1 | /////////////////////////////////////////////////////////////////////////// |
---|
2 | version="version schreyer.lib 4.0.0.0 Jun_2013 "; // $Id$ |
---|
3 | category="General purpose"; |
---|
4 | info=" |
---|
5 | LIBRARY: schreyer.lib Schreyer resolution computations and helpers for @code{derham.lib} |
---|
6 | AUTHOR: Oleksandr Motsak <U@D>, where U={motsak}, D={mathematik.uni-kl.de} |
---|
7 | KEYWORDS: Schreyer ordering; Schreyer resolution; syzygy |
---|
8 | OVERVIEW: |
---|
9 | @* The library contains several procedures for computing a/part of Schreyer resoltion (cf. [SFO]), |
---|
10 | and some helpers for @code{derham.lib} (which requires resolutions over the homogenized Weyl algebra) for that purpose. |
---|
11 | @* The input for any resolution computation is a set of vectors @code{M} in form of a module over some basering @code{R}. |
---|
12 | The helpers works both in the commutative and non-commutative setting (cf. [MO]), that is the ring @code{R} may be non-commutative, |
---|
13 | in which case the ring ordering over it must be global. They produce/work with partial Schreyer resolutions of @code{(R^rank(M))/M} |
---|
14 | in form of a specially constructed ring (endowed with a special ring ordering that will be extended in the |
---|
15 | course of a resolution computation) containing a list of modules @code{RES} and a module @code{MRES}: |
---|
16 | @* @code{RES}: the list of modules contains the images of maps (also called syzygy modules) substituting the |
---|
17 | computed beginning of a Schreyer resolution, that is, each syzygy module is given by a Groebner basis |
---|
18 | with respect to the corresponding Schreyer ordering. |
---|
19 | @* @code{RES}: the list of modules which starts with a zero map given by @code{rank(M)} zero generators indicating that the image of |
---|
20 | the first differential map is zero. The second map @code{RES[2]} is given by @code{M}, which indicates that |
---|
21 | the resolution of @code{(R^rank(M))/M} is being computed. |
---|
22 | @* @code{MRES}: the module is a direct sum of modules from @code{RES} and thus comprises all computed differentials. |
---|
23 | @* Syzygies are shifted so that @code{gen(i)} is mapped to @code{MRES[i]} under the differential map. |
---|
24 | NOTE: |
---|
25 | @* Here, we call a free resolution a Schreyer resolution if each syzygy module is given by a Groebner basis |
---|
26 | with respect to the corresponding Schreyer ordering. |
---|
27 | @* A Schreyer resolution can be much bigger than a minimal resolution of the same module, but may be easier to construct. |
---|
28 | @* The Schreyer ordering succesively extends the starting module ordering on @code{M} (defined in Singular by the basering @code{R}) |
---|
29 | and is extended to higher syzygies using the following definition: |
---|
30 | @* a < b if and only if (d(a) < d(b)) OR ( (d(a) = d(b) AND (comp(a) < comp(b)) ), |
---|
31 | @* where @code{d(a)} is the image of an under the differential (given by @code{MRES}), |
---|
32 | and @code{comp(a)} is the module component, for any module terms @code{a} and @code{b} from the same higher syzygy module. |
---|
33 | NOTE: |
---|
34 | @* most comutations require the dynamic or built-in module @code{syzextra}, which will be auto-leaded on demand. |
---|
35 | PROCEDURES: |
---|
36 | Sres(M,len) helper for computing Schreyer resolution of module M of maximal length len |
---|
37 | Ssyz(M) helper for computing Schreyer resolution of module M of length 1 |
---|
38 | Scontinue(len) helper for extending currently active resolution by (at most) len syszygies |
---|
39 | s_res(M, len) compute Schreyer resolution of module M of maximal length len via LiftTree method from [BMSS] |
---|
40 | REFERENCES: |
---|
41 | @* |
---|
42 | [BMSS] Burcin, E., Motsak, O., Schreyer, F.-O., Steenpass, A.: NEW ALGORITHMS TO COMPUTE SYZYGIES, 2014. |
---|
43 | @* |
---|
44 | [SFO] Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrassschen Divisionssatz, |
---|
45 | Master's thesis, Univ. Hamburg, 1980. |
---|
46 | @* |
---|
47 | [MO] Motsak, O.: Non-commutative Computer Algebra with applications: Graded commutative algebra and related |
---|
48 | structures in Singular with applications, Ph.D. thesis, TU Kaiserslautern, 2010. |
---|
49 | "; |
---|
50 | |
---|
51 | |
---|
52 | static proc prepareSyz( module I, list # ) |
---|
53 | { |
---|
54 | int i; |
---|
55 | int k = 0; |
---|
56 | int r = nrows(I); |
---|
57 | int c = ncols(I); |
---|
58 | |
---|
59 | |
---|
60 | if( size(#) > 0 ) |
---|
61 | { |
---|
62 | if( typeof(#[1]) == "int" || typeof(#[1]) == "bigint" ) |
---|
63 | { |
---|
64 | k = #[1]; |
---|
65 | } |
---|
66 | } |
---|
67 | |
---|
68 | if( k < r ) |
---|
69 | { |
---|
70 | "// *** Wrong k: ", k, " < nrows: ", r, " => setting k = r = ", r; |
---|
71 | k = r; |
---|
72 | } |
---|
73 | |
---|
74 | // "k: ", k; "c: ", c; "I: ", I; |
---|
75 | |
---|
76 | for( i = c; i > 0; i-- ) |
---|
77 | { |
---|
78 | I[i] = I[i] + gen(k + i); |
---|
79 | } |
---|
80 | |
---|
81 | // DetailedPrint(I); |
---|
82 | |
---|
83 | return(I); |
---|
84 | } |
---|
85 | |
---|
86 | static proc separateSyzGB( module J, int c ) |
---|
87 | { |
---|
88 | module II, G; vector v; int i; |
---|
89 | |
---|
90 | J = simplify(J, 2); |
---|
91 | |
---|
92 | for( i = ncols(J); i > 0; i-- ) |
---|
93 | { |
---|
94 | v = J[i]; |
---|
95 | if( leadcomp(v) > c ) |
---|
96 | { |
---|
97 | II[i] = v; |
---|
98 | } else |
---|
99 | { |
---|
100 | G[i] = v; // leave only gen(i): i <= c |
---|
101 | } |
---|
102 | } |
---|
103 | |
---|
104 | II = simplify(II, 2); |
---|
105 | G = simplify(G, 2); |
---|
106 | |
---|
107 | return (list(G, II)); |
---|
108 | } |
---|
109 | |
---|
110 | static proc splitSyzGB( module J, int c ) |
---|
111 | { |
---|
112 | module JJ; vector v, vv; int i; |
---|
113 | |
---|
114 | for( i = ncols(J); i > 0; i-- ) |
---|
115 | { |
---|
116 | v = J[i]; |
---|
117 | |
---|
118 | vv = 0; |
---|
119 | |
---|
120 | while( leadcomp(v) <= c ) |
---|
121 | { |
---|
122 | vv = vv + lead(v); |
---|
123 | v = v - lead(v); |
---|
124 | } |
---|
125 | |
---|
126 | J[i] = vv; |
---|
127 | JJ[i] = v; |
---|
128 | } |
---|
129 | |
---|
130 | J = simplify(J, 2); |
---|
131 | JJ = simplify(JJ, 2); |
---|
132 | |
---|
133 | return (list(J, JJ)); |
---|
134 | } |
---|
135 | |
---|
136 | |
---|
137 | static proc Sinit(module M) |
---|
138 | { |
---|
139 | def @save = basering; |
---|
140 | |
---|
141 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
142 | if( @DEBUG ) |
---|
143 | { |
---|
144 | "Sinit::Input"; |
---|
145 | type(M); |
---|
146 | // DetailedPrint(M); |
---|
147 | attrib(M); |
---|
148 | } |
---|
149 | |
---|
150 | int @RANK = nrows(M); int @SIZE = ncols(M); |
---|
151 | |
---|
152 | int @IS_A_SB = attrib(M, "isSB"); // ??? only if all weights were zero?! |
---|
153 | |
---|
154 | if( !@IS_A_SB ) |
---|
155 | { |
---|
156 | M = std(M); // this should be faster than computing std in S (later on) |
---|
157 | } |
---|
158 | |
---|
159 | def S = MakeInducedSchreyerOrdering(1); // 1 puts history terms to the back |
---|
160 | // TODO: NOTE: +1 causes trouble to Singular interpreter!!!??? |
---|
161 | setring S; // a new ring with a Schreyer ordering |
---|
162 | |
---|
163 | if( @DEBUG ) |
---|
164 | { |
---|
165 | "Sinit::StartingISRing"; |
---|
166 | basering; |
---|
167 | // DetailedPrint(basering); |
---|
168 | } |
---|
169 | |
---|
170 | // Setup the leading syzygy^{-1} module to zero: |
---|
171 | module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0)); |
---|
172 | |
---|
173 | module MRES = Z; |
---|
174 | |
---|
175 | list RES; RES[1] = Z; |
---|
176 | |
---|
177 | module F = freemodule(@RANK); |
---|
178 | intvec @V = deg(F[1..@RANK]); |
---|
179 | |
---|
180 | module M = imap(@save, M); |
---|
181 | |
---|
182 | attrib(M, "isHomog", @V); |
---|
183 | attrib(M, "isSB", 1); |
---|
184 | |
---|
185 | |
---|
186 | if( @DEBUG ) |
---|
187 | { |
---|
188 | "Sinit::SB_Input: "; |
---|
189 | type(M); |
---|
190 | attrib(M); |
---|
191 | attrib(M, "isHomog"); |
---|
192 | // DetailedPrint(M); |
---|
193 | } |
---|
194 | |
---|
195 | if( @DEBUG ) |
---|
196 | { |
---|
197 | // 0^th syz. property |
---|
198 | if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 ) |
---|
199 | { |
---|
200 | transpose( transpose(M) * transpose(MRES) ); |
---|
201 | "ERROR: transpose( transpose(M) * transpose(MRES) ) != 0!!!"; |
---|
202 | m2_end(666); |
---|
203 | } |
---|
204 | } |
---|
205 | |
---|
206 | RES[size(RES)+1] = M; // list of all syzygy modules |
---|
207 | MRES = MRES, M; |
---|
208 | |
---|
209 | attrib(MRES, "isHomog", @V); |
---|
210 | |
---|
211 | attrib(S, "InducionLeads", lead(M)); |
---|
212 | attrib(S, "InducionStart", @RANK); |
---|
213 | |
---|
214 | if( @DEBUG ) |
---|
215 | { |
---|
216 | "Sinit::MRES"; |
---|
217 | DetailedPrint(MRES); |
---|
218 | attrib(MRES, "isHomog"); |
---|
219 | attrib(S); |
---|
220 | } |
---|
221 | |
---|
222 | export RES; |
---|
223 | export MRES; |
---|
224 | return (S); |
---|
225 | } |
---|
226 | |
---|
227 | static proc Sstep() |
---|
228 | { |
---|
229 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
230 | |
---|
231 | if( @DEBUG ) |
---|
232 | { |
---|
233 | "Sstep::NextInducedRing"; |
---|
234 | DetailedPrint(basering); |
---|
235 | |
---|
236 | attrib(basering, "InducionLeads"); |
---|
237 | attrib(basering, "InducionStart"); |
---|
238 | |
---|
239 | GetInducedData(); |
---|
240 | } |
---|
241 | |
---|
242 | // syzygy step: |
---|
243 | |
---|
244 | /* |
---|
245 | // is initial weights are all zeroes! |
---|
246 | def L = lead(M); |
---|
247 | intvec @V = deg(M[1..ncols(M)]); @W; @V; @W = @V; attrib(L, "isHomog", @W); |
---|
248 | SetInducedReferrence(L, @RANK, 0); |
---|
249 | */ |
---|
250 | |
---|
251 | // def L = lead(MRES); |
---|
252 | // @W = @W, @V; |
---|
253 | // attrib(L, "isHomog", @W); |
---|
254 | |
---|
255 | |
---|
256 | // General setting: |
---|
257 | // SetInducedReferrence(MRES, 0, 0); // limit: 0! |
---|
258 | int @l = size(RES); |
---|
259 | |
---|
260 | module M = RES[@l]; |
---|
261 | |
---|
262 | module L = attrib(basering, "InducionLeads"); |
---|
263 | int limit = attrib(basering, "InducionStart"); |
---|
264 | |
---|
265 | // L; limit; |
---|
266 | |
---|
267 | int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?! |
---|
268 | |
---|
269 | /* |
---|
270 | if( @RANK != nrows(M) ) |
---|
271 | { |
---|
272 | type(MRES); |
---|
273 | @RANK; |
---|
274 | type(M); |
---|
275 | pause(); |
---|
276 | } |
---|
277 | */ |
---|
278 | |
---|
279 | intvec @W = attrib(M, "isHomog"); |
---|
280 | intvec @V = deg(M[1..ncols(M)]); |
---|
281 | @V = @W, @V; |
---|
282 | |
---|
283 | if( @DEBUG ) |
---|
284 | { |
---|
285 | "Sstep::NextInput: "; |
---|
286 | M; |
---|
287 | deg(M[1..ncols(M)]); // no use of @W :(? |
---|
288 | @RANK; |
---|
289 | DetailedPrint(MRES); |
---|
290 | attrib(MRES, "isHomog"); @W; |
---|
291 | deg(MRES[1..ncols(MRES)]); |
---|
292 | } |
---|
293 | |
---|
294 | |
---|
295 | |
---|
296 | SetInducedReferrence(L, limit, 0); |
---|
297 | |
---|
298 | def K = prepareSyz(M, @RANK); |
---|
299 | // K; |
---|
300 | |
---|
301 | // attrib(K, "isHomog", @V); DetailedPrint(K, 1000); |
---|
302 | |
---|
303 | // pause(); |
---|
304 | |
---|
305 | K = idPrepare(K, @RANK); // std(K); // ? |
---|
306 | K = simplify(K, 2); |
---|
307 | |
---|
308 | // K; |
---|
309 | |
---|
310 | module N = separateSyzGB(K, @RANK)[2]; // 1^st syz. module: vectors which start in lower part (comp >= @RANK) |
---|
311 | |
---|
312 | // "N_0: "; N; DetailedPrint(N, 10); |
---|
313 | |
---|
314 | // basering; print(@V); type(N); |
---|
315 | // attrib(N, "isHomog", @V); // TODO: fix "wrong weights"!!!? deg is wrong :((( |
---|
316 | N = std(N); |
---|
317 | attrib(N, "isHomog", @V); |
---|
318 | |
---|
319 | // N; |
---|
320 | |
---|
321 | if( @DEBUG ) |
---|
322 | { |
---|
323 | if( size(N) > 0 ) |
---|
324 | { |
---|
325 | // next syz. property |
---|
326 | if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 ) |
---|
327 | { |
---|
328 | MRES; |
---|
329 | |
---|
330 | "N: "; N; DetailedPrint(N, 10); |
---|
331 | |
---|
332 | "K:"; K; DetailedPrint(K, 10); |
---|
333 | |
---|
334 | "RANKS: ", @RANK; |
---|
335 | |
---|
336 | "ERROR: transpose( transpose(N) * transpose(MRES) ) != 0!!!"; |
---|
337 | transpose( transpose(N) * transpose(MRES) ); |
---|
338 | |
---|
339 | "transpose(N) * transpose(MRES): "; |
---|
340 | transpose(N) * transpose(MRES); |
---|
341 | DetailedPrint(module(_), 2); |
---|
342 | m2_end(666); |
---|
343 | } |
---|
344 | } |
---|
345 | } |
---|
346 | |
---|
347 | RES[@l + 1] = N; // list of all syzygy modules |
---|
348 | |
---|
349 | MRES = MRES, N; |
---|
350 | attrib(MRES, "isHomog", @V); |
---|
351 | |
---|
352 | |
---|
353 | L = L, lead(N); |
---|
354 | attrib(basering, "InducionLeads", L); |
---|
355 | |
---|
356 | if( @DEBUG ) |
---|
357 | { |
---|
358 | "Sstep::NextSyzOutput: "; |
---|
359 | DetailedPrint(N); |
---|
360 | attrib(N, "isHomog"); |
---|
361 | } |
---|
362 | |
---|
363 | } |
---|
364 | |
---|
365 | proc Scontinue(int l) |
---|
366 | "USAGE: Scontinue(int len) |
---|
367 | RETURN: nothing, instead it changes the currently active resolution |
---|
368 | PURPOSE: extends the currently active resolution by at most len syzygies |
---|
369 | ASSUME: must be used within a ring returned by Sres or Ssyz |
---|
370 | EXAMPLE: example Scontinue; shows an example |
---|
371 | " |
---|
372 | { |
---|
373 | def data = GetInducedData(); |
---|
374 | |
---|
375 | if( (!defined(RES)) || (!defined(MRES)) || (typeof(data) != "list") || (size(data) != 2) ) |
---|
376 | { |
---|
377 | ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz"); |
---|
378 | } |
---|
379 | for (; (l != 0) && (size(RES[size(RES)]) > 0); l-- ) |
---|
380 | { |
---|
381 | Sstep(); |
---|
382 | } |
---|
383 | } |
---|
384 | example |
---|
385 | { "EXAMPLE:"; echo = 2; |
---|
386 | ring r; |
---|
387 | module M = maxideal(1); M; |
---|
388 | def S = Ssyz(M); setring S; S; |
---|
389 | "Only the first syzygy: "; |
---|
390 | RES; MRES; |
---|
391 | "More syzygies: "; |
---|
392 | Scontinue(10); |
---|
393 | RES; MRES; |
---|
394 | } |
---|
395 | |
---|
396 | proc Ssyz(module M) |
---|
397 | "USAGE: Ssyz(module M) |
---|
398 | RETURN: ring, containing a Schreyer resolution |
---|
399 | PURPOSE: computes a Schreyer resolution of M of length 1 (see the library overview) |
---|
400 | SEE ALSO: Sres |
---|
401 | EXAMPLE: example Ssyz; shows an example |
---|
402 | " |
---|
403 | { |
---|
404 | def S = Sinit(M); setring S; |
---|
405 | |
---|
406 | Sstep(); // NOTE: what if M is zero? |
---|
407 | |
---|
408 | return (S); |
---|
409 | } |
---|
410 | example |
---|
411 | { "EXAMPLE:"; echo = 2; |
---|
412 | ring r; |
---|
413 | module M = maxideal(1); M; |
---|
414 | def S = Ssyz(M); setring S; S; |
---|
415 | "Only the first syzygy: "; |
---|
416 | RES; |
---|
417 | MRES; // Note gen(i) |
---|
418 | kill S; |
---|
419 | setring r; kill M; |
---|
420 | |
---|
421 | module M = 0; |
---|
422 | def S = Ssyz(M); setring S; S; |
---|
423 | "Only the first syzygy: "; |
---|
424 | RES; |
---|
425 | MRES; |
---|
426 | } |
---|
427 | |
---|
428 | proc Sres(module M, int l) |
---|
429 | "USAGE: Sres(module M, int len) |
---|
430 | RETURN: ring, containing a Schreyer resolution |
---|
431 | PURPOSE: computes a Schreyer resolution of M of length at most len (see the library overview) |
---|
432 | NOTE: If given len is zero then nvars(basering) + 1 is used instead. |
---|
433 | SEE ALSO: Ssyz |
---|
434 | EXAMPLE: example Sres; shows an example |
---|
435 | " |
---|
436 | { |
---|
437 | def S = Sinit(M); setring S; |
---|
438 | |
---|
439 | if (l == 0) |
---|
440 | { |
---|
441 | l = nvars(basering) + 1; // not really an estimate...?! |
---|
442 | } |
---|
443 | |
---|
444 | Sstep(); l = l - 1; |
---|
445 | |
---|
446 | Scontinue(l); |
---|
447 | |
---|
448 | return (S); |
---|
449 | } |
---|
450 | example |
---|
451 | { "EXAMPLE:"; echo = 2; |
---|
452 | ring r; |
---|
453 | module M = maxideal(1); M; |
---|
454 | def S = Sres(M, 0); setring S; S; |
---|
455 | RES; |
---|
456 | MRES; |
---|
457 | kill S; |
---|
458 | setring r; kill M; |
---|
459 | |
---|
460 | def A = nc_algebra(-1,0); setring A; |
---|
461 | ideal Q = var(1)^2, var(2)^2, var(3)^2; |
---|
462 | qring SCA = twostd(Q); |
---|
463 | basering; |
---|
464 | |
---|
465 | module M = maxideal(1); |
---|
466 | def S = Sres(M, 2); setring S; S; |
---|
467 | RES; |
---|
468 | MRES; |
---|
469 | } |
---|
470 | |
---|
471 | |
---|
472 | |
---|
473 | // ================================================================== // |
---|
474 | |
---|
475 | |
---|
476 | LIB "general.lib"; // for sort |
---|
477 | |
---|
478 | static proc MySort(def M) |
---|
479 | " Sorts the given ideal or module wrt >_{(c, ds)} (.<.<.<.<) " |
---|
480 | { |
---|
481 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
482 | { |
---|
483 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
484 | } else |
---|
485 | { |
---|
486 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
487 | } |
---|
488 | |
---|
489 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
490 | { |
---|
491 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
492 | } else |
---|
493 | { |
---|
494 | int @KERCHECK = @DEBUG; |
---|
495 | } |
---|
496 | |
---|
497 | |
---|
498 | if( @DEBUG ) |
---|
499 | { |
---|
500 | "MySort:: Input: "; M; |
---|
501 | } |
---|
502 | |
---|
503 | def @N = M; |
---|
504 | |
---|
505 | if( size(M) > 0 ) |
---|
506 | { |
---|
507 | Sort_c_ds(@N); |
---|
508 | |
---|
509 | if( @KERCHECK ) |
---|
510 | { |
---|
511 | def iv = sort(lead(M), "c,ds", 1)[2]; // ,1 => reversed! // TODO: not needed? |
---|
512 | def @M = M; |
---|
513 | @M = M[iv]; |
---|
514 | |
---|
515 | // 0^th syz. property |
---|
516 | if( (size(@N) + size(@M)) > 0 ) |
---|
517 | { |
---|
518 | if( size(module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) )) > 0 ) |
---|
519 | { |
---|
520 | "ERROR: MySort: wrong sorting in 'MySort': @N != @M!!!"; |
---|
521 | |
---|
522 | "@M:"; @M; |
---|
523 | "@N:"; @N; |
---|
524 | |
---|
525 | "module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) ): "; |
---|
526 | module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) ); |
---|
527 | |
---|
528 | "ERROR: MySort: wrong sorting in 'MySort': @N != @M!!!"; |
---|
529 | m2_end(666); |
---|
530 | } |
---|
531 | } |
---|
532 | } |
---|
533 | } |
---|
534 | |
---|
535 | if( @DEBUG ) |
---|
536 | { |
---|
537 | "MySort:: Ouput: "; @N; |
---|
538 | } |
---|
539 | |
---|
540 | return (@N); |
---|
541 | } |
---|
542 | |
---|
543 | |
---|
544 | static proc SSinit(def M) |
---|
545 | { |
---|
546 | // rtimer, "***TIMESNAP0 for SSinit: on level: [",-1,"] :: t: ", timer, ", r: ", rtimer; |
---|
547 | if( (typeof(M) != "module") && (typeof(M) != "ideal") ) |
---|
548 | { |
---|
549 | ERROR("Sorry: need an ideal or a module for input"); |
---|
550 | } |
---|
551 | |
---|
552 | // TODO! DONE? |
---|
553 | def @save = basering; |
---|
554 | |
---|
555 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
556 | |
---|
557 | if( typeof( attrib(SSinit, "DEBUG") ) == "int" ) |
---|
558 | { |
---|
559 | @DEBUG = attrib(SSinit, "DEBUG"); |
---|
560 | } |
---|
561 | |
---|
562 | int @SYZCHECK = 0; // @DEBUG; |
---|
563 | |
---|
564 | if( typeof( attrib(SSinit, "SYZCHECK") ) == "int" ) |
---|
565 | { |
---|
566 | @SYZCHECK = attrib(SSinit, "SYZCHECK"); |
---|
567 | } |
---|
568 | |
---|
569 | int @KERCHECK = 0; // @DEBUG; |
---|
570 | |
---|
571 | if( typeof( attrib(SSinit, "KERCHECK") ) == "int" ) |
---|
572 | { |
---|
573 | @KERCHECK = attrib(SSinit, "KERCHECK"); |
---|
574 | } |
---|
575 | |
---|
576 | int @IGNORETAILS = 0; |
---|
577 | |
---|
578 | if( typeof( attrib(SSinit, "IGNORETAILS") ) == "int" ) |
---|
579 | { |
---|
580 | @IGNORETAILS = attrib(SSinit, "IGNORETAILS"); |
---|
581 | } |
---|
582 | |
---|
583 | int @TREEOUTPUT = 0; |
---|
584 | |
---|
585 | if( typeof( attrib(SSinit, "TREEOUTPUT") ) == "int" ) |
---|
586 | { |
---|
587 | @TREEOUTPUT = attrib(SSinit, "TREEOUTPUT"); |
---|
588 | } |
---|
589 | |
---|
590 | |
---|
591 | if( @DEBUG ) |
---|
592 | { |
---|
593 | "SSinit::Input"; |
---|
594 | type(M); |
---|
595 | // DetailedPrint(M); |
---|
596 | attrib(M); |
---|
597 | } |
---|
598 | |
---|
599 | int @IS_A_SB = attrib(M, "isSB"); // ??? only if all weights were zero?! |
---|
600 | |
---|
601 | if( !@IS_A_SB ) |
---|
602 | { |
---|
603 | def opts = option(get); |
---|
604 | option(redSB); option(redTail); |
---|
605 | M = std(M); |
---|
606 | option(set, opts); |
---|
607 | kill opts; |
---|
608 | }// else |
---|
609 | // { |
---|
610 | M = simplify(M, 1 + 2 + 4 + 32); // interreduce? |
---|
611 | // } |
---|
612 | |
---|
613 | if( @IGNORETAILS ) |
---|
614 | { |
---|
615 | M = lead(M); |
---|
616 | |
---|
617 | if( @DEBUG ) |
---|
618 | { |
---|
619 | "SSinit::Ignorring tails: M: "; |
---|
620 | type(M); |
---|
621 | } |
---|
622 | } |
---|
623 | |
---|
624 | |
---|
625 | |
---|
626 | def @N = MySort(M); // TODO: replace with inplace sorting!!! |
---|
627 | def LEAD = lead(@N); |
---|
628 | |
---|
629 | if( @KERCHECK ) |
---|
630 | { |
---|
631 | def @LEAD = lead(M); |
---|
632 | |
---|
633 | // sort wrt neg.deg.rev.lex! |
---|
634 | intvec iv_ds = sort(@LEAD, "c,ds", 1)[2]; // ,1 => reversed! |
---|
635 | |
---|
636 | M = M[iv_ds]; // sort M wrt ds on current leading terms |
---|
637 | @LEAD = @LEAD[iv_ds]; |
---|
638 | |
---|
639 | if( size(module( matrix(@N) - matrix(M) )) > 0 ) |
---|
640 | { |
---|
641 | "M:"; M; |
---|
642 | "@N:"; @N; |
---|
643 | |
---|
644 | "module( matrix(@N) - matrix(M) ): "; |
---|
645 | module( matrix(@N) - matrix(M) ); |
---|
646 | |
---|
647 | "ERROR: wrong sorting (in SSnit): @N != M!!!"; |
---|
648 | m2_end(666); |
---|
649 | } |
---|
650 | |
---|
651 | if( size(module( matrix(@LEAD) - matrix(LEAD) )) > 0 ) |
---|
652 | { |
---|
653 | "LEAD:"; LEAD; |
---|
654 | "@LEAD:"; @LEAD; |
---|
655 | |
---|
656 | "module( matrix(@LEAD) - matrix(LEAD) ): "; |
---|
657 | module( matrix(@LEAD) - matrix(LEAD) ); |
---|
658 | |
---|
659 | "ERROR: wrong sorting (in SSnit): @LEAD != LEAD!!!"; |
---|
660 | m2_end(666); |
---|
661 | } |
---|
662 | |
---|
663 | } |
---|
664 | |
---|
665 | M = @N; |
---|
666 | |
---|
667 | def TAIL = Tail(M); |
---|
668 | |
---|
669 | int @RANK = nrows(M); int @SIZE = ncols(M); |
---|
670 | |
---|
671 | intvec @DEGS = deg(M[1..@SIZE]); // store actuall degrees of input elements |
---|
672 | |
---|
673 | // TODO: what about real modules? weighted ones? |
---|
674 | |
---|
675 | list @l = ringlist(@save); |
---|
676 | |
---|
677 | int @z = 0; ideal @m = maxideal(1); intvec @wdeg = deg(@m[1..ncols(@m)]); |
---|
678 | |
---|
679 | // NOTE: @wdeg will be ignored anyway :( |
---|
680 | @l[3] = list(list("C", @z), list("lp", @wdeg)); |
---|
681 | |
---|
682 | kill @z, @wdeg; // since these vars are ring independent! |
---|
683 | |
---|
684 | def S = ring(@l); // --MakeInducedSchreyerOrdering(1); |
---|
685 | |
---|
686 | module F = freemodule(@RANK); |
---|
687 | intvec @V = deg(F[1..@RANK]); |
---|
688 | |
---|
689 | setring S; // ring with an easy divisibility test ("C, lex") |
---|
690 | |
---|
691 | if( @DEBUG ) |
---|
692 | { |
---|
693 | "SSinit::NewRing(C, lex)"; |
---|
694 | basering; |
---|
695 | DetailedPrint(basering); |
---|
696 | } |
---|
697 | |
---|
698 | // Setup the leading syzygy^{-1} module to zero: |
---|
699 | module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0)); |
---|
700 | |
---|
701 | module MRES = Z; |
---|
702 | |
---|
703 | list RES; RES[1] = Z; |
---|
704 | list LRES; LRES[1] = Z; |
---|
705 | list TRES; TRES[1] = Z; |
---|
706 | |
---|
707 | def M = imap(@save, M); |
---|
708 | |
---|
709 | attrib(M, "isHomog", @V); |
---|
710 | attrib(M, "isSB", 1); |
---|
711 | attrib(M, "degrees", @DEGS); |
---|
712 | |
---|
713 | def LEAD = imap(@save, LEAD); |
---|
714 | |
---|
715 | attrib(LEAD, "isHomog", @V); |
---|
716 | attrib(LEAD, "isSB", 1); |
---|
717 | |
---|
718 | def TAIL = imap(@save, TAIL); |
---|
719 | |
---|
720 | if( @DEBUG ) |
---|
721 | { |
---|
722 | "SSinit::(sorted) SB_Input: "; |
---|
723 | type(M); |
---|
724 | attrib(M); |
---|
725 | attrib(M, "isHomog"); |
---|
726 | // DetailedPrint(M); |
---|
727 | } |
---|
728 | |
---|
729 | if( @SYZCHECK ) |
---|
730 | { |
---|
731 | // 0^th syz. property |
---|
732 | if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 ) |
---|
733 | { |
---|
734 | transpose( transpose(M) * transpose(MRES) ); |
---|
735 | "ERROR: transpose( transpose(M) * transpose(MRES) ) != 0!!!"; |
---|
736 | m2_end(666); |
---|
737 | } |
---|
738 | } |
---|
739 | |
---|
740 | RES [size(RES)+1] = M; // list of all syzygy modules |
---|
741 | LRES[size(LRES)+1] = LEAD; // list of all syzygy modules |
---|
742 | TRES[size(TRES)+1] = TAIL; // list of all syzygy modules |
---|
743 | |
---|
744 | MRES = MRES, M; //? |
---|
745 | |
---|
746 | attrib(MRES, "isHomog", @V); |
---|
747 | |
---|
748 | // attrib(S, "InducionStart", @RANK); |
---|
749 | |
---|
750 | |
---|
751 | if( typeof( attrib(SSinit, "LEAD2SYZ") ) == "int" ) |
---|
752 | { |
---|
753 | attrib(S, "LEAD2SYZ", attrib(SSinit, "LEAD2SYZ") ); |
---|
754 | } else |
---|
755 | { |
---|
756 | attrib(S, "LEAD2SYZ", 0); |
---|
757 | } |
---|
758 | |
---|
759 | if( typeof( attrib(SSinit, "TAILREDSYZ") ) == "int" ) |
---|
760 | { |
---|
761 | attrib(S, "TAILREDSYZ", attrib(SSinit, "TAILREDSYZ") ); |
---|
762 | } else |
---|
763 | { |
---|
764 | attrib(S, "TAILREDSYZ", 1); |
---|
765 | } |
---|
766 | |
---|
767 | |
---|
768 | if( typeof( attrib(SSinit, "HYBRIDNF") ) == "int" ) |
---|
769 | { |
---|
770 | attrib(S, "HYBRIDNF", attrib(SSinit, "HYBRIDNF") ); |
---|
771 | } else |
---|
772 | { |
---|
773 | attrib(S, "HYBRIDNF", 0); |
---|
774 | } |
---|
775 | |
---|
776 | attrib(S, "DEBUG", @DEBUG); |
---|
777 | attrib(S, "SYZCHECK", @SYZCHECK); |
---|
778 | attrib(S, "KERCHECK", @KERCHECK); |
---|
779 | attrib(S, "IGNORETAILS", @IGNORETAILS); |
---|
780 | attrib(S, "TREEOUTPUT", @TREEOUTPUT); |
---|
781 | attrib(S, "SYZNUMBER", 0); |
---|
782 | |
---|
783 | if( @DEBUG ) |
---|
784 | { |
---|
785 | "SSinit::MRES"; |
---|
786 | MRES; |
---|
787 | // DetailedPrint(MRES); |
---|
788 | attrib(MRES, "isHomog"); |
---|
789 | attrib(S); |
---|
790 | } |
---|
791 | |
---|
792 | export RES; |
---|
793 | export MRES; |
---|
794 | export LRES; |
---|
795 | export TRES; |
---|
796 | |
---|
797 | // rtimer, "***TIMESNAP1 for SSinit: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
798 | |
---|
799 | return (S); |
---|
800 | } |
---|
801 | example |
---|
802 | { "EXAMPLE:"; echo = 2; |
---|
803 | ring R = 0, (w, x, y, z), dp; |
---|
804 | |
---|
805 | def M = maxideal(1); |
---|
806 | def S = SSinit(M); setring S; S; |
---|
807 | |
---|
808 | "Only the first initialization: "; |
---|
809 | RES; LRES; TRES; |
---|
810 | MRES; |
---|
811 | |
---|
812 | kill S; setring R; kill M; |
---|
813 | |
---|
814 | ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z; |
---|
815 | def S = SSinit(M); setring S; S; |
---|
816 | |
---|
817 | "Only the first initialization: "; |
---|
818 | RES; LRES; TRES; |
---|
819 | MRES; |
---|
820 | |
---|
821 | kill S; setring R; kill M; |
---|
822 | } |
---|
823 | |
---|
824 | |
---|
825 | LIB "poly.lib"; // for lcm |
---|
826 | |
---|
827 | |
---|
828 | |
---|
829 | /// Compute L(Syz(L)) |
---|
830 | static proc SSComputeLeadingSyzygyTerms(def L) |
---|
831 | { |
---|
832 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
833 | { |
---|
834 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
835 | } else |
---|
836 | { |
---|
837 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
838 | } |
---|
839 | |
---|
840 | if( typeof( attrib(basering, "SYZCHECK") ) == "int" ) |
---|
841 | { |
---|
842 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
843 | } else |
---|
844 | { |
---|
845 | int @SYZCHECK = @DEBUG; |
---|
846 | } |
---|
847 | |
---|
848 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
849 | { |
---|
850 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
851 | } else |
---|
852 | { |
---|
853 | int @KERCHECK = @DEBUG; |
---|
854 | } |
---|
855 | |
---|
856 | if( @DEBUG ) |
---|
857 | { |
---|
858 | "SSComputeLeadingSyzygyTerms::Input: "; |
---|
859 | L; |
---|
860 | } |
---|
861 | |
---|
862 | module SS = ComputeLeadingSyzygyTerms(L); |
---|
863 | |
---|
864 | if( @KERCHECK ) |
---|
865 | { |
---|
866 | int i, j, r; |
---|
867 | int N = ncols(L); |
---|
868 | def a, b; |
---|
869 | poly aa, bb; |
---|
870 | |
---|
871 | bigint c; |
---|
872 | |
---|
873 | ideal M; |
---|
874 | |
---|
875 | module S = 0; |
---|
876 | |
---|
877 | for(i = 1; i <= N; i++) |
---|
878 | { |
---|
879 | a = L[i]; |
---|
880 | c = leadcomp(a); |
---|
881 | r = int(c); |
---|
882 | |
---|
883 | aa = leadmonomial(a); |
---|
884 | |
---|
885 | M = 0; |
---|
886 | |
---|
887 | for(j = i-1; j > 0; j--) |
---|
888 | { |
---|
889 | b = L[j]; |
---|
890 | |
---|
891 | if( leadcomp(b) == c ) |
---|
892 | { |
---|
893 | bb = leadmonomial(b); |
---|
894 | |
---|
895 | M[j] = (lcm(aa, bb) / aa); |
---|
896 | } |
---|
897 | } |
---|
898 | |
---|
899 | // TODO: add quotient relations here... |
---|
900 | |
---|
901 | M = simplify(M, 1 + 2 + 32); |
---|
902 | |
---|
903 | M = MySort(M); |
---|
904 | |
---|
905 | S = S, M * gen(i); |
---|
906 | } |
---|
907 | |
---|
908 | S = MySort(simplify(S, 2)); |
---|
909 | |
---|
910 | if( (size(S) + size(SS)) > 0 ) |
---|
911 | { |
---|
912 | if( size(module(matrix(S) - matrix(SS))) > 0 ) |
---|
913 | { |
---|
914 | "ERROR: SSComputeLeadingSyzygyTerms: S != SS "; |
---|
915 | |
---|
916 | "basering: "; basering; |
---|
917 | // DetailedPrint(basering); |
---|
918 | |
---|
919 | "S: "; S; |
---|
920 | // DetailedPrint(_, 1); |
---|
921 | "SS: "; SS; |
---|
922 | // DetailedPrint(_, 1); |
---|
923 | |
---|
924 | "DIFF: "; |
---|
925 | module(matrix(S) - matrix(SS)); |
---|
926 | // DetailedPrint(_, 2); |
---|
927 | print(matrix(S) - matrix(SS)); |
---|
928 | m2_end(666); |
---|
929 | } |
---|
930 | } |
---|
931 | } |
---|
932 | |
---|
933 | |
---|
934 | if( @DEBUG ) |
---|
935 | { |
---|
936 | "SSComputeLeadingSyzygyTerms::Output: "; |
---|
937 | "SS: "; SS; |
---|
938 | } |
---|
939 | |
---|
940 | if( size(SS) > 0 ) |
---|
941 | { |
---|
942 | attrib(SS, "isSB", 1); |
---|
943 | } |
---|
944 | |
---|
945 | return (SS); |
---|
946 | } |
---|
947 | |
---|
948 | /// Compute Syz(L), where L is a monomial (leading) module |
---|
949 | static proc SSCompute2LeadingSyzygyTerms(def L) |
---|
950 | { |
---|
951 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
952 | { |
---|
953 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
954 | } else |
---|
955 | { |
---|
956 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
957 | } |
---|
958 | |
---|
959 | if( typeof( attrib(basering, "SYZCHECK") ) == "int" ) |
---|
960 | { |
---|
961 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
962 | } else |
---|
963 | { |
---|
964 | int @SYZCHECK = @DEBUG; |
---|
965 | } |
---|
966 | |
---|
967 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
968 | { |
---|
969 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
970 | } else |
---|
971 | { |
---|
972 | int @KERCHECK = @DEBUG; |
---|
973 | } |
---|
974 | |
---|
975 | if( @DEBUG ) |
---|
976 | { |
---|
977 | "SSCompute2LeadingSyzygyTerms::Input: "; |
---|
978 | L; |
---|
979 | } |
---|
980 | |
---|
981 | module SS = Compute2LeadingSyzygyTerms(L); |
---|
982 | |
---|
983 | if( @DEBUG ) |
---|
984 | { |
---|
985 | "SSCompute2LeadingSyzygyTerms::Syz(SS): "; SS; |
---|
986 | } |
---|
987 | |
---|
988 | if( @SYZCHECK ) |
---|
989 | { |
---|
990 | if( size(SS) > 0 and size(L) > 0 ) |
---|
991 | { |
---|
992 | if( size(module(transpose( transpose(SS) * transpose(L) ))) > 0 ) |
---|
993 | { |
---|
994 | transpose( transpose(SS) * transpose(L) ); |
---|
995 | "ERROR: transpose( transpose(SS) * transpose(L) ) != 0!!!"; |
---|
996 | m2_end(666); |
---|
997 | } |
---|
998 | } |
---|
999 | } |
---|
1000 | |
---|
1001 | if( @KERCHECK ) |
---|
1002 | { |
---|
1003 | int @TAILREDSYZ = 1; |
---|
1004 | if( typeof( attrib(basering, "TAILREDSYZ") ) == "int" ) |
---|
1005 | { |
---|
1006 | @TAILREDSYZ = attrib(basering, "TAILREDSYZ"); |
---|
1007 | } |
---|
1008 | |
---|
1009 | int i, j, r; |
---|
1010 | int N = ncols(L); |
---|
1011 | def a, b; |
---|
1012 | |
---|
1013 | poly aa, bb, @lcm; |
---|
1014 | |
---|
1015 | bigint c; |
---|
1016 | |
---|
1017 | module M; |
---|
1018 | |
---|
1019 | module S = 0; |
---|
1020 | |
---|
1021 | for(i = 1; i <= N; i++) |
