1 | // rinvar.lib |
---|
2 | // Invariants of reductive groups |
---|
3 | // |
---|
4 | // Implementation by : Thomas Bayer |
---|
5 | // Current Adress: |
---|
6 | // Institut fuer Informatik, Technische Universitaet Muenchen |
---|
7 | // www: http://wwwmayr.informatik.tu-muenchen.de/personen/bayert/ |
---|
8 | // email : bayert@in.tum.de |
---|
9 | // |
---|
10 | // Last change 10.12.2000 |
---|
11 | // |
---|
12 | // written in the frame of the diploma thesis (advisor: Prof. Gert-Martin Greuel) |
---|
13 | // "Computations of moduli spaces of semiquasihomogenous singularities and an |
---|
14 | // implementation in Singular" |
---|
15 | // Arbeitsgruppe Algebraische Geometrie, Fachbereich Mathematik, |
---|
16 | // Universitaet Kaiserslautern |
---|
17 | /////////////////////////////////////////////////////////////////////////////// |
---|
18 | |
---|
19 | version="Id: rinvar.lib,v 1.0 2000/12/10 17:32:15 Singular Exp $"; |
---|
20 | info=" |
---|
21 | LIBRARY: rinvar.lib PROCEDURES FOR INVARIANT RINGS OF REDUCTIVE GROUPS |
---|
22 | |
---|
23 | AUTHOR: Thomas Bayer, email: tbayer@in.tum.de |
---|
24 | |
---|
25 | PROCEDURES: |
---|
26 | HilbertSeries(I, w) Hilbert series of the ideal I w.r.t. weight w |
---|
27 | HilbertWeights(I, w) weighted degrees of the generators of I |
---|
28 | ImageVariety(I, F) ideal of the image variety F(variety(I)) |
---|
29 | ImageGroup(G, F) ideal of G w.r.t. the induced representation |
---|
30 | InvariantRing(G, Gaction) generators of the invariant ring of G |
---|
31 | InvariantQ(f, G, Gaction) decide if f is invariant w.r.t. G |
---|
32 | LinearizeAction(G, Gaction) linearization of the action 'Gaction' of G |
---|
33 | LinearActionQ(action,s,t) decide if action is linear in var(s..nvars) |
---|
34 | LinearCombinationQ(base, f) decide if f is in the linear hull of 'base' |
---|
35 | MinimalDecomposition(f,s,t) minimal decomposition of f (like coef) |
---|
36 | NullCone(G, act) ideal of the nullcone of the action 'act' of G |
---|
37 | ReynoldsImage(RO,f) image of f under the Reynolds operator 'RO' |
---|
38 | ReynoldsOperator(G, Gaction) Reynolds operator of the group G |
---|
39 | SimplifyIdeal(I[,m,s]) simplify the ideal I (try to reduce variables) |
---|
40 | TransferIdeal(R,name,nA) transfer the ideal 'name' from R to basering |
---|
41 | "; |
---|
42 | |
---|
43 | LIB "presolve.lib"; |
---|
44 | LIB "elim.lib"; |
---|
45 | LIB "zeroset.lib"; |
---|
46 | |
---|
47 | /////////////////////////////////////////////////////////////////////////////// |
---|
48 | |
---|
49 | proc EquationsOfEmbedding(ideal embedding, int nrs) |
---|
50 | "USAGE: EquationsOfEmbedding(embedding, s); ideal embedding; int s; |
---|
51 | PUROPSE: compute the ideal of the variety parameterized by 'embedding' by |
---|
52 | implicitation and change the variables to the old ones. |
---|
53 | RETURN: ideal |
---|
54 | ASSUME: nvars(basering) = n, size(embedding) = r and s = n - r. |
---|
55 | The polynomials of embedding contain only var(s + 1 .. n). |
---|
56 | NOTE: the result is the Zariski closure of the parameterized variety |
---|
57 | EXAMPLE: example EquationsOfEmbedding; shows an example |
---|
58 | " |
---|
59 | { |
---|
60 | ideal tvars; |
---|
61 | |
---|
62 | for(int i = nrs + 1; i <= nvars(basering); i++) { tvars[i - nrs] = var(i); } |
---|
63 | |
---|
64 | def RE1 = ImageVariety(ideal(0), embedding); // implicitation of the parameterization |
---|
65 | // map F = RE1, tvars; |
---|
66 | map F = RE1, maxideal(1); |
---|
67 | return(F(imageid)); |
---|
68 | } |
---|
69 | example |
---|
70 | {"EXAMPLE:"; echo = 2; |
---|
71 | ring R = 0,(s(1..5), t(1..4)),dp; |
---|
72 | ideal emb = t(1), t(2), t(3), t(3)^2; |
---|
73 | ideal I = EquationsOfEmbedding(emb, 5); |
---|
74 | I; |
---|
75 | } |
---|
76 | |
---|
77 | /////////////////////////////////////////////////////////////////////////////// |
---|
78 | |
---|
79 | proc ImageGroup(ideal Grp, ideal Gaction) |
---|
80 | "USAGE: ImageGroup(G, action); ideal G, action; |
---|
81 | PUROPSE: compute the ideal of the image of G in GL(m,K) induced by the linear |
---|
82 | action 'action', where G is an algebraic group and 'action' defines |
---|
83 | an action of G on K^m (size(action) = m). |
---|
84 | RETURN: ring, a polynomial ring over the same ground field as the basering, |
---|
85 | containing the ideals 'groupid' and 'actionid'. |
---|
86 | - 'groupid' is the ideal of the image of G (order <= order of G) |
---|
87 | - 'actionid' defines the linear action of 'groupid' on K^m. |
---|
88 | NOTE: 'action' and 'actionid' have the same orbits |
---|
89 | all variables which give only rise to 0's in the m x m matrices of G |
---|
90 | have been omitted. |
---|
91 | ASSUME: basering K[s(1..r),t(1..m)] has r + m variables, G is the ideal of an |
---|
92 | algebraic group and F is an action of G on K^m. G contains only the |
---|
93 | variables s(1)...s(r). The action 'action' is given by polynomials |
---|
94 | f_1,...,f_m in basering, s.t. on the ring level we have |
---|
95 | K[t_1,...,t_m] --> K[s_1,...,s_r,t_1,...,t_m]/G |
---|
96 | t_i --> f_i(s_1,...,s_r,t_1,...,t_m) |
---|
97 | EXAMPLE: example ImageGroup; shows an example |
---|
98 | " |
---|
99 | { |
---|
100 | int i, j, k, newVars, nrt, imageSize, dbPrt; |
---|
101 | ideal matrixEntries; |
---|
102 | matrix coMx; |
---|
103 | poly tVars, mPoly; |
---|
104 | string ringSTR1, ringSTR2, order; |
---|
105 | |
---|
106 | dbPrt = printlevel-voice+2; |
---|
107 | dbprint(dbPrt, "Image Group of " + string(Grp) + ", action = " + string(Gaction)); |
---|
108 | def RIGB = basering; |
---|
109 | mPoly = minpoly; |
---|
110 | tVars = 1; |
---|
111 | k = 0; |
---|
112 | |
---|
113 | // compute the representation of G induced by Gaction, i.e., a matrix |
---|
114 | // of size(Gaction) x size(Gaction) and polynomials in s(1),...,s(r) as entries |
---|
115 | // the matrix is represented as the list 'matrixEntries' where |
---|
116 | // the entries which are always 0 are omittet. |
