1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id$"; |
---|
3 | category="General purpose"; |
---|
4 | info=" |
---|
5 | LIBRARY: schreyer.lib Helpers for working with the Schreyer induced ordering |
---|
6 | AUTHOR: Oleksandr Motsak <U@D>, where U={motsak}, D={mathematik.uni-kl.de} |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | Sres(M,l) Schreyer resolution of module M of maximal length l |
---|
10 | Ssyz(M) Schreyer resolution of module M of length 1 |
---|
11 | Scontinue(l) continue the resolution computation by most l steps |
---|
12 | |
---|
13 | KEYWORDS: syzygy; Schreyer induced ordering; Schreyer free resolution |
---|
14 | NOTE: requires the dynamic module: syzextra |
---|
15 | "; |
---|
16 | |
---|
17 | static proc prepareSyz( module I, list # ) |
---|
18 | { |
---|
19 | int i; |
---|
20 | int k = 0; |
---|
21 | int r = nrows(I); |
---|
22 | int c = ncols(I); |
---|
23 | |
---|
24 | |
---|
25 | if( size(#) > 0 ) |
---|
26 | { |
---|
27 | if( typeof(#[1]) == "int" || typeof(#[1]) == "bigint" ) |
---|
28 | { |
---|
29 | k = #[1]; |
---|
30 | } |
---|
31 | } |
---|
32 | |
---|
33 | if( k < r ) |
---|
34 | { |
---|
35 | "// *** Wrong k: ", k, " < nrows: ", r, " => setting k = r = ", r; |
---|
36 | k = r; |
---|
37 | } |
---|
38 | |
---|
39 | // "k: ", k; "c: ", c; "I: ", I; |
---|
40 | |
---|
41 | for( i = c; i > 0; i-- ) |
---|
42 | { |
---|
43 | I[i] = I[i] + gen(k + i); |
---|
44 | } |
---|
45 | |
---|
46 | // DetailedPrint(I); |
---|
47 | |
---|
48 | return(I); |
---|
49 | } |
---|
50 | |
---|
51 | static proc separateSyzGB( module J, int c ) |
---|
52 | { |
---|
53 | module II, G; vector v; int i; |
---|
54 | |
---|
55 | J = simplify(J, 2); |
---|
56 | |
---|
57 | for( i = ncols(J); i > 0; i-- ) |
---|
58 | { |
---|
59 | v = J[i]; |
---|
60 | if( leadcomp(v) > c ) |
---|
61 | { |
---|
62 | II[i] = v; |
---|
63 | } else |
---|
64 | { |
---|
65 | G[i] = v; // leave only gen(i): i <= c |
---|
66 | } |
---|
67 | } |
---|
68 | |
---|
69 | II = simplify(II, 2); |
---|
70 | G = simplify(G, 2); |
---|
71 | |
---|
72 | return (list(G, II)); |
---|
73 | } |
---|
74 | |
---|
75 | static proc splitSyzGB( module J, int c ) |
---|
76 | { |
---|
77 | module JJ; vector v, vv; int i; |
---|
78 | |
---|
79 | for( i = ncols(J); i > 0; i-- ) |
---|
80 | { |
---|
81 | v = J[i]; |
---|
82 | |
---|
83 | vv = 0; |
---|
84 | |
---|
85 | while( leadcomp(v) <= c ) |
---|
86 | { |
---|
87 | vv = vv + lead(v); |
---|
88 | v = v - lead(v); |
---|
89 | } |
---|
90 | |
---|
91 | J[i] = vv; |
---|
92 | JJ[i] = v; |
---|
93 | } |
---|
94 | |
---|
95 | J = simplify(J, 2); |
---|
96 | JJ = simplify(JJ, 2); |
---|
97 | |
---|
98 | return (list(J, JJ)); |
---|
99 | } |
---|
100 | |
---|
101 | |
---|
102 | static proc Sinit(module M) |
---|
103 | { |
---|
104 | def @save = basering; |
---|
105 | |
---|
106 | int @DEBUG = !system("with", "ndebug"); |
---|
107 | if( @DEBUG ) |
---|
108 | { |
---|
109 | "Sinit::Input"; |
---|
110 | type(M); |
---|
111 | DetailedPrint(M); |
---|
112 | attrib(M); |
---|
113 | } |
---|
114 | |
---|
115 | int @RANK = nrows(M); int @SIZE = ncols(M); |
---|
116 | |
---|
117 | int @IS_A_SB = attrib(M, "isSB"); // ??? only if all weights were zero?! |
---|
118 | |
---|
119 | if( !@IS_A_SB ) |
---|
120 | { |
---|
121 | M = std(M); // this should be faster than computing std in S (later on) |
---|
122 | } |
---|
123 | |
---|
124 | def S = MakeInducedSchreyerOrdering(1); // 1 puts history terms to the back |
---|
125 | // TODO: NOTE: +1 causes trouble to Singular interpreter!!!??? |
---|
126 | setring S; // a new ring with a Schreyer ordering |
---|
127 | |
---|
128 | if( @DEBUG ) |
---|
129 | { |
---|
130 | "Sinit::StartingISRing"; |
---|
131 | basering; |
---|
132 | // DetailedPrint(basering); |
---|
133 | } |
---|
134 | |
---|
135 | // Setup the leading syzygy^{-1} module to zero: |
---|
136 | module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0)); |
---|
137 | |
---|
138 | module MRES = Z; |
---|
139 | |
---|
140 | list RES; RES[1] = Z; |
---|
141 | |
---|
142 | module F = freemodule(@RANK); |
---|
143 | intvec @V = deg(F[1..@RANK]); |
---|
144 | |
---|
145 | module M = imap(@save, M); |
---|
146 | attrib(M, "isHomog", @V); |
---|
147 | attrib(M, "isSB", 1); |
---|
148 | |
---|
149 | |
---|
150 | if( @DEBUG ) |
---|
151 | { |
---|
152 | "Sinit::SB_Input: "; |
---|
153 | type(M); |
---|
154 | attrib(M); |
---|
155 | attrib(M, "isHomog"); |
---|
156 | DetailedPrint(M); |
---|
157 | } |
---|
158 | |
---|
159 | // 0^th syz. property |
---|
160 | if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 ) |
---|
161 | { |
---|
162 | transpose( transpose(M) * transpose(MRES) ); |
---|
163 | "transpose( transpose(M) * transpose(MRES) ) != 0!!!"; |
---|
164 | $ |
---|
165 | } |
---|
166 | |
---|
167 | RES[size(RES)+1] = M; // list of all syzygy modules |