---|
1022 | { |
---|
1023 | a = L[i]; |
---|
1024 | // "a: ", a; |
---|
1025 | c = leadcomp(a); |
---|
1026 | r = int(c); |
---|
1027 | |
---|
1028 | aa = leadmonomial(a); |
---|
1029 | |
---|
1030 | M = 0; |
---|
1031 | |
---|
1032 | for(j = i-1; j > 0; j--) |
---|
1033 | { |
---|
1034 | b = L[j]; |
---|
1035 | // "b: ", b; |
---|
1036 | |
---|
1037 | if( leadcomp(b) == c ) |
---|
1038 | { |
---|
1039 | bb = leadmonomial(b); |
---|
1040 | @lcm = lcm(aa, bb); |
---|
1041 | |
---|
1042 | M[j] = (@lcm / aa)* gen(i) - (@lcm / bb)* gen(j); |
---|
1043 | } |
---|
1044 | } |
---|
1045 | |
---|
1046 | M = simplify(M, 2); |
---|
1047 | |
---|
1048 | // TODO: add quotient relations here... |
---|
1049 | S = S, M; |
---|
1050 | } |
---|
1051 | |
---|
1052 | if( @TAILREDSYZ ) |
---|
1053 | { |
---|
1054 | // Make sure that 2nd syzygy terms are not reducible by 1st |
---|
1055 | def opts = option(get); |
---|
1056 | option(redSB); option(redTail); |
---|
1057 | S = std(S); // binomial module |
---|
1058 | option(set, opts); |
---|
1059 | // kill opts; |
---|
1060 | } else |
---|
1061 | { |
---|
1062 | S = simplify(S, 2 + 32); |
---|
1063 | } |
---|
1064 | |
---|
1065 | S = MySort(S); |
---|
1066 | |
---|
1067 | if( @DEBUG ) |
---|
1068 | { |
---|
1069 | "SSCompute2LeadingSyzygyTerms::Syz(S): "; S; |
---|
1070 | } |
---|
1071 | |
---|
1072 | if( @SYZCHECK ) |
---|
1073 | { |
---|
1074 | if( size(S) > 0 and size(L) > 0 ) |
---|
1075 | { |
---|
1076 | if( size(module(transpose( transpose(S) * transpose(L) ))) > 0 ) |
---|
1077 | { |
---|
1078 | transpose( transpose(S) * transpose(L) ); |
---|
1079 | "ERROR: transpose( transpose(S) * transpose(L) ) != 0!!!"; |
---|
1080 | m2_end(666); |
---|
1081 | } |
---|
1082 | } |
---|
1083 | } |
---|
1084 | |
---|
1085 | if(size(S) != size(SS)) |
---|
1086 | { |
---|
1087 | "ERROR: SSCompute2LeadingSyzygyTerms: size(S) != size(SS)"; |
---|
1088 | |
---|
1089 | "basering: "; basering; // DetailedPrint(basering); |
---|
1090 | |
---|
1091 | "S: "; S; |
---|
1092 | // DetailedPrint(S, 2); |
---|
1093 | "SS: "; SS; |
---|
1094 | // DetailedPrint(SS, 2); |
---|
1095 | m2_end(666); |
---|
1096 | } |
---|
1097 | |
---|
1098 | if(size(S) > 0 && size(SS) > 0) |
---|
1099 | { |
---|
1100 | if( size(module(matrix(lead(S)) - matrix(lead(SS)))) > 0 ) |
---|
1101 | { |
---|
1102 | "ERROR: SSCompute2LeadingSyzygyTerms: lead(S) != lead(SS) "; |
---|
1103 | |
---|
1104 | "basering: "; basering; |
---|
1105 | // DetailedPrint(basering); |
---|
1106 | |
---|
1107 | "lead(S ): "; lead(S ); |
---|
1108 | // DetailedPrint(_, 2); |
---|
1109 | "lead(SS): "; lead(SS); |
---|
1110 | // DetailedPrint(_, 2); |
---|
1111 | |
---|
1112 | "DIFF: "; |
---|
1113 | print( matrix(lead(S)) - matrix(lead(SS)) ); |
---|
1114 | module(matrix(lead(S)) - matrix(lead(SS))); |
---|
1115 | // DetailedPrint(_ , 4); |
---|
1116 | m2_end(666); |
---|
1117 | } |
---|
1118 | |
---|
1119 | |
---|
1120 | if( @TAILREDSYZ ) |
---|
1121 | { |
---|
1122 | if( size(module(matrix(Tail(S)) - matrix(Tail(SS)))) > 0 ) |
---|
1123 | { |
---|
1124 | "ERROR: SSCompute2LeadingSyzygyTerms: Tail(S) != Tail(SS) "; |
---|
1125 | |
---|
1126 | "basering: "; basering; |
---|
1127 | // DetailedPrint(basering); |
---|
1128 | |
---|
1129 | "Tail(S ): "; Tail(S ); |
---|
1130 | // DetailedPrint(_, 2); |
---|
1131 | "Tail(SS): "; Tail(SS); |
---|
1132 | // DetailedPrint(_, 2); |
---|
1133 | |
---|
1134 | "DIFF: "; |
---|
1135 | module( matrix(Tail(S)) - matrix(Tail(SS)) ); |
---|
1136 | // DetailedPrint(_, 4); |
---|
1137 | print( matrix(Tail(S)) - matrix(Tail(SS)) ); |
---|
1138 | m2_end(666); |
---|
1139 | } |
---|
1140 | } |
---|
1141 | } |
---|
1142 | } |
---|
1143 | |
---|
1144 | module S2 = Tail(SS); |
---|
1145 | SS = lead(SS); // (C,lp) on base ring! |
---|
1146 | |
---|
1147 | if( @SYZCHECK ) |
---|
1148 | { |
---|
1149 | if( ncols(SS) != ncols(S2) ) // || size(SS) != ncols(SS) || size(S2) != ncols(S2) |
---|
1150 | { |
---|
1151 | "ERROR: SSCompute2LeadingSyzygyTerms: inappropriate S2 / SS: "; |
---|
1152 | type(SS); |
---|
1153 | type(S2); |
---|
1154 | L; |
---|
1155 | m2_end(666); |
---|
1156 | } |
---|
1157 | } |
---|
1158 | |
---|
1159 | if( @DEBUG ) |
---|
1160 | { |
---|
1161 | "SSCompute2LeadingSyzygyTerms::Output: "; SS; S2; |
---|
1162 | } |
---|
1163 | |
---|
1164 | attrib(SS, "isSB", 1); |
---|
1165 | |
---|
1166 | return (SS, S2); |
---|
1167 | } |
---|
1168 | |
---|
1169 | // -------------------------------------------------------- // |
---|
1170 | |
---|
1171 | /// TODO: save shortcut (syz: |-.->) LM(LM(m) * "t") -> syz? |
---|
1172 | static proc SSFindReducer(def product, def syzterm, def L, list #) |
---|
1173 | { |
---|
1174 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
1175 | { |
---|
1176 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
1177 | } else |
---|
1178 | { |
---|
1179 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
1180 | } |
---|
1181 | |
---|
1182 | if( typeof( attrib(basering, "SYZCHECK") ) == "int" ) |
---|
1183 | { |
---|
1184 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
1185 | } else |
---|
1186 | { |
---|
1187 | int @SYZCHECK = @DEBUG; |
---|
1188 | } |
---|
1189 | |
---|
1190 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
1191 | { |
---|
1192 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
1193 | } else |
---|
1194 | { |
---|
1195 | int @KERCHECK = @DEBUG; |
---|
1196 | } |
---|
1197 | |
---|
1198 | |
---|
1199 | if( @DEBUG ) |
---|
1200 | { |
---|
1201 | "SSFindReducer::Input: "; |
---|
1202 | |
---|
1203 | "syzterm: ", syzterm; |
---|
1204 | "product: ", product; |
---|
1205 | // "L: ", L; |
---|
1206 | // "T: ", T; |
---|
1207 | if( size(#) > 0 ) |
---|
1208 | { |
---|
1209 | // "LSyz: ", #; |
---|
1210 | } |
---|
1211 | } |
---|
1212 | |
---|
1213 | |
---|
1214 | if( @DEBUG && (syzterm != 0) ) |
---|
1215 | { |
---|
1216 | def @@c = leadcomp(syzterm); int @@r = int(@@c); |
---|
1217 | def @@product = leadmonomial(syzterm) * L[@@r]; |
---|
1218 | |
---|
1219 | if( @@product != product) |
---|
1220 | { |
---|
1221 | "product: ", product, ", @@product: ", @@product; |
---|
1222 | "ERROR: 'syzterm' results in wrong product !!!???"; |
---|
1223 | m2_end(666); |
---|
1224 | } |
---|
1225 | } |
---|
1226 | |
---|
1227 | if( typeof(#[1]) == "module" ) |
---|
1228 | { |
---|
1229 | vector my = FindReducer(product, syzterm, L/*, T*/, #[1]); |
---|
1230 | } else |
---|
1231 | { |
---|
1232 | vector my = FindReducer(product, syzterm, L/*, T*/); |
---|
1233 | } |
---|
1234 | |
---|
1235 | |
---|
1236 | if( @KERCHECK ) |
---|
1237 | { |
---|
1238 | bigint c = leadcomp(product); int r = int(c); |
---|
1239 | |
---|
1240 | def a, b, bb; |
---|
1241 | |
---|
1242 | vector nf = [0]; |
---|
1243 | |
---|
1244 | // looking for an appropriate diviser |
---|
1245 | for( int k = ncols(L); k > 0; k-- ) |
---|
1246 | { |
---|
1247 | a = L[k]; |
---|
1248 | // with the same mod. component |
---|
1249 | if( leadcomp(a) == c ) |
---|
1250 | { |
---|
1251 | b = - (leadmonomial(product) / leadmonomial(L[k])); |
---|
1252 | |
---|
1253 | // which divides the product: looking for the 1st appropriate one! |
---|
1254 | if( b != 0 ) |
---|
1255 | { |
---|
1256 | bb = b * gen(k); |
---|
1257 | |
---|
1258 | if (size(bb + syzterm) == 0) // cannot allow something like: a*gen(i) - a*gen(i) |
---|
1259 | { |
---|
1260 | nf = [0]; |
---|
1261 | } else |
---|
1262 | { |
---|
1263 | nf = bb; |
---|
1264 | } |
---|
1265 | |
---|
1266 | // new syz. term should not be in <LS = #> |
---|
1267 | if( size(#) > 0 ) |
---|
1268 | { |
---|
1269 | if( typeof(#[1]) == "module" ) |
---|
1270 | { |
---|
1271 | nf = NF(bb, #[1]); |
---|
1272 | } |
---|
1273 | } |
---|
1274 | |
---|
1275 | // while the complement (the fraction) is not reducible by leading syzygies |
---|
1276 | if( nf != 0 ) // nf must be == bb!!! |
---|
1277 | { |
---|
1278 | /// TODO: save shortcut LM(m) * T[i] -> ? |
---|
1279 | |
---|
1280 | // choose ANY such reduction... (with the biggest index?) |
---|
1281 | break; |
---|
1282 | } |
---|
1283 | } |
---|
1284 | } |
---|
1285 | } |
---|
1286 | |
---|
1287 | if( my != nf ) |
---|
1288 | { |
---|
1289 | "ERROR in FindReducer => ", my, " != nf: ", nf; |
---|
1290 | m2_end(666); |
---|
1291 | } |
---|
1292 | } |
---|
1293 | |
---|
1294 | if( @DEBUG ) |
---|
1295 | { |
---|
1296 | "SSFindReducer::Output: ", my; |
---|
1297 | } |
---|
1298 | |
---|
1299 | return (my); |
---|
1300 | } |
---|
1301 | |
---|
1302 | /// TODO: save shortcut (syz: |-.->) LM(m) * "t" -> ? |
---|
1303 | static proc SSReduceTerm(poly m, def t, def syzterm, def L, def T, list #) |
---|
1304 | { |
---|
1305 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
1306 | { |
---|
1307 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
1308 | } else |
---|
1309 | { |
---|
1310 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
1311 | } |
---|
1312 | |
---|
1313 | |
---|
1314 | if( @DEBUG ) |
---|
1315 | { |
---|
1316 | "SSReduce::Input: "; |
---|
1317 | |
---|
1318 | "syzterm: ", syzterm; |
---|
1319 | "mult: ", m; |
---|
1320 | "term: ", t; |
---|
1321 | // "L: ", L; |
---|
1322 | // "T: ", T; |
---|
1323 | if( size(#) > 0 ) |
---|
1324 | { |
---|
1325 | // "LSyz: ", #; |
---|
1326 | } |
---|
1327 | // "attrib(LS, 'isSB')", attrib(LS, "isSB"); |
---|
1328 | } |
---|
1329 | |
---|
1330 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
1331 | { |
---|
1332 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
1333 | } else |
---|
1334 | { |
---|
1335 | int @KERCHECK = @DEBUG; |
---|
1336 | } |
---|
1337 | |
---|
1338 | if( typeof( attrib(basering, "SYZCHECK") ) == "int" ) |
---|
1339 | { |
---|
1340 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
1341 | } else |
---|
1342 | { |
---|
1343 | int @SYZCHECK = @DEBUG; |
---|
1344 | } |
---|
1345 | |
---|
1346 | if( @SYZCHECK && (syzterm != 0) ) |
---|
1347 | { |
---|
1348 | def @@c = leadcomp(syzterm); int @@r = int(@@c); |
---|
1349 | poly @@m = leadmonomial(syzterm); def @@t = L[@@r]; |
---|
1350 | |
---|
1351 | if( (@@m != m) || (@@t != t)) |
---|
1352 | { |
---|
1353 | "m: ", m, ", t: ", t; |
---|
1354 | "@@m: ", @@m, ", @@t: ", @@t; |
---|
1355 | "ERROR: 'syzterm' results in wrong m * t !!!"; |
---|
1356 | m2_end(666); |
---|
1357 | } |
---|
1358 | } |
---|
1359 | |
---|
1360 | if( typeof(#[1]) == "module" ) |
---|
1361 | { |
---|
1362 | vector ss = ReduceTerm(m, t, syzterm, L, T, #[1]); |
---|
1363 | } else |
---|
1364 | { |
---|
1365 | vector ss = ReduceTerm(m, t, syzterm, L, T); |
---|
1366 | } |
---|
1367 | |
---|
1368 | if( @KERCHECK ) |
---|
1369 | { |
---|
1370 | int @TREEOUTPUT = attrib(basering, "TREEOUTPUT"); |
---|
1371 | |
---|
1372 | vector s = 0; |
---|
1373 | |
---|
1374 | if( size(t) > 0 ) |
---|
1375 | { |
---|
1376 | def product = m * t; |
---|
1377 | |
---|
1378 | s = SSFindReducer(product, syzterm, L, #); |
---|
1379 | |
---|
1380 | if( size(s) != 0 ) |
---|
1381 | { |
---|
1382 | poly @b = leadmonomial(s); |
---|
1383 | |
---|
1384 | def @c = leadcomp(s); int k = int(@c); |
---|
1385 | |
---|
1386 | if( @TREEOUTPUT ){ "\CHILD{", (s), "}{", ( @b*L[k]), "}"; } |
---|
1387 | |
---|
1388 | s = s + SSTraverseTail(@b, T[k], L, T, #); // !!! |
---|
1389 | } |
---|
1390 | } |
---|
1391 | |
---|
1392 | if( s != ss ) |
---|
1393 | { |
---|
1394 | "ERROR in ReduceTerm => old: ", s, " != ker: ", ss; |
---|
1395 | "m: ", m; |
---|
1396 | "t: ", t; |
---|
1397 | "syzterm: ", syzterm; |
---|
1398 | L; T; #; |
---|
1399 | m2_end(666); |
---|
1400 | } |
---|
1401 | } |
---|
1402 | |
---|
1403 | if( @DEBUG ) |
---|
1404 | { |
---|
1405 | "SSReduceTerm::Output: ", ss; |
---|
1406 | } |
---|
1407 | |
---|
1408 | return (ss); |
---|
1409 | } |
---|
1410 | |
---|
1411 | |
---|
1412 | // TODO: store m * @tail -.-^-.-^-.--> ? |
---|
1413 | static proc SSTraverseTail(poly m, def @tail, def L, def T, list #) |
---|
1414 | { |
---|
1415 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
1416 | { |
---|
1417 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
1418 | } else |
---|
1419 | { |
---|
1420 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
1421 | } |
---|
1422 | |
---|
1423 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
1424 | { |
---|
1425 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
1426 | } else |
---|
1427 | { |
---|
1428 | int @KERCHECK = @DEBUG; |
---|
1429 | } |
---|
1430 | |
---|
1431 | |
---|
1432 | if( @DEBUG ) |
---|
1433 | { |
---|
1434 | "SSTraverse::Input: "; |
---|
1435 | |
---|
1436 | "mult: ", m; |
---|
1437 | "tail: ", @tail; // T[i]; |
---|
1438 | |
---|
1439 | if( size(#) > 0 ) |
---|
1440 | { |
---|
1441 | // "LSyz: "; #[1]; |
---|
1442 | } |
---|
1443 | } |
---|
1444 | |
---|
1445 | if( typeof(#[1]) == "module" ) |
---|
1446 | { |
---|
1447 | vector ss = TraverseTail(m, @tail, L, T, #[1]); |
---|
1448 | } else |
---|
1449 | { |
---|
1450 | vector ss = TraverseTail(m, @tail, L, T); |
---|
1451 | } |
---|
1452 | |
---|
1453 | if( @KERCHECK ) |
---|
1454 | { |
---|
1455 | vector s = 0; |
---|
1456 | |
---|
1457 | def @l, @p; |
---|
1458 | @p = @tail; |
---|
1459 | |
---|
1460 | // iterate tail-terms in ANY order! |
---|
1461 | while( size(@p) > 0 ) |
---|
1462 | { |
---|
1463 | @l = lead(@p); |
---|
1464 | s = s + SSReduceTerm(m, @l, [0], L, T, #); // :( |
---|
1465 | @p = @p - @l; |
---|
1466 | } |
---|
1467 | |
---|
1468 | if( s != ss ) |
---|
1469 | { |
---|
1470 | "ERROR in TraverseTail => old: ", s, " != ker: ", ss; |
---|
1471 | "m: ", m; |
---|
1472 | "@tail: ", @tail; |
---|
1473 | L; T; #; |
---|
1474 | m2_end(666); |
---|
1475 | } |
---|
1476 | } |
---|
1477 | |
---|
1478 | if( @DEBUG ) |
---|
1479 | { |
---|
1480 | "SSTraverseTail::Output: ", ss; |
---|
1481 | } |
---|
1482 | |
---|
1483 | return (ss); |
---|
1484 | } |
---|
1485 | |
---|
1486 | // -------------------------------------------------------- // |
---|
1487 | |
---|
1488 | static proc SSSchreyerSyzygyNF(vector syz_lead, vector syz_2, def L, def T, list #) |
---|
1489 | " Hybrid Syzygy computation: 'reduce' spoly by eliminating _any_ terms while discurding terms of lower order! |
---|
1490 | Return the tail syzygy (without: syz_lead, starting with: syz_2)" |
---|
1491 | { |
---|
1492 | if( typeof( attrib(basering, "DEBUG") ) == "int" ) |
---|
1493 | { |
---|
1494 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
1495 | } else |
---|
1496 | { |
---|
1497 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
1498 | } |
---|
1499 | |
---|
1500 | if( @DEBUG ) |
---|
1501 | { |
---|
1502 | "SSSchreyerSyzygyNF::Input: "; |
---|
1503 | |
---|
1504 | "syzygy_lead: ", syz_lead; |
---|
1505 | "syzygy 2nd : ", syz_2; |
---|
1506 | // L; T; |
---|
1507 | if( size(#) > 0 ) |
---|
1508 | { |
---|
1509 | // "LSyz: "; #[1]; |
---|
1510 | } |
---|
1511 | } |
---|
1512 | |
---|
1513 | if( typeof( attrib(basering, "KERCHECK") ) == "int" ) |
---|
1514 | { |
---|
1515 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
1516 | } else |
---|
1517 | { |
---|
1518 | int @KERCHECK = @DEBUG; |
---|
1519 | } |
---|
1520 | |
---|
1521 | if( typeof(#[1]) == "module" ) |
---|
1522 | { |
---|
1523 | def my = SchreyerSyzygyNF(syz_lead, syz_2, L, T, #[1]); |
---|
1524 | } else |
---|
1525 | { |
---|
1526 | def my = SchreyerSyzygyNF(syz_lead, syz_2, L, T); |
---|
1527 | } |
---|
1528 | |
---|
1529 | if( @KERCHECK ) |
---|
1530 | { |
---|
1531 | int @TREEOUTPUT = attrib(basering, "TREEOUTPUT"); |
---|
1532 | |
---|
1533 | def spoly = leadmonomial(syz_lead) * T[int(leadcomp(syz_lead))] |
---|
1534 | + leadmonomial(syz_2) * T[int(leadcomp(syz_2))]; |
---|
1535 | |
---|
1536 | vector @tail = syz_2; |
---|
1537 | |
---|
1538 | poly @b; int k; |
---|
1539 | |
---|
1540 | while (size(spoly) > 0) |
---|
1541 | { |
---|
1542 | syz_2 = SSFindReducer(lead(spoly), 0, L, #); spoly = Tail(spoly); |
---|
1543 | |
---|
1544 | if( size(syz_2) != 0) |
---|
1545 | { |
---|
1546 | @b = leadmonomial(syz_2); |
---|
1547 | k = int(leadcomp(syz_2)); |
---|
1548 | |
---|
1549 | if( @TREEOUTPUT ){ "\CHILD{", (syz_2), "}{", ( lead(spoly)), "}"; } |
---|
1550 | |
---|
1551 | spoly = spoly + @b * T[k]; |
---|
1552 | @tail = @tail + syz_2; |
---|
1553 | |
---|
1554 | } |
---|
1555 | } |
---|
1556 | |
---|
1557 | if( my != @tail ) |
---|
1558 | { |
---|
1559 | "ERROR in SchreyerSyzygyNF => old: ", @tail, " != ker: ", my; |
---|
1560 | |
---|
1561 | "syzygy_lead: ", syz_lead; |
---|
1562 | "syzygy 2nd : ", syz_2; |
---|
1563 | |
---|
1564 | L; T; #; |
---|
1565 | m2_end(666); |
---|
1566 | } |
---|
1567 | } |
---|
1568 | |
---|
1569 | if( @DEBUG ) |
---|
1570 | { |
---|
1571 | "SSSchreyerSyzygyNF::Output: ", my; |
---|
1572 | } |
---|
1573 | |
---|
1574 | return (my); |
---|
1575 | } |
---|
1576 | |
---|
1577 | |
---|
1578 | |
---|
1579 | // -------------------------------------------------------- // |
---|
1580 | |
---|
1581 | // module (N, LL, TT) = SSComputeSyzygy(L, T); |
---|
1582 | // Compute Syz(L ++ T) = N = LL ++ TT |
---|
1583 | static proc SSComputeSyzygy(def L, def T) |
---|
1584 | { |
---|
1585 | // rtimer, "***TIMESNAP0 for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1586 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
1587 | int @KERCHECK = attrib(basering, "KERCHECK"); |
---|
1588 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
1589 | |
---|
1590 | if( @DEBUG ) |
---|
1591 | { |
---|
1592 | "SSComputeSyzygy::Input"; |
---|
1593 | "basering: ", basering; attrib(basering); |
---|
1594 | // DetailedPrint(basering); |
---|
1595 | |
---|
1596 | // "iCompShift: ", iCompShift; |
---|
1597 | |
---|
1598 | "L: "; L; |
---|
1599 | "T: "; T; |
---|
1600 | } |
---|
1601 | |
---|
1602 | // option(prot); |
---|
1603 | // rtimer, "***TIME for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1604 | list @res=ComputeSyzygy(L,T); |
---|
1605 | // rtimer, "***TIME for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1606 | // option(noprot); // TODO: restore! |
---|
1607 | |
---|
1608 | |
---|
1609 | module @LL = @res[1]; module @TT = @res[2]; |
---|
1610 | |
---|
1611 | if( @KERCHECK ) |
---|
1612 | { |
---|
1613 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
1614 | int @LEAD2SYZ = attrib(basering, "LEAD2SYZ"); |
---|
1615 | int @TAILREDSYZ = attrib(basering, "TAILREDSYZ"); |
---|
1616 | int @HYBRIDNF = attrib(basering, "HYBRIDNF"); |
---|
1617 | int @IGNORETAILS = attrib(basering, "IGNORETAILS"); |
---|
1618 | int @TREEOUTPUT = attrib(basering, "TREEOUTPUT"); |
---|
1619 | |
---|
1620 | int @SYZNUMBER = attrib(basering,"SYZNUMBER"); |
---|
1621 | |
---|
1622 | if( @HYBRIDNF == 2 ) |
---|
1623 | { |
---|
1624 | if( @SYZNUMBER < 3 ){ @HYBRIDNF = 1; } else { @HYBRIDNF = 0; } |
---|
1625 | } |
---|
1626 | |
---|
1627 | module LL; |
---|
1628 | |
---|
1629 | /// Get the critical leading syzygy terms |
---|
1630 | if( @LEAD2SYZ ) // & 2nd syz. term |
---|
1631 | { |
---|
1632 | module LL2; |
---|
1633 | (LL, LL2) = SSCompute2LeadingSyzygyTerms(L); |
---|
1634 | } else |
---|
1635 | { |
---|
1636 | LL = SSComputeLeadingSyzygyTerms(L); |
---|
1637 | } |
---|
1638 | |
---|
1639 | if( ncols(LL) != ncols(@LL) ) |
---|
1640 | { |
---|
1641 | "ERROR in SSComputeSyzygy: wrong leading syzygies!?"; |
---|
1642 | ""; |
---|
1643 | L; T; |
---|
1644 | ""; |
---|
1645 | type(LL); |
---|
1646 | type(@LL); |
---|
1647 | m2_end(666); |
---|
1648 | } |
---|
1649 | |
---|
1650 | if( size( module( matrix(LL) - matrix(@LL) ) ) != 0 ) |
---|
1651 | { |
---|
1652 | "ERROR in SSComputeSyzygy: wrong leading syzygies!?"; |
---|
1653 | ""; |
---|
1654 | L; T; |
---|
1655 | ""; |
---|
1656 | type(LL); |
---|
1657 | type(@LL); |
---|
1658 | m2_end(666); |
---|
1659 | } |
---|
1660 | |
---|
1661 | module TT, SYZ; |
---|
1662 | |
---|
1663 | vector a, a2; bigint c; int r; poly aa; |
---|
1664 | |
---|
1665 | if( size(LL) > 0 ) |
---|
1666 | { |
---|
1667 | list LS; |
---|
1668 | |
---|
1669 | if( @TAILREDSYZ) |
---|
1670 | { |
---|
1671 | LS = list(LL); |
---|
1672 | } |
---|
1673 | |
---|
1674 | vector @tail = 0; |
---|
1675 | |
---|
1676 | // for(int k = 1; k <= ncols(LL); k++ ) |
---|
1677 | for(int k = ncols(LL); k > 0; k-- ) |
---|
1678 | { |
---|
1679 | // leading syz. term: |
---|
1680 | a = LL[k]; |
---|
1681 | |
---|
1682 | if( !@IGNORETAILS ) |
---|
1683 | { |
---|
1684 | c = leadcomp(a); r = int(c); aa = leadmonomial(a); |
---|
1685 | |
---|
1686 | if( @TREEOUTPUT ){ "\ROOT{", (lead(a)), "}"; } |
---|
1687 | |
---|
1688 | // NF reduction: |
---|
1689 | if( @HYBRIDNF == 0 ) // Traverse approach: |
---|
1690 | { |
---|
1691 | @tail = SSTraverseTail(aa, T[r], L, T, LS); |
---|
1692 | |
---|
1693 | // get the 2nd syzygy term... |
---|
1694 | if( @LEAD2SYZ ) // with the 2nd syz. term: |
---|
1695 | { |
---|
1696 | a2 = LL2[k]; c = leadcomp(a2); r = int(c); aa = leadmonomial(a2); |
---|
1697 | |
---|
1698 | if( @TREEOUTPUT ){ "\CHILD{", (lead(a2)), "}{", ( aa*L[r]), "}"; } |
---|
1699 | |
---|
1700 | @tail = a2 + @tail + SSTraverseTail(aa, T[r], L, T, LS); |
---|
1701 | } else |
---|
1702 | { |
---|
1703 | @tail = @tail + SSReduceTerm(aa, L[r], a, L, T, LS); |
---|
1704 | } |
---|
1705 | |
---|
1706 | } else // Hybrid approach: |
---|
1707 | { |
---|
1708 | |
---|
1709 | // get the 2nd syzygy term... |
---|
1710 | if( @LEAD2SYZ ) |
---|
1711 | { |
---|
1712 | a2 = LL2[k]; |
---|
1713 | } else |
---|
1714 | { |
---|
1715 | a2 = SSFindReducer( aa * L[r], a, L, LS); |
---|
1716 | } |
---|
1717 | |
---|
1718 | if ( (@SYZCHECK || @DEBUG) ) |
---|
1719 | { |
---|
1720 | if( size(a2) == 0 ) // if syzterm == 0!!!! |
---|
1721 | { |
---|
1722 | "ERROR in SSComputeSyzygy: could not find the 2nd syzygy term during the hybrid NF!!!"; |
---|
1723 | m2_end(666); |
---|
1724 | } |
---|
1725 | } |
---|
1726 | |
---|
1727 | if( @TREEOUTPUT ){ "\CHILD{", (a2), "}{", ( aa*L[r]), "}"; } |
---|
1728 | |
---|
1729 | @tail = SSSchreyerSyzygyNF(a, a2, L, T, LS); |
---|
1730 | } |
---|
1731 | } // else @tail remains zero! |
---|
1732 | |
---|
1733 | TT[k] = @tail; |
---|
1734 | SYZ[k] = a + @tail; |
---|
1735 | |
---|
1736 | if ( TT[k] != @TT[k] ) |
---|
1737 | { |
---|
1738 | "ERROR in SSComputeSyzygy: wrong tail syzygy!?"; |
---|
1739 | "INPUT"; |
---|
1740 | L; T; |
---|
1741 | "LEADING SYZYGY TERMS"; |
---|
1742 | type(LL); |
---|
1743 | |
---|
1744 | "CURRENT TAILS"; |
---|
1745 | type(TT); |
---|
1746 | type(@TT); |
---|
1747 | |
---|
1748 | "WRONG TAIL [", k, "]:"; |
---|
1749 | type(TT[k]); |
---|
1750 | type(@TT[k]); |
---|
1751 | |
---|
1752 | // "IMAGES:"; |
---|
1753 | // transpose( transpose(N) * transpose(MRES) ); |
---|
1754 | |
---|
1755 | m2_end(666); |
---|
1756 | } |
---|
1757 | |
---|
1758 | } // FOR |
---|
1759 | } |
---|
1760 | |
---|
1761 | if( ncols(TT) != ncols(@TT) ) |
---|
1762 | { |
---|
1763 | "ERROR in SSComputeSyzygy: wrong tail syzygies!?"; |
---|
1764 | ""; |
---|
1765 | L; T; |
---|
1766 | ""; |
---|
1767 | type(LL); |
---|
1768 | type(@LL); |
---|
1769 | ""; |
---|
1770 | type(TT); |
---|
1771 | type(@TT); |
---|
1772 | m2_end(666); |
---|
1773 | } |
---|
1774 | |
---|
1775 | if( size( module( matrix(TT) - matrix(@TT) ) ) != 0 ) |
---|
1776 | { |
---|
1777 | "ERROR in SSComputeSyzygy: wrong tail syzygies!?"; |
---|
1778 | ""; |
---|
1779 | TT; @TT; |
---|
1780 | ""; |
---|
1781 | L; T; |
---|
1782 | ""; |
---|
1783 | type(LL); |
---|
1784 | type(@LL); |
---|
1785 | m2_end(666); |
---|
1786 | } |
---|
1787 | |
---|
1788 | } |
---|
1789 | |
---|
1790 | module @SYZ; |
---|
1791 | |
---|
1792 | for(int @k = ncols(@LL); @k > 0; @k-- ) |
---|
1793 | { |
---|
1794 | @SYZ[@k] = @LL[@k] + @TT[@k]; |
---|
1795 | } |
---|
1796 | |
---|
1797 | if( @DEBUG ) |
---|
1798 | { |
---|
1799 | "SSComputeSyzygy::Output"; |
---|
1800 | |
---|
1801 | // "SYZ: "; @SYZ; |
---|
1802 | "LL: "; @LL; |
---|
1803 | "TT: "; @TT; |
---|
1804 | } |
---|
1805 | |
---|
1806 | // rtimer, "***TIMESNAP1 for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1807 | return (@SYZ, @LL, @TT); |
---|
1808 | } |
---|
1809 | |
---|
1810 | // resolution/syzygy step: |
---|
1811 | static proc SSstep() |
---|
1812 | { |
---|
1813 | // rtimer, "***TIMESNAP0 for SSstep(): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1814 | |
---|
1815 | int @DEBUG = attrib(basering, "DEBUG"); |
---|
1816 | int @SYZCHECK = attrib(basering, "SYZCHECK"); |
---|
1817 | |
---|
1818 | if( @DEBUG ) |
---|
1819 | { |
---|
1820 | "SSstep::NextInducedRing"; |
---|
1821 | "basering: ", basering; attrib(basering); |
---|
1822 | } |
---|
1823 | |
---|
1824 | /* |
---|
1825 | // is initial weights are all zeroes! |
---|
1826 | def L = lead(M); |
---|
1827 | intvec @V = deg(M[1..ncols(M)]); @W; @V; @W = @V; attrib(L, "isHomog", @W); |
---|
1828 | SetInducedReferrence(L, @RANK, 0); |
---|
1829 | */ |
---|
1830 | |
---|
1831 | // def L = lead(MRES); |
---|
1832 | // @W = @W, @V; |
---|
1833 | // attrib(L, "isHomog", @W); |
---|
1834 | |
---|
1835 | |
---|
1836 | // General setting: |
---|
1837 | // SetInducedReferrence(MRES, 0, 0); // limit: 0! |
---|
1838 | int @l = size(RES); |
---|
1839 | |
---|
1840 | def M = RES[@l]; |
---|
1841 | |
---|
1842 | def L = LRES[@l]; |
---|
1843 | def T = TRES[@l]; |
---|
1844 | |
---|
1845 | |
---|
1846 | //// TODO: wrong !!!!! |
---|
1847 | int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?! |
---|
1848 | |
---|
1849 | |
---|
1850 | |
---|
1851 | /* |
---|
1852 | if( @RANK != nrows(M) ) |
---|
1853 | { |
---|
1854 | type(MRES); |
---|
1855 | @RANK; |
---|
1856 | type(M); |
---|
1857 | pause(); |
---|
1858 | } |
---|
1859 | */ |
---|
1860 | |
---|
1861 | intvec @W = attrib(M, "isHomog"); intvec @V = attrib(M, "degrees"); @V = @W, @V; |
---|
1862 | |
---|
1863 | if( @DEBUG ) |
---|
1864 | { |
---|
1865 | "Sstep::NextInput: "; |
---|
1866 | M; |
---|
1867 | L; |
---|
1868 | @V; |
---|
1869 | @RANK; |
---|
1870 | // DetailedPrint(MRES); |
---|
1871 | attrib(MRES, "isHomog"); |
---|
1872 | } |
---|
1873 | |
---|
1874 | |
---|
1875 | // TODO: N = SYZ( M )!!! |
---|
1876 | module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(/*M, */L, T/*, @RANK*/); |
---|
1877 | |
---|
1878 | // shift syz.comp by @RANK: |
---|
1879 | module Z; |
---|
1880 | Z = 0; Z[@RANK] = 0; Z = Z, transpose(LL); LL = transpose(Z); |
---|
1881 | Z = 0; Z[@RANK] = 0; Z = Z, transpose(TT); TT = transpose(Z); |
---|
1882 | Z = 0; Z[@RANK] = 0; Z = Z, transpose(N); N = transpose(Z); |
---|
1883 | |
---|
1884 | |
---|
1885 | if( @SYZCHECK ) |
---|
1886 | { |
---|
1887 | if( size(N) > 0 ) |
---|
1888 | { |
---|
1889 | // next syz. property |
---|
1890 | if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 ) |
---|
1891 | { |
---|
1892 | "MRES", MRES; |
---|
1893 | |
---|
1894 | "N: "; N; // DetailedPrint(N, 2); |
---|
1895 | |
---|
1896 | "LL:"; LL; // DetailedPrint(LL, 1); |
---|
1897 | "TT:"; TT; // DetailedPrint(TT, 10); |
---|
1898 | |
---|
1899 | "RANKS: ", @RANK; |
---|
1900 | |
---|
1901 | "transpose( transpose(N) * transpose(MRES) ) != 0!!!"; |
---|
1902 | transpose( transpose(N) * transpose(MRES) ); |
---|
1903 | |
---|
1904 | "transpose(N) * transpose(MRES): "; |
---|
1905 | transpose(N) * transpose(MRES); |
---|
1906 | // DetailedPrint(module(_), 2); |
---|
1907 | m2_end(666); |
---|
1908 | } |
---|
1909 | } |
---|
1910 | } |
---|
1911 | |
---|
1912 | attrib(N, "isHomog", @V); |
---|
1913 | |
---|
1914 | // TODO: correct the following: |
---|
1915 | intvec @DEGS = deg(N[1..ncols(N)]); // no mod. comp. weights :( |
---|
1916 | |
---|
1917 | |
---|
1918 | attrib(N, "degrees", @DEGS); |
---|
1919 | |
---|
1920 | RES[@l + 1] = N; // list of all syzygy modules |
---|
1921 | LRES[@l + 1] = LL; // list of all syzygy modules |
---|
1922 | TRES[@l + 1] = TT; // list of all syzygy modules |
---|
1923 | |
---|
1924 | MRES = MRES, N; |
---|
1925 | |
---|
1926 | attrib(MRES, "isHomog", @V); |
---|
1927 | |
---|
1928 | // L = L, lead(N); attrib(basering, "InducionLeads", L); |
---|
1929 | |
---|
1930 | if( @DEBUG ) |
---|
1931 | { |
---|
1932 | "SSstep::NextSyzOutput: "; |
---|
1933 | N; |
---|
1934 | // DetailedPrint(N); |
---|
1935 | attrib(N); |
---|
1936 | } |
---|
1937 | |
---|
1938 | int ss = attrib(basering, "SYZNUMBER"); |
---|
1939 | attrib(basering, "SYZNUMBER", ss + 1 ); |
---|
1940 | |
---|
1941 | // rtimer, "***TIMESNAP1 for SSstep(): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1942 | } |
---|
1943 | |
---|
1944 | static proc SScontinue(int l) |
---|
1945 | "USAGE: SScontinue(l) |
---|
1946 | RETURN: nothing, instead it changes RES and MRES variables in the current ring |
---|
1947 | PURPOSE: computes further (at most l) syzygies |
---|
1948 | NOTE: must be used within a ring returned by Sres or Ssyz. RES and MRES are |
---|
1949 | explained in Sres |
---|
1950 | EXAMPLE: example Scontinue; shows an example |
---|
1951 | " |
---|
1952 | { |
---|
1953 | // rtimer, "***TIMESNAP0 for SScontinue: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1954 | |
---|
1955 | /// TODO! |
---|
1956 | // def data = GetInducedData(); |
---|
1957 | |
---|
1958 | if( (!defined(RES)) || (!defined(MRES)) ) /* || (typeof(data) != "list") || (size(data) != 2) */ |
---|
1959 | { |
---|
1960 | ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz"); |
---|
1961 | } |
---|
1962 | for (; (l != 0) && (size(RES[size(RES)]) > 0); l-- ) |
---|
1963 | { |
---|
1964 | SSstep(); |
---|
1965 | } |
---|
1966 | |
---|
1967 | // rtimer, "***TIMESNAP1 for SScontinue: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer; |
---|
1968 | |
---|
1969 | } |
---|
1970 | example |
---|
1971 | { "EXAMPLE:"; echo = 2; |
---|
1972 | ring r; |
---|
1973 | module M = maxideal(1); M; |
---|
1974 | def S = SSsyz(M); setring S; S; |
---|
1975 | "Only the first syzygy: "; |
---|
1976 | RES; MRES; |
---|
1977 | "More syzygies: "; |
---|
1978 | SScontinue(10); |
---|
1979 | RES; MRES; |
---|
1980 | } |
---|
1981 | |
---|
1982 | static proc SSsyz(def M) |
---|
1983 | "USAGE: SSsyz(M) |
---|
1984 | RETURN: ring, containing a list of modules RES and a module MRES |
---|
1985 | PURPOSE: computes the first syzygy module of M (wrt some Schreyer ordering)? |
---|
1986 | NOTE: The output is explained in Sres |
---|
1987 | EXAMPLE: example Ssyz; shows an example |
---|
1988 | " |
---|
1989 | { |
---|
1990 | if( (typeof(M) != "module") && (typeof(M) != "ideal") ) |
---|
1991 | { |
---|
1992 | ERROR("Sorry: need an ideal or a module for input"); |
---|
1993 | } |
---|
1994 | |
---|
1995 | def SS = SSinit(M); setring SS; |
---|
1996 | |
---|
1997 | SSstep(); // NOTE: what if M is zero? |
---|
1998 | |
---|
1999 | return (SS); |
---|
2000 | } |
---|
2001 | example |
---|
2002 | { "EXAMPLE:"; echo = 2; |
---|
2003 | ring r; |
---|
2004 | |
---|
2005 | /* ideal M = 0; |
---|
2006 | def S = SSsyz(M); setring S; S; |
---|
2007 | "Only the first syzygy: "; |
---|
2008 | RES; LRES; TRES; |
---|
2009 | MRES; |
---|
2010 | |
---|
2011 | kill S; setring r; kill M; |
---|
2012 | */ |
---|
2013 | |
---|
2014 | ideal M = maxideal(1); M; |
---|
2015 | |
---|
2016 | def S = SSres(M, 0); setring S; S; |
---|
2017 | MRES; |
---|
2018 | print(_); |
---|
2019 | RES; |
---|
2020 | |
---|
2021 | kill S; setring r; kill M; |
---|
2022 | |
---|
2023 | kill r; |
---|
2024 | |
---|
2025 | ring R = 0, (w, x, y, z), dp; |
---|
2026 | ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z; |
---|
2027 | |
---|
2028 | def S = SSres(M, 0); setring S; S; |
---|
2029 | ""; |
---|
2030 | LRES; |
---|
2031 | ""; |
---|
2032 | TRES; |
---|
2033 | ""; |
---|
2034 | MRES; |
---|
2035 | print(_); |
---|
2036 | RES; |
---|
2037 | } |
---|
2038 | |
---|
2039 | static proc SSres(def M, int l) |
---|
2040 | "USAGE: SSres(I, l) |
---|
2041 | RETURN: ring, containing a list of modules RES and a module MRES |
---|
2042 | PURPOSE: computes (at most l) syzygy modules of M wrt the classical Schreyer |
---|
2043 | induced ordering with gen(i) > gen(j) if i > j, provided both gens |
---|
2044 | are from the same syzygy level.??? |
---|
2045 | NOTE: RES contains the images of maps subsituting the beginning of the |
---|
2046 | Schreyer free resolution of baseRing^r/M, while MRES is a sum of |
---|
2047 | these images in a big free sum, containing all the syzygy modules. |
---|
2048 | The syzygy modules are shifted so that gen(i) correspons to MRES[i]. |
---|
2049 | The leading zero module RES[0] indicates the fact that coker of the |
---|
2050 | first map is zero. The number of zeroes inducates the rank of input. |
---|
2051 | NOTE: If l == 0 then l is set to be nvars(basering) + 1 |
---|
2052 | EXAMPLE: example SSres; shows an example |
---|
2053 | " |
---|
2054 | { |
---|
2055 | if( (typeof(M) != "module") && (typeof(M) != "ideal") ) |
---|
2056 | { |
---|
2057 | ERROR("Sorry: need an ideal or a module for input"); |
---|
