source: git/Singular/LIB/schreyer.lib @ d79a74

spielwiese
Last change on this file since d79a74 was d79a74, checked in by Oleksandr Motsak <motsak@…>, 9 years ago
Default s_res to work over basering and return the usual resolution object (if set RINGCHANGE=0 SSinit attribute) or return SRES as before chg: minor cleanup fix: bug (unable to load...)
  • Property mode set to 100644
File size: 225.6 KB
Line 
1///////////////////////////////////////////////////////////////////////////
2version="version schreyer.lib 4.0.0.0 Jun_2013 "; // $Id$
3category="General purpose";
4info="
5LIBRARY: schreyer.lib     Schreyer resolution computations and helpers for @code{derham.lib}
6AUTHOR:  Oleksandr Motsak <U@D>, where U={motsak}, D={mathematik.uni-kl.de}
7KEYWORDS: Schreyer ordering; Schreyer resolution; syzygy
8OVERVIEW:
9@* The library contains several procedures for computing a/part of Schreyer resoltion (cf. [SFO]),
10   and some helpers for @code{derham.lib} (which requires resolutions over the homogenized Weyl algebra) for that purpose.
11@* The input for any resolution computation is a set of vectors @code{M} in form of a module over some basering @code{R}.
12   The helpers works both in the commutative and non-commutative setting (cf. [MO]), that is the ring @code{R} may be non-commutative,
13   in which case the ring ordering over it must be global. They produce/work with partial Schreyer resolutions of @code{(R^rank(M))/M}
14   in form of a specially constructed ring (endowed with a special ring ordering that will be extended in the
15   course of a resolution computation) containing a list of modules @code{RES} and a module @code{MRES}:
16@* @code{RES}: the list of modules contains the images of maps (also called syzygy modules) substituting the
17     computed beginning of a Schreyer resolution, that is, each syzygy module is given by a Groebner basis
18     with respect to the corresponding Schreyer ordering.
19@* @code{RES}: the list of modules which starts with a zero map given by @code{rank(M)} zero generators indicating that the image of
20     the first differential map is zero. The second map @code{RES[2]} is given by @code{M}, which indicates that
21     the resolution of @code{(R^rank(M))/M} is being computed.
22@* @code{MRES}: the module is a direct sum of modules from @code{RES} and thus comprises all computed differentials.
23@* Syzygies are shifted so that @code{gen(i)} is mapped to @code{MRES[i]} under the differential map.
24NOTE:
25@* Here, we call a free resolution a Schreyer resolution if each syzygy module is given by a Groebner basis
26     with respect to the corresponding Schreyer ordering.
27@* A Schreyer resolution can be much bigger than a minimal resolution of the same module, but may be easier to construct.
28@* The Schreyer ordering succesively extends the starting module ordering on @code{M} (defined in Singular by the basering @code{R})
29     and is extended to higher syzygies using the following definition:
30@*        a < b if and only if (d(a) < d(b)) OR ( (d(a) = d(b) AND (comp(a) < comp(b)) ),
31@* where @code{d(a)} is the image of an under the differential (given by @code{MRES}),
32     and @code{comp(a)} is the module component, for any module terms @code{a} and @code{b} from the same higher syzygy module.
33NOTE:
34@* most comutations require the dynamic or built-in module @code{syzextra}, which will be auto-leaded on demand.
35PROCEDURES:
36  Sres(M,len)     helper for computing Schreyer resolution of module M of maximal length len
37  Ssyz(M)         helper for computing Schreyer resolution of module M of length 1
38  Scontinue(len)  helper for extending currently active resolution by (at most) len syszygies
39  s_res(M, len)   compute Schreyer resolution of module M of maximal length len via LiftTree method from [BMSS]
40REFERENCES:
41@*
42[BMSS] Burcin, E., Motsak, O., Schreyer, F.-O., Steenpass, A.: NEW ALGORITHMS TO COMPUTE SYZYGIES, 2014.
43@*
44[SFO]  Schreyer, F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrassschen Divisionssatz,
45       Master's thesis, Univ. Hamburg, 1980.
46@*
47[MO]   Motsak, O.: Non-commutative Computer Algebra with applications: Graded commutative algebra and related
48       structures in Singular with applications, Ph.D. thesis, TU Kaiserslautern, 2010.
49";
50
51
52static proc prepareSyz( module I, list # )
53{
54  int i;
55  int k = 0;
56  int r = nrows(I);
57  int c = ncols(I);
58
59
60  if( size(#) > 0 )
61  {
62    if( typeof(#[1]) == "int" || typeof(#[1]) == "bigint" )
63    {
64      k = #[1];
65    }
66  }
67
68  if( k < r )
69  {
70    "// *** Wrong k: ", k, " < nrows: ", r, " => setting k = r = ", r;
71    k = r;
72  }
73
74//   "k: ", k;  "c: ", c;   "I: ", I;
75
76  for( i = c; i > 0; i-- )
77  {
78    I[i] = I[i] + gen(k + i);
79  }
80
81//  DetailedPrint(I);
82
83  return(I);
84}
85
86static proc separateSyzGB( module J, int c )
87{
88  module II, G; vector v; int i;
89
90  J = simplify(J, 2);
91
92  for( i = ncols(J); i > 0; i-- )
93  {
94    v = J[i];
95    if( leadcomp(v) > c )
96    {
97      II[i] = v;
98    } else
99    {
100      G[i] = v; // leave only gen(i): i <= c
101    }
102  }
103
104  II = simplify(II, 2);
105  G = simplify(G, 2);
106
107  return (list(G, II));
108}
109
110static proc splitSyzGB( module J, int c )
111{
112  module JJ; vector v, vv; int i;
113
114  for( i = ncols(J); i > 0; i-- )
115  {
116    v = J[i];
117
118    vv = 0;
119   
120    while( leadcomp(v) <= c )
121    {
122      vv = vv + lead(v);
123      v  = v  - lead(v);
124    }
125
126    J[i] = vv;
127    JJ[i] = v;
128  }
129
130  J = simplify(J, 2);
131  JJ = simplify(JJ, 2);
132
133  return (list(J, JJ));
134}
135
136
137static proc Sinit(module M)
138{
139  def @save = basering;
140 
141  int @DEBUG = 0; // !system("with", "ndebug");
142  if( @DEBUG )
143  {
144    "Sinit::Input";
145    type(M);
146//    DetailedPrint(M);
147    attrib(M);
148  }
149
150  int @RANK = nrows(M); int @SIZE = ncols(M);
151
152  int @IS_A_SB = attrib(M, "isSB"); // ??? only if all weights were zero?!
153
154  if( !@IS_A_SB )
155  {
156    M = std(M); // this should be faster than computing std in S (later on)
157  }
158
159  def S = MakeInducedSchreyerOrdering(1); // 1 puts history terms to the back
160  // TODO: NOTE: +1 causes trouble to Singular interpreter!!!???
161  setring S; // a new ring with a Schreyer ordering
162
163  if( @DEBUG )
164  {
165    "Sinit::StartingISRing";
166    basering;
167//    DetailedPrint(basering);
168  }
169
170  // Setup the leading syzygy^{-1} module to zero:
171  module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0)); 
172
173  module MRES = Z;
174 
175  list RES; RES[1] = Z;
176
177  module F = freemodule(@RANK);
178  intvec @V = deg(F[1..@RANK]);
179 
180  module M = imap(@save, M);
181 
182  attrib(M, "isHomog", @V);
183  attrib(M, "isSB", 1);
184
185 
186  if( @DEBUG )
187  {
188    "Sinit::SB_Input: ";
189    type(M);
190    attrib(M);
191    attrib(M, "isHomog");
192//    DetailedPrint(M);
193  }
194
195  if( @DEBUG )
196  {
197    // 0^th syz. property
198    if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 )
199    {
200      transpose( transpose(M) * transpose(MRES) );
201      "ERROR: transpose( transpose(M) * transpose(MRES) ) != 0!!!";
202      m2_end(666);
203    }
204  }
205
206  RES[size(RES)+1] = M; // list of all syzygy modules
207  MRES = MRES, M;
208
209  attrib(MRES, "isHomog", @V); 
210
211  attrib(S, "InducionLeads", lead(M));
212  attrib(S, "InducionStart", @RANK); 
213 
214  if( @DEBUG )
215  {
216    "Sinit::MRES";
217    DetailedPrint(MRES);
218    attrib(MRES, "isHomog");
219    attrib(S);
220  }
221
222  export RES;
223  export MRES;
224  return (S);
225}
226
227static proc Sstep()
228{
229  int @DEBUG = 0; // !system("with", "ndebug");
230
231  if( @DEBUG )
232  {
233    "Sstep::NextInducedRing";
234    DetailedPrint(basering);
235
236    attrib(basering, "InducionLeads");
237    attrib(basering, "InducionStart");
238
239    GetInducedData();
240  }
241
242  // syzygy step:
243
244/*
245  // is initial weights are all zeroes!
246  def L =  lead(M);
247  intvec @V = deg(M[1..ncols(M)]);  @W;  @V;  @W = @V;  attrib(L, "isHomog", @W); 
248  SetInducedReferrence(L, @RANK, 0);
249*/
250
251//  def L =  lead(MRES);
252//  @W = @W, @V;
253//  attrib(L, "isHomog", @W); 
254
255
256  // General setting:
257//  SetInducedReferrence(MRES, 0, 0); // limit: 0!
258  int @l = size(RES);
259
260  module M = RES[@l];
261
262  module L = attrib(basering, "InducionLeads");
263  int limit = attrib(basering, "InducionStart");
264
265//  L;  limit;
266 
267  int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?!
268
269/*
270  if( @RANK !=  nrows(M) )
271  {
272    type(MRES);
273    @RANK;
274    type(M);
275    pause();
276  }
277*/
278 
279  intvec @W = attrib(M, "isHomog");
280  intvec @V = deg(M[1..ncols(M)]);
281  @V = @W, @V;
282   
283  if( @DEBUG )
284  {
285    "Sstep::NextInput: ";
286    M;
287    deg(M[1..ncols(M)]); // no use of @W :(?
288    @RANK;   
289    DetailedPrint(MRES);
290    attrib(MRES, "isHomog"); @W;
291    deg(MRES[1..ncols(MRES)]);
292  }
293
294 
295     
296  SetInducedReferrence(L, limit, 0);
297 
298  def K = prepareSyz(M, @RANK);
299//  K;
300 
301//   attrib(K, "isHomog", @V);   DetailedPrint(K, 1000);
302
303//  pause();
304 
305  K = idPrepare(K, @RANK); // std(K); // ?
306  K = simplify(K, 2);
307
308//  K;
309
310  module N = separateSyzGB(K, @RANK)[2]; // 1^st syz. module: vectors which start in lower part (comp >= @RANK)
311
312// "N_0: "; N; DetailedPrint(N, 10);
313
314//  basering; print(@V); type(N);
315//  attrib(N, "isHomog", @V);  // TODO: fix "wrong weights"!!!? deg is wrong :(((
316  N = std(N);
317  attrib(N, "isHomog", @V);
318
319//  N;
320 
321  if( @DEBUG )
322  {
323    if( size(N) > 0 )
324    {
325      // next syz. property
326      if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 )
327      {
328        MRES;
329
330        "N: "; N; DetailedPrint(N, 10);
331
332        "K:"; K; DetailedPrint(K, 10);
333
334        "RANKS: ", @RANK;
335
336        "ERROR: transpose( transpose(N) * transpose(MRES) ) != 0!!!";
337        transpose( transpose(N) * transpose(MRES) );
338
339        "transpose(N) * transpose(MRES): ";
340        transpose(N) * transpose(MRES);
341        DetailedPrint(module(_), 2);
342        m2_end(666);
343      }
344    }
345  }
346 
347  RES[@l + 1] = N; // list of all syzygy modules
348 
349  MRES = MRES, N;
350  attrib(MRES, "isHomog", @V);
351
352
353  L = L, lead(N);
354  attrib(basering, "InducionLeads", L);
355
356  if( @DEBUG )
357  {
358    "Sstep::NextSyzOutput: ";
359    DetailedPrint(N);
360    attrib(N, "isHomog");
361  }
362
363}
364
365proc Scontinue(int l)
366"USAGE:  Scontinue(int len)
367RETURN:  nothing, instead it changes the currently active resolution
368PURPOSE: extends the currently active resolution by at most len syzygies
369ASSUME:  must be used within a ring returned by Sres or Ssyz
370EXAMPLE: example Scontinue; shows an example
371"
372{
373  def data = GetInducedData();
374           
375  if( (!defined(RES)) || (!defined(MRES)) || (typeof(data) != "list") || (size(data) != 2) )
376  {
377    ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz");
378  }
379  for (;  (l != 0) && (size(RES[size(RES)]) > 0); l-- )
380  {
381    Sstep();
382  }
383}
384example
385{ "EXAMPLE:"; echo = 2;
386  ring r;
387  module M = maxideal(1); M;
388  def S = Ssyz(M); setring S; S;
389  "Only the first syzygy: ";
390  RES; MRES;
391  "More syzygies: ";
392  Scontinue(10);
393  RES; MRES;
394}
395
396proc Ssyz(module M)
397"USAGE:  Ssyz(module M)
398RETURN:  ring, containing a Schreyer resolution
399PURPOSE: computes a Schreyer resolution of M of length 1 (see the library overview)
400SEE ALSO: Sres
401EXAMPLE: example Ssyz; shows an example
402"
403{
404  def S = Sinit(M); setring S;
405 
406  Sstep(); // NOTE: what if M is zero?
407
408  return (S);
409}
410example
411{ "EXAMPLE:"; echo = 2;
412  ring r;
413  module M = maxideal(1); M;
414  def S = Ssyz(M); setring S; S;
415  "Only the first syzygy: ";
416  RES;
417  MRES; // Note gen(i)
418  kill S;
419  setring r; kill M;
420
421  module M = 0;
422  def S = Ssyz(M); setring S; S;
423  "Only the first syzygy: ";
424  RES;
425  MRES;
426}
427
428proc Sres(module M, int l)
429"USAGE:  Sres(module M, int len)
430RETURN:  ring, containing a Schreyer resolution
431PURPOSE: computes a Schreyer resolution of M of length at most len (see the library overview)
432NOTE:    If given len is zero then nvars(basering) + 1 is used instead.
433SEE ALSO: Ssyz
434EXAMPLE: example Sres; shows an example
435"
436{
437  def S = Sinit(M); setring S;
438
439  if (l == 0)
440  {
441    l = nvars(basering) + 1; // not really an estimate...?!
442  }
443 
444  Sstep(); l = l - 1;
445 
446  Scontinue(l);
447 
448  return (S);
449}
450example
451{ "EXAMPLE:"; echo = 2;
452  ring r;
453  module M = maxideal(1); M;
454  def S = Sres(M, 0); setring S; S;
455  RES;
456  MRES;
457  kill S;
458  setring r; kill M;
459
460  def A = nc_algebra(-1,0); setring A;
461  ideal Q = var(1)^2, var(2)^2, var(3)^2;
462  qring SCA = twostd(Q);
463  basering;
464
465  module M = maxideal(1);
466  def S = Sres(M, 2); setring S; S;
467  RES;
468  MRES;
469}
470
471
472
473// ================================================================== //
474
475
476LIB "general.lib"; // for sort
477
478static proc MySort(def M)
479" Sorts the given ideal or module wrt >_{(c, ds)}  (.<.<.<.<) "
480{
481  if( typeof( attrib(basering, "DEBUG") ) == "int" )
482  {
483    int @DEBUG = attrib(basering, "DEBUG");
484  } else
485  {
486    int @DEBUG = 0; // !system("with", "ndebug");
487  }
488
489  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
490  {
491    int @KERCHECK = attrib(basering, "KERCHECK");
492  } else
493  {
494    int @KERCHECK = @DEBUG;
495  }
496
497
498  if( @DEBUG )
499  {
500    "MySort:: Input: "; M;
501  }
502
503  def @N = M;
504 
505  if( size(M) > 0 )
506  {
507    Sort_c_ds(@N);
508
509    if( @KERCHECK )
510    {
511      def iv = sort(lead(M), "c,ds", 1)[2]; // ,1 => reversed! // TODO: not needed?
512      def @M = M;
513      @M = M[iv];
514
515      // 0^th syz. property
516      if( (size(@N) + size(@M)) > 0 )
517      {
518        if( size(module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) )) > 0 )
519        {
520          "ERROR: MySort: wrong sorting in 'MySort': @N != @M!!!";
521         
522          "@M:"; @M;
523          "@N:"; @N;
524
525          "module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) ): ";
526          module( matrix(module(matrix(@N))) - matrix(module(matrix(@M))) );
527
528          "ERROR: MySort: wrong sorting in 'MySort': @N != @M!!!";
529          m2_end(666);
530        }
531      }
532    }
533  }
534
535  if( @DEBUG )
536  {
537    "MySort:: Ouput: "; @N;
538  }
539 
540  return (@N);
541}
542
543
544static proc SSinit(def M)
545{
546//  rtimer, "***TIMESNAP0 for SSinit: on level: [",-1,"] :: t: ", timer, ", r: ", rtimer;
547  if( (typeof(M) != "module") && (typeof(M) != "ideal") )
548  {
549    ERROR("Sorry: need an ideal or a module for input");
550  }
551  def @save = basering;
552 
553  int @DEBUG = 0; // !system("with", "ndebug");
554
555  if( typeof( attrib(SSinit, "DEBUG") ) == "int" )
556  {
557    @DEBUG = attrib(SSinit, "DEBUG");
558  }
559
560  int @SYZCHECK = 0; // @DEBUG;
561
562  if( typeof( attrib(SSinit, "SYZCHECK") ) == "int" )
563  {
564    @SYZCHECK = attrib(SSinit, "SYZCHECK");
565  }
566
567  int @KERCHECK = 0; // @DEBUG;
568
569  if( typeof( attrib(SSinit, "KERCHECK") ) == "int" )
570  {
571    @KERCHECK = attrib(SSinit, "KERCHECK");
572  }
573
574  int @IGNORETAILS = 0;
575
576  if( typeof( attrib(SSinit, "IGNORETAILS") ) == "int" )
577  {
578    @IGNORETAILS = attrib(SSinit, "IGNORETAILS");
579  }
580
581  int @TREEOUTPUT = 0;
582
583  if( typeof( attrib(SSinit, "TREEOUTPUT") ) == "int" )
584  {
585    @TREEOUTPUT = attrib(SSinit, "TREEOUTPUT");
586  }
587
588  int @RINGCHANGE = 0;
589
590  if( typeof( attrib(SSinit, "RINGCHANGE") ) == "int" )
591  {
592    @RINGCHANGE = attrib(SSinit, "@RINGCHANGE");
593  }
594
595
596  if( @DEBUG )
597  {
598    "SSinit::Input";
599    type(M);
600    attrib(M);
601  }
602
603  int @IS_A_SB = attrib(M, "isSB"); // ??? only if all weights were zero?!
604
605  if( !@IS_A_SB )
606  {
607    def opts = option(get);
608    option(redSB); option(redTail);
609    M = std(M);
610    option(set, opts);
611    kill opts;
612  }
613
614  M = simplify(M, 1 + 2 + 4 + 32);
615
616  if( @IGNORETAILS )
617  {
618    M = lead(M);
619   
620    if( @DEBUG )
621    {
622      "SSinit::Ignorring tails: M: ";
623      type(M);
624    }
625  }
626 
627  def @N = MySort(M); // TODO: replace with inplace sorting!!!
628  def LEAD = lead(@N);
629
630  if( @KERCHECK )
631  {
632    def @LEAD = lead(M);
633
634    // sort wrt neg.deg.rev.lex!
635    intvec iv_ds = sort(@LEAD, "c,ds", 1)[2]; // ,1 => reversed!
636
637    M = M[iv_ds]; // sort M wrt ds on current leading terms
638    @LEAD = @LEAD[iv_ds];
639
640    if( size(module( matrix(@N) - matrix(M) )) > 0 )
641    {
642      "M:"; M;
643      "@N:"; @N;
644
645      "module( matrix(@N) - matrix(M) ): ";
646      module( matrix(@N) - matrix(M) );
647
648      "ERROR: wrong sorting (in SSnit): @N != M!!!";
649      m2_end(666);
650    }
651
652    if( size(module( matrix(@LEAD) - matrix(LEAD) )) > 0 )
653    {
654      "LEAD:"; LEAD;
655      "@LEAD:"; @LEAD;
656
657      "module( matrix(@LEAD) - matrix(LEAD) ): ";
658      module( matrix(@LEAD) - matrix(LEAD) );
659
660      "ERROR: wrong sorting (in SSnit): @LEAD != LEAD!!!";
661      m2_end(666);
662    }
663   
664  }
665
666  M = @N;
667 
668  def TAIL = Tail(M);
669
670  int @RANK = nrows(M); int @SIZE = ncols(M);
671 
672  intvec @DEGS = deg(M[1..@SIZE]); // store actuall degrees of input elements
673 
674  // TODO: what about real modules? weighted ones?
675
676  if( @RINGCHANGE )
677  {
678    list @l = ringlist(@save);
679    int @z = 0; ideal @m = maxideal(1); intvec @wdeg = deg(@m[1..ncols(@m)]);
680    // NOTE: @wdeg will be ignored anyway :(
681    @l[3] = list(list("C", @z), list("lp", @wdeg));
682    kill @z, @m, @wdeg; // since these vars are ring independent!
683    def S = ring(@l); // --MakeInducedSchreyerOrdering(1);
684    kill @l;
685    setring S; // ring with an easy divisibility test ("C, lex") // or not!???