---|
168 | MRES = MRES, M; |
---|
169 | |
---|
170 | attrib(MRES, "isHomog", @V); |
---|
171 | |
---|
172 | attrib(S, "InducionLeads", lead(M)); |
---|
173 | attrib(S, "InducionStart", @RANK); |
---|
174 | |
---|
175 | if( @DEBUG ) |
---|
176 | { |
---|
177 | "Sinit::MRES"; |
---|
178 | DetailedPrint(MRES); |
---|
179 | attrib(MRES, "isHomog"); |
---|
180 | attrib(S); |
---|
181 | } |
---|
182 | |
---|
183 | export RES; |
---|
184 | export MRES; |
---|
185 | return (S); |
---|
186 | } |
---|
187 | |
---|
188 | static proc Sstep() |
---|
189 | { |
---|
190 | int @DEBUG = !system("with", "ndebug"); |
---|
191 | |
---|
192 | if( @DEBUG ) |
---|
193 | { |
---|
194 | "Sstep::NextInducedRing"; |
---|
195 | DetailedPrint(basering); |
---|
196 | |
---|
197 | attrib(basering, "InducionLeads"); |
---|
198 | attrib(basering, "InducionStart"); |
---|
199 | |
---|
200 | GetInducedData(); |
---|
201 | } |
---|
202 | |
---|
203 | // syzygy step: |
---|
204 | |
---|
205 | /* |
---|
206 | // is initial weights are all zeroes! |
---|
207 | def L = lead(M); |
---|
208 | intvec @V = deg(M[1..ncols(M)]); @W; @V; @W = @V; attrib(L, "isHomog", @W); |
---|
209 | SetInducedReferrence(L, @RANK, 0); |
---|
210 | */ |
---|
211 | |
---|
212 | // def L = lead(MRES); |
---|
213 | // @W = @W, @V; |
---|
214 | // attrib(L, "isHomog", @W); |
---|
215 | |
---|
216 | |
---|
217 | // General setting: |
---|
218 | // SetInducedReferrence(MRES, 0, 0); // limit: 0! |
---|
219 | int @l = size(RES); |
---|
220 | |
---|
221 | module M = RES[@l]; |
---|
222 | |
---|
223 | module L = attrib(basering, "InducionLeads"); |
---|
224 | int limit = attrib(basering, "InducionStart"); |
---|
225 | |
---|
226 | // L; limit; |
---|
227 | |
---|
228 | int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?! |
---|
229 | |
---|
230 | /* |
---|
231 | if( @RANK != nrows(M) ) |
---|
232 | { |
---|
233 | type(MRES); |
---|
234 | @RANK; |
---|
235 | type(M); |
---|
236 | pause(); |
---|
237 | } |
---|
238 | */ |
---|
239 | |
---|
240 | intvec @W = attrib(M, "isHomog"); |
---|
241 | intvec @V = deg(M[1..ncols(M)]); |
---|
242 | @V = @W, @V; |
---|
243 | |
---|
244 | if( @DEBUG ) |
---|
245 | { |
---|
246 | "Sstep::NextInput: "; |
---|
247 | M; |
---|
248 | @V; |
---|
249 | @RANK; |
---|
250 | DetailedPrint(MRES); |
---|
251 | attrib(MRES, "isHomog"); |
---|
252 | } |
---|
253 | |
---|
254 | |
---|
255 | |
---|
256 | SetInducedReferrence(L, limit, 0); |
---|
257 | |
---|
258 | def K = prepareSyz(M, @RANK); |
---|
259 | // K; |
---|
260 | |
---|
261 | // attrib(K, "isHomog", @V); DetailedPrint(K, 1000); |
---|
262 | |
---|
263 | // pause(); |
---|
264 | |
---|
265 | K = idPrepare(K, @RANK); // std(K); // ? |
---|
266 | K = simplify(K, 2); |
---|
267 | |
---|
268 | // K; |
---|
269 | |
---|
270 | module N = separateSyzGB(K, @RANK)[2]; // 1^st syz. module: vectors which start in lower part (comp >= @RANK) |
---|
271 | attrib(N, "isHomog", @V); |
---|
272 | |
---|
273 | // "N_0: "; N; DetailedPrint(N, 10); |
---|
274 | |
---|
275 | N = std(N); // TODO: fix "wrong weights"!!!? |
---|
276 | attrib(N, "isHomog", @V); |
---|
277 | |
---|
278 | // N; |
---|
279 | |
---|
280 | if( size(N) > 0 ) |
---|
281 | { |
---|
282 | // next syz. property |
---|
283 | if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 ) |
---|
284 | { |
---|
285 | MRES; |
---|
286 | |
---|
287 | "N: "; N; DetailedPrint(N, 10); |
---|
288 | |
---|
289 | "K:"; K; DetailedPrint(K, 10); |
---|
290 | |
---|
291 | "RANKS: ", @RANK; |
---|
292 | |
---|
293 | "transpose( transpose(N) * transpose(MRES) ) != 0!!!"; |
---|
294 | transpose( transpose(N) * transpose(MRES) ); |
---|
295 | |
---|
296 | "transpose(N) * transpose(MRES): "; |
---|
297 | transpose(N) * transpose(MRES); |
---|
298 | DetailedPrint(module(_), 2); |
---|
299 | $ |
---|
300 | } |
---|
301 | } |
---|
302 | |
---|
303 | RES[@l + 1] = N; // list of all syzygy modules |
---|
304 | |
---|
305 | MRES = MRES, N; |
---|
306 | attrib(MRES, "isHomog", @V); |
---|
307 | |
---|
308 | |
---|
309 | L = L, lead(N); |
---|
310 | attrib(basering, "InducionLeads", L); |
---|
311 | |
---|
312 | if( @DEBUG ) |
---|
313 | { |
---|
314 | "Sstep::NextSyzOutput: "; |
---|
315 | DetailedPrint(N); |
---|
316 | attrib(N, "isHomog"); |
---|
317 | } |
---|
318 | |
---|
319 | } |
---|
320 | |
---|
321 | proc Scontinue(int l) |
---|
322 | "USAGE: Scontinue(l) |
---|
323 | RETURN: nothing, instead it changes RES and MRES variables in the current ring |
---|
324 | PURPOSE: computes further (at most l) syzygies |
---|
325 | NOTE: must be used within a ring returned by Sres or Ssyz. RES and MRES are |
---|
326 | explained in Sres |
---|
327 | EXAMPLE: example Scontinue; shows an example |
---|
328 | " |
---|
329 | { |
---|
330 | def data = GetInducedData(); |
---|
331 | |
---|