---|
117 | |
---|
118 | for(i = 1; i <= ncols(Gaction); i++) { |
---|
119 | tVars = tVars * var(i + nvars(basering) - ncols(Gaction)); |
---|
120 | } |
---|
121 | for(i = 1; i <= ncols(Gaction); i++){ |
---|
122 | coMx = coef(Gaction[i], tVars); |
---|
123 | for(j = 1; j <= ncols(coMx); j++){ |
---|
124 | k++; |
---|
125 | matrixEntries[k] = coMx[2, j]; |
---|
126 | } |
---|
127 | } |
---|
128 | newVars = size(matrixEntries); |
---|
129 | nrt = ncols(Gaction); |
---|
130 | |
---|
131 | // this matrix defines an embedding of G into GL(m, K). |
---|
132 | // in the next step the ideal of this image is computed |
---|
133 | // note that we have omitted all variables which give give rise |
---|
134 | // only to 0's. Note that z(1..newVars) are slack variables |
---|
135 | |
---|
136 | order = "(dp(" + string(nvars(basering)) + "), dp);"; |
---|
137 | ringSTR1 = "ring RIGR = (" + charstr(basering) + "), (" + varstr(basering) + ", z(1.." + string(newVars) + "))," + order; |
---|
138 | execute(ringSTR1); |
---|
139 | minpoly = number(imap(RIGB, mPoly)); |
---|
140 | ideal I1, I2, Gn, G, F, mEntries, newGaction; |
---|
141 | G = imap(RIGB, Grp); |
---|
142 | F = imap(RIGB, Gaction); |
---|
143 | mEntries = imap(RIGB, matrixEntries); |
---|
144 | |
---|
145 | // prepare the ideals needed to compute the image |
---|
146 | // and compute the new action of the image on K^m |
---|
147 | |
---|
148 | for(i = 1; i <= size(mEntries); i++) { I1[i] = var(i + nvars(RIGB)) - mEntries[i]; } |
---|
149 | I1 = std(I1); |
---|
150 | |
---|
151 | for(i = 1; i <= ncols(F); i++) { newGaction[i] = reduce(F[i], I1); } |
---|
152 | I2 = G, I1; |
---|
153 | I2 = std(I2); |
---|
154 | Gn = nselect(I2, 1, nvars(RIGB)); |
---|
155 | imageSize = ncols(Gn); |
---|
156 | |
---|
157 | // create a new basering which might contain more variables |
---|
158 | // s(1..newVars) as the original basering and map the ideal |
---|
159 | // Gn (contians only z(1..newVars)) to this ring |
---|
160 | |
---|
161 | ringSTR2 = "ring RIGS = (" + charstr(basering) + "), (s(1.." + string(newVars) + "), t(1.." + string(nrt) + ")), lp;"; |
---|
162 | execute(ringSTR2); |
---|
163 | minpoly = number(imap(RIGB, mPoly)); |
---|
164 | ideal mapIdeal, groupid, actionid; |
---|
165 | int offset; |
---|
166 | |
---|
167 | // construct the map F : RIGB -> RIGS |
---|
168 | |
---|
169 | for(i = 1; i <= nvars(RIGB) - nrt; i++) { mapIdeal[i] = 0;} // s(i) -> 0 |
---|
170 | offset = nvars(RIGB) - nrt; |
---|
171 | for(i = 1; i <= nrt; i++) { mapIdeal[i + offset] = var(newVars + i);} // t(i) -> t(i) |
---|
172 | offset = offset + nrt; |
---|
173 | for(i = 1; i <= newVars; i++) { mapIdeal[i + offset] = var(i);} // z(i) -> s(i) |
---|
174 | |
---|
175 | // map Gn and newGaction to RIGS |
---|
176 | |
---|
177 | map F = RIGR, mapIdeal; |
---|
178 | groupid = F(Gn); |
---|
179 | actionid = F(newGaction); |
---|
180 | export(groupid); |
---|
181 | export(actionid); |
---|
182 | dbprint(dbPrt, " |
---|
183 | // 'ImageGroup' created a new ring. |
---|
184 | // To see the ring, type (if the name of the ring is R): |
---|
185 | show(R); |
---|
186 | // To access the ideal of the image-group Gn of the group G w.r.t. 'action' |
---|
187 | // and the new action of Gn, type |
---|
188 | def R = ImageGroup(G, action); setring R; groupid; actionid; |
---|
189 | // 'groupid' is the ideal defining the image of the group G w.r.t. 'action' |
---|
190 | // and 'actionid' is the new action of 'groupid'. |
---|
191 | "); |
---|
192 | return(RIGS); |
---|
193 | } |
---|
194 | example |
---|
195 | {"EXAMPLE:"; echo = 2; |
---|
196 | ring B = 0,(s(1..2), t(1..2)),dp; |
---|
197 | ideal G = s(1)^3-1, s(2)^10-1; |
---|
198 | ideal action = s(1)*s(2)^8*t(1), s(1)*s(2)^7*t(2); |
---|
199 | def R = ImageGroup(G, action); |
---|
200 | setring R; |
---|
201 | groupid; |
---|
202 | actionid; |
---|
203 | } |
---|
204 | |
---|
205 | /////////////////////////////////////////////////////////////////////////////// |
---|
206 | |
---|
207 | proc HilbertWeights(ideal I, wt) |
---|
208 | "USAGE: HilbertWeights(I, w); ideal I, intvec wt |
---|
209 | PUROPSE: compute the weights of the "slack" varaibles needed for the |
---|
210 | computation of the algebraic relations of the generators of 'I' s.t. |
---|
211 | the Hilbert driven 'std' can be used. |
---|
212 | RETURN: intvec |
---|
213 | ASSUME: basering = K[t_1,...,t_m,...], 'I' is quasihomogenous w.r.t. 'w' and |
---|
214 | contains only polynomials in t_1,...,t_m |
---|
215 | " |
---|
216 | { |
---|
217 | int offset = size(wt); |
---|
218 | intvec wtn = wt; |
---|
219 | |
---|
220 | for(int i = 1; i <= size(I); i++) { wtn[offset + i] = deg(I[i], wt); } |
---|
221 | return(wtn); |
---|
222 | } |
---|
223 | |
---|
224 | /////////////////////////////////////////////////////////////////////////////// |
---|
225 | |
---|
226 | proc HilbertSeries(ideal I, wt) |
---|
227 | "USAGE: HilbertSeries(I, w); ideal I, intvec wt |
---|
228 | PUROPSE: compute the polynomial p of the Hilbert Series,represented by p/q, of |
---|
229 | the ring K[t_1,...,t_m,y_1,...,y_r]/I1 where 'w' are the weights of |
---|
230 | the variables, computed, e.g., by 'HilbertWeights', 'I1' is of the |
---|
231 | form I[1] - y_1,...,I[r] - y_r and is quasihomogenous w.r.t. 'w' |
---|
232 | RETURN: intvec |
---|
233 | NOTE: the leading 0 of the result does not belong to p, but is needed in |
---|
234 | the hilbert-driven 'std'. |
---|
235 | " |
---|
236 | { |
---|
237 | int i; |
---|
238 | intvec hs1; |
---|
239 | matrix coMx; |
---|
240 | poly f = 1; |
---|
241 | |
---|
242 | for(i = 1; i <= ncols(I); i++) { f = f * (1 - var(1)^deg(I[i], wt));} |
---|
243 | coMx = coeffs(f, var(1)); |
---|
244 | for(i = 1; i <= deg(f) + 1; i++) { |
---|
245 | hs1[i] = int(coMx[i, 1]); |
---|
246 | } |
---|
247 | hs1[size(hs1) + 1] = 0; |
---|
248 | return(hs1); |
---|
249 | } |
---|
250 | |
---|
251 | proc HilbertSeries1(wt) |
---|
252 | "USAGE: HilbertSeries1(wt); ideal I, intvec wt |
---|
