
---|
6499 | { |
---|
6500 | dbprint (printlevel-voice, "// No element was found, P = sqrt(I)."); |
---|
6501 | list emptyList = list(); |
---|
6502 | return (emptyList); |
---|
6503 | } |
---|
6504 | dbprint(printlevel - voice, "// That one was good!"); |
---|
6505 | dbprint(printlevel - voice, "// We saturate I with respect to this element."); |
---|
6506 | if (P[k] != 1) |
---|
6507 | { |
---|
6508 | intvec oo=option(get); |
---|
6509 | option(redSB); |
---|
6510 | ideal J = sat(I, P[k])[1]; |
---|
6511 | option(set,oo); |
---|
6512 | |
---|
6513 | } |
---|
6514 | else |
---|
6515 | { |
---|
6516 | dbprint(printlevel - voice, "// The polynomial is 1, the saturation in not actually computed."); |
---|
6517 | ideal J = I; |
---|
6518 | } |
---|
6519 | |
---|
6520 | // We now call proc radicalNew; |
---|
6521 | dbprint(printlevel - voice, "// We do the reduction to the zerodimensional case, via radical."); |
---|
6522 | dbprint(printlevel - voice, "// The ideal is ", J); |
---|
6523 | dbprint(printlevel - voice, "// The dimension is ", dim(groebner(J))); |
---|
6524 | |
---|
6525 | int allMaximal = 0; // Compute the zerodim reduction for only one indep set. |
---|
6526 | ideal re = 1; // No reduction is need, |
---|
6527 | // there are not redundant components. |
---|
6528 | list emptyList = list(); // Look for primes of any dimension, |
---|
6529 | // not only of max dimension. |
---|
6530 | list result = radicalReduction(J, re, allMaximal, emptyList); |
---|
6531 | |
---|
6532 | return(result[1]); |
---|
6533 | } |
---|
6534 | |
---|
6535 | /////////////////////////////////////////////////////////////////////////////////// |
---|
6536 | // Based on maxIndependSet |
---|
6537 | // Added list # as parameter |
---|
6538 | // If the first element of # is 0, the output is only 1 max indep set. |
---|
6539 | // If no list is specified or #[1] = 1, the output is all the max indep set of the |
---|
6540 | // leading terms ideal. This is the original output of maxIndependSet |
---|
6541 | |
---|
6542 | // The ordering given in the output has been changed to block dp instead of lp. |
---|
6543 | |
---|
6544 | proc newMaxIndependSetDp(ideal j, list #) |
---|
6545 | "USAGE: newMaxIndependentSetDp(I); I ideal (returns all maximal independent sets of the corresponding leading terms ideal) |
---|
6546 | newMaxIndependentSetDp(I, 0); I ideal (returns only one maximal independent set) |
---|
6547 | RETURN: list = #1. new varstring with the maximal independent set at the end, |
---|
6548 | #2. ordstring with the corresponding dp block ordering, |
---|
6549 | #3. the number of independent variables |
---|
6550 | NOTE: |
---|
6551 | EXAMPLE: example newMaxIndependentSetDp; shows an example |
---|
6552 | " |
---|
6553 | { |
---|
6554 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6555 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6556 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
6557 | |
---|
6558 | int n, k, di; |
---|
6559 | list resu, hilf; |
---|
6560 | string var1, var2; |
---|
6561 | list v = indepSet(j, 0); |
---|
6562 | |
---|
6563 | // SL 2006.04.21 1 Lines modified to use only one independent Set |
---|
6564 | int allMaximal; |
---|
6565 | if (size(#) > 0) |
---|
6566 | { |
---|
6567 | allMaximal = #[1]; |
---|
6568 | } |
---|
6569 | else |
---|
6570 | { |
---|
6571 | allMaximal = 1; |
---|
6572 | } |
---|
6573 | |
---|
6574 | int nMax; |
---|
6575 | if (allMaximal == 1) |
---|
6576 | { |
---|
6577 | nMax = size(v); |
---|
6578 | } |
---|
6579 | else |
---|
6580 | { |
---|
6581 | nMax = 1; |
---|
6582 | } |
---|
6583 | |
---|
6584 | for(n = 1; n <= nMax; n++) |
---|
6585 | // SL 2006.04.21 2 |
---|
6586 | { |
---|
6587 | di = 0; |
---|
6588 | var1 = ""; |
---|
6589 | var2 = ""; |
---|
6590 | for(k = 1; k <= size(v[n]); k++) |
---|
6591 | { |
---|
6592 | if(v[n][k] != 0) |
---|
6593 | { |
---|
6594 | di++; |
---|
6595 | var2 = var2 + "var(" + string(k) + "), "; |
---|
6596 | } |
---|
6597 | else |
---|
6598 | { |
---|
6599 | var1 = var1 + "var(" + string(k) + "), "; |
---|
6600 | } |
---|
6601 | } |
---|
6602 | if(di > 0) |
---|
6603 | { |
---|
6604 | var1 = var1 + var2; |
---|
6605 | var1 = var1[1..size(var1) - 2]; // The "- 2" removes the trailer comma |
---|
6606 | hilf[1] = var1; |
---|
6607 | // SL 2006.21.04 1 The order is now block dp instead of lp |
---|
6608 | hilf[2] = "dp(" + string(nvars(basering) - di) + "), dp(" + string(di) + ")"; |
---|
6609 | // SL 2006.21.04 2 |
---|
6610 | hilf[3] = di; |
---|
6611 | resu[n] = hilf; |
---|
6612 | } |
---|
6613 | else |
---|
6614 | { |
---|
6615 | resu[n] = varstr(basering), ordstr(basering), 0; |
---|
6616 | } |
---|
6617 | } |
---|
6618 | return(resu); |
---|
6619 | } |
---|
6620 | example |
---|
6621 | { "EXAMPLE:"; echo = 2; |
---|
6622 | ring s1 = (0, x, y), (a, b, c, d, e, f, g), lp; |
---|
6623 | ideal i = ea - fbg, fa + be, ec - fdg, fc + de; |
---|
6624 | i = std(i); |
---|
6625 | list l = newMaxIndependSetDp(i); |
---|
6626 | l; |
---|
6627 | i = i, g; |
---|
6628 | l = newMaxIndependSetDp(i); |
---|
6629 | l; |
---|
6630 | |
---|
6631 | ring s = 0, (x, y, z), lp; |
---|
6632 | ideal i = z, yx; |
---|
6633 | list l = newMaxIndependSetDp(i); |
---|
6634 | l; |
---|
6635 | } |
---|
6636 | |
---|
6637 | |
---|
6638 | /////////////////////////////////////////////////////////////////////////////// |
---|
6639 | proc prepareAss(ideal i) |
---|
6640 | "USAGE: prepareAss(I); I ideal |
---|
6641 | RETURN: list, the radicals of the maximal dimensional components of I. |
---|
6642 | NOTE: Uses algorithm of Eisenbud/Huneke/Vasconcelos. |
---|
6643 | EXAMPLE: example prepareAss; shows an example |
---|
6644 | " |
---|
6645 | { |
---|
6646 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6647 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6648 | if(attrib(basering,"global")!=1) |
---|
6649 | { |
---|
6650 | ERROR( |
---|
6651 | "// Not implemented for this ordering, please change to global ordering." |
---|
6652 | ); |
---|
6653 | } |
---|
6654 | |
---|
6655 | ideal j=std(i); |
---|
6656 | int cod=nvars(basering)-dim(j); |
---|
6657 | int e; |
---|
6658 | list er; |
---|
6659 | ideal ann; |
---|
6660 | if(homog(i)==1) |
---|
6661 | { |
---|
6662 | resolution re=sres(j,0); //the resolution |
---|
6663 | re=minres(re); //minimized resolution |
---|
6664 | } |
---|
6665 | else |
---|
6666 | { |
---|
6667 | list re=mres(i,0); |
---|
6668 | } |
---|
6669 | for(e=cod;e<=nvars(basering);e++) |
---|
6670 | { |
---|
6671 | ann=AnnExt_R(e,re); |
---|
6672 | |
---|
6673 | if(nvars(basering)-dim(std(ann))==e) |
---|
6674 | { |
---|
6675 | er[size(er)+1]=equiRadical(ann); |
---|
6676 | } |
---|
6677 | } |
---|
6678 | return(er); |
---|
6679 | } |
---|
6680 | example |
---|
6681 | { "EXAMPLE:"; echo = 2; |
---|
6682 | ring r = 0,(x,y,z),dp; |
---|
6683 | poly p = z2+1; |
---|
6684 | poly q = z3+2; |
---|
6685 | ideal i = p*q^2,y-z2; |
---|
6686 | list pr = prepareAss(i); |
---|
6687 | pr; |
---|
6688 | } |
---|
6689 | /////////////////////////////////////////////////////////////////////////////// |
---|
6690 | proc equidimMaxEHV(ideal i) |
---|
6691 | "USAGE: equidimMaxEHV(I); I ideal |
---|
6692 | RETURN: ideal, the equidimensional component (of maximal dimension) of I. |
---|
6693 | NOTE: Uses algorithm of Eisenbud, Huneke and Vasconcelos. |
---|
6694 | EXAMPLE: example equidimMaxEHV; shows an example |
---|
6695 | " |
---|
6696 | { |
---|
6697 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6698 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6699 | if(attrib(basering,"global")!=1) |
---|
6700 | { |
---|
6701 | ERROR( |
---|
6702 | "// Not implemented for this ordering, please change to global ordering." |
---|
6703 | ); |
---|
6704 | } |
---|
6705 | |
---|
6706 | ideal j=groebner(i); |
---|
6707 | int cod=nvars(basering)-dim(j); |
---|
6708 | |
---|
6709 | |
---|
6710 | if(cod > nvars(basering)) |
---|
6711 | { |
---|
6712 | dbprint(printlevel,"//If I is the entire ring..."); |
---|
6713 | dbprint(printlevel,"//...then return the ideal generated by 1."); |
---|
6714 | return(ideal(1)); |
---|
6715 | } |
---|
6716 | |
---|
6717 | int e; |
---|
6718 | ideal ann; |
---|
6719 | if(homog(i)==1) |
---|
6720 | { |
---|
6721 | resolution re=sres(j,0); //the resolution |
---|
6722 | re=minres(re); //minimized resolution |
---|
6723 | } |
---|
6724 | else |
---|
6725 | { |
---|
6726 | resolution re=mres(j,0); |
---|
6727 | } |
---|
6728 | ann = AnnExt_R(cod,re); |
---|
6729 | if( nvars(basering)-dim(std(ann) ) != cod) |
---|
6730 | { |
---|
6731 | return( ideal(1) ); |
---|
6732 | } |
---|
6733 | |
---|
6734 | return(ann); |
---|
6735 | } |
---|
6736 | example |
---|
6737 | { "EXAMPLE:"; echo = 2; |
---|
6738 | ring r = 0,(x,y,z),dp; |
---|
6739 | ideal i=intersect(ideal(z),ideal(x,y),ideal(x2,z2),ideal(x5,y5,z5)); |
---|
6740 | equidimMaxEHV(i); |
---|
6741 | } |
---|
6742 | |
---|
6743 | proc testPrimary(list pr, ideal k) |
---|
6744 | "USAGE: testPrimary(pr,k); pr a list, k an ideal. |
---|
6745 | ASSUME: pr is the result of primdecGTZ(k) or primdecSY(k). |
---|
6746 | RETURN: int, 1 if the intersection of the ideals in pr is k, 0 if not |
---|
6747 | EXAMPLE: example testPrimary; shows an example |
---|
6748 | " |
---|
6749 | { |
---|
6750 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6751 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6752 | |
---|
6753 | int i; |
---|
6754 | pr=reconvList(pr); |
---|
6755 | ideal j=pr[1]; |
---|
6756 | for (i=2;i<=size(pr) div 2;i++) |
---|
6757 | { |
---|
6758 | j=intersect(j,pr[2*i-1]); |
---|
6759 | } |
---|
6760 | return(idealsEqual(j,k)); |
---|
6761 | } |
---|
6762 | example |
---|
6763 | { "EXAMPLE:"; echo = 2; |
---|
6764 | ring r = 32003,(x,y,z),dp; |
---|
6765 | poly p = z2+1; |
---|
6766 | poly q = z4+2; |
---|
6767 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
6768 | list pr = primdecGTZ(i); |
---|
6769 | testPrimary(pr,i); |
---|
6770 | } |
---|
6771 | |
---|
6772 | /////////////////////////////////////////////////////////////////////////////// |
---|
6773 | proc zerodec(ideal I) |
---|
6774 | "USAGE: zerodec(I); I ideal |
---|
6775 | ASSUME: I is zero-dimensional, the characteristic of the ground field is 0 |
---|
6776 | RETURN: list of primary ideals, the zero-dimensional decomposition of I |
---|
6777 | NOTE: The algorithm (of Monico), works well only for a small total number |
---|
6778 | of solutions (@code{vdim(std(I))} should be < 100) and without |
---|
6779 | parameters. In practice, it works also in large characteristic p>0 |
---|
6780 | but may fail for small p. |
---|
6781 | @* If printlevel > 0 (default = 0) additional information is displayed. |
---|
6782 | EXAMPLE: example zerodec; shows an example |
---|
6783 | " |
---|
6784 | { |
---|
6785 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
6786 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
6787 | if(attrib(basering,"global")!=1) |
---|
6788 | { |
---|
6789 | ERROR( |
---|
6790 | "// Not implemented for this ordering, please change to global ordering." |
---|
6791 | ); |
---|
6792 | } |
---|
6793 | |
---|
6794 | def R=basering; |
---|
6795 | poly q; |
---|