686    if( @DEBUG )
687    {
688      "SSinit::NewRing(C,lex)?";
689      basering;
690      DetailedPrint(basering);
691    }
692  } else
693  { def S = basering; }
694
695  // Setup the leading syzygy^{-1} module to zero:
696  module Z = 0; Z[@RANK] = 0; attrib(Z, "isHomog", intvec(0)); 
697
698  if( !@RINGCHANGE )
699  {
700    if( defined(RES) )  { if( @DEBUG ){ "WARN: killing existing object: RES!"; }; kill RES; }
701    if( defined(MRES) ) { if( @DEBUG ){ "WARN: killing existing object: MRES!"; }; kill MRES; }
702    if( defined(LRES) ) { if( @DEBUG ){ "WARN: killing existing object: LRES!"; }; kill LRES; }
703    if( defined(TRES) ) { if( @DEBUG ){ "WARN: killing existing object: TRES!"; }; kill TRES; }
704  }
705
706  module MRES = Z;
707 
708  list RES;  RES[1] = Z;
709  list LRES; LRES[1] = Z;
710  list TRES; TRES[1] = Z;
711 
712  if( !defined(M) )
713  {
714    def M = imap(@save, M);
715  }
716
717  module F = freemodule(@RANK); intvec @V = deg(F[1..@RANK]); kill F;
718 
719  attrib(M, "isHomog", @V);
720  attrib(M, "isSB", 1);
721  attrib(M, "degrees", @DEGS); 
722 
723  if( !defined(LEAD) )
724  {
725    def LEAD = imap(@save, LEAD);
726  } 
727 
728  attrib(LEAD, "isHomog", @V);
729  attrib(LEAD, "isSB", 1); 
730 
731  if( !defined(TAIL) )
732  {
733    def TAIL = imap(@save, TAIL);
734  } 
735
736  if( @DEBUG )
737  {
738    "SSinit::(sorted) SB_Input: ";
739    type(M);
740    attrib(M);
741    attrib(M, "isHomog");
742  }
743
744  if( @SYZCHECK )
745  {
746    // 0^th syz. property
747    if( size(module(transpose( transpose(M) * transpose(MRES) ))) > 0 )
748    {
749      transpose( transpose(M) * transpose(MRES) );
750      "ERROR: transpose( transpose(M) * transpose(MRES) ) != 0!!!";
751      m2_end(666);
752    }
753  }
754
755  RES [size(RES)+1] = M; // list of all syzygy modules
756  LRES[size(LRES)+1] = LEAD; // list of all syzygy modules
757  TRES[size(TRES)+1] = TAIL; // list of all syzygy modules
758 
759  MRES = MRES, M; //?
760
761  attrib(MRES, "isHomog", @V);
762 
763//  attrib(S, "InducionStart", @RANK);
764
765
766  if( typeof( attrib(SSinit, "LEAD2SYZ") ) == "int" )
767  {
768    attrib(S, "LEAD2SYZ", attrib(SSinit, "LEAD2SYZ") );
769  } else
770  {
771    attrib(S, "LEAD2SYZ", 0);
772  }
773
774  if( typeof( attrib(SSinit, "TAILREDSYZ") ) == "int" )
775  {
776    attrib(S, "TAILREDSYZ", attrib(SSinit, "TAILREDSYZ") );
777  } else
778  {
779    attrib(S, "TAILREDSYZ", 1);
780  }
781
782  if( typeof( attrib(SSinit, "HYBRIDNF") ) == "int" )
783  {
784    attrib(S, "HYBRIDNF", attrib(SSinit, "HYBRIDNF") );
785  } else
786  {
787    attrib(S, "HYBRIDNF", 0);
788  }
789
790  // maybe resetting existing ring attributes!
791  attrib(S, "DEBUG", @DEBUG);
792  attrib(S, "SYZCHECK", @SYZCHECK);
793  attrib(S, "KERCHECK", @KERCHECK);
794  attrib(S, "IGNORETAILS", @IGNORETAILS);
795  attrib(S, "TREEOUTPUT", @TREEOUTPUT);
796  attrib(S, "SYZNUMBER", 0);
797 
798  if( @DEBUG )
799  {
800    "SSinit::MRES";
801    MRES;
802//    DetailedPrint(MRES);
803    attrib(MRES, "isHomog");
804    attrib(S);
805  }
806
807  export RES;
808  export MRES;
809  export LRES;
810  export TRES;
811
812//  rtimer, "***TIMESNAP1 for SSinit: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
813 
814  return (S);
815}
816example
817{ "EXAMPLE:"; echo = 2;
818  ring R = 0, (w, x, y, z), dp;
819
820  def M = maxideal(1);
821  def S = SSinit(M); setring S; S;
822 
823  "Only the first initialization: ";
824  RES; LRES; TRES;
825  MRES;
826
827  kill S; setring R; kill M;
828 
829  ideal M = w^2 - x*z,  w*x - y*z,  x^2 - w*y, x*y - z^2, y^2 - w*z;
830  def S = SSinit(M); setring S; S;
831
832  "Only the first initialization: ";
833  RES; LRES; TRES;
834  MRES;
835
836  kill S; setring R; kill M;
837}
838
839
840LIB "poly.lib"; // for lcm
841
842
843
844/// Compute L(Syz(L))
845static proc SSComputeLeadingSyzygyTerms(def L)
846{
847  if( typeof( attrib(basering, "DEBUG") ) == "int" )
848  {
849    int @DEBUG = attrib(basering, "DEBUG");
850  } else
851  {
852    int @DEBUG = 0; // !system("with", "ndebug");
853  }
854
855  if( typeof( attrib(basering, "SYZCHECK") ) == "int" )
856  {
857    int @SYZCHECK = attrib(basering, "SYZCHECK");
858  } else
859  {
860    int @SYZCHECK = @DEBUG;
861  }
862
863  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
864  {
865    int @KERCHECK = attrib(basering, "KERCHECK");
866  } else
867  {
868    int @KERCHECK = @DEBUG;
869  }
870
871  if( @DEBUG )
872  {
873    "SSComputeLeadingSyzygyTerms::Input: ";
874    L;
875  }
876
877  module SS = ComputeLeadingSyzygyTerms(L);
878
879  if( @KERCHECK )
880  { 
881    int i, j, r;
882    int N = ncols(L);
883    def a, b;
884    poly aa, bb;
885
886    bigint c;
887
888    ideal M;
889
890    module S = 0;
891
892    for(i = 1; i <= N; i++)
893    {
894      a = L[i];
895      c = leadcomp(a);
896      r = int(c);
897
898      aa = leadmonomial(a);
899
900      M = 0;
901
902      for(j = i-1; j > 0; j--)
903      {
904        b = L[j];
905
906        if( leadcomp(b) == c )
907        {
908          bb = leadmonomial(b);
909
910          M[j] = (lcm(aa, bb) / aa);
911        }
912      }
913
914      // TODO: add quotient relations here...
915
916      M = simplify(M, 1 + 2 + 32);
917
918      M = MySort(M);
919
920      S = S, M * gen(i);
921    }
922
923    S = MySort(simplify(S, 2));
924
925    if( (size(S) + size(SS)) > 0 )
926    {
927      if( size(module(matrix(S) - matrix(SS))) > 0 )
928      {
929        "ERROR: SSComputeLeadingSyzygyTerms: S != SS ";
930
931        "basering: "; basering;
932//        DetailedPrint(basering);
933
934        "S: ";  S;
935//        DetailedPrint(_, 1);
936        "SS: "; SS;
937//        DetailedPrint(_, 1);
938
939        "DIFF: ";
940        module(matrix(S) - matrix(SS));
941//        DetailedPrint(_, 2);     
942        print(matrix(S) - matrix(SS));
943        m2_end(666);
944      }
945    }
946  }
947
948 
949  if( @DEBUG )
950  {
951    "SSComputeLeadingSyzygyTerms::Output: ";
952    "SS: "; SS;
953  }
954 
955  if( size(SS) > 0 )
956  {
957    attrib(SS, "isSB", 1);
958  }
959 
960  return (SS);
961}
962
963/// Compute Syz(L), where L is a monomial (leading) module
964static proc SSCompute2LeadingSyzygyTerms(def L)
965{
966  if( typeof( attrib(basering, "DEBUG") ) == "int" )
967  {
968    int @DEBUG = attrib(basering, "DEBUG");
969  } else
970  {
971    int @DEBUG = 0; // !system("with", "ndebug");
972  }
973
974  if( typeof( attrib(basering, "SYZCHECK") ) == "int" )
975  {
976    int @SYZCHECK = attrib(basering, "SYZCHECK");
977  } else
978  {
979    int @SYZCHECK = @DEBUG;
980  }
981
982  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
983  {
984    int @KERCHECK = attrib(basering, "KERCHECK");
985  } else
986  {
987    int @KERCHECK = @DEBUG;
988  }
989
990  if( @DEBUG )
991  {
992    "SSCompute2LeadingSyzygyTerms::Input: ";
993    L;
994  }
995
996  module SS = Compute2LeadingSyzygyTerms(L);
997
998  if( @DEBUG )
999  {
1000    "SSCompute2LeadingSyzygyTerms::Syz(SS): "; SS;
1001  }
1002 
1003  if( @SYZCHECK )
1004  {
1005    if( size(SS) > 0 and size(L) > 0 )
1006    {
1007      if( size(module(transpose( transpose(SS) * transpose(L) ))) > 0 )
1008      {
1009        transpose( transpose(SS) * transpose(L) );
1010        "ERROR: transpose( transpose(SS) * transpose(L) ) != 0!!!";
1011        m2_end(666);
1012      }
1013    }
1014  }
1015   
1016  if( @KERCHECK )
1017  {
1018    int @TAILREDSYZ = 1;
1019    if( typeof( attrib(basering, "TAILREDSYZ") ) == "int" )
1020    {
1021      @TAILREDSYZ = attrib(basering, "TAILREDSYZ");
1022    }
1023
1024    int i, j, r;
1025    int N = ncols(L);
1026    def a, b;
1027
1028    poly aa, bb, @lcm;
1029
1030    bigint c;
1031
1032    module M;
1033
1034    module S = 0;
1035
1036    for(i = 1; i <= N; i++)
1037    {
1038      a = L[i];
1039  //    "a: ", a;
1040      c = leadcomp(a);
1041      r = int(c);
1042
1043      aa = leadmonomial(a);
1044
1045      M = 0;
1046
1047      for(j = i-1; j > 0; j--)
1048      {
1049        b = L[j];
1050  //      "b: ", b;
1051
1052        if( leadcomp(b) == c )
1053        {
1054          bb = leadmonomial(b);
1055          @lcm = lcm(aa, bb);
1056
1057          M[j] = (@lcm / aa)* gen(i) - (@lcm / bb)* gen(j);
1058        }
1059      }
1060
1061      M = simplify(M, 2);
1062
1063      // TODO: add quotient relations here...
1064      S = S, M;
1065    }
1066
1067    if( @TAILREDSYZ )
1068    {
1069      // Make sure that 2nd syzygy terms are not reducible by 1st
1070      def opts = option(get);
1071      option(redSB); option(redTail);
1072      S = std(S); // binomial module
1073      option(set, opts);
1074      //  kill opts;
1075    } else
1076    {
1077      S = simplify(S, 2 + 32);
1078    }
1079
1080    S = MySort(S);
1081
1082    if( @DEBUG )
1083    {
1084      "SSCompute2LeadingSyzygyTerms::Syz(S): "; S;
1085    }
1086
1087    if( @SYZCHECK )
1088    {
1089      if( size(S) > 0 and size(L) > 0 )
1090      {
1091        if( size(module(transpose( transpose(S) * transpose(L) ))) > 0 )
1092        {
1093          transpose( transpose(S) * transpose(L) );
1094          "ERROR: transpose( transpose(S) * transpose(L) ) != 0!!!";
1095          m2_end(666);
1096        }
1097      }
1098    }
1099
1100    if(size(S) != size(SS))
1101    {
1102      "ERROR: SSCompute2LeadingSyzygyTerms: size(S) != size(SS)";
1103
1104      "basering: "; basering; //      DetailedPrint(basering);
1105
1106      "S: ";  S;
1107//      DetailedPrint(S, 2);
1108      "SS: "; SS;
1109//      DetailedPrint(SS, 2);
1110      m2_end(666);
1111    }   
1112
1113    if(size(S) > 0 && size(SS) > 0)
1114    {
1115      if( size(module(matrix(lead(S)) - matrix(lead(SS)))) > 0 )
1116      {
1117        "ERROR: SSCompute2LeadingSyzygyTerms: lead(S) != lead(SS) ";
1118
1119        "basering: ";  basering;
1120//        DetailedPrint(basering);
1121
1122        "lead(S ): "; lead(S );
1123//        DetailedPrint(_, 2);
1124        "lead(SS): "; lead(SS);
1125//        DetailedPrint(_, 2);
1126
1127        "DIFF: ";
1128        print( matrix(lead(S)) - matrix(lead(SS))  );
1129        module(matrix(lead(S)) - matrix(lead(SS)));
1130//        DetailedPrint(_ , 4);
1131        m2_end(666);
1132      }
1133
1134
1135      if( @TAILREDSYZ )
1136      {
1137      if( size(module(matrix(Tail(S)) - matrix(Tail(SS)))) > 0 )
1138      {
1139        "ERROR: SSCompute2LeadingSyzygyTerms: Tail(S) != Tail(SS) ";
1140
1141        "basering: ";  basering;
1142//        DetailedPrint(basering);
1143
1144        "Tail(S ): "; Tail(S );
1145//        DetailedPrint(_, 2);
1146        "Tail(SS): "; Tail(SS);
1147//        DetailedPrint(_, 2);
1148
1149        "DIFF: ";
1150        module( matrix(Tail(S)) - matrix(Tail(SS)) );
1151//        DetailedPrint(_, 4);
1152        print( matrix(Tail(S)) - matrix(Tail(SS)) );
1153        m2_end(666);
1154      }
1155      }
1156    }
1157  }
1158 
1159  module S2 = Tail(SS);
1160  SS = lead(SS); // (C,lp) on base ring!
1161
1162  if( @SYZCHECK )
1163  {
1164    if( ncols(SS) != ncols(S2) ) // || size(SS) != ncols(SS) || size(S2) != ncols(S2)
1165    {
1166      "ERROR: SSCompute2LeadingSyzygyTerms: inappropriate S2 / SS: ";     
1167      type(SS);
1168      type(S2);
1169      L;
1170      m2_end(666);
1171    }
1172  } 
1173             
1174  if( @DEBUG )
1175  {
1176    "SSCompute2LeadingSyzygyTerms::Output: "; SS; S2;
1177  } 
1178 
1179  attrib(SS, "isSB", 1);
1180
1181  return (SS, S2);
1182}
1183
1184// -------------------------------------------------------- //
1185
1186/// TODO: save shortcut (syz: |-.->) LM(LM(m) * "t") -> syz?
1187static proc SSFindReducer(def product, def syzterm, def L, list #)
1188{
1189  if( typeof( attrib(basering, "DEBUG") ) == "int" )
1190  {
1191    int @DEBUG = attrib(basering, "DEBUG");
1192  } else
1193  {
1194    int @DEBUG = 0; // !system("with", "ndebug");
1195  }
1196
1197  if( typeof( attrib(basering, "SYZCHECK") ) == "int" )
1198  {
1199    int @SYZCHECK = attrib(basering, "SYZCHECK");
1200  } else
1201  {
1202    int @SYZCHECK = @DEBUG;
1203  }
1204
1205  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
1206  {
1207    int @KERCHECK = attrib(basering, "KERCHECK");
1208  } else
1209  {
1210    int @KERCHECK = @DEBUG;
1211  }
1212
1213
1214  if( @DEBUG )
1215  {
1216    "SSFindReducer::Input: ";
1217
1218    "syzterm: ", syzterm;
1219    "product: ", product;
1220//    "L: ", L;
1221//    "T: ", T;
1222    if( size(#) > 0 )
1223    {
1224//      "LSyz: ", #;
1225    }
1226  }
1227
1228
1229  if( @DEBUG && (syzterm != 0) )
1230  {
1231    def @@c = leadcomp(syzterm); int @@r = int(@@c);
1232    def @@product = leadmonomial(syzterm) * L[@@r];
1233
1234    if( @@product != product)
1235    {
1236      "product: ", product, ", @@product: ", @@product;
1237      "ERROR: 'syzterm' results in wrong product !!!???";
1238      m2_end(666);
1239    }
1240  }
1241
1242  if( typeof(#[1]) == "module" )
1243  {
1244    vector my = FindReducer(product, syzterm, L/*, T*/, #[1]);
1245  } else
1246  {
1247    vector my = FindReducer(product, syzterm, L/*, T*/);
1248  }
1249 
1250
1251  if( @KERCHECK )
1252  {
1253    bigint c = leadcomp(product); int r = int(c);
1254
1255    def a, b, bb;
1256
1257    vector nf = [0];
1258
1259    // looking for an appropriate diviser
1260    for( int k = ncols(L); k > 0; k-- )
1261    {
1262      a = L[k];
1263      // with the same mod. component
1264      if( leadcomp(a) == c )
1265      {
1266        b = - (leadmonomial(product) / leadmonomial(L[k]));
1267
1268        // which divides the product: looking for the 1st appropriate one!
1269        if( b != 0 )
1270        {
1271          bb = b * gen(k);
1272
1273          if (size(bb + syzterm) == 0) // cannot allow something like: a*gen(i) - a*gen(i)
1274          {
1275            nf = [0];
1276          } else
1277          {
1278            nf = bb;
1279          }
1280
1281          // new syz. term should not be in <LS = #>
1282          if( size(#) > 0 )
1283          {
1284            if( typeof(#[1]) == "module" )
1285            {
1286              nf = NF(bb, #[1]);
1287            }
1288          }
1289
1290          // while the complement (the fraction) is not reducible by leading syzygies
1291          if( nf != 0 ) // nf must be == bb!!!
1292          {
1293            /// TODO: save shortcut LM(m) * T[i] -> ?
1294
1295            // choose ANY such reduction... (with the biggest index?)
1296            break;
1297          }
1298        }
1299      }
1300    }
1301
1302    if( my != nf )
1303    {
1304      "ERROR in FindReducer => ", my, " != nf: ", nf;
1305      m2_end(666);
1306    }
1307  }
1308
1309  if( @DEBUG )
1310  {
1311    "SSFindReducer::Output: ", my;
1312  }
1313 
1314  return (my);
1315}
1316
1317/// TODO: save shortcut (syz: |-.->) LM(m) * "t" -> ?
1318static proc SSReduceTerm(poly m, def t, def syzterm, def L, def T, list #)
1319{
1320  if( typeof( attrib(basering, "DEBUG") ) == "int" )
1321  {
1322    int @DEBUG = attrib(basering, "DEBUG");
1323  } else
1324  {
1325    int @DEBUG = 0; // !system("with", "ndebug");
1326  }
1327
1328
1329  if( @DEBUG )
1330  {
1331    "SSReduce::Input: ";
1332
1333    "syzterm: ", syzterm;
1334    "mult: ", m;
1335    "term: ", t;
1336//    "L: ", L;
1337//    "T: ", T;
1338    if( size(#) > 0 )
1339    {
1340//      "LSyz: ", #;
1341    }
1342//    "attrib(LS, 'isSB')", attrib(LS, "isSB");
1343  }
1344
1345  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
1346  {
1347    int @KERCHECK = attrib(basering, "KERCHECK");
1348  } else
1349  {
1350    int @KERCHECK = @DEBUG;
1351  }
1352 
1353  if( typeof( attrib(basering, "SYZCHECK") ) == "int" )
1354  {
1355    int @SYZCHECK = attrib(basering, "SYZCHECK");
1356  } else
1357  {
1358    int @SYZCHECK = @DEBUG;
1359  }
1360
1361  if( @SYZCHECK && (syzterm != 0) )
1362  {
1363    def @@c = leadcomp(syzterm); int @@r = int(@@c);
1364    poly @@m = leadmonomial(syzterm); def @@t = L[@@r];
1365
1366    if( (@@m != m) || (@@t != t))
1367    {
1368      "m: ", m, ", t: ", t;
1369      "@@m: ", @@m, ", @@t: ", @@t;
1370      "ERROR: 'syzterm' results in wrong m * t !!!";
1371      m2_end(666);
1372    }
1373  }
1374
1375  if( typeof(#[1]) == "module" )
1376  {
1377    vector ss = ReduceTerm(m, t, syzterm, L, T, #[1]);
1378  } else
1379  {
1380    vector ss = ReduceTerm(m, t, syzterm, L, T);
1381  }
1382
1383  if( @KERCHECK )
1384  {
1385    int @TREEOUTPUT  = attrib(basering, "TREEOUTPUT");
1386 
1387    vector s = 0;
1388
1389    if( size(t) > 0 )
1390    {
1391      def product = m * t;
1392
1393      s = SSFindReducer(product, syzterm, L, #);
1394
1395      if( size(s) != 0 )
1396      {
1397        poly @b = leadmonomial(s);
1398
1399        def @c = leadcomp(s); int k = int(@c);
1400
1401        if( @TREEOUTPUT ){ "\CHILD{", (s), "}{", ( @b*L[k]), "}"; }
1402
1403        s = s + SSTraverseTail(@b, T[k], L, T, #); // !!!   
1404      }
1405    }
1406   
1407    if( s != ss )
1408    {
1409      "ERROR in ReduceTerm => old: ", s, " != ker: ", ss;
1410      "m: ", m;
1411      "t: ", t;
1412      "syzterm: ", syzterm;
1413       L; T; #;
1414      m2_end(666);
1415    } 
1416  }
1417
1418  if( @DEBUG )
1419  {
1420    "SSReduceTerm::Output: ", ss;
1421  }
1422 
1423  return (ss);
1424}
1425
1426
1427// TODO: store m * @tail -.-^-.-^-.--> ?
