1 | /////////////////////////////////////////////////////////////////////////////// |
---|
2 | // reesclos.lib |
---|
3 | /////////////////////////////////////////////////////////////////////////////// |
---|
4 | |
---|
5 | version="$id reesclos.lib,v 1.28 2000/10/19 hirsch Exp $"; |
---|
6 | |
---|
7 | info=" |
---|
8 | LIBRARY: reesclos.lib |
---|
9 | AUTHOR: Tobias Hirsch, email: hirsch@mathematik.uni-kl.de |
---|
10 | PROCEDURES: ReesAlgebra - computes the Rees Algebra of an ideal |
---|
11 | NormalI - computes the integral closure of an ideal using its |
---|
12 | Rees Algebra |
---|
13 | "; |
---|
14 | |
---|
15 | LIB "normal.lib"; // for HomJJ |
---|
16 | |
---|
17 | /////////////////////////////////////////////////////////////////////////////// |
---|
18 | |
---|
19 | proc ReesAlgebra (ideal I) |
---|
20 | "USAGE: ReesAlgebra (I); I = ideal |
---|
21 | COMPUTE: The Rees algebra R[I*t] as an affine ring, where I is an ideal in R |
---|
22 | RETURN: a list containing two rings: |
---|
23 | [1]: a ring, say RR; in the ring an ideal ker such that R[I*t]=RR/ker |
---|
24 | [2]: a ring, say Kxt; the basering with additional variable t con- |
---|
25 | taining an ideal mapI defining the map RR-->Kxt |
---|
26 | EXAMPLE: example ReesAlgebra; shows an example |
---|
27 | " |
---|
28 | { |
---|
29 | // remember the data of the basering |
---|
30 | |
---|
31 | def oldring = basering; |
---|
32 | string oldchar = charstr(basering); |
---|
33 | string oldvar = varstr(basering); |
---|
34 | string oldord = ordstr(basering); |
---|
35 | int n = ncols(I); |
---|
36 | ideal m = maxideal(1); |
---|
37 | |
---|
38 | |
---|
39 | // Create a new ring with variables for each generator of I |
---|
40 | |
---|
41 | execute ("ring Rees = "+oldchar+",("+oldvar+",U(1.."+string(n)+")),dp"); |
---|
42 | |
---|
43 | |
---|
44 | // Kxt is the old ring with additional variable t |
---|
45 | // Here I -> t*I, so the generators of I generate the subalgebra R[It] in Kxt |
---|
46 | |
---|
47 | execute ("ring Kxt = "+oldchar+",("+oldvar+",t),dp"); |
---|
48 | ideal I = fetch(oldring,I); |
---|
49 | ideal m = fetch(oldring,m); |
---|
50 | int k; |
---|
51 | for (k=1;k<=n;k++) |
---|
52 | { |
---|
53 | I[k]=t*I[k]; |
---|
54 | } |
---|
55 | |
---|
56 | |
---|
57 | // Now we map from Rees to Kxt, identity on the original variables, and |
---|
58 | // U(k) -> I[k] |
---|
59 | |
---|
60 | ideal mapI = m,I; |
---|
61 | map phi = Rees,mapI; |
---|
62 | ideal zero = 0; |
---|
63 | export (mapI); |
---|
64 | |
---|
65 | // Now the Rees-Algebra is Rees/ker(phi) |
---|
66 | |
---|
67 | setring Rees; |
---|
68 | ideal ker = preimage(Kxt,phi,zero); |
---|
69 | export (ker); |
---|
70 | |
---|
71 | list result = Rees,Kxt; |
---|
72 | |
---|
73 | return(result); |
---|
74 | |
---|
75 | } |
---|
76 | example |
---|
77 | { |
---|
78 | ring R = 0,(x,y),dp; |
---|
79 | ideal I = x2,xy4,y5; |
---|
80 | list L = ReesAlgebra(I); |
---|
81 | def Rees = L[1]; // defines the ring Rees, containing the ideal ker |
---|
82 | setring Rees; // passes to the ring Rees |
---|
83 | Rees; |
---|
84 | ker; // R[I*t] is isomorphic to Rees/ker |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | //////////////////////////////////////////////////////////////////////////// |