6796 | int j,time; |
---|
6797 | matrix m; |
---|
6798 | list re; |
---|
6799 | poly va=var(1); |
---|
6800 | ideal J=groebner(I); |
---|
6801 | ideal ba=kbase(J); |
---|
6802 | int d=vdim(J); |
---|
6803 | dbprint(printlevel-voice+2,"// multiplicity of ideal : "+ string(d)); |
---|
6804 | //------ compute matrix of multiplication on R/I with generic element p ----- |
---|
6805 | int e=nvars(basering); |
---|
6806 | poly p=randomLast(100)[e]+random(-50,50); //the generic element |
---|
6807 | matrix n[d][d]; |
---|
6808 | time = timer; |
---|
6809 | for(j=2;j<=e;j++) |
---|
6810 | { |
---|
6811 | va=va*var(j); |
---|
6812 | } |
---|
6813 | for(j=1;j<=d;j++) |
---|
6814 | { |
---|
6815 | q=reduce(p*ba[j],J); |
---|
6816 | m=coeffs(q,ba,va); |
---|
6817 | n[j,1..d]=m[1..d,1]; |
---|
6818 | } |
---|
6819 | dbprint(printlevel-voice+2, |
---|
6820 | "// time for computing multiplication matrix (with generic element) : "+ |
---|
6821 | string(timer-time)); |
---|
6822 | //---------------- compute characteristic polynomial of matrix -------------- |
---|
6823 | execute("ring P1=("+charstr(R)+"),T,dp;"); |
---|
6824 | matrix n=imap(R,n); |
---|
6825 | time = timer; |
---|
6826 | poly charpol=det(n-T*freemodule(d)); |
---|
6827 | dbprint(printlevel-voice+2,"// time for computing char poly: "+ |
---|
6828 | string(timer-time)); |
---|
6829 | //------------------- factorize characteristic polynomial ------------------- |
---|
6830 | //check first if constant term of charpoly is != 0 (which is true for |
---|
6831 | //sufficiently generic element) |
---|
6832 | if(charpol[size(charpol)]!=0) |
---|
6833 | { |
---|
6834 | time = timer; |
---|
6835 | list fac=factor(charpol); |
---|
6836 | testFactor(fac,charpol); |
---|
6837 | dbprint(printlevel-voice+2,"// time for factorizing char poly: "+ |
---|
6838 | string(timer-time)); |
---|
6839 | int f=size(fac[1]); |
---|
6840 | //--------------------------- the irreducible case -------------------------- |
---|
6841 | if(f==1) |
---|
6842 | { |
---|
6843 | setring R; |
---|
6844 | re=I; |
---|
6845 | return(re); |
---|
6846 | } |
---|
6847 | //---------------------------- the reducible case --------------------------- |
---|
6848 | //if f_i are the irreducible factors of charpoly, mult=ri, then <I,g_i^ri> |
---|
6849 | //are the primary components where g_i = f_i(p). However, substituting p in |
---|
6850 | //f_i may result in a huge object although the final result may be small. |
---|
6851 | //Hence it is better to simultaneously reduce with I. For this we need a new |
---|
6852 | //ring. |
---|
6853 | execute("ring P=("+charstr(R)+"),(T,"+varstr(R)+"),(dp(1),dp);"); |
---|
6854 | list rfac=imap(P1,fac); |
---|
6855 | intvec ov=option(get);; |
---|
6856 | option(redSB); |
---|
6857 | list re1; |
---|
6858 | ideal new = T-imap(R,p),imap(R,J); |
---|
6859 | attrib(new, "isSB",1); //we know that new is a standard basis |
---|
6860 | for(j=1;j<=f;j++) |
---|
6861 | { |
---|
6862 | re1[j]=reduce(rfac[1][j]^rfac[2][j],new); |
---|
6863 | } |
---|
6864 | setring R; |
---|
6865 | re = imap(P,re1); |
---|
6866 | for(j=1;j<=f;j++) |
---|
6867 | { |
---|
6868 | J=I,re[j]; |
---|
6869 | re[j]=interred(J); |
---|
6870 | } |
---|
6871 | option(set,ov); |
---|
6872 | return(re); |
---|
6873 | } |
---|
6874 | else |
---|
6875 | //------------------- choice of generic element failed ------------------- |
---|
6876 | { |
---|
6877 | dbprint(printlevel-voice+2,"// try new generic element!"); |
---|
6878 | setring R; |
---|
6879 | return(zerodec(I)); |
---|
6880 | } |
---|
6881 | } |
---|
6882 | example |
---|
6883 | { "EXAMPLE:"; echo = 2; |
---|
6884 | ring r = 0,(x,y),dp; |
---|
6885 | ideal i = x2-2,y2-2; |
---|
6886 | list pr = zerodec(i); |
---|
6887 | pr; |
---|
6888 | } |
---|
6889 | /////////////////////////////////////////////////////////////////////////////// |
---|
6890 | static proc newDecompStep(ideal i, list #) |
---|
6891 | "USAGE: newDecompStep(i); i ideal (for primary decomposition) |
---|
6892 | newDecompStep(i,1); (for the associated primes of dimension of i) |
---|
6893 | newDecompStep(i,2); (for the minimal associated primes) |
---|
6894 | newDecompStep(i,3); (for the absolute primary decomposition (not tested!)) |
---|
6895 | "oneIndep"; (for using only one max indep set) |
---|
6896 | "intersect"; (returns alse the intersection of the components founded) |
---|
6897 | |
---|
6898 | RETURN: list = list of primary ideals and their associated primes |
---|
6899 | (at even positions in the list) |
---|
6900 | (resp. a list of the minimal associated primes) |
---|
6901 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
6902 | EXAMPLE: example newDecompStep; shows an example |
---|
6903 | " |
---|
6904 | { |
---|
6905 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
6906 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
6907 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
6908 | |
---|
6909 | intvec op@P, op,@vv; |
---|
6910 | def @P = basering; |
---|
6911 | list primary,indep,ltras; |
---|
6912 | intvec @vh,isat,@w; |
---|
6913 | int @wr,@k,@n,@m,@n1,@n2,@n3,homo,seri,keepdi,abspri,ab,nn; |
---|
6914 | ideal peek=i; |
---|
6915 | ideal ser,tras; |
---|
6916 | list data; |
---|
6917 | list result; |
---|
6918 | intvec @hilb; |
---|
6919 | int isS=(attrib(i,"isSB")==1); |
---|
6920 | |
---|
6921 | // Debug |
---|
6922 | dbprint(printlevel - voice, "newDecompStep, v2.0"); |
---|
6923 | |
---|
6924 | string indepOption = "allIndep"; |
---|
6925 | string intersectOption = "noIntersect"; |
---|
6926 | |
---|
6927 | if(size(#)>0) |
---|
6928 | { |
---|
6929 | int count = 1; |
---|
6930 | if(typeof(#[count]) == "string") |
---|
6931 | { |
---|
6932 | if ((#[count] == "oneIndep") or (#[count] == "allIndep")) |
---|
6933 | { |
---|
6934 | indepOption = #[count]; |
---|
6935 | count++; |
---|
6936 | } |
---|
6937 | } |
---|
6938 | if(typeof(#[count]) == "string") |
---|
6939 | { |
---|
6940 | if ((#[count] == "intersect") or (#[count] == "noIntersect")) |
---|
6941 | { |
---|
6942 | intersectOption = #[count]; |
---|
6943 | count++; |
---|
6944 | } |
---|
6945 | } |
---|
6946 | if((typeof(#[count]) == "int") or (typeof(#[count]) == "number")) |
---|
6947 | { |
---|
6948 | if ((#[count]==1)||(#[count]==2)||(#[count]==3)) |
---|
6949 | { |
---|
6950 | @wr=#[count]; |
---|
6951 | if(@wr==3){abspri = 1; @wr = 0;} |
---|
6952 | count++; |
---|
6953 | } |
---|
6954 | } |
---|
6955 | if(size(#)>count) |
---|
6956 | { |
---|
6957 | seri=1; |
---|
6958 | peek=#[count + 1]; |
---|
6959 | ser=#[count + 2]; |
---|
6960 | } |
---|
6961 | } |
---|
6962 | if(abspri) |
---|
6963 | { |
---|
6964 | list absprimary,abskeep,absprimarytmp,abskeeptmp; |
---|
6965 | } |
---|
6966 | homo=homog(i); |
---|
6967 | if(homo==1) |
---|
6968 | { |
---|
6969 | if(attrib(i,"isSB")!=1) |
---|
6970 | { |
---|
6971 | //ltras=mstd(i); |
---|
6972 | tras=groebner(i); |
---|
6973 | ltras=tras,tras; |
---|
6974 | attrib(ltras[1],"isSB",1); |
---|
6975 | } |
---|
6976 | else |
---|
6977 | { |
---|
6978 | ltras=i,i; |
---|
6979 | attrib(ltras[1],"isSB",1); |
---|
6980 | } |
---|
6981 | tras = ltras[1]; |
---|
6982 | attrib(tras,"isSB",1); |
---|
6983 | if(dim(tras)==0) |
---|
6984 | { |
---|
6985 | primary[1]=ltras[2]; |
---|
6986 | primary[2]=maxideal(1); |
---|
6987 | if(@wr>0) |
---|
6988 | { |
---|
6989 | list l; |
---|
6990 | l[2]=maxideal(1); |
---|
6991 | l[1]=maxideal(1); |
---|
6992 | if (intersectOption == "intersect") |
---|
6993 | { |
---|
6994 | return(list(l, maxideal(1))); |
---|
6995 | } |
---|
6996 | else |
---|
6997 | { |
---|
6998 | return(l); |
---|
6999 | } |
---|
7000 | } |
---|
7001 | if (intersectOption == "intersect") |
---|
7002 | { |
---|
7003 | return(list(primary, primary[1])); |
---|
7004 | } |
---|
7005 | else |
---|
7006 | { |
---|
7007 | return(primary); |
---|
7008 | } |
---|
7009 | } |
---|
7010 | for(@n=1;@n<=nvars(basering);@n++) |
---|
7011 | { |
---|
7012 | @w[@n]=ord(var(@n)); |
---|
7013 | } |
---|
7014 | @hilb=hilb(tras,1,@w); |
---|
7015 | intvec keephilb=@hilb; |
---|
7016 | } |
---|
7017 | |
---|
7018 | //---------------------------------------------------------------- |
---|
7019 | //i is the zero-ideal |
---|
7020 | //---------------------------------------------------------------- |
---|
7021 | |
---|
7022 | if(size(i)==0) |
---|
7023 | { |
---|
7024 | primary=i,i; |
---|
7025 | if (intersectOption == "intersect") |
---|
7026 | { |
---|
7027 | return(list(primary, i)); |
---|
7028 | } |
---|
7029 | else |
---|
7030 | { |
---|
7031 | return(primary); |
---|
7032 | } |
---|
7033 | } |
---|
7034 | |
---|
7035 | //---------------------------------------------------------------- |
---|
7036 | //pass to the lexicographical ordering and compute a standardbasis |
---|
7037 | //---------------------------------------------------------------- |
---|
7038 | |
---|
7039 | int lp=islp(); |
---|
7040 | |
---|
7041 | op@P = option(get); |
---|
7042 | execute("ring gnir = ("+charstr(basering)+"),("+varstr(basering)+"),(C,lp);"); |
---|
7043 | |
---|
7044 | op=option(get); |
---|
7045 | option(redSB); |
---|
7046 | |
---|
7047 | ideal ser=fetch(@P,ser); |
---|
7048 | if(homo==1) |
---|
7049 | { |
---|
7050 | if(!lp) |
---|
7051 | { |
---|
7052 | ideal @j=std(fetch(@P,i),@hilb,@w); |
---|
7053 | } |
---|
7054 | else |
---|
7055 | { |
---|
7056 | ideal @j=fetch(@P,tras); |
---|
7057 | attrib(@j,"isSB",1); |
---|
7058 | } |
---|
7059 | } |
---|
7060 | else |
---|
7061 | { |
---|
7062 | if(lp&&isS) |
---|
7063 | { |
---|
7064 | ideal @j=fetch(@P,i); |
---|
7065 | attrib(@j,"isSB",1); |
---|
7066 | } |
---|
7067 | else |
---|
7068 | { |
---|
7069 | ideal @j=groebner(fetch(@P,i)); |
---|
7070 | } |
---|
7071 | } |
---|
7072 | option(set,op); |
---|
7073 | if(seri==1) |
---|
7074 | { |
---|
7075 | ideal peek=fetch(@P,peek); |
---|
7076 | attrib(peek,"isSB",1); |
---|
7077 | } |
---|
7078 | else |
---|
7079 | { |
---|
7080 | ideal peek=@j; |
---|
7081 | } |
---|
7082 | if((size(ser)==0)&&(!abspri)) |
---|
7083 | { |
---|
7084 | ideal fried; |
---|
7085 | @n=size(@j); |
---|
7086 | for(@k=1;@k<=@n;@k++) |
---|
7087 | { |
---|
7088 | if(deg(lead(@j[@k]))==1) |
---|
7089 | { |
---|
7090 | fried[size(fried)+1]=@j[@k]; |
---|
7091 | @j[@k]=0; |
---|
7092 | } |
---|
7093 | } |
---|
7094 | if(size(fried)==nvars(basering)) |
---|
7095 | { |
---|
7096 | setring @P; |
---|
7097 | option(set,op@P); |
---|
7098 | primary[1]=i; |
---|
7099 | primary[2]=i; |
---|
7100 | if (intersectOption == "intersect") |
---|
7101 | { |
---|
7102 | return(list(primary, i)); |
---|
7103 | } |
---|
7104 | else |
---|
7105 | { |
---|
7106 | return(primary); |
---|
7107 | } |
---|
7108 | } |
---|
7109 | if(size(fried)>0) |
---|
7110 | { |
---|
7111 | string newva; |
---|
7112 | string newma; |
---|
7113 | for(@k=1;@k<=nvars(basering);@k++) |
---|
7114 | { |
---|
7115 | @n1=0; |
---|
7116 | for(@n=1;@n<=size(fried);@n++) |
---|
7117 | { |
---|
7118 | if(leadmonom(fried[@n])==var(@k)) |
---|
7119 | { |
---|
7120 | @n1=1; |
---|
7121 | break; |
---|
7122 | } |
---|
7123 | } |
---|
7124 | if(@n1==0) |
---|
7125 | { |
---|
7126 | newva=newva+string(var(@k))+","; |
---|
7127 | newma=newma+string(var(@k))+","; |