1428static proc SSTraverseTail(poly m, def @tail, def L, def T, list #)
1429{
1430  if( typeof( attrib(basering, "DEBUG") ) == "int" )
1431  {
1432    int @DEBUG = attrib(basering, "DEBUG");
1433  } else
1434  {
1435    int @DEBUG = 0; // !system("with", "ndebug");
1436  }
1437
1438  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
1439  {
1440    int @KERCHECK = attrib(basering, "KERCHECK");
1441  } else
1442  {
1443    int @KERCHECK = @DEBUG;
1444  }
1445 
1446
1447  if( @DEBUG )
1448  {
1449    "SSTraverse::Input: ";
1450
1451    "mult: ", m;
1452    "tail: ", @tail; // T[i];
1453
1454    if( size(#) > 0 )
1455    {
1456//      "LSyz: "; #[1];
1457    }
1458  }
1459
1460  if( typeof(#[1]) == "module" )
1461  {
1462    vector ss = TraverseTail(m, @tail, L, T, #[1]);
1463  } else
1464  {
1465    vector ss = TraverseTail(m, @tail, L, T);
1466  }
1467
1468  if( @KERCHECK )
1469  {
1470    vector s = 0;
1471
1472    def @l, @p;
1473    @p = @tail;
1474
1475  // iterate tail-terms in ANY order!
1476    while( size(@p) > 0 )
1477    {
1478      @l = lead(@p);
1479      s = s + SSReduceTerm(m, @l, [0], L, T, #); // :(
1480      @p = @p - @l;
1481    }
1482   
1483    if( s != ss )
1484    {
1485      "ERROR in TraverseTail => old: ", s, " != ker: ", ss;
1486      "m: ", m;
1487      "@tail: ", @tail;
1488      L; T; #;
1489      m2_end(666);
1490    } 
1491  }
1492
1493  if( @DEBUG )
1494  {
1495    "SSTraverseTail::Output: ", ss;
1496  }
1497 
1498  return (ss);
1499}
1500
1501// -------------------------------------------------------- //
1502
1503static proc SSSchreyerSyzygyNF(vector syz_lead, vector syz_2, def L, def T, list #)
1504"  Hybrid Syzygy computation: 'reduce' spoly by eliminating _any_ terms while discurding terms of lower order!
1505   Return the tail syzygy (without: syz_lead, starting with: syz_2)"
1506{
1507  if( typeof( attrib(basering, "DEBUG") ) == "int" )
1508  {
1509    int @DEBUG = attrib(basering, "DEBUG");
1510  } else
1511  {
1512    int @DEBUG = 0; // !system("with", "ndebug");
1513  }
1514
1515  if( @DEBUG )
1516  {
1517    "SSSchreyerSyzygyNF::Input: ";
1518
1519    "syzygy_lead: ", syz_lead;
1520    "syzygy 2nd : ", syz_2;
1521//    L; T;
1522    if( size(#) > 0 )
1523    {
1524//      "LSyz: "; #[1];
1525    }
1526  }
1527
1528  if( typeof( attrib(basering, "KERCHECK") ) == "int" )
1529  {
1530    int @KERCHECK = attrib(basering, "KERCHECK");
1531  } else
1532  {
1533    int @KERCHECK = @DEBUG;
1534  }
1535
1536  if( typeof(#[1]) == "module" )
1537  {
1538    def my = SchreyerSyzygyNF(syz_lead, syz_2, L, T, #[1]);
1539  } else
1540  {
1541    def my = SchreyerSyzygyNF(syz_lead, syz_2, L, T);
1542  }
1543
1544  if( @KERCHECK )
1545  {
1546    int @TREEOUTPUT  = attrib(basering, "TREEOUTPUT");
1547   
1548    def spoly = leadmonomial(syz_lead) * T[int(leadcomp(syz_lead))]
1549              + leadmonomial(syz_2)    * T[int(leadcomp(syz_2))];
1550
1551    vector @tail = syz_2;
1552   
1553    poly @b; int k;
1554
1555    while (size(spoly) > 0)
1556    {
1557      syz_2 = SSFindReducer(lead(spoly), 0, L, #); spoly = Tail(spoly);
1558
1559      if( size(syz_2) != 0)
1560      {         
1561        @b = leadmonomial(syz_2);
1562        k =  int(leadcomp(syz_2));
1563       
1564        if( @TREEOUTPUT ){ "\CHILD{", (syz_2), "}{", ( lead(spoly)), "}"; }
1565       
1566        spoly = spoly + @b * T[k];
1567        @tail = @tail + syz_2;
1568       
1569      }
1570    }
1571   
1572    if( my != @tail )
1573    {
1574      "ERROR in SchreyerSyzygyNF => old: ", @tail, " != ker: ", my;
1575     
1576      "syzygy_lead: ", syz_lead;
1577      "syzygy 2nd : ", syz_2;
1578     
1579      L; T; #;
1580      m2_end(666);
1581    }
1582  }
1583
1584  if( @DEBUG )
1585  {
1586    "SSSchreyerSyzygyNF::Output: ", my;
1587  }
1588 
1589  return (my);
1590}
1591
1592
1593
1594// -------------------------------------------------------- //
1595
1596// module (N, LL, TT) = SSComputeSyzygy(L, T);
1597// Compute Syz(L ++ T) = N = LL ++ TT
1598static proc SSComputeSyzygy(def L, def T)
1599{
1600//  rtimer, "***TIMESNAP0 for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1601  int @DEBUG    = attrib(basering, "DEBUG");
1602  int @KERCHECK = attrib(basering, "KERCHECK");
1603  int @SYZCHECK = attrib(basering, "SYZCHECK");
1604
1605  if( @DEBUG )
1606  {
1607    "SSComputeSyzygy::Input";
1608    "basering: ", basering; attrib(basering);
1609//    DetailedPrint(basering);
1610
1611//    "iCompShift: ", iCompShift;
1612
1613    "L: "; L;
1614    "T: "; T;
1615  }
1616
1617//  option(prot);
1618//  rtimer, "***TIME for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1619  list @res=ComputeSyzygy(L,T);
1620//  rtimer, "***TIME for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1621//  option(noprot); // TODO: restore!
1622
1623
1624  module @LL = @res[1]; module @TT = @res[2];
1625
1626  if( @KERCHECK )
1627  {
1628    int @SYZCHECK    = attrib(basering, "SYZCHECK");
1629    int @LEAD2SYZ    = attrib(basering, "LEAD2SYZ");
1630    int @TAILREDSYZ  = attrib(basering, "TAILREDSYZ");
1631    int @HYBRIDNF    = attrib(basering, "HYBRIDNF");
1632    int @IGNORETAILS = attrib(basering, "IGNORETAILS");
1633    int @TREEOUTPUT  = attrib(basering, "TREEOUTPUT");
1634
1635    int @SYZNUMBER   = attrib(basering,"SYZNUMBER");
1636   
1637    if( @HYBRIDNF == 2 )
1638    {
1639      if( @SYZNUMBER < 3 ){ @HYBRIDNF = 1; } else { @HYBRIDNF = 0; }
1640    }
1641   
1642    module LL;
1643
1644    /// Get the critical leading syzygy terms
1645    if( @LEAD2SYZ ) // & 2nd syz. term
1646    {
1647      module LL2;
1648      (LL, LL2) = SSCompute2LeadingSyzygyTerms(L);
1649    } else
1650    {
1651      LL = SSComputeLeadingSyzygyTerms(L);
1652    }
1653
1654    if( ncols(LL) != ncols(@LL) )
1655    {
1656      "ERROR in SSComputeSyzygy: wrong leading syzygies!?";
1657      "";
1658      L; T;
1659      "";
1660      type(LL);
1661      type(@LL);
1662      m2_end(666);
1663    }
1664
1665    if( size( module( matrix(LL) - matrix(@LL) ) ) != 0 )
1666    {
1667      "ERROR in SSComputeSyzygy: wrong leading syzygies!?";
1668      "";
1669      L; T;
1670      "";
1671      type(LL);
1672      type(@LL);
1673      m2_end(666);
1674    }
1675
1676    module TT, SYZ;
1677
1678    vector a, a2; bigint c; int r; poly aa;
1679
1680    if( size(LL) > 0 )
1681    {
1682      list LS;
1683
1684      if( @TAILREDSYZ)
1685      {
1686        LS = list(LL);
1687      }
1688
1689      vector @tail = 0;
1690
1691//      for(int k = 1; k <= ncols(LL); k++ )
1692      for(int k = ncols(LL); k > 0; k-- )
1693      {
1694        // leading syz. term:
1695        a = LL[k];
1696       
1697        if( !@IGNORETAILS )
1698        {
1699          c = leadcomp(a); r = int(c); aa = leadmonomial(a);
1700         
1701          if( @TREEOUTPUT ){ "\ROOT{", (lead(a)), "}"; }
1702         
1703          // NF reduction:
1704          if( @HYBRIDNF == 0 ) // Traverse approach:
1705          {
1706            @tail = SSTraverseTail(aa, T[r], L, T, LS);
1707
1708            // get the 2nd syzygy term...
1709            if( @LEAD2SYZ ) // with the 2nd syz. term:
1710            {     
1711              a2 = LL2[k]; c = leadcomp(a2); r = int(c); aa = leadmonomial(a2);
1712             
1713              if( @TREEOUTPUT ){ "\CHILD{", (lead(a2)), "}{", ( aa*L[r]), "}"; }
1714             
1715              @tail = a2 + @tail + SSTraverseTail(aa, T[r], L, T, LS);
1716            } else
1717            {
1718              @tail = @tail + SSReduceTerm(aa, L[r], a, L, T, LS);
1719            }
1720
1721          } else // Hybrid approach:
1722          {
1723
1724            // get the 2nd syzygy term...
1725            if( @LEAD2SYZ )
1726            {
1727              a2 = LL2[k];
1728            } else
1729            {
1730              a2 = SSFindReducer( aa * L[r], a, L, LS);
1731            }
1732
1733            if ( (@SYZCHECK || @DEBUG) )
1734            {
1735              if( size(a2) == 0 ) // if syzterm == 0!!!!
1736              {
1737                "ERROR in SSComputeSyzygy: could not find the 2nd syzygy term during the hybrid NF!!!";
1738                m2_end(666);
1739              }
1740            }
1741           
1742            if( @TREEOUTPUT ){ "\CHILD{", (a2), "}{", ( aa*L[r]), "}"; }
1743
1744            @tail = SSSchreyerSyzygyNF(a, a2, L, T, LS);
1745          }
1746        } // else @tail remains zero!
1747
1748        TT[k] = @tail;
1749        SYZ[k] = a + @tail;
1750
1751        if ( TT[k] != @TT[k] )
1752        {
1753          "ERROR in SSComputeSyzygy: wrong tail syzygy!?";
1754          "INPUT";
1755          L; T;
1756          "LEADING SYZYGY TERMS";
1757          type(LL);
1758         
1759          "CURRENT TAILS";
1760          type(TT);
1761          type(@TT);
1762         
1763          "WRONG TAIL [", k, "]:";
1764          type(TT[k]);
1765          type(@TT[k]);
1766
1767//          "IMAGES:";
1768//              transpose( transpose(N) * transpose(MRES) );             
1769         
1770          m2_end(666);
1771        }
1772
1773      } // FOR
1774    }
1775
1776    if( ncols(TT) != ncols(@TT) )
1777    {
1778      "ERROR in SSComputeSyzygy: wrong tail syzygies!?";
1779      "";
1780      L; T;
1781      "";
1782      type(LL);
1783      type(@LL);
1784      "";
1785      type(TT);
1786      type(@TT);
1787      m2_end(666);
1788    }
1789
1790    if( size( module( matrix(TT) - matrix(@TT) ) ) != 0 )
1791    {
1792      "ERROR in SSComputeSyzygy: wrong tail syzygies!?";
1793      "";
1794      TT; @TT;
1795      "";
1796      L; T;
1797      "";
1798      type(LL);
1799      type(@LL);
1800      m2_end(666);
1801    }   
1802   
1803  }
1804
1805  module @SYZ;
1806 
1807  for(int @k = ncols(@LL); @k > 0; @k-- )
1808  {
1809    @SYZ[@k] = @LL[@k] + @TT[@k];
1810  }
1811 
1812  if( @DEBUG )
1813  {
1814    "SSComputeSyzygy::Output";
1815
1816//    "SYZ: "; @SYZ;
1817    "LL: "; @LL;
1818    "TT: "; @TT;
1819  }
1820
1821//  rtimer, "***TIMESNAP1 for ComputeSyzygy(L,T): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1822  return (@SYZ, @LL, @TT);
1823}
1824
1825// resolution/syzygy step:
1826static proc SSstep()
1827{
1828//  rtimer, "***TIMESNAP0 for SSstep(): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1829 
1830  int @DEBUG = attrib(basering, "DEBUG");
1831  int @SYZCHECK = attrib(basering, "SYZCHECK");
1832
1833  if( @DEBUG )
1834  {
1835    "SSstep::NextInducedRing";
1836    "basering: ", basering; attrib(basering);
1837  }
1838
1839/*
1840  // is initial weights are all zeroes!
1841  def L =  lead(M);
1842  intvec @V = deg(M[1..ncols(M)]);  @W;  @V;  @W = @V;  attrib(L, "isHomog", @W); 
1843  SetInducedReferrence(L, @RANK, 0);
1844*/
1845
1846//  def L =  lead(MRES);
1847//  @W = @W, @V;
1848//  attrib(L, "isHomog", @W); 
1849
1850
1851  // General setting:
1852//  SetInducedReferrence(MRES, 0, 0); // limit: 0!
1853  int @l = size(RES);
1854
1855  def M =  RES[@l];
1856
1857  def L = LRES[@l];
1858  def T = TRES[@l];
1859
1860
1861  //// TODO: wrong !!!!!
1862  int @RANK = ncols(MRES) - ncols(M); // nrows(M); // what if M is zero?!
1863
1864 
1865
1866/*
1867  if( @RANK !=  nrows(M) )
1868  {
1869    type(MRES);
1870    @RANK;
1871    type(M);
1872    pause();
1873  }
1874*/
1875 
1876  intvec @W = attrib(M, "isHomog"); intvec @V = attrib(M, "degrees"); @V = @W, @V;
1877   
1878  if( @DEBUG )
1879  {
1880    "Sstep::NextInput: ";
1881    M;
1882    L;
1883    @V;
1884    @RANK;
1885//    DetailedPrint(MRES);
1886    attrib(MRES, "isHomog");
1887  }
1888
1889     
1890  // TODO: N  = SYZ( M )!!!
1891  module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(/*M, */L, T/*, @RANK*/);
1892
1893  // shift syz.comp by @RANK:
1894  module Z;
1895  Z = 0; Z[@RANK] = 0; Z = Z, transpose(LL);   LL = transpose(Z);
1896  Z = 0; Z[@RANK] = 0; Z = Z, transpose(TT);   TT = transpose(Z);
1897  Z = 0; Z[@RANK] = 0; Z = Z, transpose(N);     N = transpose(Z);
1898
1899
1900  if( @SYZCHECK )
1901  {
1902    if( size(N) > 0 )
1903    {
1904      // next syz. property
1905      if( size(module(transpose( transpose(N) * transpose(MRES) ))) > 0 )
1906      {
1907        "MRES", MRES;
1908
1909        "N: "; N; // DetailedPrint(N, 2);
1910
1911        "LL:"; LL; // DetailedPrint(LL, 1);
1912        "TT:"; TT; // DetailedPrint(TT, 10);
1913
1914        "RANKS: ", @RANK;
1915
1916        "transpose( transpose(N) * transpose(MRES) ) != 0!!!";
1917        transpose( transpose(N) * transpose(MRES) );
1918
1919        "transpose(N) * transpose(MRES): ";
1920        transpose(N) * transpose(MRES);
1921        // DetailedPrint(module(_), 2);
1922        m2_end(666);
1923      }
1924    }
1925  }
1926
1927  attrib(N, "isHomog", @V);
1928
1929  // TODO: correct the following:
1930  intvec @DEGS = deg(N[1..ncols(N)]); // no mod. comp. weights :(
1931
1932 
1933  attrib(N, "degrees", @DEGS);
1934 
1935   RES[@l + 1] = N; // list of all syzygy modules
1936  LRES[@l + 1] = LL; // list of all syzygy modules
1937  TRES[@l + 1] = TT; // list of all syzygy modules
1938
1939  MRES = MRES, N;
1940 
1941  attrib(MRES, "isHomog", @V);
1942
1943//  L = L, lead(N);  attrib(basering, "InducionLeads", L);
1944
1945  if( @DEBUG )
1946  {
1947    "SSstep::NextSyzOutput: ";
1948    N;
1949//    DetailedPrint(N);
1950    attrib(N);
1951  }
1952
1953  int ss = attrib(basering, "SYZNUMBER");
1954  attrib(basering, "SYZNUMBER", ss + 1 );
1955
1956//  rtimer, "***TIMESNAP1 for SSstep(): on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1957}
1958
1959static proc SScontinue(int l)
1960"USAGE:  SScontinue(l)
1961RETURN:  nothing, instead it changes RES and MRES variables in the current ring
1962PURPOSE: computes further (at most l) syzygies
1963NOTE:    must be used within a ring returned by Sres or Ssyz. RES and MRES are
1964         explained in Sres
1965EXAMPLE: example Scontinue; shows an example
1966"
1967{
1968//  rtimer, "***TIMESNAP0 for SScontinue: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1969
1970  /// TODO!
1971//  def data = GetInducedData();
1972
1973  if( (!defined(RES)) || (!defined(MRES)) ) /* || (typeof(data) != "list") || (size(data) != 2) */
1974  {
1975    ERROR("Sorry, but basering does not seem to be returned by Sres or Ssyz");
1976  }
1977  for (;  (l != 0) && (size(RES[size(RES)]) > 0); l-- )
1978  {
1979    SSstep();
1980  }
1981 
1982//  rtimer, "***TIMESNAP1 for SScontinue: on level: [",attrib(basering,"SYZNUMBER"),"] :: t: ", timer, ", r: ", rtimer;
1983
1984}
1985example
1986{ "EXAMPLE:"; echo = 2;
1987  ring r;
1988  module M = maxideal(1); M;
1989  def S = SSsyz(M); setring S; S;
1990  "Only the first syzygy: ";
1991  RES; MRES;
1992  "More syzygies: ";
1993  SScontinue(10);
1994  RES; MRES;
1995}
1996
1997static proc SSsyz(def M)
1998"USAGE:  SSsyz(M)
1999RETURN:  ring, containing a list of modules RES and a module MRES
2000PURPOSE: computes the first syzygy module of M (wrt some Schreyer ordering)?
2001NOTE:    The output is explained in Sres
2002EXAMPLE: example Ssyz; shows an example
2003"
2004{
2005  if( (typeof(M) != "module") && (typeof(M) != "ideal") )
2006  {
2007    ERROR("Sorry: need an ideal or a module for input");
2008  }
2009
2010  def SS = SSinit(M); setring SS;
2011 
2012  SSstep(); // NOTE: what if M is zero?
2013
2014  return (SS);
2015}
2016example
2017{ "EXAMPLE:"; echo = 2;
2018  ring r;
2019
2020/*  ideal M = 0;
2021  def S = SSsyz(M); setring S; S;
2022  "Only the first syzygy: ";
2023  RES; LRES; TRES;
2024  MRES;
2025 
2026  kill S; setring r; kill M;
2027*/ 
2028
2029  ideal M = maxideal(1); M;
2030
2031  def S = SSres(M, 0); setring S; S;
2032  MRES;
2033  print(_);
2034  RES;
2035
2036  kill S; setring r; kill M;
2037
2038  kill r;
2039 
2040  ring R = 0, (w, x, y, z), dp;
2041  ideal M = w^2 - x*z,  w*x - y*z,  x^2 - w*y, x*y - z^2, y^2 - w*z;
2042 
2043  def S = SSres(M, 0); setring S; S;
2044  "";
2045  LRES;
2046  "";
2047  TRES;
2048  "";
2049  MRES;
2050  print(_);
2051  RES;
2052}
2053
2054static proc SSres(def M, int l)
2055"USAGE:  SSres(I, l)
2056RETURN:  ring, containing a list of modules RES and a module MRES
2057PURPOSE: computes (at most l) syzygy modules of M wrt the classical Schreyer
2058         induced ordering with gen(i) > gen(j) if i > j, provided both gens
2059         are from the same syzygy level.???
2060NOTE:    RES contains the images of maps subsituting the beginning of the
2061         Schreyer free resolution of baseRing^r/M, while MRES is a sum of
2062         these images in a big free sum, containing all the syzygy modules.
2063         The syzygy modules are shifted so that gen(i) correspons to MRES[i].
2064         The leading zero module RES[0] indicates the fact that coker of the
2065         first map is zero. The number of zeroes inducates the rank of input.
2066NOTE:    If l == 0 then l is set to be nvars(basering) + 1
2067EXAMPLE: example SSres; shows an example
2068"
2069{
2070  if( (typeof(M) != "module") && (typeof(M) != "ideal") )
2071  {
2072    ERROR("Sorry: need an ideal or a module for input");
2073  }
2074/*
2075  "KERCHECK: ", attrib(SSinit, "KERCHECK");
2076  "SYZCHECK: ", attrib(SSinit, "SYZCHECK");
2077  "DEBUG: ", attrib(SSinit, "DEBUG");
2078  "HYBRIDNF: ", attrib(SSinit, "HYBRIDNF");
2079  "TAILREDSYZ: ", attrib(SSinit, "TAILREDSYZ");
2080  "LEAD2SYZ: ", attrib(SSinit, "LEAD2SYZ");
2081*/
2082 
2083  def SS = SSinit(M); setring SS;
2084/* 
2085  "KERCHECK: ", attrib(SS, "KERCHECK");
2086  "SYZCHECK: ", attrib(SS, "SYZCHECK");
2087  "DEBUG: ", attrib(SS, "DEBUG");
2088  "HYBRIDNF: ", attrib(SS, "HYBRIDNF");
2089  "TAILREDSYZ: ", attrib(SS, "TAILREDSYZ");
2090  "LEAD2SYZ: ", attrib(SS, "LEAD2SYZ");
2091  "";
2092  "IGNORETAILS: ", attrib(SS, "IGNORETAILS");
2093  "SYZNUMBER: ", attrib(SS, "SYZNUMBER");
2094*/
2095  if (l == 0)
2096  {
2097    l = nvars(basering) + 2; // not really an estimate...?!