2058 | } |
---|
2059 | /* |
---|
2060 | "KERCHECK: ", attrib(SSinit, "KERCHECK"); |
---|
2061 | "SYZCHECK: ", attrib(SSinit, "SYZCHECK"); |
---|
2062 | "DEBUG: ", attrib(SSinit, "DEBUG"); |
---|
2063 | "HYBRIDNF: ", attrib(SSinit, "HYBRIDNF"); |
---|
2064 | "TAILREDSYZ: ", attrib(SSinit, "TAILREDSYZ"); |
---|
2065 | "LEAD2SYZ: ", attrib(SSinit, "LEAD2SYZ"); |
---|
2066 | */ |
---|
2067 | |
---|
2068 | def SS = SSinit(M); setring SS; |
---|
2069 | /* |
---|
2070 | "KERCHECK: ", attrib(SS, "KERCHECK"); |
---|
2071 | "SYZCHECK: ", attrib(SS, "SYZCHECK"); |
---|
2072 | "DEBUG: ", attrib(SS, "DEBUG"); |
---|
2073 | "HYBRIDNF: ", attrib(SS, "HYBRIDNF"); |
---|
2074 | "TAILREDSYZ: ", attrib(SS, "TAILREDSYZ"); |
---|
2075 | "LEAD2SYZ: ", attrib(SS, "LEAD2SYZ"); |
---|
2076 | ""; |
---|
2077 | "IGNORETAILS: ", attrib(SS, "IGNORETAILS"); |
---|
2078 | "SYZNUMBER: ", attrib(SS, "SYZNUMBER"); |
---|
2079 | */ |
---|
2080 | if (l == 0) |
---|
2081 | { |
---|
2082 | l = nvars(basering) + 2; // not really an estimate...?! |
---|
2083 | } |
---|
2084 | |
---|
2085 | SSstep(); l = l - 1; |
---|
2086 | |
---|
2087 | SScontinue(l); |
---|
2088 | /* |
---|
2089 | "KERCHECK: ", attrib(SS, "KERCHECK"); |
---|
2090 | "SYZCHECK: ", attrib(SS, "SYZCHECK"); |
---|
2091 | "DEBUG: ", attrib(SS, "DEBUG"); |
---|
2092 | "HYBRIDNF: ", attrib(SS, "HYBRIDNF"); |
---|
2093 | "TAILREDSYZ: ", attrib(SS, "TAILREDSYZ"); |
---|
2094 | "LEAD2SYZ: ", attrib(SS, "LEAD2SYZ"); |
---|
2095 | ""; |
---|
2096 | "IGNORETAILS: ", attrib(SS, "IGNORETAILS"); |
---|
2097 | "SYZNUMBER: ", attrib(SS, "SYZNUMBER"); |
---|
2098 | */ |
---|
2099 | return (SS); |
---|
2100 | } |
---|
2101 | example |
---|
2102 | { "EXAMPLE:"; echo = 2; |
---|
2103 | ring r; |
---|
2104 | module M = maxideal(1); M; |
---|
2105 | def S = SSres(M, 0); setring S; S; |
---|
2106 | RES; |
---|
2107 | MRES; |
---|
2108 | } |
---|
2109 | |
---|
2110 | static proc SRES_betti2(SRES SR, def a) |
---|
2111 | { |
---|
2112 | def R = SR.r; setring R; |
---|
2113 | return ( betti(SR.rsltn, a) ); |
---|
2114 | } |
---|
2115 | |
---|
2116 | static proc SRES_betti1(SRES SR) |
---|
2117 | { |
---|
2118 | def R = SR.r; setring R; |
---|
2119 | return ( betti(SR.rsltn) ); |
---|
2120 | } |
---|
2121 | |
---|
2122 | static proc SRES_print(SRES SR) |
---|
2123 | { |
---|
2124 | def R = SR.r; setring R; |
---|
2125 | "Schreyer resolution: "; |
---|
2126 | SR.rsltn; // print (); |
---|
2127 | "over the ring: "; R; |
---|
2128 | } |
---|
2129 | |
---|
2130 | // cannot be automatically used via overloading :( |
---|
2131 | proc SRES_list(SRES SR) |
---|
2132 | "TODO!" |
---|
2133 | { |
---|
2134 | def save = basering; |
---|
2135 | def R = SR.r; |
---|
2136 | |
---|
2137 | if( 0 ) // ( save == R ) // TODO: not implemented :((( |
---|
2138 | { |
---|
2139 | list L = SR.rsltn; |
---|
2140 | return (L); |
---|
2141 | } |
---|
2142 | |
---|
2143 | setring R; |
---|
2144 | list L = SR.rsltn; |
---|
2145 | setring save; |
---|
2146 | return (imap( R, L )); |
---|
2147 | } |
---|
2148 | |
---|
2149 | static proc SRES_minres(SRES SR) |
---|
2150 | { |
---|
2151 | def save = basering; |
---|
2152 | SRES S; |
---|
2153 | def R = SR.r; S.r = R; |
---|
2154 | setring R; |
---|
2155 | S.rsltn = minres(SR.rsltn); |
---|
2156 | return (S); |
---|
2157 | } |
---|
2158 | |
---|
2159 | static proc loadme() |
---|
2160 | { |
---|
2161 | int @DEBUG = 0; // !system("with", "ndebug"); |
---|
2162 | |
---|
2163 | if( @DEBUG ) |
---|
2164 | { |
---|
2165 | |
---|
2166 | // "ndebug?: ", system("with", "ndebug"); |
---|
2167 | // "om_ndebug?: ", system("with", "om_ndebug"); |
---|
2168 | |
---|
2169 | listvar(Syzextra); |
---|
2170 | listvar(Schreyer); |
---|
2171 | listvar(Top); |
---|
2172 | } |
---|
2173 | |
---|
2174 | if( !defined(Schreyer::DetailedPrint) ) |
---|
2175 | { |
---|
2176 | if( 1 ) |
---|
2177 | { |
---|
2178 | /* |
---|
2179 | if( system("with", "ndebug") ) |
---|
2180 | { |
---|
2181 | "Loading the Debug version!"; |
---|
2182 | } else |
---|
2183 | { |
---|
2184 | "Loading the Release version!"; |
---|
2185 | } |
---|
2186 | */ |
---|
2187 | load("syzextra.so"); |
---|
2188 | |
---|
2189 | if( @DEBUG ) |
---|
2190 | { |
---|
2191 | listvar(Syzextra); |
---|
2192 | } |
---|
2193 | |
---|
2194 | // exportto(Top, Syzextra::ClearContent); |
---|
2195 | // exportto(Top, Syzextra::ClearDenominators); |
---|
2196 | exportto(Schreyer, Syzextra::m2_end); |
---|
2197 | |
---|
2198 | // export Syzextra; |
---|
2199 | |
---|
2200 | // exportto(Schreyer, Syzextra::noop); |
---|
2201 | exportto(Schreyer, Syzextra::DetailedPrint); |
---|
2202 | exportto(Schreyer, Syzextra::leadmonomial); |
---|
2203 | exportto(Schreyer, Syzextra::leadcomp); |
---|
2204 | // exportto(Schreyer, Syzextra::leadrawexp); |
---|
2205 | // exportto(Schreyer, Syzextra::ISUpdateComponents); |
---|
2206 | exportto(Schreyer, Syzextra::SetInducedReferrence); |
---|
2207 | exportto(Schreyer, Syzextra::GetInducedData); |
---|
2208 | // exportto(Schreyer, Syzextra::GetAMData); |
---|
2209 | // exportto(Schreyer, Syzextra::SetSyzComp); |
---|
2210 | exportto(Schreyer, Syzextra::MakeInducedSchreyerOrdering); |
---|
2211 | // exportto(Schreyer, Syzextra::MakeSyzCompOrdering); |
---|
2212 | exportto(Schreyer, Syzextra::idPrepare); |
---|
2213 | // exportto(Schreyer, Syzextra::reduce_syz); |
---|
2214 | // exportto(Schreyer, Syzextra::p_Content); |
---|
2215 | |
---|
2216 | exportto(Schreyer, Syzextra::ProfilerStart); exportto(Schreyer, Syzextra::ProfilerStop); |
---|
2217 | |
---|
2218 | exportto(Schreyer, Syzextra::Tail); |
---|
2219 | exportto(Schreyer, Syzextra::ComputeLeadingSyzygyTerms); |
---|
2220 | exportto(Schreyer, Syzextra::Compute2LeadingSyzygyTerms); |
---|
2221 | exportto(Schreyer, Syzextra::Sort_c_ds); |
---|
2222 | |
---|
2223 | exportto(Schreyer, Syzextra::FindReducer); |
---|
2224 | |
---|
2225 | exportto(Schreyer, Syzextra::ReduceTerm); |
---|
2226 | exportto(Schreyer, Syzextra::TraverseTail); |
---|
2227 | |
---|
2228 | exportto(Schreyer, Syzextra::SchreyerSyzygyNF); |
---|
2229 | exportto(Schreyer, Syzextra::ComputeSyzygy); |
---|
2230 | |
---|
2231 | exportto(Schreyer, Syzextra::ComputeResolution); |
---|
2232 | |
---|
2233 | exportto(Schreyer, Syzextra::NumberStatsInit); |
---|
2234 | exportto(Schreyer, Syzextra::NumberStatsPrint); |
---|
2235 | |
---|
2236 | newstruct("SRES","ring r,resolution rsltn"); // http://www.singular.uni-kl.de/Manual/latest/sing_179.htm#SEC218 |
---|
2237 | // TODO: SSres - return SRESOLUTION? |
---|
2238 | |
---|
2239 | // system("install","SRES","string",SRES_string, 1); |
---|
2240 | system("install","SRES","print",SRES_print, 1); |
---|
2241 | |
---|
2242 | system("install","SRES","betti",SRES_betti1, 1); // http://www.singular.uni-kl.de/Manual/latest/sing_260.htm#SEC299 |
---|
2243 | system("install","SRES","betti",SRES_betti2, 2); // http://www.singular.uni-kl.de/Manual/latest/sing_260.htm#SEC299 |
---|
2244 | system("install","SRES","minres",SRES_minres, 1); // http://www.singular.uni-kl.de/Manual/latest/sing_344.htm#SEC383 |
---|
2245 | |
---|
2246 | // system("install","SRES","list", SRES_list, 1); // will never work :((( |
---|
2247 | |
---|
2248 | // TODO: SSsyz? SSYZYGY? // TODO: C/C++ computation for Syzygy? |
---|
2249 | // newstruct("SSYZ","ring r,module szg"); // http://www.singular.uni-kl.de/Manual/latest/sing_179.htm#SEC218 |
---|
2250 | // system("install","SSYZYGY","string",SSYZYGY_string, 1); |
---|
2251 | // system("install","SSYZYGY","print",SSYZYGY_print, 1); |
---|
2252 | // system("install","SSYZYGY","module",SSYZYGY_module, 1); |
---|
2253 | } |
---|
2254 | |
---|
2255 | // exportto(Top, DetailedPrint); |
---|
2256 | // exportto(Top, GetInducedData); |
---|
2257 | |
---|
2258 | if( @DEBUG ) |
---|
2259 | { |
---|
2260 | listvar(Top); |
---|
2261 | listvar(Schreyer); |
---|
2262 | } |
---|
2263 | } |
---|
2264 | |
---|
2265 | mod_assure_load(); |
---|
2266 | } |
---|
2267 | |
---|
2268 | |
---|
2269 | |
---|
2270 | static proc mod_assure_load() |
---|
2271 | { |
---|
2272 | if( !defined(GetInducedData) ) |
---|
2273 | { |
---|
2274 | "ERROR: Sorry but we are missing the dynamic module (syzextra.so)..."; |
---|
2275 | $ |
---|
2276 | // m2_end(666); // :( |
---|
2277 | } |
---|
2278 | } |
---|
2279 | |
---|
2280 | static proc mod_init() |
---|
2281 | { |
---|
2282 | loadme(); |
---|
2283 | } |
---|
2284 | |
---|
2285 | |
---|
2286 | static proc testallSexamples() |
---|
2287 | { |
---|
2288 | example Ssyz; |
---|
2289 | example Scontinue; |
---|
2290 | example Sres; |
---|
2291 | } |
---|
2292 | |
---|
2293 | static proc testallSSexamples() |
---|
2294 | { |
---|
2295 | example SSsyz; |
---|
2296 | example SScontinue; |
---|
2297 | example SSres; |
---|
2298 | } |
---|
2299 | example |
---|
2300 | { "EXAMPLE:"; echo = 2; |
---|
2301 | testallSexamples(); |
---|
2302 | testallSSexamples(); |
---|
2303 | } |
---|
2304 | |
---|
2305 | static proc StartResTesting(list #) |
---|
2306 | { |
---|
2307 | int @treeout = attrib(SSinit, "TREEOUTPUT"); |
---|
2308 | |
---|
2309 | if( defined(@save_res_list) ) |
---|
2310 | { ERROR("Sorry: existing global variable @save_res_list - run StopAddResTesting before another Start!!!"); } |
---|
2311 | |
---|
2312 | string @save_res_desc = string(#); |
---|
2313 | |
---|
2314 | if( !@treeout ) |
---|
2315 | { |
---|
2316 | ">>>>>>>>> {{{{{{{{{ STARTING TESTING ('" + @save_res_desc + "') :::::::::::: "; |
---|
2317 | } else |
---|
2318 | { |
---|
2319 | "{ \"Example\": \"" + @save_res_desc + "\", \"computations\": ["; |
---|
2320 | } |
---|
2321 | |
---|
2322 | list @save_res_list = list(); |
---|
2323 | export @save_res_list; |
---|
2324 | export @save_res_desc; |
---|
2325 | } |
---|
2326 | |
---|
2327 | static proc StopResTesting() |
---|
2328 | { |
---|
2329 | int @treeout = attrib(SSinit, "TREEOUTPUT"); |
---|
2330 | |
---|
2331 | if( defined(@save_opts) || defined(@save_method) || defined(@save_desc) ) |
---|
2332 | { ERROR("Sorry: existing global variables - run StopAddResTest before another Start!!!"); } |
---|
2333 | |
---|
2334 | if( !defined(@save_res_list) || !defined(@save_res_desc) ) |
---|
2335 | { ERROR("Sorry: no global variable - run StartResTesting beforehand!!!"); } |
---|
2336 | |
---|
2337 | int i, j; |
---|
2338 | int f = 0; |
---|
2339 | def m, mm; |
---|
2340 | |
---|
2341 | if( !@treeout ) |
---|
2342 | { |
---|
2343 | for (i = size(@save_res_list); i > 0; i--) |
---|
2344 | { |
---|
2345 | "Total Time: ", @save_res_list[i][5], ", Res: ", @save_res_list[i][6], ", Minimal Betti: ", @save_res_list[i][5] - @save_res_list[i][6], ", ", @save_res_list[i][1], " :with: ", @save_res_list[i][2]; |
---|
2346 | } |
---|
2347 | |
---|
2348 | } |
---|
2349 | |
---|
2350 | for (i = size(@save_res_list); i > 1; i--) |
---|
2351 | { |
---|
2352 | m = @save_res_list[i][4]; |
---|
2353 | |
---|
2354 | for (j = i-1; j > 0; j--) |
---|
2355 | { |
---|
2356 | mm = @save_res_list[j][4]; |
---|
2357 | if( (nrows(m) != nrows(mm)) || (ncols(m) != ncols(mm)) ) |
---|
2358 | { |
---|
2359 | "ERROR: SIZE(Betti[j: ", j, "]) != SIZE(Betti[i: ", i, "]):"; |
---|
2360 | "j: ", j; |
---|
2361 | print( @save_res_list[j][4], "betti"); |
---|
2362 | print(@save_res_list[j]); |
---|
2363 | |
---|
2364 | "i: ", i; |
---|
2365 | print( @save_res_list[i][4], "betti"); |
---|
2366 | print(@save_res_list[i]); |
---|
2367 | |
---|
2368 | f = 1; |
---|
2369 | |
---|
2370 | } else |
---|
2371 | { |
---|
2372 | if( m != mm ) |
---|
2373 | { |
---|
2374 | "ERROR: Betti[j: ", j, "] != Betti[i: ", i, "]:"; |
---|
2375 | "j: ", j; |
---|
2376 | print( @save_res_list[j][4], "betti"); |
---|
2377 | print(@save_res_list[j]); |
---|
2378 | |
---|
2379 | "i: ", i; |
---|
2380 | print( @save_res_list[i][4], "betti"); |
---|
2381 | print(@save_res_list[i]); |
---|
2382 | |
---|
2383 | f = 1; |
---|
2384 | }; |
---|
2385 | }; |
---|
2386 | |
---|
2387 | }; |
---|
2388 | |
---|
2389 | }; |
---|
2390 | |
---|
2391 | if( f ) |
---|
2392 | { |
---|
2393 | print(@save_res_list); |
---|
2394 | "<<<<<<<<< }}}}}}}}} STOP TESTING (", @save_res_desc, ") !!!!!!!!!!!! "; |
---|
2395 | |
---|
2396 | "ERROR: There were some wrong betti numbers... "; |
---|
2397 | // m2_end(666); |
---|
2398 | } else |
---|
2399 | { |
---|
2400 | if( !@treeout ) |
---|
2401 | { |
---|
2402 | "BETTI: "; print( @save_res_list[1][4], "betti"); |
---|
2403 | } |
---|
2404 | } |
---|
2405 | |
---|
2406 | kill @save_res_list; |
---|
2407 | |
---|
2408 | if( !@treeout ) |
---|
2409 | { |
---|
2410 | "<<<<<<<<< }}}}}}}}} STOP TESTING (", @save_res_desc, ") !!!!!!!!!!!! "; |
---|
2411 | } else |
---|
2412 | { |
---|
2413 | // "{ \"Example\": \"" + @save_res_desc + "\", \"computations\": ["; |
---|
2414 | "] },"; |
---|
2415 | } |
---|
2416 | kill @save_res_desc; |
---|
2417 | } |
---|
2418 | |
---|
2419 | static proc StartAddResTest(string method, string desc) |
---|
2420 | { |
---|
2421 | int @treeout = attrib(SSinit, "TREEOUTPUT"); |
---|
2422 | |
---|
2423 | if( !defined(@save_res_list) ) |
---|
2424 | { ERROR("Sorry: no global variable - run StartResTesting beforehand!!!"); } |
---|
2425 | |
---|
2426 | if( defined(@save_opts) || defined(@save_method) || defined(@save_desc) ) |
---|
2427 | { ERROR("Sorry: existing global variables - run StopAddResTest before another Start!!!"); } |
---|
2428 | |
---|
2429 | |
---|
2430 | def @save_opts = option(get); export @save_opts; |
---|
2431 | def @save_method = method; export @save_method; |
---|
2432 | def @save_desc = desc; export @save_desc; |
---|
2433 | |
---|
2434 | if( !@treeout ) |
---|
2435 | { |
---|
2436 | "< START RES TEST{{{ ", @save_method, ", with:", @save_desc, " ... "; |
---|
2437 | } else |
---|
2438 | { |
---|
2439 | // Print("{ \"RESOLUTION: HYBRIDNF:%d, TAILREDSYZ: %d, LEAD2SYZ: %d, IGNORETAILS: %d\": [\n", |
---|
2440 | // attributes.__HYBRIDNF__, attributes.__TAILREDSYZ__, attributes.__LEAD2SYZ__, attributes.__IGNORETAILS__); |
---|
2441 | " { \"RESOLUTION: " + @save_method + ", with: " + @save_desc + "\": ["; |
---|
2442 | } |
---|
2443 | } |
---|
2444 | |
---|
2445 | |
---|
2446 | static proc StopAddResTest(def RR, intmat S, int @t, int @m) |
---|
2447 | { |
---|
2448 | int @treeout = attrib(SSinit, "TREEOUTPUT"); |
---|
2449 | |
---|
2450 | if( !(defined(@save_opts) && defined(@save_method) && defined(@save_desc)) ) |
---|
2451 | { ERROR("Sorry: no global variables - run StartAddResTest beforehand!!!"); } |
---|
2452 | |
---|
2453 | list @l = list(@save_method, @save_desc, option(get), S, @t, @m); |
---|
2454 | |
---|
2455 | // RR, |
---|
2456 | // print(S, "betti"); |
---|
2457 | |
---|
2458 | if( !@treeout ) |
---|
2459 | { |
---|
2460 | "> -STOP RES TEST}}} ", @save_method, ", with:", @save_desc, ", Timer:", @t; option(); |
---|
2461 | } else |
---|
2462 | { |
---|
2463 | " ] },"; |
---|
2464 | } |
---|
2465 | |
---|
2466 | |
---|
2467 | option(set, @save_opts); kill @save_opts; |
---|
2468 | |
---|
2469 | kill @save_method; kill @save_desc; |
---|
2470 | |
---|
2471 | @save_res_list[1 + size(@save_res_list)] = @l; |
---|
2472 | } |
---|
2473 | |
---|
2474 | |
---|
2475 | static proc SCheck(def S) |
---|
2476 | { |
---|
2477 | setring S; // for checking... |
---|
2478 | |
---|
2479 | module M = MRES; |
---|
2480 | if( ncols(M) < nrows(M) ) |
---|
2481 | { |
---|
2482 | M[nrows(M)] = 0; |
---|
2483 | } else |
---|
2484 | { |
---|
2485 | M = transpose(M); |
---|
2486 | if( ncols(M) < nrows(M) ) |
---|
2487 | { |
---|
2488 | M[nrows(M)] = 0; |
---|
2489 | } |
---|
2490 | M = transpose(M); |
---|
2491 | } |
---|
2492 | |
---|
2493 | if( nrows(M) != ncols(M) ) |
---|
2494 | { |
---|
2495 | "ERROR: non-square M!!!"; |
---|
2496 | m2_end(666); |
---|
2497 | } |
---|
2498 | |
---|
2499 | if( size(module( M*M )) > 0 ) |
---|
2500 | { |
---|
2501 | "ERROR: module( M*M ) != 0!!!"; |
---|
2502 | module( M*M ); |
---|
2503 | |
---|
2504 | "MRES': "; M; print(M); |
---|
2505 | |
---|
2506 | m2_end(666); |
---|
2507 | } |
---|
2508 | // "MRES': "; M; print(M); |
---|
2509 | |
---|
2510 | if( size(RES[1]) != 0 ) |
---|
2511 | { |
---|
2512 | "ERROR: wrong starting zero module!!!"; |
---|
2513 | m2_end(666); |
---|
2514 | } |
---|
2515 | |
---|
2516 | // RES; |
---|
2517 | /* |
---|
2518 | MRES; |
---|
2519 | RES; |
---|
2520 | ""; |
---|
2521 | LRES; |
---|
2522 | ""; |
---|
2523 | TRES; |
---|
2524 | */ |
---|
2525 | } |
---|
2526 | |
---|
2527 | //// TODO: SSres(0) fails..!!!?? |
---|
2528 | static proc TestSSres(def I) |
---|
2529 | { |
---|
2530 | def save = basering; |
---|
2531 | int @t,@m,r,rr,i; |
---|
2532 | string name = |
---|
2533 | "LEAD2SYZ:" +string(attrib(SSinit,"LEAD2SYZ")) + |
---|
2534 | ",TAILREDSYZ:"+string(attrib(SSinit,"TAILREDSYZ")) + |
---|
2535 | ",HYBRIDNF:" +string(attrib(SSinit,"HYBRIDNF")); |
---|
2536 | |
---|
2537 | int @PROFILE = attrib(SSinit, "PROFILE"); |
---|
2538 | if(@PROFILE){ string @prof = "SSres_" + @save_res_desc + "_" + name + ".prof"; } |
---|
2539 | |
---|
2540 | StartAddResTest( |
---|
2541 | "SSres", |
---|
2542 | "minres + betti(,1) + mods: {" + name + "}" |
---|
2543 | ); |
---|
2544 | |
---|
2545 | option(redSB); option(redTail); |
---|
2546 | if(@PROFILE){ProfilerStart(@prof);} |
---|
2547 | timer=0;rtimer=0;def R=SSres(I,0);@m=rtimer; |
---|
2548 | if(@PROFILE){ProfilerStop();} |
---|
2549 | setring R;module M;list @l=list();@l[size(RES)-1]=list();r=nrows(RES[1]);for(i=2;i<=size(RES);i++){M=RES[i];rr=nrows(M);if((r>0)&&(size(M)>0)&&(r<rr)){M=transpose(M);M=M[(r+1)..ncols(M)];M=transpose(M);RES[i]=M;};r=rr;@l[i-1] = M;};resolution RR=@l;RR=minres(RR);def S=betti(RR,1);@t=rtimer; |
---|
2550 | // DetailedPrint(RR,0); |
---|
2551 | SCheck(R); |
---|
2552 | StopAddResTest(RR, S, @t,@m); |
---|
2553 | kill S, RR; setring save; kill R; |
---|
2554 | } |
---|
2555 | |
---|
2556 | proc s_res(def I, int l) |
---|
2557 | "USAGE: s_res(ideal/module M, int len) |
---|
2558 | RETURN: SRES, a blackbox object containing a (part of) Schreyer resolution |
---|
2559 | PURPOSE: compute a Schreyer resolution of M of length at most len (see [BMSS]) |
---|
2560 | NOTE: If given len is zero then nvars(basering) + 1 is used instead. |
---|
2561 | @* SRES can be printed, treated by betti and minres or converted to list & mapped into the current ring with @code{SRES_list} |
---|
2562 | @* This functions is not related to other helpers from this library. |
---|
2563 | @* One can switch on computation protocol and statistic (depending on the build) by setting the @code{prot} option. |
---|
2564 | @* Further recognized switches are the following attributes of @code{Schreyer::SSinit} procedure: |
---|
2565 | LEAD2SYZ, TAILREDSYZ, HYBRIDNF |
---|
2566 | DEBUG, ... |
---|
2567 | SEE ALSO: sres |
---|
2568 | EXAMPLE: example s_res; shows an example |
---|
2569 | " |
---|
2570 | { |
---|
2571 | int @prot = (find(option(),"prot") != 0) && (defined(NumberStatsInit)) && (defined(NumberStatsPrint)); |
---|
2572 | def R=SSinit(I); setring R; int @l = size(RES); |
---|
2573 | SRES ret; ret.r = R; |
---|
2574 | if(@prot){ NumberStatsInit(); } |
---|
2575 | ret.rsltn = ComputeResolution(RES[@l], LRES[@l], TRES[@l], l); |
---|
2576 | if(@prot){ NumberStatsPrint("Number statistic for s_res with ComputeResolution"); } |
---|
2577 | return (ret); |
---|
2578 | } |
---|
2579 | example |
---|
2580 | { "EXAMPLE:"; echo = 2; |
---|
2581 | ring R; |
---|
2582 | module M = maxideal(1); M; |
---|
2583 | SRES rs = s_res(M, 0); |
---|
2584 | print(rs); |
---|
2585 | print(betti(rs, 0)); // non-minimal betties |
---|
2586 | print(SRES_list(rs)); |
---|
2587 | print(betti(rs, 1)); //minimal betties |
---|
2588 | print(minres(rs)); |
---|
2589 | } |
---|
2590 | |
---|
2591 | static proc s_syz(def I) |
---|
2592 | { |
---|
2593 | def R=SSinit(I); setring R; |
---|
2594 | int @l = size(RES); // def M = RES[@l]; |
---|
2595 | module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(LRES[@l], TRES[@l]); |
---|
2596 | SSYZ ret; ret.r = R; ret.szg = N; // Schreyer::ComputeResolution(RES[2], LRES[2], TRES[2], 0); |
---|
2597 | return (ret); |
---|
2598 | } |
---|
2599 | |
---|
2600 | static proc TestSSSres(def I) |
---|
2601 | { |
---|
2602 | def save = basering; |
---|
2603 | int @t,@m,r,rr,i; |
---|
2604 | string name = |
---|
2605 | "LEAD2SYZ:" +string(attrib(SSinit,"LEAD2SYZ")) + |
---|
2606 | ",TAILREDSYZ:"+string(attrib(SSinit,"TAILREDSYZ")) + |
---|
2607 | ",HYBRIDNF:" +string(attrib(SSinit,"HYBRIDNF")); |
---|
2608 | |
---|
2609 | int @PROFILE = attrib(SSinit, "PROFILE"); |
---|
2610 | if(@PROFILE){ string @prof = "SSSres_" + @save_res_desc + "_" + name + ".prof"; } |
---|
2611 | |
---|
2612 | StartAddResTest( |
---|
2613 | "SSSres", |
---|
2614 | "minres + betti(,1) + mods: {" + name + "}" |
---|
2615 | ); |
---|
2616 | |
---|
2617 | option(redSB); option(redTail); |
---|
2618 | if(@PROFILE){ProfilerStart(@prof);} |
---|
2619 | timer=0;rtimer=0;def R=SSinit(I);setring R;def RR=ComputeResolution(RES[2], LRES[2], TRES[2], 0); |
---|
2620 | @m=rtimer; |
---|
2621 | if(@PROFILE){ProfilerStop();} |
---|
2622 | RR=minres(RR);def S=betti(RR,1);@t=rtimer; |
---|
2623 | // DetailedPrint(RR,0); print(RR); print(S, "betti"); |
---|
2624 | SCheck(R); |
---|
2625 | StopAddResTest(RR, S, @t,@m); |
---|
2626 | kill S, RR; setring save; kill R; |
---|
2627 | } |
---|
2628 | |
---|
2629 | |
---|
2630 | static proc TestSres(def I) |
---|
2631 | { |
---|
2632 | def save = basering; |
---|
2633 | int @t,r,rr,i,@m; |
---|
2634 | StartAddResTest( |
---|
2635 | "Sres", |
---|
2636 | "minres + betti(,1)" |
---|
2637 | ); |
---|
2638 | option(redSB); option(redTail); |
---|
2639 | timer=0;rtimer=0;def R=Sres(I,0);@m=rtimer;setring R;module M;list @l=list();@l[size(RES)-1]=list();r=nrows(RES[1]);for(i=2;i<=size(RES);i++){M=RES[i];rr=nrows(M);if((r>0)&&(size(M)>0)&&(r<rr)){M=transpose(M);M=M[(r+1)..ncols(M)];M=transpose(M);RES[i]=M;};r=rr;@l[i-1] = M;};resolution RR=@l;RR=minres(RR);def S=betti(RR,1);@t=rtimer; |
---|
2640 | SCheck(R); |
---|
2641 | StopAddResTest(RR, S, @t,@m); |
---|
2642 | kill S, RR; setring save; kill R; |
---|
2643 | } |
---|
2644 | |
---|
2645 | |
---|
2646 | static proc Testsres(def M) |
---|
2647 | { |
---|
2648 | int @t,@m; |
---|
2649 | StartAddResTest("sres", "no minres + betti(,1)"); |
---|
2650 | option(redSB);option(redTail); |
---|
2651 | timer=0;rtimer=0;def RR=sres(groebner(M),0);@m=rtimer;def S=betti(RR,1);@t=rtimer; |
---|
2652 | StopAddResTest(RR, S, @t,@m); kill S, RR; |
---|
2653 | } |
---|
2654 | |
---|
2655 | static proc Testlres(def M) |
---|
2656 | { |
---|
2657 | int @t,@m; |
---|
2658 | StartAddResTest("lres", "no minres + betti(,1)"); |
---|
2659 | option(redSB);option(redTail); |
---|
2660 | timer=0;rtimer=0;def RR=lres(M,0);@m=rtimer;def S=betti(RR,1);@t=rtimer; |
---|
2661 | StopAddResTest(RR, S, @t,@m); kill S, RR; |
---|
2662 | |
---|
2663 | StartAddResTest("lres", "minres + betti()"); |
---|
2664 | option(redSB);option(redTail); |
---|
2665 | timer=0;rtimer=0;def RR=lres(M,0);@m=rtimer;def S=betti(minres(RR));@t=rtimer; |
---|
2666 | StopAddResTest(RR, S, @t,@m); |
---|
2667 | kill S, RR; |
---|
2668 | } |
---|
2669 | |
---|
2670 | |
---|
2671 | static proc Testnres(def M) |
---|
2672 | { |
---|
2673 | int @t,@m; |
---|
2674 | StartAddResTest("nres", "no minres + betti(,1)"); |
---|
2675 | |
---|
2676 | option(redSB); option(redTail); |
---|
2677 | timer=0;rtimer=0;def RR=nres(M,0);@m=rtimer;def S=betti(RR,1);@t=rtimer; |
---|
2678 | |
---|
2679 | StopAddResTest(RR, S, @t,@m); kill S, RR; |
---|
2680 | } |
---|
2681 | |
---|
2682 | static proc TestSSresAttribs(def M, list #) |
---|
2683 | { |
---|
2684 | M = groebner(M); |
---|
2685 | |
---|
2686 | StartResTesting(#); |
---|
2687 | |
---|
2688 | attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M); |
---|
2689 | attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 1); TestSSSres(M); |
---|
2690 | |
---|
2691 | // WRONG???! LEAD2SYZ? |
---|
2692 | // attrib(SSinit, "LEAD2SYZ", 1); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M); |
---|
2693 | // attrib(SSinit, "LEAD2SYZ", 1); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 1); TestSSSres(M); |
---|
2694 | |
---|
2695 | int @treeout = attrib(SSinit, "TREEOUTPUT"); |
---|
2696 | if( !@treeout ) |
---|
2697 | { |
---|
2698 | Testlres(M); Testnres(M); |
---|
2699 | // Testsres(M); // TestSres(M); // too long for the last medium test :( |
---|
2700 | } |
---|
2701 | |
---|
2702 | StopResTesting(); |
---|
2703 | } |
---|
2704 | |
---|
2705 | static proc TestSSresAttribs2tr(def M, list #) |
---|
2706 | { |
---|
2707 | M = groebner(M); |
---|
2708 | |
---|
2709 | StartResTesting(#); |
---|
2710 | |
---|
2711 | attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M); |
---|
2712 | Testlres(M); |
---|
2713 | |
---|
2714 | StopResTesting(); |
---|
2715 | } |
---|
2716 | |
---|
2717 | static proc testSimple(list #) |
---|
2718 | { |
---|
2719 | mod_assure_load(); |
---|
2720 | |
---|
2721 | def DEBUG = 0; |
---|
2722 | if(size(#) > 0) { DEBUG = #[1]; } |
---|
2723 | |
---|
2724 | system("--min-time", "0.01"); |
---|
2725 | system("--ticks-per-sec", 100); |
---|
2726 | |
---|
2727 | // option(prot); |
---|
2728 | |
---|
2729 | // TODO: only for now!! |
---|
2730 | attrib(SSinit, "DEBUG", (DEBUG > 0) ); |
---|
2731 | attrib(SSinit, "SYZCHECK", (DEBUG > 0) ); |
---|
2732 | attrib(SSinit, "KERCHECK", (DEBUG > 0) ); |
---|
2733 | |
---|
2734 | attrib(SSinit, "TREEOUTPUT", 0); |
---|
2735 | attrib(SSinit, "PROFILE", 0); |
---|
2736 | attrib(SSinit, "IGNORETAILS", 0); // not only frame |
---|
2737 | |
---|
2738 | int @treeout = attrib(SSinit, "TREEOUTPUT"); |
---|
2739 | |
---|
2740 | if( @treeout) |
---|
2741 | { |
---|
2742 | monitor("SimpleTests.json", "o"); |
---|
2743 | "{ \"SimpleTests\": ["; |
---|
2744 | } else { option(prot); } |
---|
2745 | |
---|
2746 | |
---|
2747 | ring r; ideal M = maxideal(1); |
---|
2748 | TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); |
---|
2749 | kill r; |
---|
2750 | |
---|
2751 | ring r = 0, (a, b, c, d), lp; ideal M = maxideal(1); |
---|
2752 | TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); |
---|
2753 | kill r; |
---|
2754 | |
---|
2755 | ring R = 0, (w, x, y, z), dp; |
---|
2756 | ideal M = w^2 - x*z, w*x - y*z, x^2 - w*y, x*y - z^2, y^2 - w*z; |
---|
2757 | TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); |
---|
2758 | kill R; |
---|
2759 | |
---|
2760 | |
---|
2761 | ring r = 0, (a, b, c, d, e, f), dp; ideal M = maxideal(1); |
---|
2762 | TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); |
---|
2763 | kill r; |
---|
2764 | |
---|
2765 | |
---|
2766 | ring r = 0, (x, y), lp; ideal M = x2, xy, y2; // Schreyer conterexample??? |
---|
2767 | TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); |
---|
2768 | kill r; |
---|
2769 | |
---|
2770 | ring r = 0, (x, y, z, t), dp; ideal M = homog(xy + y2 +x + 2y -1, t), homog(xz - x -y -z -2, t), homog(yz +1, t); // TODO: seg. fault? |
---|
2771 | TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering)); |
---|
2772 | kill r; |
---|
2773 | |
---|
2774 | |
---|
2775 | ring AGR = (101), (a, b, c, d), dp; |
---|
2776 | // simple: AGR@101n3d002s004%1: |
---|
2777 | ideal M = c*d, b*d, a*d, c^2-d^2, b*c, a*c, b^2-d^2, a*b, a^2-d^2; |
---|
2778 | TestSSresAttribs(M, "simple: AGR@101n3d002s004%1"); |
---|
2779 | |
---|
2780 | // medium: AGR@101n3d004s009%1; |
---|
2781 | M = a*b+7*a*c-16*b*c-27*a*d+37*b*d-2*c*d, d^3, c*d^2, b*d^2, a*d^2, c^2*d, b*c*d, a*c*d, b^2*d, a^2*d, c^3, b*c^2, a*c^2, b^2*c, a^2*c, b^3, a^3; |
---|
2782 | TestSSresAttribs(M, "medium: AGR@101n3d004s009%1"); |
---|
2783 | |
---|
2784 | if( @treeout) |
---|
2785 | { |
---|
2786 | "] }"; |
---|
2787 | monitor(""); |
---|
2788 | } |
---|
2789 | |
---|
2790 | } |
---|
2791 | |
---|
2792 | static proc testAGR(list #) |
---|
2793 | { |
---|
2794 | def DEBUG = 0; |
---|
2795 | if(size(#) > 0) { DEBUG = #[1]; } |
---|
2796 | |
---|
2797 | system("--min-time", "0.01"); |
---|
2798 | system("--ticks-per-sec", 100); |
---|
2799 | |
---|
2800 | attrib(SSinit, "DEBUG", 0); |
---|
2801 | attrib(SSinit, "SYZCHECK", (DEBUG > 0)); |
---|
2802 | attrib(SSinit, "KERCHECK", 0); |
---|
2803 | attrib(SSinit, "TREEOUTPUT", 0); |
---|
2804 | attrib(SSinit, "PROFILE", 0); |
---|
2805 | attrib(SSinit, "IGNORETAILS", 0); // not only frame |
---|
2806 | |
---|
2807 | option(prot); |
---|
2808 | |
---|
2809 | ring AGR = (101), (a, b, c, d), dp; AGR; |
---|
2810 | // lengthy: AGR@101n3d008s058%3, kernel only! |
---|