253 | PUROPSE: compute the polynomial p of the Hilbert Series represented by p/q of |
---|
254 | the ring K[t_1,...,t_m,y_1,...,y_r]/I where I is a complete inter- |
---|
255 | section and the generator I[i] has degree wt[i] |
---|
256 | RETURN: poly |
---|
257 | " |
---|
258 | { |
---|
259 | int i, j; |
---|
260 | intvec hs1; |
---|
261 | matrix ma; |
---|
262 | poly f = 1; |
---|
263 | |
---|
264 | for(i = 1; i <= size(wt); i++) { f = f * (1 - var(1)^wt[i]);} |
---|
265 | ma = coef(f, var(1)); |
---|
266 | j = ncols(ma); |
---|
267 | for(i = 0; i <= deg(f); i++) { |
---|
268 | if(var(1)^i == ma[1, j]) { |
---|
269 | hs1[i + 1] = int(ma[2, j]); |
---|
270 | j--; |
---|
271 | } |
---|
272 | else { hs1[i + 1] = 0; } |
---|
273 | } |
---|
274 | hs1[size(hs1) + 1] = 0; |
---|
275 | return(hs1); |
---|
276 | } |
---|
277 | |
---|
278 | /////////////////////////////////////////////////////////////////////////////// |
---|
279 | |
---|
280 | proc ImageVariety(ideal I, F, list #) |
---|
281 | "USAGE: ImageVariety(ideal I, F [, w]);ideal I; F is a list/ideal, intvec w. |
---|
282 | PUROPSE: compute the Zariski closure of the image of the variety of I under |
---|
283 | the morphism F. |
---|
284 | NOTE: if 'I' and 'F' are quasihomogenous w.r.t. 'w' then the Hilbert-driven |
---|
285 | 'std' is used. |
---|
286 | RETURN: polynomial ring over the same groundfield, containing the ideal |
---|
287 | 'imageid'. The variables are Y(1),...,Y(k) where k = size(F) |
---|
288 | - 'imageid' is the ideal of the Zariski closure of F(X) where |
---|
289 | X is the variety of I. |
---|
290 | EXAMPLE: example ImageVariety; shows an example |
---|
291 | " |
---|
292 | { |
---|
293 | int i, dbPrt, nrNewVars; |
---|
294 | intvec wt, wth, hs1; |
---|
295 | string ringSTR1, ringSTR2, order; |
---|
296 | |
---|
297 | def RARB = basering; |
---|
298 | nrNewVars = size(F); |
---|
299 | |
---|
300 | dbPrt = printlevel-voice+2; |
---|
301 | dbprint(dbPrt, "ImageVariety of " + string(I) + " under the map " + string(F)); |
---|
302 | |
---|
303 | if(size(#) > 0) { wt = #[1]; } |
---|
304 | |
---|
305 | // create new ring for elimination, Y(1),...,Y(m) are slack variables. |
---|
306 | |
---|
307 | poly mPoly = minpoly; |
---|
308 | order = "(dp(" + string(nvars(basering)) + "), dp);"; |
---|
309 | ringSTR1 = "ring RAR1 = (" + charstr(basering) + "), (" + varstr(basering) + ", Y(1.." + string(nrNewVars) + ")), " + order; |
---|
310 | ringSTR2 = "ring RAR2 = (" + charstr(basering) + "), Y(1.." + string(nrNewVars) + "), dp;"; |
---|
311 | execute(ringSTR1); |
---|
312 | minpoly = number(imap(RARB, mPoly)); |
---|
313 | |
---|
314 | ideal I, J1, J2, Fm; |
---|
315 | |
---|
316 | I = imap(RARB, I); |
---|
317 | Fm = imap(RARB, F); |
---|
318 | |
---|
319 | if(size(wt) > 1) { |
---|
320 | wth = HilbertWeights(Fm, wt); |
---|
321 | hs1 = HilbertSeries(Fm, wt); |
---|
322 | } |
---|
323 | |
---|
324 | // get the ideal of the graph of F : X -> Y and compute a standard basis |
---|
325 | |
---|
326 | for(i = 1; i <= nrNewVars; i++) { J1[i] = var(i + nvars(RARB)) - Fm[i];} |
---|
327 | J1 = J1, I; |
---|
328 | if(size(wt) > 1) { |
---|
329 | J1 = std(J1, hs1, wth); // Hilbert-driven algorithm |
---|
330 | } |
---|
331 | else { |
---|
332 | J1 = std(J1); |
---|
333 | } |
---|
334 | |
---|
335 | // forget all elements which contain other than the slack variables |
---|
336 | |
---|
337 | J2 = nselect(J1, 1, nvars(RARB)); |
---|
338 | |
---|
339 | execute(ringSTR2); |
---|
340 | minpoly = number(imap(RARB, mPoly)); |
---|
341 | ideal imageid = imap(RAR1, J2); |
---|
342 | export(imageid); |
---|
343 | dbprint(dbPrt, " |
---|
344 | // 'ImageVariety' created a new ring. |
---|
345 | // To see the ring, type (if the name of the ring is R): |
---|
346 | show(R); |
---|
347 | // To access the ideal of the image F(X), where F is a map and X is a variety |
---|
348 | // with ideal I,type |
---|
349 | def R = ImageVariety(I, F); setring R; imageid; |
---|
350 | // 'imageid' is the ideal of the Zariski closure of F(X). |
---|
351 | "); |
---|
352 | return(RAR2); |
---|
353 | } |
---|
354 | example |
---|
355 | {"EXAMPLE:"; echo = 2; |
---|
356 | ring B = 0,(x,y),dp; |
---|
357 | ideal I = x4 - y4; |
---|
358 | ideal F = x2, y2, x*y; |
---|
359 | def R = ImageVariety(I, F); |
---|
360 | setring R; |
---|
361 | imageid; |
---|
362 | } |
---|
363 | |
---|
364 | /////////////////////////////////////////////////////////////////////////////// |
---|
365 | |
---|
366 | proc LinearizeAction(ideal Grp, Gaction, int nrs) |
---|
367 | "USAGE: LinearizeAction(G,action,r); ideal G, action; int r |
---|
368 | PUROPSE: linearize the group action 'action' and find an equivariant embedding |
---|
369 | of K^m where m = size(action). |
---|
370 | ASSUME: G contains only variables var(1..r) (r = nrs) |
---|
371 | basering = K[s(1..r),t(1..m)], K = Q or K = Q(a) and minpoly != 0. |
---|
372 | RETURN: polynomial ring contianing the ideals 'actionid', 'embedid', 'groupid' |
---|
373 | - 'actionid' is the ideal defining the linearized action of G |
---|
374 | - 'embedid' is a parameterization of an equivariant embedding (closed) |
---|
375 | - 'groupid' is the ideal of G in the new ring |
---|
376 | NOTE: set printlevel > 0 to see a trace |
---|
377 | EXAMPLE: example LinearizeAction; shows an example |
---|
378 | " |
---|
379 | { |
---|
380 | int i, j, k, ok, loop, nrt, sizeOfDecomp, dbPrt; |
---|
381 | intvec wt; |
---|
382 | ideal action, basis, G, reduceIdeal; |
---|
383 | matrix decompMx; |
---|
384 | poly actCoeff; |
---|
385 | string str, order, mPoly; |
---|
386 | |
---|
387 | dbPrt = printlevel-voice+2; |
---|
388 | dbprint(dbPrt, "LinearizeAction " + string(Gaction)); |
---|
389 | def RLAR = basering; |
---|
390 | mPoly = "minpoly = " + string(minpoly) + ";"; |
---|
391 | order = ordstr(basering); |
---|
392 | nrt = ncols(Gaction); |
---|
393 | for(i = 1; i <= nrs; i++) { wt[i] = 0;} |
---|
394 | for(i = nrs + 1; i <= nrs + nrt; i++) { basis[i - nrs] = var(i); wt[i] = 1;} |