2098  }
2099
2100  SSstep(); l = l - 1;
2101
2102  SScontinue(l);
2103/*
2104  "KERCHECK: ", attrib(SS, "KERCHECK");
2105  "SYZCHECK: ", attrib(SS, "SYZCHECK");
2106  "DEBUG: ", attrib(SS, "DEBUG");
2107  "HYBRIDNF: ", attrib(SS, "HYBRIDNF");
2108  "TAILREDSYZ: ", attrib(SS, "TAILREDSYZ");
2109  "LEAD2SYZ: ", attrib(SS, "LEAD2SYZ");
2110  "";
2111  "IGNORETAILS: ", attrib(SS, "IGNORETAILS");
2112  "SYZNUMBER: ", attrib(SS, "SYZNUMBER");
2113*/ 
2114  return (SS);
2115}
2116example
2117{ "EXAMPLE:"; echo = 2;
2118  ring r;
2119  module M = maxideal(1); M;
2120  def S = SSres(M, 0); setring S; S;
2121  RES;
2122  MRES;
2123}
2124
2125static proc SRES_betti2(SRES SR, def a)
2126{
2127  def R = SR.r; setring R;
2128  return ( betti(SR.rsltn, a) );
2129}
2130
2131static proc SRES_betti1(SRES SR)
2132{
2133  def R = SR.r; setring R;
2134  return ( betti(SR.rsltn) ); 
2135}
2136
2137static proc SRES_print(SRES SR)
2138{
2139  def R = SR.r; setring R;
2140  "Schreyer resolution: ";
2141  SR.rsltn; //  print ();
2142  "over the ring: "; R;
2143}
2144
2145static proc SRES_minres(SRES SR)
2146{
2147  def save = basering;
2148  SRES S;
2149  def R = SR.r; S.r = R;
2150  setring R;
2151  S.rsltn = minres(SR.rsltn); // in target ring :(
2152  return (S);
2153}
2154
2155
2156// cannot be automatically used via overloading :(
2157proc SRES_list(def SR)
2158"USAGE:  SRES_list(resolution)
2159RETURN:  list
2160PURPOSE: convert given resolution to a list
2161NOTE:    result is over basering
2162SEE ALSO: s_res, resolution
2163EXAMPLE: example s_res; shows an example
2164"
2165{
2166  if( typeof(SR) != "SRES" )
2167  {
2168    list L = SR;
2169    return (L);
2170  }
2171 
2172  def save = basering; 
2173  def R = SR.r;
2174
2175//    if( 0 )  // ( save == R ) // TODO: not implemented :(((
2176//    {      list L = SR.rsltn;      return (L);    }
2177   
2178  setring R;
2179  list L = SR.rsltn;
2180  setring save; 
2181  return (imap( R, L ));   
2182}
2183
2184static proc loadme()
2185{
2186  int @DEBUG = 0; // !system("with", "ndebug"); //    "om_ndebug?: ", system("with", "om_ndebug");
2187
2188  if( @DEBUG )  {    listvar(Syzextra);    listvar(Schreyer);    listvar(Top);  }
2189
2190  if( !defined(Schreyer::ComputeResolution) )
2191  {
2192    load("syzextra.so");
2193     
2194      if( @DEBUG ){        listvar(Syzextra);      }
2195     
2196//      exportto(Top, Syzextra::ClearContent); //      exportto(Top, Syzextra::ClearDenominators);     exportto(Schreyer, Syzextra::noop);
2197//      exportto(Schreyer, Syzextra::leadrawexp); //      exportto(Schreyer, Syzextra::ISUpdateComponents);
2198//      exportto(Schreyer, Syzextra::GetAMData);//      exportto(Schreyer, Syzextra::SetSyzComp);
2199//      exportto(Schreyer, Syzextra::MakeSyzCompOrdering); //      exportto(Schreyer, Syzextra::reduce_syz);//      exportto(Schreyer, Syzextra::p_Content);
2200    exportto(Schreyer, Syzextra::DetailedPrint);
2201    exportto(Schreyer, Syzextra::m2_end);
2202    exportto(Schreyer, Syzextra::leadmonomial);
2203    exportto(Schreyer, Syzextra::leadcomp);
2204    exportto(Schreyer, Syzextra::SetInducedReferrence);
2205    exportto(Schreyer, Syzextra::GetInducedData);
2206    exportto(Schreyer, Syzextra::MakeInducedSchreyerOrdering);
2207    exportto(Schreyer, Syzextra::idPrepare);
2208   
2209    exportto(Schreyer, Syzextra::ProfilerStart);   exportto(Schreyer, Syzextra::ProfilerStop);
2210    exportto(Schreyer, Syzextra::NumberStatsInit); exportto(Schreyer, Syzextra::NumberStatsPrint);
2211   
2212    exportto(Schreyer, Syzextra::Tail);
2213    exportto(Schreyer, Syzextra::ComputeLeadingSyzygyTerms);
2214    exportto(Schreyer, Syzextra::Compute2LeadingSyzygyTerms);
2215    exportto(Schreyer, Syzextra::Sort_c_ds);
2216   
2217    exportto(Schreyer, Syzextra::FindReducer);
2218
2219    exportto(Schreyer, Syzextra::ReduceTerm);
2220    exportto(Schreyer, Syzextra::TraverseTail);
2221   
2222    exportto(Schreyer, Syzextra::SchreyerSyzygyNF);
2223    exportto(Schreyer, Syzextra::ComputeSyzygy);
2224    exportto(Schreyer, Syzextra::ComputeResolution);
2225   
2226    // TODO: SSres - return SRESOLUTION?
2227    newstruct("SRES","ring r,resolution rsltn"); // http://www.singular.uni-kl.de/Manual/latest/sing_179.htm#SEC218
2228//      system("install","SRES","string",SRES_string, 1);
2229    system("install","SRES","print",SRES_print, 1);
2230    system("install","SRES","betti",SRES_betti1, 1); // http://www.singular.uni-kl.de/Manual/latest/sing_260.htm#SEC299
2231    system("install","SRES","betti",SRES_betti2, 2); // http://www.singular.uni-kl.de/Manual/latest/sing_260.htm#SEC299
2232    system("install","SRES","minres",SRES_minres, 1); // http://www.singular.uni-kl.de/Manual/latest/sing_344.htm#SEC383
2233    system("install","SRES","list", SRES_list, 1); // will never work :(((
2234
2235//    exportto(Top, DetailedPrint);
2236//    exportto(Top, s_res); // GetInducedData);
2237
2238    if( @DEBUG )    {      listvar(Top);      listvar(Schreyer);    }
2239  }
2240 
2241  mod_assure_load();
2242}
2243
2244
2245
2246static proc mod_assure_load()
2247{
2248  if( !defined(Schreyer::ComputeResolution) )
2249  {
2250    "ERROR: Sorry but you seems to be missing the necessary dynamic module (syzextra.so)!";
2251//    $
2252    // m2_end(666); // :(
2253  }
2254}
2255
2256static proc mod_init()
2257{
2258  loadme();
2259}
2260
2261
2262static proc testallSexamples()
2263{
2264  example Ssyz;
2265  example Scontinue;
2266  example Sres; 
2267}
2268
2269static proc testallSSexamples()
2270{
2271  example SSsyz;
2272  example SScontinue;
2273  example SSres; 
2274}
2275example
2276{ "EXAMPLE:"; echo = 2;
2277  testallSexamples();
2278  testallSSexamples();
2279}
2280
2281static proc  StartResTesting(list #)
2282{
2283  int @treeout = attrib(SSinit, "TREEOUTPUT");
2284 
2285  if( defined(@save_res_list) )
2286  { ERROR("Sorry: existing global variable @save_res_list - run StopAddResTesting before another Start!!!"); }
2287 
2288  string @save_res_desc = string(#);
2289 
2290  if( !@treeout )
2291  {
2292    ">>>>>>>>> {{{{{{{{{ STARTING TESTING ('" + @save_res_desc + "') :::::::::::: ";
2293  } else
2294  {
2295    "{ \"Example\": \"" + @save_res_desc + "\", \"computations\": [";
2296  }
2297 
2298  list @save_res_list = list();
2299  export @save_res_list;
2300  export @save_res_desc;
2301}
2302
2303static proc  StopResTesting()
2304{
2305  int @treeout = attrib(SSinit, "TREEOUTPUT");
2306 
2307  if( defined(@save_opts) || defined(@save_method) || defined(@save_desc) )
2308  { ERROR("Sorry: existing global variables - run StopAddResTest before another Start!!!"); }
2309
2310  if( !defined(@save_res_list) || !defined(@save_res_desc) )
2311  { ERROR("Sorry: no global variable - run StartResTesting beforehand!!!"); }
2312
2313  int i, j;
2314  int f = 0;
2315  def m, mm;
2316
2317  if( !@treeout )
2318  {
2319  for (i = size(@save_res_list); i > 0; i--)
2320  {
2321    "Total Time: ", @save_res_list[i][5], ", Res: ", @save_res_list[i][6], ", Minimal Betti: ", @save_res_list[i][5] - @save_res_list[i][6], ",        ", @save_res_list[i][1], "   :with:    ", @save_res_list[i][2];
2322  }
2323 
2324  }
2325 
2326  for (i = size(@save_res_list); i > 1; i--)
2327  {
2328    m = @save_res_list[i][4];
2329   
2330    for (j = i-1; j > 0; j--)
2331    {
2332      mm = @save_res_list[j][4];
2333      if( (nrows(m) != nrows(mm)) || (ncols(m) != ncols(mm)) )
2334      {
2335        "ERROR: SIZE(Betti[j: ", j, "]) != SIZE(Betti[i: ", i, "]):";
2336        "j: ", j;
2337        print( @save_res_list[j][4], "betti");
2338        print(@save_res_list[j]);
2339       
2340        "i: ", i;
2341        print( @save_res_list[i][4], "betti");
2342        print(@save_res_list[i]);
2343
2344        f = 1;
2345
2346      } else
2347      {
2348        if( m != mm )
2349        {
2350          "ERROR: Betti[j: ", j, "] != Betti[i: ", i, "]:";
2351          "j: ", j;
2352          print( @save_res_list[j][4], "betti");
2353          print(@save_res_list[j]);
2354
2355          "i: ", i;
2356          print( @save_res_list[i][4], "betti");
2357          print(@save_res_list[i]);
2358
2359          f = 1;
2360        };
2361      };
2362 
2363    };
2364 
2365  };
2366 
2367  if( f )
2368  {
2369    print(@save_res_list);
2370    "<<<<<<<<< }}}}}}}}}  STOP TESTING (", @save_res_desc,  ") !!!!!!!!!!!! ";
2371   
2372    "ERROR: There were some wrong betti numbers... ";
2373//    m2_end(666);   
2374  } else
2375  {
2376    if( !@treeout )
2377    {
2378      "BETTI: "; print( @save_res_list[1][4], "betti");
2379    }
2380  }
2381
2382  kill @save_res_list;
2383   
2384  if( !@treeout )
2385  {
2386    "<<<<<<<<< }}}}}}}}}  STOP TESTING (", @save_res_desc,  ") !!!!!!!!!!!! ";
2387  } else
2388  {
2389//    "{ \"Example\": \"" + @save_res_desc + "\", \"computations\": [";
2390    "] },";
2391  }
2392  kill @save_res_desc;
2393}
2394
2395static proc StartAddResTest(string method, string desc)
2396{
2397  int @treeout = attrib(SSinit, "TREEOUTPUT");
2398 
2399  if( !defined(@save_res_list) )
2400  { ERROR("Sorry: no global variable - run StartResTesting beforehand!!!"); }
2401
2402  if( defined(@save_opts) || defined(@save_method) || defined(@save_desc) )
2403  { ERROR("Sorry: existing global variables - run StopAddResTest before another Start!!!"); }
2404 
2405 
2406  def @save_opts = option(get); export @save_opts;
2407  def @save_method = method; export @save_method;
2408  def @save_desc = desc; export @save_desc;
2409 
2410  if( !@treeout )
2411  {
2412    "< START RES TEST{{{ ", @save_method, ", with:", @save_desc, " ... ";
2413  } else
2414  {
2415//    Print("{ \"RESOLUTION: HYBRIDNF:%d, TAILREDSYZ: %d, LEAD2SYZ: %d, IGNORETAILS: %d\": [\n",
2416//       attributes.__HYBRIDNF__, attributes.__TAILREDSYZ__, attributes.__LEAD2SYZ__, attributes.__IGNORETAILS__);
2417    " { \"RESOLUTION: " + @save_method + ", with: " + @save_desc + "\": [";
2418  }
2419}
2420
2421
2422static proc StopAddResTest(def RR, intmat S, int @t, int @m)
2423{
2424  int @treeout = attrib(SSinit, "TREEOUTPUT");
2425 
2426  if( !(defined(@save_opts) && defined(@save_method) && defined(@save_desc)) )
2427  { ERROR("Sorry: no global variables - run StartAddResTest beforehand!!!"); }
2428
2429  list @l = list(@save_method, @save_desc, option(get), S, @t, @m);
2430 
2431//  RR, 
2432//  print(S, "betti");
2433 
2434  if( !@treeout )
2435  {
2436    "> -STOP RES TEST}}} ", @save_method, ", with:", @save_desc, ", Timer:", @t; option();
2437  } else
2438  {
2439    " ] },";
2440  }
2441
2442 
2443  option(set, @save_opts); kill @save_opts;
2444
2445  kill @save_method; kill @save_desc;
2446 
2447  @save_res_list[1 + size(@save_res_list)] = @l;
2448}
2449
2450
2451static proc SCheck(def S)
2452{
2453  setring S; // for checking...
2454
2455  module M = MRES;
2456  if( ncols(M) < nrows(M) )
2457  {
2458    M[nrows(M)] = 0;
2459  } else
2460  {
2461    M = transpose(M);
2462    if( ncols(M) < nrows(M) )
2463    {
2464      M[nrows(M)] = 0;
2465    }
2466    M = transpose(M);
2467  }
2468
2469  if( nrows(M) != ncols(M) )
2470  {
2471    "ERROR: non-square M!!!";
2472    m2_end(666);
2473  }
2474
2475  if( size(module( M*M )) > 0 )
2476  {
2477    "ERROR: module( M*M ) != 0!!!";
2478    module( M*M );
2479
2480    "MRES': "; M; print(M);
2481
2482    m2_end(666);
2483  }
2484//  "MRES': "; M; print(M);
2485
2486  if( size(RES[1]) != 0 )
2487  {
2488    "ERROR: wrong starting zero module!!!";
2489    m2_end(666);
2490  }
2491
2492//  RES;
2493/* 
2494  MRES;
2495  RES;
2496  "";
2497  LRES;
2498  "";
2499  TRES;
2500*/ 
2501}
2502
2503//// TODO: SSres(0) fails..!!!??
2504static proc TestSSres(def I)
2505{
2506  def save = basering;
2507  int @t,@m,r,rr,i;
2508  string name =
2509    "LEAD2SYZ:"  +string(attrib(SSinit,"LEAD2SYZ")) +
2510    ",TAILREDSYZ:"+string(attrib(SSinit,"TAILREDSYZ")) +
2511    ",HYBRIDNF:"  +string(attrib(SSinit,"HYBRIDNF"));
2512
2513  int @PROFILE = attrib(SSinit, "PROFILE");
2514  if(@PROFILE){ string @prof = "SSres_" + @save_res_desc + "_" + name + ".prof"; }
2515
2516  StartAddResTest(
2517   "SSres",
2518   "minres + betti(,1) + mods: {" + name + "}"
2519  );
2520 
2521  option(redSB); option(redTail);
2522  if(@PROFILE){ProfilerStart(@prof);}
2523  timer=0;rtimer=0;def R=SSres(I,0);@m=rtimer;
2524  if(@PROFILE){ProfilerStop();}
2525  setring R;module M;list @l=list();@l[size(RES)-1]=list();r=nrows(RES[1]);for(i=2;i<=size(RES);i++){M=RES[i];rr=nrows(M);if((r>0)&&(size(M)>0)&&(r<rr)){M=transpose(M);M=M[(r+1)..ncols(M)];M=transpose(M);RES[i]=M;};r=rr;@l[i-1] = M;};resolution RR=@l;RR=minres(RR);def S=betti(RR,1);@t=rtimer;
2526//  DetailedPrint(RR,0);
2527  SCheck(R);
2528  StopAddResTest(RR, S, @t,@m);
2529  kill S, RR; setring save; kill R;
2530}
2531
2532proc s_res(def I, int l)
2533"USAGE:  s_res(ideal/module M, int len)
2534RETURN:  resolution object or SRES
2535PURPOSE: compute a Schreyer resolution of M of length at most len (see [BMSS])
2536NOTE:    If given len is zero then nvars(basering) + 1 is used instead.
2537@* This functions is not related to other helpers from this library.
2538@* One can switch on computation protocol and statistic (depending on the build) by setting the @code{prot} option.
2539@* Further recognized switches are the following attributes of @code{Schreyer::SSinit} procedure:
2540LEAD2SYZ, TAILREDSYZ, HYBRIDNF
2541DEBUG, ...
2542SEE ALSO: sres
2543EXAMPLE: example s_res; shows an example
2544"
2545{
2546  int @prot = (find(option(),"prot") != 0) && (defined(NumberStatsInit)) && (defined(NumberStatsPrint));
2547  def @save = basering;
2548 
2549  int @RINGCHANGE = 0;
2550
2551  if( typeof( attrib(SSinit, "RINGCHANGE") ) == "int" )
2552  {
2553    @RINGCHANGE = attrib(SSinit, "@RINGCHANGE");
2554  }
2555 
2556  def R=SSinit(I);
2557  if( @RINGCHANGE ){ setring R; }
2558 
2559  int @l = size(RES);
2560  if(@prot){ NumberStatsInit(); }
2561  def rsltn = ComputeResolution(RES[@l], LRES[@l], TRES[@l], l);
2562  if(@prot){ NumberStatsPrint("Number statistic for s_res with ComputeResolution"); }
2563 
2564  if( !@RINGCHANGE )
2565  {
2566    return (rsltn); // ret
2567  }
2568 
2569  SRES ret; ret.r = R; ret.rsltn = rsltn; 
2570  return (ret);
2571}
2572example
2573{ "EXAMPLE:"; echo = 2;
2574  ring R;
2575  module M = maxideal(1); M;
2576  def  rs = s_res(M, 0);
2577  print(rs);
2578  print(betti(rs, 0)); // non-minimal betties
2579  print(SRES_list(rs));
2580  print(betti(rs, 1)); //minimal betties
2581  print(minres(rs));
2582}
2583
2584static proc s_syz(def I)
2585{
2586  def R=SSinit(I); setring R;
2587  int @l = size(RES); //   def M =  RES[@l];
2588  module N, LL, TT; (N, LL, TT) = SSComputeSyzygy(LRES[@l], TRES[@l]);
2589  SSYZ ret; ret.r = R; ret.szg = N; // Schreyer::ComputeResolution(RES[2], LRES[2], TRES[2], 0);
2590  return (ret);
2591}
2592
2593static proc TestSSSres(def I)
2594{
2595  def save = basering;
2596  int @t,@m,r,rr,i;
2597  string name =
2598    "LEAD2SYZ:"  +string(attrib(SSinit,"LEAD2SYZ")) +
2599    ",TAILREDSYZ:"+string(attrib(SSinit,"TAILREDSYZ")) +
2600    ",HYBRIDNF:"  +string(attrib(SSinit,"HYBRIDNF"));
2601
2602  int @PROFILE = attrib(SSinit, "PROFILE");
2603  if(@PROFILE){ string @prof = "SSSres_" + @save_res_desc + "_" + name + ".prof"; }
2604
2605  StartAddResTest(
2606   "SSSres",
2607   "minres + betti(,1) + mods: {" + name + "}"
2608  );
2609 
2610  option(redSB); option(redTail);
2611  if(@PROFILE){ProfilerStart(@prof);}
2612  timer=0;rtimer=0;def R=SSinit(I);setring R;def RR=ComputeResolution(RES[2], LRES[2], TRES[2], 0);
2613@m=rtimer;
2614  if(@PROFILE){ProfilerStop();}
2615RR=minres(RR); def S=betti(RR,1);@t=rtimer;
2616//  DetailedPrint(RR,0);  print(RR);  print(S, "betti");
2617  SCheck(R);
2618  StopAddResTest(RR, S, @t,@m);
2619  kill S, RR; setring save; kill R;
2620}
2621
2622
2623static proc TestSres(def I)
2624{
2625  def save = basering;
2626  int @t,r,rr,i,@m;
2627  StartAddResTest(
2628  "Sres",
2629  "minres + betti(,1)"
2630  );
2631  option(redSB); option(redTail);
2632  timer=0;rtimer=0;def R=Sres(I,0);@m=rtimer;setring R;module M;list @l=list();@l[size(RES)-1]=list();r=nrows(RES[1]);for(i=2;i<=size(RES);i++){M=RES[i];rr=nrows(M);if((r>0)&&(size(M)>0)&&(r<rr)){M=transpose(M);M=M[(r+1)..ncols(M)];M=transpose(M);RES[i]=M;};r=rr;@l[i-1] = M;};resolution RR=@l;RR=minres(RR);def S=betti(RR,1);@t=rtimer;
2633  SCheck(R);
2634  StopAddResTest(RR, S, @t,@m); 
2635  kill S, RR; setring save; kill R;
2636}
2637
2638
2639static proc Testsres(def M)
2640{
2641  int @t,@m;
2642  StartAddResTest("sres", "no minres + betti(,1)");
2643  option(redSB);option(redTail);
2644  timer=0;rtimer=0;def RR=sres(groebner(M),0);@m=rtimer;def S=betti(RR,1);@t=rtimer;
2645  StopAddResTest(RR, S, @t,@m); kill S, RR;
2646}
2647
2648static proc Testlres(def M)
2649{
2650  int @t,@m;
2651  StartAddResTest("lres", "no minres + betti(,1)");
2652  option(redSB);option(redTail);
2653  timer=0;rtimer=0;def RR=lres(M,0);@m=rtimer;def S=betti(RR,1);@t=rtimer;
2654  StopAddResTest(RR, S, @t,@m); kill S, RR;
2655
2656  StartAddResTest("lres", "minres + betti()");
2657  option(redSB);option(redTail);
2658  timer=0;rtimer=0;def RR=lres(M,0);@m=rtimer;def S=betti(minres(RR));@t=rtimer;
2659  StopAddResTest(RR, S, @t,@m);
2660  kill S, RR;
2661}
2662
2663
2664static proc Testnres(def M)
2665{
2666  int @t,@m;
2667  StartAddResTest("nres", "no minres + betti(,1)");
2668 
2669  option(redSB); option(redTail);
2670  timer=0;rtimer=0;def RR=nres(M,0);@m=rtimer;def S=betti(RR,1);@t=rtimer;
2671 
2672  StopAddResTest(RR, S, @t,@m); kill S, RR;
2673}
2674
2675static proc TestSSresAttribs(def M, list #)
2676{
2677  M = groebner(M);
2678 
2679  StartResTesting(#);
2680
2681  attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M);
2682  attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 1); TestSSSres(M);
2683
2684 // WRONG???! LEAD2SYZ?