2811 | ideal M = c^4*d^2+4*a^3*d^3+29*a^2*b*d^3-2*a*b^2*d^3+2*b^3*d^3-21*a^2*c*d^3+46*a*b*c*d^3+2*b^2*c*d^3-13*a*c^2*d^3+32*b*c^2*d^3+46*c^3*d^3-28*a^2*d^4+4*a*b*d^4+29*b^2*d^4-8*a*c*d^4+33*b*c*d^4-16*c^2*d^4+17*a*d^5-3*b*d^5-42*c*d^5+47*d^6,b*c^3*d^2+35*a^3*d^3+24*a^2*b*d^3+46*a*b^2*d^3-22*b^3*d^3-48*a^2*c*d^3+20*a*b*c*d^3-28*b^2*c*d^3-40*a*c^2*d^3-4*b*c^2*d^3+35*c^3*d^3-21*a^2*d^4+3*a*b*d^4+8*b^2*d^4-2*a*c*d^4-22*b*c*d^4+24*c^2*d^4+44*a*d^5+33*b*d^5+31*c*d^5+26*d^6,a*c^3*d^2-42*a^3*d^3+34*a^2*b*d^3-10*a*b^2*d^3+30*b^3*d^3-6*a^2*c*d^3-30*a*b*c*d^3-34*b^2*c*d^3+29*a*c^2*d^3+35*b*c^2*d^3+13*c^3*d^3+8*a^2*d^4+23*a*b*d^4-29*b^2*d^4+12*a*c*d^4-22*b*c*d^4-50*c^2*d^4-4*b*d^5+9*c*d^5+13*d^6,b^2*c^2*d^2+a^3*d^3-49*a^2*b*d^3+26*a*b^2*d^3+20*b^3*d^3+24*a^2*c*d^3-2*a*b*c*d^3+31*b^2*c*d^3-30*a*c^2*d^3+21*b*c^2*d^3-24*c^3*d^3-38*a^2*d^4-14*a*b*d^4-14*b^2*d^4+6*a*c*d^4+3*b*c*d^4+13*c^2*d^4-11*a*d^5-38*b*d^5+22*c*d^5+48*d^6,a*b*c^2*d^2+18*a^3*d^3-29*a^2*b*d^3-21*a*b^2*d^3-2*b^3*d^3-25*a^2*c*d^3+37*a*b*c*d^3-14*b^2*c*d^3-47*a*c^2*d^3-6*b*c^2*d^3-34*c^3*d^3+43*a^2*d^4+22*a*b*d^4-39*b^2*d^4-41*a*c*d^4-17*b*c*d^4-13*c^2*d^4-43*a*d^5+28*b*d^5-42*c*d^5-49*d^6,a^2*c^2*d^2-33*a^3*d^3+30*a^2*b*d^3-13*a*b^2*d^3+18*b^3*d^3-8*a^2*c*d^3-18*a*b*c*d^3-15*b^2*c*d^3-21*a*c^2*d^3+45*b*c^2*d^3-35*c^3*d^3-4*a^2*d^4-4*a*b*d^4+10*b^2*d^4-19*a*c*d^4-18*b*c*d^4-22*c^2*d^4-27*a*d^5+20*b*d^5-14*c*d^5+24*d^6,b^3*c*d^2-10*a^3*d^3+37*a*b^2*d^3-43*b^3*d^3-10*a^2*c*d^3-9*a*b*c*d^3+47*a*c^2*d^3-24*b*c^2*d^3+12*c^3*d^3+7*a^2*d^4+19*a*b*d^4-27*b^2*d^4-2*a*c*d^4-35*b*c*d^4+45*c^2*d^4-44*a*d^5-43*b*d^5+24*c*d^5+16*d^6,a*b^2*c*d^2+2*a^3*d^3-14*a^2*b*d^3+2*a*b^2*d^3+18*b^3*d^3-48*a^2*c*d^3+43*a*b*c*d^3-25*b^2*c*d^3+15*a*c^2*d^3-7*b*c^2*d^3+42*c^3*d^3-16*a^2*d^4+7*b^2*d^4-23*a*c*d^4+24*b*c*d^4+25*c^2*d^4-17*a*d^5-16*b*d^5-32*c*d^5-50*d^6,a^2*b*c*d^2-16*a^3*d^3+7*a^2*b*d^3-20*a*b^2*d^3+11*b^3*d^3+16*a^2*c*d^3+6*a*b*c*d^3-25*b^2*c*d^3+42*a*c^2*d^3-39*b*c^2*d^3-15*c^3*d^3-25*a^2*d^4+46*a*b*d^4-3*b^2*d^4+5*a*c*d^4+28*b*c*d^4+6*c^2*d^4-20*a*d^5-15*b*d^5-30*c*d^5+17*d^6,a^3*c*d^2+39*a^3*d^3+22*a^2*b*d^3-21*a*b^2*d^3+10*b^3*d^3+40*a^2*c*d^3-37*a*b*c*d^3+11*b^2*c*d^3+43*a*c^2*d^3+28*b*c^2*d^3-10*c^3*d^3+30*a^2*d^4+36*a*b*d^4-45*b^2*d^4-40*a*c*d^4-31*b*c*d^4+28*c^2*d^4+35*a*d^5+6*b*d^5+14*c*d^5+25*d^6,b^4*d^2+50*a^3*d^3+12*a^2*b*d^3+29*a*b^2*d^3-38*b^3*d^3-44*a^2*c*d^3+28*a*b*c*d^3+18*b^2*c*d^3-31*a*c^2*d^3+16*b*c^2*d^3-18*c^3*d^3+5*a^2*d^4-43*a*b*d^4+16*b^2*d^4+9*a*c*d^4-30*b*c*d^4+50*c^2*d^4+3*a*d^5+33*b*d^5+3*c*d^5-48*d^6,a*b^3*d^2+13*a^3*d^3-28*a^2*b*d^3-33*a*b^2*d^3-25*b^3*d^3-41*a^2*c*d^3+a*b*c*d^3+19*b^2*c*d^3+41*a*c^2*d^3-17*b*c^2*d^3+34*c^3*d^3-10*a^2*d^4+30*a*b*d^4+34*b^2*d^4+13*a*c*d^4+b*c*d^4-35*c^2*d^4-34*a*d^5+23*b*d^5-7*c*d^5+6*d^6,a^2*b^2*d^2+22*a^3*d^3-32*a^2*b*d^3+29*a*b^2*d^3+21*b^3*d^3-30*a^2*c*d^3-47*a*b*c*d^3-11*b^2*c*d^3-16*a*c^2*d^3-14*b*c^2*d^3+49*c^3*d^3+47*a^2*d^4-11*a*b*d^4+4*b^2*d^4+13*a*c*d^4+7*b*c*d^4-30*c^2*d^4+31*a*d^5+10*b*d^5-8*c*d^5-27*d^6,a^3*b*d^2-43*a^3*d^3-2*a^2*b*d^3+15*a*b^2*d^3+42*b^3*d^3+25*a^2*c*d^3+22*a*b*c*d^3-4*b^2*c*d^3-29*a*c^2*d^3-31*b*c^2*d^3-3*c^3*d^3+33*a^2*d^4+20*a*b*d^4-34*b^2*d^4+8*a*c*d^4+48*b*c*d^4-29*c^2*d^4-46*a*d^5+27*b*d^5+29*c*d^5+33*d^6,a^4*d^2+30*a^3*d^3-42*a*b^2*d^3-16*b^3*d^3-33*a^2*c*d^3+13*a*b*c*d^3+7*b^2*c*d^3-23*a*c^2*d^3+28*b*c^2*d^3-37*c^3*d^3+3*a^2*d^4-34*a*b*d^4+16*b^2*d^4-21*a*c*d^4-39*b*c*d^4+5*c^2*d^4+35*a*d^5+39*b*d^5-26*c*d^5-47*d^6,c^5*d+48*a^3*d^3-37*a^2*b*d^3+31*a*b^2*d^3-19*b^3*d^3+49*a^2*c*d^3-5*a*b*c*d^3+45*b^2*c*d^3+24*a*c^2*d^3-26*b*c^2*d^3-10*c^3*d^3-a^2*d^4+43*a*b*d^4-26*b^2*d^4+45*a*c*d^4-3*b*c*d^4+38*c^2*d^4+10*a*d^5-5*b*d^5-34*c*d^5+22*d^6,b*c^4*d+30*a^3*d^3-40*a^2*b*d^3-39*a*b^2*d^3+33*b^3*d^3+31*a^2*c*d^3-17*a*b*c*d^3-44*b^2*c*d^3+24*a*c^2*d^3+22*b*c^2*d^3-44*c^3*d^3-29*a^2*d^4+4*a*b*d^4-4*b^2*d^4+8*a*c*d^4-42*b*c*d^4+15*c^2*d^4-42*a*d^5+15*b*d^5-41*c*d^5-46*d^6,a*c^4*d-11*a^3*d^3-5*a^2*b*d^3+33*a*b^2*d^3+7*b^3*d^3-31*a^2*c*d^3-47*a*b*c*d^3-50*b^2*c*d^3-50*a*c^2*d^3-39*b*c^2*d^3+25*c^3*d^3+5*a^2*d^4+35*a*b*d^4-34*b^2*d^4+42*a*c*d^4-44*b*c*d^4-17*c^2*d^4+11*a*d^5+b*d^5+31*c*d^5+45*d^6,b^2*c^3*d+12*a^3*d^3-41*a^2*b*d^3+29*a*b^2*d^3-42*b^3*d^3-32*a^2*c*d^3+47*a*b*c*d^3-13*b^2*c*d^3-20*a*c^2*d^3+45*b*c^2*d^3-49*c^3*d^3-34*a^2*d^4+16*a*b*d^4+11*b^2*d^4-49*a*c*d^4-27*b*c*d^4-31*c^2*d^4+29*a*d^5-23*b*d^5+13*c*d^5+42*d^6,a*b*c^3*d-16*a^3*d^3-35*a^2*b*d^3+12*a*b^2*d^3-39*b^3*d^3-32*a*b*c*d^3-4*b^2*c*d^3+31*a*c^2*d^3+43*b*c^2*d^3-42*c^3*d^3+36*a^2*d^4-5*a*b*d^4-4*b^2*d^4+5*a*c*d^4+20*b*c*d^4+31*c^2*d^4+15*a*d^5+25*b*d^5-16*c*d^5-28*d^6,a^2*c^3*d-16*a^3*d^3+8*a^2*b*d^3+30*a*b^2*d^3-16*b^3*d^3+20*a^2*c*d^3-11*b^2*c*d^3-48*a*c^2*d^3+11*b*c^2*d^3-20*c^3*d^3-24*a^2*d^4-23*a*b*d^4+9*b^2*d^4+13*a*c*d^4-42*b*c*d^4+22*c^2*d^4-29*a*d^5-28*b*d^5-7*c*d^5-2*d^6,b^3*c^2*d+42*a^3*d^3-11*a^2*b*d^3+18*a*b^2*d^3-13*b^3*d^3+22*a^2*c*d^3-10*a*b*c*d^3-25*b^2*c*d^3-17*a*c^2*d^3-23*b*c^2*d^3-37*c^3*d^3-3*a^2*d^4-33*a*b*d^4+44*b^2*d^4-41*a*c*d^4+6*b*c*d^4-36*c^2*d^4-43*a*d^5+b*d^5+25*c*d^5+48*d^6,a*b^2*c^2*d+21*a^3*d^3+5*a^2*b*d^3+38*a*b^2*d^3+25*b^3*d^3-12*a^2*c*d^3+7*a*b*c*d^3+28*b^2*c*d^3+a*c^2*d^3+33*b*c^2*d^3+22*c^3*d^3+10*a^2*d^4-7*a*b*d^4-5*b^2*d^4+50*a*c*d^4-23*b*c*d^4+22*c^2*d^4-4*a*d^5+45*b*d^5-42*c*d^5+d^6,a^2*b*c^2*d-45*a^3*d^3+2*a^2*b*d^3+44*a*b^2*d^3-5*b^3*d^3-19*a^2*c*d^3-3*a*b*c*d^3+18*b^2*c*d^3-22*a*c^2*d^3+46*b*c^2*d^3+41*c^3*d^3-26*a^2*d^4-a*b*d^4-42*b^2*d^4-40*a*c*d^4+39*b*c*d^4+24*c^2*d^4-6*a*d^5-6*b*d^5+13*c*d^5-28*d^6,a^3*c^2*d+4*a^3*d^3+31*a^2*b*d^3+21*a*b^2*d^3+39*b^3*d^3-8*a^2*c*d^3+49*a*b*c*d^3-48*b^2*c*d^3-16*a*c^2*d^3-33*b*c^2*d^3+35*c^3*d^3+41*a^2*d^4+18*a*b*d^4+47*b^2*d^4-3*a*c*d^4+12*b*c*d^4+13*c^2*d^4+32*a*d^5-40*b*d^5+50*c*d^5-2*d^6,b^4*c*d+23*a^3*d^3+47*a^2*b*d^3-10*a*b^2*d^3-43*b^3*d^3+49*a^2*c*d^3+7*a*b*c*d^3+34*b^2*c*d^3-40*a*c^2*d^3-37*b*c^2*d^3-6*c^3*d^3+30*a^2*d^4-34*a*b*d^4-6*b^2*d^4+21*a*c*d^4+41*b*c*d^4-33*c^2*d^4-9*a*d^5+2*b*d^5+8*c*d^5+7*d^6,a*b^3*c*d-5*a^3*d^3-42*a^2*b*d^3+22*a*b^2*d^3-35*b^3*d^3+a^2*c*d^3+20*a*b*c*d^3-10*b^2*c*d^3+23*a*c^2*d^3-17*b*c^2*d^3+30*c^3*d^3+24*a^2*d^4+32*a*b*d^4-7*b^2*d^4-48*a*c*d^4-25*b*c*d^4-6*c^2*d^4-33*a*d^5+29*b*d^5+12*c*d^5+26*d^6,a^2*b^2*c*d+6*a^3*d^3-46*a^2*b*d^3-30*a*b^2*d^3+b^3*d^3-35*a^2*c*d^3+41*a*b*c*d^3-4*b^2*c*d^3-42*a*c^2*d^3+16*b*c^2*d^3+19*c^3*d^3-13*a^2*d^4-16*a*b*d^4+45*b^2*d^4-25*a*c*d^4-48*b*c*d^4+35*c^2*d^4+50*a*d^5+31*b*d^5-25*c*d^5+6*d^6,a^3*b*c*d+3*a^3*d^3-39*a^2*b*d^3+14*a*b^2*d^3-4*b^3*d^3-36*a^2*c*d^3+47*a*b*c*d^3+27*b^2*c*d^3+50*a*c^2*d^3-45*b*c^2*d^3+49*c^3*d^3-18*a^2*d^4+20*a*b*d^4+17*b^2*d^4+a*c*d^4+33*b*c*d^4+42*c^2*d^4+19*a*d^5+18*b*d^5+33*c*d^5+15*d^6,a^4*c*d-14*a^3*d^3-8*a^2*b*d^3-a*b^2*d^3-34*b^3*d^3-27*a^2*c*d^3-15*a*b*c*d^3-14*b^2*c*d^3+33*a*c^2*d^3-34*b*c^2*d^3-4*c^3*d^3+47*a^2*d^4+50*a*b*d^4-6*b^2*d^4+16*a*c*d^4+26*c^2*d^4-27*a*d^5+2*b*d^5-31*c*d^5+47*d^6,b^5*d+3*a^3*d^3-9*a^2*b*d^3+46*a*b^2*d^3+b^3*d^3-2*a^2*c*d^3-39*a*b*c*d^3-31*b^2*c*d^3-30*a*c^2*d^3+23*b*c^2*d^3+25*c^3*d^3+9*a^2*d^4-15*a*b*d^4-2*b^2*d^4-12*a*c*d^4+11*b*c*d^4+9*c^2*d^4+3*a*d^5+9*b*d^5+41*c*d^5-38*d^6,a*b^4*d-48*a^3*d^3+42*a^2*b*d^3+27*a*b^2*d^3+32*b^3*d^3+21*a^2*c*d^3-5*a*b*c*d^3-39*b^2*c*d^3+6*a*c^2*d^3-20*b*c^2*d^3+45*c^3*d^3-48*a^2*d^4+44*a*b*d^4+25*b^2*d^4-29*a*c*d^4+4*b*c*d^4+50*c^2*d^4-6*a*d^5-40*b*d^5-11*c*d^5-28*d^6,a^2*b^3*d-41*a^3*d^3+21*a^2*b*d^3+39*a*b^2*d^3-2*b^3*d^3+24*a*b*c*d^3-10*b^2*c*d^3+31*a*c^2*d^3-34*b*c^2*d^3-31*c^3*d^3+20*a^2*d^4+41*a*b*d^4-10*b^2*d^4-40*a*c*d^4+5*b*c*d^4+31*c^2*d^4+6*a*d^5+26*b*d^5+29*c*d^5-5*d^6,a^3*b^2*d-11*a^3*d^3-39*a^2*b*d^3+2*a*b^2*d^3-44*b^3*d^3-23*a^2*c*d^3+21*a*b*c*d^3-44*b^2*c*d^3-7*a*c^2*d^3+49*b*c^2*d^3+46*c^3*d^3+17*a^2*d^4+49*a*b*d^4-14*b^2*d^4+29*a*c*d^4-20*b*c*d^4-49*c^2*d^4-13*a*d^5-41*b*d^5-18*c*d^5+50*d^6,a^4*b*d+9*a^3*d^3+50*a^2*b*d^3+46*a*b^2*d^3-48*b^3*d^3+43*a^2*c*d^3-45*a*b*c*d^3+24*b^2*c*d^3-4*a*c^2*d^3-b*c^2*d^3-34*c^3*d^3+33*a^2*d^4+14*a*b*d^4-37*b^2*d^4-13*a*c*d^4+48*b*c*d^4-31*c^2*d^4-22*a*d^5+42*b*d^5+49*c*d^5-43*d^6,a^5*d+33*a^3*d^3-23*a^2*b*d^3+30*a*b^2*d^3+5*b^3*d^3-26*a^2*c*d^3-35*a*b*c*d^3-50*b^2*c*d^3-21*a*c^2*d^3+4*b*c^2*d^3+10*c^3*d^3+39*a^2*d^4-2*a*b*d^4+23*b^2*d^4+17*a*c*d^4-50*b*c*d^4-8*c^2*d^4-39*a*d^5+36*b*d^5-43*c*d^5-39*d^6,c^6+20*a^3*d^3-41*a*b^2*d^3+39*b^3*d^3+26*a^2*c*d^3-8*a*b*c*d^3-49*b^2*c*d^3+25*a*c^2*d^3+32*b*c^2*d^3-32*c^3*d^3-2*a^2*d^4-38*a*b*d^4-38*b^2*d^4+17*a*c*d^4+22*b*c*d^4-36*c^2*d^4-41*a*d^5+37*b*d^5-49*c*d^5-19*d^6,b*c^5-36*a^3*d^3+32*a^2*b*d^3-14*a*b^2*d^3-31*b^3*d^3-2*a^2*c*d^3-8*a*b*c*d^3-39*b^2*c*d^3-46*a*c^2*d^3+10*b*c^2*d^3+27*c^3*d^3+25*a^2*d^4-30*a*b*d^4+3*b^2*d^4-36*a*c*d^4+44*b*c*d^4+17*c^2*d^4-46*a*d^5-37*b*d^5-2*c*d^5-47*d^6,a*c^5-49*a^3*d^3+11*a^2*b*d^3-21*a*b^2*d^3-14*b^3*d^3+26*a^2*c*d^3-a*b*c*d^3+24*b^2*c*d^3-46*a*c^2*d^3+23*b*c^2*d^3+33*c^3*d^3-11*a^2*d^4-a*b*d^4+49*b^2*d^4-17*a*c*d^4+49*b*c*d^4+36*c^2*d^4+10*a*d^5-19*b*d^5+26*c*d^5-32*d^6,b^2*c^4-14*a^3*d^3+9*a^2*b*d^3-5*a*b^2*d^3+17*b^3*d^3+2*a^2*c*d^3+12*a*b*c*d^3-37*b^2*c*d^3-43*a*c^2*d^3+5*b*c^2*d^3-9*c^3*d^3-27*a^2*d^4+14*a*b*d^4-19*b^2*d^4+29*a*c*d^4+32*b*c*d^4-15*c^2*d^4-26*a*d^5-31*b*d^5+46*c*d^5-22*d^6,a*b*c^4+33*a^3*d^3-22*a^2*b*d^3-14*a*b^2*d^3-30*b^3*d^3-48*a^2*c*d^3+34*a*b*c*d^3-8*b^2*c*d^3-44*a*c^2*d^3-4*b*c^2*d^3+3*c^3*d^3+26*a^2*d^4+4*a*b*d^4+7*b^2*d^4-28*a*c*d^4-22*b*c*d^4-35*c^2*d^4-50*a*d^5-43*b*d^5+46*c*d^5-49*d^6,a^2*c^4-9*a^3*d^3+3*a^2*b*d^3+34*a*b^2*d^3+4*b^3*d^3+5*a^2*c*d^3-17*a*b*c*d^3-48*b^2*c*d^3+10*a*c^2*d^3+2*b*c^2*d^3-12*c^3*d^3-7*a^2*d^4-6*a*b*d^4+37*b^2*d^4-16*a*c*d^4+47*b*c*d^4+6*c^2*d^4-35*a*d^5-45*b*d^5-12*c*d^5-30*d^6,b^3*c^3-21*a^3*d^3-6*a^2*b*d^3-26*a*b^2*d^3-22*b^3*d^3-29*a*b*c*d^3-26*b^2*c*d^3+50*a*c^2*d^3-41*b*c^2*d^3+22*c^3*d^3-41*a^2*d^4+25*a*b*d^4+16*b^2*d^4+11*a*c*d^4+34*b*c*d^4+19*c^2*d^4-38*a*d^5-8*b*d^5-42*c*d^5-6*d^6,a*b^2*c^3+3*a^3*d^3-45*a^2*b*d^3+39*a*b^2*d^3+22*b^3*d^3+48*a^2*c*d^3-7*a*b*c*d^3-46*b^2*c*d^3-22*a*c^2*d^3-17*b*c^2*d^3-27*c^3*d^3-35*a^2*d^4+47*a*b*d^4+6*b^2*d^4-5*a*c*d^4-30*b*c*d^4+25*c^2*d^4-10*a*d^5+46*b*d^5+5*c*d^5-18*d^6,a^2*b*c^3-36*a^3*d^3+33*a^2*b*d^3+47*a*b^2*d^3-16*b^3*d^3-41*a^2*c*d^3+42*a*b*c*d^3-29*b^2*c*d^3+39*a*c^2*d^3-12*b*c^2*d^3-25*c^3*d^3-11*a^2*d^4-37*a*b*d^4+29*b^2*d^4-18*a*c*d^4+43*b*c*d^4+12*c^2*d^4-37*a*d^5+7*b*d^5+7*c*d^5-5*d^6,a^3*c^3+25*a^3*d^3+34*a^2*b*d^3+29*a*b^2*d^3-34*b^3*d^3-46*a^2*c*d^3-17*a*b*c*d^3+49*b^2*c*d^3-35*a*c^2*d^3-21*b*c^2*d^3-45*c^3*d^3+43*a^2*d^4+29*a*b*d^4+36*b^2*d^4+37*a*c*d^4+12*b*c*d^4-17*c^2*d^4+12*a*d^5+47*c*d^5-23*d^6,b^4*c^2-10*a^3*d^3+38*a^2*b*d^3+33*a*b^2*d^3+9*b^3*d^3-25*a^2*c*d^3+38*a*b*c*d^3-19*b^2*c*d^3-33*a*c^2*d^3-49*b*c^2*d^3-16*c^3*d^3-14*a^2*d^4-3*a*b*d^4-30*b^2*d^4-32*a*c*d^4+28*b*c*d^4-3*c^2*d^4-16*a*d^5+31*b*d^5-49*c*d^5-3*d^6,a*b^3*c^2+25*a^3*d^3-47*a^2*b*d^3+47*b^3*d^3+13*a^2*c*d^3-17*a*b*c*d^3+26*b^2*c*d^3-43*a*c^2*d^3+39*b*c^2*d^3-4*c^3*d^3+20*a^2*d^4+6*a*b*d^4+49*b^2*d^4+14*a*c*d^4-17*b*c*d^4+38*c^2*d^4+21*a*d^5-9*b*d^5-26*c*d^5+47*d^6,a^2*b^2*c^2+12*a^3*d^3+10*a^2*b*d^3-40*a*b^2*d^3+14*b^3*d^3+36*a^2*c*d^3-9*a*b*c*d^3+9*b^2*c*d^3+7*a*c^2*d^3+12*b*c^2*d^3-37*c^3*d^3-44*a^2*d^4-48*a*b*d^4+11*b^2*d^4-13*a*c*d^4+31*b*c*d^4+47*c^2*d^4+28*a*d^5+39*b*d^5+27*c*d^5-d^6,a^3*b*c^2-28*a^3*d^3-22*a^2*b*d^3-8*a*b^2*d^3+40*b^3*d^3-13*a^2*c*d^3+35*a*b*c*d^3-4*b^2*c*d^3+28*a*c^2*d^3+30*b*c^2*d^3-13*c^3*d^3+16*a^2*d^4+48*a*b*d^4-42*b^2*d^4+10*a*c*d^4-b*c*d^4+37*c^2*d^4-17*a*d^5-15*b*d^5+40*c*d^5+27*d^6,a^4*c^2+17*a^3*d^3+45*a^2*b*d^3+42*a*b^2*d^3-20*b^3*d^3-39*a^2*c*d^3-20*a*b*c*d^3-44*b^2*c*d^3+33*a*c^2*d^3+39*b*c^2*d^3-37*c^3*d^3+39*a^2*d^4+39*a*b*d^4-44*b^2*d^4+8*a*c*d^4-34*b*c*d^4+36*c^2*d^4-47*a*d^5+38*b*d^5-46*c*d^5+23*d^6,b^5*c+24*a^3*d^3+17*a^2*b*d^3-22*a*b^2*d^3-27*b^3*d^3+27*a^2*c*d^3+48*a*b*c*d^3+4*b^2*c*d^3+a*c^2*d^3-21*b*c^2*d^3-14*c^3*d^3+3*a^2*d^4+15*a*b*d^4+41*b^2*d^4-27*a*c*d^4+4*b*c*d^4+3*c^2*d^4-46*a*d^5+28*b*d^5+6*c*d^5+36*d^6,a*b^4*c-29*a^3*d^3+30*a^2*b*d^3+31*a*b^2*d^3+44*b^3*d^3-12*a^2*c*d^3-27*a*b*c*d^3+48*b^2*c*d^3+4*a*c^2*d^3+2*b*c^2*d^3-17*c^3*d^3-7*a^2*d^4+25*a*b*d^4-45*b^2*d^4-17*a*c*d^4-14*b*c*d^4-11*c^2*d^4-45*a*d^5-36*b*d^5-12*c*d^5-44*d^6,a^2*b^3*c-10*a^3*d^3-30*a^2*b*d^3-22*a*b^2*d^3-35*b^3*d^3+37*a^2*c*d^3-35*a*b*c*d^3-12*b^2*c*d^3-16*b*c^2*d^3+49*c^3*d^3+38*a^2*d^4-21*a*b*d^4-20*b^2*d^4-6*a*c*d^4+41*b*c*d^4+49*c^2*d^4+13*a*d^5-38*b*d^5-32*c*d^5-12*d^6,a^3*b^2*c+5*a^2*b*d^3-40*a*b^2*d^3+14*b^3*d^3-4*a^2*c*d^3-13*a*b*c*d^3+47*b^2*c*d^3+28*a*c^2*d^3+15*b*c^2*d^3+47*c^3*d^3-8*a^2*d^4-20*a*b*d^4+3*b^2*d^4+42*a*c*d^4+18*b*c*d^4-23*c^2*d^4-48*a*d^5+12*b*d^5-25*c*d^5-39*d^6,a^4*b*c+29*a^3*d^3+21*a^2*b*d^3-32*a*b^2*d^3+48*b^3*d^3-44*a^2*c*d^3-3*a*b*c*d^3-27*b^2*c*d^3+27*a*c^2*d^3+43*b*c^2*d^3-30*c^3*d^3+4*a^2*d^4+16*a*b*d^4+33*b^2*d^4+37*a*c*d^4-32*b*c*d^4+14*c^2*d^4+50*a*d^5-49*c*d^5-33*d^6,a^5*c-26*a^3*d^3-50*a^2*b*d^3+2*a*b^2*d^3+3*b^3*d^3-15*a^2*c*d^3-32*a*b*c*d^3-4*b^2*c*d^3-13*a*c^2*d^3-13*b*c^2*d^3+3*c^3*d^3+32*a^2*d^4-32*a*b*d^4-47*b^2*d^4-39*a*c*d^4-34*b*c*d^4-9*c^2*d^4-7*a*d^5-22*b*d^5+16*c*d^5+44*d^6,b^6+45*a^3*d^3-42*a^2*b*d^3-35*a*b^2*d^3+13*b^3*d^3+28*a^2*c*d^3-2*a*b*c*d^3-37*b^2*c*d^3-9*a*c^2*d^3+44*b*c^2*d^3-24*c^3*d^3+36*a^2*d^4+42*a*b*d^4-38*b^2*d^4-34*a*c*d^4-46*b*c*d^4+23*c^2*d^4-9*a*d^5-28*b*d^5+37*c*d^5+26*d^6,a*b^5-14*a^3*d^3+38*a^2*b*d^3-37*a*b^2*d^3-33*b^3*d^3-24*a^2*c*d^3+15*a*b*c*d^3+44*b^2*c*d^3-45*a*c^2*d^3+3*b*c^2*d^3-41*c^3*d^3-48*a^2*d^4-36*a*b*d^4+39*b^2*d^4+46*a*c*d^4-3*b*c*d^4+21*c^2*d^4-36*a*d^5-20*b*d^5+24*c*d^5-33*d^6,a^2*b^4-27*a^3*d^3-10*a^2*b*d^3-5*a*b^2*d^3+8*b^3*d^3+21*a^2*c*d^3+31*a*b*c*d^3-44*b^2*c*d^3+41*a*c^2*d^3+17*b*c^2*d^3-8*c^3*d^3+19*a^2*d^4+25*a*b*d^4+b^2*d^4+3*a*c*d^4+2*b*c*d^4-40*c^2*d^4+31*a*d^5-19*b*d^5+35*c*d^5-28*d^6,a^3*b^3-12*a^3*d^3-25*a^2*b*d^3+37*a*b^2*d^3-37*b^3*d^3+46*a^2*c*d^3+43*a*b*c*d^3+b^2*c*d^3-41*a*c^2*d^3-38*b*c^2*d^3-36*c^3*d^3-11*a*b*d^4+20*b^2*d^4-a*c*d^4-26*b*c*d^4+14*c^2*d^4-48*a*d^5+17*b*d^5+9*c*d^5+30*d^6,a^4*b^2+36*a^3*d^3+9*a^2*b*d^3-31*b^3*d^3+50*a^2*c*d^3+41*a*b*c*d^3+40*b^2*c*d^3+48*a*c^2*d^3-41*b*c^2*d^3-17*c^3*d^3+33*a^2*d^4+47*a*b*d^4+22*b^2*d^4+2*a*c*d^4+23*b*c*d^4-47*c^2*d^4+34*a*d^5-15*b*d^5-33*c*d^5-38*d^6,a^5*b-12*a^3*d^3-38*a^2*b*d^3+46*a*b^2*d^3-32*b^3*d^3-41*a^2*c*d^3+14*a*b*c*d^3-34*b^2*c*d^3+7*a*c^2*d^3-6*b*c^2*d^3+31*c^3*d^3+30*a^2*d^4+12*a*b*d^4-17*b^2*d^4-7*a*c*d^4-45*b*c*d^4+10*c^2*d^4+29*a*d^5-28*b*d^5+34*c*d^5-15*d^6,a^6-33*a^3*d^3-45*a^2*b*d^3+19*a*b^2*d^3+39*b^3*d^3-5*a^2*c*d^3-46*a*b*c*d^3+9*b^2*c*d^3+15*a*c^2*d^3-21*b*c^2*d^3+46*c^3*d^3-39*a^2*d^4-9*a*b*d^4+50*b^2*d^4-45*a*c*d^4-39*b*c*d^4-18*c^2*d^4-4*a*d^5-19*b*d^5+12*c*d^5+39*d^6,d^7,c*d^6,b*d^6,a*d^6,c^2*d^5,b*c*d^5,a*c*d^5,b^2*d^5,a*b*d^5,a^2*d^5,c^3*d^4,b*c^2*d^4,a*c^2*d^4,b^2*c*d^4,a*b*c*d^4,a^2*c*d^4,b^3*d^4,a*b^2*d^4,a^2*b*d^4,a^3*d^4; |
---|
2812 | TestSSresAttribs2tr(M, "AGR@101n3d008s058%3"); |
---|
2813 | |
---|
2814 | // AGR@101n3d010s010%3, a bit slower... |
---|
2815 | M = a^2*b^5-50*a*b^6-26*a^6*c+15*a^5*b*c-42*a^4*b^2*c-2*a^3*b^3*c+40*a^2*b^4*c-20*a*b^5*c+11*b^6*c-17*a^5*c^2-4*a^4*b*c^2+13*a^3*b^2*c^2-7*a^2*b^3*c^2+13*a*b^4*c^2-46*b^5*c^2+38*a^4*c^3+32*a^3*b*c^3-49*a^2*b^2*c^3-41*a*b^3*c^3+9*b^4*c^3+17*a^3*c^4-23*a^2*b*c^4+46*a*b^2*c^4+9*b^3*c^4-20*a^2*c^5-34*a*b*c^5-46*b^2*c^5-3*a*c^6+11*b*c^6-22*a^6*d-5*a^5*b*d-21*a^4*b^2*d-43*a^3*b^3*d-29*a^2*b^4*d+43*a*b^5*d-2*b^6*d+24*a^5*c*d-9*a^4*b*c*d+3*a^3*b^2*c*d+20*a^2*b^3*c*d+47*a*b^4*c*d-41*b^5*c*d+11*a^4*c^2*d-14*a^3*b*c^2*d+13*a^2*b^2*c^2*d-19*a*b^3*c^2*d-12*b^4*c^2*d+41*a^3*c^3*d-49*a^2*b*c^3*d-10*a*b^2*c^3*d+19*b^3*c^3*d-13*a^2*c^4*d+10*a*b*c^4*d-49*b^2*c^4*d-3*a*c^5*d-10*b*c^5*d+31*c^6*d-16*a^5*d^2+24*a^4*b*d^2-43*a^3*b^2*d^2+36*a^2*b^3*d^2-36*a^4*c*d^2-36*a^3*b*c*d^2-16*a^2*b^2*c*d^2+35*a*b^3*c*d^2+29*b^4*c*d^2+40*a^3*c^2*d^2-24*a^2*b*c^2*d^2-24*a*b^2*c^2*d^2+7*b^3*c^2*d^2+28*a^2*c^3*d^2+49*a*b*c^3*d^2+49*b^2*c^3*d^2+7*a*c^4*d^2-9*b*c^4*d^2+21*c^5*d^2-28*a^4*d^3+24*a^3*b*d^3-24*a^2*b^2*d^3+23*a*b^3*d^3+24*b^4*d^3+24*a^3*c*d^3-25*a^2*b*c*d^3-9*a*b^2*c*d^3-43*b^3*c*d^3+15*a^2*c^2*d^3+49*a*b*c^2*d^3+24*b^2*c^2*d^3-20*a*c^3*d^3-30*b*c^3*d^3-20*c^4*d^3+13*a^3*d^4+34*a^2*b*d^4-45*a*b^2*d^4+9*b^3*d^4+9*a^2*c*d^4-31*a*b*c*d^4-6*b^2*c*d^4-16*a*c^2*d^4+9*b*c^2*d^4+24*c^3*d^4+38*a^2*d^5-23*a*b*d^5-35*b^2*d^5+22*a*c*d^5-22*b*c*d^5+46*c^2*d^5+12*a*d^6+21*b*d^6-23*c*d^6-2*d^7,a^3*b^4+34*a^6*c+14*a^5*b*c+34*a^4*b^2*c+43*a^3*b^3*c-26*a^2*b^4*c+13*a*b^5*c+10*b^6*c-43*a^5*c^2+50*a^4*b*c^2-23*a^3*b^2*c^2-a^2*b^3*c^2+39*a*b^4*c^2+50*b^5*c^2+16*a^4*c^3+31*a^3*b*c^3-49*a^2*b^2*c^3+26*a*b^3*c^3-b^4*c^3-5*a^3*c^4+3*a^2*b*c^4-26*a*b^2*c^4-b^3*c^4-24*a^2*c^5-39*a*b*c^5+50*b^2*c^5-13*a*c^6+10*b*c^6-39*a^6*d+35*a^5*b*d+44*a^4*b^2*d-39*a^3*b^3*d-26*a^2*b^4*d-47*a*b^5*d-42*b^6*d+34*a^5*c*d-43*a^4*b*c*d-39*a^3*b^2*c*d+41*a^2*b^3*c*d+32*a*b^4*c*d-10*b^5*c*d+43*a^4*c^2*d+12*a^3*b*c^2*d-43*a^2*b^2*c^2*d+23*a*b^3*c^2*d-46*b^4*c^2*d+12*a^3*c^3*d-10*a^2*b*c^3*d+13*a*b^2*c^3*d-15*b^3*c^3*d-a^2*c^4*d+17*a*b*c^4*d-47*b^2*c^4*d+49*a*c^5*d-31*b*c^5*d-22*c^6*d-28*a^5*d^2-39*a^4*b*d^2+33*a^3*b^2*d^2-40*a^2*b^3*d^2+31*a*b^4*d^2+5*b^5*d^2+42*a^4*c*d^2-a^3*b*c*d^2+37*a^2*b^2*c*d^2-13*a*b^3*c*d^2+b^4*c*d^2+35*a^3*c^2*d^2-9*a^2*b*c^2*d^2+46*a*b^2*c^2*d^2-2*b^3*c^2*d^2+15*a^2*c^3*d^2-48*a*b*c^3*d^2+38*b^2*c^3*d^2-37*a*c^4*d^2-40*b*c^4*d^2+25*c^5*d^2+5*a^4*d^3-4*a^3*b*d^3+30*a^2*b^2*d^3-42*a*b^3*d^3+11*b^4*d^3+10*a^3*c*d^3+34*a^2*b*c*d^3-48*a*b^2*c*d^3+17*b^3*c*d^3-33*a^2*c^2*d^3-12*a*b*c^2*d^3-44*b^2*c^2*d^3-6*a*c^3*d^3+6*b*c^3*d^3-45*c^4*d^3+6*a^3*d^4+8*a^2*b*d^4-22*a*b^2*d^4+23*b^3*d^4-22*a^2*c*d^4-38*a*b*c*d^4+44*b^2*c*d^4-13*a*c^2*d^4-50*b*c^2*d^4+30*c^3*d^4-6*a^2*d^5-46*a*b*d^5+17*b^2*d^5-23*a*c*d^5-10*b*c*d^5+32*c^2*d^5-47*a*d^6+2*b*d^6+20*c*d^6-46*d^7,a^4*b^3+30*a*b^6-49*a^6*c+18*a^5*b*c+37*a^4*b^2*c+44*a^3*b^3*c-27*a^2*b^4*c-a*b^5*c-35*b^6*c-20*a^5*c^2+32*a^4*b*c^2+28*a^3*b^2*c^2-13*a^2*b^3*c^2-32*a*b^4*c^2+27*b^5*c^2-4*a^4*c^3+25*a^3*b*c^3+22*a^2*b^2*c^3-23*a*b^3*c^3-47*b^4*c^3+41*a^3*c^4-25*a^2*b*c^4-34*a*b^2*c^4-47*b^3*c^4-33*a^2*c^5-43*a*b*c^5+27*b^2*c^5-31*a*c^6-35*b*c^6-49*a^6*d+30*a^5*b*d-4*a^4*b^2*d+11*a^3*b^3*d-12*a^2*b^4*d-38*a*b^5*d+45*b^6*d+5*a^5*c*d-45*a^4*b*c*d-42*a^3*b^2*c*d-11*a^2*b^3*c*d+21*a*b^4*c*d+18*b^5*c*d-50*a^4*c^2*d-25*a^3*b*c^2*d+35*a^2*b^2*c^2*d-a*b^3*c^2*d+30*b^4*c^2*d+28*a^3*c^3*d-46*a^2*b*c^3*d-4*a*b^2*c^3*d+32*b^3*c^3*d+21*a^2*c^4*d-34*a*b*c^4*d+27*b^2*c^4*d+11*a*c^5*d-45*b*c^5*d+4*c^6*d+2*a^5*d^2-43*a^4*b*d^2-36*a^3*b^2*d^2+14*a^2*b^3*d^2+35*a*b^4*d^2+8*b^5*d^2+34*a^4*c*d^2-12*a^3*b*c*d^2-a^2*b^2*c*d^2-5*a*b^3*c*d^2+43*b^4*c*d^2+45*a^3*c^2*d^2-34*a^2*b*c^2*d^2+26*a*b^2*c^2*d^2+10*b^3*c^2*d^2-19*a^2*c^3*d^2+5*a*b*c^3*d^2-47*b^2*c^3*d^2+40*a*c^4*d^2+8*b*c^4*d^2+30*c^5*d^2+42*a^4*d^3+27*a^3*b*d^3+31*a^2*b^2*d^3-6*a*b^3*d^3+36*b^4*d^3+37*a^2*b*c*d^3+34*a*b^2*c*d^3-13*b^3*c*d^3+a^2*c^2*d^3+29*a*b*c^2*d^3-b^2*c^2*d^3-11*a*c^3*d^3-21*b*c^3*d^3+32*c^4*d^3+9*a^3*d^4-21*a^2*b*d^4+26*a*b^2*d^4+43*b^3*d^4-42*a^2*c*d^4-2*a*b*c*d^4-34*b^2*c*d^4+10*a*c^2*d^4-26*b*c^2*d^4-50*c^3*d^4+23*a^2*d^5+49*a*b*d^5+28*b^2*d^5-48*a*c*d^5-18*b*c*d^5-2*c^2*d^5-2*a*d^6-30*b*d^6+36*c*d^6-21*d^7,a^5*b^2+9*a*b^6+6*a^6*c+34*a^5*b*c-14*a^4*b^2*c-43*a^3*b^3*c-27*a^2*b^4*c+14*a*b^5*c+9*b^6*c-28*a^5*c^2-10*a^4*b*c^2+39*a^3*b^2*c^2-49*a^2*b^3*c^2-38*a*b^4*c^2+45*b^5*c^2+4*a^4*c^3+5*a^3*b*c^3+15*a^2*b^2*c^3-11*a*b^3*c^3-11*b^4*c^3+24*a^3*c^4-32*a^2*b*c^4-2*a*b^2*c^4-11*b^3*c^4+32*a^2*c^5-38*a*b*c^5+45*b^2*c^5-4*a*c^6+9*b*c^6+23*a^6*d-13*a^5*b*d+8*a^4*b^2*d-46*a^3*b^3*d-9*a^2*b^4*d-8*a*b^5*d+17*b^6*d+a^5*c*d+5*a^4*b*c*d-50*a^3*b^2*c*d+22*a^2*b^3*c*d-34*a*b^4*c*d-49*b^5*c*d+44*a^4*c^2*d+41*a^3*b*c^2*d-44*a^2*b^2*c^2*d-49*a*b^3*c^2*d+37*b^4*c^2*d+45*a^3*c^3*d+12*a^2*b*c^3*d-23*a*b^2*c^3*d-32*b^3*c^3*d-14*a^2*c^4*d+5*a*b*c^4*d+48*b^2*c^4*d+5*a*c^5*d-20*b*c^5*d-c^6*d+5*a^5*d^2-45*a^4*b*d^2+42*a^3*b^2*d^2+50*a^2*b^3*d^2-8*a*b^4*d^2-49*b^5*d^2-35*a^4*c*d^2-25*a^3*b*c*d^2-4*a^2*b^2*c*d^2-26*a*b^3*c*d^2-28*b^4*c*d^2+46*a^3*c^2*d^2+22*a^2*b*c^2*d^2+43*a*b^2*c^2*d^2-4*b^3*c^2*d^2-25*a^2*c^3*d^2+31*a*b*c^3*d^2-31*b^2*c^3*d^2-30*a*c^4*d^2-18*b*c^4*d^2-12*c^5*d^2-33*a^4*d^3-48*a^3*b*d^3-36*a^2*b^2*d^3-6*a*b^3*d^3+8*b^4*d^3+3*a^3*c*d^3-43*a^2*b*c*d^3+34*a*b^2*c*d^3+19*b^3*c*d^3+19*a^2*c^2*d^3-49*a*b*c^2*d^3-2*b^2*c^2*d^3+12*a*c^3*d^3-29*b*c^3*d^3-16*c^4*d^3+27*a^3*d^4+22*a^2*b*d^4+22*a*b^2*d^4-12*b^3*d^4+34*a^2*c*d^4+8*a*b*c*d^4+50*b^2*c*d^4+40*a*c^2*d^4+27*b*c^2*d^4-35*c^3*d^4-30*a^2*d^5+24*a*b*d^5+7*b^2*d^5+16*a*c*d^5+17*b*c*d^5-40*c^2*d^5-47*a*d^6-12*b*d^6+16*c*d^6+6*d^7,a^6*b-45*a*b^6-30*a^6*c-5*a^5*b*c-39*a^4*b^2*c-37*a^3*b^3*c+a^2*b^4*c-14*a*b^5*c-37*b^6*c+49*a^5*c^2+28*a^4*b*c^2+7*a^3*b^2*c^2-10*a^2*b^3*c^2+10*a*b^4*c^2+17*b^5*c^2-34*a^4*c^3+24*a^3*b*c^3-36*a^2*b^2*c^3-13*a*b^3*c^3+34*b^4*c^3-20*a^3*c^4-38*a^2*b*c^4+32*a*b^2*c^4+34*b^3*c^4-13*a^2*c^5+44*a*b*c^5+17*b^2*c^5+20*a*c^6-37*b*c^6+10*a^6*d+26*a^5*b*d+15*a^4*b^2*d+23*a^3*b^3*d+16*a^2*b^4*d+48*a*b^5*d-30*b^6*d-9*a^5*c*d-20*a^4*b*c*d+49*a^3*b^2*c*d-48*a^2*b^3*c*d-36*a*b^4*c*d-21*b^5*c*d+9*a^4*c^2*d-24*a^3*b*c^2*d+42*a^2*b^2*c^2*d+26*a*b^3*c^2*d-46*b^4*c^2*d-50*a^3*c^3*d-11*a^2*b*c^3*d-34*a*b^2*c^3*d+32*b^3*c^3*d-16*a^2*c^4*d-25*a*b*c^4*d+6*b^2*c^4*d+18*a*c^5*d-40*b*c^5*d+41*c^6*d-8*a^5*d^2-27*a^4*b*d^2-48*a^3*b^2*d^2-a^2*b^3*d^2+50*a*b^4*d^2+21*b^5*d^2-48*a^4*c*d^2+4*a^3*b*c*d^2-28*a^2*b^2*c*d^2-4*a*b^3*c*d^2+16*b^4*c*d^2+50*a^3*c^2*d^2+40*a^2*b*c^2*d^2+35*a*b^2*c^2*d^2+29*b^3*c^2*d^2-34*a^2*c^3*d^2-21*a*b*c^3*d^2-b^2*c^3*d^2-9*a*c^4*d^2-29*b*c^4*d^2+6*c^5*d^2+16*a^4*d^3-34*a^3*b*d^3+3*a^2*b^2*d^3+21*a*b^3*d^3+39*b^4*d^3+21*a^3*c*d^3-44*a^2*b*c*d^3-16*a*b^2*c*d^3+b^3*c*d^3-38*a^2*c^2*d^3+18*a*b*c^2*d^3+37*b^2*c^2*d^3-46*a*c^3*d^3+25*b*c^3*d^3-50*c^4*d^3-8*a^3*d^4-24*a^2*b*d^4-2*a*b^2*d^4+6*b^3*d^4+9*a^2*c*d^4+12*a*b*c*d^4+33*b^2*c*d^4-44*a*c^2*d^4+23*b*c^2*d^4-4*c^3*d^4-9*a^2*d^5-2*a*b*d^5-14*b^2*d^5+21*a*c*d^5-16*b*c*d^5-19*c^2*d^5+17*a*d^6-20*b*d^6+11*c*d^6-41*d^7,a^7-10*a*b^6-6*a^6*c-48*a^5*b*c-14*a^4*b^2*c-16*a^3*b^3*c-4*a^2*b^4*c+24*a*b^5*c-10*b^6*c-2*a^5*c^2+23*a^3*b^2*c^2+26*a^2*b^3*c^2+22*a*b^4*c^2-50*b^5*c^2+14*a^4*c^3-7*a^3*b*c^3+a^2*b^2*c^3-49*a*b^3*c^3+b^4*c^3-46*a^3*c^4+9*a^2*b*c^4+10*a*b^2*c^4+b^3*c^4+38*a^2*c^5-26*a*b*c^5-50*b^2*c^5+28*a*c^6-10*b*c^6-7*a^6*d+24*a^5*b*d-8*a^4*b^2*d+23*a^3*b^3*d+9*a^2*b^4*d+28*a*b^5*d-23*b^6*d-42*a^4*b*c*d+24*a^3*b^2*c*d-30*a^2*b^3*c*d-42*a*b^4*c*d-43*b^5*c*d-42*a^4*c^2*d+11*a^3*b*c^2*d+9*a^2*b^2*c^2*d-8*a*b^3*c^2*d+4*b^4*c^2*d+10*a^3*c^3*d+43*a^2*b*c^3*d+3*a*b^2*c^3*d-14*b^3*c^3*d-5*a^2*c^4*d+25*a*b*c^4*d-50*b^2*c^4*d-17*a*c^5*d+35*b*c^5*d+47*c^6*d-4*a^5*d^2-43*a^4*b*d^2+35*a^3*b^2*d^2+19*a^2*b^3*d^2+48*a*b^4*d^2+45*b^5*d^2+3*a^4*c*d^2-46*a^3*b*c*d^2+8*a^2*b^2*c*d^2-35*a*b^3*c*d^2-27*b^4*c*d^2-49*a^3*c^2*d^2+37*a^2*b*c^2*d^2-43*a*b^2*c^2*d^2+32*b^3*c^2*d^2+48*a^2*c^3*d^2+9*a*b*c^3*d^2+b^2*c^3*d^2-31*a*c^4*d^2-23*b*c^4*d^2-21*c^5*d^2+34*a^4*d^3+38*a^3*b*d^3+41*a^2*b^2*d^3-24*a*b^3*d^3+28*b^4*d^3+47*a^3*c*d^3-6*a^2*b*c*d^3+27*a*b^2*c*d^3-43*b^3*c*d^3-24*a^2*c^2*d^3-19*a*b*c^2*d^3-50*b^2*c^2*d^3+31*a*c^3*d^3+40*b*c^3*d^3+19*c^4*d^3+4*a^3*d^4-36*a^2*b*d^4+43*a*b^2*d^4+27*b^3*d^4+49*a^2*c*d^4-27*a*b*c*d^4-39*b^2*c*d^4+46*a*c^2*d^4+40*b*c^2*d^4+5*c^3*d^4-12*a^2*d^5-5*a*b*d^5+16*b^2*d^5-26*a*c*d^5-31*b*c*d^5-38*c^2*d^5+17*a*d^6-11*b*d^6-7*c*d^6-39*d^7,b*c*d^6-21*c^2*d^6+36*a*d^7-34*b*d^7-40*c*d^7-11*d^8,a*c*d^6-24*c^2*d^6+5*a*d^7-7*b*d^7+21*c*d^7-43*d^8,b^2*d^6+20*c^2*d^6+6*a*d^7-30*b*d^7+25*c*d^7+4*d^8,a*b*d^6+23*c^2*d^6-43*a*d^7+47*b*d^7+42*c*d^7+29*d^8,a^2*d^6+49*c^2*d^6+6*a*d^7-35*b*d^7+19*c*d^7-11*d^8,c^3*d^5-38*c^2*d^6+47*a*d^7+35*b*d^7+46*c*d^7+21*d^8,b*c^2*d^5+41*c^2*d^6-8*a*d^7+8*b*d^7+46*c*d^7+42*d^8,a*c^2*d^5+44*c^2*d^6+10*a*d^7-36*b*d^7-21*c*d^7+28*d^8,b^2*c*d^5+9*c^2*d^6+35*a*d^7+20*b*d^7+49*c*d^7-47*d^8,a*b*c*d^5+44*c^2*d^6+24*a*d^7-12*b*d^7+24*c*d^7-5*d^8,a^2*c*d^5-9*c^2*d^6-34*a*d^7+27*b*d^7-49*c*d^7+d^8,b^3*d^5+21*c^2*d^6-37*a*d^7-13*b*d^7-48*c*d^7+25*d^8,a*b^2*d^5+4*c^2*d^6-8*a*d^7-42*b*d^7-31*c*d^7+21*d^8,a^2*b*d^5+26*c^2*d^6-47*a*d^7-37*b*d^7+24*c*d^7+6*d^8,a^3*d^5-32*c^2*d^6-31*a*d^7+26*b*d^7-35*c*d^7-39*d^8,c^4*d^4+25*c^2*d^6+35*a*d^7+24*b*d^7+32*c*d^7-46*d^8,b*c^3*d^4+10*c^2*d^6-9*a*d^7-27*b*d^7-17*c*d^7+11*d^8,a*c^3*d^4-41*c^2*d^6+5*a*d^7-18*b*d^7-43*c*d^7-25*d^8,b^2*c^2*d^4-9*c^2*d^6+15*a*d^7-7*b*d^7-27*c*d^7-40*d^8,a*b*c^2*d^4-4*c^2*d^6+25*a*d^7-9*b*d^7-41*c*d^7-11*d^8,a^2*c^2*d^4+15*c^2*d^6-5*a*d^7-34*b*d^7-11*c*d^7-29*d^8,b^3*c*d^4+49*c^2*d^6-24*a*d^7-8*b*d^7+7*c*d^7-46*d^8,a*b^2*c*d^4-20*c^2*d^6-4*a*d^7+32*b*d^7-42*c*d^7-d^8,a^2*b*c*d^4+15*c^2*d^6+31*a*d^7+16*b*d^7-25*c*d^7+29*d^8,a^3*c*d^4-48*c^2*d^6-36*a*d^7-10*b*d^7+4*c*d^7+27*d^8,b^4*d^4+26*c^2*d^6-25*a*d^7-3*b*d^7-45*c*d^7-26*d^8,a*b^3*d^4+c^2*d^6-21*a*d^7-13*b*d^7-20*c*d^7+16*d^8,a^2*b^2*d^4+22*c^2*d^6-27*a*d^7-23*b*d^7-5*c*d^7-27*d^8,a^3*b*d^4+2*c^2*d^6-29*a*d^7-6*b*d^7+26*c*d^7-46*d^8,a^4*d^4-40*c^2*d^6-9*a*d^7-24*b*d^7+2*c*d^7-37*d^8,c^5*d^3+14*c^2*d^6+40*a*d^7+21*b*d^7+50*c*d^7+31*d^8,b*c^4*d^3-21*c^2*d^6-2*a*d^7-9*b*d^7-28*c*d^7+20*d^8,a*c^4*d^3-39*c^2*d^6+38*a*d^7-24*b*d^7-42*c*d^7-30*d^8,b^2*c^3*d^3+19*c^2*d^6-50*a*d^7-33*b*d^7+16*c*d^7-45*d^8,a*b*c^3*d^3-6*c^2*d^6-38*a*d^7+35*b*d^7+32*c*d^7-12*d^8,a^2*c^3*d^3+44*c^2*d^6+35*a*d^7+42*b*d^7-10*c*d^7-48*d^8,b^3*c^2*d^3+33*c^2*d^6-7*a*d^7-41*b*d^7-3*c*d^7-33*d^8,a*b^2*c^2*d^3-21*c^2*d^6-22*a*d^7-23*b*d^7+24*c*d^7+47*d^8,a^2*b*c^2*d^3+c^2*d^6-32*a*d^7-34*b*d^7-42*c*d^7+7*d^8,a^3*c^2*d^3+6*c^2*d^6-31*a*d^7-26*b*d^7+19*c*d^7-49*d^8,b^4*c*d^3+6*c^2*d^6-24*a*d^7+10*b*d^7-18*c*d^7-4*d^8,a*b^3*c*d^3+46*c^2*d^6+41*a*d^7+7*b*d^7+8*c*d^7-28*d^8,a^2*b^2*c*d^3+33*c^2*d^6-15*a*d^7-11*b*d^7+38*c*d^7+14*d^8,a^3*b*c*d^3-29*c^2*d^6-4*a*d^7-32*b*d^7+13*c*d^7-3*d^8,a^4*c*d^3-34*c^2*d^6+5*a*d^7+29*b*d^7-15*c*d^7-48*d^8,b^5*d^3-42*c^2*d^6+33*a*d^7-49*b*d^7+33*c*d^7-43*d^8,a*b^4*d^3+25*c^2*d^6-11*a*d^7-16*b*d^7+32*c*d^7-2*d^8,a^2*b^3*d^3-36*c^2*d^6-47*a*d^7-16*b*d^7+19*c*d^7+9*d^8,a^3*b^2*d^3-30*c^2*d^6-21*a*d^7-6*b*d^7+16*c*d^7-14*d^8,a^4*b*d^3+47*c^2*d^6-16*a*d^7-13*b*d^7+21*c*d^7+30*d^8,a^5*d^3-2*c^2*d^6+40*a*d^7+34*b*d^7+14*c*d^7-50*d^8,c^6*d^2-4*c^2*d^6-41*a*d^7+46*b*d^7+17*c*d^7+19*d^8,b*c^5*d^2-49*c^2*d^6+5*a*d^7-31*b*d^7+30*c*d^7+28*d^8,a*c^5*d^2-12*c^2*d^6-23*a*d^7-39*b*d^7+6*c*d^7-27*d^8,b^2*c^4*d^2-12*c^2*d^6-30*a*d^7+13*b*d^7-42*c*d^7+38*d^8,a*b*c^4*d^2-31*c^2*d^6+5*a*d^7-41*b*d^7-24*c*d^7,a^2*c^4*d^2-c^2*d^6+4*a*d^7+21*b*d^7+19*c*d^7-34*d^8,b^3*c^3*d^2-50*c^2*d^6-11*a*d^7+24*b*d^7+24*c*d^7-44*d^8,a*b^2*c^3*d^2+2*c^2*d^6-42*a*d^7-17*b*d^7-33*c*d^7-10*d^8,a^2*b*c^3*d^2+20*c^2*d^6+29*a*d^7+35*b*d^7-31*c*d^7-35*d^8,a^3*c^3*d^2+35*c^2*d^6-13*a*d^7+20*b*d^7-15*c*d^7-45*d^8,b^4*c^2*d^2+c^2*d^6+36*a*d^7-42*b*d^7+32*c*d^7+16*d^8,a*b^3*c^2*d^2-9*c^2*d^6-43*a*d^7-5*b*d^7-17*c*d^7+50*d^8,a^2*b^2*c^2*d^2-36*c^2*d^6+31*a*d^7+4*b*d^7-26*c*d^7-11*d^8,a^3*b*c^2*d^2+15*c^2*d^6+40*a*d^7-18*b*d^7-31*c*d^7+43*d^8,a^4*c^2*d^2+41*c^2*d^6-49*a*d^7+37*b*d^7+47*c*d^7-48*d^8,b^5*c*d^2-49*c^2*d^6+15*a*d^7+48*b*d^7+22*c*d^7+38*d^8,a*b^4*c*d^2+12*c^2*d^6+16*a*d^7-22*b*d^7-c*d^7+29*d^8,a^2*b^3*c*d^2+31*c^2*d^6+19*a*d^7+45*b*d^7-6*c*d^7+42*d^8,a^3*b^2*c*d^2+29*c^2*d^6-39*a*d^7+25*b*d^7-48*c*d^7-d^8,a^4*b*c*d^2-31*c^2*d^6+24*a*d^7-2*b*d^7+36*c*d^7+37*d^8,a^5*c*d^2+33*c^2*d^6-46*a*d^7-41*b*d^7-29*c*d^7-12*d^8,b^6*d^2-39*c^2*d^6+35*a*d^7-8*b*d^7+35*c*d^7+47*d^8,a*b^5*d^2-38*c^2*d^6-11*a*d^7-37*b*d^7-7*c*d^7-5*d^8,a^2*b^4*d^2+29*c^2*d^6+36*a*d^7-29*b*d^7+20*c*d^7+39*d^8,a^3*b^3*d^2-44*c^2*d^6+43*a*d^7-50*b*d^7-24*c*d^7-16*d^8,a^4*b^2*d^2+20*c^2*d^6+33*a*d^7+6*b*d^7+47*c*d^7+40*d^8,a^5*b*d^2-10*c^2*d^6+25*a*d^7-8*b*d^7-14*c*d^7+16*d^8,a^6*d^2+48*c^2*d^6+14*a*d^7+32*b*d^7+17*c*d^7+13*d^8,c^7*d+38*c^2*d^6-39*a*d^7+22*b*d^7+15*c*d^7-d^8,b*c^6*d+9*c^2*d^6+37*a*d^7+12*b*d^7+27*c*d^7+3*d^8,a*c^6*d-5*c^2*d^6+34*a*d^7+15*b*d^7+2*c*d^7-21*d^8,b^2*c^5*d+35*c^2*d^6+27*a*d^7+13*b*d^7-39*c*d^7+8*d^8,a*b*c^5*d-34*c^2*d^6-18*a*d^7-21*b*d^7-31*c*d^7+46*d^8,a^2*c^5*d-16*c^2*d^6-6*a*d^7-18*b*d^7+3*c*d^7+47*d^8,b^3*c^4*d-46*c^2*d^6+4*a*d^7-38*b*d^7-29*c*d^7-4*d^8,a*b^2*c^4*d-35*c^2*d^6-14*a*d^7-32*b*d^7-40*c*d^7-35*d^8,a^2*b*c^4*d+23*c^2*d^6-44*a*d^7-3*b*d^7+4*c*d^7-4*d^8,a^3*c^4*d+24*c^2*d^6-7*a*d^7-44*b*d^7-16*c*d^7+10*d^8,b^4*c^3*d+43*c^2*d^6+12*a*d^7+43*b*d^7-49*c*d^7-23*d^8,a*b^3*c^3*d+22*c^2*d^6+6*a*d^7+2*b*d^7-9*c*d^7,a^2*b^2*c^3*d+4*c^2*d^6+21*a*d^7-24*b*d^7-26*c*d^7+33*d^8,a^3*b*c^3*d+13*c^2*d^6-18*a*d^7+31*b*d^7-28*c*d^7+2*d^8,a^4*c^3*d+10*c^2*d^6-14*a*d^7+30*b*d^7-40*c*d^7+33*d^8,b^5*c^2*d-35*c^2*d^6-33*a*d^7+7*b*d^7+13*c*d^7+26*d^8,a*b^4*c^2*d-49*c^2*d^6+9*a*d^7+20*b*d^7+11*c*d^7-32*d^8,a^2*b^3*c^2*d+33*c^2*d^6-43*a*d^7-27*b*d^7-31*c*d^7-41*d^8,a^3*b^2*c^2*d-6*c^2*d^6+23*a*d^7+20*b*d^7-8*c*d^7-6*d^8,a^4*b*c^2*d+10*c^2*d^6-24*a*d^7+30*b*d^7+42*c*d^7-23*d^8,a^5*c^2*d+12*c^2*d^6+20*a*d^7+24*b*d^7-9*c*d^7-9*d^8,b^6*c*d-12*c^2*d^6+36*a*d^7+4*b*d^7-12*c*d^7+26*d^8,a*b^5*c*d-19*c^2*d^6-39*a*d^7-26*b*d^7-4*c*d^7+10*d^8,a^2*b^4*c*d+38*c^2*d^6-6*a*d^7+6*b*d^7+41*c*d^7+49*d^8,a^3*b^3*c*d-34*c^2*d^6-42*a*d^7+22*b*d^7-26*c*d^7-13*d^8,a^4*b^2*c*d+14*c^2*d^6+40*a*d^7+39*b*d^7-34*d^8,a^5*b*c*d-8*c^2*d^6+45*a*d^7-35*b*d^7+48*c*d^7+47*d^8,a^6*c*d-6*c^2*d^6-24*a*d^7-2*b*d^7-9*c*d^7+7*d^8,b^7*d+34*c^2*d^6-14*a*d^7+46*b*d^7-50*c*d^7+26*d^8,a*b^6*d+6*c^2*d^6+23*a*d^7-27*b*d^7-25*c*d^7-2*d^8,c^8+43*c^2*d^6+11*b*d^7-39*c*d^7-30*d^8,b*c^7-44*c^2*d^6-4*a*d^7-10*b*d^7+31*c*d^7+42*d^8,a*c^7-6*a*d^7+31*b*d^7+37*c*d^7-41*d^8,b^2*c^6-11*c^2*d^6-35*a*d^7+32*b*d^7-25*c*d^7-21*d^8,a*b*c^6+2*c^2*d^6+43*a*d^7-48*b*d^7-49*c*d^7-19*d^8,a^2*c^6-20*c^2*d^6-11*a*d^7-35*b*d^7-33*c*d^7+28*d^8,b^3*c^5+4*c^2*d^6-7*a*d^7-21*b*d^7-14*c*d^7+48*d^8,a*b^2*c^5+17*c^2*d^6+45*a*d^7-32*b*d^7+29*c*d^7+38*d^8,a^2*b*c^5-13*c^2*d^6+46*a*d^7+4*b*d^7-18*c*d^7+19*d^8,a^3*c^5-23*c^2*d^6-a*d^7-3*b*d^7-15*c*d^7+19*d^8,b^4*c^4-50*c^2*d^6+39*a*d^7+49*b*d^7+47*c*d^7+7*d^8,a*b^3*c^4-33*c^2*d^6+10*a*d^7+32*b*d^7+21*c*d^7-39*d^8,a^2*b^2*c^4+23*c^2*d^6+27*a*d^7-17*b*d^7+29*c*d^7+9*d^8,a^3*b*c^4-47*c^2*d^6-43*a*d^7-47*b*d^7-34*c*d^7-23*d^8,a^4*c^4-6*c^2*d^6+7*a*d^7+38*b*d^7-27*c*d^7-9*d^8,b^5*c^3-47*c^2*d^6+18*a*d^7-44*b*d^7-4*c*d^7-18*d^8,a*b^4*c^3+30*c^2*d^6+36*a*d^7+25*b*d^7+42*c*d^7+d^8,a^2*b^3*c^3+10*c^2*d^6+31*a*d^7+45*b*d^7-44*c*d^7+37*d^8,a^3*b^2*c^3-41*c^2*d^6-15*a*d^7-34*b*d^7-22*c*d^7+28*d^8,a^4*b*c^3+19*c^2*d^6-23*a*d^7+18*b*d^7-13*c*d^7-48*d^8,a^5*c^3+16*c^2*d^6+22*a*d^7-31*b*d^7+33*c*d^7+15*d^8,b^6*c^2-42*c^2*d^6-10*a*d^7-16*b*d^7-46*c*d^7+42*d^8,a*b^5*c^2-23*c^2*d^6+34*a*d^7-37*b*d^7+2*c*d^7+10*d^8,a^2*b^4*c^2-45*c^2*d^6-5*a*d^7+43*b*d^7-18*c*d^7+7*d^8,a^3*b^3*c^2+36*c^2*d^6+19*a*d^7+21*b*d^7+46*c*d^7-24*d^8,a^4*b^2*c^2-17*c^2*d^6+30*a*d^7-39*b*d^7-39*c*d^7-24*d^8,a^5*b*c^2+10*c^2*d^6-24*a*d^7-36*b*d^7-14*c*d^7+26*d^8,a^6*c^2+47*c^2*d^6-41*a*d^7+32*b*d^7+6*c*d^7+42*d^8,b^7*c+44*c^2*d^6-6*a*d^7+5*b*d^7+20*c*d^7+50*d^8,a*b^6*c+29*c^2*d^6-16*a*d^7+45*b*d^7-3*c*d^7+14*d^8,b^8+48*c^2*d^6-40*a*d^7-44*b*d^7-10*c*d^7-23*d^8,a*b^7-32*c^2*d^6-41*a*d^7-11*b*d^7+50*c*d^7+13*d^8,d^9,c*d^8,b*d^8,a*d^8,c^2*d^7; |
---|
2816 | TestSSresAttribs2tr(M, "AGR@101n3d010s010%3"); |
---|
2817 | kill AGR; |
---|
2818 | |
---|
2819 | ring AGR = (101), (a,b,c,d,e,f,g,h), dp; AGR; |
---|
2820 | // AGR@101n7d005s010%2, medium: <= 2 |
---|
2821 | ideal M = |
---|
2822 | f*h-g*h,e*h-g*h,d*h-g*h,c*h-g*h,b*h-g*h,a*h-g*h,e*g+48*f*g-49*g*h,d*g+5*f*g-6*g*h,c*g+49*f*g-50*g*h,b*g-7*f*g+6*g*h,a*g-50*f*g+49*g*h,e*f-20*f*g+19*g*h,d*f+40*f*g-41*g*h,c*f-12*f*g+11*g*h,b*f+45*f*g-46*g*h,a*f+4*f*g-5*g*h,d*e-f*g,c*e-30*f*g+29*g*h,b*e-39*f*g+38*g*h,a*e+10*f*g-11*g*h,c*d-41*f*g+40*g*h,b*d-23*f*g+22*g*h,a*d-20*f*g+19*g*h,b*c+17*f*g-18*g*h,a*c+6*f*g-7*g*h,a*b+28*f*g-29*g*h,g^2*h-g*h^2,f^2*g-8*f*g^2+7*g*h^2,g*h^4+50*h^5,g^5+41*h^5,f*g^4-18*h^5,f^5+29*h^5,e^5+6*h^5,d^5-23*h^5,c^5-32*h^5, |
---|
2823 | b^5+17*h^5,a^5+17*h^5,h^6; |
---|
2824 | TestSSresAttribs2tr(M, "AGR@101n7d005s010%2"); |
---|
2825 | kill AGR; |
---|
2826 | |
---|
2827 | // from Andreas...tooo long!? |
---|
2828 | |
---|
2829 | ring AGR = (101), (a,b,c,d,e), dp; AGR; |
---|
2830 | |
---|
2831 | // AGR101n4d007s021%4 |
---|
2832 | ideal M = b^3*c*d-44*a*b*c^2*d-23*b^2*c^2*d-17*a*c^3*d+25*b*c^3*d-28*c^4*d+21*a^3*d^2+28*a^2*b*d^2+45*a*b^2*d^2-45*b^3*d^2+39*a^2*c*d^2+50*a*b*c*d^2-31*b^2*c*d^2+25*a*c^2*d^2-42*b*c^2*d^2-6*c^3*d^2+10*a^2*d^3-18*a*b*d^3-21*b^2*d^3-9*a*c*d^3+37*b*c*d^3-18*c^2*d^3+5*a*d^4+b*d^4-18*c*d^4+23*d^5-5*a^4*e+6*a^3*b*e-21*a^2*b^2*e-28*a*b^3*e+11*b^4*e+19*a^3*c*e+29*a^2*b*c*e-25*a*b^2*c*e-8*b^3*c*e+17*a^2*c^2*e+45*a*b*c^2*e-28*b^2*c^2*e+22*a*c^3*e+33*b*c^3*e+27*c^4*e-50*a^3*d*e+11*a^2*b*d*e-45*a*b^2*d*e-5*b^3*d*e-2*a^2*c*d*e-30*a*b*c*d*e-17*b^2*c*d*e-45*a*c^2*d*e+12*b*c^2*d*e-8*c^3*d*e+12*a^2*d^2*e+a*b*d^2*e-13*b^2*d^2*e-20*a*c*d^2*e+47*b*c*d^2*e-10*c^2*d^2*e+8*a*d^3*e+32*b*d^3*e-8*c*d^3*e+47*d^4*e+43*a^3*e^2+23*a^2*b*e^2+12*a*b^2*e^2+25*b^3*e^2-23*a^2*c*e^2-12*a*b*c*e^2+5*b^2*c*e^2-25*a*c^2*e^2-8*b*c^2*e^2-48*c^3*e^2+22*a^2*d*e^2+27*a*b*d*e^2-21*b^2*d*e^2+35*a*c*d*e^2-5*b*c*d*e^2+14*c^2*d*e^2+3*a*d^2*e^2-35*b*d^2*e^2+24*c*d^2*e^2-12*d^3*e^2-30*a^2*e^3+5*a*b*e^3-29*b^2*e^3-17*a*c*e^3-41*b*c*e^3-41*c^2*e^3-a*d*e^3-41*b*d*e^3+6*c*d*e^3+24*d^2*e^3+38*a*e^4+46*b*e^4+5*c*e^4-48*d*e^4-33*e^5, |
---|
2833 | a*b^2*c*d-8*a^2*c^2*d+35*a*b*c^2*d-9*b^2*c^2*d+41*a*c^3*d+11*b*c^3*d+36*c^4*d-36*a^3*d^2-11*a^2*b*d^2-45*a*b^2*d^2+20*b^3*d^2-38*a^2*c*d^2-21*a*b*c*d^2-26*b^2*c*d^2+26*a*c^2*d^2+45*b*c^2*d^2+2*c^3*d^2+35*a^2*d^3-15*a*b*d^3-30*b^2*d^3-37*a*c*d^3+3*b*c*d^3+29*c^2*d^3-39*a*d^4-13*b*d^4+42*c*d^4+50*d^5-47*a^4*e+a^3*b*e-10*a^2*b^2*e+10*a*b^3*e-19*b^4*e+47*a^3*c*e+29*a^2*b*c*e+33*a*b^2*c*e-7*b^3*c*e+29*a^2*c^2*e-2*b^2*c^2*e-19*a*c^3*e+16*b*c^3*e+44*c^4*e+47*a^3*d*e-14*a^2*b*d*e+48*a*b^2*d*e-21*b^3*d*e+13*a^2*c*d*e+4*a*b*c*d*e+20*b^2*c*d*e-3*a*c^2*d*e-34*b*c^2*d*e-2*c^3*d*e+10*a^2*d^2*e+38*a*b*d^2*e+18*b^2*d^2*e-a*c*d^2*e+24*b*c*d^2*e-11*c^2*d^2*e+24*a*d^3*e-10*b*d^3*e+15*c*d^3*e-44*d^4*e+6*a^3*e^2-7*a^2*b*e^2+30*a*b^2*e^2+25*b^3*e^2+40*a^2*c*e^2+33*a*b*c*e^2+26*b^2*c*e^2-2*a*c^2*e^2-2*b*c^2*e^2+32*c^3*e^2+31*a^2*d*e^2+50*a*b*d*e^2-5*b^2*d*e^2-43*a*c*d*e^2+37*b*c*d*e^2-16*c^2*d*e^2+39*a*d^2*e^2+15*b*d^2*e^2+35*c*d^2*e^2-47*d^3*e^2+38*a^2*e^3+7*a*b*e^3+16*b^2*e^3+43*a*c*e^3+23*b*c*e^3+9*c^2*e^3+37*a*d*e^3-18*b*d*e^3+32*c*d*e^3-2*d^2*e^3-31*a*e^4+18*b*e^4-35*c*e^4+9*d*e^4-49*e^5, |
---|
2834 | a^2*b*c*d+7*a^2*c^2*d-15*a*b*c^2*d+20*b^2*c^2*d+8*a*c^3*d-14*b*c^3*d+34*c^4*d+15*a^3*d^2+37*a^2*b*d^2-11*a*b^2*d^2-8*b^3*d^2-15*a^2*c*d^2-22*a*b*c*d^2-30*b^2*c*d^2+23*a*c^2*d^2+34*b*c^2*d^2+41*c^3*d^2-27*a^2*d^3+24*b^2*d^3-15*a*c*d^3+20*b*c*d^3-16*c^2*d^3-31*a*d^4+18*b*d^4-21*c*d^4+19*d^5+20*a^4*e+38*a^3*b*e-7*a^2*b^2*e+8*a*b^3*e-35*b^4*e+30*a^3*c*e-13*a^2*b*c*e+39*a*b^2*c*e-50*b^3*c*e+50*a^2*c^2*e-21*a*b*c^2*e+17*b^2*c^2*e-23*a*c^3*e+32*b*c^3*e-43*c^4*e-39*a^3*d*e+16*a^2*b*d*e+25*a*b^2*d*e-12*b^3*d*e+50*a^2*c*d*e+4*a*b*c*d*e-17*b^2*c*d*e-28*a*c^2*d*e-5*b*c^2*d*e+13*c^3*d*e+23*a^2*d^2*e+17*a*b*d^2*e+14*b^2*d^2*e-2*a*c*d^2*e+3*b*c*d^2*e+20*c^2*d^2*e-14*a*d^3*e+5*b*d^3*e-c*d^3*e+29*d^4*e-42*a^3*e^2-38*a^2*b*e^2-44*a*b^2*e^2-4*b^3*e^2+29*a^2*c*e^2-19*a*b*c*e^2+38*b^2*c*e^2+3*a*c^2*e^2-46*b*c^2*e^2-46*c^3*e^2-44*a^2*d*e^2+16*a*b*d*e^2-38*b^2*d*e^2+12*a*c*d*e^2+45*b*c*d*e^2-48*c^2*d*e^2+34*a*d^2*e^2+32*b*d^2*e^2+37*c*d^2*e^2+34*d^3*e^2+30*a^2*e^3+45*a*b*e^3+8*b^2*e^3+40*a*c*e^3-37*b*c*e^3-16*c^2*e^3-50*a*d*e^3-18*b*d*e^3-9*c*d*e^3-37*a*e^4-22*b*e^4+5*c*e^4+d*e^4+9*e^5, |
---|
2835 | a^3*c*d-44*a^2*c^2*d-38*a*b*c^2*d-26*b^2*c^2*d-12*a*c^3*d-21*b*c^3*d+43*c^4*d-22*a^3*d^2-23*a^2*b*d^2+32*a*b^2*d^2+45*b^3*d^2-48*a^2*c*d^2-40*a*b*c*d^2+3*b^2*c*d^2+2*a*c^2*d^2-27*b*c^2*d^2-35*c^3*d^2+33*a^2*d^3-11*a*b*d^3-5*b^2*d^3+8*a*c*d^3-42*b*c*d^3+41*c^2*d^3-41*b*d^4+29*c*d^4+5*d^5+32*a^4*e-46*a^3*b*e-46*a^2*b^2*e+19*a*b^3*e-14*b^4*e-24*a^3*c*e+3*a^2*b*c*e-22*a*b^2*c*e+49*b^3*c*e-47*a^2*c^2*e+27*a*b*c^2*e+48*b^2*c^2*e+20*a*c^3*e-3*b*c^3*e-11*c^4*e-21*a^3*d*e+a^2*b*d*e-13*a*b^2*d*e-33*b^3*d*e+13*a^2*c*d*e-3*a*b*c*d*e+15*b^2*c*d*e+35*a*c^2*d*e-20*b*c^2*d*e+45*c^3*d*e-14*a^2*d^2*e+11*a*b*d^2*e-38*b^2*d^2*e+40*a*c*d^2*e-30*b*c*d^2*e+14*c^2*d^2*e-26*a*d^3*e-43*b*d^3*e+38*c*d^3*e-24*d^4*e-10*a^3*e^2-31*a^2*b*e^2+a*b^2*e^2-34*b^3*e^2+5*a^2*c*e^2-12*a*b*c*e^2-6*b^2*c*e^2-30*a*c^2*e^2-b*c^2*e^2+31*c^3*e^2+22*a^2*d*e^2-26*a*b*d*e^2+9*b^2*d*e^2+32*a*c*d*e^2+24*b*c*d*e^2-36*c^2*d*e^2-a*d^2*e^2-14*b*d^2*e^2-24*c*d^2*e^2+7*d^3*e^2+38*a^2*e^3+35*a*b*e^3+16*b^2*e^3+25*a*c*e^3-30*b*c*e^3+30*c^2*e^3-25*a*d*e^3+3*b*d*e^3+40*c*d*e^3+16*d^2*e^3+45*a*e^4+15*b*e^4-12*c*e^4+42*d*e^4+7*e^5, |
---|
2836 | b^4*d+14*a^2*c^2*d+2*a*b*c^2*d+34*b^2*c^2*d-12*a*c^3*d+20*b*c^3*d-20*c^4*d+4*a^3*d^2-47*a^2*b*d^2-34*a*b^2*d^2-22*b^3*d^2+23*a^2*c*d^2-22*a*b*c*d^2-31*b^2*c*d^2-24*a*c^2*d^2+39*b*c^2*d^2-37*c^3*d^2-39*a^2*d^3-49*a*b*d^3-41*b^2*d^3-44*a*c*d^3+33*b*c*d^3-14*c^2*d^3-49*a*d^4+20*b*d^4+37*c*d^4+34*d^5+50*a^4*e-31*a^3*b*e-18*a^2*b^2*e-16*a*b^3*e+45*b^4*e+32*a^3*c*e+43*a^2*b*c*e-27*a*b^2*c*e+5*b^3*c*e+39*a^2*c^2*e+33*a*b*c^2*e-16*b^2*c^2*e-6*a*c^3*e-35*b*c^3*e-4*c^4*e-19*a^3*d*e+25*a^2*b*d*e-20*a*b^2*d*e+6*b^3*d*e-46*a^2*c*d*e-8*a*b*c*d*e+5*b^2*c*d*e+2*a*c^2*d*e-39*b*c^2*d*e-30*c^3*d*e+50*a^2*d^2*e-3*a*b*d^2*e-22*b^2*d^2*e+42*a*c*d^2*e-9*b*c*d^2*e+17*c^2*d^2*e+33*a*d^3*e+29*b*d^3*e-10*c*d^3*e+5*d^4*e+15*a^3*e^2+12*a^2*b*e^2-12*a*b^2*e^2+17*b^3*e^2+26*a^2*c*e^2+23*a*b*c*e^2+4*b^2*c*e^2-8*a*c^2*e^2+49*b*c^2*e^2-25*c^3*e^2-24*a^2*d*e^2-19*a*b*d*e^2+26*b^2*d*e^2+38*a*c*d*e^2+48*b*c*d*e^2-28*c^2*d*e^2-15*a*d^2*e^2+31*b*d^2*e^2-47*c*d^2*e^2-5*d^3*e^2-28*a^2*e^3+46*a*b*e^3-25*b^2*e^3-25*a*c*e^3-42*b*c*e^3-39*c^2*e^3-22*a*d*e^3+7*b*d*e^3+4*c*d*e^3-9*d^2*e^3+50*a*e^4-39*b*e^4+44*c*e^4+28*d*e^4+36*e^5, |
