source: git/Singular/LIB/reesclos.lib @ 6188f04

spielwiese
Last change on this file since 6188f04 was 6188f04, checked in by Janko Boehm <boehm@…>, 10 years ago
Integrated locnormal.lib into reesclos.lib
  • Property mode set to 100644
File size: 12.5 KB
Line 
1////////////////////////////////////////////////////////////////////////////
2version="version reesclos.lib 4.0.0.0 Jun_2013 "; // $Id$
3category="Commutative Algebra";
4
5info="
6LIBRARY:     reesclos.lib   PROCEDURES TO COMPUTE THE INT. CLOSURE OF AN IDEAL
7AUTHOR:      Tobias Hirsch, email: hirsch@math.tu-cottbus.de
8             Janko Boehm, email: boehm@mathematik.uni-kl.de
9             Magdaleen Marais, email: magdaleen@aims.ac.za
10
11OVERVIEW:
12 A library to compute the integral closure of an ideal I in a polynomial ring
13 R=k[x(1),...,x(n)] using the Rees Algebra R[It] of I. It computes the integral
14 closure of R[It],
15 which is a graded subalgebra of R[t]. The degree-k-component is the integral
16 closure of the k-th power of I.
17
18 In contrast to the previous version, the library uses 'normal.lib' to compute the
19 integral closure of R[It]. This improves the performance considerably.
20
21PROCEDURES:
22 ReesAlgebra(I);        computes the Rees Algebra of an ideal I
23 normalI(I[,p[,r]]);    computes the integral closure of an ideal I using R[It]
24";
25
26LIB "locnormal.lib";       // for HomJJ
27LIB "standard.lib";     // for groebner
28
29///////////////////////////////////////////////////////////////////////////////
30
31proc ReesAlgebra (ideal I)
32"USAGE:    ReesAlgebra (I); I = ideal
33RETURN:   The Rees algebra R[It] as an affine ring, where I is an ideal in R.
34          The procedure returns a list containing two rings:
35          [1]: a ring, say RR; in the ring an ideal ker such that R[It]=RR/ker
36
37          [2]: a ring, say Kxt; the basering with additional variable t
38               containing an ideal mapI that defines the map RR-->Kxt
39EXAMPLE:  example ReesAlgebra; shows an example
40"
41{
42  // remember the data of the basering
43
44  def oldring = basering;
45  string oldchar = charstr(basering);
46  string oldvar  = varstr(basering);
47  string oldord  = ordstr(basering);
48  int n = ncols(I);
49  ideal m = maxideal(1);
50
51
52  // Create a new ring with variables for each generator of I
53
54  execute ("ring Rees = "+oldchar+",("+oldvar+",U(1.."+string(n)+")),dp");
55
56
57  // Kxt is the old ring with additional variable t
58  // Here I -> t*I, so the generators of I generate the subalgebra R[It] in Kxt
59
60  execute ("ring Kxt = "+oldchar+",("+oldvar+",t),dp");
61  ideal I = fetch(oldring,I);
62  ideal m = fetch(oldring,m);
63  int k;
64  for (k=1;k<=n;k++)
65  {
66    I[k]=t*I[k];
67  }
68
69
70  // Now we map from Rees to Kxt, identity on the original variables, and
71  // U(k) -> I[k]
72
73  ideal mapI = m,I;
74  map phi = Rees,mapI;
75  ideal zero = 0;
76  export (mapI);
77
78  // Now the Rees-Algebra is Rees/ker(phi)
79
80  setring Rees;
81  ideal ker = preimage(Kxt,phi,zero);
82  export (ker);
83
84  list result = Rees,Kxt;
85
86  return(result);
87
88}
89example
90{
91  "EXAMPLE:"; echo=2;
92  ring R = 0,(x,y),dp;
93  ideal I = x2,xy4,y5;
94  list L = ReesAlgebra(I);
95  def Rees = L[1];       // defines the ring Rees, containing the ideal ker
96  setring Rees;          // passes to the ring Rees
97  Rees;
98  ker;                   // R[It] is isomorphic to Rees/ker
99}
100
101
102////////////////////////////////////////////////////////////////////////////
103
104static
105proc ClosureRees (list L, int useLocNormal)
106"USAGE:    ClosureRees (L,useLocNormal); L a list, useLocNormal an integer
107ASSUME:   L is a list containing
108          - a ring L[1], inside L[1] an ideal ker such that L[1]/ker is
109            isomorphic to the Rees Algebra R[It] of an ideal I in k[x]
110          - a ring L[2]=k[x,t], inside L[1] an ideal mapI defining the
111            map L[1] --> L[2] with image R[It]
112RETURN:   quotients of elements of k[x,t] representing generators of the
113          integral closure of R[It]. The result of ClosureRees is a list
114          images, the first size(images)-1 entries are the numerators of the
115          generators, the last one is the universal denominator
116"
117{
118  int dblvl=printlevel-voice+2;   // toggles how much data is printed
119                                  // during the procedure
120
121  def Kxt = basering;
122  def R(1) = L[1];
123  setring R(1);                   // declaration of variables used later
124  ideal ker(1)=ker;               // in STEP 2
125  if (useLocNormal==1) {
126      list preimages1 = locNormal(ker);
127      ideal preimagesI=preimages1[1];
128      list preimagesL = list(preimagesI[2..size(preimagesI)])+list(preimagesI[1]);