2685//  attrib(SSinit, "LEAD2SYZ", 1); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M);
2686//  attrib(SSinit, "LEAD2SYZ", 1); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 1); TestSSSres(M);
2687
2688  int @treeout = attrib(SSinit, "TREEOUTPUT");
2689  if( !@treeout )
2690  {
2691   Testlres(M); Testnres(M);
2692//   Testsres(M); //   TestSres(M); // too long for the last medium test :(
2693  }
2694 
2695  StopResTesting();
2696}
2697
2698static proc TestSSresAttribs2tr(def M, list #)
2699{
2700  M = groebner(M);
2701 
2702  StartResTesting(#);
2703 
2704  attrib(SSinit, "LEAD2SYZ", 0); attrib(SSinit, "TAILREDSYZ", 1); attrib(SSinit, "HYBRIDNF", 0); TestSSSres(M);
2705  Testlres(M); 
2706
2707  StopResTesting();
2708}
2709
2710static proc testSimple(list #)
2711{
2712  mod_assure_load();
2713
2714  def DEBUG = 0;
2715  if(size(#) > 0) { DEBUG = #[1]; }
2716
2717  system("--min-time", "0.01");
2718  system("--ticks-per-sec", 100);
2719
2720//  option(prot);
2721
2722  // TODO: only for now!!
2723  attrib(SSinit, "DEBUG", (DEBUG > 0) );
2724  attrib(SSinit, "SYZCHECK", (DEBUG > 0) );
2725  attrib(SSinit, "KERCHECK", (DEBUG > 0) );
2726
2727  attrib(SSinit, "TREEOUTPUT", 0);
2728  attrib(SSinit, "PROFILE", 0);
2729  attrib(SSinit, "IGNORETAILS", 0); // not only frame
2730
2731  int @treeout = attrib(SSinit, "TREEOUTPUT");
2732 
2733  if( @treeout)
2734  {
2735    monitor("SimpleTests.json", "o");
2736    "{ \"SimpleTests\": [";
2737  } else { option(prot); }
2738 
2739
2740  ring r; ideal M = maxideal(1);
2741  TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering));
2742  kill r;
2743
2744  ring r = 0, (a, b, c, d), lp; ideal M = maxideal(1);
2745  TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering));
2746  kill r;
2747
2748  ring R = 0, (w, x, y, z), dp;
2749  ideal M = w^2 - x*z,  w*x - y*z,  x^2 - w*y, x*y - z^2, y^2 - w*z;
2750  TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering));
2751  kill R;
2752
2753
2754  ring r = 0, (a, b, c, d, e, f), dp; ideal M = maxideal(1);
2755  TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering));
2756  kill r; 
2757
2758
2759  ring r = 0, (x, y), lp; ideal M = x2, xy, y2;  // Schreyer conterexample???
2760  TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering));
2761  kill r;
2762
2763  ring r = 0, (x, y, z, t), dp; ideal M = homog(xy + y2 +x + 2y -1, t), homog(xz - x -y -z -2, t), homog(yz +1, t);  // TODO: seg. fault?
2764  TestSSresAttribs(M, "\\\\GENERATED{" + string(M) + "} in " + string(basering));
2765  kill r;
2766
2767 
2768  ring AGR = (101), (a, b, c, d), dp;
2769  // simple: AGR@101n3d002s004%1:
2770  ideal M = c*d, b*d, a*d, c^2-d^2, b*c, a*c, b^2-d^2, a*b, a^2-d^2;
2771  TestSSresAttribs(M, "simple: AGR@101n3d002s004%1");
2772
2773  // medium: AGR@101n3d004s009%1;
2774  M = a*b+7*a*c-16*b*c-27*a*d+37*b*d-2*c*d, d^3, c*d^2, b*d^2, a*d^2, c^2*d, b*c*d, a*c*d, b^2*d, a^2*d, c^3, b*c^2, a*c^2, b^2*c, a^2*c, b^3, a^3;
2775  TestSSresAttribs(M, "medium: AGR@101n3d004s009%1");
2776
2777  if( @treeout)
2778  {
2779    "] }";
2780    monitor("");
2781  }
2782
2783}
2784
2785static proc testAGR(list #)
2786{
2787  def DEBUG = 0;
2788  if(size(#) > 0) { DEBUG = #[1]; }
2789
2790  system("--min-time", "0.01");
2791  system("--ticks-per-sec", 100);
2792
2793  attrib(SSinit, "DEBUG", 0);
2794  attrib(SSinit, "SYZCHECK", (DEBUG > 0));
2795  attrib(SSinit, "KERCHECK", 0);
2796  attrib(SSinit, "TREEOUTPUT", 0);
2797  attrib(SSinit, "PROFILE", 0);
2798  attrib(SSinit, "IGNORETAILS", 0); // not only frame
2799 
2800  option(prot);
2801
2802  ring AGR = (101), (a, b, c, d), dp; AGR;
2803  // lengthy: AGR@101n3d008s058%3, kernel only!
2804  ideal M = c^4*d^2+4*a^3*d^3+29*a^2*b*d^3-2*a*b^2*d^3+2*b^3*d^3-21*a^2*c*d^3+46*a*b*c*d^3+2*b^2*c*d^3-13*a*c^2*d^3+32*b*c^2*d^3+46*c^3*d^3-28*a^2*d^4+4*a*b*d^4+29*b^2*d^4-8*a*c*d^4+33*b*c*d^4-16*c^2*d^4+17*a*d^5-3*b*d^5-42*c*d^5+47*d^6,b*c^3*d^2+35*a^3*d^3+24*a^2*b*d^3+46*a*b^2*d^3-22*b^3*d^3-48*a^2*c*d^3+20*a*b*c*d^3-28*b^2*c*d^3-40*a*c^2*d^3-4*b*c^2*d^3+35*c^3*d^3-21*a^2*d^4+3*a*b*d^4+8*b^2*d^4-2*a*c*d^4-22*b*c*d^4+24*c^2*d^4+44*a*d^5+33*b*d^5+31*c*d^5+26*d^6,a*c^3*d^2-42*a^3*d^3+34*a^2*b*d^3-10*a*b^2*d^3+30*b^3*d^3-6*a^2*c*d^3-30*a*b*c*d^3-34*b^2*c*d^3+29*a*c^2*d^3+35*b*c^2*d^3+13*c^3*d^3+8*a^2*d^4+23*a*b*d^4-29*b^2*d^4+12*a*c*d^4-22*b*c*d^4-50*c^2*d^4-4*b*d^5+9*c*d^5+13*d^6,b^2*c^2*d^2+a^3*d^3-49*a^2*b*d^3+26*a*b^2*d^3+20*b^3*d^3+24*a^2*c*d^3-2*a*b*c*d^3+31*b^2*c*d^3-30*a*c^2*d^3+21*b*c^2*d^3-24*c^3*d^3-38*a^2*d^4-14*a*b*d^4-14*b^2*d^4+6*a*c*d^4+3*b*c*d^4+13*c^2*d^4-11*a*d^5-38*b*d^5+22*c*d^5+48*d^6,a*b*c^2*d^2+18*a^3*d^3-29*a^2*b*d^3-21*a*b^2*d^3-2*b^3*d^3-25*a^2*c*d^3+37*a*b*c*d^3-14*b^2*c*d^3-47*a*c^2*d^3-6*b*c^2*d^3-34*c^3*d^3+43*a^2*d^4+22*a*b*d^4-39*b^2*d^4-41*a*c*d^4-17*b*c*d^4-13*c^2*d^4-43*a*d^5+28*b*d^5-42*c*d^5-49*d^6,a^2*c^2*d^2-33*a^3*d^3+30*a^2*b*d^3-13*a*b^2*d^3+18*b^3*d^3-8*a^2*c*d^3-18*a*b*c*d^3-15*b^2*c*d^3-21*a*c^2*d^3+45*b*c^2*d^3-35*c^3*d^3-4*a^2*d^4-4*a*b*d^4+10*b^2*d^4-19*a*c*d^4-18*b*c*d^4-22*c^2*d^4-27*a*d^5+20*b*d^5-14*c*d^5+24*d^6,b^3*c*d^2-10*a^3*d^3+37*a*b^2*d^3-43*b^3*d^3-10*a^2*c*d^3-9*a*b*c*d^3+47*a*c^2*d^3-24*b*c^2*d^3+12*c^3*d^3+7*a^2*d^4+19*a*b*d^4-27*b^2*d^4-2*a*c*d^4-35*b*c*d^4+45*c^2*d^4-44*a*d^5-43*b*d^5+24*c*d^5+16*d^6,a*b^2*c*d^2+2*a^3*d^3-14*a^2*b*d^3+2*a*b^2*d^3+18*b^3*d^3-48*a^2*c*d^3+43*a*b*c*d^3-25*b^2*c*d^3+15*a*c^2*d^3-7*b*c^2*d^3+42*c^3*d^3-16*a^2*d^4+7*b^2*d^4-23*a*c*d^4+24*b*c*d^4+25*c^2*d^4-17*a*d^5-16*b*d^5-32*c*d^5-50*d^6,a^2*b*c*d^2-16*a^3*d^3+7*a^2*b*d^3-20*a*b^2*d^3+11*b^3*d^3+16*a^2*c*d^3+6*a*b*c*d^3-25*b^2*c*d^3+42*a*c^2*d^3-39*b*c^2*d^3-15*c^3*d^3-25*a^2*d^4+46*a*b*d^4-3*b^2*d^4+5*a*c*d^4+28*b*c*d^4+6*c^2*d^4-20*a*d^5-15*b*d^5-30*c*d^5+17*d^6,a^3*c*d^2+39*a^3*d^3+22*a^2*b*d^3-21*a*b^2*d^3+10*b^3*d^3+40*a^2*c*d^3-37*a*b*c*d^3+11*b^2*c*d^3+43*a*c^2*d^3+28*b*c^2*d^3-10*c^3*d^3+30*a^2*d^4+36*a*b*d^4-45*b^2*d^4-40*a*c*d^4-31*b*c*d^4+28*c^2*d^4+35*a*d^5+6*b*d^5+14*c*d^5+25*d^6,b^4*d^2+50*a^3*d^3+12*a^2*b*d^3+29*a*b^2*d^3-38*b^3*d^3-44*a^2*c*d^3+28*a*b*c*d^3+18*b^2*c*d^3-31*a*c^2*d^3+16*b*c^2*d^3-18*c^3*d^3+5*a^2*d^4-43*a*b*d^4+16*b^2*d^4+9*a*c*d^4-30*b*c*d^4+50*c^2*d^4+3*a*d^5+33*b*d^5+3*c*d^5-48*d^6,a*b^3*d^2+13*a^3*d^3-28*a^2*b*d^3-33*a*b^2*d^3-25*b^3*d^3-41*a^2*c*d^3+a*b*c*d^3+19*b^2*c*d^3+41*a*c^2*d^3-17*b*c^2*d^3+34*c^3*d^3-10*a^2*d^4+30*a*b*d^4+34*b^2*d^4+13*a*c*d^4+b*c*d^4-35*c^2*d^4-34*a*d^5+23*b*d^5-7*c*d^5+6*d^6,a^2*b^2*d^2+22*a^3*d^3-32*a^2*b*d^3+29*a*b^2*d^3+21*b^3*d^3-30*a^2*c*d^3-47*a*b*c*d^3-11*b^2*c*d^3-16*a*c^2*d^3-14*b*c^2*d^3+49*c^3*d^3+47*a^2*d^4-11*a*b*d^4+4*b^2*d^4+13*a*c*d^4+7*b*c*d^4-30*c^2*d^4+31*a*d^5+10*b*d^5-8*c*d^5-27*d^6,a^3*b*d^2-43*a^3*d^3-2*a^2*b*d^3+15*a*b^2*d^3+42*b^3*d^3+25*a^2*c*d^3+22*a*b*c*d^3-4*b^2*c*d^3-29*a*c^2*d^3-31*b*c^2*d^3-3*c^3*d^3+33*a^2*d^4+20*a*b*d^4-34*b^2*d^4+8*a*c*d^4+48*b*c*d^4-29*c^2*d^4-46*a*d^5+27*b*d^5+29*c*d^5+33*d^6,a^4*d^2+30*a^3*d^3-42*a*b^2*d^3-16*b^3*d^3-33*a^2*c*d^3+13*a*b*c*d^3+7*b^2*c*d^3-23*a*c^2*d^3+28*b*c^2*d^3-37*c^3*d^3+3*a^2*d^4-34*a*b*d^4+16*b^2*d^4-21*a*c*d^4-39*b*c*d^4+5*c^2*d^4+35*a*d^5+39*b*d^5-26*c*d^5-47*d^6,c^5*d+48*a^3*d^3-37*a^2*b*d^3+31*a*b^2*d^3-19*b^3*d^3+49*a^2*c*d^3-5*a*b*c*d^3+45*b^2*c*d^3+24*a*c^2*d^3-26*b*c^2*d^3-10*c^3*d^3-a^2*d^4+43*a*b*d^4-26*b^2*d^4+45*a*c*d^4-3*b*c*d^4+38*c^2*d^4+10*a*d^5-5*b*d^5-34*c*d^5+22*d^6,b*c^4*d+30*a^3*d^3-40*a^2*b*d^3-39*a*b^2*d^3+33*b^3*d^3+31*a^2*c*d^3-17*a*b*c*d^3-44*b^2*c*d^3+24*a*c^2*d^3+22*b*c^2*d^3-44*c^3*d^3-29*a^2*d^4+4*a*b*d^4-4*b^2*d^4+8*a*c*d^4-42*b*c*d^4+15*c^2*d^4-42*a*d^5+15*b*d^5-41*c*d^5-46*d^6,a*c^4*d-11*a^3*d^3-5*a^2*b*d^3+33*a*b^2*d^3+7*b^3*d^3-31*a^2*c*d^3-47*a*b*c*d^3-50*b^2*c*d^3-50*a*c^2*d^3-39*b*c^2*d^3+25*c^3*d^3+5*a^2*d^4+35*a*b*d^4-34*b^2*d^4+42*a*c*d^4-44*b*c*d^4-17*c^2*d^4+11*a*d^5+b*d^5+31*c*d^5+45*d^6,b^2*c^3*d+12*a^3*d^3-41*a^2*b*d^3+29*a*b^2*d^3-42*b^3*d^3-32*a^2*c*d^3+47*a*b*c*d^3-13*b^2*c*d^3-20*a*c^2*d^3+45*b*c^2*d^3-49*c^3*d^3-34*a^2*d^4+16*a*b*d^4+11*b^2*d^4-49*a*c*d^4-27*b*c*d^4-31*c^2*d^4+29*a*d^5-23*b*d^5+13*c*d^5+42*d^6,a*b*c^3*d-16*a^3*d^3-35*a^2*b*d^3+12*a*b^2*d^3-39*b^3*d^3-32*a*b*c*d^3-4*b^2*c*d^3+31*a*c^2*d^3+43*b*c^2*d^3-42*c^3*d^3+36*a^2*d^4-5*a*b*d^4-4*b^2*d^4+5*a*c*d^4+20*b*c*d^4+31*c^2*d^4+15*a*d^5+25*b*d^5-16*c*d^5-28*d^6,a^2*c^3*d-16*a^3*d^3+8*a^2*b*d^3+30*a*b^2*d^3-16*b^3*d^3+20*a^2*c*d^3-11*b^2*c*d^3-48*a*c^2*d^3+11*b*c^2*d^3-20*c^3*d^3-24*a^2*d^4-23*a*b*d^4+9*b^2*d^4+13*a*c*d^4-42*b*c*d^4+22*c^2*d^4-29*a*d^5-28*b*d^5-7*c*d^5-2*d^6,b^3*c^2*d+42*a^3*d^3-11*a^2*b*d^3+18*a*b^2*d^3-13*b^3*d^3+22*a^2*c*d^3-10*a*b*c*d^3-25*b^2*c*d^3-17*a*c^2*d^3-23*b*c^2*d^3-37*c^3*d^3-3*a^2*d^4-33*a*b*d^4+44*b^2*d^4-41*a*c*d^4+6*b*c*d^4-36*c^2*d^4-43*a*d^5+b*d^5+25*c*d^5+48*d^6,a*b^2*c^2*d+21*a^3*d^3+5*a^2*b*d^3+38*a*b^2*d^3+25*b^3*d^3-12*a^2*c*d^3+7*a*b*c*d^3+28*b^2*c*d^3+a*c^2*d^3+33*b*c^2*d^3+22*c^3*d^3+10*a^2*d^4-7*a*b*d^4-5*b^2*d^4+50*a*c*d^4-23*b*c*d^4+22*c^2*d^4-4*a*d^5+45*b*d^5-42*c*d^5+d^6,a^2*b*c^2*d-45*a^3*d^3+2*a^2*b*d^3+44*a*b^2*d^3-5*b^3*d^3-19*a^2*c*d^3-3*a*b*c*d^3+18*b^2*c*d^3-22*a*c^2*d^3+46*b*c^2*d^3+41*c^3*d^3-26*a^2*d^4-a*b*d^4-42*b^2*d^4-40*a*c*d^4+39*b*c*d^4+24*c^2*d^4-6*a*d^5-6*b*d^5+13*c*d^5-28*d^6,a^3*c^2*d+4*a^3*d^3+31*a^2*b*d^3+21*a*b^2*d^3+39*b^3*d^3-8*a