---|
395 | dbprint(dbPrt, " basis = " + string(basis)); |
---|
396 | if(attrib(Grp, "isSB")) { G = Grp; } |
---|
397 | else { G = std(Grp); } |
---|
398 | reduceIdeal = G; |
---|
399 | action = Gaction; |
---|
400 | loop = 1; |
---|
401 | i = 1; |
---|
402 | |
---|
403 | // check if each component of 'action' is linear in t(1),...,t(nrt). |
---|
404 | |
---|
405 | while(loop){ |
---|
406 | if(deg(action[i], wt) <= 1) { |
---|
407 | sizeOfDecomp = 0; |
---|
408 | dbprint(dbPrt, " " + string(action[i]) + " is linear"); |
---|
409 | } |
---|
410 | else { // action[i] is not linear |
---|
411 | |
---|
412 | // compute the minimal decomposition of action[i] |
---|
413 | // action[i] = decompMx[1,1]*decompMx[2,1] + ... + decompMx[1,k]*decompMx[2,k] |
---|
414 | // decompMx[1,j] contains variables var(1)...var(nrs) |
---|
415 | // decompMx[2,j] contains variables var(nrs + 1)...var(nvars(basering)) |
---|
416 | |
---|
417 | dbprint(dbPrt, " " + string(action[i]) + " is not linear, a minimal decomposition is :"); |
---|
418 | decompMx = MinimalDecomposition(action[i], nrs, nrt); |
---|
419 | sizeOfDecomp = ncols(decompMx); |
---|
420 | dbprint(dbPrt, decompMx); |
---|
421 | |
---|
422 | for(j = 1; j <= sizeOfDecomp; j++) { // check if decompMx[2,j] is a linear combination of basis elements |
---|
423 | actCoeff = decompMx[2, j]; |
---|
424 | ok = LinearCombinationQ(basis, actCoeff, nrt + nrs); |
---|
425 | if(ok == 0) { |
---|
426 | |
---|
427 | // nonlinear element, compute new component of the action |
---|
428 | |
---|
429 | dbprint(dbPrt, " the polynomial " + string(actCoeff) + " is not a linear combination of the elements of basis"); |
---|
430 | nrt++; |
---|
431 | str = charstr(basering) + ", (" + varstr(basering) + ",t(" + string(nrt) + ")),"; |
---|
432 | if(defined(RLAB)) { kill(RLAB);} |
---|
433 | def RLAB = basering; |
---|
434 | if(defined(RLAR)) { kill(RLAR);} |
---|
435 | execute("ring RLAR = " + str + "(" + order + ");"); |
---|
436 | execute(mPoly); |
---|
437 | |
---|
438 | ideal basis, action, G, reduceIdeal; |
---|
439 | matrix decompMx; |
---|
440 | map F; |
---|
441 | poly actCoeff; |
---|
442 | |
---|
443 | wt[nrs + nrt] = 1; |
---|
444 | basis = imap(RLAB, basis), imap(RLAB, actCoeff); |
---|
445 | action = imap(RLAB, action); |
---|
446 | decompMx = imap(RLAB, decompMx); |
---|
447 | actCoeff = imap(RLAB, actCoeff); |
---|
448 | G = imap(RLAB, G); |
---|
449 | attrib(G, "isSB", 1); |
---|
450 | reduceIdeal = imap(RLAB, reduceIdeal), actCoeff - var(nrs + nrt); |
---|
451 | |
---|
452 | // compute action on the new basis element |
---|
453 | |
---|
454 | for(k = 1; k <= nrs; k++) { F[k] = 0;} |
---|
455 | for(k = nrs + 1; k < nrs + nrt; k++) { F[k] = action[k - nrs];} |
---|
456 | actCoeff = reduce(F(actCoeff), G); |
---|
457 | action[ncols(action) + 1] = actCoeff; |
---|
458 | dbprint(dbPrt, " extend basering by " + string(var(nrs + nrt))); |
---|
459 | dbprint(dbPrt, " new basis = " + string(basis)); |
---|
460 | dbprint(dbPrt, " action of G on new basis element = " + string(actCoeff)); |
---|
461 | dbprint(dbPrt, " decomp : " + string(decompMx[2, j]) + " -> " + string(var(nrs + nrt))); |
---|
462 | } // end if |
---|
463 | else { |
---|
464 | dbprint(dbPrt, " the polynomial " + string(actCoeff) + " is a linear combination of the elements of basis"); |
---|
465 | } |
---|
466 | } // end for |
---|
467 | reduceIdeal = std(reduceIdeal); |
---|
468 | action[i] = reduce(action[i], reduceIdeal); |
---|
469 | } // end else |
---|
470 | if(i < ncols(action)) { i++;} |
---|
471 | else {loop = 0;} |
---|
472 | } // end while |
---|
473 | if(defined(actionid)) { kill(actionid); } |
---|
474 | ideal actionid, embedid, groupid; |
---|
475 | actionid = action; |
---|
476 | embedid = basis; |
---|
477 | groupid = G; |
---|
478 | export(actionid); |
---|
479 | export(embedid); |
---|
480 | export(groupid); |
---|
481 | dbprint(dbPrt, " |
---|
482 | // 'LinearizeAction' created a new ring. |
---|
483 | // To see the ring, type (if the name of the ring is R): |
---|
484 | show(R); |
---|
485 | // To access the new action and the equivariant embedding, where G and 'action' |
---|
486 | // are the original group and group-action contained in K[s(1..ns)] and |
---|
487 | // K[s(1..ns),t(1..nt)] respectively, type |
---|
488 | def R = LinearizeAction(G, action, ns, nt); setring R; actionid; embedid; groupid |
---|
489 | // 'actionid' is the ideal of the linearized action, 'embedid' is the ideal |
---|
490 | // defining the equivariant embedding and 'grouid' is the ideal G. |
---|
491 | "); |
---|
492 | return(RLAR); |
---|
493 | } |
---|
494 | example |
---|
495 | {"EXAMPLE:"; echo = 2; |
---|
496 | ring B = 0,(s(1..5), t(1..3)),dp; |
---|
497 | ideal G = s(3)-s(4), s(2)-s(5), s(4)*s(5), s(1)^2*s(4)+s(1)^2*s(5)-1, s(1)^2*s(5)^2-s(5), s(4)^4-s(5)^4+s(1)^2, s(1)^4+s(4)^3-s(5)^3, s(5)^5-s(1)^2*s(5); |
---|
498 | ideal action = -s(4)*t(1)+s(5)*t(1), -s(4)^2*t(2)+2*s(4)^2*t(3)^2+s(5)^2*t(2), s(4)*t(3)+s(5)*t(3); |
---|
499 | LinearActionQ(action, 5); |
---|
500 | def R = LinearizeAction(G, action, 5); |
---|
501 | setring R; |
---|
502 | R; |
---|
503 | actionid; |
---|
504 | embedid; |
---|
505 | groupid; |
---|
506 | LinearActionQ(actionid, 5); |
---|
507 | } |
---|
508 | |
---|
509 | /////////////////////////////////////////////////////////////////////////////// |
---|
510 | |
---|
511 | proc LinearActionQ(Gaction, int nrs) |
---|
512 | "USAGE: LinearActionQ(action,nrs,nrt); ideal action, int nrs |
---|
513 | PUROPSE: check if the action defined by 'action' is linear w.r.t. the variables |
---|
514 | var(nrs + 1...nvars(basering)). |
---|
515 | RETURN: 0 action not linear |
---|
516 | 1 action is linear |
---|
517 | EXAMPLE: example LinearActionQ; shows an example |
---|
518 | " |
---|
519 | { |
---|
520 | int i, nrt, loop; |
---|
521 | intvec wt; |
---|
522 | |
---|
523 | nrt = ncols(Gaction); |
---|
524 | for(i = 1; i <= nrs; i++) { wt[i] = 0;} |
---|