---|
7128 | } |
---|
7129 | else |
---|
7130 | { |
---|
7131 | newma=newma+string(0)+","; |
---|
7132 | } |
---|
7133 | } |
---|
7134 | newva[size(newva)]=")"; |
---|
7135 | newma[size(newma)]=";"; |
---|
7136 | execute("ring @deirf=("+charstr(gnir)+"),("+newva+",lp;"); |
---|
7137 | execute("map @kappa=gnir,"+newma); |
---|
7138 | ideal @j= @kappa(@j); |
---|
7139 | @j=simplify(@j, 2); |
---|
7140 | attrib(@j,"isSB",1); |
---|
7141 | result = newDecompStep(@j, indepOption, intersectOption, @wr); |
---|
7142 | if (intersectOption == "intersect") |
---|
7143 | { |
---|
7144 | list pr = result[1]; |
---|
7145 | ideal intersection = result[2]; |
---|
7146 | } |
---|
7147 | else |
---|
7148 | { |
---|
7149 | list pr = result; |
---|
7150 | } |
---|
7151 | |
---|
7152 | setring gnir; |
---|
7153 | list pr=imap(@deirf,pr); |
---|
7154 | for(@k=1;@k<=size(pr);@k++) |
---|
7155 | { |
---|
7156 | @j=pr[@k]+fried; |
---|
7157 | pr[@k]=@j; |
---|
7158 | } |
---|
7159 | if (intersectOption == "intersect") |
---|
7160 | { |
---|
7161 | ideal intersection = imap(@deirf, intersection); |
---|
7162 | @j = intersection + fried; |
---|
7163 | intersection = @j; |
---|
7164 | } |
---|
7165 | setring @P; |
---|
7166 | option(set,op@P); |
---|
7167 | if (intersectOption == "intersect") |
---|
7168 | { |
---|
7169 | return(list(imap(gnir,pr), imap(gnir,intersection))); |
---|
7170 | } |
---|
7171 | else |
---|
7172 | { |
---|
7173 | return(imap(gnir,pr)); |
---|
7174 | } |
---|
7175 | } |
---|
7176 | } |
---|
7177 | //---------------------------------------------------------------- |
---|
7178 | //j is the ring |
---|
7179 | //---------------------------------------------------------------- |
---|
7180 | |
---|
7181 | if (dim(@j)==-1) |
---|
7182 | { |
---|
7183 | setring @P; |
---|
7184 | option(set,op@P); |
---|
7185 | primary=ideal(1),ideal(1); |
---|
7186 | if (intersectOption == "intersect") |
---|
7187 | { |
---|
7188 | return(list(primary, ideal(1))); |
---|
7189 | } |
---|
7190 | else |
---|
7191 | { |
---|
7192 | return(primary); |
---|
7193 | } |
---|
7194 | } |
---|
7195 | |
---|
7196 | //---------------------------------------------------------------- |
---|
7197 | // the case of one variable |
---|
7198 | //---------------------------------------------------------------- |
---|
7199 | |
---|
7200 | if(nvars(basering)==1) |
---|
7201 | { |
---|
7202 | list fac=factor(@j[1]); |
---|
7203 | list gprimary; |
---|
7204 | poly generator; |
---|
7205 | ideal gIntersection; |
---|
7206 | for(@k=1;@k<=size(fac[1]);@k++) |
---|
7207 | { |
---|
7208 | if(@wr==0) |
---|
7209 | { |
---|
7210 | gprimary[2*@k-1]=ideal(fac[1][@k]^fac[2][@k]); |
---|
7211 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
7212 | } |
---|
7213 | else |
---|
7214 | { |
---|
7215 | gprimary[2*@k-1]=ideal(fac[1][@k]); |
---|
7216 | gprimary[2*@k]=ideal(fac[1][@k]); |
---|
7217 | } |
---|
7218 | if (intersectOption == "intersect") |
---|
7219 | { |
---|
7220 | generator = generator * fac[1][@k]; |
---|
7221 | } |
---|
7222 | } |
---|
7223 | if (intersectOption == "intersect") |
---|
7224 | { |
---|
7225 | gIntersection = generator; |
---|
7226 | } |
---|
7227 | setring @P; |
---|
7228 | primary=fetch(gnir,gprimary); |
---|
7229 | if (intersectOption == "intersect") |
---|
7230 | { |
---|
7231 | ideal intersection = fetch(gnir,gIntersection); |
---|
7232 | } |
---|
7233 | |
---|
7234 | //HIER |
---|
7235 | if(abspri) |
---|
7236 | { |
---|
7237 | list resu,tempo; |
---|
7238 | string absotto; |
---|
7239 | for(ab=1;ab<=size(primary) div 2;ab++) |
---|
7240 | { |
---|
7241 | absotto= absFactorize(primary[2*ab][1],77); |
---|
7242 | tempo=primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
7243 | resu[ab]=tempo; |
---|
7244 | } |
---|
7245 | primary=resu; |
---|
7246 | intersection = 1; |
---|
7247 | for(ab=1;ab<=size(primary);ab++) |
---|
7248 | { |
---|
7249 | intersection = intersect(intersection, primary[ab][2]); |
---|
7250 | } |
---|
7251 | } |
---|
7252 | if (intersectOption == "intersect") |
---|
7253 | { |
---|
7254 | return(list(primary, intersection)); |
---|
7255 | } |
---|
7256 | else |
---|
7257 | { |
---|
7258 | return(primary); |
---|
7259 | } |
---|
7260 | } |
---|
7261 | |
---|
7262 | //------------------------------------------------------------------ |
---|
7263 | //the zero-dimensional case |
---|
7264 | //------------------------------------------------------------------ |
---|
7265 | if (dim(@j)==0) |
---|
7266 | { |
---|
7267 | op=option(get); |
---|
7268 | option(redSB); |
---|
7269 | list gprimary= newZero_decomp(@j,ser,@wr); |
---|
7270 | |
---|
7271 | setring @P; |
---|
7272 | primary=fetch(gnir,gprimary); |
---|
7273 | |
---|
7274 | if(size(ser)>0) |
---|
7275 | { |
---|
7276 | primary=cleanPrimary(primary); |
---|
7277 | } |
---|
7278 | //HIER |
---|
7279 | if(abspri) |
---|
7280 | { |
---|
7281 | list resu,tempo; |
---|
7282 | string absotto; |
---|
7283 | for(ab=1;ab<=size(primary) div 2;ab++) |
---|
7284 | { |
---|
7285 | absotto= absFactorize(primary[2*ab][1],77); |
---|
7286 | tempo=primary[2*ab-1],primary[2*ab],absotto,string(var(nvars(basering))); |
---|
7287 | resu[ab]=tempo; |
---|
7288 | } |
---|
7289 | primary=resu; |
---|
7290 | } |
---|
7291 | option(set,op@P); |
---|
7292 | if (intersectOption == "intersect") |
---|
7293 | { |
---|
7294 | return(list(primary, fetch(gnir,@j))); |
---|
7295 | } |
---|
7296 | else |
---|
7297 | { |
---|
7298 | return(primary); |
---|
7299 | } |
---|
7300 | } |
---|
7301 | |
---|
7302 | poly @gs,@gh,@p; |
---|
7303 | string @va; |
---|
7304 | list quprimary,htprimary,collectprimary,lsau,lnew,allindep,restindep; |
---|
7305 | ideal @h; |
---|
7306 | int jdim=dim(@j); |
---|
7307 | list fett; |
---|
7308 | int lauf,di,newtest; |
---|
7309 | //------------------------------------------------------------------ |
---|
7310 | //search for a maximal independent set indep,i.e. |
---|
7311 | //look for subring such that the intersection with the ideal is zero |
---|
7312 | //j intersected with K[var(indep[3]+1),...,var(nvar] is zero, |
---|
7313 | //indep[1] is the new varstring and indep[2] the string for block-ordering |
---|
7314 | //------------------------------------------------------------------ |
---|
7315 | if(@wr!=1) |
---|
7316 | { |
---|
7317 | allindep = newMaxIndependSetLp(@j, indepOption); |
---|
7318 | for(@m=1;@m<=size(allindep);@m++) |
---|
7319 | { |
---|
7320 | if(allindep[@m][3]==jdim) |
---|
7321 | { |
---|
7322 | di++; |
---|
7323 | indep[di]=allindep[@m]; |
---|
7324 | } |
---|
7325 | else |
---|
7326 | { |
---|
7327 | lauf++; |
---|
7328 | restindep[lauf]=allindep[@m]; |
---|
7329 | } |
---|
7330 | } |
---|
7331 | } |
---|
7332 | else |
---|
7333 | { |
---|
7334 | indep = newMaxIndependSetLp(@j, indepOption); |
---|
7335 | } |
---|
7336 | |
---|
7337 | ideal jkeep=@j; |
---|
7338 | if(ordstr(@P)[1]=="w") |
---|
7339 | { |
---|
7340 | execute("ring @Phelp=("+charstr(gnir)+"),("+varstr(gnir)+"),("+ordstr(@P)+");"); |
---|
7341 | } |
---|
7342 | else |
---|
7343 | { |
---|
7344 | execute( "ring @Phelp=("+charstr(gnir)+"),("+varstr(gnir)+"),(C,dp);"); |
---|
7345 | } |
---|
7346 | |
---|
7347 | if(homo==1) |
---|
7348 | { |
---|
7349 | if((ordstr(@P)[3]=="d")||(ordstr(@P)[1]=="d")||(ordstr(@P)[1]=="w") |
---|
7350 | ||(ordstr(@P)[3]=="w")) |
---|
7351 | { |
---|
7352 | ideal jwork=imap(@P,tras); |
---|
7353 | attrib(jwork,"isSB",1); |
---|
7354 | } |
---|
7355 | else |
---|
7356 | { |
---|
7357 | ideal jwork=std(imap(gnir,@j),@hilb,@w); |
---|
7358 | } |
---|
7359 | } |
---|
7360 | else |
---|
7361 | { |
---|
7362 | ideal jwork=groebner(imap(gnir,@j)); |
---|
7363 | } |
---|
7364 | list hquprimary; |
---|
7365 | poly @p,@q; |
---|
7366 | ideal @h,fac,ser; |
---|
7367 | //Aenderung================ |
---|
7368 | ideal @Ptest=1; |
---|
7369 | //========================= |
---|
7370 | di=dim(jwork); |
---|
7371 | keepdi=di; |
---|
7372 | |
---|
7373 | ser = 1; |
---|
7374 | |
---|
7375 | setring gnir; |
---|
7376 | for(@m=1; @m<=size(indep); @m++) |
---|
7377 | { |
---|
7378 | data[1] = indep[@m]; |
---|
7379 | result = newReduction(@j, ser, @hilb, @w, jdim, abspri, @wr, data); |
---|
7380 | quprimary = quprimary + result[1]; |
---|
7381 | if(abspri) |
---|
7382 | { |
---|
7383 | absprimary = absprimary + result[2]; |
---|
7384 | abskeep = abskeep + result[3]; |
---|
7385 | } |
---|
7386 | @h = result[5]; |
---|
7387 | ser = result[4]; |
---|
7388 | if(size(@h)>0) |
---|
7389 | { |
---|
7390 | //--------------------------------------------------------------- |
---|
7391 | //we change to @Phelp to have the ordering dp for saturation |
---|
7392 | //--------------------------------------------------------------- |
---|
7393 | |
---|
7394 | setring @Phelp; |
---|
7395 | @h=imap(gnir,@h); |
---|
7396 | //Aenderung================================== |
---|
7397 | if(defined(@LL)){kill @LL;} |
---|
7398 | list @LL=minSat(jwork,@h); |
---|
7399 | @Ptest=intersect(@Ptest,@LL[1]); |
---|
7400 | ser = intersect(ser, @LL[1]); |
---|
7401 | //=========================================== |
---|
7402 | |
---|
7403 | if(@wr!=1) |
---|
7404 | { |
---|
7405 | //Aenderung================================== |
---|
7406 | @q=@LL[2]; |
---|
7407 | //=========================================== |
---|
7408 | //@q=minSat(jwork,@h)[2]; |
---|
7409 | } |
---|
7410 | else |
---|
7411 | { |
---|
7412 | fac=ideal(0); |
---|
7413 | for(lauf=1;lauf<=ncols(@h);lauf++) |
---|
7414 | { |
---|
7415 | if(deg(@h[lauf])>0) |
---|
7416 | { |
---|
7417 | fac=fac+factorize(@h[lauf],1); |
---|
7418 | } |
---|
7419 | } |
---|
7420 | fac=simplify(fac,6); |
---|
7421 | @q=1; |
---|
7422 | for(lauf=1;lauf<=size(fac);lauf++) |
---|
7423 | { |
---|
7424 | @q=@q*fac[lauf]; |
---|
7425 | } |
---|
7426 | } |
---|
7427 | jwork = std(jwork,@q); |
---|
7428 | keepdi = dim(jwork); |
---|
7429 | if(keepdi < di) |
---|
7430 | { |
---|
7431 | setring gnir; |
---|
7432 | @j = imap(@Phelp, jwork); |
---|
7433 | ser = imap(@Phelp, ser); |
---|
7434 | break; |
---|
7435 | } |
---|
7436 | if(homo == 1) |
---|
7437 | { |
---|
7438 | @hilb = hilb(jwork, 1, @w); |
---|
7439 | } |
---|
7440 | |
---|
7441 | setring gnir; |
---|
7442 | ser = imap(@Phelp, ser); |
---|
7443 | @j = imap(@Phelp, jwork); |
---|
7444 | } |
---|
7445 | } |
---|
7446 | |
---|
7447 | if((size(quprimary)==0)&&(@wr==1)) |
---|
7448 | { |
---|
7449 | @j=ideal(1); |
---|
7450 | quprimary[1]=ideal(1); |
---|
7451 | quprimary[2]=ideal(1); |
---|
7452 | } |
---|
7453 | if((size(quprimary)==0)) |
---|
7454 | { |
---|
7455 | keepdi = di - 1; |
---|
7456 | quprimary[1]=ideal(1); |
---|
7457 | quprimary[2]=ideal(1); |
---|
7458 | } |
---|
7459 | //--------------------------------------------------------------- |
---|
7460 | //notice that j=sat(j,gh) intersected with (j,gh^n) |
---|
7461 | //we finished with sat(j,gh) and have to start with (j,gh^n) |
---|
7462 | //--------------------------------------------------------------- |
---|
7463 | if((deg(@j[1])!=0)&&(@wr!=1)) |
---|
7464 | { |
---|
7465 | if(size(quprimary)>0) |
---|
7466 | { |
---|
7467 | setring @Phelp; |
---|
7468 | ser=imap(gnir,ser); |
---|
7469 | |
---|