---|
89 | |
---|
90 | static |
---|
91 | proc ClosureRees (list L) |
---|
92 | "USAGE: ClosureRees (L); L a list containing |
---|
93 | - a ring L[1], inside L[1] an ideal ker such that L[1]/ker is |
---|
94 | isomorphic to the Rees Algebra R[It] of an ideal I in k[x] |
---|
95 | - a ring L[2]=k[x,t], inside L[1] an ideal mapI defining the |
---|
96 | map L[1] --> L[2] with image R[It] |
---|
97 | COMPUTE: quotients of elements of k[x,t] representing generators of the |
---|
98 | integral closure of R[It] |
---|
99 | RETURN: a list images, the first size(images)-1 entries are the nu- |
---|
100 | merators of the generators, the last one is the universal deno- |
---|
101 | minator |
---|
102 | " |
---|
103 | { |
---|
104 | int dblvl=printlevel-voice+2; // toggles how much data is printed |
---|
105 | // during the procedure |
---|
106 | |
---|
107 | def Kxt = basering; |
---|
108 | def R(1) = L[1]; |
---|
109 | setring R(1); // declaration of variables used later |
---|
110 | ideal ker(1)=ker; // in STEP 2 |
---|
111 | poly p; |
---|
112 | |
---|
113 | // some auxiliary variables |
---|
114 | |
---|
115 | int i=1; // counts the number of steps to reach the closure of R(1) |
---|
116 | int check=0; // a 'boolean' variable for several checks |
---|
117 | int isIsoSing=0; // '1' in case of an isolated singularity |
---|
118 | |
---|
119 | /////// STEP 1: /////////////////////////////////////////////////////////// |
---|
120 | // construct R(i) step by step as done in normal.lib; 2 differences: // |
---|
121 | // - since the input is a prime ideal, no splitting will occur // |
---|
122 | // - the intermediate rings and nonzerodivisors for J are remembered // |
---|
123 | /////////////////////////////////////////////////////////////////////////// |
---|
124 | |
---|
125 | if (dblvl>0) |
---|
126 | { |
---|
127 | "// STEP 1: Compute the integral closure of R[It]"; |
---|
128 | } |
---|
129 | |
---|
130 | list RS; |
---|
131 | |
---|
132 | while (check==0) // repeat until the closure is reached |
---|
133 | { |
---|
134 | // construction of HomJJ, J an ideal containing the non-normal locus |
---|
135 | // of R(i)/ker(i), as done in normalizationPrimes in normal.lib for |
---|
136 | // the special case that we are working with a prime ideal |
---|
137 | |
---|
138 | if (dblvl>0) |
---|
139 | { |
---|
140 | ""; |
---|
141 | "// We are in step",i; |
---|
142 | pause(); |
---|
143 | } |
---|
144 | |
---|
145 | if (homog(ker(i))==1) |
---|
146 | { |
---|
147 | list SM=mstd(ker(i)); |
---|
148 | } |
---|
149 | else |
---|
150 | { |
---|
151 | list SM=groebner(ker(i)),ker(i); |
---|
152 | } |
---|
153 | |
---|
154 | if (dblvl>0) |
---|
155 | { |
---|
156 | "// Standard basis of the current ideal:"; |
---|
157 | SM[1]; |
---|
158 | } |
---|
159 | |
---|
160 | // In the first iteration, we have to compute the singular locus and |
---|
161 | // to check whether it is an isolated singularity (this makes things |
---|
162 | // much easier: for further iterations, we just take the max. ideal). |
---|
163 | // If not, we still fetch the singular locus but have to compute |
---|
164 | // its radical. |
---|
165 | |
---|
166 | if (i==1) |
---|
167 | { |
---|