129      ideal preimages = ideal(preimagesL[1..size(preimagesL)]);
130  } else {
131      list nor = normal(ker);
132      ideal preimages=nor[2][1];
133  }
134  setring Kxt;
135  map psi=R(1),mapI;              // from ReesAlgebra: the map Rees->Kxt
136  ideal images=psi(preimages);
137  ideal psii = images[size(images)]*ideal(psi);
138  list imagesl = images[1..size(images)];
139  list psil =psii[1..size(psii)];
140  imagesl=psil+imagesl;
141  return(imagesl);
142}
143
144
145////////////////////////////////////////////////////////////////////////////
146
147static
148proc ClosurePower(list images, list #)
149"USAGE:    ClosurePower (L [,#]); L a list, # an optional list containing an
150          integer
151ASSUME:   - L is a list containing generators of the closure of R[It] in k[x,t]
152            (the first size(L)-1 elements are the numerators, the last one
153            is the denominator)
154          - if # is given: #[1] is an integer, compute generators for the
155                           closure of I, I^2, ..., I^#[1]
156RETURN:   the integral closure of I, ... I^#[1]. If # is not given, compute
157          the closure of all powers up to the maximum degree in t occurring
158          in the closure of R[It] (so this is the last power whose closure is
159          not just the sum/product of the smaller powers). The returned
160          result is a list of elements of k[x,t] containing generators of the
161          closure of the desired powers of I. "
162{
163  int dblvl=printlevel-voice+2;   // toggles how much data is printed
164                                  // during the procedure
165
166  int j,k,d,computepow;                    // some counters
167  int pow=0;
168  int length = size(images)-1;             // the number of generators
169  poly image;
170  poly @denominator = images[length+1];     // the universal denominator
171
172  if (size(#)>0)
173  {
174    pow=#[1];
175  }
176  computepow=pow;
177
178  if (dblvl>0)
179  {
180    "";
181    "// The generators of the closure of R[It]:";
182  }
183
184  intmat m[nvars(basering)-1][1];  // an intvec used for jet and maxdeg1
185  intvec tw=m,1;                   // such that t has weight 1 and all
186                                   // other variables have weight 0
187
188  // Construct the generators of the closure of R[It] as elements of k[x,t]
189  // If # is not given, determine the highest degree pow in t that occurs.
190
191  for (j=1;j<=length;j++)
192  {
193    images[j] = (images[j]/@denominator); // construct the fraction
194    image = images[j];
195    if (dblvl>0)
196    {
197      "generator",j,":",image;
198    }
199
200    if (computepow==0)              // #[1] not given or ==0 => compute pow
201    {
202      if (maxdeg1(image,tw)>pow)    // from poly.lib
203      {
204        pow=maxdeg1(image,tw);
205      }
206    }
207  }
208
209  if (dblvl>0)
210  {
211    "";
212    if (computepow==0)
213    {
214      "// Compute the closure up to the given powers of I";
215    }
216    else
217    {
218     "// Compute the closure up to the maximal power of t that occured:",pow;
219    }
220  }
221
222  // Construct a list consisting of #[1] resp. pow times the zero ideal
223
224  ideal CurrentPower=0;
225  list result;
226  for (k=1;k<=pow;k++)
227  {
228    result=insert(result,CurrentPower);
229  }
230
231  // For each generator and each k, add its degree-k-coefficient to the #
232  // closure of I^k
233
234  for (j=1;j<=length;j++)
235  {
236    for (k=1;k<=pow;k++)
237    {
238      image=images[j]-jet(images[j],k-1,tw);
239      if (image<>0)
240      {
241        image=subst(image/t^k,t,0);
242        if (image<>0)
243        {
244          result[k]=result[k]+image;
245        }
246      }
247    }
248  }
249
250  if (dblvl>0)
251  {
252    "";
253    "// The 'pure' parts of degrees 1..pow:";
254    result;
255    "";
256  }
257
258  // finally, add the suitable products of generators in lower degrees
259
260  for (k=2;k<=pow;k++)
261  {
262    for (j=1;j<=(k div 2);j++)
263    {
264      result[k]=result[k]+result[j]*result[k-j];
265    }
266  }
267
268  return(result);
269}
270
271////////////////////////////////////////////////////////////////////////////
272
273proc normalI(ideal I, list #)
274"USAGE:    normalI (I [,p [,r [,l]]]); I an ideal, p, r, and l optional integers
275RETURN:   the integral closure of I, ..., I^p, where I is an ideal in the
276          polynomial ring R=k[x(1),...x(n)]. If p is not given, or p==0,
277          compute the closure of all powers up to the maximum degree in t
278          occurring in the closure of R[It] (so this is the last power whose
279          closure is not just the sum/product of the smaller). If r
280          is given and r==1, normalI starts with a check whether I is already a
281          radical ideal.