7470 | hquprimary=imap(gnir,quprimary); |
---|
7471 | if(@wr==0) |
---|
7472 | { |
---|
7473 | //Aenderung==================================================== |
---|
7474 | //HIER STATT DURCHSCHNITT SATURIEREN! |
---|
7475 | ideal htest=@Ptest; |
---|
7476 | /* |
---|
7477 | ideal htest=hquprimary[1]; |
---|
7478 | for (@n1=2;@n1<=size(hquprimary) div 2;@n1++) |
---|
7479 | { |
---|
7480 | htest=intersect(htest,hquprimary[2*@n1-1]); |
---|
7481 | } |
---|
7482 | */ |
---|
7483 | //============================================================= |
---|
7484 | } |
---|
7485 | else |
---|
7486 | { |
---|
7487 | ideal htest=hquprimary[2]; |
---|
7488 | |
---|
7489 | for (@n1=2;@n1<=size(hquprimary) div 2;@n1++) |
---|
7490 | { |
---|
7491 | htest=intersect(htest,hquprimary[2*@n1]); |
---|
7492 | } |
---|
7493 | } |
---|
7494 | |
---|
7495 | if(size(ser)>0) |
---|
7496 | { |
---|
7497 | ser=intersect(htest,ser); |
---|
7498 | } |
---|
7499 | else |
---|
7500 | { |
---|
7501 | ser=htest; |
---|
7502 | } |
---|
7503 | setring gnir; |
---|
7504 | ser=imap(@Phelp,ser); |
---|
7505 | } |
---|
7506 | if(size(reduce(ser,peek,1))!=0) |
---|
7507 | { |
---|
7508 | for(@m=1;@m<=size(restindep);@m++) |
---|
7509 | { |
---|
7510 | // if(restindep[@m][3]>=keepdi) |
---|
7511 | // { |
---|
7512 | isat=0; |
---|
7513 | @n2=0; |
---|
7514 | |
---|
7515 | if(restindep[@m][1]==varstr(basering)) |
---|
7516 | //the good case, nothing to do, just to have the same notations |
---|
7517 | //change the ring |
---|
7518 | { |
---|
7519 | execute("ring gnir1 = ("+charstr(basering)+"),("+ |
---|
7520 | varstr(basering)+"),("+ordstr(basering)+");"); |
---|
7521 | ideal @j=fetch(gnir,jkeep); |
---|
7522 | attrib(@j,"isSB",1); |
---|
7523 | } |
---|
7524 | else |
---|
7525 | { |
---|
7526 | @va=string(maxideal(1)); |
---|
7527 | execute("ring gnir1 = ("+charstr(basering)+"),("+ |
---|
7528 | restindep[@m][1]+"),(" +restindep[@m][2]+");"); |
---|
7529 | execute("map phi=gnir,"+@va+";"); |
---|
7530 | op=option(get); |
---|
7531 | option(redSB); |
---|
7532 | if(homo==1) |
---|
7533 | { |
---|
7534 | ideal @j=std(phi(jkeep),keephilb,@w); |
---|
7535 | } |
---|
7536 | else |
---|
7537 | { |
---|
7538 | ideal @j=groebner(phi(jkeep)); |
---|
7539 | } |
---|
7540 | ideal ser=phi(ser); |
---|
7541 | option(set,op); |
---|
7542 | } |
---|
7543 | |
---|
7544 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
7545 | { |
---|
7546 | fett[lauf]=size(@j[lauf]); |
---|
7547 | } |
---|
7548 | //------------------------------------------------------------------ |
---|
7549 | //we have now the following situation: |
---|
7550 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may |
---|
7551 | //pass to this quotientring, j is their still a standardbasis, the |
---|
7552 | //leading coefficients of the polynomials there (polynomials in |
---|
7553 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
7554 | //we need their ggt, gh, because of the following: |
---|
7555 | //let (j:gh^n)=(j:gh^infinity) then |
---|
7556 | //j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
7557 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
7558 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
7559 | |
---|
7560 | //------------------------------------------------------------------ |
---|
7561 | |
---|
7562 | //the arrangement for the quotientring |
---|
7563 | // K(var(nnp+1),..,var(nva))[..the rest..] |
---|
7564 | //and the map phi:K[var(1),...,var(nva)] ----> |
---|
7565 | //--->K(var(nnpr+1),..,var(nva))[..the rest..] |
---|
7566 | //------------------------------------------------------------------ |
---|
7567 | |
---|
7568 | quotring=prepareQuotientring(nvars(basering)-restindep[@m][3],"lp"); |
---|
7569 | |
---|
7570 | //------------------------------------------------------------------ |
---|
7571 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
7572 | //------------------------------------------------------------------ |
---|
7573 | |
---|
7574 | setring quotring; |
---|
7575 | |
---|
7576 | // @j considered in the quotientring |
---|
7577 | ideal @j=imap(gnir1,@j); |
---|
7578 | ideal ser=imap(gnir1,ser); |
---|
7579 | |
---|
7580 | kill gnir1; |
---|
7581 | |
---|
7582 | //j is a standardbasis in the quotientring but usually not minimal |
---|
7583 | //here it becomes minimal |
---|
7584 | @j=clearSB(@j,fett); |
---|
7585 | attrib(@j,"isSB",1); |
---|
7586 | |
---|
7587 | //we need later ggt(h[1],...)=gh for saturation |
---|
7588 | ideal @h; |
---|
7589 | |
---|
7590 | for(@n=1;@n<=size(@j);@n++) |
---|
7591 | { |
---|
7592 | @h[@n]=leadcoef(@j[@n]); |
---|
7593 | } |
---|
7594 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..rest..] |
---|
7595 | |
---|
7596 | op=option(get); |
---|
7597 | option(redSB); |
---|
7598 | list uprimary= newZero_decomp(@j,ser,@wr); |
---|
7599 | //HIER |
---|
7600 | if(abspri) |
---|
7601 | { |
---|
7602 | ideal II; |
---|
7603 | ideal jmap; |
---|
7604 | map sigma; |
---|
7605 | nn=nvars(basering); |
---|
7606 | map invsigma=basering,maxideal(1); |
---|
7607 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
7608 | { |
---|
7609 | II=uprimary[2*ab]; |
---|
7610 | attrib(II,"isSB",1); |
---|
7611 | if(deg(II[1])!=vdim(II)) |
---|
7612 | { |
---|
7613 | jmap=randomLast(50); |
---|
7614 | sigma=basering,jmap; |
---|
7615 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
7616 | invsigma=basering,jmap; |
---|
7617 | II=groebner(sigma(II)); |
---|
7618 | } |
---|
7619 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
7620 | II=var(nn); |
---|
7621 | abskeeptmp[ab]=string(invsigma(II)); |
---|
7622 | invsigma=basering,maxideal(1); |
---|
7623 | } |
---|
7624 | } |
---|
7625 | option(set,op); |
---|
7626 | |
---|
7627 | //we need the intersection of the ideals in the list quprimary with |
---|
7628 | //the polynomialring, i.e. let q=(f1,...,fr) in the quotientring |
---|
7629 | //such an ideal but fi polynomials, then the intersection of q with |
---|
7630 | //the polynomialring is the saturation of the ideal generated by |
---|
7631 | //f1,...,fr with respect toh which is the lcm of the leading |
---|
7632 | //coefficients of the fi considered in the quotientring: |
---|
7633 | //this is coded in saturn |
---|
7634 | |
---|
7635 | list saturn; |
---|
7636 | ideal hpl; |
---|
7637 | |
---|
7638 | for(@n=1;@n<=size(uprimary);@n++) |
---|
7639 | { |
---|
7640 | hpl=0; |
---|
7641 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
7642 | { |
---|
7643 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
7644 | } |
---|
7645 | saturn[@n]=hpl; |
---|
7646 | } |
---|
7647 | //------------------------------------------------------------------ |
---|
7648 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..rest..] |
---|
7649 | //back to the polynomialring |
---|
7650 | //------------------------------------------------------------------ |
---|
7651 | setring gnir; |
---|
7652 | collectprimary=imap(quotring,uprimary); |
---|
7653 | lsau=imap(quotring,saturn); |
---|
7654 | @h=imap(quotring,@h); |
---|
7655 | |
---|
7656 | kill quotring; |
---|
7657 | |
---|
7658 | |
---|
7659 | @n2=size(quprimary); |
---|
7660 | //================NEU========================================= |
---|
7661 | if(deg(quprimary[1][1])<=0){ @n2=0; } |
---|
7662 | //============================================================ |
---|
7663 | |
---|
7664 | @n3=@n2; |
---|
7665 | |
---|
7666 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
7667 | { |
---|
7668 | if(deg(collectprimary[2*@n1][1])>0) |
---|
7669 | { |
---|
7670 | @n2++; |
---|
7671 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
7672 | lnew[@n2]=lsau[2*@n1-1]; |
---|
7673 | @n2++; |
---|
7674 | lnew[@n2]=lsau[2*@n1]; |
---|
7675 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
7676 | if(abspri) |
---|
7677 | { |
---|
7678 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
7679 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
7680 | } |
---|
7681 | } |
---|
7682 | } |
---|
7683 | |
---|
7684 | |
---|
7685 | //here the intersection with the polynomialring |
---|
7686 | //mentioned above is really computed |
---|
7687 | |
---|
7688 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
7689 | { |
---|
7690 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
7691 | { |
---|
7692 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
7693 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
7694 | } |
---|
7695 | else |
---|
7696 | { |
---|
7697 | if(@wr==0) |
---|
7698 | { |
---|
7699 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
7700 | } |
---|
7701 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
7702 | } |
---|
7703 | } |
---|
7704 | if(@n2>=@n3+2) |
---|
7705 | { |
---|
7706 | setring @Phelp; |
---|
7707 | ser=imap(gnir,ser); |
---|
7708 | hquprimary=imap(gnir,quprimary); |
---|
7709 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
7710 | { |
---|
7711 | if(@wr==0) |
---|
7712 | { |
---|
7713 | ser=intersect(ser,hquprimary[2*@n-1]); |
---|
7714 | } |
---|
7715 | else |
---|
7716 | { |
---|
7717 | ser=intersect(ser,hquprimary[2*@n]); |
---|
7718 | } |
---|
7719 | } |
---|
7720 | setring gnir; |
---|
7721 | ser=imap(@Phelp,ser); |
---|
7722 | } |
---|
7723 | |
---|
7724 | // } |
---|
7725 | } |
---|
7726 | //HIER |
---|
7727 | if(abspri) |
---|
7728 | { |
---|
7729 | list resu,tempo; |
---|
7730 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
7731 | { |
---|
7732 | if (deg(quprimary[2*ab][1])!=0) |
---|
7733 | { |
---|
7734 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
7735 | absprimary[ab],abskeep[ab]; |
---|
7736 | resu[ab]=tempo; |
---|
7737 | } |
---|
7738 | } |
---|
7739 | quprimary=resu; |
---|
7740 | @wr=3; |
---|
7741 | } |
---|
7742 | if(size(reduce(ser,peek,1))!=0) |
---|
7743 | { |
---|
7744 | if(@wr>0) |
---|
7745 | { |
---|
7746 | // The following line was dropped to avoid the recursion step: |
---|
7747 | //htprimary=newDecompStep(@j,@wr,peek,ser); |
---|
7748 | htprimary = list(); |
---|
7749 | } |
---|
7750 | else |
---|
7751 | { |
---|
7752 | // The following line was dropped to avoid the recursion step: |
---|
7753 | //htprimary=newDecompStep(@j,peek,ser); |
---|
7754 | htprimary = list(); |
---|
7755 | } |
---|
7756 | // here we collect now both results primary(sat(j,gh)) |
---|
7757 | // and primary(j,gh^n) |
---|
7758 | @n=size(quprimary); |
---|
7759 | if (deg(quprimary[1][1])<=0) { @n=0; } |
---|
7760 | for (@k=1;@k<=size(htprimary);@k++) |
---|
7761 | { |
---|
7762 | quprimary[@n+@k]=htprimary[@k]; |
---|
7763 | } |
---|
7764 | } |
---|
7765 | } |
---|
7766 | } |
---|
7767 | else |
---|
7768 | { |
---|
7769 | if(abspri) |
---|
7770 | { |
---|
7771 | list resu,tempo; |
---|
7772 | for(ab=1;ab<=size(quprimary) div 2;ab++) |
---|
7773 | { |
---|
7774 | tempo=quprimary[2*ab-1],quprimary[2*ab], |
---|
7775 | absprimary[ab],abskeep[ab]; |
---|
7776 | resu[ab]=tempo; |
---|
7777 | } |
---|
7778 | quprimary=resu; |
---|
7779 | } |
---|
7780 | } |
---|
7781 | //--------------------------------------------------------------------------- |
---|
7782 | //back to the ring we started with |
---|
7783 | //the final result: primary |
---|