168 | ideal J=minor(jacob(SM[2]),nvars(basering)-dim(SM[1])); |
---|
169 | ideal sin=J+SM[2]; |
---|
170 | if (homog(SM[2])==1) |
---|
171 | { |
---|
172 | list JM=mstd(sin); |
---|
173 | } |
---|
174 | else |
---|
175 | { |
---|
176 | list JM=groebner(sin),sin; |
---|
177 | } |
---|
178 | |
---|
179 | if (dim(JM[1])==0 && homog(SM[2])==1) |
---|
180 | { |
---|
181 | isIsoSing=1; |
---|
182 | } |
---|
183 | J=equiRadical(JM[2]); |
---|
184 | } |
---|
185 | else |
---|
186 | { |
---|
187 | if (isIsoSing==0) |
---|
188 | { |
---|
189 | ideal J=equiRadical(JM[2]); |
---|
190 | } |
---|
191 | else |
---|
192 | { |
---|
193 | ideal J=maxideal(1); |
---|
194 | } |
---|
195 | } |
---|
196 | |
---|
197 | if (dblvl>0) |
---|
198 | { |
---|
199 | "// Radical of the singular locus:"; |
---|
200 | J; |
---|
201 | } |
---|
202 | |
---|
203 | ideal SL=simplify(reduce(JM[2],SM[1]),2); |
---|
204 | JM =J,J; |
---|
205 | poly nzd=SL[1]; // universal denominator for HomJJ |
---|
206 | |
---|
207 | if (dblvl>0) |
---|
208 | { |
---|
209 | "// The non-zerodivisor"; |
---|
210 | nzd; |
---|
211 | pause(); |
---|
212 | } |
---|
213 | |
---|
214 | list RR=SM[1],SM[2],JM[2],SL[1]; |
---|
215 | RS=HomJJ(RR); |
---|
216 | |
---|
217 | if (RS[2]==1) // we've reached the integral closure |
---|
218 | { |
---|
219 | if (dblvl>0) |
---|
220 | { |
---|
221 | ""; |
---|
222 | "// We've reached the integral closure after",i,"iterations"; |
---|
223 | pause(); |
---|
224 | } |
---|
225 | check=1; |
---|
226 | } |
---|
227 | else // prepare the next iteration with new |
---|
228 | { // ring R(i+1) |
---|
229 | ideal MJ=JM[2]; |
---|
230 | |
---|
231 | def R(i+1)=RS[1]; // the data of and some variable decla- |
---|
232 | setring R(i+1); // rations in R(i+1) needed in STEP 2 |
---|
233 | ideal ker(i+1)=endid; |
---|
234 | map phi=R(i),endphi; |
---|
235 | poly p; |
---|
236 | |
---|
237 | if (isIsoSing==0) // fetch the singular locus if it is not |
---|
238 | { // an isolated singularity |
---|
239 | list JM=mstd(simplify(phi(MJ)+ker(i+1),4)); |
---|
240 | } |
---|
241 | i++; |
---|
242 | } |
---|
243 | } |
---|
244 | |
---|
245 | if (i==1) // R[It] (and thus I) was integrally |
---|
246 | { // closed ==> we're already done |
---|
247 | list result="closed"; |
---|
248 | return(result); |
---|
249 | } |
---|
250 | |
---|
251 | |
---|
252 | /////// STEP 2: //////////////////////////////////////////////////////// |
---|
253 | // compute representations of the ring variables of R(i) as fractions // |
---|
254 | // of elements of R(1); // |
---|
255 | //////////////////////////////////////////////////////////////////////// |
---|
256 | |
---|
257 | int length=nvars(R(i)); // the number of variables of the last ring |
---|
258 | int j,k,n; // some counters |
---|
259 | string mapstr; // will be used while constructing preimages |
---|
260 | |
---|
261 | list preimages; // here the fractions are stored in the |
---|
262 | // form var(j)=preimages[j]/preimages[length+1] |
---|
263 | // ('=' means identification via the inclusion) |
---|
264 | // the last entry corresponds to nzd in R(i) |
---|
265 | |
---|
266 | // For each variable (counter j) and for each intermediate ring (k): |
---|
267 | // find preimages of var(j)*endphi(nzd_k-1) in R(k-1). |