525 | for(i = nrs + 1; i <= nrs + nrt; i++) { wt[i] = 1;} |
---|
526 | loop = 1; |
---|
527 | i = 1; |
---|
528 | while(loop) |
---|
529 | { |
---|
530 | if(deg(Gaction[i], wt) > 1) { loop = 0; } |
---|
531 | else |
---|
532 | { |
---|
533 | i++; |
---|
534 | if(i > ncols(Gaction)) { loop = 0;} |
---|
535 | } |
---|
536 | } |
---|
537 | return(i > ncols(Gaction)); |
---|
538 | } |
---|
539 | example |
---|
540 | {"EXAMPLE:"; echo = 2; |
---|
541 | ring R = 0,(s(1..5), t(1..3)),dp; |
---|
542 | ideal G = s(3)-s(4), s(2)-s(5), s(4)*s(5), s(1)^2*s(4)+s(1)^2*s(5)-1, s(1)^2*s(5)^2-s(5), s(4)^4-s(5)^4+s(1)^2, s(1)^4+s(4)^3-s(5)^3, s(5)^5-s(1)^2*s(5); |
---|
543 | ideal Gaction = -s(4)*t(1)+s(5)*t(1), -s(4)^2*t(2)+2*s(4)^2*t(3)^2+s(5)^2*t(2), s(4)*t(3)+s(5)*t(3); |
---|
544 | LinearActionQ(Gaction, 5, 3); |
---|
545 | } |
---|
546 | |
---|
547 | /////////////////////////////////////////////////////////////////////////////// |
---|
548 | |
---|
549 | proc LinearCombinationQ(ideal I, poly f) |
---|
550 | "USAGE: LinearCombination(I, f); ideal I, poly f |
---|
551 | PUROPSE: test if f can be written as a linear combination of the generators of I. |
---|
552 | RETURN: 0 f is not a linear combination |
---|
553 | 1 f is a linear combination |
---|
554 | " |
---|
555 | { |
---|
556 | int i, loop, sizeJ; |
---|
557 | ideal J; |
---|
558 | |
---|
559 | J = I, f; |
---|
560 | sizeJ = size(J); |
---|
561 | |
---|
562 | def RLC = ImageVariety(ideal(0), J); // compute algebraic relations |
---|
563 | setring RLC; |
---|
564 | matrix coMx; |
---|
565 | poly relation = 0; |
---|
566 | |
---|
567 | loop = 1; |
---|
568 | i = 1; |
---|
569 | while(loop) |
---|
570 | { // look for a linear relation containing Y(nr) |
---|
571 | if(deg(imageid[i]) == 1) |
---|
572 | { |
---|
573 | coMx = coef(imageid[i], var(sizeJ)); |
---|
574 | if(coMx[1,1] == var(sizeJ)) |
---|
575 | { |
---|
576 | relation = imageid[i]; |
---|
577 | loop = 0; |
---|
578 | } |
---|
579 | } |
---|
580 | else |
---|
581 | { |
---|
582 | i++; |
---|
583 | if(i > ncols(imageid)) { loop = 0;} |
---|
584 | } |
---|
585 | } |
---|
586 | return(i <= ncols(imageid)); |
---|
587 | } |
---|
588 | |
---|
589 | /////////////////////////////////////////////////////////////////////////////// |
---|
590 | |
---|
591 | proc InvariantRing(ideal G, ideal action, list #) |
---|
592 | "USAGE: InvariantRing(G, Gact [, opt]); ideal G, Gact; int opt |
---|
593 | PUROPSE: compute generators of the invariant ring of G w.r.t. the action 'Gact' |
---|
594 | ASSUME: G is a finite group and 'Gact' is a linear action. |
---|
595 | RETURN: polynomial ring over a simple extension of the groundfield of the |
---|
596 | basering (the extension might be trivial), containing the ideals |
---|
597 | 'invars' and 'groupid' and the poly 'newA' |
---|
598 | - 'invars' contains the algebra-generators of the invariant ring |
---|
599 | - 'groupid' is the ideal of G in the new ring |
---|
600 | - 'newA' if the minpoly changes this is the new representation of the |
---|
601 | algebraic number, otherwise it is set to 'a'. |
---|
602 | NOTE: the delivered ring might have a different minimal polynomial |
---|
603 | EXAMPLE: example InvariantRing; shows an example |
---|
604 | " |
---|
605 | { |
---|
606 | int i, ok, dbPrt, noReynolds, primaryDec; |
---|
607 | ideal invarsGens, groupid; |
---|
608 | |
---|
609 | dbPrt = printlevel-voice+2; |
---|
610 | |
---|
611 | if(size(#) > 0) { primaryDec = #[1]; } |
---|
612 | else { primaryDec = 0; } |
---|
613 | |
---|
614 | dbprint(dbPrt, "InvariantRing of " + string(G)); |
---|
615 | dbprint(dbPrt, " action = " + string(action)); |
---|
616 | |
---|
617 | if(!attrib(G, "isSB")) { groupid = std(G);} |
---|
618 | else { groupid = G; } |
---|
619 | |
---|
620 | // compute the nullcone of G by means of Derksen's algorithm |
---|
621 | |
---|
622 | invarsGens = NullCone(groupid, action); // compute the nullcone of the linear action |
---|
623 | dbprint(dbPrt, " generators of zero-fibre ideal are " + string(invarsGens)); |
---|
624 | |
---|
625 | // make all generators of the nullcone invariant |
---|
626 | // if necessary, compute the Reynolds Operator, i.e., find all elements |
---|
627 | // of the variety defined by G. It might be necessary to extend the groundfield. |
---|
628 | |
---|
629 | def IRB = basering; |
---|
630 | if(defined(RIRR)) { kill(RIRR);} |
---|
631 | def RIRR = basering; |
---|
632 | setring RIRR; |
---|
633 | export(RIRR); |
---|
634 | export(invarsGens); |
---|
635 | noReynolds = 1; |
---|
636 | dbprint(dbPrt, " nullcone is generated by " + string(size(invarsGens))); |
---|
637 | dbprint(dbPrt, " degrees = " + string(maxdeg(invarsGens))); |
---|
638 | for(i = 1; i <= ncols(invarsGens); i++){ |
---|
639 | ok = InvariantQ(invarsGens[i], groupid, action); |
---|
640 | if(ok) { dbprint(dbPrt, string(i) + ": poly " + string(invarsGens[i]) + " is invariant");} |
---|
641 | else { |
---|
642 | if(noReynolds) { |
---|
643 | |
---|
644 | // compute the Reynolds operator and change the ring ! |
---|
645 | |
---|
646 | def RORN = ReynoldsOperator(groupid, action, primaryDec); |
---|
647 | noReynolds = 0; |
---|
648 | setring RORN; |
---|
649 | export(RORN); |
---|
650 | ideal groupid = std(id); |
---|
651 | attrib(groupid, "isSB", 1); |
---|
652 | ideal action = actionid; |
---|
653 | ideal invarsGens = TransferIdeal(RIRR, "invarsGens", newA); |
---|
654 | export(invarsGens); |
---|
655 | kill(RIRR); |
---|
656 | |
---|
657 | } |
---|
658 | dbprint(dbPrt, string(i) + ": poly " + string(invarsGens[i]) + " is NOT invariant"); |
---|
659 | invarsGens[i] = ReynoldsImage(ROelements, invarsGens[i]); |
---|
660 | dbprint(dbPrt, " --> " + string(invarsGens[i])); |
---|
661 | } |
---|
662 | } |
---|
663 | for(i = 1; i <= ncols(invarsGens); i++){ |
---|
664 | ok = InvariantQ(invarsGens[i], groupid, action); |
---|
665 | if(ok) { dbprint(dbPrt, string(i) + ": poly " + string(invarsGens[i]) + " is invariant"); } |
---|
666 | else { print(string(i) + ": Fatal Error with Reynolds ");} |