7784 | //--------------------------------------------------------------------------- |
---|
7785 | |
---|
7786 | setring @P; |
---|
7787 | option(set,op@P); |
---|
7788 | primary=imap(gnir,quprimary); |
---|
7789 | |
---|
7790 | if (intersectOption == "intersect") |
---|
7791 | { |
---|
7792 | return(list(primary, imap(gnir, ser))); |
---|
7793 | } |
---|
7794 | else |
---|
7795 | { |
---|
7796 | return(primary); |
---|
7797 | } |
---|
7798 | } |
---|
7799 | example |
---|
7800 | { "EXAMPLE:"; echo = 2; |
---|
7801 | ring r = 32003,(x,y,z),lp; |
---|
7802 | poly p = z2+1; |
---|
7803 | poly q = z4+2; |
---|
7804 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
7805 | list pr= newDecompStep(i); |
---|
7806 | pr; |
---|
7807 | testPrimary( pr, i); |
---|
7808 | } |
---|
7809 | |
---|
7810 | // This was part of proc decomp. |
---|
7811 | // In proc newDecompStep, used for the computation of the minimal associated primes, |
---|
7812 | // this part was separated as a soubrutine to make the code more clear. |
---|
7813 | // Also, since the reduction is performed twice in proc newDecompStep, it should use both times this routine. |
---|
7814 | // This is not yet implemented, since the reduction is not exactly the same and some changes should be made. |
---|
7815 | static proc newReduction(ideal @j, ideal ser, intvec @hilb, intvec @w, int jdim, int abspri, int @wr, list data) |
---|
7816 | { |
---|
7817 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
7818 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
7819 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
7820 | |
---|
7821 | |
---|
7822 | string @va; |
---|
7823 | def quotring; |
---|
7824 | intvec op; |
---|
7825 | intvec @vv; |
---|
7826 | def gnir = basering; |
---|
7827 | ideal isat=0; |
---|
7828 | int @n; |
---|
7829 | int @n1 = 0; |
---|
7830 | int @n2 = 0; |
---|
7831 | int @n3 = 0; |
---|
7832 | int homo = homog(@j); |
---|
7833 | int lauf; |
---|
7834 | int @k; |
---|
7835 | list fett; |
---|
7836 | int keepdi; |
---|
7837 | list collectprimary; |
---|
7838 | list lsau; |
---|
7839 | list lnew; |
---|
7840 | ideal @h; |
---|
7841 | |
---|
7842 | list indepInfo = data[1]; |
---|
7843 | list quprimary = list(); |
---|
7844 | |
---|
7845 | //if(abspri) |
---|
7846 | //{ |
---|
7847 | int ab; |
---|
7848 | list absprimarytmp,abskeeptmp; |
---|
7849 | list absprimary, abskeep; |
---|
7850 | //} |
---|
7851 | // Debug |
---|
7852 | dbprint(printlevel - voice, "newReduction, v2.0"); |
---|
7853 | |
---|
7854 | if((indepInfo[1]==varstr(basering))) // &&(@m==1) |
---|
7855 | //this is the good case, nothing to do, just to have the same notations |
---|
7856 | //change the ring |
---|
7857 | { |
---|
7858 | execute("ring gnir1 = ("+charstr(basering)+"),("+varstr(basering)+"),(" |
---|
7859 | +ordstr(basering)+");"); |
---|
7860 | ideal @j = fetch(gnir, @j); |
---|
7861 | attrib(@j,"isSB",1); |
---|
7862 | ideal ser = fetch(gnir, ser); |
---|
7863 | } |
---|
7864 | else |
---|
7865 | { |
---|
7866 | @va=string(maxideal(1)); |
---|
7867 | //Aenderung============== |
---|
7868 | //if(@m==1) |
---|
7869 | //{ |
---|
7870 | // @j=fetch(@P,i); |
---|
7871 | //} |
---|
7872 | //======================= |
---|
7873 | execute("ring gnir1 = ("+charstr(basering)+"),("+indepInfo[1]+"),(" |
---|
7874 | +indepInfo[2]+");"); |
---|
7875 | execute("map phi=gnir,"+@va+";"); |
---|
7876 | op=option(get); |
---|
7877 | option(redSB); |
---|
7878 | if(homo==1) |
---|
7879 | { |
---|
7880 | ideal @j=std(phi(@j),@hilb,@w); |
---|
7881 | } |
---|
7882 | else |
---|
7883 | { |
---|
7884 | ideal @j=groebner(phi(@j)); |
---|
7885 | } |
---|
7886 | ideal ser=phi(ser); |
---|
7887 | |
---|
7888 | option(set,op); |
---|
7889 | } |
---|
7890 | if((deg(@j[1])==0)||(dim(@j)<jdim)) |
---|
7891 | { |
---|
7892 | setring gnir; |
---|
7893 | break; |
---|
7894 | } |
---|
7895 | for (lauf=1;lauf<=size(@j);lauf++) |
---|
7896 | { |
---|
7897 | fett[lauf]=size(@j[lauf]); |
---|
7898 | } |
---|
7899 | //------------------------------------------------------------------------ |
---|
7900 | //we have now the following situation: |
---|
7901 | //j intersected with K[var(nnp+1),..,var(nva)] is zero so we may pass |
---|
7902 | //to this quotientring, j is their still a standardbasis, the |
---|
7903 | //leading coefficients of the polynomials there (polynomials in |
---|
7904 | //K[var(nnp+1),..,var(nva)]) are collected in the list h, |
---|
7905 | //we need their ggt, gh, because of the following: let |
---|
7906 | //(j:gh^n)=(j:gh^infinity) then j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
7907 | //intersected with K[var(1),...,var(nva)] is (j:gh^n) |
---|
7908 | //on the other hand j=(j,gh^n) intersected with (j:gh^n) |
---|
7909 | |
---|
7910 | //------------------------------------------------------------------------ |
---|
7911 | |
---|
7912 | //arrangement for quotientring K(var(nnp+1),..,var(nva))[..the rest..] and |
---|
7913 | //map phi:K[var(1),...,var(nva)] --->K(var(nnpr+1),..,var(nva))[..rest..] |
---|
7914 | //------------------------------------------------------------------------ |
---|
7915 | |
---|
7916 | quotring=prepareQuotientring(nvars(basering)-indepInfo[3],"lp"); |
---|
7917 | |
---|
7918 | //--------------------------------------------------------------------- |
---|
7919 | //we pass to the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
7920 | //--------------------------------------------------------------------- |
---|
7921 | |
---|
7922 | ideal @jj=lead(@j); //!! vorn vereinbaren |
---|
7923 | setring quotring; |
---|
7924 | |
---|
7925 | ideal @jj=imap(gnir1,@jj); |
---|
7926 | @vv=clearSBNeu(@jj,fett); //!! vorn vereinbaren |
---|
7927 | setring gnir1; |
---|
7928 | @k=size(@j); |
---|
7929 | for (lauf=1;lauf<=@k;lauf++) |
---|
7930 | { |
---|
7931 | if(@vv[lauf]==1) |
---|
7932 | { |
---|
7933 | @j[lauf]=0; |
---|
7934 | } |
---|
7935 | } |
---|
7936 | @j=simplify(@j,2); |
---|
7937 | setring quotring; |
---|
7938 | // @j considered in the quotientring |
---|
7939 | ideal @j=imap(gnir1,@j); |
---|
7940 | |
---|
7941 | ideal ser=imap(gnir1,ser); |
---|
7942 | |
---|
7943 | kill gnir1; |
---|
7944 | |
---|
7945 | //j is a standardbasis in the quotientring but usually not minimal |
---|
7946 | //here it becomes minimal |
---|
7947 | |
---|
7948 | attrib(@j,"isSB",1); |
---|
7949 | |
---|
7950 | //we need later ggt(h[1],...)=gh for saturation |
---|
7951 | ideal @h; |
---|
7952 | if(deg(@j[1])>0) |
---|
7953 | { |
---|
7954 | for(@n=1;@n<=size(@j);@n++) |
---|
7955 | { |
---|
7956 | @h[@n]=leadcoef(@j[@n]); |
---|
7957 | } |
---|
7958 | //the primary decomposition of j*K(var(nnp+1),..,var(nva))[..the rest..] |
---|
7959 | op=option(get); |
---|
7960 | option(redSB); |
---|
7961 | |
---|
7962 | int zeroMinAss = @wr; |
---|
7963 | if (@wr == 2) {zeroMinAss = 1;} |
---|
7964 | list uprimary= newZero_decomp(@j, ser, zeroMinAss); |
---|
7965 | |
---|
7966 | //HIER |
---|
7967 | if(abspri) |
---|
7968 | { |
---|
7969 | ideal II; |
---|
7970 | ideal jmap; |
---|
7971 | map sigma; |
---|
7972 | nn=nvars(basering); |
---|
7973 | map invsigma=basering,maxideal(1); |
---|
7974 | for(ab=1;ab<=size(uprimary) div 2;ab++) |
---|
7975 | { |
---|
7976 | II=uprimary[2*ab]; |
---|
7977 | attrib(II,"isSB",1); |
---|
7978 | if(deg(II[1])!=vdim(II)) |
---|
7979 | { |
---|
7980 | jmap=randomLast(50); |
---|
7981 | sigma=basering,jmap; |
---|
7982 | jmap[nn]=2*var(nn)-jmap[nn]; |
---|
7983 | invsigma=basering,jmap; |
---|
7984 | II=groebner(sigma(II)); |
---|
7985 | } |
---|
7986 | absprimarytmp[ab]= absFactorize(II[1],77); |
---|
7987 | II=var(nn); |
---|
7988 | abskeeptmp[ab]=string(invsigma(II)); |
---|
7989 | invsigma=basering,maxideal(1); |
---|
7990 | } |
---|
7991 | } |
---|
7992 | option(set,op); |
---|
7993 | } |
---|
7994 | else |
---|
7995 | { |
---|
7996 | list uprimary; |
---|
7997 | uprimary[1]=ideal(1); |
---|
7998 | uprimary[2]=ideal(1); |
---|
7999 | } |
---|
8000 | //we need the intersection of the ideals in the list quprimary with the |
---|
8001 | //polynomialring, i.e. let q=(f1,...,fr) in the quotientring such an ideal |
---|
8002 | //but fi polynomials, then the intersection of q with the polynomialring |
---|
8003 | //is the saturation of the ideal generated by f1,...,fr with respect to |
---|
8004 | //h which is the lcm of the leading coefficients of the fi considered in |
---|
8005 | //in the quotientring: this is coded in saturn |
---|
8006 | |
---|
8007 | list saturn; |
---|
8008 | ideal hpl; |
---|
8009 | |
---|
8010 | for(@n=1;@n<=size(uprimary);@n++) |
---|
8011 | { |
---|
8012 | uprimary[@n]=interred(uprimary[@n]); // temporary fix |
---|
8013 | hpl=0; |
---|
8014 | for(@n1=1;@n1<=size(uprimary[@n]);@n1++) |
---|
8015 | { |
---|
8016 | hpl=hpl,leadcoef(uprimary[@n][@n1]); |
---|
8017 | } |
---|
8018 | saturn[@n]=hpl; |
---|
8019 | } |
---|
8020 | |
---|
8021 | //-------------------------------------------------------------------- |
---|
8022 | //we leave the quotientring K(var(nnp+1),..,var(nva))[..the rest..] |
---|
8023 | //back to the polynomialring |
---|
8024 | //--------------------------------------------------------------------- |
---|
8025 | setring gnir; |
---|
8026 | |
---|
8027 | collectprimary=imap(quotring,uprimary); |
---|
8028 | lsau=imap(quotring,saturn); |
---|
8029 | @h=imap(quotring,@h); |
---|
8030 | |
---|
8031 | kill quotring; |
---|
8032 | |
---|
8033 | @n2=size(quprimary); |
---|
8034 | @n3=@n2; |
---|
8035 | |
---|
8036 | for(@n1=1;@n1<=size(collectprimary) div 2;@n1++) |
---|
8037 | { |
---|
8038 | if(deg(collectprimary[2*@n1][1])>0) |
---|
8039 | { |
---|
8040 | @n2++; |
---|
8041 | quprimary[@n2]=collectprimary[2*@n1-1]; |
---|
8042 | lnew[@n2]=lsau[2*@n1-1]; |
---|
8043 | @n2++; |
---|
8044 | lnew[@n2]=lsau[2*@n1]; |
---|
8045 | quprimary[@n2]=collectprimary[2*@n1]; |
---|
8046 | if(abspri) |
---|
8047 | { |
---|
8048 | absprimary[@n2 div 2]=absprimarytmp[@n1]; |
---|
8049 | abskeep[@n2 div 2]=abskeeptmp[@n1]; |
---|
8050 | } |
---|
8051 | } |
---|
8052 | } |
---|
8053 | |
---|
8054 | //here the intersection with the polynomialring |
---|
8055 | //mentioned above is really computed |
---|
8056 | for(@n=@n3 div 2+1;@n<=@n2 div 2;@n++) |
---|
8057 | { |
---|
8058 | if(specialIdealsEqual(quprimary[2*@n-1],quprimary[2*@n])) |
---|
8059 | { |
---|
8060 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
8061 | quprimary[2*@n]=quprimary[2*@n-1]; |
---|
8062 | } |
---|
8063 | else |
---|
8064 | { |
---|
8065 | if(@wr==0) |
---|
8066 | { |
---|
8067 | quprimary[2*@n-1]=sat2(quprimary[2*@n-1],lnew[2*@n-1])[1]; |
---|
8068 | } |
---|
8069 | quprimary[2*@n]=sat2(quprimary[2*@n],lnew[2*@n])[1]; |
---|
8070 | } |
---|
8071 | } |
---|
8072 | |
---|
8073 | return(quprimary, absprimary, abskeep, ser, @h); |
---|
8074 | } |
---|
8075 | |
---|
8076 | |
---|
8077 | //////////////////////////////////////////////////////////////////////////// |
---|
8078 | |
---|
8079 | |
---|
8080 | |
---|
8081 | |
---|
8082 | /////////////////////////////////////////////////////////////////////////////// |
---|
8083 | // Based on minAssGTZ |
---|
8084 | |
---|
8085 | proc minAss(ideal i,list #) |
---|