---|
268 | // Finally, do the same for nzd. |
---|
269 | |
---|
270 | if (dblvl>0) |
---|
271 | { |
---|
272 | "// STEP 2: Compute fractions representing the ring variables of"; |
---|
273 | " the last ring"; |
---|
274 | } |
---|
275 | |
---|
276 | for (j=1;j<=length+1;j++) |
---|
277 | { |
---|
278 | setring R(i); |
---|
279 | |
---|
280 | if (j<=length) // do it with for ring variables... |
---|
281 | { |
---|
282 | p=var(j); |
---|
283 | } |
---|
284 | else // ...and finally for nzd in R(i) |
---|
285 | { |
---|
286 | p=1; |
---|
287 | } |
---|
288 | |
---|
289 | // get back from R(i) to R(1) step by step |
---|
290 | |
---|
291 | for (k=i;k>1;k--) |
---|
292 | { |
---|
293 | // clear the fraction in the representation in R(i) |
---|
294 | |
---|
295 | p=p*phi(nzd); |
---|
296 | |
---|
297 | // compute the preimage of [p mod ker(k)] under phi in R(k-1): |
---|
298 | // as p is an element of im(phi), there is a poly h such that |
---|
299 | // h(vars(R(k-1)) is mapped to [p mod ker (k)], and h can be com- |
---|
300 | // puted as the normal form of a w.r.t <ker(k),Z(n)-phi(k)(n)> in R(k)[Z] |
---|
301 | |
---|
302 | // compute this normal form h... |
---|
303 | |
---|
304 | if (j==1) // in the first iteration: construct S(k)=R(k)[Z], fetch |
---|
305 | // endphi (the ideal defining phi) and ker(k) and construct |
---|
306 | // the ideal from above |
---|
307 | { |
---|
308 | execute ("ring S(k) = "+charstr(R(k))+",("+varstr(R(k))+",Z(1.." |
---|
309 | +string(ncols(endphi))+")),(dp("+string(nvars(R(k))) |
---|
310 | +"),dp("+string(ncols(endphi))+"));"); |
---|
311 | ideal endphi = imap(R(k),endphi); |
---|
312 | ideal J = imap(R(k),ker(k)); |
---|
313 | for (n=1;n<=ncols(endphi);n++) |
---|
314 | { |
---|
315 | J=J+(Z(n)-endphi[n]); |
---|
316 | } |
---|
317 | J=groebner(J); |
---|
318 | poly h=NF(imap(R(k),p),J); |
---|
319 | } |
---|
320 | else |
---|
321 | { |
---|
322 | setring S(k); |
---|
323 | h=NF(imap(R(k),p),J); |
---|
324 | } |
---|
325 | |
---|
326 | // and compute h(vars(R(k-1))) |
---|
327 | |
---|
328 | setring R(k-1); |
---|
329 | if (j==1) // in the first iteration: compute backmap:S(k)-->R(k-1) |
---|
330 | { |
---|
331 | mapstr="map backmap = S(k),"; |
---|
332 | for (n=1;n<=nvars(R(k));n++) |
---|
333 | { |
---|
334 | mapstr=mapstr+"0,"; |
---|
335 | } |
---|
336 | execute (mapstr+"maxideal(1);"); |
---|
337 | } |
---|
338 | |
---|
339 | p=NF(backmap(h),std(ker(k-1))); |
---|
340 | } |
---|
341 | |
---|
342 | // when down to R(1), store the result in the list preimages |
---|
343 | |
---|
344 | preimages=insert(preimages,p,j-1); |
---|
345 | if (dblvl>0) |
---|
346 | { |
---|
347 | if (j<=length) |
---|
348 | { |
---|
349 | "numerator of variable ",j,":",p; |
---|
350 | } |
---|
351 | else |
---|
352 | { |
---|
353 | ""; |
---|
354 | "and finally the 'universal' denominator:",p; |
---|
355 | } |
---|
356 | } |
---|
357 | } |
---|
358 | |
---|
359 | // at the end: go back to the original basering and construct gene- |
---|
360 | // rators of the closure of I |
---|
361 | |
---|
362 | setring Kxt; |
---|
363 | map psi=R(1),mapI; // from ReesAlgebra: the map Rees->Kxt |
---|
364 | |
---|
365 | list images=psi(preimages); |
---|
366 | |
---|