---|
2837 | a*b^3*d-32*a^2*c^2*d-43*a*b*c^2*d-38*b^2*c^2*d-33*a*c^3*d-34*b*c^3*d+15*c^4*d-10*a^3*d^2+20*a^2*b*d^2+23*a*b^2*d^2-6*b^3*d^2-46*a^2*c*d^2-29*a*b*c*d^2-20*b^2*c*d^2+17*a*c^2*d^2-42*b*c^2*d^2+27*c^3*d^2-15*a^2*d^3-27*a*b*d^3+43*b^2*d^3-a*c*d^3+45*b*c*d^3+7*c^2*d^3+4*a*d^4-5*b*d^4-13*c*d^4-26*d^5-24*a^4*e-5*a^2*b^2*e-27*a*b^3*e-23*b^4*e+9*a^3*c*e+33*a^2*b*c*e+25*a*b^2*c*e+39*b^3*c*e-30*a^2*c^2*e-33*a*b*c^2*e-37*b^2*c^2*e-13*a*c^3*e+49*b*c^3*e-30*c^4*e+8*a^3*d*e+20*a^2*b*d*e+18*a*b^2*d*e-34*b^3*d*e-19*a^2*c*d*e+39*a*b*c*d*e+21*b^2*c*d*e+12*a*c^2*d*e-15*b*c^2*d*e+39*c^3*d*e+34*a^2*d^2*e+49*a*b*d^2*e-10*b^2*d^2*e-46*a*c*d^2*e+18*b*c*d^2*e-6*c^2*d^2*e+9*a*d^3*e+30*b*d^3*e+20*c*d^3*e+3*d^4*e-15*a^3*e^2-18*a^2*b*e^2+5*a*b^2*e^2+14*b^3*e^2+19*a^2*c*e^2+30*a*b*c*e^2-b^2*c*e^2+33*a*c^2*e^2+41*b*c^2*e^2-7*c^3*e^2+12*a^2*d*e^2-13*a*b*d*e^2-3*b^2*d*e^2-49*a*c*d*e^2-17*b*c*d*e^2+29*c^2*d*e^2-19*a*d^2*e^2-38*b*d^2*e^2-10*c*d^2*e^2+50*d^3*e^2-17*a^2*e^3+47*a*b*e^3-7*b^2*e^3-25*a*c*e^3+29*b*c*e^3-41*c^2*e^3-35*a*d*e^3+b*d*e^3+32*c*d*e^3-15*d^2*e^3+9*a*e^4+22*c*e^4+12*d*e^4+36*e^5, |
---|
2838 | a^2*b^2*d-a^2*c^2*d-5*a*b*c^2*d+40*b^2*c^2*d+4*a*c^3*d+35*b*c^3*d+42*c^4*d-23*a^3*d^2-34*a^2*b*d^2+4*a*b^2*d^2+27*b^3*d^2+38*a^2*c*d^2-47*a*b*c*d^2+50*b^2*c*d^2+17*a*c^2*d^2+8*c^3*d^2+26*a^2*d^3-32*a*b*d^3+3*b^2*d^3+16*a*c*d^3-47*b*c*d^3-41*c^2*d^3-22*a*d^4-47*b*d^4-17*c*d^4-43*d^5-49*a^4*e+6*a^3*b*e-46*a^2*b^2*e+30*a*b^3*e-21*b^4*e+30*a^3*c*e+17*a^2*b*c*e+39*a*b^2*c*e+37*b^3*c*e+36*a^2*c^2*e+21*a*b*c^2*e-36*b^2*c^2*e-2*a*c^3*e+18*b*c^3*e-49*c^4*e-47*a^3*d*e+35*a^2*b*d*e+10*a*b^2*d*e+22*b^3*d*e-10*a^2*c*d*e-24*a*b*c*d*e-43*b^2*c*d*e-11*a*c^2*d*e+39*b*c^2*d*e+14*c^3*d*e-15*a^2*d^2*e+36*a*b*d^2*e+42*b^2*d^2*e+32*a*c*d^2*e+7*b*c*d^2*e-4*c^2*d^2*e-13*a*d^3*e+39*b*d^3*e+20*c*d^3*e+7*d^4*e+49*a^3*e^2+39*a^2*b*e^2-12*a*b^2*e^2+36*b^3*e^2+12*a^2*c*e^2-45*a*b*c*e^2+47*b^2*c*e^2+16*a*c^2*e^2+21*b*c^2*e^2+2*c^3*e^2+43*a^2*d*e^2+16*a*b*d*e^2+15*b^2*d*e^2+44*a*c*d*e^2+47*b*c*d*e^2+6*c^2*d*e^2+29*a*d^2*e^2-10*b*d^2*e^2-14*c*d^2*e^2+40*d^3*e^2+10*a^2*e^3-2*a*b*e^3-12*b^2*e^3-11*a*c*e^3+4*b*c*e^3+c^2*e^3-41*a*d*e^3-33*b*d*e^3+13*c*d*e^3+32*d^2*e^3-43*a*e^4+42*b*e^4-4*c*e^4-36*d*e^4, |
---|
2839 | a^3*b*d-15*a^2*c^2*d-32*a*b*c^2*d+24*b^2*c^2*d+48*a*c^3*d+6*b*c^3*d-40*a^3*d^2+34*a^2*b*d^2+29*a*b^2*d^2+18*b^3*d^2-17*a^2*c*d^2+34*a*b*c*d^2+5*b^2*c*d^2-31*a*c^2*d^2-29*b*c^2*d^2-12*c^3*d^2+11*a^2*d^3+8*a*b*d^3+3*b^2*d^3-33*a*c*d^3-34*b*c*d^3-12*c^2*d^3-48*a*d^4+18*b*d^4+41*c*d^4-45*d^5-22*a^4*e+a^3*b*e-25*a^2*b^2*e+3*a*b^3*e+49*b^4*e-27*a^3*c*e-42*a^2*b*c*e+2*a*b^2*c*e+3*b^3*c*e-40*a^2*c^2*e-30*a*b*c^2*e+2*b^2*c^2*e-14*a*c^3*e-6*b*c^3*e+22*c^4*e-16*a^3*d*e+32*a^2*b*d*e-2*a*b^2*d*e-27*b^3*d*e+16*a^2*c*d*e+42*a*b*c*d*e-6*b^2*c*d*e-46*a*c^2*d*e-9*b*c^2*d*e+31*c^3*d*e-23*a^2*d^2*e-a*b*d^2*e+22*b^2*d^2*e+29*a*c*d^2*e+22*b*c*d^2*e-28*c^2*d^2*e-32*a*d^3*e-10*b*d^3*e-10*c*d^3*e+19*d^4*e-41*a^3*e^2+27*a^2*b*e^2+44*a*b^2*e^2-32*b^3*e^2-24*a^2*c*e^2-6*a*b*c*e^2-25*b^2*c*e^2+29*a*c^2*e^2+19*b*c^2*e^2-47*c^3*e^2+20*a^2*d*e^2-3*a*b*d*e^2+43*b^2*d*e^2-14*a*c*d*e^2+2*b*c*d*e^2-37*c^2*d*e^2-24*a*d^2*e^2-19*b*d^2*e^2+30*c*d^2*e^2+29*d^3*e^2-a^2*e^3-6*a*b*e^3-18*b^2*e^3-48*a*c*e^3+13*b*c*e^3+40*c^2*e^3-48*a*d*e^3-45*b*d*e^3-23*c*d*e^3-6*d^2*e^3+4*a*e^4+12*b*e^4+36*c*e^4+32*d*e^4-20*e^5, |
---|
2840 | a^4*d+17*a^2*c^2*d-6*a*b*c^2*d-16*b^2*c^2*d-8*a*c^3*d+12*b*c^3*d+31*c^4*d-2*a^3*d^2+45*a^2*b*d^2+29*a*b^2*d^2-47*b^3*d^2+17*a^2*c*d^2-28*a*b*c*d^2-12*b^2*c*d^2-49*a*c^2*d^2-34*b*c^2*d^2-49*c^3*d^2-13*a^2*d^3+12*a*b*d^3-50*b^2*d^3-27*a*c*d^3+17*b*c*d^3+26*c^2*d^3-40*a*d^4+37*b*d^4+31*c*d^4+42*d^5-3*a^4*e+40*a^3*b*e+39*a^2*b^2*e-35*a*b^3*e+2*b^4*e-47*a^3*c*e-45*a^2*b*c*e-24*a*b^2*c*e-20*b^3*c*e+a^2*c^2*e-3*a*b*c^2*e+8*b^2*c^2*e-42*a*c^3*e-49*b*c^3*e-49*c^4*e+42*a^3*d*e+25*a^2*b*d*e+45*a*b^2*d*e+35*b^3*d*e+43*a^2*c*d*e-18*a*b*c*d*e+24*b^2*c*d*e-2*a*c^2*d*e-43*b*c^2*d*e+16*c^3*d*e-44*a^2*d^2*e+31*a*b*d^2*e+17*b^2*d^2*e-36*a*c*d^2*e+25*b*c*d^2*e-20*c^2*d^2*e+17*a*d^3*e-39*b*d^3*e-37*c*d^3*e+10*d^4*e-30*a^3*e^2+34*a^2*b*e^2-43*a*b^2*e^2-2*b^3*e^2-48*a^2*c*e^2+32*a*b*c*e^2+47*b^2*c*e^2+34*a*c^2*e^2-32*b*c^2*e^2+4*c^3*e^2-26*a^2*d*e^2+22*a*b*d*e^2+23*b^2*d*e^2-37*a*c*d*e^2+26*b*c*d*e^2-33*c^2*d*e^2-5*a*d^2*e^2+15*b*d^2*e^2+19*c*d^2*e^2-31*d^3*e^2+42*a^2*e^3+27*a*b*e^3+30*b^2*e^3+22*a*c*e^3-49*b*c*e^3-19*c^2*e^3+42*a*d*e^3+5*b*d*e^3+32*c*d*e^3+9*d^2*e^3-17*a*e^4-46*b*e^4+23*c*e^4-32*d*e^4-2*e^5, |
---|
2841 | c^5+40*a^2*c^2*d+34*a*b*c^2*d-16*b^2*c^2*d+9*a*c^3*d-13*b*c^3*d+30*c^4*d+18*a^3*d^2+27*a^2*b*d^2+37*a*b^2*d^2-30*b^3*d^2-38*a^2*c*d^2-40*a*b*c*d^2-10*b^2*c*d^2-28*a*c^2*d^2-26*b*c^2*d^2+15*c^3*d^2-7*a^2*d^3+2*a*b*d^3+28*b^2*d^3+27*a*c*d^3+11*b*c*d^3-9*c^2*d^3-18*a*d^4+39*b*d^4+8*c*d^4+20*d^5+34*a^4*e+27*a^3*b*e+10*a^2*b^2*e-10*a*b^3*e+15*b^4*e+a^3*c*e+16*a^2*b*c*e+47*a*b^2*c*e-50*b^3*c*e-45*a^2*c^2*e-47*a*b*c^2*e-38*b^2*c^2*e+49*a*c^3*e+11*b*c^3*e-8*c^4*e-24*a^3*d*e+41*a^2*b*d*e+31*a*b^2*d*e-31*b^3*d*e-44*a^2*c*d*e-a*b*c*d*e-15*b^2*c*d*e-27*a*c^2*d*e-50*b*c^2*d*e+29*c^3*d*e+30*a^2*d^2*e+41*a*b*d^2*e-31*b^2*d^2*e-40*a*c*d^2*e+14*b*c*d^2*e-18*c^2*d^2*e+4*a*d^3*e-27*b*d^3*e-36*c*d^3*e-26*d^4*e-2*a^3*e^2+39*a^2*b*e^2-17*a*b^2*e^2-b^3*e^2+24*a^2*c*e^2-6*a*b*c*e^2-12*b^2*c*e^2+38*a*c^2*e^2+6*b*c^2*e^2+38*c^3*e^2+15*a^2*d*e^2-2*a*b*d*e^2-22*b^2*d*e^2+30*a*c*d*e^2+50*b*c*d*e^2-37*c^2*d*e^2+2*a*d^2*e^2+27*b*d^2*e^2+2*c*d^2*e^2+19*d^3*e^2+48*a^2*e^3+24*a*b*e^3+49*b^2*e^3-35*a*c*e^3+49*b*c*e^3+2*c^2*e^3+20*a*d*e^3+34*b*d*e^3-50*c*d*e^3-41*d^2*e^3+48*a*e^4-24*b*e^4-14*c*e^4+32*d*e^4-11*e^5, |
---|
2842 | b*c^4+9*a^2*c^2*d-47*a*b*c^2*d-29*b^2*c^2*d+24*a*c^3*d-19*b*c^3*d-25*c^4*d+50*a^3*d^2-6*a^2*b*d^2-32*a*b^2*d^2-43*b^3*d^2+42*a^2*c*d^2-16*a*b*c*d^2-40*b^2*c*d^2+3*a*c^2*d^2+9*b*c^2*d^2+34*c^3*d^2-48*a^2*d^3-8*a*b*d^3-22*b^2*d^3+42*a*c*d^3+25*b*c*d^3-31*c^2*d^3-12*a*d^4+25*b*d^4+c*d^4+13*d^5-26*a^4*e+2*a^3*b*e-37*a^2*b^2*e+23*a*b^3*e+25*b^4*e+43*a^3*c*e-10*a^2*b*c*e+16*a*b^2*c*e-24*b^3*c*e+43*a^2*c^2*e-25*a*b*c^2*e+39*b^2*c^2*e+31*a*c^3*e-21*b*c^3*e+16*c^4*e+17*a^3*d*e-33*a^2*b*d*e+34*a*b^2*d*e-16*b^3*d*e+49*a^2*c*d*e+10*a*b*c*d*e-14*b^2*c*d*e+6*a*c^2*d*e+32*b*c^2*d*e-25*c^3*d*e-16*a^2*d^2*e-26*a*b*d^2*e+36*b^2*d^2*e+41*a*c*d^2*e-43*b*c*d^2*e-44*c^2*d^2*e+24*a*d^3*e+12*b*d^3*e-40*c*d^3*e+46*d^4*e-18*a^3*e^2+36*a^2*b*e^2-49*a*b^2*e^2+47*b^3*e^2-30*a^2*c*e^2+11*a*b*c*e^2-17*b^2*c*e^2-19*a*c^2*e^2-33*b*c^2*e^2+4*c^3*e^2-14*a^2*d*e^2-13*a*b*d*e^2-4*b^2*d*e^2-a*c*d*e^2+22*b*c*d*e^2-41*c^2*d*e^2+50*a*d^2*e^2+24*b*d^2*e^2-29*c*d^2*e^2-9*d^3*e^2+10*a^2*e^3+44*a*b*e^3+11*b^2*e^3+25*a*c*e^3+31*b*c*e^3+22*c^2*e^3+a*d*e^3-6*c*d*e^3+26*d^2*e^3-40*a*e^4+31*b*e^4-50*c*e^4+9*d*e^4+39*e^5, |
---|
2843 | a*c^4-47*a^2*c^2*d+40*a*b*c^2*d-8*b^2*c^2*d+3*a*c^3*d-3*b*c^3*d+38*c^4*d-13*a^3*d^2+3*a^2*b*d^2+19*a*b^2*d^2+24*b^3*d^2-27*a^2*c*d^2-12*a*b*c*d^2-45*b^2*c*d^2+28*a*c^2*d^2+35*b*c^2*d^2-28*c^3*d^2+7*a^2*d^3+3*a*b*d^3-34*b^2*d^3+15*a*c*d^3+36*b*c*d^3-18*c^2*d^3-49*a*d^4+44*b*d^4+c*d^4-10*d^5+31*a^4*e-18*a^3*b*e+7*a^2*b^2*e+38*a*b^3*e+37*b^4*e+18*a^3*c*e-50*a^2*b*c*e+12*a*b^2*c*e+43*b^3*c*e+33*a^2*c^2*e+13*a*b*c^2*e+13*b^2*c^2*e-4*a*c^3*e+13*b*c^3*e+20*c^4*e-32*a^3*d*e-36*a^2*b*d*e+47*a*b^2*d*e+43*b^3*d*e-13*a^2*c*d*e-27*a*b*c*d*e+7*b^2*c*d*e-40*a*c^2*d*e-30*b*c^2*d*e+21*c^3*d*e-18*a^2*d^2*e-32*a*b*d^2*e-20*b^2*d^2*e-47*a*c*d^2*e+34*b*c*d^2*e-3*c^2*d^2*e-22*a*d^3*e-29*b*d^3*e-47*c*d^3*e-33*d^4*e-3*a^3*e^2+46*a^2*b*e^2-42*a*b^2*e^2+6*b^3*e^2+16*a^2*c*e^2-9*a*b*c*e^2-35*b^2*c*e^2-24*b*c^2*e^2-5*c^3*e^2+18*a^2*d*e^2+43*a*b*d*e^2-43*b^2*d*e^2+6*a*c*d*e^2+8*b*c*d*e^2-33*c^2*d*e^2-26*a*d^2*e^2+31*b*d^2*e^2-29*c*d^2*e^2+d^3*e^2+45*a^2*e^3+45*a*b*e^3-31*b^2*e^3-26*a*c*e^3+35*b*c*e^3+30*c^2*e^3-33*a*d*e^3-4*b*d*e^3+34*c*d*e^3+21*d^2*e^3+41*a*e^4-14*b*e^4-32*c*e^4-19*d*e^4+29*e^5, |
---|
2844 | b^2*c^3+10*a^2*c^2*d+20*a*b*c^2*d+36*b^2*c^2*d-7*a*c^3*d+13*b*c^3*d+42*c^4*d-6*a^3*d^2+13*a^2*b*d^2+31*a*b^2*d^2-29*b^3*d^2+44*a^2*c*d^2-20*a*b*c*d^2+27*b^2*c*d^2+17*a*c^2*d^2-7*b*c^2*d^2-18*c^3*d^2-44*a^2*d^3-35*a*b*d^3-11*b^2*d^3-28*a*c*d^3+b*c*d^3+22*c^2*d^3-13*a*d^4-32*b*d^4-33*c*d^4-48*d^5-16*a^4*e+7*a^3*b*e-40*a^2*b^2*e-47*a*b^3*e+20*b^4*e-41*a^3*c*e+50*a^2*b*c*e-35*a*b^2*c*e+44*b^3*c*e-43*a^2*c^2*e+15*a*b*c^2*e-33*b^2*c^2*e-38*a*c^3*e-16*b*c^3*e+11*c^4*e+46*a^3*d*e+32*a^2*b*d*e+3*a*b^2*d*e+39*b^3*d*e-32*a^2*c*d*e-19*a*b*c*d*e+23*b^2*c*d*e-2*a*c^2*d*e-44*b*c^2*d*e-44*c^3*d*e+18*a^2*d^2*e+31*a*b*d^2*e+16*b^2*d^2*e+a*c*d^2*e+45*b*c*d^2*e-18*c^2*d^2*e+22*a*d^3*e+16*b*d^3*e+2*c*d^3*e+48*d^4*e-32*a^3*e^2+49*a^2*b*e^2-3*a*b^2*e^2+30*b^3*e^2+31*a^2*c*e^2+28*a*b*c*e^2-4*b^2*c*e^2+7*a*c^2*e^2+48*b*c^2*e^2+40*c^3*e^2-a^2*d*e^2+19*a*b*d*e^2+40*b^2*d*e^2-3*a*c*d*e^2+9*b*c*d*e^2+21*c^2*d*e^2+28*a*d^2*e^2+49*b*d^2*e^2+19*c*d^2*e^2+41*d^3*e^2-30*a^2*e^3-30*a*b*e^3+5*b^2*e^3-2*a*c*e^3+17*b*c*e^3-16*c^2*e^3+42*b*d*e^3-22*c*d*e^3+34*d^2*e^3+20*a*e^4+42*b*e^4+8*c*e^4+36*d*e^4-25*e^5, |
---|
2845 | a*b*c^3-48*a^2*c^2*d-19*a*b*c^2*d+46*b^2*c^2*d-49*a*c^3*d-43*b*c^3*d+c^4*d-12*a^3*d^2+28*a^2*b*d^2+11*a*b^2*d^2+13*b^3*d^2+36*a^2*c*d^2+20*a*b*c*d^2+8*b^2*c*d^2-5*a*c^2*d^2+44*b*c^2*d^2-50*c^3*d^2+34*a^2*d^3+a*b*d^3-25*b^2*d^3+5*a*c*d^3-47*b*c*d^3-4*c^2*d^3-33*a*d^4-29*b*d^4+34*c*d^4+d^5-15*a^4*e+50*a^3*b*e+14*a^2*b^2*e+15*a*b^3*e+34*b^4*e+9*a^3*c*e+38*a^2*b*c*e+12*a*b^2*c*e+21*b^3*c*e+18*a^2*c^2*e+37*a*b*c^2*e-16*b^2*c^2*e+13*a*c^3*e+47*b*c^3*e-41*c^4*e-29*a^3*d*e-45*a^2*b*d*e+3*a*b^2*d*e+44*b^3*d*e-31*a^2*c*d*e-8*a*b*c*d*e-5*b^2*c*d*e-22*a*c^2*d*e-6*b*c^2*d*e+3*c^3*d*e-43*a^2*d^2*e-45*a*b*d^2*e-24*b^2*d^2*e+15*a*c*d^2*e+15*b*c*d^2*e+7*c^2*d^2*e-17*a*d^3*e-8*b*d^3*e-31*c*d^3*e+19*d^4*e-41*a^3*e^2-25*a^2*b*e^2-11*a*b^2*e^2-4*b^3*e^2-25*a^2*c*e^2-32*a*b*c*e^2-42*b^2*c*e^2-46*a*c^2*e^2-41*b*c^2*e^2-36*c^3*e^2+40*a^2*d*e^2-43*a*b*d*e^2+35*b^2*d*e^2+2*a*c*d*e^2-28*b*c*d*e^2-43*c^2*d*e^2+21*a*d^2*e^2+8*b*d^2*e^2-42*c*d^2*e^2+50*d^3*e^2+48*a^2*e^3-25*a*b*e^3+22*b^2*e^3-3*a*c*e^3-42*b*c*e^3+22*c^2*e^3-5*a*d*e^3-35*b*d*e^3+36*c*d*e^3-34*d^2*e^3+14*a*e^4+34*b*e^4+23*c*e^4-35*d*e^4+46*e^5, |
---|
2846 | a^2*c^3-17*a^2*c^2*d-7*a*b*c^2*d+15*b^2*c^2*d+35*a*c^3*d-36*b*c^3*d-19*c^4*d+20*a^3*d^2-39*a^2*b*d^2-3*a*b^2*d^2-2*b^3*d^2+8*a^2*c*d^2+13*a*b*c*d^2-20*b^2*c*d^2+6*a*c^2*d^2-48*b*c^2*d^2-21*c^3*d^2+46*a^2*d^3+39*a*b*d^3+32*b^2*d^3-2*a*c*d^3+47*b*c*d^3+16*c^2*d^3+20*a*d^4-36*b*d^4-12*c*d^4+28*d^5+24*a^4*e+17*a^3*b*e-21*a^2*b^2*e+31*a*b^3*e+24*b^4*e-45*a^3*c*e+34*a^2*b*c*e+3*a*b^2*c*e+34*b^3*c*e+39*a^2*c^2*e+12*a*b*c^2*e+18*b^2*c^2*e+19*a*c^3*e-13*b*c^3*e+7*c^4*e+16*a^3*d*e-4*a^2*b*d*e+35*a*b^2*d*e+20*b^3*d*e+38*a^2*c*d*e-41*a*b*c*d*e+49*b^2*c*d*e+7*a*c^2*d*e+39*b*c^2*d*e+15*c^3*d*e+32*a^2*d^2*e+35*a*b*d^2*e-36*b^2*d^2*e+11*a*c*d^2*e+11*b*c*d^2*e-26*c^2*d^2*e+2*a*d^3*e-30*b*d^3*e-2*c*d^3*e+5*d^4*e-2*a^3*e^2-45*a^2*b*e^2-10*a*b^2*e^2-42*b^3*e^2+13*a^2*c*e^2+38*a*b*c*e^2+22*b^2*c*e^2+42*a*c^2*e^2+16*b*c^2*e^2+40*c^3*e^2-19*a^2*d*e^2-35*a*b*d*e^2-24*b^2*d*e^2+33*a*c*d*e^2-48*b*c*d*e^2-6*a*d^2*e^2+2*b*d^2*e^2-31*c*d^2*e^2-5*d^3*e^2+45*a^2*e^3+17*a*b*e^3+50*b^2*e^3-18*a*c*e^3+3*b*c*e^3+32*c^2*e^3+34*a*d*e^3-39*b*d*e^3-35*c*d*e^3+22*d^2*e^3-40*a*e^4+43*b*e^4+48*c*e^4-42*d*e^4+8*e^5, |
---|
2847 | b^3*c^2+2*a^2*c^2*d-42*a*b*c^2*d-42*b^2*c^2*d+22*a*c^3*d-28*b*c^3*d-24*c^4*d-24*a^3*d^2+40*a^2*b*d^2-7*a*b^2*d^2+31*b^3*d^2+13*a^2*c*d^2+33*a*b*c*d^2+6*b^2*c*d^2+40*a*c^2*d^2+37*b*c^2*d^2+40*c^3*d^2-12*a^2*d^3+26*a*b*d^3+23*b^2*d^3+44*a*c*d^3+13*b*c*d^3-24*c^2*d^3+31*a*d^4+44*b*d^4+32*c*d^4+48*d^5+42*a^4*e+2*a^3*b*e-25*a^2*b^2*e-27*a*b^3*e-21*b^4*e+44*a^3*c*e+50*a^2*b*c*e+42*a*b^2*c*e+28*b^3*c*e+28*a^2*c^2*e+20*a*b*c^2*e+11*b^2*c^2*e-25*a*c^3*e+35*b*c^3*e+11*c^4*e+13*a^3*d*e+13*a^2*b*d*e-33*a*b^2*d*e+26*b^3*d*e+10*a^2*c*d*e-47*a*b*c*d*e+44*b^2*c*d*e-50*a*c^2*d*e+6*b*c^2*d*e+38*c^3*d*e-43*a^2*d^2*e-43*a*b*d^2*e+50*b^2*d^2*e-36*a*c*d^2*e+39*b*c*d^2*e+4*c^2*d^2*e+26*a*d^3*e+6*b*d^3*e-30*c*d^3*e-21*d^4*e+16*a^3*e^2-19*a^2*b*e^2+43*a*b^2*e^2-b^3*e^2-9*a^2*c*e^2-3*a*b*c*e^2-44*b^2*c*e^2-34*a*c^2*e^2-24*b*c^2*e^2+15*c^3*e^2+47*a^2*d*e^2-45*a*b*d*e^2-22*b^2*d*e^2-21*a*c*d*e^2+36*b*c*d*e^2+c^2*d*e^2-13*a*d^2*e^2+47*b*d^2*e^2-12*c*d^2*e^2+16*d^3*e^2-30*a^2*e^3-49*a*b*e^3+40*b^2*e^3+46*a*c*e^3-25*b*c*e^3-38*c^2*e^3-30*a*d*e^3-27*b*d*e^3+47*c*d*e^3+37*d^2*e^3+49*a*e^4+6*b*e^4-6*c*e^4+43*d*e^4+5*e^5, |
---|
2848 | a*b^2*c^2-9*a^2*c^2*d+49*a*b*c^2*d+17*b^2*c^2*d-45*a*c^3*d+27*b*c^3*d-8*c^4*d-25*a^3*d^2-23*a^2*b*d^2+47*a*b^2*d^2+8*b^3*d^2+20*a^2*c*d^2+37*a*b*c*d^2+28*b^2*c*d^2+8*a*c^2*d^2+36*b*c^2*d^2+34*c^3*d^2+37*a^2*d^3+23*a*b*d^3+11*b^2*d^3-46*a*c*d^3+45*b*c*d^3-16*c^2*d^3-27*a*d^4-39*b*d^4+31*c*d^4-24*d^5+42*a^4*e-30*a^3*b*e+12*a^2*b^2*e-18*a*b^3*e+8*b^4*e-33*a^3*c*e+21*a^2*b*c*e-9*a*b^2*c*e+10*b^3*c*e+11*a^2*c^2*e-33*a*b*c^2*e-27*b^2*c^2*e+47*a*c^3*e-35*b*c^3*e+15*c^4*e-19*a^3*d*e+20*a^2*b*d*e+41*a*b^2*d*e+39*b^3*d*e+24*a^2*c*d*e-12*a*b*c*d*e-16*b^2*c*d*e+38*a*c^2*d*e-43*b*c^2*d*e+39*c^3*d*e-14*a^2*d^2*e+39*a*b*d^2*e+24*b^2*d^2*e-35*a*c*d^2*e-8*b*c*d^2*e-26*c^2*d^2*e-5*a*d^3*e+34*b*d^3*e+16*c*d^3*e+35*d^4*e-a^3*e^2+44*a^2*b*e^2+33*a*b^2*e^2+41*b^3*e^2+26*a^2*c*e^2-6*a*b*c*e^2-15*b^2*c*e^2-46*a*c^2*e^2-37*b*c^2*e^2-49*c^3*e^2-6*a^2*d*e^2+20*a*b*d*e^2-7*b^2*d*e^2+16*a*c*d*e^2+49*b*c*d*e^2-23*c^2*d*e^2+37*a*d^2*e^2+31*b*d^2*e^2+17*c*d^2*e^2-39*d^3*e^2-46*a^2*e^3-17*a*b*e^3+46*b^2*e^3-31*a*c*e^3+39*b*c*e^3-13*c^2*e^3+40*a*d*e^3+18*b*d*e^3+3*c*d*e^3-6*d^2*e^3-35*a*e^4+22*b*e^4-47*c*e^4-4*d*e^4+35*e^5, |
---|
2849 | a^2*b*c^2+25*a^2*c^2*d-27*a*b*c^2*d+43*b^2*c^2*d+3*a*c^3*d+35*b*c^3*d+39*c^4*d+12*a^3*d^2-39*a^2*b*d^2-38*a*b^2*d^2+8*b^3*d^2+14*a^2*c*d^2+42*a*b*c*d^2-16*b^2*c*d^2+32*a*c^2*d^2-26*b*c^2*d^2+31*c^3*d^2-34*a^2*d^3-4*a*b*d^3+40*b^2*d^3+34*a*c*d^3-31*b*c*d^3+11*c^2*d^3+9*a*d^4+27*b*d^4+19*c*d^4-44*d^5-45*a^4*e+43*a^3*b*e-36*a^2*b^2*e+23*a*b^3*e-14*b^4*e-2*a^3*c*e+20*a^2*b*c*e-34*a*b^2*c*e+26*b^3*c*e+2*a^2*c^2*e-32*a*b*c^2*e+35*b^2*c^2*e-44*a*c^3*e-47*b*c^3*e-6*c^4*e+4*a^3*d*e+34*a^2*b*d*e-38*a*b^2*d*e-21*b^3*d*e+45*a^2*c*d*e-25*a*b*c*d*e+30*b^2*c*d*e+43*a*c^2*d*e-2*b*c^2*d*e+17*c^3*d*e+30*a^2*d^2*e+48*a*b*d^2*e+5*b^2*d^2*e+31*a*c*d^2*e+46*b*c*d^2*e+42*c^2*d^2*e-39*a*d^3*e-30*b*d^3*e+34*c*d^3*e+37*d^4*e+45*a^3*e^2-37*a^2*b*e^2+16*a*b^2*e^2-12*b^3*e^2+21*a^2*c*e^2-36*a*b*c*e^2+45*b^2*c*e^2-39*a*c^2*e^2+8*c^3*e^2-47*a^2*d*e^2+38*a*b*d*e^2+48*b^2*d*e^2-30*a*c*d*e^2-40*b*c*d*e^2+34*c^2*d*e^2+42*a*d^2*e^2-38*b*d^2*e^2+24*c*d^2*e^2+37*d^3*e^2-26*a^2*e^3-50*a*b*e^3+10*b^2*e^3-29*a*c*e^3-48*b*c*e^3+8*c^2*e^3+26*a*d*e^3-26*b*d*e^3-44*c*d*e^3+30*d^2*e^3-31*a*e^4-21*b*e^4-44*c*e^4-17*d*e^4+26*e^5, |
---|
2850 | a^3*c^2+32*a^2*c^2*d+18*a*b*c^2*d+26*b^2*c^2*d-34*a*c^3*d+29*b*c^3*d+6*c^4*d-46*a^3*d^2-37*a^2*b*d^2-9*a*b^2*d^2+13*b^3*d^2-46*a^2*c*d^2-25*a*b*c*d^2-19*b^2*c*d^2-36*a*c^2*d^2-28*b*c^2*d^2+c^3*d^2-16*a^2*d^3-32*a*b*d^3-39*b^2*d^3-a*c*d^3-44*b*c*d^3-24*c^2*d^3+44*a*d^4-18*b*d^4-11*c*d^4+31*d^5-37*a^4*e+50*a^3*b*e-3*a^2*b^2*e+40*a*b^3*e-19*b^4*e+31*a^3*c*e+49*a^2*b*c*e+14*a*b^2*c*e+22*b^3*c*e-27*a^2*c^2*e-46*a*b*c^2*e+31*b^2*c^2*e+22*a*c^3*e+27*b*c^3*e+25*c^4*e+10*a^3*d*e-21*a^2*b*d*e-13*a*b^2*d*e-46*b^3*d*e-34*a^2*c*d*e+24*a*b*c*d*e-38*b^2*c*d*e-14*a*c^2*d*e+50*b*c^2*d*e+28*c^3*d*e+44*a^2*d^2*e+23*a*b*d^2*e-38*b^2*d^2*e-4*a*c*d^2*e-34*b*c*d^2*e-21*c^2*d^2*e+9*a*d^3*e-14*b*d^3*e-19*c*d^3*e+14*d^4*e+31*a^3*e^2-33*a^2*b*e^2-39*a*b^2*e^2+9*b^3*e^2+7*a^2*c*e^2+13*a*b*c*e^2-12*b^2*c*e^2+24*a*c^2*e^2+18*b*c^2*e^2+19*c^3*e^2+24*a^2*d*e^2-24*a*b*d*e^2-47*b^2*d*e^2-46*a*c*d*e^2+31*b*c*d*e^2+31*c^2*d*e^2-9*a*d^2*e^2+6*b*d^2*e^2+46*c*d^2*e^2+23*d^3*e^2-37*a^2*e^3+14*a*b*e^3-40*b^2*e^3+14*a*c*e^3-46*b*c*e^3-42*c^2*e^3+32*a*d*e^3+5*b*d*e^3-4*c*d*e^3-16*d^2*e^3-4*a*e^4+36*b*e^4+38*c*e^4+30*d*e^4-18*e^5, |
---|
2851 | b^4*c+25*a^2*c^2*d+37*a*b*c^2*d+12*b^2*c^2*d-31*b*c^3*d+40*c^4*d-49*a^3*d^2+8*a^2*b*d^2+36*a*b^2*d^2+48*b^3*d^2-15*a^2*c*d^2+20*a*b*c*d^2-13*b^2*c*d^2-2*a*c^2*d^2+11*b*c^2*d^2+46*c^3*d^2+49*a^2*d^3-3*a*b*d^3-31*b^2*d^3-11*a*c*d^3+4*b*c*d^3+7*c^2*d^3-27*b*d^4+c*d^4+43*d^5+41*a^4*e-28*a^3*b*e+37*a^2*b^2*e-18*a*b^3*e+20*b^4*e-3*a^3*c*e+42*a^2*b*c*e-26*a*b^2*c*e-36*b^3*c*e-32*a^2*c^2*e+33*a*b*c^2*e-18*b^2*c^2*e-45*a*c^3*e+22*b*c^3*e+22*c^4*e+28*a^3*d*e-17*a^2*b*d*e-37*a*b^2*d*e-11*b^3*d*e+44*a^2*c*d*e-21*a*b*c*d*e+27*b^2*c*d*e-16*a*c^2*d*e+45*b*c^2*d*e+37*c^3*d*e+13*a^2*d^2*e-24*a*b*d^2*e+46*b^2*d^2*e-18*a*c*d^2*e-24*b*c*d^2*e+10*c^2*d^2*e-22*a*d^3*e-19*b*d^3*e+26*c*d^3*e+24*d^4*e+50*a^3*e^2-21*a^2*b*e^2-31*a*b^2*e^2+12*b^3*e^2+18*a^2*c*e^2-9*a*b*c*e^2-3*b^2*c*e^2+49*a*c^2*e^2-22*b*c^2*e^2-7*c^3*e^2+34*a^2*d*e^2+14*a*b*d*e^2-10*b^2*d*e^2-21*a*c*d*e^2-49*b*c*d*e^2-32*c^2*d*e^2-31*a*d^2*e^2-37*b*d^2*e^2+17*c*d^2*e^2-2*d^3*e^2+23*a^2*e^3+38*a*b*e^3+16*b^2*e^3+7*a*c*e^3-6*b*c*e^3+7*c^2*e^3-35*a*d*e^3+46*b*d*e^3-2*c*d*e^3-47*d^2*e^3+15*a*e^4-22*b*e^4+25*c*e^4+12*d*e^4+36*e^5, |
---|
2852 | a*b^3*c+7*a^2*c^2*d-37*a*b*c^2*d-27*b^2*c^2*d-a*c^3*d-28*b*c^3*d+32*c^4*d-17*a^3*d^2+30*a^2*b*d^2+7*a*b^2*d^2-32*b^3*d^2-10*a^2*c*d^2+38*a*b*c*d^2-15*b^2*c*d^2+a*c^2*d^2-37*b*c^2*d^2-9*c^3*d^2-13*a^2*d^3+27*a*b*d^3-11*b^2*d^3+6*a*c*d^3+b*c*d^3-9*c^2*d^3+44*a*d^4+3*b*d^4-36*c*d^4+41*d^5-3*a^4*e+10*a^3*b*e-8*a*b^3*e-3*b^4*e-3*a^3*c*e+34*a^2*b*c*e+3*a*b^2*c*e+15*b^3*c*e-22*a^2*c^2*e-33*a*b*c^2*e-4*b^2*c^2*e+48*a*c^3*e+7*b*c^3*e-29*c^4*e+38*a^3*d*e+14*a^2*b*d*e-26*a*b^2*d*e+48*b^3*d*e-3*a^2*c*d*e-45*a*b*c*d*e+26*b^2*c*d*e+46*a*c^2*d*e+26*b*c^2*d*e+15*c^3*d*e+29*a^2*d^2*e+42*a*b*d^2*e+11*b^2*d^2*e+26*a*c*d^2*e+44*b*c*d^2*e-18*c^2*d^2*e-19*a*d^3*e+47*b*d^3*e+c*d^3*e+50*d^4*e+8*a^3*e^2-19*a^2*b*e^2+49*a*b^2*e^2+17*b^3*e^2-27*a^2*c*e^2+30*a*b*c*e^2+10*b^2*c*e^2+21*a*c^2*e^2+11*b*c^2*e^2+38*c^3*e^2+36*a^2*d*e^2-28*a*b*d*e^2+22*b^2*d*e^2-45*a*c*d*e^2-45*b*c*d*e^2+43*c^2*d*e^2-21*a*d^2*e^2+5*b*d^2*e^2-41*c*d^2*e^2+36*d^3*e^2-25*a^2*e^3-22*a*b*e^3-6*b^2*e^3+31*a*c*e^3+19*b*c*e^3-35*c^2*e^3+44*a*d*e^3+40*b*d*e^3-14*c*d*e^3+6*d^2*e^3+2*a*e^4-26*b*e^4+43*c*e^4+39*d*e^4+7*e^5, |
---|
2853 | a^2*b^2*c-22*a^2*c^2*d+2*a*b*c^2*d-39*b^2*c^2*d-32*a*c^3*d-39*b*c^3*d+32*c^4*d+47*a^3*d^2-9*a^2*b*d^2+36*a*b^2*d^2-22*b^3*d^2+a^2*c*d^2+7*a*b*c*d^2+21*b^2*c*d^2+35*a*c^2*d^2+31*b*c^2*d^2+38*c^3*d^2+4*a^2*d^3+50*a*b*d^3-10*b^2*d^3-7*a*c*d^3-8*b*c*d^3-23*c^2*d^3+18*a*d^4+13*b*d^4+5*c*d^4-6*d^5-41*a^4*e+50*a^3*b*e+3*a^2*b^2*e+20*a*b^3*e-26*b^4*e-22*a^3*c*e+9*a^2*b*c*e+5*a*b^2*c*e+38*b^3*c*e-16*a^2*c^2*e-35*a*b*c^2*e-17*b^2*c^2*e-4*a*c^3*e-32*b*c^3*e-19*c^4*e-21*a^3*d*e+23*a^2*b*d*e+37*a*b^2*d*e+48*b^3*d*e-2*a^2*c*d*e-48*a*b*c*d*e-44*b^2*c*d*e+4*a*c^2*d*e+9*b*c^2*d*e-33*c^3*d*e+30*a^2*d^2*e+25*a*b*d^2*e+34*b^2*d^2*e-39*a*c*d^2*e+27*b*c*d^2*e+25*c^2*d^2*e+3*a*d^3*e-50*b*d^3*e-49*c*d^3*e-9*d^4*e-39*a^3*e^2+10*a^2*b*e^2-33*a*b^2*e^2+36*b^3*e^2+20*a^2*c*e^2+43*a*b*c*e^2+7*b^2*c*e^2+36*a*c^2*e^2-39*b*c^2*e^2-33*c^3*e^2+14*a^2*d*e^2-46*a*b*d*e^2+8*b^2*d*e^2+23*a*c*d*e^2+30*b*c*d*e^2-8*c^2*d*e^2+28*a*d^2*e^2-5*b*d^2*e^2+25*c*d^2*e^2+17*d^3*e^2+28*a^2*e^3-38*a*b*e^3-46*b^2*e^3-27*a*c*e^3-5*b*c*e^3-20*c^2*e^3+2*a*d*e^3-4*b*d*e^3+15*c*d*e^3-36*d^2*e^3+41*a*e^4+6*b*e^4+20*c*e^4+8*d*e^4-2*e^5, |
---|
2854 | a^3*b*c+40*a^2*c^2*d-47*a*b*c^2*d-27*b^2*c^2*d+41*a*c^3*d-39*b*c^3*d-32*c^4*d+5*a^3*d^2-5*a^2*b*d^2-34*a*b^2*d^2-35*b^3*d^2+29*a^2*c*d^2+4*a*b*c*d^2-6*b^2*c*d^2+25*a*c^2*d^2+6*b*c^2*d^2-44*c^3*d^2-38*a^2*d^3-31*a*b*d^3+37*b^2*d^3-49*a*c*d^3-17*b*c*d^3+9*c^2*d^3+25*a*d^4+4*b*d^4-25*c*d^4-49*d^5-15*a^4*e-11*a^3*b*e+7*a^2*b^2*e+37*a*b^3*e-21*b^4*e+18*a^3*c*e+46*a^2*b*c*e+6*a*b^2*c*e+43*b^3*c*e-5*a^2*c^2*e+49*a*b*c^2*e+44*b^2*c^2*e-18*a*c^3*e+30*b*c^3*e+30*c^4*e+37*a^3*d*e-47*a^2*b*d*e+23*a*b^2*d*e-26*b^3*d*e-12*a^2*c*d*e+49*a*b*c*d*e+37*b^2*c*d*e+3*a*c^2*d*e-15*b*c^2*d*e+c^3*d*e-13*a^2*d^2*e+32*a*b*d^2*e-29*b^2*d^2*e-11*a*c*d^2*e-28*b*c*d^2*e+21*c^2*d^2*e-10*a*d^3*e-20*b*d^3*e-2*c*d^3*e-25*d^4*e-18*a^3*e^2-10*a^2*b*e^2-26*a*b^2*e^2+15*b^3*e^2-6*a^2*c*e^2+48*a*b*c*e^2-36*b^2*c*e^2-18*a*c^2*e^2+8*b*c^2*e^2+36*c^3*e^2+2*a^2*d*e^2+48*a*b*d*e^2-32*b^2*d*e^2+47*a*c*d*e^2+b*c*d*e^2-35*c^2*d*e^2+16*a*d^2*e^2-26*b*d^2*e^2+40*c*d^2*e^2+50*d^3*e^2+16*a^2*e^3+32*a*b*e^3-22*b^2*e^3-43*a*c*e^3+4*b*c*e^3-26*c^2*e^3-29*a*d*e^3+7*b*d*e^3+20*c*d*e^3+8*d^2*e^3-9*a*e^4-7*b*e^4+3*c*e^4+49*d*e^4-48*e^5, |
---|
2855 | a^4*c-40*a^2*c^2*d+21*a*b*c^2*d+43*b^2*c^2*d+31*a*c^3*d-4*b*c^3*d+49*c^4*d+24*a^3*d^2-14*a^2*b*d^2+3*a*b^2*d^2-6*b^3*d^2+27*a^2*c*d^2+24*a*b*c*d^2-47*b^2*c*d^2-16*a*c^2*d^2+21*b*c^2*d^2-33*c^3*d^2+39*a^2*d^3-34*a*b*d^3-7*b^2*d^3+3*a*c*d^3+30*b*c*d^3-10*c^2*d^3+17*a*d^4+28*b*d^4+16*c*d^4-19*d^5+16*a^4*e-14*a^3*b*e+19*a^2*b^2*e-12*a*b^3*e-41*b^4*e-28*a^3*c*e+13*a^2*b*c*e+35*a*b^2*c*e-35*b^3*c*e+37*a^2*c^2*e-7*a*b*c^2*e+33*b^2*c^2*e-30*a*c^3*e+36*b*c^3*e-26*c^4*e-27*a^3*d*e+28*a^2*b*d*e+2*a*b^2*d*e+22*b^3*d*e-9*a^2*c*d*e+39*a*b*c*d*e-11*b^2*c*d*e+48*a*c^2*d*e+b*c^2*d*e-25*c^3*d*e-28*a^2*d^2*e-38*a*b*d^2*e-13*b^2*d^2*e-12*a*c*d^2*e-35*b*c*d^2*e-45*c^2*d^2*e-27*a*d^3*e-31*b*d^3*e+20*c*d^3*e+40*d^4*e+11*a^3*e^2-33*a^2*b*e^2-3*a*b^2*e^2+32*b^3*e^2+10*a^2*c*e^2+48*a*b*c*e^2-50*b^2*c*e^2+2*a*c^2*e^2-46*b*c^2*e^2+15*c^3*e^2-15*a^2*d*e^2+29*a*b*d*e^2+4*b^2*d*e^2-16*a*c*d*e^2+34*b*c*d*e^2-21*c^2*d*e^2+44*a*d^2*e^2-35*b*d^2*e^2+4*c*d^2*e^2-16*d^3*e^2-14*a^2*e^3+39*a*b*e^3+44*b^2*e^3-22*a*c*e^3-16*b*c*e^3+38*c^2*e^3-a*d*e^3+14*b*d*e^3-44*c*d*e^3-31*d^2*e^3+4*a*e^4+33*c*e^4-5*d*e^4+46*e^5, |
---|
2856 | b^5-5*a^2*c^2*d-23*a*b*c^2*d+3*b^2*c^2*d-30*a*c^3*d-48*b*c^3*d-40*c^4*d-21*a^3*d^2-13*a^2*b*d^2+36*a*b^2*d^2-35*b^3*d^2-9*a^2*c*d^2+32*a*b*c*d^2-19*b^2*c*d^2+3*a*c^2*d^2-2*b*c^2*d^2+22*c^3*d^2-37*a^2*d^3+46*a*b*d^3-38*b^2*d^3-33*a*c*d^3-7*b*c*d^3+3*c^2*d^3-33*a*d^4+b*d^4+22*c*d^4+50*d^5-33*a^4*e+18*a^3*b*e+11*a^2*b^2*e-19*a*b^3*e+49*b^4*e+3*a^3*c*e-10*a^2*b*c*e-29*a*b^2*c*e-17*b^3*c*e-15*a^2*c^2*e+30*a*b*c^2*e+39*b^2*c^2*e+7*a*c^3*e-46*b*c^3*e+29*c^4*e-17*a^3*d*e+26*a^2*b*d*e+27*a*b^2*d*e-27*b^3*d*e-27*a^2*c*d*e-7*a*b*c*d*e-36*b^2*c*d*e+18*a*c^2*d*e-34*b*c^2*d*e+31*c^3*d*e+22*a^2*d^2*e-2*a*b*d^2*e+39*b^2*d^2*e+40*a*c*d^2*e+49*b*c*d^2*e-41*c^2*d^2*e-46*a*d^3*e-33*b*d^3*e-40*c*d^3*e+16*d^4*e-37*a^3*e^2-14*a^2*b*e^2-49*a*b^2*e^2+39*b^3*e^2-20*a^2*c*e^2-39*a*b*c*e^2+20*b^2*c*e^2+10*a*c^2*e^2+29*b*c^2*e^2+20*c^3*e^2-19*a^2*d*e^2+37*a*b*d*e^2+20*b^2*d*e^2+26*a*c*d*e^2-8*b*c*d*e^2+14*c^2*d*e^2+24*a*d^2*e^2-14*b*d^2*e^2-33*c*d^2*e^2-18*d^3*e^2-2*a^2*e^3-32*a*b*e^3-37*b^2*e^3+45*a*c*e^3-33*b*c*e^3+28*c^2*e^3-19*a*d*e^3-43*b*d*e^3-10*c*d*e^3+30*d^2*e^3+44*a*e^4+40*b*e^4-20*c*e^4-40*d*e^4-2*e^5, |
---|
2857 | a*b^4-14*a^2*c^2*d+14*b^2*c^2*d+36*a*c^3*d+7*b*c^3*d-14*c^4*d-11*a^3*d^2+40*a^2*b*d^2-29*a*b^2*d^2-45*b^3*d^2+23*a^2*c*d^2+8*a*b*c*d^2+28*b^2*c*d^2+42*a*c^2*d^2+14*b*c^2*d^2+42*c^3*d^2-36*a^2*d^3-4*a*b*d^3+6*a*c*d^3-18*b*c*d^3+40*c^2*d^3-47*a*d^4-19*b*d^4-16*c*d^4+31*d^5-15*a^4*e+46*a^3*b*e+13*a^2*b^2*e-18*a*b^3*e+9*b^4*e+50*a^3*c*e-10*a^2*b*c*e-12*a*b^2*c*e+44*b^3*c*e+7*a^2*c^2*e+39*a*b*c^2*e-36*b^2*c^2*e+29*a*c^3*e-37*b*c^3*e-28*c^4*e-43*a^3*d*e+50*a^2*b*d*e-16*a*b^2*d*e+17*b^3*d*e+23*a^2*c*d*e-14*a*b*c*d*e+10*b^2*c*d*e+18*a*c^2*d*e+40*b*c^2*d*e-30*c^3*d*e+44*a^2*d^2*e+26*a*b*d^2*e+17*b^2*d^2*e+9*a*c*d^2*e+37*b*c*d^2*e-38*c^2*d^2*e+46*a*d^3*e+15*b*d^3*e+33*c*d^3*e+20*d^4*e+4*a^3*e^2-43*a^2*b*e^2-14*a*b^2*e^2-29*b^3*e^2+44*a^2*c*e^2-37*a*b*c*e^2-2*b^2*c*e^2+39*a*c^2*e^2-36*b*c^2*e^2+45*c^3*e^2-34*a^2*d*e^2-48*a*b*d*e^2-25*b^2*d*e^2+48*a*c*d*e^2+5*b*c*d*e^2-16*c^2*d*e^2+20*a*d^2*e^2+8*b*d^2*e^2-48*c*d^2*e^2+27*d^3*e^2-39*a^2*e^3-23*a*b*e^3-45*b^2*e^3-34*a*c*e^3-50*b*c*e^3-42*c^2*e^3+50*a*d*e^3+26*b*d*e^3+48*c*d*e^3-37*d^2*e^3-20*a*e^4-19*b*e^4+23*c*e^4+23*d*e^4+12*e^5, |
---|
2858 | a^2*b^3-25*a^2*c^2*d+26*a*b*c^2*d+32*b^2*c^2*d-48*a*c^3*d-7*b*c^3*d-44*c^4*d+14*a^3*d^2+19*a^2*b*d^2-7*a*b^2*d^2-15*b^3*d^2+50*a^2*c*d^2-11*a*b*c*d^2-13*b^2*c*d^2-33*a*c^2*d^2-46*b*c^2*d^2+12*c^3*d^2-26*a^2*d^3-11*a*b*d^3+22*b^2*d^3+24*a*c*d^3-12*b*c*d^3-22*c^2*d^3+40*a*d^4-23*b*d^4-48*c*d^4-20*d^5+17*a^4*e-41*a^3*b*e-a^2*b^2*e-12*a*b^3*e-9*b^4*e-30*a^3*c*e+50*a^2*b*c*e+31*a*b^2*c*e+5*b^3*c*e+33*a^2*c^2*e+15*a*b*c^2*e-50*b^2*c^2*e+24*a*c^3*e-b*c^3*e-6*c^4*e-31*a^3*d*e-26*a^2*b*d*e+49*a*b^2*d*e-13*b^3*d*e+43*a^2*c*d*e-10*a*b*c*d*e+35*b^2*c*d*e+36*a*c^2*d*e-22*b*c^2*d*e+40*c^3*d*e-7*a^2*d^2*e+28*a*b*d^2*e-b^2*d^2*e+17*a*c*d^2*e+13*b*c*d^2*e+26*c^2*d^2*e+32*a*d^3*e+3*b*d^3*e+12*c*d^3*e+40*d^4*e-40*a^3*e^2+12*a^2*b*e^2+27*a*b^2*e^2-24*b^3*e^2+13*a^2*c*e^2-19*a*b*c*e^2-27*b^2*c*e^2-28*a*c^2*e^2+50*b*c^2*e^2-48*c^3*e^2-14*a^2*d*e^2+26*a*b*d*e^2+35*b^2*d*e^2-43*a*c*d*e^2+42*b*c*d*e^2+9*c^2*d*e^2-10*a*d^2*e^2+21*c*d^2*e^2-5*d^3*e^2-30*a^2*e^3+38*a*b*e^3-25*b^2*e^3-28*a*c*e^3+23*b*c*e^3+38*c^2*e^3-30*a*d*e^3-16*b*d*e^3-35*c*d*e^3+2*d^2*e^3+33*a*e^4+12*b*e^4-25*c*e^4+26*d*e^4-40*e^5, |
---|
2859 | a^3*b^2-40*a^2*c^2*d+50*a*b*c^2*d+25*b^2*c^2*d+46*a*c^3*d-45*b*c^3*d-6*c^4*d-24*a^3*d^2-9*a^2*b*d^2-15*a*b^2*d^2+5*b^3*d^2+36*a^2*c*d^2-19*a*b*c*d^2+19*b^2*c*d^2+17*a*c^2*d^2+12*b*c^2*d^2-25*c^3*d^2-33*a^2*d^3-27*a*b*d^3+42*b^2*d^3-4*a*c*d^3+33*b*c*d^3+32*c^2*d^3+10*a*d^4+47*c*d^4-3*d^5-23*a^4*e-45*a^3*b*e+41*a^2*b^2*e+47*a*b^3*e+15*b^4*e-2*a^3*c*e+12*a^2*b*c*e+13*a*b^2*c*e-45*b^3*c*e-28*a^2*c^2*e-3*a*b*c^2*e-37*b^2*c^2*e+39*a*c^3*e+37*c^4*e-12*a^3*d*e-48*a^2*b*d*e-5*a*b^2*d*e+47*b^3*d*e-41*a^2*c*d*e-36*a*b*c*d*e-37*b^2*c*d*e-a*c^2*d*e-38*b*c^2*d*e+17*c^3*d*e-29*a^2*d^2*e-3*a*b*d^2*e-23*b^2*d^2*e-19*a*c*d^2*e+43*b*c*d^2*e-48*c^2*d^2*e-46*a*d^3*e+48*b*d^3*e+40*c*d^3*e-15*d^4*e-23*a^3*e^2-22*a^2*b*e^2-50*a*b^2*e^2-33*b^3*e^2+27*a^2*c*e^2-46*a*b*c*e^2+29*b^2*c*e^2-14*a*c^2*e^2+9*b*c^2*e^2-43*c^3*e^2-19*a^2*d*e^2-38*a*b*d*e^2+12*b^2*d*e^2+18*a*c*d*e^2+20*b*c*d*e^2+3*c^2*d*e^2-9*a*d^2*e^2-27*b*d^2*e^2-6*c*d^2*e^2+38*d^3*e^2+43*a^2*e^3+43*a*b*e^3+3*b^2*e^3+10*a*c*e^3+8*b*c*e^3+13*c^2*e^3+37*a*d*e^3+b*d*e^3-21*c*d*e^3+27*d^2*e^3+26*a*e^4-29*b*e^4-39*c*e^4+29*d*e^4+21*e^5, |
---|
2860 | a^4*b-45*a^2*c^2*d-6*a*b*c^2*d-42*b^2*c^2*d-4*a*c^3*d-49*b*c^3*d+14*c^4*d+35*a^3*d^2-3*a^2*b*d^2+23*a*b^2*d^2+21*b^3*d^2-24*a^2*c*d^2-14*a*b*c*d^2+20*b^2*c*d^2-20*a*c^2*d^2+41*b*c^2*d^2-34*c^3*d^2-13*a^2*d^3-48*a*b*d^3-13*b^2*d^3+38*a*c*d^3+21*b*c*d^3+40*c^2*d^3-28*a*d^4-34*b*d^4+38*c*d^4-24*d^5-48*a^4*e-2*a^3*b*e-35*a^2*b^2*e+2*a*b^3*e-25*b^4*e+47*a^3*c*e-14*a^2*b*c*e+25*a*b^2*c*e-12*b^3*c*e-11*a^2*c^2*e+22*a*b*c^2*e+15*b^2*c^2*e+17*a*c^3*e+47*b*c^3*e-43*c^4*e+28*a^3*d*e+9*a^2*b*d*e+6*a*b^2*d*e+30*a^2*c*d*e+31*a*b*c*d*e-2*b^2*c*d*e-6*a*c^2*d*e-45*b*c^2*d*e-24*c^3*d*e-39*a^2*d^2*e-7*a*b*d^2*e-11*b^2*d^2*e+8*a*c*d^2*e-47*b*c*d^2*e+c^2*d^2*e+30*a*d^3*e-30*b*d^3*e-38*c*d^3*e-14*d^4*e-25*a^3*e^2-14*a^2*b*e^2+24*a*b^2*e^2-37*b^3*e^2-14*a^2*c*e^2+40*a*b*c*e^2+27*b^2*c*e^2+22*a*c^2*e^2-38*b*c^2*e^2+43*c^3*e^2-44*a^2*d*e^2+28*a*b*d*e^2-4*b^2*d*e^2-26*a*c*d*e^2+18*b*c*d*e^2+24*c^2*d*e^2-35*a*d^2*e^2+6*b*d^2*e^2+5*c*d^2*e^2-38*d^3*e^2-37*a^2*e^3+34*a*b*e^3-27*b^2*e^3-4*a*c*e^3-3*b*c*e^3-16*c^2*e^3+22*a*d*e^3-4*b*d*e^3-41*c*d*e^3+25*d^2*e^3-38*a*e^4+49*b*e^4+c*e^4+14*d*e^4+47*e^5, |
---|
2861 | a^5-45*a^2*c^2*d-14*a*b*c^2*d-47*b^2*c^2*d-8*a*c^3*d+13*b*c^3*d+50*c^4*d-34*a^3*d^2-5*a^2*b*d^2+36*a*b^2*d^2+11*b^3*d^2+41*a^2*c*d^2-32*a*b*c*d^2+41*b^2*c*d^2-40*a*c^2*d^2+14*b*c^2*d^2+5*c^3*d^2+25*a^2*d^3+10*a*b*d^3-24*b^2*d^3-33*b*c*d^3-21*c^2*d^3+a*d^4+44*b*d^4-46*c*d^4-23*d^5-13*a^4*e+13*a^3*b*e-49*a*b^3*e+18*b^4*e+2*a^3*c*e+15*a^2*b*c*e-14*a*b^2*c*e-38*b^3*c*e+34*a^2*c^2*e+42*a*b*c^2*e-42*b^2*c^2*e-36*a*c^3*e+35*b*c^3*e-11*c^4*e+20*a^3*d*e+41*a*b^2*d*e+40*b^3*d*e-39*a^2*c*d*e-35*a*b*c*d*e-7*b^2*c*d*e-34*a*c^2*d*e-35*b*c^2*d*e+45*c^3*d*e+17*a^2*d^2*e+39*a*b*d^2*e+5*b^2*d^2*e-35*a*c*d^2*e-26*b*c*d^2*e-47*c^2*d^2*e+5*a*d^3*e-2*b*d^3*e+44*c*d^3*e+9*d^4*e-12*a^3*e^2+49*a^2*b*e^2-2*a*b^2*e^2-11*b^3*e^2-49*a^2*c*e^2-16*a*b*c*e^2-34*b^2*c*e^2+19*a*c^2*e^2-24*b*c^2*e^2-33*c^3*e^2-39*a^2*d*e^2+2*a*b*d*e^2+46*b^2*d*e^2-17*a*c*d*e^2+47*b*c*d*e^2+39*c^2*d*e^2+13*a*d^2*e^2+50*b*d^2*e^2-11*c*d^2*e^2+3*d^3*e^2+22*a^2*e^3-50*a*b*e^3+30*b^2*e^3-22*a*c*e^3-29*b*c*e^3-40*c^2*e^3+34*a*d*e^3+15*b*d*e^3-17*c*d*e^3+43*d^2*e^3+46*a*e^4-19*b*e^4-46*c*e^4-39*d*e^4-e^5, |
---|
2862 | e^6, d*e^5, c*e^5, b*e^5, a*e^5, d^2*e^4, c*d*e^4, b*d*e^4, a*d*e^4, c^2*e^4, |
---|
2863 | b*c*e^4, a*c*e^4, b^2*e^4, a*b*e^4, a^2*e^4, d^3*e^3, c*d^2*e^3, b*d^2*e^3, |
---|
2864 | a*d^2*e^3, c^2*d*e^3, b*c*d*e^3, a*c*d*e^3, b^2*d*e^3, a*b*d*e^3, a^2*d*e^3, |
---|
2865 | c^3*e^3, b*c^2*e^3, a*c^2*e^3, b^2*c*e^3, a*b*c*e^3, a^2*c*e^3, b^3*e^3, |
---|
2866 | a*b^2*e^3, a^2*b*e^3, a^3*e^3, d^4*e^2, c*d^3*e^2, b*d^3*e^2, a*d^3*e^2, |
---|
2867 | c^2*d^2*e^2, b*c*d^2*e^2, a*c*d^2*e^2, b^2*d^2*e^2, a*b*d^2*e^2, a^2*d^2*e^2, |
---|
2868 | c^3*d*e^2, b*c^2*d*e^2, a*c^2*d*e^2, b^2*c*d*e^2, a*b*c*d*e^2, a^2*c*d*e^2, |
---|
2869 | b^3*d*e^2, a*b^2*d*e^2, a^2*b*d*e^2, a^3*d*e^2, c^4*e^2, b*c^3*e^2, a*c^3*e^2, |
---|
2870 | b^2*c^2*e^2, a*b*c^2*e^2; |
---|
2871 | TestSSresAttribs2tr(M, "AGR101n4d007s021%4"); |
---|
2872 | /* |
---|
2873 | options: 1 1 0 : Time: 5/9/10 (35 without LCM) |
---|
2874 | options: 1 1 1 : Time: 6/8/25 |
---|
2875 | lres Time: 5 |
---|
2876 | nres Time: 5 |
---|
2877 | sres Time: 693 |
---|
2878 | */ |
---|
2879 | |
---|
2880 | kill M; |
---|
2881 | |
---|
2882 | |
---|
2883 | |
---|
2884 | // AGR101n4d008s020%1, too big? |
---|
2885 | ideal M = |
---|
2886 | c^5*d-49*a^4*d^2-36*a^3*b*d^2-a^2*b^2*d^2-26*a*b^3*d^2+2*b^4*d^2+8*a^3*c*d^2-46*a^2*b*c*d^2-43*a*b^2*c*d^2-46*b^3*c*d^2-3*a^2*c^2*d^2-43*a*b*c^2*d^2+49*b^2*c^2*d^2-10*a*c^3*d^2+35*b*c^3*d^2+20*c^4*d^2-42*a^3*d^3+45*a^2*b*d^3+32*a*b^2*d^3-45*b^3*d^3-27*a^2*c*d^3+13*a*b*c*d^3+25*b^2*c*d^3+8*a*c^2*d^3+9*b*c^2*d^3+9*c^3*d^3+45*a^2*d^4+30*a*b*d^4+39*b^2*d^4-23*a*c*d^4+2*b*c*d^4-16*c^2*d^4+32*a*d^5-34*b*d^5+39*c*d^5+12*d^6-29*a^5*e-23*a^4*b*e-29*a^3*b^2*e-a^2*b^3*e-20*a*b^4*e+42*b^5*e+20*a^4*c*e-27*a^3*b*c*e-5*a^2*b^2*c*e-14*b^4*c*e-27*a^3*c^2*e-7*a^2*b*c^2*e-25*a*b^2*c^2*e+14*b^3*c^2*e+19*a^2*c^3*e+43*a*b*c^3*e-31*b^2*c^3*e+37*a*c^4*e-34*b*c^4*e+44*c^5*e+21*a^4*d*e+22*a^3*b*d*e+14*a^2*b^2*d*e-35*a*b^3*d*e-29*b^4*d*e-9*a^3*c*d*e-41*a^2*b*c*d*e+28*a*b^2*c*d*e+35*b^3*c*d*e+48*a^2*c^2*d*e+26*a*b*c^2*d*e-47*b^2*c^2*d*e+18*a*c^3*d*e+8*b*c^3*d*e-46*c^4*d*e+50*a^3*d^2*e-46*a^2*b*d^2*e-41*a*b^2*d^2*e-44*b^3*d^2*e+7*a^2*c*d^2*e-a*b*c*d^2*e+38*b^2*c*d^2*e+33*a*c^2*d^2*e-24*b*c^2*d^2*e-7*c^3*d^2*e+27*a^2*d^3*e+19*a*b*d^3*e-14*b^2*d^3*e+9*a*c*d^3*e+3*b*c*d^3*e+34*c^2*d^3*e-49*a*d^4*e-2*b*d^4*e+9*c*d^4*e+17*d^5*e+12*a^4*e^2-17*a^3*b*e^2+16*a^2*b^2*e^2+2*a*b^3*e^2+25*b^4*e^2+49*a^3*c*e^2+10*a^2*b*c*e^2-43*a*b^2*c*e^2+5*b^3*c*e^2+4*a^2*c^2*e^2-44*a*b*c^2*e^2-25*b^2*c^2*e^2+15*a*c^3*e^2-44*b*c^3*e^2-17*c^4*e^2+17*a^3*d*e^2+40*a^2*b*d*e^2+3*a*b^2*d*e^2-25*b^3*d*e^2-47*a^2*c*d*e^2-45*a*b*c*d*e^2+9*b^2*c*d*e^2-41*a*c^2*d*e^2-36*b*c^2*d*e^2-17*c^3*d*e^2-15*a^2*d^2*e^2+49*a*b*d^2*e^2+13*b^2*d^2*e^2-39*a*c*d^2*e^2+36*b*c*d^2*e^2-32*c^2*d^2*e^2+23*a*d^3*e^2+14*b*d^3*e^2+10*c*d^3*e^2-d^4*e^2+24*a^3*e^3+27*a^2*b*e^3+31*a*b^2*e^3-45*b^3*e^3-50*a^2*c*e^3-a*b*c*e^3+43*b^2*c*e^3+46*a*c^2*e^3-25*b*c^2*e^3+2*c^3*e^3+44*a^2*d*e^3+43*a*b*d*e^3-30*b^2*d*e^3-18*a*c*d*e^3+44*b*c*d*e^3-34*c^2*d*e^3-49*a*d^2*e^3-18*b*d^2*e^3-21*c*d^2*e^3-43*d^3*e^3-26*a^2*e^4-18*a*b*e^4+6*b^2*e^4-48*a*c*e^4+6*b*c*e^4-16*c^2*e^4-2*a*d*e^4-21*b*d*e^4+5*c*d*e^4-18*d^2*e^4+33*a*e^5-23*b*e^5-48*c*e^5+37*d*e^5-44*e^6, |
---|
2887 | b*c^4*d-26*a^4*d^2-47*a^3*b*d^2+28*a^2*b^2*d^2+5*a*b^3*d^2+37*b^4*d^2-32*a^3*c*d^2+44*a^2*b*c*d^2+13*a*b^2*c*d^2-45*b^3*c*d^2+35*a^2*c^2*d^2-18*a*b*c^2*d^2-3*b^2*c^2*d^2-4*a*c^3*d^2-27*b*c^3*d^2-37*a^3*d^3-44*a^2*b*d^3-36*a*b^2*d^3+49*b^3*d^3-16*a^2*c*d^3+24*a*b*c*d^3+43*b^2*c*d^3-40*a*c^2*d^3-3*b*c^2*d^3-16*c^3*d^3+6*a^2*d^4+46*a*b*d^4+8*b^2*d^4-11*a*c*d^4-4*b*c*d^4-40*c^2*d^4-31*a*d^5-41*b*d^5-35*c*d^5-35*d^6+5*a^5*e-20*a^4*b*e+48*a^3*b^2*e-42*a^2*b^3*e+46*a*b^4*e-28*b^5*e+42*a^4*c*e+22*a^3*b*c*e+23*a^2*b^2*c*e-6*a*b^3*c*e-2*b^4*c*e+26*a^3*c^2*e+28*a^2*b*c^2*e+28*a*b^2*c^2*e-31*b^3*c^2*e-50*a^2*c^3*e+3*a*b*c^3*e+39*b^2*c^3*e-21*b*c^4*e+24*c^5*e-a^4*d*e+12*a^3*b*d*e+43*a^2*b^2*d*e+17*a*b^3*d*e-33*b^4*d*e-31*a^3*c*d*e+11*a^2*b*c*d*e-16*a*b^2*c*d*e-49*b^3*c*d*e+6*a^2*c^2*d*e+49*a*b*c^2*d*e-47*b^2*c^2*d*e-40*a*c^3*d*e-11*b*c^3*d*e-7*a^3*d^2*e+10*a^2*b*d^2*e-37*a*b^2*d^2*e+37*b^3*d^2*e+49*a^2*c*d^2*e+11*b^2*c*d^2*e-43*a*c^2*d^2*e+46*b*c^2*d^2*e-18*c^3*d^2*e+38*a^2*d^3*e+20*a*b*d^3*e-22*b^2*d^3*e-32*a*c*d^3*e+41*b*c*d^3*e+c^2*d^3*e+7*a*d^4*e+18*b*d^4*e-12*c*d^4*e-15*d^5*e+34*a^4*e^2-a^3*b*e^2+47*a^2*b^2*e^2+47*a*b^3*e^2-37*b^4*e^2-36*a^3*c*e^2-21*a^2*b*c*e^2-3*b^3*c*e^2-34*a^2*c^2*e^2-4*a*b*c^2*e^2+33*b^2*c^2*e^2+19*a*c^3*e^2+3*b*c^3*e^2-13*c^4*e^2-45*a^3*d*e^2+28*a^2*b*d*e^2-23*a*b^2*d*e^2+30*b^3*d*e^2+15*a^2*c*d*e^2+a*b*c*d*e^2-50*a*c^2*d*e^2-6*b*c^2*d*e^2+32*c^3*d*e^2+17*a^2*d^2*e^2-15*a*b*d^2*e^2+6*b^2*d^2*e^2+15*a*c*d^2*e^2-b*c*d^2*e^2+41*c^2*d^2*e^2-47*a*d^3*e^2+49*b*d^3*e^2-4*c*d^3*e^2-5*d^4*e^2+35*a^3*e^3+36*a^2*b*e^3+49*a*b^2*e^3+b^3*e^3-11*a^2*c*e^3+a*b*c*e^3+18*b^2*c*e^3+19*a*c^2*e^3+11*b*c^2*e^3-41*c^3*e^3-42*a^2*d*e^3+6*a*b*d*e^3-23*b^2*d*e^3+47*a*c*d*e^3+35*b*c*d*e^3+39*c^2*d*e^3-30*a*d^2*e^3-21*b*d^2*e^3-48*c*d^2*e^3-6*d^3*e^3+38*a^2*e^4-43*a*b*e^4-10*b^2*e^4-a*c*e^4+2*b*c*e^4-29*c^2*e^4+31*a*d*e^4+24*b*d*e^4+18*c*d*e^4+38*d^2*e^4+36*a*e^5-32*b*e^5-17*c*e^5+36*d*e^5+13*e^6, |