8086 | "USAGE: minAss(I[, l]); i ideal, l list (optional) of parameters, same as minAssGTZ |
---|
8087 | RETURN: a list, the minimal associated prime ideals of I. |
---|
8088 | NOTE: Designed for characteristic 0, works also in char k > 0 based |
---|
8089 | on an algorithm of Yokoyama |
---|
8090 | EXAMPLE: example minAss; shows an example |
---|
8091 | " |
---|
8092 | { |
---|
8093 | return(minAssGTZ(i,#)); |
---|
8094 | } |
---|
8095 | example |
---|
8096 | { "EXAMPLE:"; echo = 2; |
---|
8097 | ring r = 0, (x, y, z), dp; |
---|
8098 | poly p = z2 + 1; |
---|
8099 | poly q = z3 + 2; |
---|
8100 | ideal i = p * q^2, y - z2; |
---|
8101 | list pr = minAss(i); |
---|
8102 | pr; |
---|
8103 | } |
---|
8104 | |
---|
8105 | |
---|
8106 | /////////////////////////////////////////////////////////////////////////////// |
---|
8107 | // |
---|
8108 | // Computes the minimal associated primes of I via Laplagne algorithm, |
---|
8109 | // using primary decomposition in the zero dimensional case. |
---|
8110 | // For reduction to the zerodimensional case, it uses the procedure |
---|
8111 | // decomp, with some modifications to avoid the recursion. |
---|
8112 | // |
---|
8113 | |
---|
8114 | static proc minAssSL(ideal I) |
---|
8115 | // Input = I, ideal |
---|
8116 | // Output = primaryDec where primaryDec is the list of the minimal |
---|
8117 | // associated primes and the primary components corresponding to these primes. |
---|
8118 | { |
---|
8119 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
8120 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
8121 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
8122 | |
---|
8123 | ideal P = 1; |
---|
8124 | list pd = list(); |
---|
8125 | int k; |
---|
8126 | int stop = 0; |
---|
8127 | list primaryDec = list(); |
---|
8128 | |
---|
8129 | while (stop == 0) |
---|
8130 | { |
---|
8131 | // Debug |
---|
8132 | dbprint(printlevel - voice, "// We call minAssSLIteration to find new prime ideals!"); |
---|
8133 | pd = minAssSLIteration(I, P); |
---|
8134 | // Debug |
---|
8135 | dbprint(printlevel - voice, "// Output of minAssSLIteration:"); |
---|
8136 | dbprint(printlevel - voice, pd); |
---|
8137 | if (size(pd[1]) > 0) |
---|
8138 | { |
---|
8139 | primaryDec = primaryDec + pd[1]; |
---|
8140 | // Debug |
---|
8141 | dbprint(printlevel - voice, "// We intersect the prime ideals obtained."); |
---|
8142 | P = intersect(P, pd[2]); |
---|
8143 | // Debug |
---|
8144 | dbprint(printlevel - voice, "// Intersection finished."); |
---|
8145 | } |
---|
8146 | else |
---|
8147 | { |
---|
8148 | stop = 1; |
---|
8149 | } |
---|
8150 | } |
---|
8151 | |
---|
8152 | // Returns only the primary components, not the radical. |
---|
8153 | return(primaryDec); |
---|
8154 | } |
---|
8155 | |
---|
8156 | /////////////////////////////////////////////////////////////////////////////// |
---|
8157 | // Given an ideal I and an ideal P (intersection of some minimal prime ideals |
---|
8158 | // associated to I), it calculates new minimal prime ideals associated to I |
---|
8159 | // which were not used to calculate P. |
---|
8160 | // This version uses Primary Decomposition in the zerodimensional case. |
---|
8161 | static proc minAssSLIteration(ideal I, ideal P); |
---|
8162 | { |
---|
8163 | ASSUME(1, hasFieldCoefficient(basering) ); |
---|
8164 | ASSUME(1, not isQuotientRing(basering) ) ; |
---|
8165 | ASSUME(1, hasGlobalOrdering(basering) ) ; |
---|
8166 | |
---|
8167 | int k = 1; |
---|
8168 | int good = 0; |
---|
8169 | list primaryDec = list(); |
---|
8170 | // Debug |
---|
8171 | dbprint (printlevel-voice, "// We search for an element in P - sqrt(I)."); |
---|
8172 | while ((k <= size(P)) and (good == 0)) |
---|
8173 | { |
---|
8174 | good = 1 - rad_con(P[k], I); |
---|
8175 | k++; |
---|
8176 | } |
---|
8177 | k--; |
---|
8178 | if (good == 0) |
---|
8179 | { |
---|
8180 | // Debug |
---|
8181 | dbprint (printlevel - voice, "// No element was found, P = sqrt(I)."); |
---|
8182 | return (list(primaryDec, ideal(0))); |
---|
8183 | } |
---|
8184 | // Debug |
---|
8185 | dbprint (printlevel - voice, "// We found h = ", P[k]); |
---|
8186 | dbprint (printlevel - voice, "// We calculate the saturation of I with respect to the element just founded."); |
---|
8187 | ideal J = sat(I, P[k])[1]; |
---|
8188 | |
---|
8189 | // Uses decomp from primdec, modified to avoid the recursion. |
---|
8190 | // Debug |
---|
8191 | dbprint(printlevel - voice, "// We do the reduction to the zerodimensional case, via decomp."); |
---|
8192 | |
---|
8193 | primaryDec = newDecompStep(J, "oneIndep", "intersect", 2); |
---|
8194 | // Debug |
---|
8195 | dbprint(printlevel - voice, "// Proc decomp has found", size(primaryDec) div 2, "new primary components."); |
---|
8196 | |
---|
8197 | return(primaryDec); |
---|
8198 | } |
---|
8199 | |
---|
8200 | |
---|
8201 | |
---|
8202 | /////////////////////////////////////////////////////////////////////////////////// |
---|
8203 | // Based on maxIndependSet |
---|
8204 | // Added list # as parameter |
---|
8205 | // If the first element of # is 0, the output is only 1 max indep set. |
---|
8206 | // If no list is specified or #[1] = 1, the output is all the max indep set of the |
---|
8207 | // leading terms ideal. This is the original output of maxIndependSet |
---|
8208 | |
---|
8209 | proc newMaxIndependSetLp(ideal j, list #) |
---|
8210 | "USAGE: newMaxIndependentSetLp(i); i ideal (returns all maximal independent sets of the corresponding leading terms ideal) |
---|
8211 | newMaxIndependentSetLp(i, 0); i ideal (returns only one maximal independent set) |
---|
8212 | RETURN: list = #1. new varstring with the maximal independent set at the end, |
---|
8213 | #2. ordstring with the lp ordering, |
---|
8214 | #3. the number of independent variables |
---|
8215 | NOTE: |
---|
8216 | EXAMPLE: example newMaxIndependentSetLp; shows an example |
---|
8217 | " |
---|
8218 | { |
---|
8219 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
8220 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
8221 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
8222 | |
---|
8223 | int n, k, di; |
---|
8224 | list resu, hilf; |
---|
8225 | string var1, var2; |
---|
8226 | list v = indepSet(j, 0); |
---|
8227 | |
---|
8228 | // SL 2006.04.21 1 Lines modified to use only one independent Set |
---|
8229 | string indepOption; |
---|
8230 | if (size(#) > 0) |
---|
8231 | { |
---|
8232 | indepOption = #[1]; |
---|
8233 | } |
---|
8234 | else |
---|
8235 | { |
---|
8236 | indepOption = "allIndep"; |
---|
8237 | } |
---|
8238 | |
---|
8239 | int nMax; |
---|
8240 | if (indepOption == "allIndep") |
---|
8241 | { |
---|
8242 | nMax = size(v); |
---|
8243 | } |
---|
8244 | else |
---|
8245 | { |
---|
8246 | nMax = 1; |
---|
8247 | } |
---|
8248 | |
---|
8249 | for(n = 1; n <= nMax; n++) |
---|
8250 | // SL 2006.04.21 2 |
---|
8251 | { |
---|
8252 | di = 0; |
---|
8253 | var1 = ""; |
---|
8254 | var2 = ""; |
---|
8255 | for(k = 1; k <= size(v[n]); k++) |
---|
8256 | { |
---|
8257 | if(v[n][k] != 0) |
---|
8258 | { |
---|
8259 | di++; |
---|
8260 | var2 = var2 + "var(" + string(k) + "), "; |
---|
8261 | } |
---|
8262 | else |
---|
8263 | { |
---|
8264 | var1 = var1 + "var(" + string(k) + "), "; |
---|
8265 | } |
---|
8266 | } |
---|
8267 | if(di > 0) |
---|
8268 | { |
---|
8269 | var1 = var1 + var2; |
---|
8270 | var1 = var1[1..size(var1) - 2]; // The "- 2" removes the trailer comma |
---|
8271 | hilf[1] = var1; |
---|
8272 | // SL 2006.21.04 1 The order is now block dp instead of lp |
---|
8273 | //hilf[2] = "dp(" + string(nvars(basering) - di) + "), dp(" + string(di) + ")"; |
---|
8274 | // SL 2006.21.04 2 |
---|
8275 | // For decomp, lp ordering is needed. Nothing is changed. |
---|
8276 | hilf[2] = "lp"; |
---|
8277 | hilf[3] = di; |
---|
8278 | resu[n] = hilf; |
---|
8279 | } |
---|
8280 | else |
---|
8281 | { |
---|
8282 | resu[n] = varstr(basering), ordstr(basering), 0; |
---|
8283 | } |
---|
8284 | } |
---|
8285 | return(resu); |
---|
8286 | } |
---|
8287 | example |
---|
8288 | { "EXAMPLE:"; echo = 2; |
---|
8289 | ring s1 = (0, x, y), (a, b, c, d, e, f, g), lp; |
---|
8290 | ideal i = ea - fbg, fa + be, ec - fdg, fc + de; |
---|
8291 | i = std(i); |
---|
8292 | list l = newMaxIndependSetLp(i); |
---|
8293 | l; |
---|
8294 | i = i, g; |
---|
8295 | l = newMaxIndependSetLp(i); |
---|
8296 | l; |
---|
8297 | |
---|
8298 | ring s = 0, (x, y, z), lp; |
---|
8299 | ideal i = z, yx; |
---|
8300 | list l = newMaxIndependSetLp(i); |
---|
8301 | l; |
---|
8302 | } |
---|
8303 | |
---|
8304 | |
---|
8305 | /////////////////////////////////////////////////////////////////////////////// |
---|
8306 | |
---|
8307 | proc newZero_decomp (ideal j, ideal ser, int @wr, list #) |
---|
8308 | "USAGE: newZero_decomp(j,ser,@wr); j,ser ideals, @wr=0 or 1 |
---|
8309 | (@wr=0 for primary decomposition, @wr=1 for computation of associated |
---|
8310 | primes) |
---|
8311 | if #[1] = "nest", then #[2] indicates the nest level (number of recursive calls) |
---|
8312 | When the nest level is high it indicates that the computation is difficult, |
---|
8313 | and different methods are applied. |
---|
8314 | RETURN: list = list of primary ideals and their radicals (at even positions |
---|
8315 | in the list) if the input is zero-dimensional and a standardbases |
---|
8316 | with respect to lex-ordering |
---|
8317 | If ser!=(0) and ser is contained in j or if j is not zero-dimen- |
---|
8318 | sional then ideal(1),ideal(1) is returned |
---|
8319 | NOTE: Algorithm of Gianni/Trager/Zacharias |
---|
8320 | EXAMPLE: example newZero_decomp; shows an example |
---|
8321 | " |
---|
8322 | { |
---|
8323 | ASSUME(0, hasFieldCoefficient(basering) ); |
---|
8324 | ASSUME(0, not isQuotientRing(basering) ) ; |
---|
8325 | ASSUME(0, hasGlobalOrdering(basering) ) ; |
---|
8326 | |
---|
8327 | def @P = basering; |
---|
8328 | int uytrewq; |
---|
8329 | int nva = nvars(basering); |
---|
8330 | int @k,@s,@n,@k1,zz; |
---|
8331 | list primary,lres0,lres1,act,@lh,@wh; |
---|
8332 | map phi,psi,phi1,psi1; |
---|
8333 | ideal jmap,jmap1,jmap2,helpprim,@qh,@qht,ser1; |
---|
8334 | intvec @vh,@hilb; |
---|
8335 | string @ri; |
---|
8336 | poly @f; |
---|
8337 | |
---|
8338 | // Debug |
---|
8339 | dbprint(printlevel - voice, "proc newZero_decomp"); |
---|
8340 | |
---|
8341 | if (dim(j)>0) |
---|
8342 | { |
---|
8343 | primary[1]=ideal(1); |
---|
8344 | primary[2]=ideal(1); |
---|
8345 | return(primary); |
---|
8346 | } |
---|
8347 | j=interred(j); |
---|
8348 | |
---|
8349 | attrib(j,"isSB",1); |
---|
8350 | |
---|
8351 | int nestLevel = 0; |
---|
8352 | if (size(#) > 0) |
---|
8353 | { |
---|
8354 | if (typeof(#[1]) == "string") |
---|
8355 | { |
---|
8356 | if (#[1] == "nest") |
---|
8357 | { |
---|
8358 | nestLevel = #[2]; |
---|
8359 | } |
---|
8360 | # = list(); |
---|
8361 | } |
---|
8362 | } |
---|
8363 | |
---|
8364 | if(vdim(j)==deg(j[1])) |
---|
8365 | { |
---|
8366 | act=factor(j[1]); |
---|
8367 | for(@k=1;@k<=size(act[1]);@k++) |
---|
8368 | { |
---|
8369 | @qh=j; |
---|
8370 | if(@wr==0) |
---|
8371 | { |
---|
8372 | @qh[1]=act[1][@k]^act[2][@k]; |
---|
8373 | } |
---|
8374 | else |
---|
8375 | { |
---|