367 | if (dblvl>-1) |
---|
368 | { |
---|
369 | pause(); |
---|
370 | ""; |
---|
371 | "// Get back to the original basering and construct the"; |
---|
372 | "// generators of the closure of I"; |
---|
373 | ""; |
---|
374 | "// Back in k[x,t], the fractions, stored in the list images:"; |
---|
375 | for (int j=1;j<=size(images);j++) |
---|
376 | { |
---|
377 | if (j<size(images)) |
---|
378 | { |
---|
379 | "numerator",j,":",images[j]; |
---|
380 | } |
---|
381 | else |
---|
382 | { |
---|
383 | ""; |
---|
384 | "denominator: ",images[j]; |
---|
385 | } |
---|
386 | } |
---|
387 | pause(); |
---|
388 | } |
---|
389 | return (images); |
---|
390 | } |
---|
391 | |
---|
392 | |
---|
393 | //////////////////////////////////////////////////////////////////////////// |
---|
394 | |
---|
395 | static |
---|
396 | proc ClosurePower(list images, list #) |
---|
397 | "USAGE: ClosurePower (L [,#]); |
---|
398 | - L a list containing generators of the closure of R[It] in k[x,t] |
---|
399 | (the first size(L)-1 elements are the numerators, the last one |
---|
400 | is the denominator) |
---|
401 | - if # is given: #[1] is an integer, compute generators for the |
---|
402 | closure of I, I^2, ..., I^#[1] |
---|
403 | COMPUTE: the integral closure of I, ... I^#[1]. If # is not given, compute |
---|
404 | the closure of all powers up to the maximum degree in t occurring |
---|
405 | in the closure of R[It] (so this is the last one that is not just |
---|
406 | the sum/product of the above ones). |
---|
407 | RETURN: a list containing generators of the closure of the desired powers |
---|
408 | of I as elements of k[x,t]. |
---|
409 | " |
---|
410 | { |
---|
411 | int dblvl=printlevel-voice+2; // toggles how much data is printed |
---|
412 | // during the procedure |
---|
413 | |
---|
414 | int j,k,d,computepow; // some counters |
---|
415 | int pow=0; |
---|
416 | int length = size(images)-1; // the number of generators |
---|
417 | poly image; |
---|
418 | poly denominator = images[length+1]; // the universal denominator |
---|
419 | |
---|
420 | if (size(#)>0) |
---|
421 | { |
---|
422 | pow=#[1]; |
---|
423 | } |
---|
424 | computepow=pow; |
---|
425 | |
---|
426 | if (dblvl>0) |
---|
427 | { |
---|
428 | ""; |
---|
429 | "// The generators of the closure of R[It]:"; |
---|
430 | } |
---|
431 | |
---|
432 | intmat m[nvars(basering)-1][1]; // an intvec used for jet and maxdeg1 |
---|
433 | intvec tw=m,1; // such that t has weight 1 and all |
---|
434 | // other variables have weight 0 |
---|
435 | |
---|
436 | // Construct the generators of the closure of R[It] as elements of k[x,t] |
---|
437 | // If # is not given, determine the highest degree pow in t that occurs. |
---|
438 | |
---|
439 | for (j=1;j<=length;j++) |
---|
440 | { |
---|
441 | images[j] = (images[j]/denominator); // construct the fraction |
---|
442 | image = images[j]; |
---|
443 | if (dblvl>0) |
---|
444 | { |
---|
445 | "generator",j,":",image; |
---|
446 | } |
---|
447 | |
---|
448 | if (computepow==0) // #[1] not given or ==0 => compute pow |
---|
449 | { |
---|
450 | if (maxdeg1(image,tw)>pow) // from poly.lib |
---|
451 | { |
---|
452 | pow=maxdeg1(image,tw); |
---|
453 | } |
---|
454 | } |
---|
455 | } |
---|
456 | |
---|