---|
667 | } |
---|
668 | kill(IRB); |
---|
669 | if(noReynolds == 0) { |
---|
670 | def RIRS = RORN; |
---|
671 | setring(RIRS); |
---|
672 | kill(RORN);export(groupid); |
---|
673 | } |
---|
674 | else { |
---|
675 | def RIRS = RIRR; |
---|
676 | kill(RIRR); |
---|
677 | setring(RIRS); |
---|
678 | export(groupid); |
---|
679 | } |
---|
680 | ideal invars = invarsGens; |
---|
681 | kill(invarsGens); |
---|
682 | export(invars); |
---|
683 | // export(groupid); |
---|
684 | dbprint(dbPrt, " |
---|
685 | // 'InvariantRing' created a new ring. |
---|
686 | // To see the ring, type (if the name of the ring is R): |
---|
687 | show(R); |
---|
688 | // To access the generators of the invariant ring of G w.r.t. the linear |
---|
689 | // group-action 'action' of G, where G is contained in K[s(1..ns)] and |
---|
690 | // 'action' in K[s(1..ns),t(1..nt)], type |
---|
691 | def R = InvariantRing(G, action); setring R; invars; |
---|
692 | // 'invars' contains generator of the invariant ring. |
---|
693 | // Note that G is containd in R as the ideal 'groupid', to see it, type |
---|
694 | groupid; |
---|
695 | // Note that 'InvariantRing' might change the minimal polynomial |
---|
696 | // The representation of the algebraic number is given by 'newA' |
---|
697 | "); |
---|
698 | return(RIRS); |
---|
699 | } |
---|
700 | example |
---|
701 | {"EXAMPLE:"; echo = 2; |
---|
702 | ring B = 0, (s(1..2), t(1..2)), dp; |
---|
703 | ideal G = -s(1)+s(2)^3, s(1)^4-1; |
---|
704 | ideal action = s(1)*t(1), s(2)*t(2); |
---|
705 | |
---|
706 | def R = InvariantRing(std(G), action); |
---|
707 | setring R; |
---|
708 | invars; |
---|
709 | } |
---|
710 | |
---|
711 | /////////////////////////////////////////////////////////////////////////////// |
---|
712 | |
---|
713 | proc InvariantQ(poly f, ideal G, action) |
---|
714 | "USAGE: InvariantQ(f, G, action); poly f; ideal G, action |
---|
715 | PUROPSE: check if the polynomial f is invariant w.r.t. G where G acts via |
---|
716 | 'action' on K^m. |
---|
717 | ASSUME: basering = K[s_1,...,s_m,t_1,...,t_m] where K = Q of K = Q(a) and |
---|
718 | minpoly != 0, f contains only t_1,...,t_m, G is the ideal of an |
---|
719 | algebraic group and a standardbasis. |
---|
720 | RETURN: int; |
---|
721 | 0 if f is not invariant, |
---|
722 | 1 if f is invariant |
---|
723 | NOTE: G need not be finite |
---|
724 | EXAMPLE: example InvariantQ; shows an example |
---|
725 | " |
---|
726 | { |
---|
727 | map F; |
---|
728 | |
---|
729 | if(deg(f) == 0) { return(1); } |
---|
730 | for(int i = 1; i <= size(action); i++) { |
---|
731 | F[nvars(basering) - size(action) + i] = action[i]; |
---|
732 | } |
---|
733 | return(reduce(f - F(f), G) == 0); |
---|
734 | } |
---|
735 | |
---|
736 | /////////////////////////////////////////////////////////////////////////////// |
---|
737 | |
---|
738 | proc MinimalDecomposition(poly f, int nrs, int nrt) |
---|
739 | "USAGE: MinimalDecomposition(f,a,b); poly f; int a, b. |
---|
740 | PUROPSE: decompose f as a sum M[1,1]*M[2,1] + ... + M[1,r]*M[2,r] where M[1,i] |
---|
741 | contains only s(1..a), M[2,i] contains only t(1...b) s.t. r is minimal |
---|
742 | ASSUME: f polynomial in K[s(1..a),t(1..b)], K = Q or K = Q(a) and minpoly != 0 |
---|
743 | RETURN: 2 x r matrix M s.t. f = M[1,1]*M[2,1] + ... + M[1,r]*M[2,r] |
---|
744 | EXAMPLE: example MinimalDecomposition; |
---|
745 | " |
---|
746 | { |
---|
747 | int i, sizeOfMx, changed, loop; |
---|
748 | list initialTerms; |
---|
749 | matrix coM1, coM2, coM, decompMx, auxM; |
---|
750 | matrix m[2][2] = 0,1,1,0; |
---|
751 | poly vars1, vars2; |
---|
752 | |
---|
753 | if(f == 0) { return(decompMx); } |
---|
754 | |
---|
755 | // first decompose f w.r.t. t(1..nrt) |
---|
756 | // then decompose f w.r.t. s(1..nrs) |
---|
757 | |
---|
758 | vars1 = RingVarProduct(nrs+1..nrt+nrs); |
---|
759 | vars2 = RingVarProduct(1..nrs); |
---|
760 | coM1 = SimplifyCoefficientMatrix(m*coef(f, vars1)); // exchange rows of decomposition |
---|
761 | coM2 = SimplifyCoefficientMatrix(coef(f, vars2)); |
---|
762 | if(ncols(coM2) < ncols(coM1)) { |
---|
763 | auxM = coM1; |
---|
764 | coM1 = coM2; |
---|
765 | coM2 = auxM; |
---|
766 | } |
---|
767 | decompMx = coM1; // decompMx is the smaller decomposition |
---|
768 | if(ncols(decompMx) == 1) { return(decompMx);} // n = 1 is minimal |
---|
769 | changed = 0; |
---|
770 | loop = 1; |
---|
771 | i = 1; |
---|
772 | |
---|
773 | // first loop, try coM1 |
---|
774 | |
---|
775 | while(loop) { |
---|
776 | coM = MinimalDecomposition(f - coM1[1, i]*coM1[2, i], nrs, nrt); |
---|
777 | if(size(coM) == 1) { sizeOfMx = 0; } // coM = 0 |
---|
778 | else {sizeOfMx = ncols(coM); } // number of columns |
---|
779 | if(sizeOfMx + 1 < ncols(decompMx)) { // shorter decomposition |
---|
780 | changed = 1; |
---|
781 | decompMx = coM; |
---|
782 | initialTerms[1] = coM1[1, i]; |
---|
783 | initialTerms[2] = coM1[2, i]; |
---|
784 | } |
---|
785 | if(sizeOfMx == 1) { loop = 0;} // n = 2 is minimal |
---|
786 | if(i < ncols(coM1)) {i++;} |
---|
787 | else {loop = 0;} |
---|
788 | } |
---|
789 | if(sizeOfMx > 1) { // n > 2 |
---|
790 | loop = 1; // coM2 might yield |
---|
791 | i = 1; // a smaller decomposition |
---|
792 | } |
---|
793 | |
---|
794 | // first loop, try coM2 |
---|
795 | |
---|
796 | while(loop) { |
---|
797 | coM = MinimalDecomposition(f - coM2[1, i]*coM2[2, i], nrs, nrt); |
---|
798 | if(size(coM) == 1) { sizeOfMx = 0; } |
---|
799 | else {sizeOfMx = ncols(coM); } |
---|
800 | if(sizeOfMx + 1 < ncols(decompMx)) { |
---|
801 | changed = 1; |
---|
802 | decompMx = coM; |
---|
803 | initialTerms[1] = coM2[1, i]; |
---|
804 | initialTerms[2] = coM2[2, i]; |
---|
805 | } |
---|
806 | if(sizeOfMx == 1) { loop = 0;} |
---|
807 | if(i < ncols(coM2)) {i++;} |
---|
808 | else {loop = 0;} |
---|
809 | } |
---|
810 | if(!changed) { return(decompMx); } |
---|
811 | if(size(decompMx) == 1) { matrix decompositionM[2][1];} |
---|