8376 | @qh[1]=act[1][@k]; |
---|
8377 | } |
---|
8378 | primary[2*@k-1]=interred(@qh); |
---|
8379 | @qh=j; |
---|
8380 | @qh[1]=act[1][@k]; |
---|
8381 | primary[2*@k]=interred(@qh); |
---|
8382 | attrib( primary[2*@k-1],"isSB",1); |
---|
8383 | |
---|
8384 | if((size(ser)>0)&&(size(reduce(ser,primary[2*@k-1],1))==0)) |
---|
8385 | { |
---|
8386 | primary[2*@k-1]=ideal(1); |
---|
8387 | primary[2*@k]=ideal(1); |
---|
8388 | } |
---|
8389 | } |
---|
8390 | return(primary); |
---|
8391 | } |
---|
8392 | |
---|
8393 | if(homog(j)==1) |
---|
8394 | { |
---|
8395 | primary[1]=j; |
---|
8396 | if((size(ser)>0)&&(size(reduce(ser,j,1))==0)) |
---|
8397 | { |
---|
8398 | primary[1]=ideal(1); |
---|
8399 | primary[2]=ideal(1); |
---|
8400 | return(primary); |
---|
8401 | } |
---|
8402 | if(dim(j)==-1) |
---|
8403 | { |
---|
8404 | primary[1]=ideal(1); |
---|
8405 | primary[2]=ideal(1); |
---|
8406 | } |
---|
8407 | else |
---|
8408 | { |
---|
8409 | primary[2]=maxideal(1); |
---|
8410 | } |
---|
8411 | return(primary); |
---|
8412 | } |
---|
8413 | |
---|
8414 | //the first element in the standardbase is factorized |
---|
8415 | if(deg(j[1])>0) |
---|
8416 | { |
---|
8417 | act=factor(j[1]); |
---|
8418 | testFactor(act,j[1]); |
---|
8419 | } |
---|
8420 | else |
---|
8421 | { |
---|
8422 | primary[1]=ideal(1); |
---|
8423 | primary[2]=ideal(1); |
---|
8424 | return(primary); |
---|
8425 | } |
---|
8426 | |
---|
8427 | //with the factors new ideals (hopefully the primary decomposition) |
---|
8428 | //are created |
---|
8429 | if(size(act[1])>1) |
---|
8430 | { |
---|
8431 | if(size(#)>1) |
---|
8432 | { |
---|
8433 | primary[1]=ideal(1); |
---|
8434 | primary[2]=ideal(1); |
---|
8435 | primary[3]=ideal(1); |
---|
8436 | primary[4]=ideal(1); |
---|
8437 | return(primary); |
---|
8438 | } |
---|
8439 | for(@k=1;@k<=size(act[1]);@k++) |
---|
8440 | { |
---|
8441 | if(@wr==0) |
---|
8442 | { |
---|
8443 | primary[2*@k-1]=std(j,act[1][@k]^act[2][@k]); |
---|
8444 | } |
---|
8445 | else |
---|
8446 | { |
---|
8447 | primary[2*@k-1]=std(j,act[1][@k]); |
---|
8448 | } |
---|
8449 | if((act[2][@k]==1)&&(vdim(primary[2*@k-1])==deg(act[1][@k]))) |
---|
8450 | { |
---|
8451 | primary[2*@k] = primary[2*@k-1]; |
---|
8452 | } |
---|
8453 | else |
---|
8454 | { |
---|
8455 | primary[2*@k] = primaryTest(primary[2*@k-1],act[1][@k]); |
---|
8456 | } |
---|
8457 | } |
---|
8458 | } |
---|
8459 | else |
---|
8460 | { |
---|
8461 | primary[1]=j; |
---|
8462 | if((size(#)>0)&&(act[2][1]>1)) |
---|
8463 | { |
---|
8464 | act[2]=1; |
---|
8465 | primary[1]=std(primary[1],act[1][1]); |
---|
8466 | } |
---|
8467 | if(@wr!=0) |
---|
8468 | { |
---|
8469 | primary[1]=std(j,act[1][1]); |
---|
8470 | } |
---|
8471 | if((act[2][1]==1)&&(vdim(primary[1])==deg(act[1][1]))) |
---|
8472 | { |
---|
8473 | primary[2]=primary[1]; |
---|
8474 | } |
---|
8475 | else |
---|
8476 | { |
---|
8477 | primary[2]=primaryTest(primary[1],act[1][1]); |
---|
8478 | } |
---|
8479 | } |
---|
8480 | |
---|
8481 | if(size(#)==0) |
---|
8482 | { |
---|
8483 | primary=splitPrimary(primary,ser,@wr,act); |
---|
8484 | } |
---|
8485 | |
---|
8486 | if((voice>=6)&&(char(basering)<=181)) |
---|
8487 | { |
---|
8488 | primary=splitCharp(primary); |
---|
8489 | } |
---|
8490 | |
---|
8491 | if((@wr==2)&&(npars(basering)>0)&&(voice>=6)&&(char(basering)>0)) |
---|
8492 | { |
---|
8493 | //the prime decomposition of Yokoyama in characteristic p |
---|
8494 | list ke,ek; |
---|
8495 | @k=0; |
---|
8496 | while(@k<size(primary) div 2) |
---|
8497 | { |
---|
8498 | @k++; |
---|
8499 | if(size(primary[2*@k])==0) |
---|
8500 | { |
---|
8501 | ek=insepDecomp(primary[2*@k-1]); |
---|
8502 | primary=delete(primary,2*@k); |
---|
8503 | primary=delete(primary,2*@k-1); |
---|
8504 | @k--; |
---|
8505 | } |
---|
8506 | ke=ke+ek; |
---|
8507 | } |
---|
8508 | for(@k=1;@k<=size(ke);@k++) |
---|
8509 | { |
---|
8510 | primary[size(primary)+1]=ke[@k]; |
---|
8511 | primary[size(primary)+1]=ke[@k]; |
---|
8512 | } |
---|
8513 | } |
---|
8514 | |
---|
8515 | if(nestLevel > 1){primary=extF(primary);} |
---|
8516 | |
---|
8517 | //test whether all ideals in the decomposition are primary and |
---|
8518 | //in general position |
---|
8519 | //if not after a random coordinate transformation of the last |
---|
8520 | //variable the corresponding ideal is decomposed again. |
---|
8521 | if((npars(basering)>0)&&(nestLevel > 1)) |
---|
8522 | { |
---|
8523 | poly randp; |
---|
8524 | for(zz=1;zz<nvars(basering);zz++) |
---|
8525 | { |
---|
8526 | randp=randp |
---|
8527 | +(random(0,5)*par(1)^2+random(0,5)*par(1)+random(0,5))*var(zz); |
---|
8528 | } |
---|
8529 | randp=randp+var(nvars(basering)); |
---|
8530 | } |
---|
8531 | @k=0; |
---|
8532 | while(@k<(size(primary) div 2)) |
---|
8533 | { |
---|
8534 | @k++; |
---|
8535 | if (size(primary[2*@k])==0) |
---|
8536 | { |
---|
8537 | for(zz=1;zz<size(primary[2*@k-1])-1;zz++) |
---|
8538 | { |
---|
8539 | attrib(primary[2*@k-1],"isSB",1); |
---|
8540 | if(vdim(primary[2*@k-1])==deg(primary[2*@k-1][zz])) |
---|
8541 | { |
---|
8542 | primary[2*@k]=primary[2*@k-1]; |
---|
8543 | } |
---|
8544 | } |
---|
8545 | } |
---|
8546 | } |
---|
8547 | |
---|
8548 | @k=0; |
---|
8549 | ideal keep; |
---|
8550 | while(@k<(size(primary) div 2)) |
---|
8551 | { |
---|
8552 | @k++; |
---|
8553 | if (size(primary[2*@k])==0) |
---|
8554 | { |
---|
8555 | jmap=randomLast(100); |
---|
8556 | jmap1=maxideal(1); |
---|
8557 | jmap2=maxideal(1); |
---|
8558 | @qht=primary[2*@k-1]; |
---|
8559 | if((npars(basering)>0)&&(nestLevel > 1)) |
---|
8560 | { |
---|
8561 | jmap[size(jmap)]=randp; |
---|
8562 | } |
---|
8563 | |
---|
8564 | for(@n=2;@n<=size(primary[2*@k-1]);@n++) |
---|
8565 | { |
---|
8566 | if(deg(lead(primary[2*@k-1][@n]))==1) |
---|
8567 | { |
---|
8568 | for(zz=1;zz<=nva;zz++) |
---|
8569 | { |
---|
8570 | if(lead(primary[2*@k-1][@n])/var(zz)!=0) |
---|
8571 | { |
---|
8572 | jmap1[zz]=-1/leadcoef(primary[2*@k-1][@n])*primary[2*@k-1][@n] |
---|
8573 | +2/leadcoef(primary[2*@k-1][@n])*lead(primary[2*@k-1][@n]); |
---|
8574 | jmap2[zz]=primary[2*@k-1][@n]; |
---|
8575 | @qht[@n]=var(zz); |
---|
8576 | } |
---|
8577 | } |
---|
8578 | jmap[nva]=subst(jmap[nva],lead(primary[2*@k-1][@n]),0); |
---|
8579 | } |
---|
8580 | } |
---|
8581 | if(size(subst(jmap[nva],var(1),0)-var(nva))!=0) |
---|
8582 | { |
---|
8583 | // jmap[nva]=subst(jmap[nva],var(1),0); |
---|
8584 | //hier geaendert +untersuchen!!!!!!!!!!!!!! |
---|
8585 | } |
---|
8586 | phi1=@P,jmap1; |
---|
8587 | phi=@P,jmap; |
---|
8588 | for(@n=1;@n<=nva;@n++) |
---|
8589 | { |
---|
8590 | jmap[@n]=-(jmap[@n]-2*var(@n)); |
---|
8591 | } |
---|
8592 | psi=@P,jmap; |
---|
8593 | psi1=@P,jmap2; |
---|
8594 | @qh=phi(@qht); |
---|
8595 | |
---|
8596 | //=================== the new part ============================ |
---|
8597 | |
---|
8598 | if (npars(basering)>1) { @qh=groebner(@qh,"par2var"); } |
---|
8599 | else { @qh=groebner(@qh); } |
---|
8600 | |
---|
8601 | //============================================================= |
---|
8602 | // if(npars(@P)>0) |
---|
8603 | // { |
---|
8604 | // @ri= "ring @Phelp =" |
---|
8605 | // +string(char(@P))+", |
---|
8606 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
8607 | // } |
---|
8608 | // else |
---|
8609 | // { |
---|
8610 | // @ri= "ring @Phelp =" |
---|
8611 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
8612 | // } |
---|
8613 | // execute(@ri); |
---|
8614 | // ideal @qh=homog(imap(@P,@qht),@t); |
---|
8615 | // |
---|
8616 | // ideal @qh1=std(@qh); |
---|
8617 | // @hilb=hilb(@qh1,1); |
---|
8618 | // @ri= "ring @Phelp1 =" |
---|
8619 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
8620 | // execute(@ri); |
---|
8621 | // ideal @qh=homog(imap(@P,@qh),@t); |
---|
8622 | // kill @Phelp; |
---|
8623 | // @qh=std(@qh,@hilb); |
---|
8624 | // @qh=subst(@qh,@t,1); |
---|
8625 | // setring @P; |
---|
8626 | // @qh=imap(@Phelp1,@qh); |
---|
8627 | // kill @Phelp1; |
---|
8628 | // @qh=clearSB(@qh); |
---|
8629 | // attrib(@qh,"isSB",1); |
---|
8630 | //============================================================= |
---|
8631 | |
---|
8632 | ser1=phi1(ser); |
---|
8633 | @lh=newZero_decomp (@qh,phi(ser1),@wr, list("nest", nestLevel + 1)); |
---|
8634 | |
---|
8635 | kill lres0; |
---|
8636 | list lres0; |
---|
8637 | if(size(@lh)==2) |
---|
8638 | { |
---|
8639 | helpprim=@lh[2]; |
---|
8640 | lres0[1]=primary[2*@k-1]; |
---|
8641 | attrib(lres0[1],"isSB",1); |
---|
8642 | ser1=psi(helpprim); |
---|
8643 | lres0[2]=psi1(ser1); |
---|
8644 | if(size(reduce(lres0[2],lres0[1],1))==0) |
---|
8645 | { |
---|
8646 | primary[2*@k]=primary[2*@k-1]; |
---|
8647 | continue; |
---|
8648 | } |
---|
8649 | } |
---|
8650 | else |
---|
8651 | { |
---|
8652 | lres1=psi(@lh); |
---|
8653 | lres0=psi1(lres1); |
---|
8654 | } |
---|
8655 | |
---|
8656 | //=================== the new part ============================ |
---|
8657 | |
---|
8658 | primary=delete(primary,2*@k-1); |
---|
8659 | primary=delete(primary,2*@k-1); |
---|
8660 | @k--; |
---|
8661 | if(size(lres0)==2) |
---|
8662 | { |
---|
8663 | if (npars(basering)>1) { lres0[2]=groebner(lres0[2],"par2var"); } |
---|
8664 | else { lres0[2]=groebner(lres0[2]); } |
---|
8665 | } |
---|
8666 | else |
---|
8667 | { |
---|
8668 | for(@n=1;@n<=size(lres0) div 2;@n++) |
---|
8669 | { |
---|
8670 | if(specialIdealsEqual(lres0[2*@n-1],lres0[2*@n])==1) |
---|
8671 | { |
---|
8672 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
8673 | lres0[2*@n]=lres0[2*@n-1]; |
---|
8674 | attrib(lres0[2*@n],"isSB",1); |
---|
8675 | } |
---|
8676 | else |
---|
8677 | { |
---|
8678 | lres0[2*@n-1]=groebner(lres0[2*@n-1]); |
---|
8679 | lres0[2*@n]=groebner(lres0[2*@n]); |
---|
8680 | } |
---|
8681 | } |
---|
8682 | } |
---|
8683 | primary=primary+lres0; |
---|
8684 | |
---|
8685 | //============================================================= |
---|
8686 | // if(npars(@P)>0) |
---|
8687 | // { |
---|
8688 | // @ri= "ring @Phelp =" |
---|
8689 | // +string(char(@P))+", |
---|
8690 | // ("+varstr(@P)+","+parstr(@P)+",@t),(C,dp);"; |
---|
8691 | // } |
---|
8692 | // else |
---|
8693 | // { |
---|
8694 | // @ri= "ring @Phelp =" |
---|
8695 | // +string(char(@P))+",("+varstr(@P)+",@t),(C,dp);"; |
---|
8696 | // } |
---|
8697 | // execute(@ri); |
---|
8698 | // list @lvec; |
---|
8699 | // list @lr=imap(@P,lres0); |
---|
8700 | // ideal @lr1; |
---|
8701 | // |
---|
8702 | // if(size(@lr)==2) |
---|
8703 | // { |
---|
8704 | // @lr[2]=homog(@lr[2],@t); |
---|
8705 | // @lr1=std(@lr[2]); |
---|
8706 | // @lvec[2]=hilb(@lr1,1); |
---|
8707 | // } |
---|
8708 | // else |
---|
8709 | // { |
---|
8710 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
8711 | // { |
---|
8712 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
8713 | // { |
---|
8714 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
8715 | // @lr1=std(@lr[2*@n-1]); |
---|
8716 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
8717 | // @lvec[2*@n]=@lvec[2*@n-1]; |
---|
8718 | // } |
---|
8719 | // else |
---|
8720 | // { |
---|
8721 | // @lr[2*@n-1]=homog(@lr[2*@n-1],@t); |
---|
8722 | // @lr1=std(@lr[2*@n-1]); |
---|
8723 | // @lvec[2*@n-1]=hilb(@lr1,1); |