282          If l==1 then locNormal instead of normal is used to compute normalization.
283          The result is a list containing the closure of the desired powers of
284          I as ideals of the basering.
285DISPLAY:  The procedure displays more comments for higher printlevel.
286EXAMPLE:  example normalI; shows an example
287"
288{
289  int dblvl=printlevel-voice+2;   // toggles how much data is printed
290                                  // during the procedure
291
292  def BAS=basering;               // remember the basering
293
294  // two simple cases: principal ideals and radical ideals are always
295  // integrally closed
296
297  if (size(I)<=1)        // includes the case I=(0)
298  {
299    if (dblvl>0)
300    {
301      "// Trivial case: I is a principal ideal";
302    }
303    list result=I;
304    if (size(#)>0)
305    {
306      for (int k=1;k<=#[1]-1;k++)
307      {
308        result=insert(result,I*result[k],k);
309      }
310    }
311    return(result);
312  }
313
314  int testrad=0;      // do the radical check?
315  int uselocNormal=0;
316  if (size(#)>1)
317  {
318    testrad=#[2];
319    if (size(#)==3) {
320                 uselocNormal=#[3];
321    }
322  }
323
324  if (testrad==1)
325  {
326    if (dblvl>0)
327    {
328      "//Check whether I is radical";
329    }
330
331    if (size(reduce(radical(I),std(I)))==0)
332    {
333      if (dblvl>0)
334      {
335        "//Trivial case: I is a radical ideal";
336      }
337      list result=I;
338      if (size(#)>0)
339      {
340        for (int k=1;k<=#[1]-1;k++)
341        {
342          result=insert(result,I*result[k],k);
343        }
344      }
345      return(result);
346    }
347  }
348
349  // start with the computation of the Rees Algebra R[It] of I
350
351  if (dblvl>0)
352  {
353    "// We start with the Rees Algebra of I:";
354  }
355
356  list Rees = ReesAlgebra(I);
357  def R(1)=Rees[1];
358  def Kxt=Rees[2];
359  setring R(1);
360
361  if (dblvl>0)
362  {
363    R(1);
364    ker;
365    "";
366    "// Now ClosureRees computes generators for the integral closure";
367    "// of R[It] step by step";
368  }
369
370  // ClosureRees computes fractions in R[x,t] representing the generators
371  // of the closure of R[It] in k[x,t], which is the same as the closure
372  // in Q(R[It]).
373  // the first size(images)-1 entries are the numerators of the gene-
374  // rators, the last entry is the 'universal' denominator
375
376  setring Kxt;
377  list images = ClosureRees(Rees,uselocNormal);
378
379  // ClosureRees was done after the first HomJJ-call
380  // ==> I is integrally closed, and images consists of the only entry "closed"
381
382  if ((size(images)==1) && (typeof(images[1])=="string"))
383  {
384    if (dblvl>0)
385    {
386      "//I is integrally closed!";
387    }
388
389    setring BAS;
390    list result=I;
391    if (size(#)>0)
392    {
393      for (int k=1;k<=#[1]-1;k++)
394      {
395        result=insert(result,I*result[k],k);
396      }
397    }
398    return(result);
399  }
400
401  // construct the fractions corresponding to the generators of the
402  // closure of I and its powers, depending on # (in fact, they will
403  // not be real fractions, of course). This is done in ClosurePower.
404  list result = ClosurePower(images,#);
405
406  // finally fetch the result to the old basering
407
408  setring BAS;
409  list result=fetch(Kxt,result);
410  return(result);
411}
412example
413{
414  "EXAMPLE:"; echo=2;
415  ring R=0,(x,y),dp;
416  ideal I = x2,xy4,y5;
417  list J = normalI(I);
418  I;
419  J;                             // J[1] is the integral closure of I
420}
421
422/*
423LIB"reesclos.lib";
424
425
426// 1.  x^i,y^i in k[x,y]
427//     geht bis i = 19 (800sec), bis i=10 wenige Sekunden,
428//     bei i = 20 ueber 1GB Hauptspeicher, in der 9. Iteration no memory
429//     (braucht 20 Iterationen)
430
431  ring r = 0,(x,y),dp;
432  int i = 6;
433  ideal I = x^i,y^i;
434  list J = normalI(I);
435  I;
436  J;
437
438
439//================================================================
440
441
442// 2. x^i,y^i,z^i in k[x,y,z]
443//    aehnlich wie 1., funktioniert aber nur bis i=5 und dauert dort
444//    >1 h
445
446
447//================================================================
448
449
450// 3. scheitert in der ersten Iteration beim Radikal
451//    Standardbasis des singulaeren Ortes: 7h (in char0),
452//    in char(p) viel schneller, obwohl kleine Koeffizienten
453//    schon bei Radikal -Test braucht er zu lang (>1h)
454
455  ring r = 0,(x,y,z),dp;
456  //ring r = 32003,(x,y,z),dp;
457
458  ideal I = x2+xy3-5z,z3+y2-xzy,x2y3z5+y3-y5;
459  list l= ReesAlgebra(I);
460  list J = normalI(I);
461  I;
462  J;
463
464*/
465
Note: See TracBrowser for help on using the repository browser.