332 | if( (!defined(RES)) || (!defined(MRES)) || (typeof(data) != "list") || (size(data) != 2) ) |
---|
333 | { |
---|
334 | ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz"); |
---|
335 | } |
---|
336 | for (; (l != 0) && (size(RES[size(RES)]) > 0); l-- ) |
---|
337 | { |
---|
338 | Sstep(); |
---|
339 | } |
---|
340 | } |
---|
341 | example |
---|
342 | { "EXAMPLE:"; echo = 2; |
---|
343 | ring r; |
---|
344 | module M = maxideal(1); M; |
---|
345 | def S = Ssyz(M); setring S; S; |
---|
346 | "Only the first syzygy: "; |
---|
347 | RES; MRES; |
---|
348 | "More syzygies: "; |
---|
349 | Scontinue(10); |
---|
350 | RES; MRES; |
---|
351 | } |
---|
352 | |
---|
353 | proc Ssyz(module M) |
---|
354 | "USAGE: Ssyz(M) |
---|
355 | RETURN: ring, containing a list of modules RES and a module MRES |
---|
356 | PURPOSE: computes the first syzygy module of M (wrt some Schreyer ordering) |
---|
357 | NOTE: The output is explained in Sres |
---|
358 | EXAMPLE: example Ssyz; shows an example |
---|
359 | " |
---|
360 | { |
---|
361 | def S = Sinit(M); setring S; |
---|
362 | |
---|
363 | Sstep(); // NOTE: what if M is zero? |
---|
364 | |
---|
365 | return (S); |
---|
366 | } |
---|
367 | example |
---|
368 | { "EXAMPLE:"; echo = 2; |
---|
369 | ring r; |
---|
370 | module M = maxideal(1); M; |
---|
371 | def S = Ssyz(M); setring S; S; |
---|
372 | "Only the first syzygy: "; |
---|
373 | RES; |
---|
374 | MRES; // Note gen(i) |
---|
375 | kill S; |
---|
376 | setring r; kill M; |
---|
377 | |
---|
378 | module M = 0; |
---|
379 | def S = Ssyz(M); setring S; S; |
---|
380 | "Only the first syzygy: "; |
---|
381 | RES; |
---|
382 | MRES; |
---|
383 | } |
---|
384 | |
---|
385 | proc Sres(module M, int l) |
---|
386 | "USAGE: Sres(M, l) |
---|
387 | RETURN: ring, containing a list of modules RES and a module MRES |
---|
388 | PURPOSE: computes (at most l) syzygy modules of M wrt the classical Schreyer |
---|
389 | induced ordering with gen(i) > gen(j) if i > j, provided both gens |
---|
390 | are from the same syzygy level. |
---|
391 | NOTE: RES contains the images of maps subsituting the beginning of the |
---|
392 | Schreyer free resolution of baseRing^r/M, while MRES is a sum of |
---|
393 | these images in a big free sum, containing all the syzygy modules. |
---|
394 | The syzygy modules are shifted so that gen(i) correspons to MRES[i]. |
---|
395 | The leading zero module RES[0] indicates the fact that coker of the |
---|
396 | first map is zero. The number of zeroes inducates the rank of input. |
---|
397 | NOTE: If l == 0 then l is set to be nvars(basering) + 1 |
---|
398 | EXAMPLE: example Sres; shows an example |
---|
399 | " |
---|
400 | { |
---|
401 | def S = Sinit(M); setring S; |
---|
402 | |
---|
403 | if (l == 0) |
---|
404 | { |
---|
405 | l = nvars(basering) + 1; // not really an estimate...?! |
---|
406 | } |
---|
407 | |
---|
408 | Sstep(); l = l - 1; |
---|
409 | |
---|
410 | Scontinue(l); |
---|
411 | |
---|
412 | return (S); |
---|
413 | } |
---|
414 | example |
---|
415 | { "EXAMPLE:"; echo = 2; |
---|
416 | ring r; |
---|
417 | module M = maxideal(1); M; |
---|
418 | def S = Sres(M, 0); setring S; S; |
---|
419 | RES; |
---|
420 | MRES; |
---|
421 | kill S; |
---|
422 | setring r; kill M; |
---|
423 | |
---|
424 | def A = nc_algebra(-1,0); setring A; |
---|
425 | ideal Q = var(1)^2, var(2)^2, var(3)^2; |
---|
426 | qring SCA = twostd(Q); |
---|
427 | basering; |
---|
428 | |
---|
429 | module M = maxideal(1); |
---|
430 | def S = Sres(M, 2); setring S; S; |
---|
431 | RES; |
---|
432 | MRES; |
---|
433 | } |
---|
434 | |
---|
435 | |
---|
436 | |
---|
437 | // ================================================================== // |
---|
438 | |
---|
439 | |
---|
440 | LIB "general.lib"; // for sort |
---|
441 | |
---|
442 | // TODO: in C++! |
---|
443 | static proc Tail(def M) |
---|
444 | { |
---|
445 | int i = ncols(M); def m; |
---|
446 | while (i > 0) |
---|
447 | { |
---|
448 | m = M[i]; |
---|
449 | |
---|
450 | m = m - lead(m); // m = tail(m) |
---|
451 | |
---|
452 | M[i] = m; |
---|
453 | |
---|
454 | i--; |
---|
455 | } |
---|
456 | return (M); |
---|
457 | } |
---|
458 | |
---|
459 | /* static */ proc SSinit(def M) |
---|
460 | { |
---|
461 | if( (typeof(M) != "module") && (typeof(M) != "ideal") ) |
---|
462 | { |
---|
463 | ERROR("Sorry: need an ideal or a module for input"); |
---|
464 | } |
---|
465 | |
---|
466 | // TODO! DONE? |
---|
467 | def @save = basering; |
---|
468 | |
---|
469 | int @DEBUG = !system("with", "ndebug"); |
---|
470 | if( @DEBUG ) |
---|
471 | { |
---|
472 | "SSinit::Input"; |
---|
473 | type(M); |
---|
474 | // DetailedPrint(M); |
---|
475 | attrib(M); |
---|
476 | } |
---|
477 | |
---|
478 | int @RANK = nrows(M); int @SIZE = ncols(M); |
---|
479 | |
---|
480 | int @IS_A_SB = attrib(M, "isSB"); // ??? only if all weights were zero?! |