812 | else { matrix decompositionM[2][ncols(decompMx) + 1];} |
---|
813 | decompositionM[1, 1] = initialTerms[1]; |
---|
814 | decompositionM[2, 1] = initialTerms[2]; |
---|
815 | if(size(decompMx) > 1) { |
---|
816 | for(i = 1; i <= ncols(decompMx); i++) { |
---|
817 | decompositionM[1, i + 1] = decompMx[1, i]; |
---|
818 | decompositionM[2, i + 1] = decompMx[2, i]; |
---|
819 | } |
---|
820 | } |
---|
821 | return(decompositionM); |
---|
822 | } |
---|
823 | example |
---|
824 | {"EXAMPLE:"; echo = 2; |
---|
825 | ring R = 0, (s(1..2), t(1..2)), dp; |
---|
826 | poly h = s(1)*(t(1) + t(1)^2) + (t(2) + t(2)^2)*(s(1)^2 + s(2)); |
---|
827 | matrix M = MinimalDecomposition(h, 2, 2); |
---|
828 | M; |
---|
829 | M[1,1]*M[2,1] + M[1,2]*M[2,2] - h; |
---|
830 | } |
---|
831 | |
---|
832 | /////////////////////////////////////////////////////////////////////////////// |
---|
833 | |
---|
834 | proc NullCone(ideal G, action) |
---|
835 | "USAGE: NullCone(G, action); ideal G, action |
---|
836 | PUROPSE: compute the ideal of the nullcone of the linear action of G on K^n, |
---|
837 | given by 'action', by means of Deksen's algorithm |
---|
838 | ASSUME: basering = K[s(1..r),t(1..n)], K = Q or K = Q(a) and minpoly != 0, |
---|
839 | G is an ideal of a reductive algebraic group in K[s(1..r)], |
---|
840 | 'action' is a linear group action of G on K^n (n = ncols(action)) |
---|
841 | RETURN: ideal of the nullcone of G. |
---|
842 | NOTE: the generators of the nullcone are homogenous, but i.g. not invariant |
---|
843 | EXAMPLE: example NullCone; shows an example |
---|
844 | " |
---|
845 | { |
---|
846 | int i, nt, dbPrt, offset, groupVars; |
---|
847 | poly minPoly; |
---|
848 | string ringSTR, vars, order; |
---|
849 | def RNCB = basering; |
---|
850 | |
---|
851 | // prepare the ring needed for the computation |
---|
852 | // s(1...) variables of the group |
---|
853 | // t(1...) variables of the affine space |
---|
854 | // y(1...) additional 'slack' variables |
---|
855 | |
---|
856 | nt = size(action); |
---|
857 | order = "(dp(" + string(nvars(basering) - nt) + "), dp);"; |
---|
858 | vars = "(s(1.." + string(nvars(basering) - nt); |
---|
859 | vars = vars + "), t(1.." + string(nt) + "), Y(1.." + string(nt) + "))," + order; |
---|
860 | ringSTR = "ring RNCR = (" + charstr(basering) + ")," + vars; // ring for the computation |
---|
861 | |
---|
862 | minPoly = minpoly; |
---|
863 | offset = size(G) + nt; |
---|
864 | execute(ringSTR); |
---|
865 | minpoly = number(imap(RNCB, minPoly)); |
---|
866 | ideal action, G, I, J, N, generators; |
---|
867 | map F; |
---|
868 | poly f; |
---|
869 | |
---|
870 | // built the ideal of the graph of GxV -> V, (s,v) -> s(v), i.e. |
---|
871 | // of the image of the map GxV -> GxVxV, (s,v) -> (s,v,s(v)) |
---|
872 | |
---|
873 | G = fetch(RNCB, G); |
---|
874 | action = fetch(RNCB, action); |
---|
875 | groupVars = nvars(basering) - 2*nt; |
---|
876 | offset = groupVars + nt; |
---|
877 | I = G; |
---|
878 | for(i = 1; i <= nt; i = i + 1) { |
---|
879 | I = I, var(offset + i) - action[i]; |
---|
880 | } |
---|
881 | |
---|
882 | J = std(I); // takes long, try to improve |
---|
883 | |
---|
884 | // eliminate |
---|
885 | |
---|
886 | N = nselect(J, 1, groupVars); |
---|
887 | |
---|
888 | // substitute |
---|
889 | |
---|
890 | for(i = 1; i <= nvars(basering); i = i + 1) { F[i] = 0; } |
---|
891 | for(i = groupVars + 1; i <= offset; i = i + 1) { F[i] = var(i); } |
---|
892 | |
---|
893 | generators = mstd(F(N))[2]; |
---|
894 | setring(RNCB); |
---|
895 | return(fetch(RNCR, generators)); |
---|
896 | } |
---|
897 | example |
---|
898 | {"EXAMPLE:"; echo = 2; |
---|
899 | ring R = 0, (s(1..2), x, y), dp; |
---|
900 | ideal G = -s(1)+s(2)^3, s(1)^4-1; |
---|
901 | ideal action = s(1)*x, s(2)*y; |
---|
902 | |
---|
903 | ideal inv = NullCone(G, action); |
---|
904 | inv; |
---|
905 | } |
---|
906 | |
---|
907 | /////////////////////////////////////////////////////////////////////////////// |
---|
908 | |
---|
909 | proc ReynoldsOperator(ideal Grp, ideal Gaction, list #) |
---|
910 | "USAGE: ReynoldsOperator(G, action [, opt); ideal G, action; int opt |
---|
911 | PUROPSE: compute the Reynolds operator of the group G which act via 'action' |
---|
912 | RETURN: polynomial ring R over a simple extension of the groundfield of the |
---|
913 | basering (the extension might be trivial), containing a list |
---|
914 | 'ROelements', the ideals 'id', 'actionid' and the polynomial 'newA'. |
---|
915 | R = K(a)[s(1..r),t(1..n)]. |
---|
916 | - 'ROelements' is a list of ideal, each ideal represents a |
---|
917 | substitution map F : R -> R according to the zero-set of G |
---|
918 | - 'id' is the ideal of G in the new ring |
---|
919 | - 'newA' is the new representation of a' in terms of a. If the |
---|
920 | basering does not contain a parameter then 'newA' = 'a'. |
---|
921 | ASSUME: basering = K[s(1..r),t(1..n)], K = Q or K = Q(a') and minpoly != 0, |
---|
922 | G is the ideal of a finite group in K[s(1..r)], 'action' is a linear |
---|
923 | group action of G |
---|
924 | EXAMPLE: example ReynoldsOperator; shows an example |
---|
925 | " |
---|
926 | { |
---|
927 | int i, j, n, ns, primaryDec; |
---|
928 | ideal G1 = Grp; |
---|
929 | list solution, saction; |
---|
930 | string str; |
---|
931 | |
---|
932 | if(size(#) > 0) { primaryDec = #[1]; } |
---|
933 | else { primaryDec = 0; } |
---|
934 | |
---|
935 | n = nvars(basering); |
---|
936 | ns = n - size(Gaction); |
---|
937 | for(i = ns + 1; i <= n; i++) { G1 = G1, var(i);} |
---|
938 | |
---|
939 | def ROBR = basering; |
---|
940 | export(Grp); |
---|
941 | export(Gaction); |
---|
942 | def RORN = ZeroSet(G1, primaryDec); |
---|
943 | setring RORN; |
---|
944 | id = TransferIdeal(ROBR, "Grp", newA); // defined in ZeroSet ... |
---|
945 | ideal actionid = TransferIdeal(ROBR, "Gaction", newA); |
---|
946 | list ROelements; |
---|
947 | ideal Rf; |
---|
948 | map groupElem; |
---|
949 | poly h1, h2; |
---|
950 | |
---|