457 | if (dblvl>0) |
---|
458 | { |
---|
459 | ""; |
---|
460 | if (computepow==0) |
---|
461 | { |
---|
462 | "// Compute the closure up to the given powers of I"; |
---|
463 | } |
---|
464 | else |
---|
465 | { |
---|
466 | "// Compute the closure up to the maximal power of t that occured:",pow; |
---|
467 | } |
---|
468 | } |
---|
469 | |
---|
470 | // Construct a list consisting of #[1] resp. pow times the zero ideal |
---|
471 | |
---|
472 | ideal CurrentPower=0; |
---|
473 | list result; |
---|
474 | for (k=1;k<=pow;k++) |
---|
475 | { |
---|
476 | result=insert(result,CurrentPower); |
---|
477 | } |
---|
478 | |
---|
479 | // For each generator and each k, add its degree-k-coefficient to the # |
---|
480 | // closure of I^k |
---|
481 | |
---|
482 | for (j=1;j<=length;j++) |
---|
483 | { |
---|
484 | for (k=1;k<=pow;k++) |
---|
485 | { |
---|
486 | image=images[j]-jet(images[j],k-1,tw); |
---|
487 | if (image<>0) |
---|
488 | { |
---|
489 | image=subst(image/t^k,t,0); |
---|
490 | if (image<>0) |
---|
491 | { |
---|
492 | result[k]=result[k]+image; |
---|
493 | } |
---|
494 | } |
---|
495 | } |
---|
496 | } |
---|
497 | |
---|
498 | if (dblvl>0) |
---|
499 | { |
---|
500 | ""; |
---|
501 | "// The 'pure' parts of degrees 1..pow:"; |
---|
502 | result; |
---|
503 | ""; |
---|
504 | } |
---|
505 | |
---|
506 | // finally, add the suitable products of generators in lower degrees |
---|
507 | |
---|
508 | for (k=2;k<=pow;k++) |
---|
509 | { |
---|
510 | for (j=1;j<=(k div 2);j++) |
---|
511 | { |
---|
512 | result[k]=result[k]+result[j]*result[k-j]; |
---|
513 | } |
---|
514 | } |
---|
515 | |
---|
516 | return(result); |
---|
517 | } |
---|
518 | |
---|
519 | //////////////////////////////////////////////////////////////////////////// |
---|
520 | |
---|
521 | proc normalI(ideal I, list #) |
---|
522 | "USAGE: normalI (I [,p[,r]]); I an ideal, p and r optional integers |
---|
523 | COMPUTE: the integral closure of I, ..., I^p. If p is not given, or p==0, |
---|
524 | compute the closure of all powers up to the maximum degree in t |
---|
525 | occurring in the closure of R[It] (so this is the last one that |
---|
526 | is not just the sum/product of the above ones). |
---|
527 | If r is given and <>1, the check whether the input ideal is |
---|
528 | already a radical ideal is omitted. |
---|
529 | RETURN: a list containing the closure of the desired powers of I as ideals |
---|
530 | of the basering. |
---|
531 | " |
---|
532 | { |
---|
533 | int dblvl=printlevel-voice+2; // toggles how much data is printed |
---|
534 | // during the procedure |
---|
535 | |
---|
536 | def BAS=basering; // remember the basering |
---|
537 | |
---|
538 | // two simple cases: principal ideals and radical ideals are always |
---|
539 | // integrally closed |
---|
540 | |
---|
541 | if (size(I)<=1) // includes the case I=(0) |
---|
542 | { |
---|
543 | if (dblvl>0) |
---|
544 | { |
---|
545 | "// Trivial case: I is a principal ideal"; |
---|
546 | } |
---|
547 | list result=I; |
---|
548 | if (size(#)>0) |
---|
549 | { |
---|
550 | for (int k=1;k<=#[1]-1;k++) |
---|
551 | { |
---|
552 | result=insert(result,I*result[k],k); |
---|
553 | } |
---|
554 | } |
---|
555 | return(result); |
---|
556 | } |