---|
481 | |
---|
482 | if( !@IS_A_SB ) |
---|
483 | { |
---|
484 | def opts = option(get); |
---|
485 | option(redSB); option(redTail); |
---|
486 | M = std(M); |
---|
487 | option(set, opts); |
---|
488 | kill opts; |
---|
489 | } else |
---|
490 | { |
---|
491 | M = simplify(M, 2 + 4 + 32); |
---|
492 | } |
---|
493 | |
---|
494 | def LEAD = lead(M); |
---|
495 | |
---|
496 | // sort wrt neg.deg.rev.lex! |
---|
497 | intvec iv_ds = sort(LEAD, "ds", 1)[2]; // ,1 => reversed! |
---|
498 | |
---|
499 | M = M[iv_ds]; // sort M wrt ds on current leading terms |
---|
500 | LEAD = LEAD[iv_ds]; |
---|
501 | |
---|
502 | def TAIL = Tail(M); |
---|
503 | |
---|
504 | intvec @DEGS = deg(M[1..@SIZE]); // store actuall degrees of input elements |
---|
505 | |
---|
506 | // TODO: what about real modules? weighted ones? |
---|
507 | |
---|
508 | list @l = ringlist(@save); |
---|
509 | |
---|
510 | int @z = 0; ideal @m = maxideal(1); intvec @wdeg = deg(@m[1..ncols(@m)]); |
---|
511 | |
---|
512 | // NOTE: @wdeg will be ignored anyway :( |
---|
513 | @l[3] = list(list("C", @z), list("lp", @wdeg)); |
---|
514 | |
---|
515 | kill @z, @wdeg; // since these vars are ring independent! |
---|
516 | |
---|
517 | def S = ring(@l); // --MakeInducedSchreyerOrdering(1); |
---|
518 | |
---|
519 | module F = freemodule(@RANK); |
---|
520 | intvec @V = deg(F[1..@RANK]); |
---|
521 | |
---|
522 | setring S; // ring with an easy divisibility test ("C, lex") |
---|
523 | |
---|
524 | if( @DEBUG ) |
---|
525 | { |
---|
526 | "SSinit::StartingISRing"; |
---|
527 | basering; |
---|
528 | // DetailedPrint(basering); |
---|
529 | } |
---|
530 | |
---|
531 | // Setup the leading syzygy^{-1} module to zero: |
---|
532 | module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0)); |
---|
533 | |
---|
534 | module MRES = Z; |
---|
535 | |
---|
536 | list RES; RES[1] = Z; |
---|
537 | list LRES; LRES[1] = Z; |
---|
538 | list TRES; TRES[1] = Z; |
---|
539 | |
---|
540 | def M = imap(@save, M); |
---|
541 | attrib(M, "isHomog", @V); |
---|
542 | attrib(M, "isSB", 1); |
---|
543 | |
---|
544 | attrib(M, "degrees", @DEGS); |
---|
545 | |
---|
546 | def LEAD = imap(@save, LEAD); |
---|
547 | attrib(LEAD, "isHomog", @V); |
---|
548 | attrib(LEAD, "isSB", 1); |
---|
549 | |
---|
550 | def TAIL = imap(@save, TAIL); |
---|
551 | |
---|
552 | if( @DEBUG ) |
---|
553 | { |
---|
554 | "SSinit::(sorted) SB_Input: "; |
---|
555 | type(M); |
---|
556 | attrib(M); |
---|
557 | attrib(M, "isHomog"); |
---|
558 | // DetailedPrint(M); |
---|
559 | } |
---|
560 | |
---|
561 | // 0^th syz. property |
---|
562 | if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 ) |
---|
563 | { |
---|
564 | transpose( transpose(M) * transpose(MRES) ); |
---|
565 | "ERROR: transpose( transpose(M) * transpose(MRES) ) != 0!!!"; |
---|
566 | $ |
---|
567 | } |
---|
568 | |
---|
569 | RES[size(RES)+1] = M; // list of all syzygy modules |
---|
570 | LRES[size(LRES)+1] = LEAD; // list of all syzygy modules |
---|
571 | TRES[size(TRES)+1] = TAIL; // list of all syzygy modules |
---|
572 | |
---|
573 | MRES = MRES, M; //? |
---|
574 | |
---|
575 | attrib(MRES, "isHomog", @V); |
---|
576 | |
---|
577 | attrib(S, "InducionStart", @RANK); |
---|
578 | |
---|
579 | if( @DEBUG ) |
---|
580 | { |
---|
581 | "SSinit::MRES"; |
---|
582 | MRES; |
---|
583 | // DetailedPrint(MRES); |
---|
584 | attrib(MRES, "isHomog"); |
---|
585 | attrib(S); |
---|
586 | } |
---|
587 | |
---|
588 | export RES; |
---|
589 | export MRES; |
---|
590 | export LRES; |
---|
591 | export TRES; |
---|
592 | return (S); |
---|
593 | } |
---|
594 | example |
---|
595 | { "EXAMPLE:"; echo = 2; |
---|
596 | ring R = 0, (w, x, y, z), dp; |
---|
597 | |
---|
598 | def M = maxideal(1); |
---|
599 | def S = SSinit(M); setring S; S; |
---|
600 | |
---|
601 | "Only the first initialization: "; |
---|
602 | RES; LRES; TRES; |
---|
603 | MRES; |
---|
604 | |
---|
605 | kill S; setring R; kill M; |
---|
606 | |
---|
607 | ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z; |
---|
608 | def S = SSinit(M); setring S; S; |
---|
609 | |
---|
610 | "Only the first initialization: "; |
---|
611 | RES; LRES; TRES; |
---|
612 | MRES; |
---|
613 | |
---|
614 | kill S; setring R; kill M; |
---|
615 | } |
---|
616 | |
---|
617 | |
---|
618 | LIB "poly.lib"; // for lcm |
---|
619 | |
---|
620 | |
---|
621 | proc SSComputeLeadingSyzygyTerms(def L, int iCompShift) |
---|
622 | { |
---|
623 | int @DEBUG = !system("with", "ndebug"); |
---|
624 | |
---|
625 | if( @DEBUG ) |
---|
626 | { |
---|
627 | "SSComputeLeadingSyzygyTerms::Input: "; |
---|
628 | L; |
---|
629 | "iCompShift: ", iCompShift; |
---|
630 | } |
---|
631 | |
---|
632 | int i, j, r; intvec iv_ds; |
---|
633 | int N = ncols(L); |
---|
634 | def a, b; |
---|
635 | poly aa, bb; |
---|
636 | |
---|
637 | bigint c; |
---|