^2*c*d^3+49*a*b*c*d^3-48*b^2*c*d^3-16*a*c^2*d^3-33*b*c^2*d^3+35*c^3*d^3+41*a^2*d^4+18*a*b*d^4+47*b^2*d^4-3*a*c*d^4+12*b*c*d^4+13*c^2*d^4+32*a*d^5-40*b*d^5+50*c*d^5-2*d^6,b^4*c*d+23*a^3*d^3+47*a^2*b*d^3-10*a*b^2*d^3-43*b^3*d^3+49*a^2*c*d^3+7*a*b*c*d^3+34*b^2*c*d^3-40*a*c^2*d^3-37*b*c^2*d^3-6*c^3*d^3+30*a^2*d^4-34*a*b*d^4-6*b^2*d^4+21*a*c*d^4+41*b*c*d^4-33*c^2*d^4-9*a*d^5+2*b*d^5+8*c*d^5+7*d^6,a*b^3*c*d-5*a^3*d^3-42*a^2*b*d^3+22*a*b^2*d^3-35*b^3*d^3+a^2*c*d^3+20*a*b*c*d^3-10*b^2*c*d^3+23*a*c^2*d^3-17*b*c^2*d^3+30*c^3*d^3+24*a^2*d^4+32*a*b*d^4-7*b^2*d^4-48*a*c*d^4-25*b*c*d^4-6*c^2*d^4-33*a*d^5+29*b*d^5+12*c*d^5+26*d^6,a^2*b^2*c*d+6*a^3*d^3-46*a^2*b*d^3-30*a*b^2*d^3+b^3*d^3-35*a^2*c*d^3+41*a*b*c*d^3-4*b^2*c*d^3-42*a*c^2*d^3+16*b*c^2*d^3+19*c^3*d^3-13*a^2*d^4-16*a*b*d^4+45*b^2*d^4-25*a*c*d^4-48*b*c*d^4+35*c^2*d^4+50*a*d^5+31*b*d^5-25*c*d^5+6*d^6,a^3*b*c*d+3*a^3*d^3-39*a^2*b*d^3+14*a*b^2*d^3-4*b^3*d^3-36*a^2*c*d^3+47*a*b*c*d^3+27*b^2*c*d^3+50*a*c^2*d^3-45*b*c^2*d^3+49*c^3*d^3-18*a^2*d^4+20*a*b*d^4+17*b^2*d^4+a*c*d^4+33*b*c*d^4+42*c^2*d^4+19*a*d^5+18*b*d^5+33*c*d^5+15*d^6,a^4*c*d-14*a^3*d^3-8*a^2*b*d^3-a*b^2*d^3-34*b^3*d^3-27*a^2*c*d^3-15*a*b*c*d^3-14*b^2*c*d^3+33*a*c^2*d^3-34*b*c^2*d^3-4*c^3*d^3+47*a^2*d^4+50*a*b*d^4-6*b^2*d^4+16*a*c*d^4+26*c^2*d^4-27*a*d^5+2*b*d^5-31*c*d^5+47*d^6,b^5*d+3*a^3*d^3-9*a^2*b*d^3+46*a*b^2*d^3+b^3*d^3-2*a^2*c*d^3-39*a*b*c*d^3-31*b^2*c*d^3-30*a*c^2*d^3+23*b*c^2*d^3+25*c^3*d^3+9*a^2*d^4-15*a*b*d^4-2*b^2*d^4-12*a*c*d^4+11*b*c*d^4+9*c^2*d^4+3*a*d^5+9*b*d^5+41*c*d^5-38*d^6,a*b^4*d-48*a^3*d^3+42*a^2*b*d^3+27*a*b^2*d^3+32*b^3*d^3+21*a^2*c*d^3-5*a*b*c*d^3-39*b^2*c*d^3+6*a*c^2*d^3-20*b*c^2*d^3+45*c^3*d^3-48*a^2*d^4+44*a*b*d^4+25*b^2*d^4-29*a*c*d^4+4*b*c*d^4+50*c^2*d^4-6*a*d^5-40*b*d^5-11*c*d^5-28*d^6,a^2*b^3*d-41*a^3*d^3+21*a^2*b*d^3+39*a*b^2*d^3-2*b^3*d^3+24*a*b*c*d^3-10*b^2*c*d^3+31*a*c^2*d^3-34*b*c^2*d^3-31*c^3*d^3+20*a^2*d^4+41*a*b*d^4-10*b^2*d^4-40*a*c*d^4+5*b*c*d^4+31*c^2*d^4+6*a*d^5+26*b*d^5+29*c*d^5-5*d^6,a^3*b^2*d-11*a^3*d^3-39*a^2*b*d^3+2*a*b^2*d^3-44*b^3*d^3-23*a^2*c*d^3+21*a*b*c*d^3-44*b^2*c*d^3-7*a*c^2*d^3+49*b*c^2*d^3+46*c^3*d^3+17*a^2*d^4+49*a*b*d^4-14*b^2*d^4+29*a*c*d^4-20*b*c*d^4-49*c^2*d^4-13*a*d^5-41*b*d^5-18*c*d^5+50*d^6,a^4*b*d+9*a^3*d^3+50*a^2*b*d^3+46*a*b^2*d^3-48*b^3*d^3+43*a^2*c*d^3-45*a*b*c*d^3+24*b^2*c*d^3-4*a*c^2*d^3-b*c^2*d^3-34*c^3*d^3+33*a^2*d^4+14*a*b*d^4-37*b^2*d^4-13*a*c*d^4+48*b*c*d^4-31*c^2*d^4-22*a*d^5+42*b*d^5+49*c*d^5-43*d^6,a^5*d+33*a^3*d^3-23*a^2*b*d^3+30*a*b^2*d^3+5*b^3*d^3-26*a^2*c*d^3-35*a*b*c*d^3-50*b^2*c*d^3-21*a*c^2*d^3+4*b*c^2*d^3+10*c^3*d^3+39*a^2*d^4-2*a*b*d^4+23*b^2*d^4+17*a*c*d^4-50*b*c*d^4-8*c^2*d^4-39*a*d^5+36*b*d^5-43*c*d^5-39*d^6,c^6+20*a^3*d^3-41*a*b^2*d^3+39*b^3*d^3+26*a^2*c*d^3-8*a*b*c*d^3-49*b^2*c*d^3+25*a*c^2*d^3+32*b*c^2*d^3-32*c^3*d^3-2*a^2*d^4-38*a*b*d^4-38*b^2*d^4+17*a*c*d^4+22*b*c*d^4-36*c^2*d^4-41*a*d^5+37*b*d^5-49*c*d^5-19*d^6,b*c^5-36*a^3*d^3+32*a^2*b*d^3-14*a*b^2*d^3-31*b^3*d^3-2*a^2*c*d^3-8*a*b*c*d^3-39*b^2*c*d^3-46*a*c^2*d^3+10*b*c^2*d^3+27*c^3*d^3+25*a^2*d^4-30*a*b*d^4+3*b^2*d^4-36*a*c*d^4+44*b*c*d^4+17*c^2*d^4-46*a*d^5-37*b*d^5-2*c*d^5-47*d^6,a*c^5-49*a^3*d^3+11*a^2*b*d^3-21*a*b^2*d^3-14*b^3*d^3+26*a^2*c*d^3-a*b*c*d^3+24*b^2*c*d^3-46*a*c^2*d^3+23*b*c^2*d^3+33*c^3*d^3-11*a^2*d^4-a*b*d^4+49*b^2*d^4-17*a*c*d^4+49*b*c*d^4+36*c^2*d^4+10*a*d^5-19*b*d^5+26*c*d^5-32*d^6,b^2*c^4-14*a^3*d^3+9*a^2*b*d^3-5*a*b^2*d^3+17*b^3*d^3+2*a^2*c*d^3+12*a*b*c*d^3-37*b^2*c*d^3-43*a*c^2*d^3+5*b*c^2*d^3-9*c^3*d^3-27*a^2*d^4+14*a*b*d^4-19*b^2*d^4+29*a*c*d^4+32*b*c*d^4-15*c^2*d^4-26*a*d^5-31*b*d^5+46*c*d^5-22*d^6,a*b*c^4+33*a^3*d^3-22*a^2*b*d^3-14*a*b^2*d^3-30*b^3*d^3-48*a^2*c*d^3+34*a*b*c*d^3-8*b^2*c*d^3-44*a*c^2*d^3-4*b*c^2*d^3+3*c^3*d^3+26*a^2*d^4+4*a*b*d^4+7*b^2*d^4-28*a*c*d^4-22*b*c*d^4-35*c^2*d^4-50*a*d^5-43*b*d^5+46*c*d^5-49*d^6,a^2*c^4-9*a^3*d^3+3*a^2*b*d^3+34*a*b^2*d^3+4*b^3*d^3+5*a^2*c*d^3-17*a*b*c*d^3-48*b^2*c*d^3+10*a*c^2*d^3+2*b*c^2*d^3-12*c^3*d^3-7*a^2*d^4-6*a*b*d^4+37*b^2*d^4-16*a*c*d^4+47*b*c*d^4+6*c^2*d^4-35*a*d^5-45*b*d^5-12*c*d^5-30*d^6,b^3*c^3-21*a^3*d^3-6*a^2*b*d^3-26*a*b^2*d^3-22*b^3*d^3-29*a*b*c*d^3-26*b^2*c*d^3+50*a*c^2*d^3-41*b*c^2*d^3+22*c^3*d^3-41*a^2*d^4+25*a*b*d^4+16*b^2*d^4+11*a*c*d^4+34*b*c*d^4+19*c^2*d^4-38*a*d^5-8*b*d^5-42*c*d^5-6*d^6,a*b^2*c^3+3*a^3*d^3-45*a^2*b*d^3+39*a*b^2*d^3+22*b^3*d^3+48*a^2*c*d^3-7*a*b*c*d^3-46*b^2*c*d^3-22*a*c^2*d^3-17*b*c^2*d^3-27*c^3*d^3-35*a^2*d^4+47*a*b*d^4+6*b^2*d^4-5*a*c*d^4-30*b*c*d^4+25*c^2*d^4-10*a*d^5+46*b*d^5+5*c*d^5-18*d^6,a^2*b*c^3-36*a^3*d^3+33*a^2*b*d^3+47*a*b^2*d^3-16*b^3*d^3-41*a^2*c*d^3+42*a*b*c*d^3-29*b^2*c*d^3+39*a*c^2*d^3-12*b*c^2*d^3-25*c^3*d^3-11*a^2*d^4-37*a*b*d^4+29*b^2*d^4-18*a*c*d^4+43*b*c*d^4+12*c^2*d^4-37*a*d^5+7*b*d^5+7*c*d^5-5*d^6,a^3*c^3+25*a^3*d^3+34*a^2*b*d^3+29*a*b^2*d^3-34*b^3*d^3-46*a^2*c*d^3-17*a*b*c*d^3+49*b^2*c*d^3-35*a*c^2*d^3-21*b*c^2*d^3-45*c^3*d^3+43*a^2*d^4+29*a*b*d^4+36*b^2*d^4+37*a*c*d^4+12*b*c*d^4-17*c^2*d^4+12*a*d^5+47*c*d^5-23*d^6,b^4*c^2-10*a^3*d^3+38*a^2*b*d^3+33*a*b^2*d^3+9*b^3*d^3-25*a^2*c*d^3+38*a*b*c*d^3-19*b^2*c*d^3-33*a*c^2*d^3-49*b*c^2*d^3-16*c^3*d^3-14*a^2*d^4-3*a*b*d^4-30*b^2*d^4-32*a*c*d^4+28*b*c*d^4-3*c^2*d^4-16*a*d^5+31*b*d^5-49*c*d^5-3*d^6,a*b^3*c^2+25*a^3*d^3-47*a^2*b*d^3+47*b^3*d^3+13*a^2*c*d^3-17*a*b*c*d^3+26*b^2*c*d^3-43*a*c^2*d^3+39*b*c^2*d^3-4*c^3*d^3+20*a^2*d^4+6*a*b*d^4+49*b^2*d^4+14*a*c*d^4-17*b*c*d^4+38*c^2*d^4+21*a*d^5-9*b*d^5-26*c*d^5+47*d^6,a^2*b^2*c^2+12*a^3*d^3+10*a^2*b*d^3-40*a*b^2*d^3+14*b^3*d^3+36*a^2*c*d^3-9*a*b*c*d^3+9*b^2*c*d^3+7*a*c^2*d^3+12*b*c^2*d^3-37*c^3*d^3-44*a^2*d^4-48*a*b*d^4+11*b^2*d^4-13*a*c*d^4+31*b*c*d^4+47*c^2*d^4+28*a*d^5+39*b*d^5+27*c*d^5-d^6,a^3*b*c^2-28*a^3*d^3-22*a^2*b*d^3-8*a*b^2*d^3+40*b^3*d^3-13*a^2*c*d^3+35*a*b*c*d^3-4*b^2*c*d^3+28*a*c^2*d^3+30*b*c^2*d^3-13*c^3*d^3+16*a^2*d^4+48*a*b*d^4-42*b^2*d^4+10*a*c*d^4-b*c*d^4+37*c^2*d^4-17*a*d^5-15*b*d^5+40*c*d^5+27*d^6,a^4*c^2+17*a^3*d^3+45*a^2*b*d^3+42*a*b^2*d^3-20*b^3*d^3-39*a^2*c*d^3-20*a*b*c*d^3-44*b^2*c*d^3+33*a*c^2*d^3+39*b*c^2*d^3-37*c^3*d^3+39*a^2*d^4+39*a*b*d^4-44*b^2*d^4+8*a*c*d^4-34*b*c*d^4+36*c^2*d^4-47*a*d^5+38*b*d^5-46*c*d^5+23*d^6,b^5*c+24*a^3*d^3+17*a^2*b*d^3-22*a*b^2*d^3-27*b^3*d^3+27*a^2*c*d^3+48*a*b*c*d^3+4*b^2*c*d^3+a*c^2*d^3-21*b*c^2*d^3-14*c^3*d^3+3*a^2*d^4+15*a*b*d^4+41*b^2*d^4-27*a*c*d^4+4*b*c*d^4+3*c^2*d^4-46*a*d^5+28*b*d^5+6*c*d^5+36*d^6,a*b^4*c-29*a^3*d^3+30*a^2*b*d^3+31*a*b^2*d^3+44*b^3*d^3-12*a^2*c*d^3-27*a*b*c*d^3+48*b^2*c*d^3+4*a*c^2*d^3+2*b*c^2*d^3-17*c^3*d^3-7*a^2*d^4+25*a*b*d^4-45*b^2*d^4-17*a*c*d^4-14*b*c*d^4-11*c^2*d^4-45*a*d^5-36*b*d^5-12*c*d^5-44*d^6,a^2*b^3*c-10*a^3*d^3-30*a^2*b*d^3-22*a*b^2*d^3-35*b^3*d^3+37*a^2*c*d^3-35*a*b*c*d^3-12*b^2*c*d^3-16*b*c^2*d^3+49*c^3*d^3+38*a^2*d^4-21*a*b*d^4-20*b^2*d^4-6*a*c*d^4+41*b*c*d^4+49*c^2*d^4+13*a*d^5-38*b*d^5-32*c*d^5-12*d^6,a^3*b^2*c+5*a^2*b*d^3-40*a*b^2*d^3+14*b^3*d^3-4*a^2*c*d^3-13*a*b*c*d^3+47*b^2*c*d^3+28*a*c^2*d^3+15*b*c^2*d^3+47*c^3*d^3-8*a^2*d^4-20*a*b*d^4+3*b^2*d^4+42*a*c*d^4+18*b*c*d^4-23*c^2*d^4-48*a*d^5+12*b*d^5-25*c*d^5-39*d^6,a^4*b*c+29*a^3*d^3+21*a^2*b*d^3-32*a*b^2*d^3+48*b^3*d^3-44*a^2*c*d^3-3*a*b*c*d^3-27*b^2*c*d^3+27*a*c^2*d^3+43*b*c^2*d^3-30*c^3*d^3+4*a^2*d^4+16*a*b*d^4+33*b^2*d^4+37*a*c*d^4-32*b*c*d^4+14*c^2*d^4+50*a*d^5-49*c*d^5-33*d^6,a^5*c-26*a^3*d^3-50*a^2*b*d^3+2*a*b^2*d^3+3*b^3*d^3-15*a^2*c*d^3-32*a*b*c*d^3-4*b^2*c*d^3-13*a*c^2*d^3-13*b*c^2*d^3+3*c^3*d^3+32*a^2*d^4-32*a*b*d^4-47*b^2*d^4-39*a*c*d^4-34*b*c*d^4-9*c^2*d^4-7*a*d^5-22*b*d^5+16*c*d^5+44*d^6,b^6+45*a^3*d^3-42*a^2*b*d^3-35*a*b^2*d^3+13*b^3*d^3+28*a^2*c*d^3-2*a*b*c*d^3-37*b^2*c*d^3-9*a*c^2*d^3+44*b*c^2*d^3-24*c^3*d^3+36*a^2*d^4+42*a*b*d^4-38*b^2*d^4-34*a*c*d^4-46*b*c*d^4+23*c^2*d^4-9*a*d^5-28*b*d^5+37*c*d^5+26*d^6,a*b^5-14*a^3*d^3+38*a^2*b*d^3-37*a*b^2*d^3-33*b^3*d^3-24*a^2*c*d^3+15*a*b*c*d^3+44*b^2*c*d^3-45*a*c^2*d^3+3*b*c^2*d^3-41*c^3*d^3-48*a^2*d^4-36*a*b*d^4+39*b^2*d^4+46*a*c*d^4-3*b*c*d^4+21*c^2*d^4-36*a*d^5-20*b*d^5+24*c*d^5-33*d^6,a^2*b^4-27*a^3*d^3-10*a^2*b*d^3-5*a*b^2*d^3+8*b^3*d^3+21*a^2*c*d^3+31*a*b*c*d^3-44*b^2*c*d^3+41*a*c^2*d^3+17*b*c^2*d^3-8*c^3*d^3+19*a^2*d^4+25*a*b*d^4+b^2*d^4+3*a*c*d^4+2*b*c*d^4-40*c^2*d^4+31*a*d^5-19*b*d^5+35*c*d^5-28*d^6,a^3*b^3-12*a^3*d^3-25*a^2*b*d^3+37*a*b^2*d^3-37*b^3*d^3+46*a^2*c*d^3+43*a*b*c*d^3+b^2*c*d^3-41*a*c^2*d^3-38*b*c^2*d^3-36*c^3*d^3-11*a*b*d^4+20*b^2*d^4-a*c*d^4-26*b*c*d^4+14*c^2*d^4-48*a*d^5+17*b*d^5+9*c*d^5+30*d^6,a^4*b^2+36*a^3*d^3+9*a^2*b*d^3-31*b^3*d^3+50*a^2*c*d^3+41*a*b*c*d^3+40*b^2*c*d^3+48*a*c^2*d^3-41*b*c^2*d^3-17*c^3*d^3+33*a^2*d^4+47*a*b*d^4+22*b^2*d^4+2*a*c*d^4+23*b*c*d^4-47*c^2*d^4+34*a*d^5-15*b*d^5-33*c*d^5-38*d^6,a^5*b-12*a^3*d^3-38*a^2*b*d^3+46*a*b^2*d^3-32*b^3*d^3-41*a^2*c*d^3+14*a*b*c*d^3-34*b^2*c*d^3+7*a*c^2*d^3-6*b*c^2*d^3+31*c^3*d^3+30*a^2*d^4+12*a*b*d^4-17*b^2*d^4-7*a*c*d^4-45*b*c*d^4+10*c^2*d^4+29*a*d^5-28*b*d^5+34*c*d^5-15*d^6,a^6-33*a^3*d^3-45*a^2*b*d^3+19*a*b^2*d^3+39*b^3*d^3-5*a^2*c*d^3-46*a*b*c*d^3+9*b^2*c*d^3+15*a*c^2*d^3-21*b*c^2*d^3+46*c^3*d^3-39*a^2*d^4-9*a*b*d^4+50*b^2*d^4-45*a*c*d^4-39*b*c*d^4-18*c^2*d^4-4*a*d^5-19*b*d^5+12*c*d^5+39*d^6,d^7,c*d^6,b*d^6,a*d^6,c^2*d^5,b*c*d^5,a*c*d^5,b^2*d^5,a*b*d^5,a^2*d^5,c^3*d^4,b*c^2*d^4,a*c^2*d^4,b^2*c*d^4,a*b*c*d^4,a^2*c*d^4,b^3*d^4,a*b^2*d^4,a^2*b*d^4,a^3*d^4;
2805  TestSSresAttribs2tr(M, "AGR@101n3d008s058%3");
2806
2807  // AGR@101n3d010s010%3, a bit slower...