951 | for(i = 1; i <= size(zeroset); i++) { |
---|
952 | groupElem = zeroset[i]; // element of G |
---|
953 | for(j = ns + 1; j <= n; j++) { groupElem[j] = var(j); } // do not change t's |
---|
954 | for(j = 1; j <= n - ns; j++) { |
---|
955 | h1 = actionid[j]; |
---|
956 | h2 = groupElem(h1); |
---|
957 | Rf[ns + j] = h2; |
---|
958 | } |
---|
959 | ROelements[i] = Rf; |
---|
960 | } |
---|
961 | export(actionid); |
---|
962 | export(ROelements); |
---|
963 | return(RORN); |
---|
964 | } |
---|
965 | |
---|
966 | /////////////////////////////////////////////////////////////////////////////// |
---|
967 | |
---|
968 | proc ReynoldsImage(list reynoldsOp, poly f) |
---|
969 | "USAGE: ReynoldsImage(RO, f); list RO, poly f |
---|
970 | PUROPSE: compute the Reynolds image of the polynomial f where RO represents |
---|
971 | the Reynolds operator |
---|
972 | RETURN: poly |
---|
973 | " |
---|
974 | { |
---|
975 | map F; |
---|
976 | poly h = 0; |
---|
977 | |
---|
978 | for(int i = 1; i <= size(reynoldsOp); i++) { |
---|
979 | F = basering, reynoldsOp[i]; |
---|
980 | h = h + F(f); |
---|
981 | } |
---|
982 | return(h/size(reynoldsOp)); |
---|
983 | } |
---|
984 | |
---|
985 | /////////////////////////////////////////////////////////////////////////////// |
---|
986 | |
---|
987 | static proc SimplifyCoefficientMatrix(matrix coefMatrix) |
---|
988 | "USAGE: SimplifyCoefficientMatrix(M); M matrix coming from coef(...) |
---|
989 | PUROPSE: simplify the matrix, i.e. find linear dependencies among the columns |
---|
990 | RETURN: matrix M, f = M[1,1]*M[2,1] + ... + M[1,n]*M[2,n] |
---|
991 | " |
---|
992 | { |
---|
993 | int i, j , loop; |
---|
994 | intvec columnList; |
---|
995 | matrix decompMx = coefMatrix; |
---|
996 | |
---|
997 | loop = 1; |
---|
998 | i = 1; |
---|
999 | while(loop) { |
---|
1000 | columnList = 1..i; // current column |
---|
1001 | for(j = i + 1; j <= ncols(decompMx); j++) { |
---|
1002 | // test if decompMx[2, j] equals const * decompMx[2, i] |
---|
1003 | if(LinearCombinationQ(ideal(decompMx[2, i]), decompMx[2, j])) { // column not needed |
---|
1004 | decompMx[1, i] = decompMx[1, i] + decompMx[2, j] / decompMx[2, i] * decompMx[1, j]; |
---|
1005 | } |
---|
1006 | else { columnList[size(columnList) + 1] = j; } |
---|
1007 | } |
---|
1008 | if(defined(auxM)) { kill(auxM);} |
---|
1009 | matrix auxM[2][size(columnList)]; // built new matrix and omit |
---|
1010 | for(j = 1; j <= size(columnList); j++) { // the linear dependent colums |
---|
1011 | auxM[1, j] = decompMx[1, columnList[j]]; // found above |
---|
1012 | auxM[2, j] = decompMx[2, columnList[j]]; |
---|
1013 | } |
---|
1014 | decompMx = auxM; |
---|
1015 | if(i < ncols(decompMx) - 1) { i++;} |
---|
1016 | else { loop = 0;} |
---|
1017 | } |
---|
1018 | return(decompMx); |
---|
1019 | } |
---|
1020 | |
---|
1021 | /////////////////////////////////////////////////////////////////////////////// |
---|
1022 | |
---|
1023 | proc SimplifyIdeal(ideal I, list #) |
---|
1024 | "USAGE: SimplifyIdeal(I [,m, name]); ideal I; int m, string name" |
---|
1025 | PURPOSE: simplify ideal I to the ideal I', do not change the names of the |
---|
1026 | first m variables, new ideal I' might contain less variables. |
---|
1027 | I' contains variables var(1..m) |
---|
1028 | RETURN: list |
---|
1029 | _[1] ideal I' |
---|
1030 | _[2] ideal representing a map phi to a ring with probably less vars. s.t. |
---|
1031 | phi(I) = I' |
---|
1032 | _[3] list of variables |
---|
1033 | _[4] list from 'elimpart' |
---|
1034 | " |
---|
1035 | { |
---|
1036 | int i, k, m; |
---|
1037 | string nameCMD; |
---|
1038 | ideal mId, In, mapId; // ideal for the map |
---|
1039 | list sList, result; |
---|
1040 | |
---|
1041 | sList = elimpart(I); |
---|
1042 | In = sList[1]; |
---|
1043 | mapId = sList[5]; |
---|
1044 | |
---|
1045 | if(size(#) > 0) |
---|
1046 | { |
---|
1047 | m = #[1]; |
---|
1048 | nameCMD = #[2]; |
---|
1049 | } |
---|
1050 | else { m = 0;} // nvars(basering); |
---|
1051 | k = 0; |
---|
1052 | for(i = 1; i <= nvars(basering); i++) |
---|
1053 | { |
---|
1054 | if(sList[4][i] != 0) |
---|
1055 | { |
---|
1056 | k++; |
---|
1057 | if(k <= m) { mId[i] = sList[4][i]; } |
---|
1058 | else { execute("mId["+string(i) +"] = "+nameCMD+"("+string(k-m)+");");} |
---|
1059 | } |
---|
1060 | else { mId[i] = 0;} |
---|
1061 | } |
---|
1062 | map phi = basering, mId; |
---|
1063 | result[1] = phi(In); |
---|
1064 | result[2] = phi(mapId); |
---|
1065 | result[3] = simplify(sList[4], 2); |
---|
1066 | result[4] = sList; |
---|
1067 | return(result); |
---|
1068 | } |
---|
1069 | |
---|
1070 | //////////////////////////////////////////////////////////////////////////////// |
---|
1071 | |
---|
1072 | static proc TransferIdeal(R, string name, poly newA) |
---|
1073 | " USAGE: TransferIdeal(R, name, newA); ring R, string name, poly newA |
---|
1074 | PUROPSE: Maps an ideal with name 'name' in R to the basering, s.t. all |
---|
1075 | variables are fixed but par(1) is replaced by 'newA'. |
---|
1076 | RETURN: ideal |
---|
1077 | NOTE: this is used to transfor an ideal if the minimal polynomial has changed |
---|
1078 | " |
---|
1079 | { |
---|
1080 | def RAB = basering; |
---|
1081 | def RA1 = TransferRing(R); |
---|
1082 | |
---|
1083 | setring RA1; |
---|
1084 | execute("ideal I = imap(R, " + name + ");"); |
---|
1085 | setring RAB; |
---|
1086 | map F = RA1, maxideal(1); |
---|
1087 | F[nvars(RAB) + 1] = newA; |
---|
1088 | return(F(I)); |
---|
1089 | } |
---|
1090 | |
---|
1091 | /////////////////////////////////////////////////////////////////////////////// |
---|
1092 | |
---|
1093 | static proc RingVarProduct(index) |
---|
1094 | // list of indices |
---|
1095 | { |
---|
1096 | poly f = 1; |
---|
1097 | for(int i = 1; i <= size(index); i++) |
---|
1098 | { |
---|
1099 | f = f * var(index[i]); |
---|
1100 | } |
---|
1101 | return(f); |
---|
1102 | } |
---|
1103 | /////////////////////////////////////////////////////////////////////////////// |
---|