638 | |
---|
639 | ideal M; |
---|
640 | |
---|
641 | module S = 0; |
---|
642 | |
---|
643 | for(i = 1; i <= N; i++) |
---|
644 | { |
---|
645 | a = L[i]; |
---|
646 | // "a: ", a; |
---|
647 | c = leadcomp(a); |
---|
648 | r = int(c); |
---|
649 | |
---|
650 | if(r > 0) |
---|
651 | { |
---|
652 | aa = a[r]; |
---|
653 | } else |
---|
654 | { |
---|
655 | aa = a; |
---|
656 | } |
---|
657 | |
---|
658 | M = 0; |
---|
659 | |
---|
660 | for(j = i-1; j > 0; j--) |
---|
661 | { |
---|
662 | b = L[j]; |
---|
663 | // "b: ", b; |
---|
664 | |
---|
665 | if( leadcomp(b) == c ) |
---|
666 | { |
---|
667 | if(r > 0) |
---|
668 | { |
---|
669 | bb = b[r]; |
---|
670 | } else |
---|
671 | { |
---|
672 | bb = b; |
---|
673 | } |
---|
674 | |
---|
675 | M[j] = (lcm(aa, bb) / aa); |
---|
676 | } |
---|
677 | } |
---|
678 | |
---|
679 | // TODO: add quotient relations here... |
---|
680 | |
---|
681 | M = simplify(M, 1 + 2 + 32); |
---|
682 | |
---|
683 | iv_ds = sort(M, "ds", 1)[2]; // ,1 => reversed! |
---|
684 | |
---|
685 | M = M[iv_ds]; |
---|
686 | |
---|
687 | S = S, M * gen(i + iCompShift); |
---|
688 | } |
---|
689 | |
---|
690 | S = simplify(S, 2); |
---|
691 | |
---|
692 | |
---|
693 | if( @DEBUG ) |
---|
694 | { |
---|
695 | "SSComputeLeadingSyzygyTerms::Output: "; |
---|
696 | S; |
---|
697 | } |
---|
698 | |
---|
699 | attrib(S, "isSB", 1); |
---|
700 | |
---|
701 | return (S); |
---|
702 | |
---|
703 | } |
---|
704 | |
---|
705 | proc SSReduce(poly m, def t, def L, def T, module LS) |
---|
706 | { |
---|
707 | int @DEBUG = !system("with", "ndebug"); |
---|
708 | |
---|
709 | if( @DEBUG ) |
---|
710 | { |
---|
711 | "SSReduce::Input: "; |
---|
712 | |
---|
713 | "mult: ", m; |
---|
714 | "term: ", t; |
---|
715 | "L: ", L; |
---|
716 | "T: ", T; |
---|
717 | "LS: ", LS; |
---|
718 | } |
---|
719 | |
---|
720 | vector s = 0; |
---|
721 | |
---|
722 | if( t == 0 ) |
---|
723 | { |
---|
724 | return (s); |
---|
725 | } |
---|
726 | |
---|
727 | def product = m * t; |
---|
728 | |
---|
729 | bigint c = leadcomp(t); |
---|
730 | int r = int(c); |
---|
731 | |
---|
732 | |
---|
733 | def a, b, nf; |
---|
734 | |
---|
735 | // looking for an appropriate reducer |
---|
736 | for( int k = ncols(L); k > 0; k-- ) |
---|
737 | { |
---|
738 | a = L[k]; |
---|
739 | // with the same mod. component |
---|
740 | if( leadcomp(a) == c ) |
---|
741 | { |
---|
742 | b = - (leadmonomial(product) / leadmonomial(L[k])); |
---|
743 | // which divides the product |
---|
744 | if( b != 0 ) |
---|
745 | { |
---|
746 | // "b: ", b; |
---|
747 | nf = NF(b * gen(k), LS); |
---|
748 | |
---|
749 | // "NF: ", nf; |
---|
750 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
751 | if( nf != 0 ) |
---|
752 | { |
---|
753 | s = b * gen(k) + SSTraverse(b, k, L, T, LS); |
---|
754 | break; |
---|
755 | } |
---|
756 | } |
---|
757 | } |
---|
758 | } |
---|
759 | if( @DEBUG ) |
---|
760 | { |
---|
761 | "SSReduce::Output: ", s; |
---|
762 | } |
---|
763 | return (s); |
---|
764 | } |
---|
765 | |
---|
766 | proc SSTraverse(poly m, int i, def L, def T, module LS) |
---|
767 | { |
---|
768 | int @DEBUG = !system("with", "ndebug"); |
---|
769 | |
---|
770 | if( @DEBUG ) |
---|
771 | { |
---|
772 | "SSTraverse::Input: "; |
---|
773 | |
---|
774 | "index: ", i; |
---|
775 | "mult: ", m; |
---|
776 | |
---|
777 | "lead: ", L[i]; |
---|
778 | "tail: ", T[i]; |
---|
779 | |
---|
780 | "LSyz: ", LS; |
---|
781 | } |
---|
782 | |
---|
783 | // reduce the product m * ( L[i] + T[i] ): |
---|
784 | // SSReduce(m, L[i], L, T, LS); |
---|
785 | |
---|
786 | def @tail = T[i]; def @l; |
---|
787 | |
---|
788 | vector s = 0; |
---|
789 | |
---|
790 | while( size(@tail) > 0 ) |
---|
791 | { |
---|
792 | @l = lead(@tail); |
---|
793 | s = s + SSReduce(m, @l, L, T, LS); |
---|
794 | @tail = @tail - @l; |
---|
795 | } |
---|
796 | |
---|
797 | if( @DEBUG ) |
---|
798 | { |
---|
799 | "SSTraverse::Output: ", s; |
---|
800 | } |
---|
801 | return (s); |
---|
802 | } |
---|
803 | |
---|
804 | // module (N, LL, TT) = SSComputeSyzygy(L, T, @RANK); // shift syz.comp by @RANK! |
---|
805 | proc SSComputeSyzygy(def M, def L, def T, int iCompShift) |
---|
806 | { |
---|
807 | int @DEBUG = !system("with", "ndebug"); |
---|
808 | |
---|
809 | if( @DEBUG ) |
---|
810 | { |
---|
811 | "SSComputeSyzygy::Input"; |
---|
812 | "basering: ", basering; attrib(basering); |
---|
813 | // DetailedPrint(basering); |
---|
814 | |
---|
815 | "iCompShift: ", iCompShift; |
---|
816 | |
---|
817 | "M: "; M; |
---|
818 | "L: "; L; |
---|
819 | "T: "; T; |
---|
820 | } |
---|
821 | |
---|
822 | def a; bigint c; int r, k; poly aa; |
---|
823 | |
---|
824 | module LL = SSComputeLeadingSyzygyTerms(L, 0); // iCompShift // 0? |
---|
825 | |
---|
826 | module TT, SYZ; |
---|
827 | |
---|
828 | if( size(LL) > 0 ) |
---|
829 | { |
---|