2808  M = a^2*b^5-50*a*b^6-26*a^6*c+15*a^5*b*c-42*a^4*b^2*c-2*a^3*b^3*c+40*a^2*b^4*c-20*a*b^5*c+11*b^6*c-17*a^5*c^2-4*a^4*b*c^2+13*a^3*b^2*c^2-7*a^2*b^3*c^2+13*a*b^4*c^2-46*b^5*c^2+38*a^4*c^3+32*a^3*b*c^3-49*a^2*b^2*c^3-41*a*b^3*c^3+9*b^4*c^3+17*a^3*c^4-23*a^2*b*c^4+46*a*b^2*c^4+9*b^3*c^4-20*a^2*c^5-34*a*b*c^5-46*b^2*c^5-3*a*c^6+11*b*c^6-22*a^6*d-5*a^5*b*d-21*a^4*b^2*d-43*a^3*b^3*d-29*a^2*b^4*d+43*a*b^5*d-2*b^6*d+24*a^5*c*d-9*a^4*b*c*d+3*a^3*b^2*c*d+20*a^2*b^3*c*d+47*a*b^4*c*d-41*b^5*c*d+11*a^4*c^2*d-14*a^3*b*c^2*d+13*a^2*b^2*c^2*d-19*a*b^3*c^2*d-12*b^4*c^2*d+41*a^3*c^3*d-49*a^2*b*c^3*d-10*a*b^2*c^3*d+19*b^3*c^3*d-13*a^2*c^4*d+10*a*b*c^4*d-49*b^2*c^4*d-3*a*c^5*d-10*b*c^5*d+31*c^6*d-16*a^5*d^2+24*a^4*b*d^2-43*a^3*b^2*d^2+36*a^2*b^3*d^2-36*a^4*c*d^2-36*a^3*b*c*d^2-16*a^2*b^2*c*d^2+35*a*b^3*c*d^2+29*b^4*c*d^2+40*a^3*c^2*d^2-24*a^2*b*c^2*d^2-24*a*b^2*c^2*d^2+7*b^3*c^2*d^2+28*a^2*c^3*d^2+49*a*b*c^3*d^2+49*b^2*c^3*d^2+7*a*c^4*d^2-9*b*c^4*d^2+21*c^5*d^2-28*a^4*d^3+24*a^3*b*d^3-24*a^2*b^2*d^3+23*a*b^3*d^3+24*b^4*d^3+24*a^3*c*d^3-25*a^2*b*c*d^3-9*a*b^2*c*d^3-43*b^3*c*d^3+15*a^2*c^2*d^3+49*a*b*c^2*d^3+24*b^2*c^2*d^3-20*a*c^3*d^3-30*b*c^3*d^3-20*c^4*d^3+13*a^3*d^4+34*a^2*b*d^4-45*a*b^2*d^4+9*b^3*d^4+9*a^2*c*d^4-31*a*b*c*d^4-6*b^2*c*d^4-16*a*c^2*d^4+9*b*c^2*d^4+24*c^3*d^4+38*a^2*d^5-23*a*b*d^5-35*b^2*d^5+22*a*c*d^5-22*b*c*d^5+46*c^2*d^5+12*a*d^6+21*b*d^6-23*c*d^6-2*d^7,a^3*b^4+34*a^6*c+14*a^5*b*c+34*a^4*b^2*c+43*a^3*b^3*c-26*a^2*b^4*c+13*a*b^5*c+10*b^6*c-43*a^5*c^2+50*a^4*b*c^2-23*a^3*b^2*c^2-a^2*b^3*c^2+39*a*b^4*c^2+50*b^5*c^2+16*a^4*c^3+31*a^3*b*c^3-49*a^2*b^2*c^3+26*a*b^3*c^3-b^4*c^3-5*a^3*c^4+3*a^2*b*c^4-26*a*b^2*c^4-b^3*c^4-24*a^2*c^5-39*a*b*c^5+50*b^2*c^5-13*a*c^6+10*b*c^6-39*a^6*d+35*a^5*b*d+44*a^4*b^2*d-39*a^3*b^3*d-26*a^2*b^4*d-47*a*b^5*d-42*b^6*d+34*a^5*c*d-43*a^4*b*c*d-39*a^3*b^2*c*d+41*a^2*b^3*c*d+32*a*b^4*c*d-10*b^5*c*d+43*a^4*c^2*d+12*a^3*b*c^2*d-43*a^2*b^2*c^2*d+23*a*b^3*c^2*d-46*b^4*c^2*d+12*a^3*c^3*d-10*a^2*b*c^3*d+13*a*b^2*c^3*d-15*b^3*c^3*d-a^2*c^4*d+17*a*b*c^4*d-47*b^2*c^4*d+49*a*c^5*d-31*b*c^5*d-22*c^6*d-28*a^5*d^2-39*a^4*b*d^2+33*a^3*b^2*d^2-40*a^2*b^3*d^2+31*a*b^4*d^2+5*b^5*d^2+42*a^4*c*d^2-a^3*b*c*d^2+37*a^2*b^2*c*d^2-13*a*b^3*c*d^2+b^4*c*d^2+35*a^3*c^2*d^2-9*a^2*b*c^2*d^2+46*a*b^2*c^2*d^2-2*b^3*c^2*d^2+15*a^2*c^3*d^2-48*a*b*c^3*d^2+38*b^2*c^3*d^2-37*a*c^4*d^2-40*b*c^4*d^2+25*c^5*d^2+5*a^4*d^3-4*a^3*b*d^3+30*a^2*b^2*d^3-42*a*b^3*d^3+11*b^4*d^3+10*a^3*c*d^3+34*a^2*b*c*d^3-48*a*b^2*c*d^3+17*b^3*c*d^3-33*a^2*c^2*d^3-12*a*b*c^2*d^3-44*b^2*c^2*d^3-6*a*c^3*d^3+6*b*c^3*d^3-45*c^4*d^3+6*a^3*d^4+8*a^2*b*d^4-22*a*b^2*d^4+23*b^3*d^4-22*a^2*c*d^4-38*a*b*c*d^4+44*b^2*c*d^4-13*a*c^2*d^4-50*b*c^2*d^4+30*c^3*d^4-6*a^2*d^5-46*a*b*d^5+17*b^2*d^5-23*a*c*d^5-10*b*c*d^5+32*c^2*d^5-47*a*d^6+2*b*d^6+20*c*d^6-46*d^7,a^4*b^3+30*a*b^6-49*a^6*c+18*a^5*b*c+37*a^4*b^2*c+44*a^3*b^3*c-27*a^2*b^4*c-a*b^5*c-35*b^6*c-20*a^5*c^2+32*a^4*b*c^2+28*a^3*b^2*c^2-13*a^2*b^3*c^2-32*a*b^4*c^2+27*b^5*c^2-4*a^4*c^3+25*a^3*b*c^3+22*a^2*b^2*c^3-23*a*b^3*c^3-47*b^4*c^3+41*a^3*c^4-25*a^2*b*c^4-34*a*b^2*c^4-47*b^3*c^4-33*a^2*c^5-43*a*b*c^5+27*b^2*c^5-31*a*c^6-35*b*c^6-49*a^6*d+30*a^5*b*d-4*a^4*b^2*d+11*a^3*b^3*d-12*a^2*b^4*d-38*a*b^5*d+45*b^6*d+5*a^5*c*d-45*a^4*b*c*d-42*a^3*b^2*c*d-11*a^2*b^3*c*d+21*a*b^4*c*d+18*b^5*c*d-50*a^4*c^2*d-25*a^3*b*c^2*d+35*a^2*b^2*c^2*d-a*b^3*c^2*d+30*b^4*c^2*d+28*a^3*c^3*d-46*a^2*b*c^3*d-4*a*b^2*c^3*d+32*b^3*c^3*d+21*a^2*c^4*d-34*a*b*c^4*d+27*b^2*c^4*d+11*a*c^5*d-45*b*c^5*d+4*c^6*d+2*a^5*d^2-43*a^4*b*d^2-36*a^3*b^2*d^2+14*a^2*b^3*d^2+35*a*b^4*d^2+8*b^5*d^2+34*a^4*c*d^2-12*a^3*b*c*d^2-a^2*b^2*c*d^2-5*a*b^3*c*d^2+43*b^4*c*d^2+45*a^3*c^2*d^2-34*a^2*b*c^2*d^2+26*a*b^2*c^2*d^2+10*b^3*c^2*d^2-19*a^2*c^3*d^2+5*a*b*c^3*d^2-47*b^2*c^3*d^2+40*a*c^4*d^2+8*b*c^4*d^2+30*c^5*d^2+42*a^4*d^3+27*a^3*b*d^3+31*a^2*b^2*d^3-6*a*b^3*d^3+36*b^4*d^3+37*a^2*b*c*d^3+34*a*b^2*c*d^3-13*b^3*c*d^3+a^2*c^2*d^3+29*a*b*c^2*d^3-b^2*c^2*d^3-11*a*c^3*d^3-21*b*c^3*d^3+32*c^4*d^3+9*a^3*d^4-21*a^2*b*d^4+26*a*b^2*d^4+43*b^3*d^4-42*a^2*c*d^4-2*a*b*c*d^4-34*b^2*c*d^4+10*a*c^2*d^4-26*b*c^2*d^4-50*c^3*d^4+23*a^2*d^5+49*a*b*d^5+28*b^2*d^5-48*a*c*d^5-18*b*c*d^5-2*c^2*d^5-2*a*d^6-30*b*d^6+36*c*d^6-21*d^7,a^5*b^2+9*a*b^6+6*a^6*c+34*a^5*b*c-14*a^4*b^2*c-43*a^3*b^3*c-27*a^2*b^4*c+14*a*b^5*c+9*b^6*c-28*a^5*c^2-10*a^4*b*c^2+39*a^3*b^2*c^2-49*a^2*b^3*c^2-38*a*b^4*c^2+45*b^5*c^2+4*a^4*c^3+5*a^3*b*c^3+15*a^2*b^2*c^3-11*a*b^3*c^3-11*b^4*c^3+24*a^3*c^4-32*a^2*b*c^4-2*a*b^2*c^4-11*b^3*c^4+32*a^2*c^5-38*a*b*c^5+45*b^2*c^5-4*a*c^6+9*b*c^6+23*a^6*d-13*a^5*b*d+8*a^4*b^2*d-46*a^3*b^3*d-9*a^2*b^4*d-8*a*b^5*d+17*b^6*d+a^5*c*d+5*a^4*b*c*d-50*a^3*b^2*c*d+22*a^2*b^3*c*d-34*a*b^4*c*d-49*b^5*c*d+44*a^4*c^2*d+41*a^3*b*c^2*d-44*a^2*b^2*c^2*d-49*a*b^3*c^2*d+37*b^4*c^2*d+45*a^3*c^3*d+12*a^2*b*c^3*d-23*a*b^2*c^3*d-32*b^3*c^3*d-14*a^2*c^4*d+5*a*b*c^4*d+48*b^2*c^4*d+5*a*c^5*d-20*b*c^5*d-c^6*d+5*a^5*d^2-45*a^4*b*d^2+42*a^3*b^2*d^2+50*a^2*b^3*d^2-8*a*b^4*d^2-49*b^5*d^2-35*a^4*c*d^2-25*a^3*b*c*d^2-4*a^2*b^2*c*d^2-26*a*b^3*c*d^2-28*b^4*c*d^2+46*a^3*c^2*d^2+22*a^2*b*c^2*d^2+43*a*b^2*c^2*d^2-4*b^3*c^2*d^2-25*a^2*c^3*d^2+31*a*b*c^3*d^2-31*b^2*c^3*d^2-30*a*c^4*d^2-18*b*c^4*d^2-12*c^5*d^2-33*a^4*d^3-48*a^3*b*d^3-36*a^2*b^2*d^3-6*a*b^3*d^3+8*b^4*d^3+3*a^3*c*d^3-43*a^2*b*c*d^3+34*a*b^2*c*d^3+19*b^3*c*d^3+19*a^2*c^2*d^3-49*a*b*c^2*d^3-2*b^2*c^2*d^3+12*a*c^3*d^3-29*b*c^3*d^3-16*c^4*d^3+27*a^3*d^4+22*a^2*b*d^4+22*a*b^2*d^4-12*b^3*d^4+34*a^2*c*d^4+8*a*b*c*d^4+50*b^2*c*d^4+40*a*c^2*d^4+27*b*c^2*d^4-35*c^3*d^4-30*a^2*d^5+24*a*b*d^5+7*b^2*d^5+16*a*c*d^5+17*b*c*d^5-40*c^2*d^5-47*a*d^6-12*b*d^6+16*c*d^6+6*d^7,a^6*b-45*a*b^6-30*a^6*c-5*a^5*b*c-39*a^4*b^2*c-37*a^3*b^3*c+a^2*b^4*c-14*a*b^5*c-37*b^6*c+49*a^5*c^2+28*a^4*b*c^2+7*a^3*b^2*c^2-10*a^2*b^3*c^2+10*a*b^4*c^2+17*b^5*c^2-34*a^4*c^3+24*a^3*b*c^3-36*a^2*b^2*c^3-13*a*b^3*c^3+34*b^4*c^3-20*a^3*c^4-38*a^2*b*c^4+32*a*b^2*c^4+34*b^3*c^4-13*a^2*c^5+44*a*b*c^5+17*b^2*c^5+20*a*c^6-37*b*c^6+10*a^6*d+26*a^5*b*d+15*a^4*b^2*d+23*a^3*b^3*d+16*a^2*b^4*d+48*a*b^5*d-30*b^6*d-9*a^5*c*d-20*a^4*b*c*d+49*a^3*b^2*c*d-48*a^2*b^3*c*d-36*a*b^4*c*d-21*b^5*c*d+9*a^4*c^2*d-24*a^3*b*c^2*d+42*a^2*b^2*c^2*d+26*a*b^3*c^2*d-46*b^4*c^2*d-50*a^3*c^3*d-11*a^2*b*c^3*d-34*a*b^2*c^3*d+32*b^3*c^3*d-16*a^2*c^4*d-25*a*b*c^4*d+6*b^2*c^4*d+18*a*c^5*d-40*b*c^5*d+41*c^6*d-8*a^5*d^2-27*a^4*b*d^2-48*a^3*b^2*d^2-a^2*b^3*d^2+50*a*b^4*d^2+21*b^5*d^2-48*a^4*c*d^2+4*a^3*b*c*d^2-28*a^2*b^2*c*d^2-4*a*b^3*c*d^2+16*b^4*c*d^2+50*a^3*c^2*d^2+40*a^2*b*c^2*d^2+35*a*b^2*c^2*d^2+29*b^3*c^2*d^2-34*a^2*c^3*d^2-21*a*b*c^3*d^2-b^2*c^3*d^2-9*a*c^4*d^2-29*b*c^4*d^2+6*c^5*d^2+16*a^4*d^3-34*a^3*b*d^3+3*a^2*b^2*d^3+21*a*b^3*d^3+39*b^4*d^3+21*a^3*c*d^3-44*a^2*b*c*d^3-16*a*b^2*c*d^3+b^3*c*d^3-38*a^2*c^2*d^3+18*a*b*c^2*d^3+37*b^2*c^2*d^3-46*a*c^3*d^3+25*b*c^3*d^3-50*c^4*d^3-8*a^3*d^4-24*a^2*b*d^4-2*a*b^2*d^4+6*b^3*d^4+9*a^2*c*d^4+12*a*b*c*d^4+33*b^2*c*d^4-44*a*c^2*d^4+23*b*c^2*d^4-4*c^3*d^4-9*a^2*d^5-2*a*b*d^5-14*b^2*d^5+21*a*c*d^5-16*b*c*d^5-19*c^2*d^5+17*a*d^6-20*b*d^6+11*c*d^6-41*d^7,a^7-10*a*b^6-6*a^6*c-48*a^5*b*c-14*a^4*b^2*c-16*a^3*b^3*c-4*a^2*b^4*c+24*a*b^5*c-10*b^6*c-2*a^5*c^2+23*a^3*b^2*c^2+26*a^2*b^3*c^2+22*a*b^4*c^2-50*b^5*c^2+14*a^4*c^3-7*a^3*b*c^3+a^2*b^2*c^3-49*a*b^3*c^3+b^4*c^3-46*a^3*c^4+9*a^2*b*c^4+10*a*b^2*c^4+b^3*c^4+38*a^2*c^5-26*a*b*c^5-50*b^2*c^5+28*a*c^6-10*b*c^6-7*a^6*d+24*a^5*b*d-8*a^4*b^2*d+23*a^3*b^3*d+9*a^2*b^4*d+28*a*b^5*d-23*b^6*d-42*a^4*b*c*d+24*a^3*b^2*c*d-30*a^2*b^3*c*d-42*a*b^4*c*d-43*b^5*c*d-42*a^4*c^2*d+11*a^3*b*c^2*d+9*a^2*b^2*c^2*d-8*a*b^3*c^2*d+4*b^4*c^2*d+10*a^3*c^3*d+43*a^2*b*c^3*d+3*a*b^2*c^3*d-14*b^3*c^3*d-5*a^2*c^4*d+25*a*b*c^4*d-50*b^2*c^4*d-17*a*c^5*d+35*b*c^5*d+47*c^6*d-4*a^5*d^2-43*a^4*b*d^2+35*a^3*b^2*d^2+19*a^2*b^3*d^2+48*a*b^4*d^2+45*b^5*d^2+3*a^4*c*d^2-46*a^3*b*c*d^2+8*a^2*b^2*c*d^2-35*a*b^3*c*d^2-27*b^4*c*d^2-49*a^3*c^2*d^2+37*a^2*b*c^2*d^2-43*a*b^2*c^2*d^2+32*b^3*c^2*d^2+48*a^2*c^3*d^2+9*a*b*c^3*d^2+b^2*c^3*d^2-31*a*c^4*d^2-23*b*c^4*d^2-21*c^5*d^2+34*a^4*d^3+38*a^3*b*d^3+41*a^2*b^2*d^3-24*a*b^3*d^3+28*b^4*d^3+47*a^3*c*d^3-6*a^2*b*c*d^3+27*a*b^2*c*d^3-43*b^3*c*d^3-24*a^2*c^2*d^3-19*a*b*c^2*d^3-50*b^2*c^2*d^3+31*a*c^3*d^3+40*b*c^3*d^3+19*c^4*d^3+4*a^3*d^4-36*a^2*b*d^4+43*a*b^2*d^4+27*b^3*d^4+49*a^2*c*d^4-27*a*b*c*d^4-39*b^2*c*d^4+46*a*c^2*d^4+40*b*c^2*d^4+5*c^3*d^4-12*a^2*d^5-5*a*b*d^5+16*b^2*d^5-26*a*c*d^5-31*b*c*d^5-38*c^2*d^5+17*a*d^6-11*b*d^6-7*c*d^6-39*d^7,b*c*d^6-21*c^2*d^6+36*a*d^7-34*b*d^7-40*c*d^7-11*d^8,a*c*d^6-24*c^2*d^6+5*a*d^7-7*b*d^7+21*c*d^7-43*d^8,b^2*d^6+20*c^2*d^6+6*a*d^7-30*b*d^7+25*c*d^7+4*d^8,a*b*d^6+23*c^2*d^6-43*a*d^7+47*b*d^7+42*c*d^7+29*d^8,a^2*d^6+49*c^2*d^6+6*a*d^7-35*b*d^7+19*c*d^7-11*d^8,c^3*d^5-38*c^2*d^6+47*a*d^7+35*b*d^7+46*c*d^7+21*d^8,b*c^2*d^5+41*c^2*d^6-8*a*d^7+8*b*d^7+46*c*d^7+42*d^8,a*c^2*d^5+44*c^2*d^6+10*a*d^7-36*b*d^7-21*c*d^7+28*d^8,b^2*c*d^5+9*c^2*d^6+35*a*d^7+20*b*d^7+49*c*d^7-47*d^8,a*b*c*d^5+44*c^2*d^6+24*a*d^7-12*b*d^7+24*c*d^7-5*d^8,a^2*c*d^5-9*c^2*d^6-34*a*d^7+27*b*d^7-49*c*d^7+d^8,b^3*d^5+21*c^2*d^6-37*a*d^7-13*b*d^7-48*c*d^7+25*d^8,a*b^2*d^5+4*c^2*d^6-8*a*d^7-42*b*d^7-31*c*d^7+21*d^8,a^2*b*d^5+26*c^2*d^6-47*a*d^7-37*b*d^7+24*c*d^7+6*d^8,a^3*d^5-32*c^2*d^6-31*a*d^7+26*b*d^7-35*c*d^7-39*d^8,c^4*d^4+25*c^2*d^6+35*a*d^7+24*b*d^7+32*c*d^7-46*d^8,b*c^3*d^4+10*c^2*d^6-9*a*d^7-27*b*d^7-17*c*d^7+11*d^8,a*c^3*d^4-41*c^2*d^6+5*a*d^7-18*b*d^7-43*c*d^7-25*d^8,b^2*c^2*d^4-9*c^2*d^6+15*a*d^7-7*b*d^7-27*c*d^7-40*d^8,a*b*c^2*d^4-4*c^2*d^6+25*a*d^7-9*b*d^7-41*c*d^7-11*d^8,a^2*c^2*d^4+15*c^2*d^6-5*a*d^7-34*b*d^7-11*c*d^7-29*d^8,b^3*c*d^4+49*c^2*d^6-24*a*d^7-8*b*d^7+7*c*d^7-46*d^8,a*b^2*c*d^4-20*c^2*d^6-4*a*d^7+32*b*d^7-42*c*d^7-d^8,a^2*b*c*d^4+15*c^2*d^6+31*a*d^7+16*b*d^7-25*c*d^7+29*d^8,a^3*c*d^4-48*c^2*d^6-36*a*d^7-10*b*d^7+4*c*d^7+27*d^8,b^4*d^4+26*c^2*d^6-25*a*d^7-3*b*d^7-45*c*d^7-26*d^8,a*b^3*d^4+c^2*d^6-21*a*d^7-13*b*d^7-20*c*d^7+16*d^8,a^2*b^2*d^4+22*c^2*d^6-27*a*d^7-23*b*d^7-5*c*d^7-27*d^8,a^3*b*d^4+2*c^2*d^6-29*a*d^7-6*b*d^7+26*c*d^7-46*d^8,a^4*d^4-40*c^2*d^6-9*a*d^7-24*b*d^7+2*c*d^7-37*d^8,c^5*d^3+14*c^2*d^6+40*a*d^7+21*b*d^7+50*c*d^7+31*d^8,b*c^4*d^3-21*c^2*d^6-2*a*d^7-9*b*d^7-28*c*d^7+20*d^8,a*c^4*d^3-39*c^2*d^6+38*a*d^7-24*b*d^7-42*c*d^7-30*d^8,b^2*c^3*d^3+19*c^2*d^6-50*a*d^7-33*b*d^7+16*c*d^7-45*d^8,a*b*c^3*d^3-6*c^2*d^6-38*a*d^7+35*b*d^7+32*c*d^7-12*d^8,a^2*c^3*d^3+44*c^2*d^6+35*a*d^7+42*b*d^7-10*c*d^7-48*d^8,b^3*c^2*d^3+33*c^2*d^6-7*a*d^7-41*b*d^7-3*c*d^7-33*d^8,a*b^2*c^2*d^3-21*c^2*d^6-22*a*d^7-23*b*d^7+24*c*d^7+47*d^8,a^2*b*c^2*d^3+c^2*d^6-32*a*d^7-34*b*d^7-42*c*d^7+7*d^8,a^3*c^2*d^3+6*c^2*d^6-31*a*d^7-26*b*d^7+19*c*d^7-49*d^8,b^4*c*d^3+6*c^2*d^6-24*a*d^7+10*b*d^7-18*c*d^7-4*d^8,a*b^3*c*d^3+46*c^2*d^6+41*a*d^7+7*b*d^7+8*c*d^7-28*d^8,a^2*b^2*c*d^3+33*c^2*d^6-15*a*d^7-11*b*d^7+38*c*d^7+14*d^8,a^3*b*c*d^3-29*c^2*d^6-4*a*d^7-32*b*d^7+13*c*d^7-3*d^8,a^4*c*d^3-34*c^2*d^6+5*a*d^7+29*b*d^7-15*c*d^7-48*d^8,b^5*d^3-42*c^2*d^6+33*a*d^7-49*b*d^7+33*c*d^7-43*d^8,a*b^4*d^3+25*c^2*d^6-11*a*d^7-16*b*d^7+32*c*d^7-2*d^8,a^2*b^3*d^3-36*c^2*d^6-47*a*d^7-16*b*d^7+19*c*d^7+9*d^8,a^3*b^2*d^3-30*c^2*d^6-21*a*d^7-6*b*d^7+16*c*d^7-14*d^8,a^4*b*d^3+47*c^