---|
2888 | a*c^4*d+8*a^4*d^2+41*a^3*b*d^2-36*a^2*b^2*d^2+7*a*b^3*d^2+35*b^4*d^2+19*a^3*c*d^2-31*a^2*b*c*d^2+23*a*b^2*c*d^2-18*b^3*c*d^2+14*a*b*c^2*d^2-8*b^2*c^2*d^2+31*a*c^3*d^2-46*b*c^3*d^2-29*c^4*d^2-42*a^3*d^3+46*a^2*b*d^3-24*a*b^2*d^3+46*b^3*d^3-18*a^2*c*d^3-49*a*b*c*d^3-6*b^2*c*d^3+20*a*c^2*d^3+17*b*c^2*d^3+38*c^3*d^3-36*a^2*d^4+16*a*b*d^4+23*b^2*d^4-34*a*c*d^4-9*b*c*d^4-18*c^2*d^4-18*a*d^5+26*b*d^5-9*c*d^5-3*d^6-17*a^5*e+32*a^4*b*e-23*a^3*b^2*e-4*a^2*b^3*e+42*a*b^4*e-43*b^5*e+28*a^4*c*e+5*a^3*b*c*e-14*a^2*b^2*c*e-43*a*b^3*c*e+41*b^4*c*e+2*a^3*c^2*e-27*a^2*b*c^2*e-35*a*b^2*c^2*e+2*b^3*c^2*e-42*a^2*c^3*e+47*a*b*c^3*e+50*b^2*c^3*e-a*c^4*e+10*b*c^4*e+47*c^5*e-23*a^4*d*e+25*a^3*b*d*e-41*a^2*b^2*d*e+32*a*b^3*d*e-35*b^4*d*e+14*a^3*c*d*e-25*a^2*b*c*d*e+47*a*b^2*c*d*e-32*b^3*c*d*e+50*a^2*c^2*d*e-30*a*b*c^2*d*e+39*b^2*c^2*d*e+30*a*c^3*d*e-33*b*c^3*d*e+37*c^4*d*e-21*a^3*d^2*e+34*a^2*b*d^2*e+7*a*b^2*d^2*e-43*b^3*d^2*e+13*a^2*c*d^2*e+32*a*b*c*d^2*e-35*b^2*c*d^2*e+18*a*c^2*d^2*e-2*b*c^2*d^2*e+9*c^3*d^2*e+13*a^2*d^3*e-32*a*b*d^3*e-9*b^2*d^3*e-35*a*c*d^3*e-14*b*c*d^3*e+9*c^2*d^3*e+19*a*d^4*e-50*b*d^4*e+28*c*d^4*e-40*d^5*e+17*a^4*e^2-44*a^3*b*e^2+30*a^2*b^2*e^2+41*a*b^3*e^2+20*b^4*e^2+21*a^3*c*e^2+48*a^2*b*c*e^2+15*a*b^2*c*e^2-40*b^3*c*e^2-6*a^2*c^2*e^2-29*a*b*c^2*e^2-42*b^2*c^2*e^2-40*a*c^3*e^2-48*b*c^3*e^2+36*c^4*e^2+38*a^3*d*e^2+19*a^2*b*d*e^2+41*a*b^2*d*e^2+34*b^3*d*e^2+20*a^2*c*d*e^2-23*a*b*c*d*e^2-2*b^2*c*d*e^2+36*a*c^2*d*e^2-37*b*c^2*d*e^2+9*c^3*d*e^2-47*a^2*d^2*e^2-35*a*b*d^2*e^2+13*b^2*d^2*e^2-20*a*c*d^2*e^2-45*b*c*d^2*e^2+17*c^2*d^2*e^2-32*a*d^3*e^2+13*b*d^3*e^2-4*c*d^3*e^2-26*d^4*e^2+32*a^3*e^3-25*a^2*b*e^3+30*a*b^2*e^3-12*b^3*e^3+28*a^2*c*e^3+41*a*b*c*e^3-49*b^2*c*e^3+35*a*c^2*e^3+38*b*c^2*e^3+49*c^3*e^3-9*a^2*d*e^3-31*a*b*d*e^3-6*b^2*d*e^3+29*a*c*d*e^3+13*b*c*d*e^3-14*c^2*d*e^3+36*a*d^2*e^3+33*b*d^2*e^3-46*c*d^2*e^3+50*d^3*e^3-47*a^2*e^4+5*a*b*e^4+36*b^2*e^4-5*a*c*e^4+4*b*c*e^4-20*c^2*e^4+29*a*d*e^4+25*b*d*e^4-24*c*d*e^4-10*d^2*e^4-2*a*e^5-29*b*e^5-34*c*e^5-d*e^5+e^6, |
---|
2889 | b^2*c^3*d-49*a^4*d^2+36*a^3*b*d^2-3*a^2*b^2*d^2+12*a*b^3*d^2+11*b^4*d^2+10*a^3*c*d^2+9*a^2*b*c*d^2-13*a*b^2*c*d^2+43*b^3*c*d^2-27*a^2*c^2*d^2-20*a*b*c^2*d^2+34*b^2*c^2*d^2-30*a*c^3*d^2-50*b*c^3*d^2+43*c^4*d^2+17*a^3*d^3+5*a^2*b*d^3+16*a*b^2*d^3+27*b^3*d^3-26*a^2*c*d^3+17*a*b*c*d^3-31*b^2*c*d^3-43*a*c^2*d^3-18*b*c^2*d^3-8*c^3*d^3-8*a^2*d^4+8*a*b*d^4+23*b^2*d^4+7*a*c*d^4-48*b*c*d^4+21*c^2*d^4+5*a*d^5+4*b*d^5+40*c*d^5-22*d^6+3*a^5*e-a^4*b*e+26*a^3*b^2*e+16*a^2*b^3*e-29*a*b^4*e-50*b^5*e-6*a^4*c*e+31*a^3*b*c*e+43*a^2*b^2*c*e+12*a*b^3*c*e+31*b^4*c*e-21*a^3*c^2*e+25*a^2*b*c^2*e+20*a*b^2*c^2*e+15*b^3*c^2*e-4*a^2*c^3*e-48*a*b*c^3*e-29*b^2*c^3*e+43*a*c^4*e-41*b*c^4*e-15*c^5*e-13*a^4*d*e-29*a^3*b*d*e+7*a^2*b^2*d*e+4*a*b^3*d*e-50*b^4*d*e+3*a^3*c*d*e+4*a^2*b*c*d*e+7*a*b^2*c*d*e+4*b^3*c*d*e+16*a^2*c^2*d*e-42*a*b*c^2*d*e+36*b^2*c^2*d*e-5*a*c^3*d*e+13*b*c^3*d*e+17*c^4*d*e+18*a^3*d^2*e-16*a^2*b*d^2*e-32*a*b^2*d^2*e-16*b^3*d^2*e-34*a^2*c*d^2*e-22*a*b*c*d^2*e-12*b^2*c*d^2*e+35*a*c^2*d^2*e+33*b*c^2*d^2*e-47*c^3*d^2*e+12*a^2*d^3*e-43*a*b*d^3*e+11*b^2*d^3*e+2*a*c*d^3*e+42*b*c*d^3*e-18*c^2*d^3*e+44*a*d^4*e+25*b*d^4*e+41*c*d^4*e+40*d^5*e+40*a^4*e^2-3*a^3*b*e^2-8*a^2*b^2*e^2+a*b^3*e^2-27*b^4*e^2+15*a^3*c*e^2+49*a^2*b*c*e^2-14*a*b^2*c*e^2+31*b^3*c*e^2+36*a^2*c^2*e^2-14*a*b*c^2*e^2-31*b^2*c^2*e^2+48*a*c^3*e^2-24*b*c^3*e^2-30*c^4*e^2-47*a^3*d*e^2+12*a^2*b*d*e^2+44*a*b^2*d*e^2+47*b^3*d*e^2-5*a^2*c*d*e^2+23*a*b*c*d*e^2+48*b^2*c*d*e^2-25*a*c^2*d*e^2-7*b*c^2*d*e^2+32*a^2*d^2*e^2+35*a*b*d^2*e^2-19*b^2*d^2*e^2+19*a*c*d^2*e^2+26*b*c*d^2*e^2+26*c^2*d^2*e^2+8*a*d^3*e^2-21*b*d^3*e^2-6*c*d^3*e^2-35*d^4*e^2-30*a^3*e^3+36*a^2*b*e^3-27*a*b^2*e^3-33*b^3*e^3-50*a^2*c*e^3+41*a*b*c*e^3+13*b^2*c*e^3+20*a*c^2*e^3+36*b*c^2*e^3+14*c^3*e^3+40*a^2*d*e^3-35*a*b*d*e^3+11*b^2*d*e^3+36*a*c*d*e^3+23*b*c*d*e^3-34*c^2*d*e^3+25*a*d^2*e^3-14*b*d^2*e^3-5*c*d^2*e^3+11*d^3*e^3+42*a^2*e^4-48*a*b*e^4-27*b^2*e^4-17*a*c*e^4+32*b*c*e^4-3*c^2*e^4-3*a*d*e^4-33*b*d*e^4-3*c*d*e^4-14*d^2*e^4+8*a*e^5+14*b*e^5+3*c*e^5-34*d*e^5-46*e^6, |
---|
2890 | a*b*c^3*d-20*a^4*d^2+23*a^3*b*d^2-14*a^2*b^2*d^2+29*a*b^3*d^2-36*b^4*d^2-48*a^3*c*d^2+39*a^2*b*c*d^2-34*a*b^2*c*d^2+b^3*c*d^2-25*a^2*c^2*d^2+22*a*b*c^2*d^2-12*b^2*c^2*d^2+48*a*c^3*d^2-41*b*c^3*d^2+13*c^4*d^2-24*a^3*d^3-43*a^2*b*d^3-31*a*b^2*d^3-13*b^3*d^3+10*a^2*c*d^3-16*a*b*c*d^3+48*b^2*c*d^3-18*a*c^2*d^3+7*b*c^2*d^3+8*c^3*d^3-14*a^2*d^4-14*a*b*d^4+49*b^2*d^4+43*a*c*d^4+7*b*c*d^4-50*c^2*d^4-21*a*d^5-33*b*d^5-44*c*d^5-40*d^6-42*a^5*e+39*a^4*b*e-14*a^3*b^2*e+34*a^2*b^3*e+22*a*b^4*e+37*b^5*e+24*a^4*c*e+39*a^3*b*c*e-43*a^2*b^2*c*e-40*a*b^3*c*e-6*b^4*c*e-45*a^3*c^2*e+18*a^2*b*c^2*e-8*a*b^2*c^2*e+22*b^3*c^2*e-36*a^2*c^3*e+31*a*b*c^3*e+15*b^2*c^3*e+7*a*c^4*e-18*b*c^4*e-31*c^5*e-20*a^4*d*e+25*a^3*b*d*e-11*a^2*b^2*d*e-21*a*b^3*d*e-23*b^4*d*e+18*a^3*c*d*e-49*a^2*b*c*d*e+5*a*b^2*c*d*e+21*b^3*c*d*e-2*a^2*c^2*d*e+42*a*b*c^2*d*e-37*b^2*c^2*d*e+28*a*c^3*d*e-8*b*c^3*d*e+c^4*d*e+10*a^3*d^2*e-16*a^2*b*d^2*e-20*a*b^2*d^2*e+42*b^3*d^2*e+23*a^2*c*d^2*e-16*a*b*c*d^2*e+39*b^2*c*d^2*e+3*a*c^2*d^2*e+25*b*c^2*d^2*e-16*c^3*d^2*e-33*a^2*d^3*e-28*a*b*d^3*e+4*b^2*d^3*e-15*a*c*d^3*e-30*b*c*d^3*e-5*c^2*d^3*e-8*b*d^4*e-21*c*d^4*e+6*d^5*e-9*a^4*e^2-23*a^3*b*e^2-45*a^2*b^2*e^2+33*a*b^3*e^2+14*b^4*e^2+8*a^3*c*e^2+5*a^2*b*c*e^2-13*a*b^2*c*e^2-39*b^3*c*e^2-4*a^2*c^2*e^2+30*a*b*c^2*e^2-38*b^2*c^2*e^2+24*a*c^3*e^2-29*b*c^3*e^2-3*c^4*e^2+3*a^3*d*e^2+43*a^2*b*d*e^2-21*a*b^2*d*e^2-45*b^3*d*e^2-3*a^2*c*d*e^2-22*a*b*c*d*e^2+16*b^2*c*d*e^2-42*b*c^2*d*e^2-43*c^3*d*e^2-10*a*b*d^2*e^2+23*b^2*d^2*e^2-36*a*c*d^2*e^2+29*b*c*d^2*e^2-11*c^2*d^2*e^2+18*a*d^3*e^2-46*b*d^3*e^2-34*c*d^3*e^2+21*d^4*e^2+4*a^3*e^3+23*a^2*b*e^3-18*a*b^2*e^3-10*b^3*e^3+3*a^2*c*e^3+a*b*c*e^3-32*b^2*c*e^3-19*a*c^2*e^3-5*b*c^2*e^3+25*c^3*e^3-40*a^2*d*e^3-37*a*b*d*e^3-10*b^2*d*e^3-20*a*c*d*e^3+35*b*c*d*e^3+2*c^2*d*e^3+46*a*d^2*e^3+46*b*d^2*e^3+25*c*d^2*e^3+14*d^3*e^3-28*a^2*e^4+24*a*b*e^4-38*b^2*e^4+11*a*c*e^4+15*b*c*e^4-10*c^2*e^4-32*a*d*e^4+37*b*d*e^4+21*c*d*e^4-25*d^2*e^4-47*a*e^5-32*b*e^5+5*c*e^5+17*d*e^5+44*e^6, |
---|
2891 | a^2*c^3*d+25*a^4*d^2-40*a^3*b*d^2-49*a^2*b^2*d^2+30*a*b^3*d^2-36*b^4*d^2+41*a^3*c*d^2+23*a^2*b*c*d^2-16*a*b^2*c*d^2-20*b^3*c*d^2-46*a^2*c^2*d^2-29*a*b*c^2*d^2-14*b^2*c^2*d^2-38*a*c^3*d^2+9*b*c^3*d^2+50*c^4*d^2-20*a^3*d^3-14*a^2*b*d^3+13*a*b^2*d^3+5*b^3*d^3+7*a^2*c*d^3+46*a*b*c*d^3+40*b^2*c*d^3-46*a*c^2*d^3+27*b*c^2*d^3-5*c^3*d^3+43*a^2*d^4+5*a*b*d^4+3*b^2*d^4+29*a*c*d^4-43*b*c*d^4-31*c^2*d^4-24*a*d^5-45*b*d^5-26*c*d^5-6*d^6+18*a^5*e+22*a^4*b*e-12*a^3*b^2*e+40*a^2*b^3*e-8*a*b^4*e+36*b^5*e+5*a^4*c*e+46*a^3*b*c*e+6*a^2*b^2*c*e-39*a*b^3*c*e-29*b^4*c*e+36*a^3*c^2*e+35*a^2*b*c^2*e+11*a*b^2*c^2*e-12*b^3*c^2*e+13*a^2*c^3*e+15*a*b*c^3*e+38*b^2*c^3*e-4*a*c^4*e-46*b*c^4*e+25*c^5*e-31*a^4*d*e+35*a^3*b*d*e+37*a^2*b^2*d*e+27*a*b^3*d*e-30*b^4*d*e-37*a^3*c*d*e-2*a^2*b*c*d*e+10*a*b^2*c*d*e+12*b^3*c*d*e+39*a^2*c^2*d*e+35*a*b*c^2*d*e-17*b^2*c^2*d*e-30*a*c^3*d*e+32*b*c^3*d*e+41*c^4*d*e+49*a^3*d^2*e-42*a^2*b*d^2*e-22*a*b^2*d^2*e-3*b^3*d^2*e+17*a^2*c*d^2*e+31*a*b*c*d^2*e+23*b^2*c*d^2*e+4*a*c^2*d^2*e+50*b*c^2*d^2*e+43*c^3*d^2*e+17*a^2*d^3*e-30*a*b*d^3*e+43*b^2*d^3*e+7*a*c*d^3*e+30*b*c*d^3*e+37*c^2*d^3*e-a*d^4*e+6*b*d^4*e+22*c*d^4*e-34*d^5*e-48*a^4*e^2+14*a^3*b*e^2+17*a^2*b^2*e^2-39*a*b^3*e^2+37*b^4*e^2-27*a^3*c*e^2+14*a^2*b*c*e^2-43*a*b^2*c*e^2+42*b^3*c*e^2-31*a^2*c^2*e^2+43*a*b*c^2*e^2-34*b^2*c^2*e^2-40*a*c^3*e^2-14*b*c^3*e^2+19*c^4*e^2+11*a^3*d*e^2+23*a^2*b*d*e^2+11*a*b^2*d*e^2+22*b^3*d*e^2+41*a^2*c*d*e^2-20*a*b*c*d*e^2+b^2*c*d*e^2-34*a*c^2*d*e^2-39*b*c^2*d*e^2-20*c^3*d*e^2+25*a^2*d^2*e^2+33*a*b*d^2*e^2-38*b^2*d^2*e^2-34*a*c*d^2*e^2-37*b*c*d^2*e^2-15*c^2*d^2*e^2-13*a*d^3*e^2-42*b*d^3*e^2+49*c*d^3*e^2+29*d^4*e^2-48*a^3*e^3+49*a^2*b*e^3-50*a*b^2*e^3-44*b^3*e^3-42*a^2*c*e^3+14*a*b*c*e^3-34*b^2*c*e^3+3*a*c^2*e^3-b*c^2*e^3+28*c^3*e^3+24*a^2*d*e^3+37*a*b*d*e^3+29*b^2*d*e^3-a*c*d*e^3+31*b*c*d*e^3-14*c^2*d*e^3-36*a*d^2*e^3-4*b*d^2*e^3+29*c*d^2*e^3-47*d^3*e^3-36*a^2*e^4-13*a*b*e^4-45*b^2*e^4-23*a*c*e^4-32*b*c*e^4+2*c^2*e^4+11*a*d*e^4-24*b*d*e^4-46*c*d*e^4-40*d^2*e^4-4*a*e^5-29*b*e^5+14*c*e^5-44*d*e^5+32*e^6, |
---|
2892 | b^3*c^2*d+13*a^4*d^2+14*a^3*b*d^2-11*a^2*b^2*d^2-12*a*b^3*d^2-8*b^4*d^2-46*a^3*c*d^2-26*a^2*b*c*d^2+28*a*b^2*c*d^2+13*b^3*c*d^2-36*a^2*c^2*d^2+35*a*b*c^2*d^2+49*b^2*c^2*d^2+32*a*c^3*d^2+17*b*c^3*d^2+34*c^4*d^2-8*a^3*d^3-10*a^2*b*d^3+31*a*b^2*d^3-22*b^3*d^3+a^2*c*d^3+32*a*b*c*d^3+33*b^2*c*d^3+34*a*c^2*d^3-36*b*c^2*d^3-11*c^3*d^3-42*a^2*d^4-15*a*b*d^4-3*b^2*d^4-48*a*c*d^4+12*b*c*d^4+35*c^2*d^4-43*a*d^5+9*b*d^5+47*c*d^5+19*d^6-18*a^5*e+9*a^4*b*e+34*a^3*b^2*e+5*a^2*b^3*e+46*a*b^4*e-34*b^5*e-42*a^4*c*e-36*a^3*b*c*e+5*a^2*b^2*c*e+43*a*b^3*c*e-18*b^4*c*e+21*a^3*c^2*e-45*a^2*b*c^2*e-31*a*b^2*c^2*e+2*b^3*c^2*e+a*b*c^3*e-45*b^2*c^3*e+41*a*c^4*e+37*b*c^4*e-32*c^5*e+19*a^4*d*e-30*a^3*b*d*e+5*a^2*b^2*d*e+17*a*b^3*d*e+47*b^4*d*e-23*a^3*c*d*e+4*a^2*b*c*d*e+14*a*b^2*c*d*e-31*b^3*c*d*e+50*a^2*c^2*d*e-18*a*b*c^2*d*e-37*b^2*c^2*d*e-35*a*c^3*d*e+29*b*c^3*d*e-28*c^4*d*e+3*a^3*d^2*e+13*a^2*b*d^2*e-30*a*b^2*d^2*e-9*b^3*d^2*e+20*a^2*c*d^2*e+17*a*b*c*d^2*e-21*b^2*c*d^2*e-41*a*c^2*d^2*e-32*b*c^2*d^2*e+33*c^3*d^2*e-3*a^2*d^3*e-23*a*b*d^3*e-47*b^2*d^3*e-19*c^2*d^3*e+12*a*d^4*e-32*b*d^4*e-37*c*d^4*e+20*d^5*e+21*a^4*e^2+18*a^3*b*e^2-4*a^2*b^2*e^2+25*a*b^3*e^2-13*b^4*e^2+28*a^3*c*e^2-28*a^2*b*c*e^2-37*a*b^2*c*e^2-32*b^3*c*e^2+8*a^2*c^2*e^2+34*a*b*c^2*e^2-21*b^2*c^2*e^2+15*a*c^3*e^2-39*b*c^3*e^2-45*c^4*e^2-26*a^3*d*e^2+34*a^2*b*d*e^2-25*a*b^2*d*e^2+24*b^3*d*e^2+5*a^2*c*d*e^2+36*a*b*c*d*e^2-27*b^2*c*d*e^2+31*a*c^2*d*e^2+31*b*c^2*d*e^2+13*c^3*d*e^2-3*a^2*d^2*e^2-18*a*b*d^2*e^2+47*b^2*d^2*e^2+20*a*c*d^2*e^2+8*b*c*d^2*e^2-37*c^2*d^2*e^2+21*a*d^3*e^2+3*b*d^3*e^2-34*c*d^3*e^2+28*d^4*e^2-19*a^3*e^3+33*a^2*b*e^3-50*a*b^2*e^3-44*b^3*e^3+17*a^2*c*e^3-48*a*b*c*e^3-3*b^2*c*e^3+33*a*c^2*e^3+13*b*c^2*e^3-29*c^3*e^3+38*a^2*d*e^3-44*a*b*d*e^3-36*b^2*d*e^3-17*a*c*d*e^3+38*b*c*d*e^3+47*c^2*d*e^3+4*a*d^2*e^3-11*b*d^2*e^3-14*c*d^2*e^3-46*d^3*e^3-17*a^2*e^4-23*a*b*e^4+26*b^2*e^4+24*a*c*e^4-37*b*c*e^4+34*c^2*e^4+24*a*d*e^4-32*b*d*e^4-19*c*d*e^4+15*d^2*e^4-33*a*e^5+7*b*e^5-29*c*e^5+37*d*e^5-16*e^6, |
---|
2893 | a*b^2*c^2*d-26*a^4*d^2-24*a^3*b*d^2-36*a^2*b^2*d^2+26*a*b^3*d^2+26*b^4*d^2+44*a^3*c*d^2-31*a^2*b*c*d^2-49*a*b^2*c*d^2-30*b^3*c*d^2-13*a^2*c^2*d^2+49*a*b*c^2*d^2-50*b^2*c^2*d^2+27*a*c^3*d^2+24*c^4*d^2-47*a^3*d^3+29*a^2*b*d^3+31*a*b^2*d^3-30*b^3*d^3+39*a^2*c*d^3+23*a*b*c*d^3+5*b^2*c*d^3-30*a*c^2*d^3-20*b*c^2*d^3-27*c^3*d^3-40*a^2*d^4+36*a*b*d^4+28*b^2*d^4+29*a*c*d^4+2*b*c*d^4+14*c^2*d^4-41*a*d^5+22*b*d^5+22*c*d^5+9*d^6-22*a^5*e-33*a^4*b*e-19*a^3*b^2*e+30*a^2*b^3*e+4*a*b^4*e+42*b^5*e-13*a^4*c*e+27*a^3*b*c*e-10*a^2*b^2*c*e+21*a*b^3*c*e-46*b^4*c*e-22*a^3*c^2*e-9*a^2*b*c^2*e+11*a*b^2*c^2*e+33*b^3*c^2*e-4*a^2*c^3*e-26*a*b*c^3*e+47*b^2*c^3*e+41*a*c^4*e-23*b*c^4*e-35*c^5*e-28*a^4*d*e+6*a^3*b*d*e+39*a^2*b^2*d*e+12*a*b^3*d*e-46*b^4*d*e+5*a^3*c*d*e-4*a^2*b*c*d*e+45*a*b^2*c*d*e-8*b^3*c*d*e-46*a^2*c^2*d*e-34*a*b*c^2*d*e-47*b^2*c^2*d*e+20*a*c^3*d*e+10*b*c^3*d*e+2*c^4*d*e+22*a^3*d^2*e-5*a^2*b*d^2*e+24*a*b^2*d^2*e+27*b^3*d^2*e+10*a^2*c*d^2*e-27*a*b*c*d^2*e+13*b^2*c*d^2*e+38*a*c^2*d^2*e+20*b*c^2*d^2*e-46*c^3*d^2*e-47*a^2*d^3*e+42*a*b*d^3*e-34*b^2*d^3*e-3*a*c*d^3*e+4*b*c*d^3*e+4*c^2*d^3*e+47*a*d^4*e+46*b*d^4*e+29*c*d^4*e+28*d^5*e+18*a^4*e^2+19*a^3*b*e^2+6*a^2*b^2*e^2-38*a*b^3*e^2-22*b^4*e^2-21*a^3*c*e^2+44*a^2*b*c*e^2-23*a*b^2*c*e^2-20*b^3*c*e^2-35*a^2*c^2*e^2-33*a*b*c^2*e^2+b^2*c^2*e^2+2*a*c^3*e^2+36*b*c^3*e^2+29*c^4*e^2-14*a^2*b*d*e^2-44*a*b^2*d*e^2+7*b^3*d*e^2+17*a^2*c*d*e^2-2*a*b*c*d*e^2+18*b^2*c*d*e^2-41*a*c^2*d*e^2+41*b*c^2*d*e^2+40*c^3*d*e^2+6*a^2*d^2*e^2-15*a*b*d^2*e^2-39*b^2*d^2*e^2-50*a*c*d^2*e^2-43*b*c*d^2*e^2-3*c^2*d^2*e^2+29*a*d^3*e^2-3*b*d^3*e^2+48*c*d^3*e^2+22*d^4*e^2+24*a^3*e^3+5*a^2*b*e^3-3*a*b^2*e^3-36*b^3*e^3-50*a^2*c*e^3+23*a*b*c*e^3+9*b^2*c*e^3+3*a*c^2*e^3+45*b*c^2*e^3-24*c^3*e^3-30*a^2*d*e^3+31*a*b*d*e^3+26*b^2*d*e^3-37*a*c*d*e^3-38*b*c*d*e^3-36*c^2*d*e^3-8*a*d^2*e^3-41*b*d^2*e^3-40*c*d^2*e^3+25*d^3*e^3-25*a^2*e^4+12*a*b*e^4-25*b^2*e^4-39*a*c*e^4-19*b*c*e^4-21*c^2*e^4+34*a*d*e^4-35*b*d*e^4+9*c*d*e^4-32*d^2*e^4+29*a*e^5+32*b*e^5-25*c*e^5-31*d*e^5-34*e^6, |
---|
2894 | a^2*b*c^2*d+14*a^4*d^2+25*a^3*b*d^2-2*a^2*b^2*d^2-32*a*b^3*d^2-31*b^4*d^2-40*a^3*c*d^2-15*a^2*b*c*d^2+50*a*b^2*c*d^2+b^3*c*d^2-7*a^2*c^2*d^2-14*a*b*c^2*d^2+8*b^2*c^2*d^2+25*a*c^3*d^2+6*b*c^3*d^2+25*c^4*d^2-20*a^3*d^3+a^2*b*d^3-27*a*b^2*d^3+24*b^3*d^3+33*a^2*c*d^3-14*a*b*c*d^3-48*b^2*c*d^3+10*a*c^2*d^3+8*b*c^2*d^3+13*c^3*d^3-11*a^2*d^4+41*a*b*d^4+48*b^2*d^4+29*a*c*d^4-29*b*c*d^4+40*c^2*d^4+50*a*d^5+33*b*d^5-35*c*d^5-17*d^6-31*a^5*e+42*a^4*b*e+48*a^3*b^2*e-48*a^2*b^3*e-6*a*b^4*e+27*b^5*e+31*a^4*c*e+6*a^3*b*c*e-20*a^2*b^2*c*e-10*a*b^3*c*e-34*b^4*c*e-45*a^3*c^2*e+15*a^2*b*c^2*e+37*a*b^2*c^2*e+34*b^3*c^2*e-14*a^2*c^3*e-9*a*b*c^3*e-33*b^2*c^3*e-42*a*c^4*e+20*b*c^4*e+4*c^5*e+28*a^4*d*e+10*a^3*b*d*e-23*a^2*b^2*d*e-17*a*b^3*d*e-44*b^4*d*e-8*a^3*c*d*e-13*a^2*b*c*d*e+35*a*b^2*c*d*e-49*b^3*c*d*e-23*a^2*c^2*d*e-43*a*b*c^2*d*e+11*b^2*c^2*d*e+45*a*c^3*d*e-38*b*c^3*d*e-44*c^4*d*e+45*a^3*d^2*e+9*a^2*b*d^2*e+31*a*b^2*d^2*e-18*b^3*d^2*e-30*a^2*c*d^2*e+4*a*b*c*d^2*e+50*b^2*c*d^2*e+24*a*c^2*d^2*e+24*b*c^2*d^2*e-11*c^3*d^2*e-11*a^2*d^3*e-36*a*b*d^3*e+5*b^2*d^3*e+26*a*c*d^3*e-18*b*c*d^3*e-41*c^2*d^3*e-2*a*d^4*e+17*b*d^4*e+46*c*d^4*e+9*d^5*e-49*a^4*e^2-13*a^3*b*e^2+47*a^2*b^2*e^2+19*a*b^3*e^2+42*b^4*e^2+15*a^3*c*e^2-48*a^2*b*c*e^2+33*a*b^2*c*e^2-28*b^3*c*e^2-5*a^2*c^2*e^2-32*a*b*c^2*e^2+2*b^2*c^2*e^2-25*a*c^3*e^2-8*b*c^3*e^2+8*c^4*e^2-48*a^3*d*e^2-12*a^2*b*d*e^2-49*a*b^2*d*e^2+49*b^3*d*e^2-4*a^2*c*d*e^2-40*a*b*c*d*e^2+42*b^2*c*d*e^2-11*a*c^2*d*e^2+12*b*c^2*d*e^2+5*c^3*d*e^2+40*a^2*d^2*e^2+21*a*b*d^2*e^2-37*b^2*d^2*e^2+10*a*c*d^2*e^2-38*b*c*d^2*e^2-22*c^2*d^2*e^2-a*d^3*e^2+20*b*d^3*e^2-31*c*d^3*e^2-15*d^4*e^2+31*a^3*e^3-24*a^2*b*e^3-6*b^3*e^3-10*a^2*c*e^3-27*a*b*c*e^3+15*b^2*c*e^3-40*b*c^2*e^3+36*c^3*e^3+12*a^2*d*e^3+32*a*b*d*e^3-39*b^2*d*e^3-9*a*c*d*e^3+13*b*c*d*e^3+35*c^2*d*e^3+31*a*d^2*e^3-4*b*d^2*e^3+14*c*d^2*e^3+19*d^3*e^3-36*a^2*e^4-44*a*b*e^4-10*b^2*e^4+29*a*c*e^4-26*b*c*e^4+43*c^2*e^4+5*a*d*e^4+3*b*d*e^4-17*c*d*e^4+48*d^2*e^4-16*a*e^5+2*b*e^5-41*c*e^5-15*d*e^5-19*e^6, |
---|
2895 | a^3*c^2*d+17*a^4*d^2+4*a^3*b*d^2+a^2*b^2*d^2+20*a*b^3*d^2-36*b^4*d^2-13*a^3*c*d^2+40*a^2*b*c*d^2-21*a*b^2*c*d^2-35*b^3*c*d^2-33*a^2*c^2*d^2-a*b*c^2*d^2+12*b^2*c^2*d^2+33*a*c^3*d^2-34*b*c^3*d^2-11*c^4*d^2+9*a^3*d^3-32*a^2*b*d^3+42*a*b^2*d^3-49*b^3*d^3-12*a^2*c*d^3-12*a*b*c*d^3+12*b^2*c*d^3+20*a*c^2*d^3+44*b*c^2*d^3+15*c^3*d^3+16*a^2*d^4+46*a*b*d^4+26*b^2*d^4+2*a*c*d^4-28*b*c*d^4-45*c^2*d^4+17*a*d^5-29*b*d^5+28*c*d^5-39*d^6+16*a^5*e+50*a^4*b*e+5*a^3*b^2*e+5*a^2*b^3*e-30*a*b^4*e-8*b^5*e+29*a^4*c*e-48*a^3*b*c*e-33*a^2*b^2*c*e-25*a*b^3*c*e+40*b^4*c*e-31*a^3*c^2*e-15*a^2*b*c^2*e+2*a*b^2*c^2*e+28*b^3*c^2*e-39*a^2*c^3*e+10*a*b*c^3*e-35*b^2*c^3*e+33*a*c^4*e-26*b*c^4*e-23*c^5*e+27*a^4*d*e-34*a^3*b*d*e+9*a^2*b^2*d*e+22*a*b^3*d*e-35*b^4*d*e+24*a^3*c*d*e+6*a^2*b*c*d*e+29*a*b^2*c*d*e-43*b^3*c*d*e+12*a^2*c^2*d*e+50*a*b*c^2*d*e-21*b^2*c^2*d*e-5*a*c^3*d*e-3*b*c^3*d*e-25*c^4*d*e+38*a^3*d^2*e-37*a^2*b*d^2*e+6*a*b^2*d^2*e+47*b^3*d^2*e+25*a^2*c*d^2*e+27*a*b*c*d^2*e+6*b^2*c*d^2*e-12*a*c^2*d^2*e-45*b*c^2*d^2*e-31*c^3*d^2*e-40*a^2*d^3*e+44*b^2*d^3*e-32*a*c*d^3*e-4*b*c*d^3*e-31*c^2*d^3*e+16*a*d^4*e-24*b*d^4*e+40*c*d^4*e-13*d^5*e-10*a^4*e^2+26*a^3*b*e^2+12*a^2*b^2*e^2+45*a*b^3*e^2+43*b^4*e^2+26*a^3*c*e^2+21*a^2*b*c*e^2-3*a*b^2*c*e^2-18*b^3*c*e^2+24*a^2*c^2*e^2+20*a*b*c^2*e^2-13*b^2*c^2*e^2+43*a*c^3*e^2+34*b*c^3*e^2-24*c^4*e^2+29*a^3*d*e^2+13*a^2*b*d*e^2-7*a*b^2*d*e^2-5*b^3*d*e^2+45*a^2*c*d*e^2+10*a*b*c*d*e^2+30*b^2*c*d*e^2-13*a*c^2*d*e^2+43*b*c^2*d*e^2+37*c^3*d*e^2+29*a^2*d^2*e^2+46*a*b*d^2*e^2+33*b^2*d^2*e^2+18*a*c*d^2*e^2-22*b*c*d^2*e^2+13*c^2*d^2*e^2+44*a*d^3*e^2+38*b*d^3*e^2+27*c*d^3*e^2+44*d^4*e^2-29*a^2*b*e^3-36*a*b^2*e^3+40*b^3*e^3+9*a^2*c*e^3-19*a*b*c*e^3+36*b^2*c*e^3+5*a*c^2*e^3+20*b*c^2*e^3+3*c^3*e^3+49*a^2*d*e^3-46*a*b*d*e^3+7*b^2*d*e^3-26*a*c*d*e^3+17*b*c*d*e^3-48*c^2*d*e^3-9*a*d^2*e^3-25*b*d^2*e^3-25*c*d^2*e^3-12*d^3*e^3+13*a^2*e^4+a*b*e^4+5*b^2*e^4+44*a*c*e^4+14*b*c*e^4+42*c^2*e^4+16*a*d*e^4+12*b*d*e^4+20*c*d*e^4+16*d^2*e^4-27*a*e^5+13*b*e^5+38*c*e^5-d*e^5-26*e^6, |
---|
2896 | b^4*c*d-16*a^4*d^2-19*a^3*b*d^2+43*a^2*b^2*d^2+18*a*b^3*d^2-14*b^4*d^2-6*a^3*c*d^2-33*a^2*b*c*d^2-38*a*b^2*c*d^2-4*b^3*c*d^2+16*a^2*c^2*d^2-38*a*b*c^2*d^2+40*b^2*c^2*d^2+11*a*c^3*d^2+36*b*c^3*d^2+26*c^4*d^2+a^3*d^3-37*a^2*b*d^3-5*a*b^2*d^3-36*b^3*d^3+38*a^2*c*d^3+32*a*b*c*d^3+12*b^2*c*d^3+24*a*c^2*d^3-40*b*c^2*d^3-9*c^3*d^3+15*a^2*d^4+36*a*b*d^4-50*b^2*d^4-43*a*c*d^4+43*b*c*d^4+33*c^2*d^4-8*a*d^5-28*b*d^5-42*c*d^5-20*d^6+16*a^5*e+4*a^4*b*e+41*a^3*b^2*e+18*a^2*b^3*e+26*a*b^4*e+12*b^5*e+3*a^4*c*e-50*a^3*b*c*e+12*a^2*b^2*c*e-6*a*b^3*c*e-40*b^4*c*e+48*a^3*c^2*e+46*a^2*b*c^2*e-24*a*b^2*c^2*e+47*b^3*c^2*e-30*a^2*c^3*e+30*a*b*c^3*e+19*b^2*c^3*e-9*a*c^4*e-33*b*c^4*e-43*c^5*e-31*a^4*d*e-46*a^3*b*d*e-19*a^2*b^2*d*e-40*a*b^3*d*e+17*b^4*d*e-7*a^3*c*d*e+27*a^2*b*c*d*e-18*a*b^2*c*d*e+40*b^3*c*d*e+13*a^2*c^2*d*e-40*a*b*c^2*d*e-21*b^2*c^2*d*e+48*a*c^3*d*e-23*b*c^3*d*e-41*c^4*d*e-19*a^3*d^2*e+26*a^2*b*d^2*e-35*a*b^2*d^2*e-5*b^3*d^2*e+23*a^2*c*d^2*e+44*a*b*c*d^2*e-11*b^2*c*d^2*e+2*a*c^2*d^2*e-23*b*c^2*d^2*e-9*c^3*d^2*e+26*a^2*d^3*e+3*a*b*d^3*e+27*b^2*d^3*e+24*a*c*d^3*e+b*c*d^3*e-33*c^2*d^3*e+27*a*d^4*e-49*b*d^4*e-33*c*d^4*e+3*d^5*e-5*a^4*e^2-39*a^3*b*e^2-a^2*b^2*e^2+9*a*b^3*e^2+38*b^4*e^2+48*a^3*c*e^2-50*a^2*b*c*e^2+31*a*b^2*c*e^2-b^3*c*e^2+40*a^2*c^2*e^2+46*a*b*c^2*e^2-9*b^2*c^2*e^2-5*a*c^3*e^2+2*b*c^3*e^2-3*c^4*e^2-4*a^3*d*e^2+20*a^2*b*d*e^2-42*a*b^2*d*e^2+5*b^3*d*e^2-29*a^2*c*d*e^2+21*a*b*c*d*e^2-36*b^2*c*d*e^2+34*a*c^2*d*e^2+18*b*c^2*d*e^2-45*c^3*d*e^2+13*a^2*d^2*e^2-25*a*b*d^2*e^2+27*b^2*d^2*e^2+32*b*c*d^2*e^2+38*c^2*d^2*e^2+2*a*d^3*e^2+10*b*d^3*e^2+31*c*d^3*e^2-6*d^4*e^2+8*a^3*e^3-40*a^2*b*e^3+34*a*b^2*e^3+50*b^3*e^3-10*a^2*c*e^3-36*a*b*c*e^3-17*b^2*c*e^3-39*a*c^2*e^3+19*b*c^2*e^3-13*c^3*e^3+28*a^2*d*e^3+27*a*b*d*e^3+28*b^2*d*e^3+13*a*c*d*e^3+47*b*c*d*e^3-32*c^2*d*e^3+6*a*d^2*e^3+16*b*d^2*e^3-2*c*d^2*e^3+39*d^3*e^3+12*a^2*e^4-12*a*b*e^4+27*b^2*e^4-4*a*c*e^4+7*b*c*e^4-2*c^2*e^4+30*a*d*e^4-16*b*d*e^4-13*c*d*e^4+18*d^2*e^4-6*a*e^5+32*b*e^5-46*c*e^5+33*d*e^5+26*e^6, |
---|
2897 | a*b^3*c*d-15*a^4*d^2-41*a^3*b*d^2-50*a^2*b^2*d^2-45*b^4*d^2+29*a^3*c*d^2+43*a^2*b*c*d^2-7*a*b^2*c*d^2-49*b^3*c*d^2+10*a^2*c^2*d^2+13*a*b*c^2*d^2-8*b^2*c^2*d^2+22*a*c^3*d^2+21*b*c^3*d^2-20*c^4*d^2-25*a^3*d^3+28*a^2*b*d^3+36*a*b^2*d^3+b^3*d^3-38*a^2*c*d^3+34*a*b*c*d^3-33*b^2*c*d^3+11*a*c^2*d^3+48*b*c^2*d^3+33*c^3*d^3+5*a^2*d^4+5*a*b*d^4+4*b^2*d^4+37*a*c*d^4+44*b*c*d^4-35*c^2*d^4+8*a*d^5+38*b*d^5+43*c*d^5-15*d^6+15*a^5*e+31*a^4*b*e-30*a^3*b^2*e+46*a^2*b^3*e-29*a*b^4*e+13*b^5*e-38*a^4*c*e+39*a^3*b*c*e+3*a^2*b^2*c*e-19*a*b^3*c*e-50*b^4*c*e-a^3*c^2*e+3*a^2*b*c^2*e-8*a*b^2*c^2*e-34*b^3*c^2*e-40*a^2*c^3*e+43*a*b*c^3*e+45*b^2*c^3*e-31*a*c^4*e+19*b*c^4*e+38*c^5*e+5*a^4*d*e-43*a^3*b*d*e+23*a^2*b^2*d*e+38*a*b^3*d*e-35*b^4*d*e-46*a^3*c*d*e+46*a^2*b*c*d*e-41*a*b^2*c*d*e+16*b^3*c*d*e-37*a^2*c^2*d*e+28*a*b*c^2*d*e-8*b^2*c^2*d*e+40*a*c^3*d*e-42*b*c^3*d*e-22*c^4*d*e+36*a^3*d^2*e+17*a^2*b*d^2*e+4*a*b^2*d^2*e+38*b^3*d^2*e-41*a^2*c*d^2*e-7*a*b*c*d^2*e-34*b^2*c*d^2*e+10*a*c^2*d^2*e-7*b*c^2*d^2*e-35*c^3*d^2*e-26*a^2*d^3*e-a*b*d^3*e-12*b^2*d^3*e+46*a*c*d^3*e-44*b*c*d^3*e+14*c^2*d^3*e-42*a*d^4*e-8*b*d^4*e+39*c*d^4*e+17*d^5*e+43*a^4*e^2+10*a^3*b*e^2-13*a^2*b^2*e^2-a*b^3*e^2+32*b^4*e^2+4*a^3*c*e^2+10*a^2*b*c*e^2-34*a*b^2*c*e^2+5*b^3*c*e^2-30*a^2*c^2*e^2-6*a*b*c^2*e^2+38*b^2*c^2*e^2-44*a*c^3*e^2+9*b*c^3*e^2+11*c^4*e^2+10*a^3*d*e^2+50*a^2*b*d*e^2-2*a*b^2*d*e^2-26*b^3*d*e^2+15*a^2*c*d*e^2-40*a*b*c*d*e^2+21*b^2*c*d*e^2-45*a*c^2*d*e^2-5*b*c^2*d*e^2-8*c^3*d*e^2+5*a^2*d^2*e^2+8*a*b*d^2*e^2-40*b^2*d^2*e^2+28*a*c*d^2*e^2-26*b*c*d^2*e^2+28*c^2*d^2*e^2+20*a*d^3*e^2-32*b*d^3*e^2-c*d^3*e^2-47*d^4*e^2-41*a^3*e^3-10*a^2*b*e^3-9*a*b^2*e^3+18*b^3*e^3-36*a^2*c*e^3+43*a*b*c*e^3+b^2*c*e^3+5*a*c^2*e^3+35*b*c^2*e^3-29*c^3*e^3+49*a^2*d*e^3+11*a*b*d*e^3-14*b^2*d*e^3-18*a*c*d*e^3+48*b*c*d*e^3-5*c^2*d*e^3-39*a*d^2*e^3+16*c*d^2*e^3+21*d^3*e^3+29*a^2*e^4+42*a*b*e^4+16*b^2*e^4+21*a*c*e^4-40*b*c*e^4-23*a*d*e^4-27*b*d*e^4+19*c*d*e^4-3*d^2*e^4+29*a*e^5+23*b*e^5-48*c*e^5-14*d*e^5-39*e^6, |
---|
2898 | a^2*b^2*c*d+30*a^4*d^2-8*a^3*b*d^2-31*a^2*b^2*d^2-48*a*b^3*d^2-8*b^4*d^2-a^3*c*d^2-45*a^2*b*c*d^2+24*a*b^2*c*d^2-50*b^3*c*d^2+26*a^2*c^2*d^2-21*a*b*c^2*d^2+7*b^2*c^2*d^2-23*a*c^3*d^2-3*b*c^3*d^2-37*c^4*d^2+30*a^3*d^3-49*a^2*b*d^3-10*a*b^2*d^3+19*b^3*d^3-a^2*c*d^3-23*a*b*c*d^3+27*b^2*c*d^3+8*a*c^2*d^3+36*b*c^2*d^3+14*c^3*d^3-14*a^2*d^4+11*a*b*d^4+24*b^2*d^4-22*a*c*d^4+14*b*c*d^4-12*c^2*d^4+33*a*d^5-35*b*d^5-20*c*d^5-22*d^6-25*a^5*e-50*a^4*b*e-3*a^3*b^2*e-49*a^2*b^3*e-47*a*b^4*e-12*b^5*e+24*a^4*c*e+10*a^3*b*c*e-49*a^2*b^2*c*e-46*a*b^3*c*e-39*b^4*c*e+47*a^3*c^2*e-a^2*b*c^2*e+45*a*b^2*c^2*e-46*b^3*c^2*e+27*a^2*c^3*e-27*a*b*c^3*e+7*b^2*c^3*e+48*a*c^4*e-17*b*c^4*e+13*c^5*e+40*a^4*d*e+50*a^3*b*d*e-9*a^2*b^2*d*e-9*a*b^3*d*e+18*b^4*d*e+30*a^3*c*d*e-36*a^2*b*c*d*e-41*a*b^2*c*d*e+34*b^3*c*d*e+10*a^2*c^2*d*e-19*a*b*c^2*d*e+38*b^2*c^2*d*e-17*a*c^3*d*e-15*b*c^3*d*e-25*c^4*d*e+26*a^3*d^2*e-22*a^2*b*d^2*e+33*a*b^2*d^2*e+3*b^3*d^2*e+33*a^2*c*d^2*e+13*a*b*c*d^2*e-36*b^2*c*d^2*e+16*a*c^2*d^2*e+16*b*c^2*d^2*e+27*c^3*d^2*e-20*a^2*d^3*e+8*a*b*d^3*e+12*b^2*d^3*e-7*a*c*d^3*e-11*b*c*d^3*e-32*c^2*d^3*e+49*a*d^4*e-45*b*d^4*e+4*c*d^4*e+23*d^5*e-42*a^4*e^2-10*a^3*b*e^2+47*a^2*b^2*e^2+31*a*b^3*e^2-9*b^4*e^2-45*a^3*c*e^2-16*a^2*b*c*e^2-16*a*b^2*c*e^2+6*b^3*c*e^2+9*a^2*c^2*e^2-35*a*b*c^2*e^2-17*b^2*c^2*e^2-48*a*c^3*e^2-6*b*c^3*e^2+33*c^4*e^2+46*a^3*d*e^2-22*a^2*b*d*e^2+41*a*b^2*d*e^2+28*b^3*d*e^2+37*a^2*c*d*e^2-35*a*b*c*d*e^2+11*b^2*c*d*e^2-40*a*c^2*d*e^2-25*b*c^2*d*e^2-6*c^3*d*e^2+50*a^2*d^2*e^2-29*a*b*d^2*e^2-30*b^2*d^2*e^2+12*a*c*d^2*e^2+37*b*c*d^2*e^2-23*c^2*d^2*e^2-30*a*d^3*e^2-43*b*d^3*e^2+31*c*d^3*e^2-35*d^4*e^2+32*a^3*e^3-45*a^2*b*e^3-35*a*b^2*e^3+26*b^3*e^3-43*a^2*c*e^3-41*a*b*c*e^3-6*b^2*c*e^3-14*a*c^2*e^3-20*b*c^2*e^3-44*c^3*e^3+10*a^2*d*e^3-4*a*b*d*e^3-38*b^2*d*e^3-28*a*c*d*e^3+8*b*c*d*e^3+30*c^2*d*e^3-5*a*d^2*e^3+24*b*d^2*e^3+2*c*d^2*e^3-19*d^3*e^3-25*a^2*e^4+21*a*b*e^4-20*b^2*e^4-11*a*c*e^4+40*b*c*e^4+12*c^2*e^4-30*a*d*e^4+8*b*d*e^4-14*c*d*e^4-23*d^2*e^4+20*a*e^5-7*b*e^5-38*c*e^5-50*d*e^5-30*e^6, |
---|
2899 | a^3*b*c*d+41*a^4*d^2+15*a^3*b*d^2-2*a^2*b^2*d^2-33*a*b^3*d^2+9*b^4*d^2+25*a^3*c*d^2-22*a^2*b*c*d^2-7*a*b^2*c*d^2-14*b^3*c*d^2-34*a^2*c^2*d^2-30*a*b*c^2*d^2+50*b^2*c^2*d^2+12*a*c^3*d^2-6*b*c^3*d^2+25*c^4*d^2-41*a^3*d^3-2*a^2*b*d^3+10*a*b^2*d^3+6*b^3*d^3-26*a^2*c*d^3+17*a*b*c*d^3+24*b^2*c*d^3+42*a*c^2*d^3-28*b*c^2*d^3+9*c^3*d^3+41*a^2*d^4-48*a*b*d^4+18*b^2*d^4-26*a*c*d^4+33*b*c*d^4-8*c^2*d^4+35*a*d^5+14*b*d^5-48*c*d^5-23*d^6+49*a^5*e+16*a^4*b*e+2*a^3*b^2*e+26*a^2*b^3*e+5*a*b^4*e+39*b^5*e-32*a^4*c*e+19*a^3*b*c*e-37*a^2*b^2*c*e+44*a*b^3*c*e+34*b^4*c*e+37*a^3*c^2*e-25*a^2*b*c^2*e-43*a*b^2*c^2*e+31*b^3*c^2*e-17*a^2*c^3*e-7*a*b*c^3*e-29*b^2*c^3*e+39*a*c^4*e-13*b*c^4*e+46*c^5*e-14*a^4*d*e-23*a^3*b*d*e-31*a^2*b^2*d*e+14*a*b^3*d*e+35*b^4*d*e-44*a^3*c*d*e+15*a^2*b*c*d*e-38*a*b^2*c*d*e-38*b^3*c*d*e-7*a^2*c^2*d*e-36*a*b*c^2*d*e-36*b^2*c^2*d*e+36*a*c^3*d*e+4*b*c^3*d*e+14*c^4*d*e+35*a^2*b*d^2*e+35*a*b^2*d^2*e-28*b^3*d^2*e+3*a^2*c*d^2*e+11*a*b*c*d^2*e-41*b^2*c*d^2*e-12*a*c^2*d^2*e-4*b*c^2*d^2*e+2*c^3*d^2*e+15*a^2*d^3*e-18*a*b*d^3*e+2*b^2*d^3*e+2*a*c*d^3*e-21*b*c*d^3*e+27*c^2*d^3*e+34*a*d^4*e+22*b*d^4*e-38*c*d^4*e+45*d^5*e+3*a^4*e^2+21*a^3*b*e^2-2*a^2*b^2*e^2+11*a*b^3*e^2-29*b^4*e^2-31*a^3*c*e^2+27*a^2*b*c*e^2-44*a*b^2*c*e^2-27*b^3*c*e^2-26*a^2*c^2*e^2+48*a*b*c^2*e^2-46*b^2*c^2*e^2-46*a*c^3*e^2-44*b*c^3*e^2-3*c^4*e^2+18*a^3*d*e^2-34*a^2*b*d*e^2+14*a*b^2*d*e^2+32*b^3*d*e^2+40*a^2*c*d*e^2+20*a*b*c*d*e^2+35*b^2*c*d*e^2-19*a*c^2*d*e^2+16*b*c^2*d*e^2-6*c^3*d*e^2-a^2*d^2*e^2+38*a*b*d^2*e^2+23*b^2*d^2*e^2-26*a*c*d^2*e^2-47*b*c*d^2*e^2+11*c^2*d^2*e^2+34*a*d^3*e^2-27*b*d^3*e^2-41*c*d^3*e^2-2*d^4*e^2+7*a^3*e^3-46*a^2*b*e^3-17*a*b^2*e^3+18*b^3*e^3+25*a^2*c*e^3+24*a*b*c*e^3+48*b^2*c*e^3-25*a*c^2*e^3-12*b*c^2*e^3+17*c^3*e^3+15*a^2*d*e^3+49*a*b*d*e^3-44*b^2*d*e^3+31*a*c*d*e^3-14*b*c*d*e^3-13*c^2*d*e^3-49*a*d^2*e^3-42*b*d^2*e^3-40*c*d^2*e^3+49*d^3*e^3-13*a^2*e^4-3*a*b*e^4-33*b^2*e^4+21*a*c*e^4-23*b*c*e^4+35*c^2*e^4+41*a*d*e^4-6*b*d*e^4+23*c*d*e^4-44*d^2*e^4-10*a*e^5-5*b*e^5+22*c*e^5-13*d*e^5-24*e^6, |
---|
2900 | a^4*c*d-22*a^3*b*d^2+25*a^2*b^2*d^2+46*a*b^3*d^2+4*b^4*d^2-49*a^3*c*d^2+10*a^2*b*c*d^2-18*a*b^2*c*d^2-24*b^3*c*d^2+a^2*c^2*d^2-44*a*b*c^2*d^2+19*b^2*c^2*d^2+2*a*c^3*d^2-16*b*c^3*d^2+23*c^4*d^2-34*a^3*d^3+29*a^2*b*d^3+18*a*b^2*d^3-31*b^3*d^3-26*a^2*c*d^3+35*a*b*c*d^3-2*b^2*c*d^3-3*a*c^2*d^3-8*b*c^2*d^3+50*c^3*d^3-11*a^2*d^4+30*a*b*d^4-41*b^2*d^4+41*a*c*d^4+12*b*c*d^4+2*c^2*d^4+44*a*d^5+5*b*d^5-8*c*d^5-37*d^6+10*a^5*e+20*a^4*b*e-32*a^3*b^2*e-7*a^2*b^3*e-11*a*b^4*e-3*b^5*e+47*a^4*c*e-39*a^3*b*c*e+27*a^2*b^2*c*e+14*a*b^3*c*e+25*b^4*c*e+45*a^3*c^2*e-22*a^2*b*c^2*e-4*a*b^2*c^2*e+8*b^3*c^2*e+10*a^2*c^3*e-18*a*b*c^3*e-25*b^2*c^3*e-35*a*c^4*e+7*b*c^4*e+44*c^5*e+13*a^4*d*e-17*a^3*b*d*e+23*a^2*b^2*d*e-4*a*b^3*d*e+23*b^4*d*e-4*a^3*c*d*e+34*a^2*b*c*d*e+48*a*b^2*c*d*e-32*b^3*c*d*e-44*a^2*c^2*d*e+37*a*b*c^2*d*e-38*b^2*c^2*d*e-23*a*c^3*d*e-42*b*c^3*d*e-19*c^4*d*e-48*a^3*d^2*e+29*a^2*b*d^2*e-25*a*b^2*d^2*e+36*b^3*d^2*e-46*a^2*c*d^2*e+37*a*b*c*d^2*e+28*b^2*c*d^2*e+12*a*c^2*d^2*e+2*b*c^2*d^2*e-13*c^3*d^2*e-40*a^2*d^3*e+44*a*b*d^3*e+29*b^2*d^3*e+20*a*c*d^3*e+23*b*c*d^3*e-44*c^2*d^3*e+23*a*d^4*e+22*b*d^4*e+12*c*d^4*e-16*d^5*e+50*a^4*e^2+12*a^3*b*e^2-16*a^2*b^2*e^2+27*a*b^3*e^2+27*b^4*e^2-25*a^3*c*e^2+13*a^2*b*c*e^2-21*a*b^2*c*e^2+46*b^3*c*e^2-6*a^2*c^2*e^2+13*a*b*c^2*e^2-8*b^2*c^2*e^2+39*a*c^3*e^2+36*b*c^3*e^2+46*c^4*e^2-9*a^3*d*e^2-35*a^2*b*d*e^2-47*a*b^2*d*e^2-41*b^3*d*e^2+26*a^2*c*d*e^2-38*a*b*c*d*e^2+48*b^2*c*d*e^2-36*a*c^2*d*e^2+32*b*c^2*d*e^2-17*c^3*d*e^2+39*a^2*d^2*e^2-a*b*d^2*e^2+48*a*c*d^2*e^2-20*b*c*d^2*e^2-49*c^2*d^2*e^2-37*a*d^3*e^2-8*b*d^3*e^2-c*d^3*e^2-8*d^4*e^2-47*a^3*e^3+2*a^2*b*e^3-14*a*b^2*e^3-32*b^3*e^3+18*a^2*c*e^3+49*a*b*c*e^3-43*b^2*c*e^3-8*a*c^2*e^3-36*b*c^2*e^3+18*c^3*e^3+11*a^2*d*e^3+4*a*b*d*e^3+49*b^2*d*e^3+26*a*c*d*e^3+5*b*c*d*e^3-14*c^2*d*e^3+12*a*d^2*e^3+b*d^2*e^3-49*c*d^2*e^3+24*d^3*e^3+11*a^2*e^4-43*a*b*e^4-36*b^2*e^4+30*a*c*e^4-12*b*c*e^4+10*c^2*e^4-29*a*d*e^4-12*b*d*e^4+37*c*d*e^4+46*d^2*e^4+34*a*e^5+14*b*e^5-26*c*e^5+d*e^5+35*e^6, |
---|
2901 | b^5*d-5*a^4*d^2-29*a^3*b*d^2-36*a^2*b^2*d^2-11*a*b^3*d^2+32*b^4*d^2-17*a^3*c*d^2+47*a^2*b*c*d^2+16*a*b^2*c*d^2-24*b^3*c*d^2+12*a^2*c^2*d^2+20*a*b*c^2*d^2-24*b^2*c^2*d^2-10*a*c^3*d^2-26*b*c^3*d^2+22*c^4*d^2-14*a^3*d^3-49*a^2*b*d^3-44*a*b^2*d^3-20*b^3*d^3+11*a^2*c*d^3-45*a*b*c*d^3-5*b^2*c*d^3-19*a*c^2*d^3-10*b*c^2*d^3-35*c^3*d^3-13*a^2*d^4+18*a*b*d^4+10*b^2*d^4+46*a*c*d^4+15*b*c*d^4-13*c^2*d^4-8*a*d^5+50*b*d^5+2*c*d^5-43*d^6-18*a^5*e-2*a^4*b*e-31*a^3*b^2*e-37*a^2*b^3*e+32*a*b^4*e-4*b^5*e+19*a^4*c*e-42*a^3*b*c*e+40*a^2*b^2*c*e+37*a*b^3*c*e+17*b^4*c*e+39*a^3*c^2*e+10*a^2*b*c^2*e-38*a*b^2*c^2*e+4*b^3*c^2*e+18*a^2*c^3*e+35*a*b*c^3*e-29*b^2*c^3*e-19*a*c^4*e-4*b*c^4*e+28*c^5*e+17*a^4*d*e-20*a^3*b*d*e+18*a^2*b^2*d*e+11*a*b^3*d*e+30*b^4*d*e-2*a^3*c*d*e+43*a^2*b*c*d*e+46*a*b^2*c*d*e+14*b^3*c*d*e+48*a^2*c^2*d*e-5*a*b*c^2*d*e-7*b^2*c^2*d*e+13*a*c^3*d*e+11*b*c^3*d*e+48*c^4*d*e+41*a^3*d^2*e+10*a^2*b*d^2*e-43*a*b^2*d^2*e-41*b^3*d^2*e+47*a^2*c*d^2*e-42*a*b*c*d^2*e+34*b^2*c*d^2*e+34*a*c^2*d^2*e-14*b*c^2*d^2*e-16*c^3*d^2*e-39*a^2*d^3*e+23*a*b*d^3*e-32*b^2*d^3*e-20*a*c*d^3*e+7*b*c*d^3*e-4*c^2*d^3*e+2*a*d^4*e+42*b*d^4*e-38*c*d^4*e-14*d^5*e-9*a^4*e^2+2*a^3*b*e^2-20*a^2*b^2*e^2-15*a*b^3*e^2+30*b^4*e^2-44*a^3*c*e^2-47*a^2*b*c*e^2+11*a*b^2*c*e^2+20*b^3*c*e^2-2*a^2*c^2*e^2+4*a*b*c^2*e^2+49*b^2*c^2*e^2-41*a*c^3*e^2-36*b*c^3*e^2+31*c^4*e^2+22*a^3*d*e^2+39*a^2*b*d*e^2-21*a*b^2*d*e^2+26*b^3*d*e^2+28*a^2*c*d*e^2+41*a*b*c*d*e^2-14*b^2*c*d*e^2+44*a*c^2*d*e^2+27*b*c^2*d*e^2-25*c^3*d*e^2-28*a^2*d^2*e^2-37*a*b*d^2*e^2+20*b^2*d^2*e^2+45*a*c*d^2*e^2+45*b*c*d^2*e^2-28*c^2*d^2*e^2-18*a*d^3*e^2+5*b*d^3*e^2-3*c*d^3*e^2+17*d^4*e^2+18*a^3*e^3+46*a^2*b*e^3+28*a*b^2*e^3-22*b^3*e^3-15*a^2*c*e^3+30*a*b*c*e^3-40*b^2*c*e^3-20*a*c^2*e^3+10*b*c^2*e^3-31*c^3*e^3+19*a^2*d*e^3+29*a*b*d*e^3+12*b^2*d*e^3-39*a*c*d*e^3-32*b*c*d*e^3+12*a*d^2*e^3-26*c*d^2*e^3+14*a^2*e^4+40*a*b*e^4-b^2*e^4+15*a*c*e^4+27*b*c*e^4+34*c^2*e^4-30*a*d*e^4+25*b*d*e^4-50*c*d*e^4+35*d^2*e^4+25*a*e^5+21*b*e^5-10*c*e^5-4*d*e^5-43*e^6, |
---|
2902 | a*b^4*d+47*a^4*d^2+25*a^3*b*d^2-13*a^2*b^2*d^2+26*a*b^3*d^2-24*b^4*d^2-4*a^3*c*d^2-30*a^2*b*c*d^2+11*a*b^2*c*d^2+49*b^3*c*d^2-11*a^2*c^2*d^2-4*a*b*c^2*d^2+44*b^2*c^2*d^2+46*a*c^3*d^2-3*b*c^3*d^2-30*c^4*d^2+8*a^3*d^3+49*a^2*b*d^3+33*a*b^2*d^3+8*b^3*d^3-34*a^2*c*d^3-29*a*b*c*d^3-35*b^2*c*d^3-10*a*c^2*d^3+13*b*c^2*d^3-22*c^3*d^3+8*a^2*d^4+2*a*b*d^4+7*b^2*d^4-14*a*c*d^4+40*b*c*d^4+41*c^2*d^4-14*a*d^5+10*c*d^5-11*d^6-43*a^5*e-2*a^4*b*e-10*a^3*b^2*e-39*a^2*b^3*e+15*a*b^4*e-8*b^5*e+19*a^4*c*e+35*a^3*b*c*e+48*a^2*b^2*c*e-24*a*b^3*c*e-41*b^4*c*e-24*a^3*c^2*e+35*a^2*b*c^2*e-47*a*b^2*c^2*e+28*b^3*c^2*e-10*a^2*c^3*e+28*a*b*c^3*e-43*b^2*c^3*e+10*a*c^4*e-26*b*c^4*e-30*c^5*e+3*a^4*d*e-42*a^3*b*d*e-23*a^2*b^2*d*e+41*a*b^3*d*e+12*b^4*d*e-16*a^3*c*d*e+4*a^2*b*c*d*e+30*a*b^2*c*d*e+14*b^3*c*d*e+15*a^2*c^2*d*e-11*a*b*c^2*d*e+34*b^2*c^2*d*e-48*a*c^3*d*e+15*b*c^3*d*e+38*c^4*d*e+26*a^3*d^2*e-41*a^2*b*d^2*e-8*a*b^2*d^2*e+44*b^3*d^2*e-7*a^2*c*d^2*e+11*a*b*c*d^2*e-3*b^2*c*d^2*e+42*a*c^2*d^2*e+31*b*c^2*d^2*e-35*c^3*d^2*e-23*a^2*d^3*e+47*a*b*d^3*e+26*b^2*d^3*e+40*a*c*d^3*e-24*b*c*d^3*e-34*c^2*d^3*e+4*a*d^4*e-48*b*d^4*e-49*c*d^4*e-23*d^5*e-5*a^4*e^2-15*a^3*b*e^2+5*a^2*b^2*e^2+41*a*b^3*e^2-7*b^4*e^2-35*a^3*c*e^2+5*a^2*b*c*e^2+25*a*b^2*c*e^2-50*b^3*c*e^2+23*a^2*c^2*e^2+43*a*b*c^2*e^2+41*b^2*c^2*e^2+9*a*c^3*e^2-36*b*c^3*e^2-49*c^4*e^2-36*a^3*d*e^2-43*a^2*b*d*e^2-24*a*b^2*d*e^2+34*b^3*d*e^2-29*a^2*c*d*e^2-48*a*b*c*d*e^2+42*b^2*c*d*e^2+34*a*c^2*d*e^2+20*b*c^2*d*e^2-31*c^3*d*e^2+18*a^2*d^2*e^2-3*a*b*d^2*e^2+24*b^2*d^2*e^2-39*a*c*d^2*e^2+39*b*c*d^2*e^2-48*c^2*d^2*e^2-30*a*d^3*e^2-28*b*d^3*e^2+4*c*d^3*e^2+13*d^4*e^2-30*a^3*e^3+47*a^2*b*e^3+2*a*b^2*e^3+31*b^3*e^3+35*a^2*c*e^3+36*a*b*c*e^3-47*b^2*c*e^3+48*a*c^2*e^3-8*b*c^2*e^3-23*c^3*e^3+35*a^2*d*e^3+21*a*b*d*e^3+17*b^2*d*e^3-15*a*c*d*e^3-41*b*c*d*e^3+13*c^2*d*e^3+17*a*d^2*e^3-19*b*d^2*e^3+26*c*d^2*e^3-26*d^3*e^3-38*a^2*e^4+17*a*b*e^4+22*b^2*e^4-6*a*c*e^4-18*b*c*e^4+42*c^2*e^4+26*a*d*e^4-19*b*d*e^4-36*c*d*e^4-22*d^2*e^4+44*a*e^5+32*b*e^5-15*c*e^5-16*d*e^5+2*e^6, |
---|
2903 | a^2*b^3*d-26*a^4*d^2+24*a^3*b*d^2-21*a^2*b^2*d^2-7*a*b^3*d^2-39*b^4*d^2-47*a^3*c*d^2+37*a^2*b*c*d^2+24*a*b^2*c*d^2-6*b^3*c*d^2+20*a^2*c^2*d^2-4*b^2*c^2*d^2+21*a*c^3*d^2-15*b*c^3*d^2-22*c^4*d^2-23*a^3*d^3+21*a^2*b*d^3-16*a*b^2*d^3-38*b^3*d^3-16*a^2*c*d^3+7*a*b*c*d^3-37*b^2*c*d^3-12*a*c^2*d^3+42*b*c^2*d^3+40*c^3*d^3-35*a^2*d^4+29*a*b*d^4-b^2*d^4+21*a*c*d^4+47*b*c*d^4-22*c^2*d^4-11*a*d^5-44*b*d^5+49*c*d^5+33*d^6-35*a^5*e-41*a^4*b*e+17*a^3*b^2*e-6*a^2*b^3*e-12*a*b^4*e+36*b^5*e-6*a^4*c*e-28*a^3*b*c*e+22*a^2*b^2*c*e+10*a*b^3*c*e-34*b^4*c*e+28*a^3*c^2*e-2*a^2*b*c^2*e-48*a*b^2*c^2*e-28*b^3*c^2*e+42*a^2*c^3*e+30*a*b*c^3*e-43*b^2*c^3*e-34*a*c^4*e+33*b*c^4*e-38*c^5*e+39*a^4*d*e-27*a^3*b*d*e+44*a^2*b^2*d*e+12*a*b^3*d*e+18*b^4*d*e-19*a^3*c*d*e-42*a^2*b*c*d*e+24*a*b^2*c*d*e-49*b^3*c*d*e+17*a^2*c^2*d*e+3*a*b*c^2*d*e+39*b^2*c^2*d*e-31*a*c^3*d*e-8*b*c^3*d*e+42*c^4*d*e-42*a^3*d^2*e+49*a^2*b*d^2*e-17*a*b^2*d^2*e-49*b^3*d^2*e-20*a^2*c*d^2*e-11*a*b*c*d^2*e-17*b^2*c*d^2*e+16*a*c^2*d^2*e+41*b*c^2*d^2*e+50*c^3*d^2*e-28*a^2*d^3*e+44*a*b*d^3*e-25*b^2*d^3*e-24*a*c*d^3*e-b*c*d^3*e-45*c^2*d^3*e-3*a*d^4*e-26*b*d^4*e-12*c*d^4*e+4*d^5*e+5*a^4*e^2+28*a^3*b*e^2-42*a^2*b^2*e^2+33*a*b^3*e^2-15*b^4*e^2-40*a^3*c*e^2+47*a^2*b*c*e^2-4*a*b^2*c*e^2-22*b^3*c*e^2-35*a^2*c^2*e^2-8*a*b*c^2*e^2-11*b^2*c^2*e^2-37*a*c^3*e^2-23*b*c^3*e^2+33*c^4*e^2-34*a^3*d*e^2+16*a^2*b*d*e^2-38*a*b^2*d*e^2+32*b^3*d*e^2+10*a^2*c*d*e^2-30*a*b*c*d*e^2+32*b^2*c*d*e^2-6*a*c^2*d*e^2-45*b*c^2*d*e^2-5*c^3*d*e^2-16*a^2*d^2*e^2-14*a*b*d^2*e^2+22*b^2*d^2*e^2+4*a*c*d^2*e^2-37*b*c*d^2*e^2-28*c^2*d^2*e^2-16*a*d^3*e^2+6*b*d^3*e^2+9*c*d^3*e^2-46*d^4*e^2-10*a^3*e^3-50*a^2*b*e^3+18*a*b^2*e^3+20*b^3*e^3-34*a^2*c*e^3+33*a*b*c*e^3-17*b^2*c*e^3-19*a*c^2*e^3-5*b*c^2*e^3+19*c^3*e^3-23*a^2*d*e^3+4*a*b*d*e^3+28*b^2*d*e^3+17*a*c*d*e^3+7*b*c*d*e^3+39*c^2*d*e^3+4*a*d^2*e^3-39*b*d^2*e^3-16*c*d^2*e^3-23*d^3*e^3-23*a^2*e^4-16*a*b*e^4-2*b^2*e^4-24*a*c*e^4-5*b*c*e^4+45*c^2*e^4-10*a*d*e^4-b*d*e^4+50*c*d*e^4+31*d^2*e^4+31*a*e^5-37*b*e^5-44*c*e^5+37*d*e^5-43*e^6, |
---|