830 | intvec iv_ds = sort(LL, "ds", 1)[2]; // ,1 => reversed! |
---|
831 | LL = LL[iv_ds]; |
---|
832 | |
---|
833 | vector @tail; |
---|
834 | |
---|
835 | for(k = ncols(LL); k > 0; k-- ) |
---|
836 | { |
---|
837 | a = LL[k]; |
---|
838 | c = leadcomp(a); r = int(c); |
---|
839 | |
---|
840 | if (r > 0) |
---|
841 | { |
---|
842 | aa = a[r]; |
---|
843 | } else |
---|
844 | { |
---|
845 | aa = a; |
---|
846 | } |
---|
847 | // "A: ", a, " --->>>> ", aa, " **** [", r, "]: "; |
---|
848 | @tail = SSReduce(aa, L[r], L, T, LL) + SSTraverse(aa, r, L, T, LL); |
---|
849 | TT[k] = @tail; |
---|
850 | SYZ[k] = a + @tail; |
---|
851 | } |
---|
852 | } |
---|
853 | |
---|
854 | module Z; |
---|
855 | Z = 0; Z[iCompShift] = 0; Z = Z, transpose(LL); LL = transpose(Z); |
---|
856 | Z = 0; Z[iCompShift] = 0; Z = Z, transpose(TT); TT = transpose(Z); |
---|
857 | Z = 0; Z[iCompShift] = 0; Z = Z, transpose(SYZ); SYZ = transpose(Z); |
---|
858 | |
---|
859 | |
---|
860 | /* |
---|
861 | def opts = option(get); option(redSB); option(redTail); |
---|
862 | module SYZ = std(syz(M)); // TODO: !!!!!!!!!!! |
---|
863 | option(set, opts); kill opts; |
---|
864 | |
---|
865 | "SYZ: "; SYZ; print(SYZ); |
---|
866 | |
---|
867 | "shifted SYZ: "; SYZ; print(SYZ); |
---|
868 | |
---|
869 | module LL, TT; |
---|
870 | |
---|
871 | LL = lead(SYZ); // TODO: WRONG ORDERING!!!!!!!! |
---|
872 | TT = Tail(SYZ); |
---|
873 | */ |
---|
874 | |
---|
875 | if( @DEBUG ) |
---|
876 | { |
---|
877 | "SSComputeSyzygy::Output"; |
---|
878 | |
---|
879 | "SYZ: "; SYZ; |
---|
880 | "LL: "; LL; |
---|
881 | "TT: "; TT; |
---|
882 | } |
---|
883 | |
---|
884 | return (SYZ, LL, TT); |
---|
885 | } |
---|
886 | |
---|
887 | // resolution/syzygy step: |
---|
888 | static proc SSstep() |
---|
889 | { |
---|
890 | /// TODO!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
891 | int @DEBUG = !system("with", "ndebug"); |
---|
892 | |
---|
893 | if( @DEBUG ) |
---|
894 | { |
---|
895 | "SSstep::NextInducedRing"; |
---|
896 | "basering: ", basering; attrib(basering); |
---|
897 | } |
---|
898 | |
---|
899 | /* |
---|
900 | // is initial weights are all zeroes! |
---|
901 | def L = lead(M); |
---|
902 | intvec @V = deg(M[1..ncols(M)]); @W; @V; @W = @V; attrib(L, "isHomog", @W); |
---|
903 | SetInducedReferrence(L, @RANK, 0); |
---|
904 | */ |
---|
905 | |
---|
906 | // def L = lead(MRES); |
---|
907 | // @W = @W, @V; |
---|
908 | // attrib(L, "isHomog", @W); |
---|
909 | |
---|
910 | |
---|
911 | // General setting: |
---|
912 | // SetInducedReferrence(MRES, 0, 0); // limit: 0! |
---|
913 | int @l = size(RES); |
---|
914 | |
---|
915 | def M = RES[@l]; |
---|
916 | |
---|
917 | def L = LRES[@l]; |
---|
918 | def T = TRES[@l]; |
---|
919 | |
---|
920 | |
---|
921 | //// TODO: wrong !!!!! |
---|
922 | int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?! |
---|
923 | |
---|
924 | |
---|
925 | |
---|
926 | /* |
---|
927 | if( @RANK != nrows(M) ) |
---|
928 | { |
---|
929 | type(MRES); |
---|
930 | @RANK; |
---|
931 | type(M); |
---|
932 | pause(); |
---|
933 | } |
---|
934 | */ |
---|
935 | |
---|
936 | intvec @W = attrib(M, "isHomog"); intvec @V = attrib(M, "degrees"); @V = @W, @V; |
---|
937 | |
---|
938 | if( @DEBUG ) |
---|
939 | { |
---|
940 | "Sstep::NextInput: "; |
---|
941 | M; |
---|
942 | L; |
---|
943 | @V; |
---|
944 | @RANK; |
---|
945 | // DetailedPrint(MRES); |
---|
946 | attrib(MRES, "isHomog"); |
---|
947 | } |
---|
948 | |
---|
949 | |
---|
950 | // TODO: N = SYZ( M )!!! |
---|
951 | module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(M, L, T, @RANK); // shift syz.comp by @RANK! |
---|
952 | |
---|
953 | attrib(N, "isHomog", @V); |
---|
954 | |
---|
955 | // TODO: correct the following: |
---|
956 | intvec @DEGS = deg(N[1..ncols(N)]); // no mod. comp. weights :( |
---|
957 | attrib(N, "degrees", @DEGS); |
---|
958 | |
---|
959 | if( size(N) > 0 ) |
---|
960 | { |
---|
961 | N; |
---|
962 | MRES; |
---|
963 | // next syz. property |
---|
964 | if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 ) |
---|
965 | { |
---|
966 | MRES; |
---|
967 | |
---|
968 | "N: "; N; // DetailedPrint(N, 2); |
---|
969 | |
---|
970 | "LL:"; LL; // DetailedPrint(LL, 1); |
---|
971 | "TT:"; TT; // DetailedPrint(TT, 10); |
---|
972 | |
---|
973 | "RANKS: ", @RANK; |
---|
974 | |
---|
975 | "transpose( transpose(N) * transpose(MRES) ) != 0!!!"; |
---|
976 | transpose( transpose(N) * transpose(MRES) ); |
---|
977 | |
---|
978 | "transpose(N) * transpose(MRES): "; |
---|
979 | transpose(N) * transpose(MRES); |
---|
980 | // DetailedPrint(module(_), 2); |
---|
981 | $ |
---|
982 | } |
---|
983 | } |
---|
984 | |
---|
985 | RES[@l + 1] = N; // list of all syzygy modules |
---|
986 | LRES[@l + 1] = LL; // list of all syzygy modules |
---|
987 | TRES[@l + 1] = TT; // list of all syzygy modules |
---|
988 | |
---|