---|
8724 | // @lr[2*@n]=homog(@lr[2*@n],@t); |
---|
8725 | // @lr1=std(@lr[2*@n]); |
---|
8726 | // @lvec[2*@n]=hilb(@lr1,1); |
---|
8727 | // |
---|
8728 | // } |
---|
8729 | // } |
---|
8730 | // } |
---|
8731 | // @ri= "ring @Phelp1 =" |
---|
8732 | // +string(char(@P))+",("+varstr(@Phelp)+"),(C,lp);"; |
---|
8733 | // execute(@ri); |
---|
8734 | // list @lr=imap(@Phelp,@lr); |
---|
8735 | // |
---|
8736 | // kill @Phelp; |
---|
8737 | // if(size(@lr)==2) |
---|
8738 | // { |
---|
8739 | // @lr[2]=std(@lr[2],@lvec[2]); |
---|
8740 | // @lr[2]=subst(@lr[2],@t,1); |
---|
8741 | // |
---|
8742 | // } |
---|
8743 | // else |
---|
8744 | // { |
---|
8745 | // for(@n=1;@n<=size(@lr) div 2;@n++) |
---|
8746 | // { |
---|
8747 | // if(specialIdealsEqual(@lr[2*@n-1],@lr[2*@n])==1) |
---|
8748 | // { |
---|
8749 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
8750 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
8751 | // @lr[2*@n]=@lr[2*@n-1]; |
---|
8752 | // attrib(@lr[2*@n],"isSB",1); |
---|
8753 | // } |
---|
8754 | // else |
---|
8755 | // { |
---|
8756 | // @lr[2*@n-1]=std(@lr[2*@n-1],@lvec[2*@n-1]); |
---|
8757 | // @lr[2*@n-1]=subst(@lr[2*@n-1],@t,1); |
---|
8758 | // @lr[2*@n]=std(@lr[2*@n],@lvec[2*@n]); |
---|
8759 | // @lr[2*@n]=subst(@lr[2*@n],@t,1); |
---|
8760 | // } |
---|
8761 | // } |
---|
8762 | // } |
---|
8763 | // kill @lvec; |
---|
8764 | // setring @P; |
---|
8765 | // lres0=imap(@Phelp1,@lr); |
---|
8766 | // kill @Phelp1; |
---|
8767 | // for(@n=1;@n<=size(lres0);@n++) |
---|
8768 | // { |
---|
8769 | // lres0[@n]=clearSB(lres0[@n]); |
---|
8770 | // attrib(lres0[@n],"isSB",1); |
---|
8771 | // } |
---|
8772 | // |
---|
8773 | // primary[2*@k-1]=lres0[1]; |
---|
8774 | // primary[2*@k]=lres0[2]; |
---|
8775 | // @s=size(primary) div 2; |
---|
8776 | // for(@n=1;@n<=size(lres0) div 2-1;@n++) |
---|
8777 | // { |
---|
8778 | // primary[2*@s+2*@n-1]=lres0[2*@n+1]; |
---|
8779 | // primary[2*@s+2*@n]=lres0[2*@n+2]; |
---|
8780 | // } |
---|
8781 | // @k--; |
---|
8782 | //============================================================= |
---|
8783 | } |
---|
8784 | } |
---|
8785 | return(primary); |
---|
8786 | } |
---|
8787 | example |
---|
8788 | { "EXAMPLE:"; echo = 2; |
---|
8789 | ring r = 0,(x,y,z),lp; |
---|
8790 | poly p = z2+1; |
---|
8791 | poly q = z4+2; |
---|
8792 | ideal i = p^2*q^3,(y-z3)^3,(x-yz+z4)^4; |
---|
8793 | i=std(i); |
---|
8794 | list pr= newZero_decomp(i,ideal(0),0); |
---|
8795 | pr; |
---|
8796 | } |
---|
8797 | /////////////////////////////////////////////////////////////////////////////// |
---|
8798 | |
---|
8799 | //////////////////////////////////////////////////////////////////////////// |
---|
8800 | /* |
---|
8801 | //Beispiele Wenk-Dipl (in ~/Texfiles/Diplom/Wenk/Examples/) |
---|
8802 | //Zeiten: Singular/Singular/Singular -r123456789 -v :wilde13 (PentiumPro200) |
---|
8803 | //Singular for HPUX-9 version 1-3-8 (2000060214) Jun 2 2000 15:31:26 |
---|
8804 | //(wilde13) |
---|
8805 | |
---|
8806 | //1. vdim=20, 3 Komponenten |
---|
8807 | //zerodec-time:2(1) (matrix:1 charpoly:0 factor:1) |
---|
8808 | //primdecGTZ-time: 1(0) |
---|
8809 | ring rs= 0,(a,b,c),dp; |
---|
8810 | poly f1= a^2*b*c + a*b^2*c + a*b*c^2 + a*b*c + a*b + a*c + b*c; |
---|
8811 | poly f2= a^2*b^2*c + a*b^2*c^2 + a^2*b*c + a*b*c + b*c + a + c; |
---|
8812 | poly f3= a^2*b^2*c^2 + a^2*b^2*c + a*b^2*c + a*b*c + a*c + c + 1; |
---|
8813 | ideal gls=f1,f2,f3; |
---|
8814 | int time=timer; |
---|
8815 | printlevel =1; |
---|
8816 | time=timer; list pr1=zerodec(gls); timer-time;size(pr1); |
---|
8817 | time=timer; list pr =primdecGTZ(gls); timer-time;size(pr); |
---|
8818 | time=timer; ideal ra =radical(gls); timer-time;size(pr); |
---|
8819 | |
---|
8820 | //2.cyclic5 vdim=70, 20 Komponenten |
---|
8821 | //zerodec-time:36(28) (matrix:1(0) charpoly:18(19) factor:17(9) |
---|
8822 | //primdecGTZ-time: 28(5) |
---|
8823 | //radical : 0 |
---|
8824 | ring rs= 0,(a,b,c,d,e),dp; |
---|
8825 | poly f0= a + b + c + d + e + 1; |
---|
8826 | poly f1= a + b + c + d + e; |
---|
8827 | poly f2= a*b + b*c + c*d + a*e + d*e; |
---|
8828 | poly f3= a*b*c + b*c*d + a*b*e + a*d*e + c*d*e; |
---|
8829 | poly f4= a*b*c*d + a*b*c*e + a*b*d*e + a*c*d*e + b*c*d*e; |
---|
8830 | poly f5= a*b*c*d*e - 1; |
---|
8831 | ideal gls= f1,f2,f3,f4,f5; |
---|
8832 | |
---|
8833 | //3. random vdim=40, 1 Komponente |
---|
8834 | //zerodec-time:126(304) (matrix:1 charpoly:115(298) factor:10(5)) |
---|
8835 | //primdecGTZ-time:17 (11) |
---|
8836 | ring rs=0,(x,y,z),dp; |
---|
8837 | poly f1=2*x^2 + 4*x + 3*y^2 + 7*x*z + 9*y*z + 5*z^2; |
---|
8838 | poly f2=7*x^3 + 8*x*y + 12*y^2 + 18*x*z + 3*y^4*z + 10*z^3 + 12; |
---|
8839 | poly f3=3*x^4 + 1*x*y*z + 6*y^3 + 3*x*z^2 + 2*y*z^2 + 4*z^2 + 5; |
---|
8840 | ideal gls=f1,f2,f3; |
---|
8841 | |
---|
8842 | //4. introduction into resultants, sturmfels, vdim=28, 1 Komponente |
---|
8843 | //zerodec-time:4 (matrix:0 charpoly:0 factor:4) |
---|
8844 | //primdecGTZ-time:1 |
---|
8845 | ring rs=0,(x,y),dp; |
---|
8846 | poly f1= x4+y4-1; |
---|
8847 | poly f2= x5y2-4x3y3+x2y5-1; |
---|
8848 | ideal gls=f1,f2; |
---|
8849 | |
---|
8850 | //5. 3 quadratic equations with random coeffs, vdim=8, 1 Komponente |
---|
8851 | //zerodec-time:0(0) (matrix:0 charpoly:0 factor:0) |
---|
8852 | //primdecGTZ-time:1(0) |
---|
8853 | ring rs=0,(x,y,z),dp; |
---|
8854 | poly f1=2*x^2 + 4*x*y + 3*y^2 + 7*x*z + 9*y*z + 5*z^2 + 2; |
---|
8855 | poly f2=7*x^2 + 8*x*y + 12*y^2 + 18*x*z + 3*y*z + 10*z^2 + 12; |
---|
8856 | poly f3=3*x^2 + 1*x*y + 6*y^2 + 3*x*z + 2*y*z + 4*z^2 + 5; |
---|
8857 | ideal gls=f1,f2,f3; |
---|
8858 | |
---|
8859 | //6. 3 polys vdim=24, 1 Komponente |
---|
8860 | // run("ex14",2); |
---|
8861 | //zerodec-time:5(4) (matrix:0 charpoly:3(3) factor:2(1)) |
---|
8862 | //primdecGTZ-time:4 (2) |
---|
8863 | ring rs=0,(x1,x2,x3,x4),dp; |
---|
8864 | poly f1=16*x1^2 + 3*x2^2 + 5*x3^4 - 1 - 4*x4 + x4^3; |
---|
8865 | poly f2=5*x1^3 + 3*x2^2 + 4*x3^2*x4 + 2*x1*x4 - 1 + x4 + 4*x1 + x2 + x3 + x4; |
---|
8866 | poly f3=-4*x1^2 + x2^2 + x3^2 - 3 + x4^2 + 4*x1 + x2 + x3 + x4; |
---|
8867 | poly f4=-4*x1 + x2 + x3 + x4; |
---|
8868 | ideal gls=f1,f2,f3,f4; |
---|
8869 | |
---|
8870 | //7. ex43, PoSSo, caprasse vdim=56, 16 Komponenten |
---|
8871 | //zerodec-time:23(15) (matrix:0 charpoly:16(13) factor:3(2)) |
---|
8872 | //primdecGTZ-time:3 (2) |
---|
8873 | ring rs= 0,(y,z,x,t),dp; |
---|
8874 | ideal gls=y^2*z+2*y*x*t-z-2*x, |
---|
8875 | 4*y^2*z*x-z*x^3+2*y^3*t+4*y*x^2*t-10*y^2+4*z*x+4*x^2-10*y*t+2, |
---|
8876 | 2*y*z*t+x*t^2-2*z-x, |
---|
8877 | -z^3*x+4*y*z^2*t+4*z*x*t^2+2*y*t^3+4*z^2+4*z*x-10*y*t-10*t^2+2; |
---|
8878 | |
---|
8879 | //8. Arnborg-System, n=6 (II), vdim=156, 90 Komponenten |
---|
8880 | //zerodec-time (char32003):127(45)(matrix:2(0) charpoly:106(37) factor:16(7)) |
---|
8881 | //primdecGTZ-time(char32003) :81 (18) |
---|
8882 | //ring rs= 0,(a,b,c,d,x,f),dp; |
---|
8883 | ring rs= 32003,(a,b,c,d,x,f),dp; |
---|
8884 | ideal gls=a+b+c+d+x+f, ab+bc+cd+dx+xf+af, abc+bcd+cdx+d*xf+axf+abf, |
---|
8885 | abcd+bcdx+cd*xf+ad*xf+abxf+abcf, abcdx+bcd*xf+acd*xf+abd*xf+abcxf+abcdf, |
---|
8886 | abcd*xf-1; |
---|
8887 | |
---|
8888 | //9. ex42, PoSSo, Methan6_1, vdim=27, 2 Komponenten |
---|
8889 | //zerodec-time:610 (matrix:10 charpoly:557 factor:26) |
---|
8890 | //primdecGTZ-time: 118 |
---|
8891 | //zerodec-time(char32003):2 |
---|
8892 | //primdecGTZ-time(char32003):4 |
---|
8893 | //ring rs= 0,(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10),dp; |
---|
8894 | ring rs= 32003,(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10),dp; |
---|
8895 | ideal gls=64*x2*x7-10*x1*x8+10*x7*x9+11*x7*x10-320000*x1, |
---|
8896 | -32*x2*x7-5*x2*x8-5*x2*x10+160000*x1-5000*x2, |
---|
8897 | -x3*x8+x6*x8+x9*x10+210*x6+1300000, |
---|
8898 | -x4*x8+700000, |
---|
8899 | x10^2-2*x5, |
---|
8900 | -x6*x8+x7*x9-210*x6, |
---|
8901 | -64*x2*x7-10*x7*x9-11*x7*x10+320000*x1-16*x7+7000000, |
---|
8902 | -10*x1*x8-10*x2*x8-10*x3*x8-10*x4*x8-10*x6*x8+10*x2*x10+11*x7*x10 |
---|
8903 | +20000*x2+14*x5, |
---|
8904 | x4*x8-x7*x9-x9*x10-410*x9, |
---|
8905 | 10*x2*x8+10*x3*x8+10*x6*x8+10*x7*x9-10*x2*x10-11*x7*x10-10*x9*x10 |
---|
8906 | -10*x10^2+1400*x6-4200*x10; |
---|
8907 | |
---|
8908 | //10. ex33, walk-s7, Diplomarbeit von Tim, vdim=114 |
---|
8909 | //zerfaellt in unterschiedlich viele Komponenten in versch. Charkteristiken: |
---|
8910 | //char32003:30, char0:3(2xdeg1,1xdeg112!), char181:4(2xdeg1,1xdeg28,1xdeg84) |
---|
8911 | //char 0: zerodec-time:10075 (ca 3h) (matrix:3 charpoly:9367, factor:680 |
---|
8912 | // + 24 sec fuer Normalform (anstatt einsetzen), total [29623k]) |
---|
8913 | // primdecGTZ-time: 214 |
---|
8914 | //char 32003:zerodec-time:197(68) (matrix:2(1) charpoly:173(60) factor:15(6)) |
---|
8915 | // primdecGTZ-time:14 (5) |
---|
8916 | //char 181:zerodec-time:(87) (matrix:(1) charpoly:(58) factor:(25)) |
---|
8917 | // primdecGTZ-time:(2) |
---|
8918 | //in char181 stimmen Ergebnisse von zerodec und primdecGTZ ueberein (gecheckt) |
---|
8919 | |
---|
8920 | //ring rs= 0,(a,b,c,d,e,f,g),dp; |
---|
8921 | ring rs= 32003,(a,b,c,d,e,f,g),dp; |
---|
8922 | poly f1= 2gb + 2fc + 2ed + a2 + a; |
---|
8923 | poly f2= 2gc + 2fd + e2 + 2ba + b; |
---|
8924 | poly f3= 2gd + 2fe + 2ca + c + b2; |
---|
8925 | poly f4= 2ge + f2 + 2da + d + 2cb; |
---|
8926 | poly f5= 2fg + 2ea + e + 2db + c2; |
---|
8927 | poly f6= g2 + 2fa + f + 2eb + 2dc; |
---|
8928 | poly f7= 2ga + g + 2fb + 2ec + d2; |
---|
8929 | ideal gls= f1,f2,f3,f4,f5,f6,f7; |
---|
8930 | |
---|
8931 | ~/Singular/Singular/Singular -r123456789 -v |
---|
8932 | LIB"./primdec.lib"; |
---|
8933 | timer=1; |
---|
8934 | int time=timer; |
---|
8935 | printlevel =1; |
---|
8936 | option(prot,mem); |
---|
8937 | time=timer; list pr1=zerodec(gls); timer-time; |
---|
8938 | |
---|
8939 | time=timer; list pr =primdecGTZ(gls); timer-time; |
---|
8940 | time=timer; list pr =primdecSY(gls); timer-time; |
---|
8941 | time=timer; ideal ra =radical(gls); timer-time;size(pr); |
---|
8942 | LIB"all.lib"; |
---|
8943 | |
---|
8944 | ring R=0,(a,b,c,d,e,f),dp; |
---|
8945 | ideal I=cyclic(6); |
---|
8946 | minAssGTZ(I); |
---|
8947 | |
---|
8948 | |
---|
8949 | ring S=(2,a,b),(x,y),lp; |
---|
8950 | ideal I=x8-b,y4+a; |
---|
8951 | minAssGTZ(I); |
---|
8952 | |
---|
8953 | ring S1=2,(x,y,a,b),lp; |
---|
8954 | ideal I=x8-b,y4+a; |
---|
8955 | minAssGTZ(I); |
---|
8956 | |
---|
8957 | |
---|
8958 | ring S2=(2,z),(x,y),dp; |
---|
8959 | minpoly=z2+z+1; |
---|
8960 | ideal I=y3+y+1,x4+x+1; |
---|
8961 | primdecGTZ(I); |
---|
8962 | minAssGTZ(I); |
---|
8963 | |
---|
8964 | ring S3=2,(x,y,z),dp; |
---|
8965 | ideal I=y3+y+1,x4+x+1,z2+z+1; |
---|
8966 | primdecGTZ(I); |
---|
8967 | minAssGTZ(I); |
---|
8968 | |
---|
8969 | |
---|
8970 | ring R1=2,(x,y,z),lp; |
---|
8971 | ideal I=y6+y5+y3+y2+1,x4+x+1,z2+z+1; |
---|
8972 | primdecGTZ(I); |
---|
8973 | minAssGTZ(I); |
---|
8974 | |
---|
8975 | |
---|
8976 | ring R2=(2,z),(x,y),lp; |
---|
8977 | minpoly=z3+z+1; |
---|
8978 | ideal I=y2+y+(z2+z+1),x4+x+1; |
---|
8979 | primdecGTZ(I); |
---|
8980 | minAssGTZ(I); |
---|
8981 | |
---|
8982 | */ |
---|