2904 | a^3*b^2*d-42*a^4*d^2-17*a^3*b*d^2-23*a^2*b^2*d^2-17*a*b^3*d^2-27*b^4*d^2-50*a^3*c*d^2+27*a^2*b*c*d^2-30*a*b^2*c*d^2-7*b^3*c*d^2+21*a^2*c^2*d^2+13*a*b*c^2*d^2+29*b^2*c^2*d^2-46*a*c^3*d^2+43*b*c^3*d^2-2*c^4*d^2-2*a^3*d^3+45*a^2*b*d^3-15*a*b^2*d^3-47*b^3*d^3-17*a^2*c*d^3-25*a*b*c*d^3+9*b^2*c*d^3-24*a*c^2*d^3+32*b*c^2*d^3+37*c^3*d^3+14*a^2*d^4+23*a*b*d^4+49*b^2*d^4+10*a*c*d^4+19*b*c*d^4-13*c^2*d^4-9*a*d^5+44*b*d^5+39*c*d^5-28*d^6-2*a^5*e+5*a^4*b*e-36*a^3*b^2*e-12*a^2*b^3*e+2*a*b^4*e+15*b^5*e-31*a^4*c*e-3*a^3*b*c*e+46*a^2*b^2*c*e+33*a*b^3*c*e+16*b^4*c*e+24*a^3*c^2*e-36*a^2*b*c^2*e+10*a*b^2*c^2*e+4*b^3*c^2*e+44*a^2*c^3*e+18*a*b*c^3*e-37*b^2*c^3*e-47*a*c^4*e+32*b*c^4*e-29*c^5*e+14*a^4*d*e+6*a^3*b*d*e+44*a^2*b^2*d*e+23*a*b^3*d*e+33*b^4*d*e-7*a^3*c*d*e+10*a^2*b*c*d*e+30*a*b^2*c*d*e+41*b^3*c*d*e-50*a^2*c^2*d*e+a*b*c^2*d*e+33*b^2*c^2*d*e-26*a*c^3*d*e-32*b*c^3*d*e+47*c^4*d*e+39*a^3*d^2*e+40*a^2*b*d^2*e+6*a*b^2*d^2*e+30*b^3*d^2*e-30*a^2*c*d^2*e-21*a*b*c*d^2*e-41*b^2*c*d^2*e-21*a*c^2*d^2*e-17*b*c^2*d^2*e-21*c^3*d^2*e+26*a^2*d^3*e+50*a*b*d^3*e+39*b^2*d^3*e-34*a*c*d^3*e-25*b*c*d^3*e-34*c^2*d^3*e+9*a*d^4*e-40*b*d^4*e-45*c*d^4*e-3*d^5*e-34*a^4*e^2-22*a^3*b*e^2-5*a^2*b^2*e^2+45*a*b^3*e^2-16*b^4*e^2-12*a^3*c*e^2+33*a^2*b*c*e^2+31*a*b^2*c*e^2+19*b^3*c*e^2+49*a^2*c^2*e^2-19*a*b*c^2*e^2+8*b^2*c^2*e^2+32*a*c^3*e^2+31*b*c^3*e^2+21*c^4*e^2+13*a^3*d*e^2-35*a^2*b*d*e^2-29*a*b^2*d*e^2-41*b^3*d*e^2+11*a^2*c*d*e^2+46*a*b*c*d*e^2+b^2*c*d*e^2+5*a*c^2*d*e^2+18*c^3*d*e^2-17*a^2*d^2*e^2+45*a*b*d^2*e^2-40*b^2*d^2*e^2-6*a*c*d^2*e^2-32*b*c*d^2*e^2-19*c^2*d^2*e^2+48*a*d^3*e^2+41*b*d^3*e^2-30*c*d^3*e^2-38*d^4*e^2+4*a^3*e^3+8*a^2*b*e^3-49*a*b^2*e^3+36*b^3*e^3-5*a^2*c*e^3-21*a*b*c*e^3-27*b^2*c*e^3+5*a*c^2*e^3+31*b*c^2*e^3+15*c^3*e^3+41*a^2*d*e^3+19*a*b*d*e^3+10*b^2*d*e^3+41*a*c*d*e^3+45*b*c*d*e^3+12*c^2*d*e^3-28*a*d^2*e^3+14*b*d^2*e^3+4*c*d^2*e^3-25*d^3*e^3+38*a^2*e^4+37*a*b*e^4-15*b^2*e^4-11*a*c*e^4-24*b*c*e^4+33*c^2*e^4-31*a*d*e^4+14*b*d*e^4+49*c*d*e^4+34*d^2*e^4-34*a*e^5-23*b*e^5+50*c*e^5+19*d*e^5+26*e^6, |
---|
2905 | a^4*b*d+4*a^4*d^2-24*a^3*b*d^2+8*a^2*b^2*d^2-24*a*b^3*d^2-b^4*d^2+31*a^3*c*d^2-45*a^2*b*c*d^2-12*a*b^2*c*d^2+45*b^3*c*d^2+29*a^2*c^2*d^2+41*a*b*c^2*d^2-2*b^2*c^2*d^2-44*a*c^3*d^2-9*b*c^3*d^2+32*c^4*d^2+50*a^3*d^3-6*a^2*b*d^3+11*a*b^2*d^3-6*b^3*d^3-36*a^2*c*d^3-13*a*b*c*d^3-44*b^2*c*d^3+35*a*c^2*d^3+29*b*c^2*d^3-32*c^3*d^3+45*a^2*d^4-24*a*b*d^4-b^2*d^4+48*a*c*d^4+29*b*c*d^4+43*c^2*d^4+34*a*d^5-b*d^5+14*c*d^5+12*d^6-50*a^5*e-26*a^4*b*e-38*a^3*b^2*e-5*a^2*b^3*e+41*a*b^4*e+38*b^5*e-14*a^4*c*e+46*a^3*b*c*e-14*a^2*b^2*c*e-24*a*b^3*c*e+31*b^4*c*e-24*a^3*c^2*e-50*a^2*b*c^2*e+47*a*b^2*c^2*e+42*b^3*c^2*e-15*a^2*c^3*e-26*a*b*c^3*e+26*b^2*c^3*e-38*a*c^4*e-34*b*c^4*e+44*c^5*e-29*a^4*d*e+26*a^3*b*d*e-25*a^2*b^2*d*e+41*a*b^3*d*e+46*b^4*d*e+46*a^3*c*d*e-28*a^2*b*c*d*e-10*a*b^2*c*d*e+18*b^3*c*d*e+28*a^2*c^2*d*e+25*a*b*c^2*d*e-8*b^2*c^2*d*e-36*a*c^3*d*e+50*b*c^3*d*e-25*c^4*d*e+7*a^3*d^2*e+29*a^2*b*d^2*e-50*a*b^2*d^2*e-34*b^3*d^2*e-6*a^2*c*d^2*e-13*a*b*c*d^2*e+21*b^2*c*d^2*e+32*a*c^2*d^2*e-10*b*c^2*d^2*e-19*c^3*d^2*e-27*a^2*d^3*e+46*a*b*d^3*e-4*b^2*d^3*e+17*a*c*d^3*e+11*b*c*d^3*e+7*c^2*d^3*e+18*a*d^4*e-23*b*d^4*e-45*c*d^4*e+40*d^5*e+36*a^4*e^2-2*a^3*b*e^2-17*a^2*b^2*e^2+11*a*b^3*e^2+49*b^4*e^2-31*a^3*c*e^2+8*a^2*b*c*e^2-12*a*b^2*c*e^2-15*b^3*c*e^2+14*a^2*c^2*e^2-a*b*c^2*e^2+38*b^2*c^2*e^2-40*a*c^3*e^2-25*b*c^3*e^2+34*c^4*e^2-2*a^3*d*e^2-19*a^2*b*d*e^2+35*a*b^2*d*e^2-49*b^3*d*e^2-20*a^2*c*d*e^2+47*a*b*c*d*e^2-42*b^2*c*d*e^2+41*a*c^2*d*e^2+23*b*c^2*d*e^2+22*c^3*d*e^2-16*a^2*d^2*e^2+14*a*b*d^2*e^2-10*b^2*d^2*e^2+47*a*c*d^2*e^2+43*b*c*d^2*e^2+50*c^2*d^2*e^2-35*b*d^3*e^2+45*c*d^3*e^2+5*d^4*e^2+18*a^3*e^3+42*a^2*b*e^3+a*b^2*e^3+26*b^3*e^3+16*a^2*c*e^3+40*b^2*c*e^3-27*a*c^2*e^3-9*b*c^2*e^3-26*c^3*e^3-24*a^2*d*e^3-6*a*b*d*e^3-26*b^2*d*e^3+47*a*c*d*e^3-40*b*c*d*e^3+30*c^2*d*e^3-46*a*d^2*e^3-27*b*d^2*e^3-42*c*d^2*e^3-10*d^3*e^3+25*a^2*e^4+a*b*e^4-15*b^2*e^4-13*a*c*e^4-33*b*c*e^4+20*c^2*e^4+5*a*d*e^4-42*b*d*e^4-5*c*d*e^4-24*d^2*e^4-34*a*e^5+35*b*e^5-27*c*e^5-43*d*e^5-43*e^6, |
---|
2906 | a^5*d+14*a^4*d^2-3*a^3*b*d^2+7*a^2*b^2*d^2-31*a*b^3*d^2-42*b^4*d^2-16*a^3*c*d^2+36*a^2*b*c*d^2-17*a*b^2*c*d^2-15*b^3*c*d^2+17*a^2*c^2*d^2+36*a*b*c^2*d^2+12*b^2*c^2*d^2-47*a*c^3*d^2-16*b*c^3*d^2-9*c^4*d^2-38*a^3*d^3-43*a^2*b*d^3+2*a*b^2*d^3-44*b^3*d^3-12*a^2*c*d^3+32*a*b*c*d^3+21*b^2*c*d^3-10*a*c^2*d^3-28*b*c^2*d^3-c^3*d^3+18*a^2*d^4-13*a*b*d^4+13*b^2*d^4+31*a*c*d^4+27*b*c*d^4+34*c^2*d^4-19*a*d^5-36*b*d^5-46*c*d^5+11*d^6-26*a^5*e-24*a^4*b*e-5*a^3*b^2*e+27*a^2*b^3*e-6*a*b^4*e-30*b^5*e+35*a^4*c*e-42*a^3*b*c*e+a^2*b^2*c*e-22*a*b^3*c*e+12*b^4*c*e+7*a^3*c^2*e-26*a^2*b*c^2*e-43*a*b^2*c^2*e-18*b^3*c^2*e+10*a^2*c^3*e-10*a*b*c^3*e+48*b^2*c^3*e-19*a*c^4*e-29*b*c^4*e-3*c^5*e+20*a^4*d*e+10*a^3*b*d*e+28*a^2*b^2*d*e+14*a*b^3*d*e-15*b^4*d*e-7*a^3*c*d*e-24*a^2*b*c*d*e-26*a*b^2*c*d*e+32*b^3*c*d*e+2*a^2*c^2*d*e+16*a*b*c^2*d*e+44*b^2*c^2*d*e-48*a*c^3*d*e+7*b*c^3*d*e+3*c^4*d*e-8*a^3*d^2*e+23*a^2*b*d^2*e-39*a*b^2*d^2*e+35*b^3*d^2*e-2*a^2*c*d^2*e-17*a*b*c*d^2*e+46*b^2*c*d^2*e-26*a*c^2*d^2*e+7*b*c^2*d^2*e+47*c^3*d^2*e-38*a^2*d^3*e+12*a*b*d^3*e-14*b^2*d^3*e-a*c*d^3*e+12*b*c*d^3*e+30*c^2*d^3*e-50*a*d^4*e-34*b*d^4*e-6*c*d^4*e-24*d^5*e-37*a^4*e^2-15*a^3*b*e^2+17*a^2*b^2*e^2+26*a*b^3*e^2-31*b^4*e^2+14*a^3*c*e^2+30*a^2*b*c*e^2-9*a*b^2*c*e^2-42*b^3*c*e^2-39*a^2*c^2*e^2-43*a*b*c^2*e^2+41*b^2*c^2*e^2-38*a*c^3*e^2-47*b*c^3*e^2+33*c^4*e^2+15*a^3*d*e^2-36*a^2*b*d*e^2+6*a*b^2*d*e^2-15*b^3*d*e^2+24*a^2*c*d*e^2-50*a*b*c*d*e^2-6*b^2*c*d*e^2-41*a*c^2*d*e^2+42*b*c^2*d*e^2+28*c^3*d*e^2-19*a^2*d^2*e^2-47*a*b*d^2*e^2+49*b^2*d^2*e^2-41*a*c*d^2*e^2-3*b*c*d^2*e^2-38*c^2*d^2*e^2+4*a*d^3*e^2-30*b*d^3*e^2+47*c*d^3*e^2+11*d^4*e^2-44*a^3*e^3-25*a^2*b*e^3+18*a*b^2*e^3-14*b^3*e^3+18*a^2*c*e^3-15*a*b*c*e^3+32*b^2*c*e^3+38*a*c^2*e^3-30*b*c^2*e^3-3*c^3*e^3-33*a^2*d*e^3-42*a*b*d*e^3-8*b^2*d*e^3-14*a*c*d*e^3+49*b*c*d*e^3-40*c^2*d*e^3-40*a*d^2*e^3+32*b*d^2*e^3-40*c*d^2*e^3+11*d^3*e^3-43*a^2*e^4-29*a*b*e^4+9*b^2*e^4-20*a*c*e^4+14*b*c*e^4+38*c^2*e^4-32*a*d*e^4+22*b*d*e^4-9*c*d*e^4-34*d^2*e^4+6*a*e^5-15*b*e^5+13*c*e^5-40*d*e^5-40*e^6, |
---|
2907 | c^6+36*a^4*d^2-8*a^3*b*d^2-40*a^2*b^2*d^2-45*a*b^3*d^2+36*b^4*d^2-21*a^3*c*d^2-27*a^2*b*c*d^2+46*a*b^2*c*d^2+30*b^3*c*d^2+4*a*b*c^2*d^2-20*b^2*c^2*d^2+3*a*c^3*d^2-48*b*c^3*d^2-29*c^4*d^2+13*a^3*d^3-3*a^2*b*d^3-13*a*b^2*d^3-38*b^3*d^3+35*a^2*c*d^3-5*a*b*c*d^3-46*b^2*c*d^3-26*a*c^2*d^3-20*b*c^2*d^3-4*c^3*d^3+6*a^2*d^4-14*a*b*d^4+16*b^2*d^4+44*a*c*d^4-10*b*c*d^4+15*c^2*d^4+31*a*d^5-22*b*d^5-36*c*d^5-34*d^6-28*a^5*e+46*a^4*b*e+5*a^3*b^2*e+36*a^2*b^3*e-2*a*b^4*e+13*b^5*e-40*a^4*c*e+31*a^3*b*c*e+49*a^2*b^2*c*e+50*a*b^3*c*e+8*b^4*c*e-23*a^2*b*c^2*e+7*a*b^2*c^2*e+36*b^3*c^2*e-12*a^2*c^3*e-a*b*c^3*e-32*b^2*c^3*e+33*a*c^4*e-45*b*c^4*e+7*c^5*e-13*a^4*d*e-38*a^3*b*d*e+17*a^2*b^2*d*e-33*a*b^3*d*e-33*b^4*d*e-47*a^3*c*d*e+42*a^2*b*c*d*e-5*a*b^2*c*d*e-35*b^3*c*d*e-34*a^2*c^2*d*e-36*a*b*c^2*d*e+17*b^2*c^2*d*e+19*a*c^3*d*e+41*b*c^3*d*e-8*c^4*d*e-15*a^3*d^2*e-10*a^2*b*d^2*e-37*a*b^2*d^2*e-40*b^3*d^2*e-2*a^2*c*d^2*e-28*a*b*c*d^2*e+30*b^2*c*d^2*e+45*a*c^2*d^2*e+26*b*c^2*d^2*e-20*c^3*d^2*e-48*a^2*d^3*e+16*a*b*d^3*e+12*b^2*d^3*e+47*a*c*d^3*e-11*b*c*d^3*e+27*c^2*d^3*e-29*a*d^4*e+33*b*d^4*e+6*c*d^4*e-10*d^5*e-2*a^4*e^2-27*a^3*b*e^2-18*a^2*b^2*e^2-46*a*b^3*e^2-19*b^4*e^2+9*a^3*c*e^2+45*a^2*b*c*e^2+30*a*b^2*c*e^2+35*b^3*c*e^2-31*a^2*c^2*e^2+33*a*b*c^2*e^2+36*b^2*c^2*e^2-18*a*c^3*e^2+5*b*c^3*e^2-8*c^4*e^2-37*a^3*d*e^2+46*a^2*b*d*e^2-37*a*b^2*d*e^2+28*b^3*d*e^2+6*a^2*c*d*e^2-24*a*b*c*d*e^2+9*b^2*c*d*e^2+36*a*c^2*d*e^2-44*b*c^2*d*e^2+32*c^3*d*e^2+49*a^2*d^2*e^2-44*a*b*d^2*e^2-12*b^2*d^2*e^2-6*a*c*d^2*e^2+7*b*c*d^2*e^2-2*c^2*d^2*e^2+17*a*d^3*e^2-15*b*d^3*e^2+18*c*d^3*e^2-24*d^4*e^2-26*a^3*e^3+44*a^2*b*e^3-28*a*b^2*e^3+28*b^3*e^3-8*a^2*c*e^3+6*a*b*c*e^3-12*b^2*c*e^3-25*a*c^2*e^3-37*b*c^2*e^3+36*c^3*e^3-18*a^2*d*e^3-38*a*b*d*e^3+b^2*d*e^3+3*a*c*d*e^3+47*b*c*d*e^3+3*c^2*d*e^3-5*a*d^2*e^3-34*c*d^2*e^3-11*d^3*e^3-19*a^2*e^4+16*a*b*e^4+17*b^2*e^4+23*a*c*e^4-26*b*c*e^4+10*c^2*e^4+23*a*d*e^4-30*b*d*e^4-46*c*d*e^4-13*d^2*e^4-23*a*e^5+41*b*e^5+6*c*e^5-50*d*e^5+28*e^6, |
---|
2908 | b*c^5+8*a^4*d^2-16*a^3*b*d^2+26*a^2*b^2*d^2+a*b^3*d^2+40*b^4*d^2-34*a^3*c*d^2+5*a^2*b*c*d^2+18*a*b^2*c*d^2-30*b^3*c*d^2+9*a^2*c^2*d^2+30*a*b*c^2*d^2-17*b^2*c^2*d^2+26*a*c^3*d^2+49*b*c^3*d^2+42*c^4*d^2+2*a^3*d^3+28*a^2*b*d^3-7*a*b^2*d^3-37*b^3*d^3+38*a^2*c*d^3-5*a*b*c*d^3-13*b^2*c*d^3-11*a*c^2*d^3-37*b*c^2*d^3+4*c^3*d^3-8*a^2*d^4-9*a*b*d^4+28*b^2*d^4+4*a*c*d^4+27*b*c*d^4+39*c^2*d^4+9*a*d^5-24*b*d^5+27*c*d^5+13*d^6-23*a^5*e-41*a^4*b*e-23*a^3*b^2*e+28*a^2*b^3*e+29*a*b^4*e-49*b^5*e-4*a^4*c*e-16*a^3*b*c*e-16*a^2*b^2*c*e+29*a*b^3*c*e-15*b^4*c*e-27*a^3*c^2*e+44*a^2*b*c^2*e-23*a*b^2*c^2*e-18*b^3*c^2*e-24*a^2*c^3*e-12*b^2*c^3*e-48*a*c^4*e+12*b*c^4*e+28*c^5*e-49*a^4*d*e+18*a^3*b*d*e+40*a^2*b^2*d*e-5*a*b^3*d*e-23*b^4*d*e-9*a^3*c*d*e-12*a^2*b*c*d*e-39*a*b^2*c*d*e-43*b^3*c*d*e+36*a^2*c^2*d*e+19*a*b*c^2*d*e+11*b^2*c^2*d*e+24*a*c^3*d*e+22*b*c^3*d*e+14*c^4*d*e-23*a^3*d^2*e-14*a^2*b*d^2*e+47*a*b^2*d^2*e+32*b^3*d^2*e+47*a^2*c*d^2*e+26*a*b*c*d^2*e-39*b^2*c*d^2*e+11*a*c^2*d^2*e-44*b*c^2*d^2*e-20*c^3*d^2*e-23*a^2*d^3*e-3*a*b*d^3*e-11*b^2*d^3*e-34*a*c*d^3*e+5*b*c*d^3*e-3*c^2*d^3*e-6*a*d^4*e-15*b*d^4*e+41*c*d^4*e+18*d^5*e+44*a^4*e^2-49*a^3*b*e^2+38*a^2*b^2*e^2+7*a*b^3*e^2-11*b^4*e^2+2*a^3*c*e^2-6*a^2*b*c*e^2-34*a*b^2*c*e^2-21*b^3*c*e^2+12*a^2*c^2*e^2+7*a*b*c^2*e^2-20*b^2*c^2*e^2-3*a*c^3*e^2-38*b*c^3*e^2-5*c^4*e^2-46*a^3*d*e^2-20*a^2*b*d*e^2+21*a*b^2*d*e^2-36*b^3*d*e^2-14*a^2*c*d*e^2+6*a*b*c*d*e^2+29*b^2*c*d*e^2+12*a*c^2*d*e^2-2*b*c^2*d*e^2+41*c^3*d*e^2+41*a^2*d^2*e^2+34*a*b*d^2*e^2-2*b^2*d^2*e^2+9*a*c*d^2*e^2+10*b*c*d^2*e^2-11*c^2*d^2*e^2+45*a*d^3*e^2+38*b*d^3*e^2-20*c*d^3*e^2-12*d^4*e^2-35*a^3*e^3+23*a*b^2*e^3+37*b^3*e^3+10*a^2*c*e^3+6*a*b*c*e^3+21*b^2*c*e^3-24*a*c^2*e^3+28*b*c^2*e^3+26*c^3*e^3+22*a^2*d*e^3+26*a*b*d*e^3+50*b^2*d*e^3+43*a*c*d*e^3+39*b*c*d*e^3-42*c^2*d*e^3-27*a*d^2*e^3+38*b*d^2*e^3+19*c*d^2*e^3-15*d^3*e^3+37*a^2*e^4+7*a*b*e^4-12*b^2*e^4-34*a*c*e^4+25*b*c*e^4+26*c^2*e^4+a*d*e^4-25*b*d*e^4-15*c*d*e^4-50*d^2*e^4-50*a*e^5-45*b*e^5+30*c*e^5+6*d*e^5+49*e^6, |
---|
2909 | a*c^5+28*a^4*d^2-23*a^3*b*d^2+10*a^2*b^2*d^2-36*a*b^3*d^2+6*b^4*d^2+25*a^3*c*d^2-47*a^2*b*c*d^2+28*a*b^2*c*d^2-36*b^3*c*d^2-31*a^2*c^2*d^2-35*a*b*c^2*d^2-42*b^2*c^2*d^2+20*a*c^3*d^2-45*b*c^3*d^2+49*c^4*d^2-24*a^3*d^3+25*a^2*b*d^3+27*a*b^2*d^3+49*b^3*d^3-9*a^2*c*d^3-46*a*b*c*d^3-39*b^2*c*d^3-9*a*c^2*d^3-46*b*c^2*d^3+43*c^3*d^3-35*a^2*d^4+11*a*b*d^4+15*b^2*d^4-4*a*c*d^4+42*b*c*d^4+19*c^2*d^4-35*a*d^5-23*b*d^5-45*c*d^5+6*d^6-36*a^5*e-35*a^4*b*e+47*a^3*b^2*e-20*a^2*b^3*e+28*a*b^4*e+37*b^5*e-50*a^4*c*e-35*a^3*b*c*e+a^2*b^2*c*e+15*a*b^3*c*e-2*b^4*c*e-10*a^3*c^2*e-50*a^2*b*c^2*e-34*a*b^2*c^2*e+28*b^3*c^2*e+18*a^2*c^3*e-13*a*b*c^3*e-17*b^2*c^3*e-19*a*c^4*e+9*b*c^4*e-43*c^5*e-29*a^4*d*e-17*a^3*b*d*e+47*a^2*b^2*d*e+26*a*b^3*d*e-13*b^4*d*e+11*a^3*c*d*e+5*a^2*b*c*d*e-25*a*b^2*c*d*e+26*b^3*c*d*e-17*a^2*c^2*d*e-37*a*b*c^2*d*e-7*b^2*c^2*d*e+28*a*c^3*d*e+28*b*c^3*d*e-16*c^4*d*e+30*a^3*d^2*e-25*a^2*b*d^2*e+9*a*b^2*d^2*e+34*b^3*d^2*e+2*a^2*c*d^2*e+30*a*b*c*d^2*e-37*b^2*c*d^2*e+33*a*c^2*d^2*e-5*b*c^2*d^2*e-4*c^3*d^2*e+50*a^2*d^3*e-50*a*b*d^3*e+9*b^2*d^3*e+11*a*c*d^3*e-31*b*c*d^3*e+29*c^2*d^3*e-37*a*d^4*e-22*b*d^4*e-20*c*d^4*e-30*d^5*e+19*a^4*e^2+42*a^3*b*e^2+43*a^2*b^2*e^2-22*a*b^3*e^2+40*b^4*e^2-12*a^3*c*e^2-37*a^2*b*c*e^2-38*a*b^2*c*e^2+47*b^3*c*e^2+33*a^2*c^2*e^2-26*a*b*c^2*e^2+8*b^2*c^2*e^2+43*a*c^3*e^2+43*b*c^3*e^2-26*c^4*e^2+13*a^3*d*e^2+7*a^2*b*d*e^2-38*a*b^2*d*e^2+28*b^3*d*e^2-35*a^2*c*d*e^2+41*a*b*c*d*e^2+2*b^2*c*d*e^2-44*a*c^2*d*e^2-5*b*c^2*d*e^2+35*c^3*d*e^2+46*a^2*d^2*e^2-32*a*b*d^2*e^2-37*b^2*d^2*e^2+4*a*c*d^2*e^2+15*b*c*d^2*e^2+13*c^2*d^2*e^2+14*a*d^3*e^2+3*b*d^3*e^2-7*c*d^3*e^2+9*d^4*e^2-43*a^3*e^3+46*a^2*b*e^3-17*a*b^2*e^3+12*b^3*e^3-9*a^2*c*e^3+40*a*b*c*e^3+7*b^2*c*e^3-31*a*c^2*e^3+32*b*c^2*e^3-49*a^2*d*e^3+22*a*b*d*e^3+27*b^2*d*e^3+34*a*c*d*e^3-39*b*c*d*e^3-17*c^2*d*e^3-39*a*d^2*e^3+20*b*d^2*e^3-10*c*d^2*e^3+2*d^3*e^3+4*a^2*e^4+21*a*b*e^4+20*b^2*e^4+36*a*c*e^4+49*b*c*e^4+24*c^2*e^4-31*a*d*e^4+23*b*d*e^4+48*c*d*e^4-12*d^2*e^4+8*a*e^5-8*b*e^5-15*c*e^5-d*e^5+24*e^6, |
---|
2910 | b^2*c^4-39*a^4*d^2+a^3*b*d^2+26*a^2*b^2*d^2+29*a*b^3*d^2-5*b^4*d^2+13*a^3*c*d^2-47*a^2*b*c*d^2+17*a*b^2*c*d^2+22*b^3*c*d^2+25*a^2*c^2*d^2-2*a*b*c^2*d^2+18*b^2*c^2*d^2+43*a*c^3*d^2+48*b*c^3*d^2-24*c^4*d^2-17*a^3*d^3-16*a^2*b*d^3-3*a*b^2*d^3+35*b^3*d^3+8*a^2*c*d^3+30*a*b*c*d^3-6*b^2*c*d^3+17*a*c^2*d^3-25*b*c^2*d^3+34*c^3*d^3+13*a^2*d^4-49*a*b*d^4-48*b^2*d^4-6*a*c*d^4+43*b*c*d^4+31*c^2*d^4+30*a*d^5-12*b*d^5+4*c*d^5+39*d^6+48*a^5*e+15*a^4*b*e-41*a^3*b^2*e+41*a^2*b^3*e-16*a*b^4*e+28*b^5*e-48*a^4*c*e+11*a^3*b*c*e+42*a^2*b^2*c*e+34*a*b^3*c*e+48*b^4*c*e-24*a^3*c^2*e+29*a^2*b*c^2*e+6*a*b^2*c^2*e+18*b^3*c^2*e-31*a^2*c^3*e+15*a*b*c^3*e+22*b^2*c^3*e-a*c^4*e+15*b*c^4*e-46*c^5*e-36*a^4*d*e+a^3*b*d*e+46*a^2*b^2*d*e-29*a*b^3*d*e+41*b^4*d*e-13*a^3*c*d*e-4*a^2*b*c*d*e-39*a*b^2*c*d*e-39*b^3*c*d*e+35*a^2*c^2*d*e-29*a*b*c^2*d*e-26*b^2*c^2*d*e-37*a*c^3*d*e-8*b*c^3*d*e-13*c^4*d*e+44*a^3*d^2*e-9*a^2*b*d^2*e-38*a*b^2*d^2*e-30*b^3*d^2*e+49*a^2*c*d^2*e+8*a*b*c*d^2*e-35*b^2*c*d^2*e+40*a*c^2*d^2*e-19*b*c^2*d^2*e-25*c^3*d^2*e+47*a^2*d^3*e+17*a*b*d^3*e-41*b^2*d^3*e-18*a*c*d^3*e+38*b*c*d^3*e+22*c^2*d^3*e-30*a*d^4*e+25*b*d^4*e-11*c*d^4*e-8*d^5*e+47*a^4*e^2+2*a^3*b*e^2+5*a^2*b^2*e^2-31*a*b^3*e^2+21*b^4*e^2-46*a^3*c*e^2-28*a^2*b*c*e^2+49*a*b^2*c*e^2+31*b^3*c*e^2-45*a^2*c^2*e^2+26*a*b*c^2*e^2+18*b^2*c^2*e^2+6*a*c^3*e^2-17*b*c^3*e^2-4*c^4*e^2-8*a^3*d*e^2-37*a^2*b*d*e^2-43*a*b^2*d*e^2+10*b^3*d*e^2+32*a^2*c*d*e^2+21*a*b*c*d*e^2+9*b^2*c*d*e^2-34*a*c^2*d*e^2-50*b*c^2*d*e^2-7*c^3*d*e^2+31*a^2*d^2*e^2+22*b^2*d^2*e^2-35*a*c*d^2*e^2-3*b*c*d^2*e^2+13*c^2*d^2*e^2-35*a*d^3*e^2-45*b*d^3*e^2-44*c*d^3*e^2+44*d^4*e^2+7*a^3*e^3+17*a^2*b*e^3+8*a*b^2*e^3+30*b^3*e^3-28*a^2*c*e^3-25*a*b*c*e^3+6*b^2*c*e^3-29*a*c^2*e^3-29*b*c^2*e^3-23*c^3*e^3-43*a^2*d*e^3+44*a*b*d*e^3+41*b^2*d*e^3-8*a*c*d*e^3-13*b*c*d*e^3+27*c^2*d*e^3+5*a*d^2*e^3+8*b*d^2*e^3+11*c*d^2*e^3-50*d^3*e^3+4*a^2*e^4-31*a*b*e^4-2*b^2*e^4-2*a*c*e^4-27*b*c*e^4-c^2*e^4-17*a*d*e^4-30*b*d*e^4-15*c*d*e^4+5*d^2*e^4-34*a*e^5-49*b*e^5+26*c*e^5-44*d*e^5+46*e^6, |
---|
2911 | a*b*c^4+44*a^4*d^2-12*a^3*b*d^2-6*a^2*b^2*d^2-20*a*b^3*d^2+48*b^4*d^2+19*a^3*c*d^2+4*a^2*b*c*d^2+50*a*b^2*c*d^2+34*b^3*c*d^2-a^2*c^2*d^2-24*a*b*c^2*d^2+43*b^2*c^2*d^2-21*a*c^3*d^2-29*b*c^3*d^2+36*c^4*d^2+48*a^3*d^3-26*a^2*b*d^3-16*a*b^2*d^3+29*b^3*d^3-48*a^2*c*d^3-19*a*b*c*d^3-17*b^2*c*d^3-44*a*c^2*d^3+5*b*c^2*d^3-6*c^3*d^3-a^2*d^4-30*a*b*d^4-16*b^2*d^4+20*a*c*d^4+17*b*c*d^4-50*c^2*d^4+36*a*d^5-36*b*d^5-2*c*d^5+46*d^6-10*a^5*e-39*a^4*b*e+20*a^3*b^2*e+45*a^2*b^3*e-35*a*b^4*e+2*b^5*e+23*a^4*c*e-12*a^3*b*c*e-5*a^2*b^2*c*e+5*a*b^3*c*e-8*b^4*c*e+49*a^3*c^2*e+11*a^2*b*c^2*e-11*a*b^2*c^2*e+28*b^3*c^2*e+34*a^2*c^3*e+50*a*b*c^3*e+33*b^2*c^3*e-48*a*c^4*e-12*b*c^4*e+30*c^5*e+3*a^4*d*e-34*a^3*b*d*e+14*a^2*b^2*d*e-47*a*b^3*d*e+34*b^4*d*e-50*a^3*c*d*e-18*a^2*b*c*d*e-39*a*b^2*c*d*e-27*b^3*c*d*e-42*a^2*c^2*d*e-43*a*b*c^2*d*e+28*b^2*c^2*d*e+45*a*c^3*d*e+37*b*c^3*d*e-36*c^4*d*e+21*a^3*d^2*e+36*a^2*b*d^2*e+8*a*b^2*d^2*e-16*b^3*d^2*e+43*a^2*c*d^2*e+24*b^2*c*d^2*e-21*a*c^2*d^2*e+29*b*c^2*d^2*e-14*c^3*d^2*e+11*a^2*d^3*e+16*a*b*d^3*e-24*b^2*d^3*e+8*a*c*d^3*e-44*b*c*d^3*e+13*c^2*d^3*e-32*a*d^4*e+b*d^4*e-31*c*d^4*e-32*d^5*e+32*a^4*e^2-27*a^3*b*e^2+29*a^2*b^2*e^2-30*a*b^3*e^2+35*b^4*e^2-19*a^3*c*e^2+45*a^2*b*c*e^2-9*a*b^2*c*e^2+9*b^3*c*e^2-33*a^2*c^2*e^2+24*a*b*c^2*e^2-5*b^2*c^2*e^2-42*a*c^3*e^2+32*b*c^3*e^2+37*c^4*e^2+36*a^3*d*e^2-44*a^2*b*d*e^2+46*a*b^2*d*e^2+37*b^3*d*e^2+31*a^2*c*d*e^2+32*a*b*c*d*e^2-37*b^2*c*d*e^2-45*a*c^2*d*e^2-37*b*c^2*d*e^2+38*c^3*d*e^2+40*a^2*d^2*e^2-44*a*b*d^2*e^2+39*b^2*d^2*e^2-20*a*c*d^2*e^2+46*b*c*d^2*e^2+c^2*d^2*e^2-13*a*d^3*e^2+16*b*d^3*e^2-17*c*d^3*e^2+41*d^4*e^2-18*a^3*e^3+12*a^2*b*e^3-20*a*b^2*e^3+34*b^3*e^3+21*a^2*c*e^3+19*a*b*c*e^3+22*b^2*c*e^3+41*a*c^2*e^3+42*b*c^2*e^3-32*c^3*e^3-24*a^2*d*e^3-26*a*b*d*e^3-43*b^2*d*e^3-17*a*c*d*e^3-24*b*c*d*e^3+36*c^2*d*e^3+48*a*d^2*e^3+38*b*d^2*e^3-43*c*d^2*e^3-31*d^3*e^3-21*a^2*e^4+45*a*b*e^4-12*b^2*e^4-42*a*c*e^4-38*b*c*e^4-27*c^2*e^4-3*a*d*e^4-45*b*d*e^4-17*c*d*e^4+15*d^2*e^4+48*a*e^5+21*b*e^5-7*c*e^5-36*d*e^5+12*e^6, |
---|
2912 | a^2*c^4+45*a^4*d^2-49*a^3*b*d^2-20*a^2*b^2*d^2-12*a*b^3*d^2-21*b^4*d^2-29*a^3*c*d^2+23*a^2*b*c*d^2+6*a*b^2*c*d^2-30*b^3*c*d^2-33*a^2*c^2*d^2+31*a*b*c^2*d^2+12*b^2*c^2*d^2+20*a*c^3*d^2-48*b*c^3*d^2-21*c^4*d^2-23*a^3*d^3-38*a^2*b*d^3-41*a*b^2*d^3-3*b^3*d^3+13*a^2*c*d^3-10*a*b*c*d^3-14*b^2*c*d^3+47*a*c^2*d^3+46*b*c^2*d^3-49*c^3*d^3-a^2*d^4-13*a*b*d^4+34*b^2*d^4+8*a*c*d^4-44*b*c*d^4+c^2*d^4-10*a*d^5-b*d^5-34*c*d^5-8*d^6-28*a^5*e+21*a^4*b*e-44*a^3*b^2*e-3*a^2*b^3*e-7*a*b^4*e+49*b^5*e-25*a^4*c*e+22*a^3*b*c*e+18*a^2*b^2*c*e-15*a*b^3*c*e+31*b^4*c*e-27*a^3*c^2*e+9*a^2*b*c^2*e-9*a*b^2*c^2*e+50*b^3*c^2*e-a^2*c^3*e-20*a*b*c^3*e+21*b^2*c^3*e+25*a*c^4*e-29*b*c^4*e-41*c^5*e+28*a^4*d*e-7*a^3*b*d*e-18*a^2*b^2*d*e-33*a*b^3*d*e-32*b^4*d*e-9*a^3*c*d*e-18*a^2*b*c*d*e-7*a*b^2*c*d*e-49*b^3*c*d*e+23*a^2*c^2*d*e+32*a*b*c^2*d*e+17*b^2*c^2*d*e-26*a*c^3*d*e+30*b*c^3*d*e-4*c^4*d*e+17*a^3*d^2*e-31*a^2*b*d^2*e+7*a*b^2*d^2*e-10*a^2*c*d^2*e+9*a*b*c*d^2*e+49*b^2*c*d^2*e-26*a*c^2*d^2*e-21*b*c^2*d^2*e+13*c^3*d^2*e+32*a^2*d^3*e+8*a*b*d^3*e+44*b^2*d^3*e+49*a*c*d^3*e-b*c*d^3*e+39*c^2*d^3*e-a*d^4*e-19*b*d^4*e-40*c*d^4*e-30*d^5*e-2*a^4*e^2-5*a^3*b*e^2-10*a^2*b^2*e^2-31*a*b^3*e^2+37*b^4*e^2+45*a^3*c*e^2+17*a^2*b*c*e^2-34*a*b^2*c*e^2-32*b^3*c*e^2-7*a^2*c^2*e^2-21*a*b*c^2*e^2+50*b^2*c^2*e^2+35*a*c^3*e^2-38*b*c^3*e^2+14*c^4*e^2-21*a^3*d*e^2-4*a^2*b*d*e^2-14*a*b^2*d*e^2+13*b^3*d*e^2-38*a^2*c*d*e^2+44*a*b*c*d*e^2+7*b^2*c*d*e^2-16*a*c^2*d*e^2+38*b*c^2*d*e^2+38*c^3*d*e^2+25*a^2*d^2*e^2-34*a*b*d^2*e^2-32*b^2*d^2*e^2+22*a*c*d^2*e^2+40*b*c*d^2*e^2+4*c^2*d^2*e^2-16*a*d^3*e^2+36*b*d^3*e^2-39*c*d^3*e^2-45*d^4*e^2+39*a^3*e^3+31*a^2*b*e^3-43*a*b^2*e^3-18*b^3*e^3+44*a^2*c*e^3-8*a*b*c*e^3+38*b^2*c*e^3-4*a*c^2*e^3+3*b*c^2*e^3-43*c^3*e^3-6*a^2*d*e^3+34*a*b*d*e^3+6*b^2*d*e^3-13*a*c*d*e^3+32*b*c*d*e^3+30*c^2*d*e^3+28*a*d^2*e^3+17*b*d^2*e^3-19*c*d^2*e^3-46*d^3*e^3+12*a^2*e^4+44*a*b*e^4-42*b^2*e^4-41*a*c*e^4-35*b*c*e^4-37*c^2*e^4+42*a*d*e^4+43*b*d*e^4+5*c*d*e^4+11*d^2*e^4+25*a*e^5-9*b*e^5-27*c*e^5+50*d*e^5+23*e^6, |
---|
2913 | b^3*c^3-13*a^4*d^2-41*a^3*b*d^2+27*a^2*b^2*d^2+a*b^3*d^2+33*b^4*d^2+47*a^3*c*d^2-19*a^2*b*c*d^2-27*a*b^2*c*d^2-6*b^3*c*d^2+37*a^2*c^2*d^2+40*a*b*c^2*d^2+12*b^2*c^2*d^2+36*a*c^3*d^2-25*b*c^3*d^2-45*c^4*d^2-12*a^3*d^3-5*a^2*b*d^3+31*a*b^2*d^3-b^3*d^3-37*a^2*c*d^3+26*a*b*c*d^3-48*b^2*c*d^3+36*a*c^2*d^3+16*b*c^2*d^3+44*c^3*d^3+47*a^2*d^4-20*a*b*d^4-13*b^2*d^4+39*a*c*d^4+17*b*c*d^4-32*c^2*d^4-24*a*d^5-41*b*d^5-31*c*d^5+29*a^5*e+26*a^4*b*e+12*a^3*b^2*e-45*a^2*b^3*e+40*a*b^4*e+20*b^5*e-21*a^4*c*e-28*a^3*b*c*e+38*a^2*b^2*c*e+40*a*b^3*c*e-13*b^4*c*e-9*a^3*c^2*e-9*a^2*b*c^2*e-a*b^2*c^2*e-b^3*c^2*e+32*a^2*c^3*e+43*a*b*c^3*e-44*b^2*c^3*e+39*a*c^4*e+8*b*c^4*e-8*c^5*e+27*a^4*d*e+15*a^3*b*d*e-12*a^2*b^2*d*e-33*a*b^3*d*e+16*b^4*d*e+19*a^3*c*d*e-34*a^2*b*c*d*e+5*a*b^2*c*d*e-31*b^3*c*d*e+5*a^2*c^2*d*e-20*a*b*c^2*d*e-4*b^2*c^2*d*e-50*a*c^3*d*e+44*b*c^3*d*e-31*a^3*d^2*e+31*a^2*b*d^2*e+28*a*b^2*d^2*e-10*b^3*d^2*e+2*a^2*c*d^2*e-19*a*b*c*d^2*e-9*a*c^2*d^2*e+2*b*c^2*d^2*e+40*c^3*d^2*e+45*a^2*d^3*e+9*a*b*d^3*e+26*b^2*d^3*e-14*a*c*d^3*e+2*b*c*d^3*e+7*c^2*d^3*e+36*a*d^4*e-43*b*d^4*e-27*c*d^4*e-4*d^5*e+23*a^4*e^2+45*a^3*b*e^2+41*a^2*b^2*e^2+22*a*b^3*e^2+14*b^4*e^2-30*a^3*c*e^2+19*a^2*b*c*e^2-34*a*b^2*c*e^2+17*b^3*c*e^2-42*a^2*c^2*e^2-12*a*b*c^2*e^2-9*b^2*c^2*e^2-3*a*c^3*e^2+47*b*c^3*e^2+47*c^4*e^2+7*a^3*d*e^2+6*a^2*b*d*e^2+26*a*b^2*d*e^2+10*b^3*d*e^2-11*a^2*c*d*e^2-17*a*b*c*d*e^2+34*b^2*c*d*e^2+21*a*c^2*d*e^2+11*b*c^2*d*e^2+5*c^3*d*e^2-40*a^2*d^2*e^2+11*a*b*d^2*e^2+17*b^2*d^2*e^2+38*a*c*d^2*e^2-18*b*c*d^2*e^2+23*c^2*d^2*e^2+35*a*d^3*e^2+4*b*d^3*e^2-2*c*d^3*e^2+46*d^4*e^2+44*a^3*e^3-14*a^2*b*e^3+25*a*b^2*e^3-41*b^3*e^3-34*a^2*c*e^3-44*a*b*c*e^3+17*a*c^2*e^3+9*b*c^2*e^3+45*c^3*e^3+23*a^2*d*e^3-15*a*b*d*e^3+9*b^2*d*e^3-14*a*c*d*e^3-23*b*c*d*e^3+17*c^2*d*e^3+46*a*d^2*e^3+30*b*d^2*e^3+35*c*d^2*e^3-27*d^3*e^3-40*a^2*e^4-50*a*b*e^4-23*b^2*e^4-46*a*c*e^4+44*b*c*e^4+7*c^2*e^4+14*a*d*e^4-4*b*d*e^4-9*c*d*e^4+44*d^2*e^4-9*a*e^5+28*b*e^5+25*c*e^5+36*d*e^5+28*e^6, |
---|
2914 | a*b^2*c^3+41*a^4*d^2-33*a^3*b*d^2+21*a^2*b^2*d^2-47*a*b^3*d^2-23*b^4*d^2+9*a^3*c*d^2+49*a^2*b*c*d^2+44*a*b^2*c*d^2-25*b^3*c*d^2-28*a^2*c^2*d^2+37*a*b*c^2*d^2+9*b^2*c^2*d^2-21*a*c^3*d^2+36*b*c^3*d^2+48*c^4*d^2+2*a^3*d^3+15*a^2*b*d^3-3*a*b^2*d^3-40*b^3*d^3-19*a^2*c*d^3+4*a*b*c*d^3-29*b^2*c*d^3-48*a*c^2*d^3+41*b*c^2*d^3+34*c^3*d^3+33*a^2*d^4-13*a*b*d^4-34*b^2*d^4-47*a*c*d^4+36*b*c*d^4+34*c^2*d^4+41*a*d^5+25*b*d^5-28*c*d^5-31*d^6+22*a^5*e+a^4*b*e+27*a^3*b^2*e+5*a^2*b^3*e-33*a*b^4*e+2*b^5*e+20*a^4*c*e-30*a^3*b*c*e+11*a^2*b^2*c*e+44*a*b^3*c*e-37*b^4*c*e+a^3*c^2*e+7*a^2*b*c^2*e-20*a*b^2*c^2*e+34*b^3*c^2*e-35*a^2*c^3*e+28*a*b*c^3*e-50*b^2*c^3*e-11*a*c^4*e-26*b*c^4*e+c^5*e-37*a^4*d*e+23*a^3*b*d*e+50*a^2*b^2*d*e+35*a*b^3*d*e-4*b^4*d*e-15*a^3*c*d*e-39*a^2*b*c*d*e-50*a*b^2*c*d*e+47*b^3*c*d*e-38*a^2*c^2*d*e-42*a*b*c^2*d*e+43*b^2*c^2*d*e+24*a*c^3*d*e+31*b*c^3*d*e+41*c^4*d*e-15*a^3*d^2*e+20*a^2*b*d^2*e-24*a*b^2*d^2*e-47*b^3*d^2*e+4*a^2*c*d^2*e+42*a*b*c*d^2*e+20*b^2*c*d^2*e-37*a*c^2*d^2*e+42*b*c^2*d^2*e+6*c^3*d^2*e-45*a^2*d^3*e-7*a*b*d^3*e-37*b^2*d^3*e-34*a*c*d^3*e-44*b*c*d^3*e-c^2*d^3*e-29*a*d^4*e+22*b*d^4*e-27*c*d^4*e-34*d^5*e-13*a^4*e^2+48*a^3*b*e^2+22*a^2*b^2*e^2+30*a*b^3*e^2-10*b^4*e^2-2*a^3*c*e^2+10*a^2*b*c*e^2+23*a*b^2*c*e^2+27*b^3*c*e^2+15*a^2*c^2*e^2-a*b*c^2*e^2+33*b^2*c^2*e^2-13*a*c^3*e^2-13*b*c^3*e^2+44*c^4*e^2-34*a^3*d*e^2+7*a^2*b*d*e^2+a*b^2*d*e^2-50*b^3*d*e^2+23*a^2*c*d*e^2+12*a*b*c*d*e^2+50*b^2*c*d*e^2+29*a*c^2*d*e^2+41*b*c^2*d*e^2+22*c^3*d*e^2-20*a^2*d^2*e^2+4*a*b*d^2*e^2-33*b^2*d^2*e^2-38*a*c*d^2*e^2+47*b*c*d^2*e^2+21*c^2*d^2*e^2+18*b*d^3*e^2+44*c*d^3*e^2+31*d^4*e^2-3*a^3*e^3-32*a^2*b*e^3-45*a*b^2*e^3-20*b^3*e^3+29*a^2*c*e^3-35*a*b*c*e^3-11*b^2*c*e^3-13*a*c^2*e^3-38*b*c^2*e^3+17*c^3*e^3-41*a^2*d*e^3-36*a*b*d*e^3-6*b^2*d*e^3-14*a*c*d*e^3-16*b*c*d*e^3-6*c^2*d*e^3+20*a*d^2*e^3-29*b*d^2*e^3+50*c*d^2*e^3-37*d^3*e^3-27*a^2*e^4+15*a*b*e^4+46*b^2*e^4+39*a*c*e^4-26*b*c*e^4-10*c^2*e^4-40*a*d*e^4-5*b*d*e^4-23*c*d*e^4+36*d^2*e^4-21*a*e^5+4*b*e^5-48*c*e^5+38*d*e^5-36*e^6, |
---|
2915 | a^2*b*c^3+6*a^4*d^2-4*a^3*b*d^2+37*a^2*b^2*d^2+18*a*b^3*d^2-34*b^4*d^2+23*a^3*c*d^2-9*a^2*b*c*d^2-46*a*b^2*c*d^2+19*b^3*c*d^2+42*a^2*c^2*d^2-34*a*b*c^2*d^2-14*b^2*c^2*d^2-10*a*c^3*d^2+13*b*c^3*d^2+14*c^4*d^2-38*a^3*d^3-13*a^2*b*d^3+47*a*b^2*d^3-9*b^3*d^3-a^2*c*d^3+33*a*b*c*d^3+9*b^2*c*d^3+33*a*c^2*d^3+37*b*c^2*d^3+41*c^3*d^3+12*a^2*d^4-50*a*b*d^4+11*b^2*d^4-48*a*c*d^4+27*b*c*d^4-48*c^2*d^4-48*a*d^5-19*b*d^5+46*c*d^5+5*d^6+43*a^5*e-13*a^4*b*e-16*a^3*b^2*e+34*a^2*b^3*e+25*a*b^4*e+29*b^5*e-8*a^4*c*e-2*a^3*b*c*e+4*a^2*b^2*c*e+23*a*b^3*c*e+7*b^4*c*e-6*a^3*c^2*e-39*a^2*b*c^2*e-10*a*b^2*c^2*e+18*b^3*c^2*e-18*a^2*c^3*e+35*a*b*c^3*e+18*b^2*c^3*e-2*a*c^4*e+16*b*c^4*e-21*c^5*e-44*a^4*d*e-a^3*b*d*e+19*a^2*b^2*d*e+32*a*b^3*d*e+20*b^4*d*e+36*a^3*c*d*e+16*a^2*b*c*d*e+7*a*b^2*c*d*e+21*b^3*c*d*e+21*a^2*c^2*d*e-31*a*b*c^2*d*e+10*b^2*c^2*d*e-16*a*c^3*d*e+40*b*c^3*d*e-16*c^4*d*e-43*a^3*d^2*e+50*a^2*b*d^2*e-14*a*b^2*d^2*e-24*b^3*d^2*e-23*a^2*c*d^2*e-21*a*b*c*d^2*e-2*b^2*c*d^2*e+38*a*c^2*d^2*e+40*b*c^2*d^2*e+38*c^3*d^2*e-5*a^2*d^3*e+31*a*b*d^3*e-50*b^2*d^3*e+46*a*c*d^3*e-14*b*c*d^3*e+45*c^2*d^3*e-25*a*d^4*e-8*b*d^4*e+3*c*d^4*e+7*d^5*e-a^4*e^2-29*a^3*b*e^2-23*a^2*b^2*e^2+19*a*b^3*e^2-41*b^4*e^2+46*a^3*c*e^2-27*a^2*b*c*e^2-24*a*b^2*c*e^2+26*b^3*c*e^2+8*a^2*c^2*e^2-11*a*b*c^2*e^2-9*b^2*c^2*e^2+29*a*c^3*e^2+15*b*c^3*e^2-10*c^4*e^2-37*a^3*d*e^2+25*a^2*b*d*e^2-26*a*b^2*d*e^2+7*b^3*d*e^2-19*a^2*c*d*e^2-12*a*b*c*d*e^2+50*b^2*c*d*e^2-40*a*c^2*d*e^2-28*b*c^2*d*e^2+26*c^3*d*e^2+28*a^2*d^2*e^2+38*a*b*d^2*e^2+44*b^2*d^2*e^2-32*a*c*d^2*e^2-14*b*c*d^2*e^2+23*c^2*d^2*e^2+44*a*d^3*e^2+47*b*d^3*e^2+46*c*d^3*e^2+3*d^4*e^2-27*a^3*e^3+5*a^2*b*e^3-48*a*b^2*e^3+22*b^3*e^3+32*a^2*c*e^3+23*a*b*c*e^3+34*b^2*c*e^3+4*a*c^2*e^3-25*b*c^2*e^3+13*c^3*e^3+25*a^2*d*e^3-24*a*b*d*e^3+11*b^2*d*e^3+32*a*c*d*e^3-14*b*c*d*e^3+4*c^2*d*e^3+10*a*d^2*e^3-7*b*d^2*e^3+22*c*d^2*e^3-4*d^3*e^3+6*a^2*e^4+19*a*b*e^4+15*b^2*e^4+9*a*c*e^4-49*b*c*e^4+37*c^2*e^4-46*a*d*e^4+33*b*d*e^4+41*c*d*e^4-41*d^2*e^4+11*a*e^5-44*b*e^5+46*c*e^5+12*d*e^5-50*e^6, |
---|
2916 | a^3*c^3-8*a^4*d^2+24*a^3*b*d^2-28*a^2*b^2*d^2+27*a*b^3*d^2-17*b^4*d^2-40*a^3*c*d^2+28*a^2*b*c*d^2+2*a*b^2*c*d^2-18*b^3*c*d^2+45*a^2*c^2*d^2-13*a*b*c^2*d^2-14*b^2*c^2*d^2+35*a*c^3*d^2-32*b*c^3*d^2+2*c^4*d^2-27*a^3*d^3-41*a^2*b*d^3-36*a*b^2*d^3-50*b^3*d^3+23*a^2*c*d^3+25*a*b*c*d^3+22*b^2*c*d^3+15*a*c^2*d^3-36*b*c^2*d^3-43*c^3*d^3-26*a^2*d^4-43*a*b*d^4-25*b^2*d^4-14*a*c*d^4+32*b*c*d^4+25*c^2*d^4+23*a*d^5-32*b*d^5+28*c*d^5-24*d^6+4*a^5*e-15*a^4*b*e-45*a^3*b^2*e-47*a^2*b^3*e+50*a*b^4*e+3*b^5*e+41*a^4*c*e+45*a^2*b^2*c*e+7*a*b^3*c*e-41*b^4*c*e+13*a^3*c^2*e+5*a^2*b*c^2*e+33*a*b^2*c^2*e+35*b^3*c^2*e+9*a^2*c^3*e-4*a*b*c^3*e-43*b^2*c^3*e-8*a*c^4*e+10*b*c^4*e-17*c^5*e+24*a^4*d*e-6*a^3*b*d*e+22*a^2*b^2*d*e+3*a*b^3*d*e+31*b^4*d*e-24*a^3*c*d*e+10*a^2*b*c*d*e+28*a*b^2*c*d*e-28*b^3*c*d*e+49*a^2*c^2*d*e+17*a*b*c^2*d*e+21*b^2*c^2*d*e-29*a*c^3*d*e-18*b*c^3*d*e+18*c^4*d*e+46*a^3*d^2*e+27*a^2*b*d^2*e+5*a*b^2*d^2*e+17*b^3*d^2*e+42*a^2*c*d^2*e+37*a*b*c*d^2*e+48*b^2*c*d^2*e+34*a*c^2*d^2*e+35*b*c^2*d^2*e+8*c^3*d^2*e+a^2*d^3*e-27*a*b*d^3*e+31*b^2*d^3*e+16*a*c*d^3*e+49*b*c*d^3*e-c^2*d^3*e+3*a*d^4*e-22*b*d^4*e+50*c*d^4*e-18*d^5*e+26*a^4*e^2+23*a^3*b*e^2+23*a^2*b^2*e^2-47*a*b^3*e^2+32*b^4*e^2-5*a^3*c*e^2-10*a^2*b*c*e^2-32*a*b^2*c*e^2+21*b^3*c*e^2+50*a^2*c^2*e^2+9*a*b*c^2*e^2+39*b^2*c^2*e^2+24*a*c^3*e^2-15*b*c^3*e^2-12*c^4*e^2+25*a^3*d*e^2+39*a^2*b*d*e^2+34*a*b^2*d*e^2+9*b^3*d*e^2+4*a^2*c*d*e^2+45*a*b*c*d*e^2+14*b^2*c*d*e^2+24*a*c^2*d*e^2+25*b*c^2*d*e^2-33*c^3*d*e^2+43*a^2*d^2*e^2-27*a*b*d^2*e^2+19*b^2*d^2*e^2-20*a*c*d^2*e^2-35*b*c*d^2*e^2+45*c^2*d^2*e^2-17*a*d^3*e^2-48*b*d^3*e^2-25*c*d^3*e^2-19*d^4*e^2+44*a^3*e^3+10*a^2*b*e^3+21*a*b^2*e^3-42*b^3*e^3+40*a^2*c*e^3-50*a*b*c*e^3-9*a*c^2*e^3+39*b*c^2*e^3+25*c^3*e^3+23*a^2*d*e^3-14*a*b*d*e^3+16*b^2*d*e^3+16*a*c*d*e^3+43*b*c*d*e^3-13*c^2*d*e^3-9*a*d^2*e^3-7*b*d^2*e^3+26*c*d^2*e^3-44*d^3*e^3-24*a^2*e^4+34*a*b*e^4+41*b^2*e^4-9*a*c*e^4+13*b*c*e^4-37*c^2*e^4-20*a*d*e^4-37*b*d*e^4+29*c*d*e^4+34*d^2*e^4+45*a*e^5+8*b*e^5+7*d*e^5+e^6, |
---|
2917 | b^4*c^2-14*a^4*d^2-37*a^3*b*d^2+19*a^2*b^2*d^2+4*a*b^3*d^2+20*b^4*d^2+34*a^3*c*d^2+17*a^2*b*c*d^2-35*a*b^2*c*d^2-21*b^3*c*d^2+32*a^2*c^2*d^2-31*a*b*c^2*d^2+18*b^2*c^2*d^2+6*a*c^3*d^2+21*b*c^3*d^2+24*c^4*d^2-4*a^3*d^3+41*a^2*b*d^3-14*a*b^2*d^3+38*b^3*d^3-26*a^2*c*d^3-48*a*b*c*d^3-39*b^2*c*d^3+a*c^2*d^3+50*b*c^2*d^3-13*c^3*d^3+21*a^2*d^4-17*a*b*d^4+47*b^2*d^4+16*a*c*d^4+12*b*c*d^4+30*c^2*d^4+11*a*d^5-5*b*d^5-42*c*d^5-15*d^6+15*a^5*e-15*a^4*b*e+36*a^3*b^2*e-21*a^2*b^3*e-9*a*b^4*e-34*b^5*e-40*a^4*c*e+7*a^3*b*c*e-22*a^2*b^2*c*e+48*a*b^3*c*e-24*b^4*c*e-40*a^3*c^2*e+17*a^2*b*c^2*e-15*a*b^2*c^2*e+19*b^3*c^2*e-19*a^2*c^3*e-36*a*b*c^3*e+26*b^2*c^3*e-32*a*c^4*e-46*b*c^4*e+26*c^5*e-33*a^4*d*e+33*a^3*b*d*e+28*a^2*b^2*d*e+48*a*b^3*d*e-22*b^4*d*e+46*a^3*c*d*e+35*a^2*b*c*d*e-21*a*b^2*c*d*e+b^3*c*d*e+8*a^2*c^2*d*e+14*a*b*c^2*d*e+12*b^2*c^2*d*e-4*a*c^3*d*e+32*b*c^3*d*e-17*c^4*d*e-42*a^3*d^2*e-43*a^2*b*d^2*e+17*a*b^2*d^2*e+21*b^3*d^2*e-31*a^2*c*d^2*e-46*a*b*c*d^2*e-26*b^2*c*d^2*e+35*a*c^2*d^2*e+14*b*c^2*d^2*e-35*c^3*d^2*e-3*a^2*d^3*e+50*a*b*d^3*e+41*b^2*d^3*e+36*a*c*d^3*e+7*b*c*d^3*e+7*c^2*d^3*e+15*a*d^4*e-38*b*d^4*e-37*c*d^4*e-34*d^5*e+15*a^4*e^2+44*a^3*b*e^2+42*a^2*b^2*e^2+10*a*b^3*e^2-23*b^4*e^2+37*a^3*c*e^2+50*a^2*b*c*e^2+20*a*b^2*c*e^2-50*b^3*c*e^2-4*a^2*c^2*e^2-3*a*b*c^2*e^2-14*b^2*c^2*e^2-28*a*c^3*e^2-10*b*c^3*e^2-33*c^4*e^2-11*a^3*d*e^2-8*a^2*b*d*e^2-23*a*b^2*d*e^2-14*a^2*c*d*e^2+42*a*b*c*d*e^2-42*b^2*c*d*e^2-36*a*c^2*d*e^2+41*b*c^2*d*e^2-27*c^3*d*e^2+30*a^2*d^2*e^2+3*a*b*d^2*e^2+33*b^2*d^2*e^2-28*a*c*d^2*e^2-26*b*c*d^2*e^2+c^2*d^2*e^2+46*a*d^3*e^2+21*b*d^3*e^2-32*c*d^3*e^2-16*d^4*e^2-23*a^3*e^3+6*a^2*b*e^3+40*a*b^2*e^3-38*b^3*e^3+28*a^2*c*e^3-14*a*b*c*e^3+6*b^2*c*e^3+45*a*c^2*e^3+2*b*c^2*e^3-11*c^3*e^3+18*a^2*d*e^3+36*a*b*d*e^3-40*b^2*d*e^3-43*a*c*d*e^3+44*b*c*d*e^3-26*c^2*d*e^3+23*a*d^2*e^3+28*b*d^2*e^3+15*c*d^2*e^3-18*d^3*e^3-13*a^2*e^4-47*a*b*e^4-28*b^2*e^4-22*a*c*e^4+20*b*c*e^4+17*c^2*e^4+a*d*e^4+46*b*d*e^4-15*c*d*e^4+40*d^2*e^4+34*a*e^5-9*b*e^5-29*c*e^5+15*d*e^5+32*e^6, |
---|
2918 | a*b^3*c^2-37*a^4*d^2-46*a^3*b*d^2+11*a^2*b^2*d^2+21*a*b^3*d^2+21*b^4*d^2-23*a^3*c*d^2-3*a^2*b*c*d^2+3*a*b^2*c*d^2-32*b^3*c*d^2-37*a^2*c^2*d^2-36*a*b*c^2*d^2+37*b^2*c^2*d^2-6*a*c^3*d^2-34*b*c^3*d^2+48*c^4*d^2+28*a^3*d^3+43*a^2*b*d^3+43*a*b^2*d^3+17*b^3*d^3+26*a^2*c*d^3+33*a*b*c*d^3-2*b^2*c*d^3-21*a*c^2*d^3-14*b*c^2*d^3-39*c^3*d^3-a^2*d^4-22*a*b*d^4-39*b^2*d^4-35*a*c*d^4+13*b*c*d^4-24*c^2*d^4-11*a*d^5+16*b*d^5+30*c*d^5-22*d^6-22*a^5*e+19*a^4*b*e-15*a^3*b^2*e-8*a^2*b^3*e+14*a*b^4*e-5*b^5*e+6*a^4*c*e+6*a^3*b*c*e+46*a^2*b^2*c*e+39*a*b^3*c*e+21*b^4*c*e-22*a^3*c^2*e+26*a^2*b*c^2*e+24*a*b^2*c^2*e+10*b^3*c^2*e-23*a^2*c^3*e+26*a*b*c^3*e+b^2*c^3*e+39*a*c^4*e+35*b*c^4*e-19*c^5*e+17*a^4*d*e+38*a^3*b*d*e+9*a^2*b^2*d*e-19*a*b^3*d*e+42*b^4*d*e-11*a^3*c*d*e-6*a^2*b*c*d*e+10*a*b^2*c*d*e-10*b^3*c*d*e+41*a^2*c^2*d*e+10*a*b*c^2*d*e+46*b^2*c^2*d*e-33*a*c^3*d*e-6*b*c^3*d*e+11*c^4*d*e-33*a^3*d^2*e-22*a^2*b*d^2*e-6*a*b^2*d^2*e-11*b^3*d^2*e+34*a^2*c*d^2*e-39*a*b*c*d^2*e-45*b^2*c*d^2*e-17*a*c^2*d^2*e-8*b*c^2*d^2*e-41*c^3*d^2*e+13*a^2*d^3*e-11*a*b*d^3*e-13*b^2*d^3*e+3*a*c*d^3*e-28*b*c*d^3*e+33*c^2*d^3*e-8*a*d^4*e+24*b*d^4*e-34*c*d^4*e-7*d^5*e+26*a^4*e^2+12*a^3*b*e^2-20*a^2*b^2*e^2+5*a*b^3*e^2+30*b^4*e^2+6*a^3*c*e^2-45*a^2*b*c*e^2-49*a*b^2*c*e^2+43*b^3*c*e^2-29*a^2*c^2*e^2+4*a*b*c^2*e^2+17*b^2*c^2*e^2+13*a*c^3*e^2+21*b*c^3*e^2+16*c^4*e^2-25*a^3*d*e^2-7*a^2*b*d*e^2+42*a*b^2*d*e^2-44*b^3*d*e^2+19*a^2*c*d*e^2+5*a*b*c*d*e^2-38*b^2*c*d*e^2-17*a*c^2*d*e^2-15*b*c^2*d*e^2-26*c^3*d*e^2+47*a^2*d^2*e^2-42*a*b*d^2*e^2-26*b^2*d^2*e^2-50*a*c*d^2*e^2+25*b*c*d^2*e^2-3*c^2*d^2*e^2-47*a*d^3*e^2-40*b*d^3*e^2+24*c*d^3*e^2+35*d^4*e^2-22*a^3*e^3-5*a^2*b*e^3-10*a*b^2*e^3-7*b^3*e^3+6*a^2*c*e^3-16*a*b*c*e^3-28*b^2*c*e^3-43*a*c^2*e^3+24*b*c^2*e^3-9*c^3*e^3+42*a^2*d*e^3-12*a*b*d*e^3-29*b^2*d*e^3+35*a*c*d*e^3+27*b*c*d*e^3+40*c^2*d*e^3-17*a*d^2*e^3+29*b*d^2*e^3+38*c*d^2*e^3+13*d^3*e^3-23*a^2*e^4+32*a*b*e^4+5*b^2*e^4+11*a*c*e^4-b*c*e^4-37*c^2*e^4+3*a*d*e^4-3*b*d*e^4+37*c*d*e^4-28*d^2*e^4-33*a*e^5+18*b*e^5+45*c*e^5-11*d*e^5+42*e^6, |
---|
2919 | a^2*b^2*c^2+34*a^4*d^2+5*a^3*b*d^2-6*a^2*b^2*d^2-24*a*b^3*d^2+14*b^4*d^2+24*a^3*c*d^2-13*a^2*b*c*d^2+27*a*b^2*c*d^2+10*b^3*c*d^2-38*a^2*c^2*d^2+14*a*b*c^2*d^2+49*b^2*c^2*d^2+42*a*c^3*d^2-4*b*c^3*d^2+32*c^4*d^2+47*a^3*d^3+38*a^2*b*d^3+12*a*b^2*d^3-7*b^3*d^3+30*a^2*c*d^3+2*a*b*c*d^3+23*b^2*c*d^3-42*a*c^2*d^3+19*b*c^2*d^3-19*c^3*d^3-12*a^2*d^4+37*a*b*d^4+47*b^2*d^4+31*a*c*d^4+4*b*c*d^4-36*c^2*d^4-10*a*d^5-7*b*d^5+6*c*d^5-12*d^6-46*a^5*e-47*a^4*b*e+49*a^3*b^2*e+45*a^2*b^3*e+44*a*b^4*e+35*b^5*e+24*a^4*c*e+8*a^3*b*c*e-31*a^2*b^2*c*e+21*a*b^3*c*e+40*b^4*c*e-35*a^3*c^2*e+38*a^2*b*c^2*e+12*a*b^2*c^2*e-27*b^3*c^2*e+39*a^2*c^3*e-48*a*b*c^3*e+21*b^2*c^3*e+29*a*c^4*e-36*b*c^4*e-46*c^5*e-46*a^4*d*e+a^3*b*d*e+11*a^2*b^2*d*e+10*a*b^3*d*e-29*b^4*d*e-16*a^3*c*d*e-18*a^2*b*c*d*e+15*a*b^2*c*d*e-30*b^3*c*d*e-34*a^2*c^2*d*e+36*a*b*c^2*d*e+6*a*c^3*d*e-6*b*c^3*d*e+40*c^4*d*e+49*a^3*d^2*e-14*a^2*b*d^2*e-33*a*b^2*d^2*e+34*b^3*d^2*e-26*a^2*c*d^2*e-31*a*b*c*d^2*e-10*b^2*c*d^2*e+40*a*c^2*d^2*e+34*b*c^2*d^2*e+17*c^3*d^2*e-32*a^2*d^3*e-5*a*b*d^3*e-47*b^2*d^3*e-4*a*c*d^3*e+b*c*d^3*e+47*c^2*d^3*e+8*a*d^4*e+48*b*d^4*e-38*c*d^4*e+34*d^5*e-12*a^4*e^2+6*a^2*b^2*e^2-9*a*b^3*e^2-17*b^4*e^2-16*a^3*c*e^2-32*a^2*b*c*e^2+49*a*b^2*c*e^2+3*b^3*c*e^2+27*a^2*c^2*e^2-42*a*b*c^2*e^2-b^2*c^2*e^2+42*a*c^3*e^2+21*b*c^3*e^2-18*c^4*e^2-a^3*d*e^2+8*a^2*b*d*e^2+45*a*b^2*d*e^2+36*b^3*d*e^2+42*a^2*c*d*e^2-29*a*b*c*d*e^2+45*b^2*c*d*e^2-9*a*c^2*d*e^2-32*b*c^2*d*e^2-50*c^3*d*e^2-25*a^2*d^2*e^2+14*a*b*d^2*e^2-44*b^2*d^2*e^2-16*a*c*d^2*e^2+29*b*c*d^2*e^2+17*c^2*d^2*e^2-12*a*d^3*e^2+28*b*d^3*e^2+36*c*d^3*e^2+24*d^4*e^2+24*a^3*e^3-39*a^2*b*e^3-2*a*b^2*e^3-28*b^3*e^3+31*a^2*c*e^3-47*a*b*c*e^3-b^2*c*e^3-17*a*c^2*e^3+50*b*c^2*e^3-c^3*e^3-a^2*d*e^3+41*a*b*d*e^3-13*b^2*d*e^3-13*a*c*d*e^3+4*b*c*d*e^3+32*c^2*d*e^3-16*a*d^2*e^3-11*b*d^2*e^3+49*c*d^2*e^3+d^3*e^3+32*a^2*e^4-11*a*b*e^4+5*b^2*e^4+3*a*c*e^4-49*b*c*e^4+32*c^2*e^4-11*a*d*e^4-43*b*d*e^4+35*c*d*e^4-5*d^2*e^4+40*a*e^5+18*b*e^5+3*c*e^5+25*d*e^5+28*e^6, |
---|
2920 | a^3*b*c^2-30*a^4*d^2+28*a^3*b*d^2+41*a^2*b^2*d^2-11*a*b^3*d^2+27*b^4*d^2-36*a^3*c*d^2+27*a^2*b*c*d^2+50*a*b^2*c*d^2-34*b^3*c*d^2-21*a^2*c^2*d^2-6*a*b*c^2*d^2-8*b^2*c^2*d^2-14*a*c^3*d^2-35*b*c^3*d^2+21*c^4*d^2+37*a^3*d^3-14*a^2*b*d^3-41*a*b^2*d^3+30*b^3*d^3+35*a^2*c*d^3-28*a*b*c*d^3+26*b^2*c*d^3+19*a*c^2*d^3+b*c^2*d^3-5*c^3*d^3-29*a^2*d^4+25*a*b*d^4-38*b^2*d^4+50*a*c*d^4+10*b*c*d^4+30*c^2*d^4+31*a*d^5-49*b*d^5+39*c*d^5-40*d^6+16*a^5*e-47*a^4*b*e+39*a^3*b^2*e-41*a^2*b^3*e-27*a*b^4*e+10*b^5*e-20*a^4*c*e+23*a^3*b*c*e-39*a^2*b^2*c*e+28*a*b^3*c*e-16*b^4*c*e+20*a^3*c^2*e+22*a^2*b*c^2*e+45*a*b^2*c^2*e-b^3*c^2*e+37*a^2*c^3*e-3*a*b*c^3*e-49*b^2*c^3*e+8*a*c^4*e-3*b*c^4*e+41*c^5*e+33*a^4*d*e+35*a^3*b*d*e+10*a^2*b^2*d*e-42*a*b^3*d*e+14*b^4*d*e+a^3*c*d*e-28*a^2*b*c*d*e-26*a*b^2*c*d*e+35*b^3*c*d*e-24*a^2*c^2*d*e-3*a*b*c^2*d*e+20*b^2*c^2*d*e+a*c^3*d*e+8*b*c^3*d*e-41*c^4*d*e-12*a^3*d^2*e-43*a^2*b*d^2*e+32*a*b^2*d^2*e-26*b^3*d^2*e-37*a^2*c*d^2*e+50*a*b*c*d^2*e-21*b^2*c*d^2*e+46*a*c^2*d^2*e-26*b*c^2*d^2*e+41*c^3*d^2*e+39*a^2*d^3*e+6*a*b*d^3*e-34*b^2*d^3*e+13*a*c*d^3*e-12*b*c*d^3*e-7*c^2*d^3*e-31*a*d^4*e+19*b*d^4*e-22*c*d^4*e+44*d^5*e+15*a^4*e^2-24*a^3*b*e^2-23*a^2*b^2*e^2-25*a*b^3*e^2+21*b^4*e^2+28*a^3*c*e^2+32*a^2*b*c*e^2+6*a*b^2*c*e^2-6*b^3*c*e^2-32*a^2*c^2*e^2+37*a*b*c^2*e^2-15*b^2*c^2*e^2-3*a*c^3*e^2+5*b*c^3*e^2+33*c^4*e^2+50*a^3*d*e^2+46*a^2*b*d*e^2+3*a*b^2*d*e^2+11*b^3*d*e^2-6*a^2*c*d*e^2-26*a*b*c*d*e^2-26*b^2*c*d*e^2+49*a*c^2*d*e^2+48*b*c^2*d*e^2+14*c^3*d*e^2-11*a^2*d^2*e^2-49*a*b*d^2*e^2+37*b^2*d^2*e^2-20*a*c*d^2*e^2+10*b*c*d^2*e^2+22*c^2*d^2*e^2+46*a*d^3*e^2+3*b*d^3*e^2+24*c*d^3*e^2-49*d^4*e^2-31*a^3*e^3+35*a^2*b*e^3-38*a*b^2*e^3+4*b^3*e^3-10*a^2*c*e^3+a*b*c*e^3-15*b^2*c*e^3-8*a*c^2*e^3-18*b*c^2*e^3-26*c^3*e^3+26*a^2*d*e^3+23*a*b*d*e^3+4*b^2*d*e^3-37*a*c*d*e^3+49*b*c*d*e^3-9*c^2*d*e^3-39*a*d^2*e^3+44*b*d^2*e^3+44*c*d^2*e^3+6*d^3*e^3+49*a^2*e^4+23*a*b*e^4+15*a*c*e^4-10*b*c*e^4+24*c^2*e^4+23*a*d*e^4-34*b*d*e^4-9*c*d*e^4-11*d^2*e^4+49*a*e^5+32*b*e^5-12*c*e^5+32*d*e^5+13*e^6, |