989 | MRES = MRES, N; |
---|
990 | attrib(MRES, "isHomog", @V); |
---|
991 | |
---|
992 | // L = L, lead(N); attrib(basering, "InducionLeads", L); |
---|
993 | |
---|
994 | if( @DEBUG ) |
---|
995 | { |
---|
996 | "SSstep::NextSyzOutput: "; |
---|
997 | // DetailedPrint(N); |
---|
998 | attrib(N); |
---|
999 | } |
---|
1000 | |
---|
1001 | } |
---|
1002 | |
---|
1003 | proc SScontinue(int l) |
---|
1004 | "USAGE: SScontinue(l) |
---|
1005 | RETURN: nothing, instead it changes RES and MRES variables in the current ring |
---|
1006 | PURPOSE: computes further (at most l) syzygies |
---|
1007 | NOTE: must be used within a ring returned by Sres or Ssyz. RES and MRES are |
---|
1008 | explained in Sres |
---|
1009 | EXAMPLE: example Scontinue; shows an example |
---|
1010 | " |
---|
1011 | { |
---|
1012 | |
---|
1013 | /// TODO! |
---|
1014 | // def data = GetInducedData(); |
---|
1015 | |
---|
1016 | if( (!defined(RES)) || (!defined(MRES)) ) /* || (typeof(data) != "list") || (size(data) != 2) */ |
---|
1017 | { |
---|
1018 | ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz"); |
---|
1019 | } |
---|
1020 | for (; (l != 0) && (size(RES[size(RES)]) > 0); l-- ) |
---|
1021 | { |
---|
1022 | SSstep(); |
---|
1023 | } |
---|
1024 | } |
---|
1025 | example |
---|
1026 | { "EXAMPLE:"; echo = 2; |
---|
1027 | ring r; |
---|
1028 | module M = maxideal(1); M; |
---|
1029 | def S = SSsyz(M); setring S; S; |
---|
1030 | "Only the first syzygy: "; |
---|
1031 | RES; MRES; |
---|
1032 | "More syzygies: "; |
---|
1033 | SScontinue(10); |
---|
1034 | RES; MRES; |
---|
1035 | } |
---|
1036 | |
---|
1037 | proc SSsyz(def M) |
---|
1038 | "USAGE: SSsyz(M) |
---|
1039 | RETURN: ring, containing a list of modules RES and a module MRES |
---|
1040 | PURPOSE: computes the first syzygy module of M (wrt some Schreyer ordering)? |
---|
1041 | NOTE: The output is explained in Sres |
---|
1042 | EXAMPLE: example Ssyz; shows an example |
---|
1043 | " |
---|
1044 | { |
---|
1045 | if( (typeof(M) != "module") && (typeof(M) != "ideal") ) |
---|
1046 | { |
---|
1047 | ERROR("Sorry: need an ideal or a module for input"); |
---|
1048 | } |
---|
1049 | |
---|
1050 | def SS = SSinit(M); setring SS; |
---|
1051 | |
---|
1052 | SSstep(); // NOTE: what if M is zero? |
---|
1053 | |
---|
1054 | return (SS); |
---|
1055 | } |
---|
1056 | example |
---|
1057 | { "EXAMPLE:"; echo = 2; |
---|
1058 | ring r; |
---|
1059 | |
---|
1060 | /* ideal M = 0; |
---|
1061 | def S = SSsyz(M); setring S; S; |
---|
1062 | "Only the first syzygy: "; |
---|
1063 | RES; LRES; TRES; |
---|
1064 | MRES; |
---|
1065 | |
---|
1066 | kill S; setring r; kill M; |
---|
1067 | */ |
---|
1068 | |
---|
1069 | module M = maxideal(1); M; |
---|
1070 | def S = SSres(M, 0); setring S; S; |
---|
1071 | "Only the first syzygy: "; |
---|
1072 | RES; LRES; TRES; |
---|
1073 | MRES; |
---|
1074 | |
---|
1075 | kill S; setring r; kill M; |
---|
1076 | |
---|
1077 | kill r; |
---|
1078 | |
---|
1079 | ring R = 0, (w, x, y, z), dp; |
---|
1080 | ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z; |
---|
1081 | |
---|
1082 | def S = SSres(M, 0); setring S; S; |
---|
1083 | "Only the first syzygy: "; |
---|
1084 | RES; LRES; TRES; |
---|
1085 | MRES; |
---|
1086 | } |
---|
1087 | |
---|
1088 | proc SSres(def M, int l) |
---|
1089 | "USAGE: SSres(I, l) |
---|
1090 | RETURN: ring, containing a list of modules RES and a module MRES |
---|
1091 | PURPOSE: computes (at most l) syzygy modules of M wrt the classical Schreyer |
---|
1092 | induced ordering with gen(i) > gen(j) if i > j, provided both gens |
---|
1093 | are from the same syzygy level.??? |
---|
1094 | NOTE: RES contains the images of maps subsituting the beginning of the |
---|
1095 | Schreyer free resolution of baseRing^r/M, while MRES is a sum of |
---|
1096 | these images in a big free sum, containing all the syzygy modules. |
---|
1097 | The syzygy modules are shifted so that gen(i) correspons to MRES[i]. |
---|
1098 | The leading zero module RES[0] indicates the fact that coker of the |
---|
1099 | first map is zero. The number of zeroes inducates the rank of input. |
---|
1100 | NOTE: If l == 0 then l is set to be nvars(basering) + 1 |
---|
1101 | EXAMPLE: example SSres; shows an example |
---|
1102 | " |
---|
1103 | { |
---|
1104 | if( (typeof(M) != "module") && (typeof(M) != "ideal") ) |
---|
1105 | { |
---|
1106 | ERROR("Sorry: need an ideal or a module for input"); |
---|
1107 | } |
---|
1108 | |
---|
1109 | def SS = SSinit(M); setring SS; |
---|
1110 | |
---|
1111 | if (l == 0) |
---|
1112 | { |
---|
1113 | l = nvars(basering) + 1; // not really an estimate...?! |
---|
1114 | } |
---|
1115 | |
---|
1116 | SSstep(); l = l - 1; |
---|
1117 | |
---|
1118 | SScontinue(l); |
---|
1119 | |
---|
1120 | return (SS); |
---|
1121 | } |
---|
1122 | example |
---|