---|
557 | |
---|
558 | int testrad=1; // do the radical check? |
---|
559 | if (size(#)>1) |
---|
560 | { |
---|
561 | if (#[2]<>1) |
---|
562 | { |
---|
563 | testrad=0; |
---|
564 | } |
---|
565 | } |
---|
566 | if (testrad==1) |
---|
567 | { |
---|
568 | if (dblvl>0) |
---|
569 | { |
---|
570 | "//Check whether I is radical"; |
---|
571 | } |
---|
572 | |
---|
573 | if (size(reduce(radical(I),std(I)))==0) |
---|
574 | { |
---|
575 | if (dblvl>0) |
---|
576 | { |
---|
577 | "//Trivial case: I is a radical ideal"; |
---|
578 | } |
---|
579 | list result=I; |
---|
580 | if (size(#)>0) |
---|
581 | { |
---|
582 | for (int k=1;k<=#[1]-1;k++) |
---|
583 | { |
---|
584 | result=insert(result,I*result[k],k); |
---|
585 | } |
---|
586 | } |
---|
587 | return(result); |
---|
588 | } |
---|
589 | } |
---|
590 | |
---|
591 | // start with the computation of the Rees Algebra R[It] of I |
---|
592 | |
---|
593 | if (dblvl>0) |
---|
594 | { |
---|
595 | "// We start with the Rees Algebra of I:"; |
---|
596 | } |
---|
597 | |
---|
598 | list Rees = ReesAlgebra(I); |
---|
599 | def R(1)=Rees[1]; |
---|
600 | def Kxt=Rees[2]; |
---|
601 | setring R(1); |
---|
602 | |
---|
603 | if (dblvl>0) |
---|
604 | { |
---|
605 | R(1); |
---|
606 | ker; |
---|
607 | ""; |
---|
608 | "// Now ClosureRees computes generators for the integral closure"; |
---|
609 | "// of R[It] step by step"; |
---|
610 | } |
---|
611 | |
---|
612 | // ClosureRees computes fractions in R[x,t] representing the generators |
---|
613 | // of the closure of R[It] in k[x,t], which is the same as the closure |
---|
614 | // in Q(R[It]). |
---|
615 | // the first size(images)-1 entries are the numerators of the gene- |
---|
616 | // rators, the last entry is the 'universal' denominator |
---|
617 | |
---|
618 | setring Kxt; |
---|
619 | list images = ClosureRees(Rees); |
---|
620 | |
---|
621 | // ClosureRees was done after the first HomJJ-call |
---|
622 | // ==> I is integrally closed, and images consists of the only entry "closed" |
---|
623 | |
---|
624 | if ((size(images)==1) && (typeof(images[1])=="string")) |
---|
625 | { |
---|
626 | if (dblvl>0) |
---|
627 | { |
---|
628 | "//I is integrally closed!"; |
---|
629 | } |
---|
630 | |
---|
631 | setring BAS; |
---|
632 | list result=I; |
---|
633 | if (size(#)>0) |
---|
634 | { |
---|
635 | for (int k=1;k<=#[1]-1;k++) |
---|
636 | { |
---|
637 | result=insert(result,I*result[k],k); |
---|
638 | } |
---|
639 | } |
---|
640 | return(result); |
---|
641 | } |
---|
642 | |
---|
643 | // construct the fractions corresponding to the generators of the |
---|
644 | // closure of I and its powers, depending on # (in fact, they will |
---|
645 | // not be real fractions, of course). This is done in ClosurePower. |
---|
646 | |
---|
647 | list result = ClosurePower(images,#); |
---|
648 | |
---|
649 | // finally fetch the result to the old basering |
---|
650 | |
---|
651 | setring BAS; |
---|
652 | list result=fetch(Kxt,result); |
---|
653 | return(result); |
---|
654 | } |
---|
655 | example |
---|
656 | { |
---|
657 | ring R=0,(x,y),dp; |
---|
658 | ideal I = x2,xy4,y5; |
---|
659 | list J = normalI(I); |
---|
660 | I; |
---|
661 | J; // J is the integral closure of I |
---|
662 | } |
---|