---|
2921 | a^4*c^2-10*a^4*d^2+38*a^3*b*d^2-a^2*b^2*d^2+6*a*b^3*d^2+39*b^4*d^2-11*a^3*c*d^2+9*a^2*b*c*d^2+21*a*b^2*c*d^2-13*b^3*c*d^2+22*a^2*c^2*d^2+33*a*b*c^2*d^2-19*b^2*c^2*d^2-18*a*c^3*d^2-38*b*c^3*d^2-50*c^4*d^2-11*a^3*d^3-41*a^2*b*d^3-9*a*b^2*d^3-40*b^3*d^3-8*a^2*c*d^3+49*a*b*c*d^3+34*b^2*c*d^3+36*a*c^2*d^3-37*b*c^2*d^3+14*c^3*d^3-2*a^2*d^4+34*a*b*d^4+47*b^2*d^4+47*a*c*d^4-20*b*c*d^4-13*c^2*d^4+6*a*d^5-31*b*d^5+28*c*d^5-31*d^6-3*a^5*e+39*a^4*b*e+16*a^3*b^2*e+16*a^2*b^3*e+9*a*b^4*e+37*b^5*e-39*a^4*c*e+5*a^3*b*c*e+36*a^2*b^2*c*e-7*a*b^3*c*e+16*b^4*c*e-43*a^3*c^2*e-5*a^2*b*c^2*e+30*a*b^2*c^2*e+12*b^3*c^2*e-26*a^2*c^3*e+45*a*b*c^3*e+9*b^2*c^3*e+17*a*c^4*e-19*b*c^4*e-6*c^5*e-47*a^4*d*e-33*a^3*b*d*e+12*a^2*b^2*d*e+4*a*b^3*d*e+33*b^4*d*e+3*a^3*c*d*e-33*a^2*b*c*d*e-13*a*b^2*c*d*e+28*b^3*c*d*e-46*a^2*c^2*d*e-32*a*b*c^2*d*e+26*b^2*c^2*d*e-14*a*c^3*d*e+8*b*c^3*d*e-40*c^4*d*e+38*a^3*d^2*e-29*a^2*b*d^2*e+45*a*b^2*d^2*e+6*b^3*d^2*e-34*a^2*c*d^2*e-15*a*b*c*d^2*e-20*b^2*c*d^2*e-24*a*c^2*d^2*e-5*b*c^2*d^2*e-36*c^3*d^2*e+17*a^2*d^3*e-17*a*b*d^3*e-18*b^2*d^3*e+44*a*c*d^3*e+11*b*c*d^3*e-14*c^2*d^3*e-31*a*d^4*e-39*b*d^4*e-48*c*d^4*e+20*d^5*e+a^4*e^2-8*a^3*b*e^2+13*a^2*b^2*e^2-18*a*b^3*e^2-28*b^4*e^2-26*a^3*c*e^2+21*a^2*b*c*e^2-12*a*b^2*c*e^2-46*b^3*c*e^2-45*a^2*c^2*e^2+32*a*b*c^2*e^2-9*b^2*c^2*e^2+36*a*c^3*e^2+38*b*c^3*e^2-15*c^4*e^2-21*a^3*d*e^2+25*a^2*b*d*e^2-6*a*b^2*d*e^2+2*b^3*d*e^2-21*a*b*c*d*e^2+38*b^2*c*d*e^2-3*a*c^2*d*e^2-29*b*c^2*d*e^2-9*c^3*d*e^2-20*a^2*d^2*e^2+32*a*b*d^2*e^2-12*b^2*d^2*e^2-21*a*c*d^2*e^2-b*c*d^2*e^2-31*c^2*d^2*e^2-24*a*d^3*e^2-16*b*d^3*e^2+47*c*d^3*e^2+41*d^4*e^2-12*a^3*e^3-38*a^2*b*e^3-23*a*b^2*e^3+44*b^3*e^3-7*a^2*c*e^3+28*a*b*c*e^3+42*b^2*c*e^3+10*a*c^2*e^3-12*b*c^2*e^3-7*c^3*e^3+33*a^2*d*e^3+37*a*b*d*e^3+39*b^2*d*e^3-43*a*c*d*e^3-21*b*c*d*e^3+20*c^2*d*e^3+48*a*d^2*e^3+25*b*d^2*e^3-20*c*d^2*e^3+35*d^3*e^3+a^2*e^4+40*a*b*e^4+23*b^2*e^4+45*a*c*e^4-4*b*c*e^4-15*c^2*e^4+42*a*d*e^4-49*b*d*e^4-28*c*d*e^4-8*d^2*e^4-38*a*e^5-12*b*e^5+42*c*e^5+11*d*e^5+45*e^6, |
---|
2922 | b^5*c+40*a^4*d^2-47*a^3*b*d^2+16*a^2*b^2*d^2+18*a*b^3*d^2+33*b^4*d^2+9*a^3*c*d^2-38*a^2*b*c*d^2-22*a*b^2*c*d^2+8*b^3*c*d^2-21*a^2*c^2*d^2-2*a*b*c^2*d^2+33*b^2*c^2*d^2+5*a*c^3*d^2-50*b*c^3*d^2-35*c^4*d^2+29*a^3*d^3+25*a^2*b*d^3-38*a*b^2*d^3+17*b^3*d^3-32*a^2*c*d^3-44*a*b*c*d^3-20*b^2*c*d^3-26*a*c^2*d^3-37*b*c^2*d^3+47*c^3*d^3+19*a^2*d^4-34*a*b*d^4-20*b^2*d^4+31*a*c*d^4-14*b*c*d^4-37*c^2*d^4-37*a*d^5+7*b*d^5-42*c*d^5+16*d^6-23*a^5*e-48*a^3*b^2*e-41*a^2*b^3*e+6*a*b^4*e+49*a^4*c*e+34*a^3*b*c*e-8*a^2*b^2*c*e+17*a*b^3*c*e+39*b^4*c*e+2*a^3*c^2*e+42*a^2*b*c^2*e+21*a*b^2*c^2*e-8*b^3*c^2*e-11*a^2*c^3*e+50*a*b*c^3*e+25*b^2*c^3*e-46*a*c^4*e-4*b*c^4*e-10*c^5*e+12*a^4*d*e+9*a^3*b*d*e-46*a^2*b^2*d*e-12*a*b^3*d*e-44*b^4*d*e-35*a^3*c*d*e-46*a^2*b*c*d*e+17*a*b^2*c*d*e+48*b^3*c*d*e-28*a^2*c^2*d*e-50*a*b*c^2*d*e-46*b^2*c^2*d*e+4*a*c^3*d*e-41*b*c^3*d*e-8*c^4*d*e+42*a^3*d^2*e+39*a^2*b*d^2*e+27*a*b^2*d^2*e-40*b^3*d^2*e-8*a^2*c*d^2*e+40*a*b*c*d^2*e-20*b^2*c*d^2*e+35*a*c^2*d^2*e-26*b*c^2*d^2*e-2*c^3*d^2*e-14*a^2*d^3*e-34*a*b*d^3*e-24*b^2*d^3*e+22*a*c*d^3*e+45*b*c*d^3*e-9*c^2*d^3*e-38*a*d^4*e-14*b*d^4*e+50*c*d^4*e-49*d^5*e-23*a^4*e^2-10*a^3*b*e^2-4*a^2*b^2*e^2+49*a*b^3*e^2+28*b^4*e^2-50*a^3*c*e^2+38*a^2*b*c*e^2+26*a*b^2*c*e^2-44*b^3*c*e^2+3*a^2*c^2*e^2+46*a*b*c^2*e^2+42*b^2*c^2*e^2+9*a*c^3*e^2+18*b*c^3*e^2-9*c^4*e^2+16*a^3*d*e^2-42*a^2*b*d*e^2+37*a*b^2*d*e^2-10*b^3*d*e^2-41*a^2*c*d*e^2-5*a*b*c*d*e^2+19*b^2*c*d*e^2+17*a*c^2*d*e^2-19*b*c^2*d*e^2+16*c^3*d*e^2+21*a^2*d^2*e^2-17*a*b*d^2*e^2-15*b^2*d^2*e^2-49*a*c*d^2*e^2+36*b*c*d^2*e^2-41*c^2*d^2*e^2+37*a*d^3*e^2-13*b*d^3*e^2-27*c*d^3*e^2-37*d^4*e^2+37*a^3*e^3-50*a^2*b*e^3+21*a*b^2*e^3+14*b^3*e^3-16*a^2*c*e^3+24*a*b*c*e^3-44*b^2*c*e^3+18*b*c^2*e^3+3*c^3*e^3-38*a^2*d*e^3+41*a*b*d*e^3+29*b^2*d*e^3-9*a*c*d*e^3+9*b*c*d*e^3-39*c^2*d*e^3+42*a*d^2*e^3+22*b*d^2*e^3+18*c*d^2*e^3+35*d^3*e^3+43*a^2*e^4+5*a*b*e^4+5*b^2*e^4+16*a*c*e^4-37*b*c*e^4+20*c^2*e^4-10*a*d*e^4+45*b*d*e^4-46*c*d*e^4+42*d^2*e^4+14*a*e^5+15*b*e^5+38*c*e^5+49*d*e^5+3*e^6, |
---|
2923 | a*b^4*c+32*a^4*d^2+43*a^3*b*d^2+49*a^2*b^2*d^2+38*a*b^3*d^2+47*b^4*d^2+19*a^3*c*d^2+43*a^2*b*c*d^2-25*a*b^2*c*d^2+25*b^3*c*d^2+26*a^2*c^2*d^2-5*a*b*c^2*d^2-19*b^2*c^2*d^2+33*a*c^3*d^2-3*b*c^3*d^2-37*c^4*d^2+18*a^3*d^3-27*a^2*b*d^3-33*a*b^2*d^3-49*b^3*d^3+48*a^2*c*d^3-12*a*b*c*d^3+17*b^2*c*d^3+6*a*c^2*d^3-36*b*c^2*d^3+36*c^3*d^3+a^2*d^4-12*b^2*d^4-3*a*c*d^4-43*b*c*d^4-24*c^2*d^4-14*a*d^5-43*b*d^5-20*c*d^5+24*d^6-42*a^5*e-48*a^4*b*e+29*a^3*b^2*e-29*a^2*b^3*e-37*a*b^4*e+b^5*e-31*a^4*c*e+35*a^3*b*c*e+9*a^2*b^2*c*e-17*a*b^3*c*e-34*b^4*c*e+42*a^3*c^2*e-47*a^2*b*c^2*e+31*a*b^2*c^2*e+9*b^3*c^2*e+48*a^2*c^3*e-15*a*b*c^3*e+34*b^2*c^3*e+15*a*c^4*e-23*b*c^4*e+45*c^5*e-12*a^4*d*e+42*a^3*b*d*e-15*a^2*b^2*d*e-14*a*b^3*d*e+33*b^4*d*e-41*a^3*c*d*e+9*a^2*b*c*d*e+15*a*b^2*c*d*e-44*b^3*c*d*e-32*a^2*c^2*d*e+9*a*b*c^2*d*e+22*b^2*c^2*d*e-23*a*c^3*d*e+43*b*c^3*d*e-37*c^4*d*e+19*a^3*d^2*e-47*a^2*b*d^2*e+39*a*b^2*d^2*e-24*b^3*d^2*e-44*a^2*c*d^2*e-27*a*b*c*d^2*e-30*b^2*c*d^2*e-19*a*c^2*d^2*e-28*b*c^2*d^2*e-30*c^3*d^2*e-41*a^2*d^3*e+17*a*b*d^3*e-30*b^2*d^3*e+3*a*c*d^3*e+50*b*c*d^3*e+47*c^2*d^3*e+47*a*d^4*e-40*b*d^4*e+3*c*d^4*e+28*d^5*e-35*a^4*e^2+23*a^3*b*e^2+2*a^2*b^2*e^2-17*a*b^3*e^2-22*b^4*e^2+35*a^3*c*e^2-38*a^2*b*c*e^2-7*a*b^2*c*e^2-12*b^3*c*e^2+38*a^2*c^2*e^2-12*a*b*c^2*e^2+13*b^2*c^2*e^2+19*b*c^3*e^2-25*c^4*e^2-45*a^3*d*e^2-35*a^2*b*d*e^2+41*a*b^2*d*e^2+10*b^3*d*e^2+17*a^2*c*d*e^2-10*a*b*c*d*e^2-42*b^2*c*d*e^2+13*a*c^2*d*e^2-3*b*c^2*d*e^2-42*c^3*d*e^2-2*a^2*d^2*e^2-7*a*b*d^2*e^2+46*b^2*d^2*e^2+43*a*c*d^2*e^2+29*b*c*d^2*e^2+19*c^2*d^2*e^2-26*a*d^3*e^2+28*b*d^3*e^2+27*c*d^3*e^2+32*d^4*e^2+49*a^3*e^3+48*a^2*b*e^3+34*a*b^2*e^3-48*b^3*e^3+12*a^2*c*e^3+30*a*b*c*e^3+18*b^2*c*e^3-50*a*c^2*e^3+13*b*c^2*e^3+48*c^3*e^3+17*a^2*d*e^3+22*a*b*d*e^3-6*b^2*d*e^3-40*a*c*d*e^3-33*b*c*d*e^3-2*c^2*d*e^3-48*a*d^2*e^3-7*b*d^2*e^3+32*c*d^2*e^3-31*d^3*e^3+46*a^2*e^4+17*a*b*e^4+14*b^2*e^4+8*a*c*e^4-43*b*c*e^4+24*a*d*e^4-41*b*d*e^4-35*c*d*e^4-44*d^2*e^4-29*a*e^5+11*b*e^5+50*c*e^5-32*d*e^5+23*e^6, |
---|
2924 | a^2*b^3*c-22*a^4*d^2+38*a^3*b*d^2+10*a^2*b^2*d^2-31*a*b^3*d^2+42*b^4*d^2-7*a^3*c*d^2-47*a^2*b*c*d^2+37*a*b^2*c*d^2-23*b^3*c*d^2-43*a^2*c^2*d^2+38*a*b*c^2*d^2+18*b^2*c^2*d^2+18*a*c^3*d^2+25*b*c^3*d^2+4*c^4*d^2+36*a^3*d^3-21*a^2*b*d^3+35*a*b^2*d^3+28*b^3*d^3+13*a^2*c*d^3+36*a*b*c*d^3-33*b^2*c*d^3+9*a*c^2*d^3+18*b*c^2*d^3-49*c^3*d^3-5*a^2*d^4-8*a*b*d^4-34*b^2*d^4-43*a*c*d^4-47*b*c*d^4-12*c^2*d^4+34*a*d^5+50*b*d^5-13*c*d^5-20*d^6+29*a^5*e-10*a^4*b*e+17*a^3*b^2*e+7*a^2*b^3*e+45*a*b^4*e-23*b^5*e+41*a^4*c*e+31*a^3*b*c*e+9*a^2*b^2*c*e+3*a*b^3*c*e-11*b^4*c*e+6*a^3*c^2*e+11*a^2*b*c^2*e-42*a*b^2*c^2*e+17*b^3*c^2*e+5*a^2*c^3*e-44*a*b*c^3*e-44*b^2*c^3*e+42*a*c^4*e-29*b*c^4*e+6*c^5*e+7*a^4*d*e-50*a^3*b*d*e+29*a^2*b^2*d*e-42*a*b^3*d*e-25*b^4*d*e-5*a^3*c*d*e-33*a^2*b*c*d*e+36*a*b^2*c*d*e+47*b^3*c*d*e-41*a^2*c^2*d*e+4*a*b*c^2*d*e+44*b^2*c^2*d*e-10*a*c^3*d*e-2*b*c^3*d*e+20*c^4*d*e+21*a^3*d^2*e+6*a^2*b*d^2*e-50*a*b^2*d^2*e+35*b^3*d^2*e-8*a^2*c*d^2*e-17*a*b*c*d^2*e+7*b^2*c*d^2*e+35*a*c^2*d^2*e+28*b*c^2*d^2*e+25*c^3*d^2*e-6*a^2*d^3*e-16*a*b*d^3*e+35*b^2*d^3*e-12*a*c*d^3*e+46*b*c*d^3*e+7*c^2*d^3*e+16*a*d^4*e-24*b*d^4*e+32*c*d^4*e-26*d^5*e+6*a^4*e^2+48*a^3*b*e^2-27*a^2*b^2*e^2+15*a*b^3*e^2-15*b^4*e^2-25*a^3*c*e^2+39*a^2*b*c*e^2-21*a*b^2*c*e^2-8*b^3*c*e^2+15*a^2*c^2*e^2+31*a*b*c^2*e^2+33*b^2*c^2*e^2-31*a*c^3*e^2-27*b*c^3*e^2-16*c^4*e^2+41*a^3*d*e^2-17*a^2*b*d*e^2-25*a*b^2*d*e^2-3*b^3*d*e^2+6*a^2*c*d*e^2-24*a*b*c*d*e^2+b^2*c*d*e^2-a*c^2*d*e^2-15*b*c^2*d*e^2+16*c^3*d*e^2+42*a^2*d^2*e^2+6*a*b*d^2*e^2-25*b^2*d^2*e^2+21*a*c*d^2*e^2+48*b*c*d^2*e^2-10*c^2*d^2*e^2+31*b*d^3*e^2-32*c*d^3*e^2+2*d^4*e^2+35*a^3*e^3+42*a^2*b*e^3+10*a*b^2*e^3-38*b^3*e^3+32*a^2*c*e^3+34*a*b*c*e^3+14*b^2*c*e^3-7*a*c^2*e^3+22*b*c^2*e^3+37*c^3*e^3+2*a^2*d*e^3-42*a*b*d*e^3-6*b^2*d*e^3-9*a*c*d*e^3+22*b*c*d*e^3+19*c^2*d*e^3-21*a*d^2*e^3-37*b*d^2*e^3+43*c*d^2*e^3-36*d^3*e^3+16*a^2*e^4-21*a*b*e^4+44*b^2*e^4-48*a*c*e^4+35*b*c*e^4-25*c^2*e^4+15*a*d*e^4+42*b*d*e^4-27*c*d*e^4+27*d^2*e^4-25*a*e^5-12*b*e^5+20*c*e^5+7*d*e^5+3*e^6, |
---|
2925 | a^3*b^2*c-24*a^4*d^2+20*a^3*b*d^2+24*a^2*b^2*d^2-29*a*b^3*d^2-24*b^4*d^2+13*a^3*c*d^2+31*a*b^2*c*d^2-26*b^3*c*d^2-29*a^2*c^2*d^2-27*a*b*c^2*d^2+4*b^2*c^2*d^2+23*a*c^3*d^2+42*b*c^3*d^2-47*c^4*d^2+50*a^3*d^3+48*a^2*b*d^3-22*a*b^2*d^3+16*b^3*d^3-46*a^2*c*d^3-43*a*b*c*d^3+50*b^2*c*d^3-35*a*c^2*d^3-29*b*c^2*d^3-12*c^3*d^3+23*a^2*d^4+31*a*b*d^4+22*b^2*d^4-27*a*c*d^4-25*b*c*d^4-41*c^2*d^4+42*a*d^5-50*b*d^5+33*c*d^5+11*d^6+19*a^5*e-22*a^4*b*e+33*a^3*b^2*e+43*a^2*b^3*e+43*a*b^4*e-5*b^5*e-14*a^4*c*e-46*a^3*b*c*e-21*a^2*b^2*c*e+29*a*b^3*c*e+15*b^4*c*e+12*a^3*c^2*e-a^2*b*c^2*e-43*a*b^2*c^2*e+48*b^3*c^2*e+26*a^2*c^3*e-46*a*b*c^3*e-35*b^2*c^3*e+a*c^4*e+16*b*c^4*e+6*c^5*e-47*a^4*d*e-a^3*b*d*e+a^2*b^2*d*e-32*a*b^3*d*e-19*b^4*d*e-44*a^3*c*d*e+22*a^2*b*c*d*e+40*a*b^2*c*d*e-19*b^3*c*d*e+12*a^2*c^2*d*e-a*b*c^2*d*e-23*b^2*c^2*d*e-11*a*c^3*d*e-26*b*c^3*d*e-4*c^4*d*e-32*a^3*d^2*e-13*a^2*b*d^2*e-b^3*d^2*e+8*a^2*c*d^2*e-28*a*b*c*d^2*e+46*b^2*c*d^2*e-24*a*c^2*d^2*e+26*b*c^2*d^2*e+27*c^3*d^2*e+12*a^2*d^3*e+10*a*b*d^3*e-32*b^2*d^3*e-12*a*c*d^3*e-30*b*c*d^3*e+50*c^2*d^3*e+6*a*d^4*e+32*b*d^4*e+6*c*d^4*e-48*d^5*e+14*a^4*e^2+48*a^3*b*e^2+16*a^2*b^2*e^2+34*a*b^3*e^2+39*b^4*e^2+2*a^3*c*e^2+5*a^2*b*c*e^2-11*a*b^2*c*e^2-4*b^3*c*e^2-39*a^2*c^2*e^2+46*a*b*c^2*e^2-16*b^2*c^2*e^2-46*a*c^3*e^2-b*c^3*e^2+47*c^4*e^2-3*a^3*d*e^2-48*a^2*b*d*e^2-34*a*b^2*d*e^2+19*b^3*d*e^2+46*a^2*c*d*e^2-49*a*b*c*d*e^2-45*b^2*c*d*e^2-4*a*c^2*d*e^2+33*b*c^2*d*e^2-8*c^3*d*e^2-39*a^2*d^2*e^2-34*a*b*d^2*e^2+9*b^2*d^2*e^2-15*a*c*d^2*e^2+b*c*d^2*e^2+44*c^2*d^2*e^2-39*a*d^3*e^2+10*b*d^3*e^2+9*c*d^3*e^2-6*d^4*e^2-7*a^3*e^3+2*a^2*b*e^3+39*a*b^2*e^3+4*b^3*e^3-49*a^2*c*e^3+48*a*b*c*e^3+b^2*c*e^3+28*a*c^2*e^3-29*b*c^2*e^3-7*c^3*e^3+23*a^2*d*e^3+16*a*b*d*e^3+24*b^2*d*e^3-47*a*c*d*e^3+20*b*c*d*e^3+26*c^2*d*e^3+9*a*d^2*e^3+49*b*d^2*e^3+32*c*d^2*e^3+33*d^3*e^3-3*a^2*e^4+48*a*b*e^4-18*b^2*e^4-43*a*c*e^4-14*b*c*e^4-29*c^2*e^4+49*a*d*e^4-49*b*d*e^4-18*c*d*e^4-18*d^2*e^4+45*a*e^5-40*b*e^5-13*c*e^5+3*d*e^5+5*e^6, |
---|
2926 | a^4*b*c-38*a^4*d^2+23*a^3*b*d^2-28*a^2*b^2*d^2-49*a*b^3*d^2-37*b^4*d^2+46*a^3*c*d^2-39*a^2*b*c*d^2+31*a*b^2*c*d^2+43*b^3*c*d^2+40*a^2*c^2*d^2-30*a*b*c^2*d^2-7*b^2*c^2*d^2+32*a*c^3*d^2+50*b*c^3*d^2+13*c^4*d^2-9*a^3*d^3+23*a^2*b*d^3-12*a*b^2*d^3-42*b^3*d^3+4*a^2*c*d^3-3*a*b*c*d^3+50*b^2*c*d^3+16*a*c^2*d^3+40*b*c^2*d^3-23*c^3*d^3+39*a^2*d^4+35*a*b*d^4-45*b^2*d^4+45*a*c*d^4-15*b*c*d^4-26*c^2*d^4+29*a*d^5+37*b*d^5+3*c*d^5-22*d^6-8*a^5*e+15*a^4*b*e+19*a^3*b^2*e-12*a^2*b^3*e+22*a*b^4*e-48*b^5*e+32*a^4*c*e+48*a^3*b*c*e-14*a^2*b^2*c*e+43*a*b^3*c*e-23*b^4*c*e-36*a^3*c^2*e+36*a^2*b*c^2*e+15*a*b^2*c^2*e-34*b^3*c^2*e-16*a^2*c^3*e+20*a*b*c^3*e-23*b^2*c^3*e+39*a*c^4*e-37*b*c^4*e+43*c^5*e+30*a^4*d*e-38*a^3*b*d*e-25*a^2*b^2*d*e-5*a*b^3*d*e-24*b^4*d*e+5*a^3*c*d*e-47*a^2*b*c*d*e-17*a*b^2*c*d*e+30*b^3*c*d*e-a^2*c^2*d*e-43*a*b*c^2*d*e-6*b^2*c^2*d*e-46*a*c^3*d*e-37*b*c^3*d*e-43*c^4*d*e+48*a^3*d^2*e+20*a^2*b*d^2*e+21*a*b^2*d^2*e+35*b^3*d^2*e-47*a^2*c*d^2*e+27*a*b*c*d^2*e+b^2*c*d^2*e+7*a*c^2*d^2*e-11*b*c^2*d^2*e+46*c^3*d^2*e+40*a^2*d^3*e+43*a*b*d^3*e-31*b^2*d^3*e+22*a*c*d^3*e+2*b*c*d^3*e-18*c^2*d^3*e+35*a*d^4*e+31*b*d^4*e-48*c*d^4*e+43*d^5*e+16*a^4*e^2+27*a^3*b*e^2-28*a^2*b^2*e^2-13*a*b^3*e^2+17*b^4*e^2-34*a^3*c*e^2+12*a^2*b*c*e^2-25*a*b^2*c*e^2+7*b^3*c*e^2-19*a^2*c^2*e^2-31*a*b*c^2*e^2+22*b^2*c^2*e^2-45*a*c^3*e^2-25*b*c^3*e^2+7*c^4*e^2-9*a^3*d*e^2-3*a^2*b*d*e^2+20*a*b^2*d*e^2+28*b^3*d*e^2+41*a^2*c*d*e^2-2*a*b*c*d*e^2+8*b^2*c*d*e^2-20*a*c^2*d*e^2+35*b*c^2*d*e^2-11*c^3*d*e^2-27*a^2*d^2*e^2-29*a*b*d^2*e^2+28*b^2*d^2*e^2+10*a*c*d^2*e^2-8*b*c*d^2*e^2+13*c^2*d^2*e^2-32*a*d^3*e^2+23*b*d^3*e^2-50*c*d^3*e^2+20*d^4*e^2+49*a^3*e^3+9*a^2*b*e^3+27*a*b^2*e^3-15*b^3*e^3-38*a^2*c*e^3+26*a*b*c*e^3-47*b^2*c*e^3+10*a*c^2*e^3-21*b*c^2*e^3+2*c^3*e^3+7*a^2*d*e^3-8*a*b*d*e^3-25*b^2*d*e^3+15*a*c*d*e^3+17*b*c*d*e^3-39*c^2*d*e^3+7*a*d^2*e^3-47*b*d^2*e^3+6*c*d^2*e^3+5*d^3*e^3+21*a^2*e^4-49*a*b*e^4-35*b^2*e^4+32*a*c*e^4-16*b*c*e^4+7*c^2*e^4-25*a*d*e^4+30*b*d*e^4-31*c*d*e^4-21*d^2*e^4+42*a*e^5-b*e^5+14*c*e^5+18*d*e^5+28*e^6, |
---|
2927 | a^5*c-2*a^4*d^2-22*a^3*b*d^2-38*a^2*b^2*d^2+10*a*b^3*d^2+32*b^4*d^2-28*a^3*c*d^2+11*a^2*b*c*d^2-12*a*b^2*c*d^2-39*b^3*c*d^2+43*a^2*c^2*d^2+39*a*b*c^2*d^2-24*b^2*c^2*d^2+27*a*c^3*d^2+47*b*c^3*d^2+9*c^4*d^2+12*a^3*d^3+34*a^2*b*d^3-37*a*b^2*d^3+18*b^3*d^3+45*a^2*c*d^3+21*a*b*c*d^3+29*b^2*c*d^3+31*a*c^2*d^3+23*b*c^2*d^3+44*c^3*d^3-19*a^2*d^4+32*a*b*d^4+46*b^2*d^4+27*a*c*d^4+8*b*c*d^4-20*c^2*d^4-35*a*d^5-21*b*d^5+15*c*d^5-45*d^6-38*a^5*e-35*a^4*b*e-28*a^3*b^2*e-30*a^2*b^3*e-19*a*b^4*e-49*b^5*e+34*a^4*c*e-2*a^3*b*c*e-16*a^2*b^2*c*e-8*a*b^3*c*e-10*b^4*c*e-22*a^3*c^2*e+50*a^2*b*c^2*e-29*a*b^2*c^2*e-19*b^3*c^2*e+39*a^2*c^3*e-4*a*b*c^3*e-36*b^2*c^3*e-24*a*c^4*e-2*b*c^4*e-12*c^5*e-22*a^4*d*e-22*a^3*b*d*e-a^2*b^2*d*e-42*a*b^3*d*e-10*b^4*d*e-7*a^3*c*d*e-6*a^2*b*c*d*e+5*a*b^2*c*d*e+36*b^3*c*d*e-5*a^2*c^2*d*e-21*a*b*c^2*d*e-14*b^2*c^2*d*e-21*a*c^3*d*e+18*b*c^3*d*e+49*c^4*d*e-32*a^3*d^2*e-5*a^2*b*d^2*e-45*a*b^2*d^2*e+6*b^3*d^2*e-40*a*b*c*d^2*e-17*b^2*c*d^2*e-47*a*c^2*d^2*e+12*b*c^2*d^2*e-18*c^3*d^2*e-a^2*d^3*e+6*a*b*d^3*e+2*b^2*d^3*e-29*a*c*d^3*e+15*b*c*d^3*e+21*c^2*d^3*e-36*a*d^4*e-7*b*d^4*e+c*d^4*e-23*d^5*e-24*a^4*e^2+47*a^3*b*e^2+19*a^2*b^2*e^2-44*a*b^3*e^2-13*b^4*e^2+49*a^3*c*e^2+39*a^2*b*c*e^2+44*a*b^2*c*e^2+41*b^3*c*e^2-29*a^2*c^2*e^2+24*a*b*c^2*e^2+34*a*c^3*e^2+14*b*c^3*e^2+7*c^4*e^2+44*a^3*d*e^2+22*a^2*b*d*e^2+41*a*b^2*d*e^2+21*a^2*c*d*e^2+12*a*b*c*d*e^2-33*b^2*c*d*e^2-40*a*c^2*d*e^2+16*b*c^2*d*e^2-36*c^3*d*e^2+13*a^2*d^2*e^2-22*a*b*d^2*e^2+28*b^2*d^2*e^2+29*a*c*d^2*e^2+50*b*c*d^2*e^2+48*c^2*d^2*e^2+40*a*d^3*e^2+2*c*d^3*e^2-5*d^4*e^2-37*a^3*e^3+49*a^2*b*e^3-10*a*b^2*e^3-41*b^3*e^3+11*a^2*c*e^3-37*a*b*c*e^3+26*b^2*c*e^3-39*a*c^2*e^3-46*b*c^2*e^3-3*c^3*e^3+47*a^2*d*e^3+5*a*b*d*e^3-45*b^2*d*e^3+28*a*c*d*e^3+22*b*c*d*e^3+29*c^2*d*e^3+11*a*d^2*e^3+21*b*d^2*e^3+14*c*d^2*e^3+14*d^3*e^3+32*a^2*e^4-27*a*b*e^4-47*b^2*e^4-6*b*c*e^4-38*c^2*e^4-38*a*d*e^4-17*b*d*e^4+20*c*d*e^4-d^2*e^4-4*a*e^5-11*b*e^5-41*c*e^5+25*d*e^5-e^6, |
---|
2928 | b^6-11*a^4*d^2+23*a^3*b*d^2+41*a^2*b^2*d^2+7*a*b^3*d^2+10*b^4*d^2-31*a^3*c*d^2+10*a^2*b*c*d^2+7*a*b^2*c*d^2+36*b^3*c*d^2-10*a^2*c^2*d^2+9*a*b*c^2*d^2-41*b^2*c^2*d^2-26*a*c^3*d^2+26*b*c^3*d^2+12*c^4*d^2+36*a^3*d^3-35*a^2*b*d^3+12*a*b^2*d^3-8*b^3*d^3+23*a^2*c*d^3+16*a*b*c*d^3-24*b^2*c*d^3+17*a*c^2*d^3-29*b*c^2*d^3-48*c^3*d^3+33*a^2*d^4+30*a*b*d^4-41*b^2*d^4-23*a*c*d^4+8*b*c*d^4-10*c^2*d^4+22*a*d^5+5*b*d^5-32*c*d^5+19*d^6+19*a^5*e+21*a^4*b*e-29*a^3*b^2*e+10*a^2*b^3*e-6*a*b^4*e-10*b^5*e-35*a^4*c*e-47*a^3*b*c*e-16*a^2*b^2*c*e-35*a*b^3*c*e+34*b^4*c*e-28*a^3*c^2*e-6*a^2*b*c^2*e-44*a*b^2*c^2*e-47*b^3*c^2*e-18*a^2*c^3*e+48*a*b*c^3*e-b^2*c^3*e-17*a*c^4*e-48*b*c^4*e-25*c^5*e-29*a^4*d*e-18*a^3*b*d*e-28*a^2*b^2*d*e-43*a*b^3*d*e-48*b^4*d*e+45*a^3*c*d*e+18*a^2*b*c*d*e+19*a*b^2*c*d*e-27*b^3*c*d*e-13*a^2*c^2*d*e+50*a*b*c^2*d*e+33*b^2*c^2*d*e+14*a*c^3*d*e+40*b*c^3*d*e+41*c^4*d*e-34*a^3*d^2*e-41*a^2*b*d^2*e+2*a*b^2*d^2*e+37*b^3*d^2*e-a^2*c*d^2*e+8*a*b*c*d^2*e-22*b^2*c*d^2*e-25*a*c^2*d^2*e+41*b*c^2*d^2*e+35*c^3*d^2*e-14*a^2*d^3*e+32*a*b*d^3*e+20*b^2*d^3*e+3*a*c*d^3*e+12*b*c*d^3*e-6*c^2*d^3*e+44*a*d^4*e+36*b*d^4*e+32*c*d^4*e-6*d^5*e+17*a^4*e^2-39*a^3*b*e^2+22*a^2*b^2*e^2+9*a*b^3*e^2+7*b^4*e^2-9*a^3*c*e^2-49*a^2*b*c*e^2+36*a*b^2*c*e^2+16*b^3*c*e^2-10*a^2*c^2*e^2+20*a*b*c^2*e^2+b^2*c^2*e^2-29*a*c^3*e^2-4*b*c^3*e^2-34*c^4*e^2-47*a^3*d*e^2+38*a^2*b*d*e^2+10*a*b^2*d*e^2+21*b^3*d*e^2-42*a^2*c*d*e^2-28*a*b*c*d*e^2-6*b^2*c*d*e^2+22*a*c^2*d*e^2+7*b*c^2*d*e^2-12*c^3*d*e^2-6*a^2*d^2*e^2+2*a*b*d^2*e^2-4*b^2*d^2*e^2+7*a*c*d^2*e^2-39*b*c*d^2*e^2-c^2*d^2*e^2+45*a*d^3*e^2+40*b*d^3*e^2+46*c*d^3*e^2+44*d^4*e^2-30*a^3*e^3+3*a^2*b*e^3+27*a*b^2*e^3+42*b^3*e^3-18*a^2*c*e^3+11*a*b*c*e^3+18*b^2*c*e^3-31*a*c^2*e^3-37*b*c^2*e^3+5*c^3*e^3-46*a^2*d*e^3+32*a*b*d*e^3+34*b^2*d*e^3-50*a*c*d*e^3+8*b*c*d*e^3+47*c^2*d*e^3-35*a*d^2*e^3+38*b*d^2*e^3-38*c*d^2*e^3-47*d^3*e^3+35*a^2*e^4+25*a*b*e^4+31*b^2*e^4+8*a*c*e^4+9*b*c*e^4+40*c^2*e^4-3*a*d*e^4-29*b*d*e^4+20*c*d*e^4+16*d^2*e^4+25*a*e^5+b*e^5+21*c*e^5+13*d*e^5-e^6, |
---|
2929 | a*b^5+6*a^4*d^2-30*a^3*b*d^2+48*a^2*b^2*d^2+22*a*b^3*d^2+49*b^4*d^2-4*a^3*c*d^2+45*a^2*b*c*d^2-28*a*b^2*c*d^2-12*b^3*c*d^2+12*a^2*c^2*d^2+47*a*b*c^2*d^2-14*b^2*c^2*d^2+35*a*c^3*d^2-b*c^3*d^2-39*c^4*d^2-40*a^3*d^3+7*a^2*b*d^3+16*a*b^2*d^3+45*b^3*d^3-a^2*c*d^3+20*a*b*c*d^3-9*b^2*c*d^3-31*a*c^2*d^3-44*b*c^2*d^3-13*c^3*d^3+36*a^2*d^4+8*a*b*d^4+25*b^2*d^4-4*a*c*d^4-10*b*c*d^4-40*c^2*d^4+39*a*d^5-4*b*d^5-24*c*d^5-11*d^6+33*a^5*e+40*a^4*b*e+21*a^3*b^2*e-7*a^2*b^3*e-22*a*b^4*e-48*b^5*e-2*a^4*c*e-32*a^3*b*c*e+4*a^2*b^2*c*e-4*a*b^3*c*e+38*b^4*c*e+50*a^3*c^2*e-15*a^2*b*c^2*e-14*a*b^2*c^2*e+43*b^3*c^2*e+44*a^2*c^3*e-11*a*b*c^3*e-20*b^2*c^3*e-14*a*c^4*e+30*b*c^4*e-44*c^5*e-27*a^4*d*e+2*a^3*b*d*e-31*a^2*b^2*d*e-8*a*b^3*d*e-47*a^3*c*d*e-39*a^2*b*c*d*e-46*a*b^2*c*d*e+6*b^3*c*d*e+32*a^2*c^2*d*e+43*a*b*c^2*d*e-30*b^2*c^2*d*e-31*a*c^3*d*e-48*b*c^3*d*e+31*c^4*d*e+49*a^3*d^2*e-2*a^2*b*d^2*e-7*a*b^2*d^2*e-38*b^3*d^2*e+6*a^2*c*d^2*e+7*a*b*c*d^2*e+5*b^2*c*d^2*e+29*a*c^2*d^2*e-39*b*c^2*d^2*e-15*c^3*d^2*e+9*a^2*d^3*e-28*a*b*d^3*e+19*b^2*d^3*e-11*a*c*d^3*e-5*b*c*d^3*e-46*c^2*d^3*e-34*a*d^4*e-27*b*d^4*e-27*c*d^4*e+11*d^5*e-36*a^4*e^2-28*a^3*b*e^2+7*a^2*b^2*e^2+20*a*b^3*e^2-34*b^4*e^2+43*a^3*c*e^2-44*a^2*b*c*e^2+30*a*b^2*c*e^2-b^3*c*e^2-15*a^2*c^2*e^2+47*a*b*c^2*e^2-5*b^2*c^2*e^2-34*a*c^3*e^2-42*b*c^3*e^2-44*c^4*e^2-7*a^3*d*e^2+32*a^2*b*d*e^2-18*a*b^2*d*e^2-45*b^3*d*e^2+50*a^2*c*d*e^2+27*a*b*c*d*e^2-43*b^2*c*d*e^2-49*a*c^2*d*e^2-12*b*c^2*d*e^2+30*c^3*d*e^2-38*a^2*d^2*e^2+16*a*b*d^2*e^2-32*b^2*d^2*e^2-45*a*c*d^2*e^2+41*b*c*d^2*e^2+8*c^2*d^2*e^2+42*a*d^3*e^2+43*b*d^3*e^2+18*c*d^3*e^2-37*d^4*e^2-13*a^3*e^3+33*a^2*b*e^3-12*a*b^2*e^3-31*b^3*e^3-24*a^2*c*e^3+5*a*b*c*e^3-29*b^2*c*e^3+5*a*c^2*e^3+10*b*c^2*e^3+38*c^3*e^3+31*a^2*d*e^3+49*a*b*d*e^3-39*b^2*d*e^3+49*a*c*d*e^3+11*b*c*d*e^3+17*c^2*d*e^3-a*d^2*e^3+45*b*d^2*e^3-16*c*d^2*e^3+28*d^3*e^3+8*a^2*e^4+19*a*b*e^4+5*b^2*e^4+36*a*c*e^4-19*b*c*e^4-18*c^2*e^4-29*a*d*e^4+33*b*d*e^4-15*c*d*e^4+46*d^2*e^4+43*a*e^5+50*b*e^5+35*c*e^5+38*d*e^5+39*e^6, |
---|
2930 | a^2*b^4-27*a^4*d^2-11*a^3*b*d^2+23*a^2*b^2*d^2+42*a*b^3*d^2+33*b^4*d^2-45*a^2*b*c*d^2+42*a*b^2*c*d^2+30*b^3*c*d^2-a^2*c^2*d^2+41*a*b*c^2*d^2+32*b^2*c^2*d^2-4*a*c^3*d^2-4*b*c^3*d^2+50*c^4*d^2+14*a^3*d^3-17*a^2*b*d^3+20*a*b^2*d^3-31*b^3*d^3+44*a^2*c*d^3+14*a*b*c*d^3+43*b^2*c*d^3+48*a*c^2*d^3-10*b*c^2*d^3-3*c^3*d^3-33*a^2*d^4+9*a*b*d^4+28*b^2*d^4-3*a*c*d^4+15*b*c*d^4+46*c^2*d^4-35*a*d^5-42*b*d^5+44*c*d^5-4*d^6+28*a^5*e+46*a^4*b*e+16*a^3*b^2*e+31*a^2*b^3*e-20*a*b^4*e-15*b^5*e-50*a^4*c*e-8*a^3*b*c*e+4*a^2*b^2*c*e+38*a*b^3*c*e+27*b^4*c*e-29*a^3*c^2*e+27*a^2*b*c^2*e-33*a*b^2*c^2*e-22*b^3*c^2*e-3*a^2*c^3*e-40*a*b*c^3*e+10*b^2*c^3*e-20*a*c^4*e-38*b*c^4*e+36*c^5*e-26*a^4*d*e+41*a^3*b*d*e-15*a^2*b^2*d*e+50*a*b^3*d*e+41*b^4*d*e-18*a^3*c*d*e+18*a^2*b*c*d*e-32*a*b^2*c*d*e+41*b^3*c*d*e-5*a^2*c^2*d*e-a*b*c^2*d*e-10*b^2*c^2*d*e-12*a*c^3*d*e-46*b*c^3*d*e+34*c^4*d*e-42*a^3*d^2*e+2*a^2*b*d^2*e+37*a*b^2*d^2*e-b^3*d^2*e-29*a^2*c*d^2*e+46*a*b*c*d^2*e-49*b^2*c*d^2*e+24*a*c^2*d^2*e-47*b*c^2*d^2*e-34*c^3*d^2*e+46*a^2*d^3*e-5*a*b*d^3*e-27*b^2*d^3*e-29*a*c*d^3*e+25*b*c*d^3*e-30*c^2*d^3*e-2*a*d^4*e-50*b*d^4*e-46*c*d^4*e+2*d^5*e+11*a^4*e^2+48*a^3*b*e^2+24*a^2*b^2*e^2+41*a*b^3*e^2-17*b^4*e^2-10*a^3*c*e^2+8*a^2*b*c*e^2+28*b^3*c*e^2-21*a^2*c^2*e^2+23*a*b*c^2*e^2+8*b^2*c^2*e^2+41*a*c^3*e^2+12*b*c^3*e^2+25*c^4*e^2+25*a^3*d*e^2-49*a^2*b*d*e^2+24*a*b^2*d*e^2-7*b^3*d*e^2-20*a^2*c*d*e^2-48*a*b*c*d*e^2+46*b^2*c*d*e^2-18*a*c^2*d*e^2+13*b*c^2*d*e^2-31*c^3*d*e^2-40*a^2*d^2*e^2+2*a*b*d^2*e^2-48*b^2*d^2*e^2-38*a*c*d^2*e^2+20*b*c*d^2*e^2+47*c^2*d^2*e^2-3*a*d^3*e^2+27*b*d^3*e^2+44*c*d^3*e^2+19*d^4*e^2+38*a^3*e^3+22*a^2*b*e^3+37*a*b^2*e^3+20*b^3*e^3-6*a^2*c*e^3-33*a*b*c*e^3+45*b^2*c*e^3+24*a*c^2*e^3+33*b*c^2*e^3+c^3*e^3+50*a^2*d*e^3-44*a*b*d*e^3-50*b^2*d*e^3-11*a*c*d*e^3-11*b*c*d*e^3-30*c^2*d*e^3-a*d^2*e^3-14*b*d^2*e^3-11*c*d^2*e^3-42*d^3*e^3+3*a^2*e^4-6*a*b*e^4+31*b^2*e^4-47*a*c*e^4+23*b*c*e^4-44*c^2*e^4-28*a*d*e^4-50*b*d*e^4+41*c*d*e^4-19*d^2*e^4+10*a*e^5+13*b*e^5+47*c*e^5+31*d*e^5-49*e^6, |
---|
2931 | a^3*b^3-15*a^4*d^2-17*a^3*b*d^2-a^2*b^2*d^2+18*a*b^3*d^2-30*b^4*d^2-37*a^3*c*d^2+21*a^2*b*c*d^2-a*b^2*c*d^2+16*b^3*c*d^2-41*a^2*c^2*d^2+39*a*b*c^2*d^2-16*b^2*c^2*d^2-22*a*c^3*d^2+19*b*c^3*d^2+46*c^4*d^2-14*a^3*d^3+2*a^2*b*d^3+45*a*b^2*d^3+12*b^3*d^3-28*a^2*c*d^3-19*a*b*c*d^3-20*b^2*c*d^3-6*a*c^2*d^3+17*b*c^2*d^3-20*c^3*d^3+34*a^2*d^4+15*a*b*d^4-8*b^2*d^4+31*a*c*d^4-5*b*c*d^4+41*c^2*d^4-32*a*d^5-38*b*d^5+35*c*d^5-4*d^6-26*a^5*e-20*a^4*b*e-12*a^3*b^2*e+22*a^2*b^3*e-48*a*b^4*e+39*b^5*e-46*a^4*c*e-50*a^3*b*c*e+11*a^2*b^2*c*e-2*a*b^3*c*e+23*b^4*c*e+44*a^3*c^2*e+4*a^2*b*c^2*e+17*a*b^2*c^2*e-39*b^3*c^2*e-a^2*c^3*e-20*a*b*c^3*e-16*b^2*c^3*e+7*a*c^4*e+31*b*c^4*e+18*c^5*e-44*a^4*d*e+7*a^3*b*d*e+26*a^2*b^2*d*e-19*a*b^3*d*e-35*b^4*d*e+47*a^3*c*d*e+17*a^2*b*c*d*e-27*a*b^2*c*d*e-6*b^3*c*d*e-16*a^2*c^2*d*e-10*a*b*c^2*d*e+21*b^2*c^2*d*e-27*a*c^3*d*e+4*b*c^3*d*e-32*c^4*d*e-22*a^3*d^2*e+50*a^2*b*d^2*e-a*b^2*d^2*e+41*b^3*d^2*e-46*a^2*c*d^2*e-18*a*b*c*d^2*e+8*b^2*c*d^2*e-16*a*c^2*d^2*e-38*b*c^2*d^2*e-c^3*d^2*e+18*a^2*d^3*e-25*a*b*d^3*e-47*b^2*d^3*e-23*a*c*d^3*e+8*b*c*d^3*e+20*c^2*d^3*e-41*a*d^4*e-18*b*d^4*e-18*c*d^4*e+33*d^5*e+17*a^4*e^2-10*a^3*b*e^2+28*a^2*b^2*e^2-12*a*b^3*e^2-19*b^4*e^2-20*a^3*c*e^2+45*a^2*b*c*e^2+39*a*b^2*c*e^2+37*b^3*c*e^2-6*a^2*c^2*e^2+19*a*b*c^2*e^2+23*b^2*c^2*e^2+34*a*c^3*e^2+24*b*c^3*e^2+20*c^4*e^2+14*a^3*d*e^2-8*a^2*b*d*e^2+15*a*b^2*d*e^2+19*b^3*d*e^2+14*a^2*c*d*e^2-42*a*b*c*d*e^2-27*b^2*c*d*e^2+11*a*c^2*d*e^2+24*b*c^2*d*e^2-10*c^3*d*e^2+12*a^2*d^2*e^2+18*a*b*d^2*e^2+21*b^2*d^2*e^2+35*a*c*d^2*e^2-15*b*c*d^2*e^2-32*c^2*d^2*e^2+8*a*d^3*e^2+40*b*d^3*e^2+50*c*d^3*e^2-41*d^4*e^2+42*a^3*e^3-38*a^2*b*e^3-27*a*b^2*e^3+32*b^3*e^3+41*a^2*c*e^3+3*a*b*c*e^3+28*b^2*c*e^3+21*a*c^2*e^3-8*b*c^2*e^3+22*c^3*e^3+8*a^2*d*e^3+49*a*b*d*e^3-24*b^2*d*e^3-8*a*c*d*e^3+30*b*c*d*e^3+35*c^2*d*e^3+49*a*d^2*e^3+39*b*d^2*e^3+23*c*d^2*e^3-47*d^3*e^3+43*a^2*e^4-15*a*b*e^4+20*b^2*e^4-35*b*c*e^4+28*c^2*e^4+35*b*d*e^4+12*c*d*e^4+40*d^2*e^4+32*a*e^5-32*b*e^5+25*c*e^5+9*d*e^5-26*e^6, |
---|
2932 | a^4*b^2-31*a^4*d^2+30*a^3*b*d^2-42*a^2*b^2*d^2-32*a*b^3*d^2-38*b^4*d^2-49*a^3*c*d^2-4*a^2*b*c*d^2-45*a*b^2*c*d^2+8*b^3*c*d^2+44*a^2*c^2*d^2+21*a*b*c^2*d^2-13*b^2*c^2*d^2-16*a*c^3*d^2+31*b*c^3*d^2-42*c^4*d^2+49*a^3*d^3+44*a^2*b*d^3+a*b^2*d^3+47*b^3*d^3-31*a^2*c*d^3+42*a*b*c*d^3-34*b^2*c*d^3-44*a*c^2*d^3-3*b*c^2*d^3-14*c^3*d^3+24*a^2*d^4+12*a*b*d^4+14*b^2*d^4-32*a*c*d^4+16*b*c*d^4+40*c^2*d^4+8*a*d^5+5*b*d^5+35*c*d^5+2*d^6+7*a^5*e+a^4*b*e-24*a^3*b^2*e-25*a^2*b^3*e-8*a*b^4*e-46*b^5*e+12*a^4*c*e-49*a^3*b*c*e+47*a^2*b^2*c*e-22*a*b^3*c*e-22*b^4*c*e+31*a^3*c^2*e-48*a^2*b*c^2*e-46*a*b^2*c^2*e+28*b^3*c^2*e-5*a^2*c^3*e+42*a*b*c^3*e-9*b^2*c^3*e+13*a*c^4*e+23*b*c^4*e-29*c^5*e+9*a^4*d*e+9*a^3*b*d*e+3*a^2*b^2*d*e+47*a*b^3*d*e+31*b^4*d*e-25*a^3*c*d*e-37*a*b^2*c*d*e-23*b^3*c*d*e+18*a^2*c^2*d*e+8*a*b*c^2*d*e-15*b^2*c^2*d*e-40*a*c^3*d*e+26*b*c^3*d*e-29*c^4*d*e+20*a^3*d^2*e-25*a^2*b*d^2*e+41*a*b^2*d^2*e+10*b^3*d^2*e-12*a^2*c*d^2*e+38*a*b*c*d^2*e-30*b^2*c*d^2*e-49*b*c^2*d^2*e-34*c^3*d^2*e+14*a^2*d^3*e+45*a*b*d^3*e-29*b^2*d^3*e-23*a*c*d^3*e+33*b*c*d^3*e-23*c^2*d^3*e-36*a*d^4*e+29*b*d^4*e+22*c*d^4*e+45*d^5*e-46*a^4*e^2-37*a^3*b*e^2-36*a^2*b^2*e^2-23*a*b^3*e^2-4*b^4*e^2+31*a^3*c*e^2+45*a^2*b*c*e^2-34*a*b^2*c*e^2+6*b^3*c*e^2-38*a^2*c^2*e^2-26*a*b*c^2*e^2-5*b^2*c^2*e^2-24*a*c^3*e^2-28*b*c^3*e^2+20*c^4*e^2+25*a^3*d*e^2+14*a^2*b*d*e^2+a*b^2*d*e^2+18*b^3*d*e^2+12*a^2*c*d*e^2+32*a*b*c*d*e^2+17*b^2*c*d*e^2+50*a*c^2*d*e^2-12*b*c^2*d*e^2-46*c^3*d*e^2+4*a^2*d^2*e^2-29*a*b*d^2*e^2-16*b^2*d^2*e^2+38*a*c*d^2*e^2+3*b*c*d^2*e^2-19*c^2*d^2*e^2+50*a*d^3*e^2+23*b*d^3*e^2+5*c*d^3*e^2+47*d^4*e^2-38*a^3*e^3-31*a^2*b*e^3+14*a*b^2*e^3-43*b^3*e^3+22*a^2*c*e^3+26*a*b*c*e^3-28*b^2*c*e^3-49*a*c^2*e^3+15*c^3*e^3-40*a^2*d*e^3+5*a*b*d*e^3-20*b^2*d*e^3-40*a*c*d*e^3+35*b*c*d*e^3+17*c^2*d*e^3-8*a*d^2*e^3-6*b*d^2*e^3+3*c*d^2*e^3-7*d^3*e^3+45*a^2*e^4-49*a*b*e^4+45*b^2*e^4-25*a*c*e^4+b*c*e^4-33*c^2*e^4-44*a*d*e^4+30*b*d*e^4-26*c*d*e^4+42*d^2*e^4+14*b*e^5-3*c*e^5-47*d*e^5+22*e^6, |
---|
2933 | a^5*b-48*a^4*d^2-33*a^3*b*d^2-34*a^2*b^2*d^2-14*a*b^3*d^2-29*b^4*d^2-7*a^3*c*d^2-13*a^2*b*c*d^2+15*a*b^2*c*d^2+27*b^3*c*d^2+49*a^2*c^2*d^2-a*b*c^2*d^2+46*b^2*c^2*d^2+37*a*c^3*d^2+20*b*c^3*d^2-27*c^4*d^2+33*a^3*d^3+30*a^2*b*d^3+32*a*b^2*d^3+b^3*d^3-47*a^2*c*d^3-2*a*b*c*d^3-36*b^2*c*d^3-7*a*c^2*d^3-23*b*c^2*d^3-41*c^3*d^3-43*a^2*d^4-4*a*b*d^4+14*b^2*d^4+38*a*c*d^4+41*b*c*d^4+27*c^2*d^4-33*a*d^5-50*b*d^5+8*c*d^5+42*d^6-21*a^5*e+46*a^4*b*e+6*a^3*b^2*e+22*a^2*b^3*e+2*a*b^4*e-15*b^5*e+50*a^4*c*e-40*a^2*b^2*c*e+49*a*b^3*c*e+5*b^4*c*e+a^3*c^2*e+47*a^2*b*c^2*e-36*a*b^2*c^2*e+25*b^3*c^2*e-36*a^2*c^3*e+46*a*b*c^3*e+24*b^2*c^3*e-9*a*c^4*e+39*b*c^4*e-40*c^5*e+29*a^4*d*e-49*a^3*b*d*e+16*a^2*b^2*d*e+7*a*b^3*d*e-30*b^4*d*e+42*a^3*c*d*e+22*a^2*b*c*d*e-49*a*b^2*c*d*e+19*b^3*c*d*e-23*a^2*c^2*d*e+7*a*b*c^2*d*e+2*b^2*c^2*d*e-2*a*c^3*d*e-2*b*c^3*d*e+5*c^4*d*e+35*a^3*d^2*e-47*a^2*b*d^2*e-28*a*b^2*d^2*e+5*b^3*d^2*e+45*a^2*c*d^2*e+7*a*b*c*d^2*e+3*b^2*c*d^2*e+33*a*c^2*d^2*e-37*b*c^2*d^2*e+26*c^3*d^2*e-18*a*b*d^3*e-42*b^2*d^3*e-22*a*c*d^3*e-46*b*c*d^3*e-25*c^2*d^3*e+6*a*d^4*e-50*b*d^4*e+22*c*d^4*e-4*d^5*e-42*a^4*e^2+43*a^3*b*e^2+39*a^2*b^2*e^2+12*a*b^3*e^2-20*b^4*e^2+2*a^3*c*e^2+27*a^2*b*c*e^2-21*a*b^2*c*e^2+36*b^3*c*e^2+47*a^2*c^2*e^2-41*a*b*c^2*e^2-23*b^2*c^2*e^2+34*a*c^3*e^2-29*b*c^3*e^2-46*c^4*e^2+15*a^3*d*e^2+4*a^2*b*d*e^2-13*a*b^2*d*e^2+43*b^3*d*e^2-7*a^2*c*d*e^2+4*a*b*c*d*e^2-37*a*c^2*d*e^2-34*b*c^2*d*e^2+20*c^3*d*e^2-5*a^2*d^2*e^2-42*a*b*d^2*e^2+14*b^2*d^2*e^2+9*a*c*d^2*e^2-19*b*c*d^2*e^2+15*c^2*d^2*e^2-35*a*d^3*e^2+24*b*d^3*e^2-35*c*d^3*e^2-14*d^4*e^2-27*a^3*e^3-39*a^2*b*e^3-44*a*b^2*e^3-6*b^3*e^3-30*a^2*c*e^3+47*a*b*c*e^3-26*b^2*c*e^3+9*a*c^2*e^3+16*b*c^2*e^3+37*c^3*e^3-49*a^2*d*e^3+19*a*b*d*e^3+44*b^2*d*e^3-9*a*c*d*e^3-41*b*c*d*e^3+29*c^2*d*e^3-43*a*d^2*e^3+33*b*d^2*e^3-2*c*d^2*e^3-15*d^3*e^3-4*a^2*e^4-46*a*b*e^4+15*b^2*e^4+21*a*c*e^4+13*b*c*e^4+38*c^2*e^4-20*a*d*e^4+16*b*d*e^4-9*c*d*e^4-19*d^2*e^4+14*a*e^5-33*b*e^5+34*c*e^5+16*d*e^5-24*e^6, |
---|
2934 | a^6-2*a^4*d^2+3*a^3*b*d^2+18*a^2*b^2*d^2-46*a*b^3*d^2-31*b^4*d^2+48*a^3*c*d^2+7*a^2*b*c*d^2+26*a*b^2*c*d^2+17*b^3*c*d^2-30*a^2*c^2*d^2-2*a*b*c^2*d^2+5*b^2*c^2*d^2-43*a*c^3*d^2-33*b*c^3*d^2-28*c^4*d^2-26*a^3*d^3-5*a^2*b*d^3+48*a*b^2*d^3+2*b^3*d^3-15*a^2*c*d^3-18*a*b*c*d^3-16*b^2*c*d^3-12*a*c^2*d^3+21*b*c^2*d^3-31*c^3*d^3+34*a^2*d^4-40*a*b*d^4+41*b^2*d^4+21*a*c*d^4+26*b*c*d^4+50*c^2*d^4-20*a*d^5+8*b*d^5+30*c*d^5+48*d^6-37*a^5*e+28*a^4*b*e+8*a^3*b^2*e+30*a^2*b^3*e-a*b^4*e-49*b^5*e-8*a^4*c*e+26*a^3*b*c*e+20*a^2*b^2*c*e+19*a*b^3*c*e-23*b^4*c*e+11*a^3*c^2*e+37*a^2*b*c^2*e+40*a*b^2*c^2*e-33*b^3*c^2*e-26*a^2*c^3*e+12*a*b*c^3*e+29*b^2*c^3*e-a*c^4*e-15*b*c^4*e-24*c^5*e-41*a^4*d*e-4*a^3*b*d*e+42*a^2*b^2*d*e+9*a*b^3*d*e-49*b^4*d*e-11*a^3*c*d*e+21*a^2*b*c*d*e+22*a*b^2*c*d*e+22*b^3*c*d*e-9*a^2*c^2*d*e+27*a*b*c^2*d*e-36*b^2*c^2*d*e-10*a*c^3*d*e-39*b*c^3*d*e-3*c^4*d*e+16*a^3*d^2*e+9*a^2*b*d^2*e+7*a*b^2*d^2*e+33*b^3*d^2*e+42*a^2*c*d^2*e-38*a*b*c*d^2*e+33*b^2*c*d^2*e+41*a*c^2*d^2*e-36*b*c^2*d^2*e-21*c^3*d^2*e+34*a^2*d^3*e-43*a*b*d^3*e+32*b^2*d^3*e-9*a*c*d^3*e-34*b*c*d^3*e-4*c^2*d^3*e-10*a*d^4*e-29*b*d^4*e+4*c*d^4*e+36*d^5*e+40*a^4*e^2-32*a^3*b*e^2+13*a^2*b^2*e^2+22*a*b^3*e^2-15*b^4*e^2+31*a^3*c*e^2+7*a^2*b*c*e^2-15*a*b^2*c*e^2+43*b^3*c*e^2-45*a^2*c^2*e^2-42*a*b*c^2*e^2+41*b^2*c^2*e^2-46*a*c^3*e^2-6*b*c^3*e^2+26*c^4*e^2+45*a^3*d*e^2+11*a^2*b*d*e^2+10*a*b^2*d*e^2+5*b^3*d*e^2+3*a^2*c*d*e^2-49*a*b*c*d*e^2-10*b^2*c*d*e^2-50*a*c^2*d*e^2+38*b*c^2*d*e^2+21*c^3*d*e^2+37*a^2*d^2*e^2+a*b*d^2*e^2+38*b^2*d^2*e^2+25*a*c*d^2*e^2-7*b*c*d^2*e^2-13*c^2*d^2*e^2+32*a*d^3*e^2+37*b*d^3*e^2-27*c*d^3*e^2-7*d^4*e^2+44*a^3*e^3+48*a^2*b*e^3+21*a*b^2*e^3+11*b^3*e^3+9*a^2*c*e^3+49*a*b*c*e^3-39*b^2*c*e^3+24*a*c^2*e^3+35*b*c^2*e^3-11*c^3*e^3+17*a^2*d*e^3+36*a*b*d*e^3-19*b^2*d*e^3-47*a*c*d*e^3-47*b*c*d*e^3-12*c^2*d*e^3+34*a*d^2*e^3+35*b*d^2*e^3+18*d^3*e^3-31*a^2*e^4+45*a*b*e^4+27*b^2*e^4+43*a*c*e^4-35*b*c*e^4-29*c^2*e^4-21*a*d*e^4+49*b*d*e^4-23*c*d*e^4+34*d^2*e^4-2*a*e^5+47*b*e^5+31*c*e^5-46*d*e^5-13*e^6, |
---|
2935 | e^7, d*e^6, c*e^6, b*e^6, a*e^6, d^2*e^5, c*d*e^5, b*d*e^5, a*d*e^5, c^2*e^5, |
---|
2936 | b*c*e^5, a*c*e^5, b^2*e^5, a*b*e^5, a^2*e^5, d^3*e^4, c*d^2*e^4, b*d^2*e^4, |
---|
2937 | a*d^2*e^4, c^2*d*e^4, b*c*d*e^4, a*c*d*e^4, b^2*d*e^4, a*b*d*e^4, a^2*d*e^4, |
---|
2938 | c^3*e^4, b*c^2*e^4, a*c^2*e^4, b^2*c*e^4, a*b*c*e^4, a^2*c*e^4, b^3*e^4, |
---|
2939 | a*b^2*e^4, a^2*b*e^4, a^3*e^4, d^4*e^3, c*d^3*e^3, b*d^3*e^3, a*d^3*e^3, |
---|
2940 | c^2*d^2*e^3, b*c*d^2*e^3, a*c*d^2*e^3, b^2*d^2*e^3, a*b*d^2*e^3, a^2*d^2*e^3, |
---|
2941 | c^3*d*e^3, b*c^2*d*e^3, a*c^2*d*e^3, b^2*c*d*e^3, a*b*c*d*e^3, a^2*c*d*e^3, |
---|
2942 | b^3*d*e^3, a*b^2*d*e^3, a^2*b*d*e^3, a^3*d*e^3, c^4*e^3, b*c^3*e^3, a*c^3*e^3, |
---|
2943 | b^2*c^2*e^3, a*b*c^2*e^3, a^2*c^2*e^3, b^3*c*e^3, a*b^2*c*e^3, a^2*b*c*e^3, |
---|
2944 | a^3*c*e^3, b^4*e^3, a*b^3*e^3, a^2*b^2*e^3, a^3*b*e^3, a^4*e^3, d^5*e^2, |
---|
2945 | c*d^4*e^2, b*d^4*e^2, a*d^4*e^2, c^2*d^3*e^2, b*c*d^3*e^2, a*c*d^3*e^2, |
---|
2946 | b^2*d^3*e^2, a*b*d^3*e^2, a^2*d^3*e^2, c^3*d^2*e^2, b*c^2*d^2*e^2, |
---|
2947 | a*c^2*d^2*e^2, b^2*c*d^2*e^2, a*b*c*d^2*e^2; |
---|
2948 | // M; |
---|
2949 | TestSSresAttribs2tr(M, "AGR101n4d008s020%1_big"); |
---|
2950 | /* |
---|
2951 | options: 1 1 0 : Time: 29/32/73/92 (316 without LCM) |
---|
2952 | options: 1 1 1 : Time: 32/34/43/202 |
---|
2953 | lres Time: 24 |
---|
2954 | nres Time: 19 |
---|
2955 | sres Time: 71 |
---|
2956 | */ |
---|
2957 | kill M; |
---|
2958 | |
---|
2959 | kill AGR; |
---|
2960 | |
---|
2961 | ring AGR = (101), (a,b,c,d,e,f), dp; AGR; |
---|
2962 | |
---|
2963 | // AGR@101n5d005s016%1, new, medium difficulty? |
---|
2964 | ideal M = |
---|
2965 | b*d-13*c*d+7*a*e-32*b*e+31*c*e+3*d*e+46*a*f-13*b*f+22*c*f-19*d*f-33*e*f, a*d+2*c*d-42*a*e+46*b*e+7*c*e-38*d*e+31*a*f+9*b*f+27*c*f-19*d*f-24*e*f, b*c-35*c*d-34*a*e+4*b*e+33*c*e+23*d*e+4*a*f-43*b*f+43*c*f+17*d*f-13*e*f, a*c+49*c*d-28*a*e+18*b*e-23*c*e+3*d*e-5*a*f-23*b*f+2*c*f+46*d*f-40*e*f, a*b-38*c*d+a*e-49*b*e-20*c*e+32*d*e+13*a*f+25*b*f+37*c*f-27*d*f+25*e*f, f^4, e*f^3, d*f^3, c*f^3, b*f^3, a*f^3, e^2*f^2, d*e*f^2, c*e*f^2, b*e*f^2, a*e*f^2, d^2*f^2, c*d*f^2, c^2*f^2, b^2*f^2, a^2*f^2, e^3*f, d*e^2*f, c*e^2*f, b*e^2*f, a*e^2*f, d^2*e*f, d^3*f, c^3*f, b^3*f, a^3*f, e^4, d^4, c^4, b^4, a^4; |
---|
2966 | TestSSresAttribs(M, "AGR@101n5d005s016%1"); |
---|
2967 | kill M; |
---|
2968 | } |
---|
2969 | |
---|
2970 | static proc testAGRhard(list #) |
---|
2971 | { |
---|
2972 | def DEBUG = 0; |
---|
2973 | if(size(#) > 0) { DEBUG = #[1]; } |
---|
2974 | |
---|
2975 | system("--min-time", "0.01"); |
---|
2976 | system("--ticks-per-sec", 100); |
---|
2977 | |
---|
2978 | attrib(SSinit, "DEBUG", 0); |
---|
2979 | attrib(SSinit, "SYZCHECK", (DEBUG > 0)); |
---|
2980 | attrib(SSinit, "KERCHECK", 0); |
---|
2981 | attrib(SSinit, "TREEOUTPUT", 0); |
---|
2982 | attrib(SSinit, "PROFILE", 0); |
---|
2983 | |
---|
2984 | option(prot); |
---|
2985 | // AGR@101n5d006s016%1, new, hard |
---|
2986 | ring AGR = (101), (a,b,c,d,e,f), dp; AGR; |
---|
2987 | ideal M = |
---|
2988 | b*d+47*c*d-27*a*e+37*b*e+21*c*e+31*d*e-31*a*f+23*b*f+47*c*f+42*d*f+11*e*f, a*d+7*c*d+19*a*e+28*b*e-33*c*e-28*d*e+15*a*f+28*b*f+47*c*f+3*d*f+14*e*f, b*c+29*c*d-25*a*e+12*b*e+23*c*e-50*d*e-17*a*f+30*b*f-37*c*f+35*d*f-e*f, a*c+46*c*d+12*a*e+27*b*e+39*c*e+23*d*e-45*a*f+39*b*f-35*c*f+4*d*f-10*e*f, a*b+38*c*d-18*a*e-34*b*e-30*c*e+38*d*e+22*a*f+34*b*f+39*c*f+30*d*f-19*e*f, f^5, e*f^4, d*f^4, c*f^4, b*f^4, a*f^4, e^2*f^3, d*e*f^3, c*e*f^3, b*e*f^3, a*e*f^3, d^2*f^3, c*d*f^3, c^2*f^3, b^2*f^3, a^2*f^3, e^3*f^2, d*e^2*f^2, c*e^2*f^2, b*e^2*f^2, a*e^2*f^2, d^2*e*f^2, d^3*f^2, c^3*f^2, b^3*f^2, a^3*f^2, e^4*f, e^5, d^5, c^5, b^5, a^5; |
---|
2989 | TestSSresAttribs2tr(M, "AGR@101n5d006s016%1_hard"); |
---|
2990 | kill M; |
---|
2991 | } |
---|