1123 | { "EXAMPLE:"; echo = 2; |
---|
1124 | ring r; |
---|
1125 | module M = maxideal(1); M; |
---|
1126 | def S = SSres(M, 0); setring S; S; |
---|
1127 | RES; |
---|
1128 | MRES; |
---|
1129 | kill S; |
---|
1130 | setring r; kill M; |
---|
1131 | |
---|
1132 | def A = nc_algebra(-1,0); setring A; |
---|
1133 | ideal Q = var(1)^2, var(2)^2, var(3)^2; |
---|
1134 | qring SCA = twostd(Q); |
---|
1135 | basering; |
---|
1136 | |
---|
1137 | module M = maxideal(1); |
---|
1138 | def S = SSres(M, 2); setring S; S; |
---|
1139 | RES; |
---|
1140 | MRES; |
---|
1141 | } |
---|
1142 | |
---|
1143 | |
---|
1144 | |
---|
1145 | static proc loadme() |
---|
1146 | { |
---|
1147 | int @DEBUG = !system("with", "ndebug"); |
---|
1148 | |
---|
1149 | if( @DEBUG ) |
---|
1150 | { |
---|
1151 | |
---|
1152 | "ndebug?: ", system("with", "ndebug"); |
---|
1153 | "om_ndebug?: ", system("with", "om_ndebug"); |
---|
1154 | |
---|
1155 | listvar(Top); |
---|
1156 | listvar(Schreyer); |
---|
1157 | } |
---|
1158 | // listvar(Syzextra); listvar(Syzextra_g); |
---|
1159 | |
---|
1160 | if( !defined(DetailedPrint) ) |
---|
1161 | { |
---|
1162 | if( !@DEBUG ) |
---|
1163 | { |
---|
1164 | |
---|
1165 | if( @DEBUG ) |
---|
1166 | { |
---|
1167 | "Loading the Release version!"; |
---|
1168 | } |
---|
1169 | load("syzextra.so"); |
---|
1170 | |
---|
1171 | if( @DEBUG ) |
---|
1172 | { |
---|
1173 | listvar(Syzextra); |
---|
1174 | } |
---|
1175 | |
---|
1176 | // export Syzextra; |
---|
1177 | |
---|
1178 | // exportto(Schreyer, Syzextra::noop); |
---|
1179 | exportto(Schreyer, Syzextra::DetailedPrint); |
---|
1180 | exportto(Schreyer, Syzextra::leadmonomial); |
---|
1181 | exportto(Schreyer, Syzextra::leadcomp); |
---|
1182 | // exportto(Schreyer, Syzextra::leadrawexp); |
---|
1183 | // exportto(Schreyer, Syzextra::ISUpdateComponents); |
---|
1184 | exportto(Schreyer, Syzextra::SetInducedReferrence); |
---|
1185 | exportto(Schreyer, Syzextra::GetInducedData); |
---|
1186 | // exportto(Schreyer, Syzextra::GetAMData); |
---|
1187 | // exportto(Schreyer, Syzextra::SetSyzComp); |
---|
1188 | exportto(Schreyer, Syzextra::MakeInducedSchreyerOrdering); |
---|
1189 | // exportto(Schreyer, Syzextra::MakeSyzCompOrdering); |
---|
1190 | exportto(Schreyer, Syzextra::idPrepare); |
---|
1191 | // exportto(Schreyer, Syzextra::reduce_syz); |
---|
1192 | // exportto(Schreyer, Syzextra::p_Content); |
---|
1193 | |
---|
1194 | } |
---|
1195 | else |
---|
1196 | { |
---|
1197 | if( @DEBUG ) |
---|
1198 | { |
---|
1199 | "Loading the Debug version!"; |
---|
1200 | } |
---|
1201 | |
---|
1202 | load("syzextra_g.so"); |
---|
1203 | |
---|
1204 | if( @DEBUG ) |
---|
1205 | { |
---|
1206 | listvar(Syzextra_g); |
---|
1207 | } |
---|
1208 | |
---|
1209 | // export Syzextra_g; |
---|
1210 | // exportto(Schreyer, Syzextra_g::noop); |
---|
1211 | exportto(Schreyer, Syzextra_g::DetailedPrint); |
---|
1212 | exportto(Schreyer, Syzextra_g::leadmonomial); |
---|
1213 | exportto(Schreyer, Syzextra_g::leadcomp); |
---|
1214 | // exportto(Schreyer, Syzextra_g::leadrawexp); |
---|
1215 | // exportto(Schreyer, Syzextra_g::ISUpdateComponents); |
---|
1216 | exportto(Schreyer, Syzextra_g::SetInducedReferrence); |
---|
1217 | exportto(Schreyer, Syzextra_g::GetInducedData); |
---|
1218 | // exportto(Schreyer, Syzextra_g::GetAMData); |
---|
1219 | // exportto(Schreyer, Syzextra_g::SetSyzComp); |
---|
1220 | exportto(Schreyer, Syzextra_g::MakeInducedSchreyerOrdering); |
---|
1221 | // exportto(Schreyer, Syzextra_g::MakeSyzCompOrdering); |
---|
1222 | exportto(Schreyer, Syzextra_g::idPrepare); |
---|
1223 | // exportto(Schreyer, Syzextra_g::reduce_syz); |
---|
1224 | // exportto(Schreyer, Syzextra_g::p_Content); |
---|
1225 | |
---|
1226 | |
---|
1227 | } |
---|
1228 | |
---|
1229 | exportto(Top, DetailedPrint); |
---|
1230 | exportto(Top, GetInducedData); |
---|
1231 | |
---|
1232 | if( @DEBUG ) |
---|
1233 | { |
---|
1234 | listvar(Top); |
---|
1235 | listvar(Schreyer); |
---|
1236 | } |
---|
1237 | } |
---|
1238 | |
---|
1239 | if( !defined(GetInducedData) ) |
---|
1240 | { |
---|
1241 | ERROR("Sorry but we are missing the dynamic module (syzextra(_g)?.so)..."); |
---|
1242 | } |
---|
1243 | |
---|
1244 | } |
---|
1245 | |
---|
1246 | static proc mod_init() |
---|
1247 | { |
---|
1248 | loadme(); |
---|
1249 | } |
---|
1250 | |
---|
1251 | |
---|
1252 | proc testallSexamples() |
---|
1253 | { |
---|
1254 | example Ssyz; |
---|
1255 | example Scontinue; |
---|
1256 | example Sres; |
---|
1257 | } |
---|
1258 | |
---|
1259 | proc testallSSexamples() |
---|
1260 | { |
---|
1261 | example SSsyz; |
---|
1262 | example SScontinue; |
---|
1263 | example SSres; |
---|
1264 | } |
---|
1265 | |
---|
1266 | example |
---|
1267 | { "EXAMPLE:"; echo = 2; |
---|
1268 | testallSexamples(); |
---|
1269 | testallSSexamples(); |
---|
1270 | } |
---|