2*d^6-16*a*d^7-13*b*d^7+21*c*d^7+30*d^8,a^5*d^3-2*c^2*d^6+40*a*d^7+34*b*d^7+14*c*d^7-50*d^8,c^6*d^2-4*c^2*d^6-41*a*d^7+46*b*d^7+17*c*d^7+19*d^8,b*c^5*d^2-49*c^2*d^6+5*a*d^7-31*b*d^7+30*c*d^7+28*d^8,a*c^5*d^2-12*c^2*d^6-23*a*d^7-39*b*d^7+6*c*d^7-27*d^8,b^2*c^4*d^2-12*c^2*d^6-30*a*d^7+13*b*d^7-42*c*d^7+38*d^8,a*b*c^4*d^2-31*c^2*d^6+5*a*d^7-41*b*d^7-24*c*d^7,a^2*c^4*d^2-c^2*d^6+4*a*d^7+21*b*d^7+19*c*d^7-34*d^8,b^3*c^3*d^2-50*c^2*d^6-11*a*d^7+24*b*d^7+24*c*d^7-44*d^8,a*b^2*c^3*d^2+2*c^2*d^6-42*a*d^7-17*b*d^7-33*c*d^7-10*d^8,a^2*b*c^3*d^2+20*c^2*d^6+29*a*d^7+35*b*d^7-31*c*d^7-35*d^8,a^3*c^3*d^2+35*c^2*d^6-13*a*d^7+20*b*d^7-15*c*d^7-45*d^8,b^4*c^2*d^2+c^2*d^6+36*a*d^7-42*b*d^7+32*c*d^7+16*d^8,a*b^3*c^2*d^2-9*c^2*d^6-43*a*d^7-5*b*d^7-17*c*d^7+50*d^8,a^2*b^2*c^2*d^2-36*c^2*d^6+31*a*d^7+4*b*d^7-26*c*d^7-11*d^8,a^3*b*c^2*d^2+15*c^2*d^6+40*a*d^7-18*b*d^7-31*c*d^7+43*d^8,a^4*c^2*d^2+41*c^2*d^6-49*a*d^7+37*b*d^7+47*c*d^7-48*d^8,b^5*c*d^2-49*c^2*d^6+15*a*d^7+48*b*d^7+22*c*d^7+38*d^8,a*b^4*c*d^2+12*c^2*d^6+16*a*d^7-22*b*d^7-c*d^7+29*d^8,a^2*b^3*c*d^2+31*c^2*d^6+19*a*d^7+45*b*d^7-6*c*d^7+42*d^8,a^3*b^2*c*d^2+29*c^2*d^6-39*a*d^7+25*b*d^7-48*c*d^7-d^8,a^4*b*c*d^2-31*c^2*d^6+24*a*d^7-2*b*d^7+36*c*d^7+37*d^8,a^5*c*d^2+33*c^2*d^6-46*a*d^7-41*b*d^7-29*c*d^7-12*d^8,b^6*d^2-39*c^2*d^6+35*a*d^7-8*b*d^7+35*c*d^7+47*d^8,a*b^5*d^2-38*c^2*d^6-11*a*d^7-37*b*d^7-7*c*d^7-5*d^8,a^2*b^4*d^2+29*c^2*d^6+36*a*d^7-29*b*d^7+20*c*d^7+39*d^8,a^3*b^3*d^2-44*c^2*d^6+43*a*d^7-50*b*d^7-24*c*d^7-16*d^8,a^4*b^2*d^2+20*c^2*d^6+33*a*d^7+6*b*d^7+47*c*d^7+40*d^8,a^5*b*d^2-10*c^2*d^6+25*a*d^7-8*b*d^7-14*c*d^7+16*d^8,a^6*d^2+48*c^2*d^6+14*a*d^7+32*b*d^7+17*c*d^7+13*d^8,c^7*d+38*c^2*d^6-39*a*d^7+22*b*d^7+15*c*d^7-d^8,b*c^6*d+9*c^2*d^6+37*a*d^7+12*b*d^7+27*c*d^7+3*d^8,a*c^6*d-5*c^2*d^6+34*a*d^7+15*b*d^7+2*c*d^7-21*d^8,b^2*c^5*d+35*c^2*d^6+27*a*d^7+13*b*d^7-39*c*d^7+8*d^8,a*b*c^5*d-34*c^2*d^6-18*a*d^7-21*b*d^7-31*c*d^7+46*d^8,a^2*c^5*d-16*c^2*d^6-6*a*d^7-18*b*d^7+3*c*d^7+47*d^8,b^3*c^4*d-46*c^2*d^6+4*a*d^7-38*b*d^7-29*c*d^7-4*d^8,a*b^2*c^4*d-35*c^2*d^6-14*a*d^7-32*b*d^7-40*c*d^7-35*d^8,a^2*b*c^4*d+23*c^2*d^6-44*a*d^7-3*b*d^7+4*c*d^7-4*d^8,a^3*c^4*d+24*c^2*d^6-7*a*d^7-44*b*d^7-16*c*d^7+10*d^8,b^4*c^3*d+43*c^2*d^6+12*a*d^7+43*b*d^7-49*c*d^7-23*d^8,a*b^3*c^3*d+22*c^2*d^6+6*a*d^7+2*b*d^7-9*c*d^7,a^2*b^2*c^3*d+4*c^2*d^6+21*a*d^7-24*b*d^7-26*c*d^7+33*d^8,a^3*b*c^3*d+13*c^2*d^6-18*a*d^7+31*b*d^7-28*c*d^7+2*d^8,a^4*c^3*d+10*c^2*d^6-14*a*d^7+30*b*d^7-40*c*d^7+33*d^8,b^5*c^2*d-35*c^2*d^6-33*a*d^7+7*b*d^7+13*c*d^7+26*d^8,a*b^4*c^2*d-49*c^2*d^6+9*a*d^7+20*b*d^7+11*c*d^7-32*d^8,a^2*b^3*c^2*d+33*c^2*d^6-43*a*d^7-27*b*d^7-31*c*d^7-41*d^8,a^3*b^2*c^2*d-6*c^2*d^6+23*a*d^7+20*b*d^7-8*c*d^7-6*d^8,a^4*b*c^2*d+10*c^2*d^6-24*a*d^7+30*b*d^7+42*c*d^7-23*d^8,a^5*c^2*d+12*c^2*d^6+20*a*d^7+24*b*d^7-9*c*d^7-9*d^8,b^6*c*d-12*c^2*d^6+36*a*d^7+4*b*d^7-12*c*d^7+26*d^8,a*b^5*c*d-19*c^2*d^6-39*a*d^7-26*b*d^7-4*c*d^7+10*d^8,a^2*b^4*c*d+38*c^2*d^6-6*a*d^7+6*b*d^7+41*c*d^7+49*d^8,a^3*b^3*c*d-34*c^2*d^6-42*a*d^7+22*b*d^7-26*c*d^7-13*d^8,a^4*b^2*c*d+14*c^2*d^6+40*a*d^7+39*b*d^7-34*d^8,a^5*b*c*d-8*c^2*d^6+45*a*d^7-35*b*d^7+48*c*d^7+47*d^8,a^6*c*d-6*c^2*d^6-24*a*d^7-2*b*d^7-9*c*d^7+7*d^8,b^7*d+34*c^2*d^6-14*a*d^7+46*b*d^7-50*c*d^7+26*d^8,a*b^6*d+6*c^2*d^6+23*a*d^7-27*b*d^7-25*c*d^7-2*d^8,c^8+43*c^2*d^6+11*b*d^7-39*c*d^7-30*d^8,b*c^7-44*c^2*d^6-4*a*d^7-10*b*d^7+31*c*d^7+42*d^8,a*c^7-6*a*d^7+31*b*d^7+37*c*d^7-41*d^8,b^2*c^6-11*c^2*d^6-35*a*d^7+32*b*d^7-25*c*d^7-21*d^8,a*b*c^6+2*c^2*d^6+43*a*d^7-48*b*d^7-49*c*d^7-19*d^8,a^2*c^6-20*c^2*d^6-11*a*d^7-35*b*d^7-33*c*d^7+28*d^8,b^3*c^5+4*c^2*d^6-7*a*d^7-21*b*d^7-14*c*d^7+48*d^8,a*b^2*c^5+17*c^2*d^6+45*a*d^7-32*b*d^7+29*c*d^7+38*d^8,a^2*b*c^5-13*c^2*d^6+46*a*d^7+4*b*d^7-18*c*d^7+19*d^8,a^3*c^5-23*c^2*d^6-a*d^7-3*b*d^7-15*c*d^7+19*d^8,b^4*c^4-50*c^2*d^6+39*a*d^7+49*b*d^7+47*c*d^7+7*d^8,a*b^3*c^4-33*c^2*d^6+10*a*d^7+32*b*d^7+21*c*d^7-39*d^8,a^2*b^2*c^4+23*c^2*d^6+27*a*d^7-17*b*d^7+29*c*d^7+9*d^8,a^3*b*c^4-47*c^2*d^6-43*a*d^7-47*b*d^7-34*c*d^7-23*d^8,a^4*c^4-6*c^2*d^6+7*a*d^7+38*b*d^7-27*c*d^7-9*d^8,b^5*c^3-47*c^2*d^6+18*a*d^7-44*b*d^7-4*c*d^7-18*d^8,a*b^4*c^3+30*c^2*d^6+36*a*d^7+25*b*d^7+42*c*d^7+d^8,a^2*b^3*c^3+10*c^2*d^6+31*a*d^7+45*b*d^7-44*c*d^7+37*d^8,a^3*b^2*c^3-41*c^2*d^6-15*a*d^7-34*b*d^7-22*c*d^7+28*d^8,a^4*b*c^3+19*c^2*d^6-23*a*d^7+18*b*d^7-13*c*d^7-48*d^8,a^5*c^3+16*c^2*d^6+22*a*d^7-31*b*d^7+33*c*d^7+15*d^8,b^6*c^2-42*c^2*d^6-10*a*d^7-16*b*d^7-46*c*d^7+42*d^8,a*b^5*c^2-23*c^2*d^6+34*a*d^7-37*b*d^7+2*c*d^7+10*d^8,a^2*b^4*c^2-45*c^2*d^6-5*a*d^7+43*b*d^7-18*c*d^7+7*d^8,a^3*b^3*c^2+36*c^2*d^6+19*a*d^7+21*b*d^7+46*c*d^7-24*d^8,a^4*b^2*c^2-17*c^2*d^6+30*a*d^7-39*b*d^7-39*c*d^7-24*d^8,a^5*b*c^2+10*c^2*d^6-24*a*d^7-36*b*d^7-14*c*d^7+26*d^8,a^6*c^2+47*c^2*d^6-41*a*d^7+32*b*d^7+6*c*d^7+42*d^8,b^7*c+44*c^2*d^6-6*a*d^7+5*b*d^7+20*c*d^7+50*d^8,a*b^6*c+29*c^2*d^6-16*a*d^7+45*b*d^7-3*c*d^7+14*d^8,b^8+48*c^2*d^6-40*a*d^7-44*b*d^7-10*c*d^7-23*d^8,a*b^7-32*c^2*d^6-41*a*d^7-11*b*d^7+50*c*d^7+13*d^8,d^9,c*d^8,b*d^8,a*d^8,c^2*d^7;
2809  TestSSresAttribs2tr(M, "AGR@101n3d010s010%3"); 
2810  kill AGR;
2811
2812  ring AGR = (101), (a,b,c,d,e,f,g,h), dp; AGR;
2813  // AGR@101n7d005s010%2, medium: <= 2
2814  ideal M =
2815f*h-g*h,e*h-g*h,d*h-g*h,c*h-g*h,b*h-g*h,a*h-g*h,e*g+48*f*g-49*g*h,d*g+5*f*g-6*g*h,c*g+49*f*g-50*g*h,b*g-7*f*g+6*g*h,a*g-50*f*g+49*g*h,e*f-20*f*g+19*g*h,d*f+40*f*g-41*g*h,c*f-12*f*g+11*g*h,b*f+45*f*g-46*g*h,a*f+4*f*g-5*g*h,d*e-f*g,c*e-30*f*g+29*g*h,b*e-39*f*g+38*g*h,a*e+10*f*g-11*g*h,c*d-41*f*g+40*g*h,b*d-23*f*g+22*g*h,a*d-20*f*g+19*g*h,b*c+17*f*g-18*g*h,a*c+6*f*g-7*g*h,a*b+28*f*g-29*g*h,g^2*h-g*h^2,f^2*g-8*f*g^2+7*g*h^2,g*h^4+50*h^5,g^5+41*h^5,f*g^4-18*h^5,f^5+29*h^5,e^5+6*h^5,d^5-23*h^5,c^5-32*h^5,
2816b^5+17*h^5,a^5+17*h^5,h^6;
2817  TestSSresAttribs2tr(M, "AGR@101n7d005s010%2");
2818  kill AGR;
2819
2820// from Andreas...tooo long!?
2821
2822  ring AGR = (101), (a,b,c,d,e), dp; AGR;
2823
2824  // AGR101n4d007s021%4
2825  ideal M = b^3*c*d-44*a*b*c^2*d-23*b^2*c^2*d-17*a*c^3*d+25*b*c^3*d-28*c^4*d+21*a^3*d^2+28*a^2*b*d^2+45*a*b^2*d^2-45*b^3*d^2+39*a^2*c*d^2+50*a*b*c*d^2-31*b^2*c*d^2+25*a*c^2*d^2-42*b*c^2*d^2-6*c^3*d^2+10*a^2*d^3-18*a*b*d^3-21*b^2*d^3-9*a*c*d^3+37*b*c*d^3-18*c^2*d^3+5*a*d^4+b*d^4-18*c*d^4+23*d^5-5*a^4*e+6*a^3*b*e-21*a^2*b^2*e-28*a*b^3*e+11*b^4*e+19*a^3*c*e+29*a^2*b*c*e-25*a*b^2*c*e-8*b^3*c*e+17*a^2*c^2*e+45*a*b*c^2*e-28*b^2*c^2*e+22*a*c^3*e+33*b*c^3*e+27*c^4*e-50*a^3*d*e+11*a^2*b*d*e-45*a*b^2*d*e-5*b^3*d*e-2*a^2*c*d*e-30*a*b*c*d*e-17*b^2*c*d*e-45*a*c^2*d*e+12*b*c^2*d*e-8*c^3*d*e+12*a^2*d^2*e+a*b*d^2*e-13*b^2*d^2*e-20*a*c*d^2*e+47*b*c*d^2*e-10*c^2*d^2*e+8*a*d^3*e+32*b*d^3*e-8*c*d^3*e+47*d^4*e+43*a^3*e^2+23*a^2*b*e^2+12*a*b^2*e^2+25*b^3*e^2-23*a^2*c*e^2-12*a*b*c*e^2+5*b^2*c*e^2-25*a*c^2*e^2-8*b*c^2*e^2-48*c^3*e^2+22*a^2*d*e^2+27*a*b*d*e^2-21*b^2*d*e^2+35*a*c*d*e^2-5*b*c*d*e^2+14*c^2*d*e^2+3*a*d^2*e^2-35*b*d^2*e^2+24*c*d^2*e^2-12*d^3*e^2-30*a^2*e^3+5*a*b*e^3-29*b^2*e^3-17*a*c*e^3-41*b*c*e^3-41*c^2*e^3-a*d*e^3-41*b*d*e^3+6*c*d*e^3+24*d^2*e^3+38*a*e^4+46*b*e^4+5*c*e^4-48*d*e^4-33*e^5,
2826a*b^2*c*d-8*a^2*c^2*d+35*a*b*c^2*d-9*b^2*c^2*d+41*a*c^3*d+11*b*c^3*d+36*c^4*d-36*a^3*d^2-11*a^2*b*d^2-45*a*b^2*d^2+20*b^3*d^2-38*a^2*c*d^2-21*a*b*c*d^2-26*b^2*c*d^2+26*a*c^2*d^2+45*b*c^2*d^2+2*c^3*d^2+35*a^2*d^3-15*a*b*d^3-30*b^2*d^3-37*a*c*d^3+3*b*c*d^3+29*c^2*d^3-39*a*d^4-13*b*d^4+42*c*d^4+50*d^5-47*a^4*e+a^3*b*e-10*a^2*b^2*e+10*a*b^3*e-19*b^4*e+47*a^3*c*e+29*a^2*b*c*e+33*a*b^2*c*e-7*b^3*c*e+29*a^2*c^2*e-2*b^2*c^2*e-19*a*c^3*e+16*b*c^3*e+44*c^4*e+47*a^3*d*e-14*a^2*b*d*e+48*a*b^2*d*e-21*b^3*d*e+13*a^2*c*d*e+4*a*b*c*d*e+20*b^2*c*d*e-3*a*c^2*d*e-34*b*c^2*d*e-2*c^3*d*e+10*a^2*d^2*e+38*a*b*d^2*e+18*b^2*d^2*e-a*c*d^2*e+24*b*c*d^2*e-11*c^2*d^2*e+24*a*d^3*e-10*b*d^3*e+15*c*d^3*e-44*d^4*e+6*a^3*e^2-7*a^2*b*e^2+30*a*b^2*e^2+25*b^3*e^2+40*a^2*c*e^2+33*a*b*c*e^2+26*b^2*c*e^2-2*a*c^2*e^2-2*b*c^2*e^2+32*c^3*e^2+31*a^2*d*e^2+50*a*b*d*e^2-5*b^2*d*e^2-43*a*c*d*e^2+37*b*c*d*e^2-16*c^2*d*e^2+39*a*d^2*e^2+15*b*d^2*e^2+35*c*d^2*e^2-47*d^3*e^2+38*a^2*e^3+7*a*b*e^3+16*b^2*e^3+43*a*c*e^3+23*b*c*e^3+9*c^2*e^3+37*a*d*e^3-18*b*d*e^3+32*c*d*e^3-2*d^2*e^3-31*a*e^4+18*b*e^4-35*c*e^4+9*d*e^4-49*e^5,
2827a^2*b*c*d+7*a^2*c^2*d-15*a*b*c^2*d+20*b^2*c^2*d+8*a*c^3*d-14*b*c^3*d+34*c^4*d+15*a^3*d^2+37*a^2*b*d^2-11*a*b^2*d^2-8*b^3*d^2-15*a^2*c*d^2-22*a*b*c*d^2-30*b^2*c*d^2+23*a*c^2*d^2+34*b*c^2*d^2+41*c^3*d^2-27*a^2*d^3+24*b^2*d^3-15*a*c*d^3+20*b*c*d^3-16*c^2*d^3-31*a*d^4+18*b*d^4-21*c*d^4+19*d^5+20*a^4*e+38*a^3*b*e-7*a^2*b^2*e+8*a*b^3*e-35*b^4*e+30*a^3*c*e-13*a^2*b*c*e+39*a*b^2*c*e-50*b^3*c*e+50*a^2*c^2*e-21*a*b*c^2*e+17*b^2*c^2*e-23*a*c^3*e+32*b*c^3*e-43*c^4*e-39*a^3*d*e+16*a^2*b*d*e+25*a*b^2*d*e-12*b^3*d*e+50*a^2*c*d*e+4*a*b*c*d*e-17*b^2*c*d*e-28*a*c^2*d*e-5*b*c^2*d*e+13*c^3*d*e+23*a^2*d^2*e+17*a*b*d^2*e+14*b^2*d^2*e-2*a*c*d^2*e+3*b*c*d^2*e+20*c^2*d^2*e-14*a*d^3*e+5*b*d^3*e-c*d^3*e+29*d^4*e-42*a^3*e^2-38*a^2*b*e^2-44*a*b^2*e^2-4*b^3*e^2+29*a^2*c*e^2-19*a*b*c*e^2+38*b^2*c*e^2+3*a*c^2*e^2-46*b*c^2*e^2-46*c^3*e^2-44*a^2*d*e^2+16*a*b*d*e^2-38*b^2*d*e^2+12*a*c*d*e^2+45*b*c*d*e^2-48*c^2*d*e^2+34*a*d^2*e^2+32*b*d^2*e^2+37*c*d^2*e^2+34*d^3*e^2+30*a^2*e^3+45*a*b*e^3+8*b^2*e^3+40*a*c*e^3-37*b*c*e^3-16*c^2*e^3-50*a*d*e^3-18*b*d*e^3-9*c*d*e^3-37*a*e^4-22*b*e^4+5*c*e^4+d*e^4+9*e^5,
2828a^3*c*d-44*a^2*c^2*d-38*a*b*c^2*d-26*b^2*c^2*d-12*a*c^3*d-21*b*c^3*d+43*c^4*d-22*a^3*d^2-23*a^2*b*d^2+32*a*b^2*d^2+45*b^3*d^2-48*a^2*c*d^2-40*a*b*c*d^2+3*b^2*c*d^2+2*a*c^2*d^2-27*b*c^2*d^2-35*c^3*d^2+33*a^2*d^3-11*a*b*d^3-5*b^2*d^3+8*a*c*d^3-42*b*c*d^3+41*c^2*d^3-41*b*d^4+29*c*d^4+5*d^5+32*a^4*e-46*a^3*b*e-46*a^2*b^2*e+19*a*b^3*e-14*b^4*e-24*a^3*c*e+3*a^2*b*c*e-22*a*b^2*c*e+49*b^3*c*e-47*a^2*c^2*e+27*a*b*c^2*e+48*b^2*c^2*e+20*a*c^3*e-3*b*c^3*e-11*c^4*e-21*a^3*d*e+a^2*b*d*e-13*a*b^2*d*e-33*b^3*d*e+13*a^2*c*d*e-3*a*b*c*d*e+15*b^2*c*d*e+35*a*c^2*d*e-20*b*c^2*d*e+45*c^3*d*e-14*a^2*d^2*e+11*a*b*d^2*e-38*b^2*d^2*e+40*a*c*d^2*e-30*b*c*d^2*e+14*c^2*d^2*e-26*a*d^3*e-43*b*d^3*e+38*c*d^3*e-24*d^4*e-10*a^3*e^2-31*a^2*b*e^2+a*b^2*e^2-34*b^3*e^2+5*a^2*c*e^2-12*a*b*c*e^2-6*b^2*c*e^2-30*a*c^2*e^2-b*c^2*e^2+31*c^3*e^2+22*a^2*d*e^2-26*a*b*d*e^2+9*b^2*d*e^2+32*a*c*d*e^2+24*b*c*d*e^2-36*c^2*d*e^2-a*d^2*e^2-14*b*d^2*e^2-24*c*d^2*e^2+7*d^3*e^2+38*a^2*e^3+35*a*b*e^3+16*b^2*e^3+25*a*c*e^3-30*b*c*e^3+30*c^2*e^3-25*a*d*e^3+3*b*d*e^3+40*c*d*e^3+16*d^2*e^3+45*a*e^4+15*b*e^4-12*c*e^4+42*d*e^4+7*e^5,
2829b^4*d+14*a^2*c^2*d+2*a*b*c^2*d+34*b^2*c^2*d-12*a*c^3*d+20*b*c^3*d-20*c^4*d+4*a^3*d^2-47*a^2*b*d^2-34*a*b^2*d^2-22*b^3*d^2+23*a^2*c*d^2-22*a*b*c*d^2-31*b^2*c*d^2-24*a*c^2*d^2+39*b*c^2*d^2-37*c^3*d^2-39*a^2*d^3-49*a*b*d^3-41*b^2*d^3-44*a*c*d^3+33*b*c*d^3-14*c^2*d^3-49*a*d^4+20*b*d^4+37*c*d^4+34*d^5+50*a^4*e-31*a^3*b*e-18*a^2*b^2*e-16*a*b^3*e+45*b^4*e+32*a^3*c*e+43*a^2*b*c*e-27*a*b^2*c*e+5*b^3*c*e+39*a^2*c^2*e+33*a*b*c^2*e-16*b^2*c^2*e-6*a*c^3*e-35*b*c^3*e-4*c^4*e-19*a^3*d*e+25*a^2*b*d*e-20*a*b^2*d*e+6*b^3*d*e-46*a^2*c*d*e-8*a*b*c*d*e+5*b^2*c*d*e+2*a*c^2*d*e-39*b*c^2*d*e-30*c^3*d*e+50*a^2*d^2*e-3*a*b*d^2*e-22*b^2*d^2*e+42*a*c*d^2*e-9*b*c*d^2*e+17*c^2*d^2*e+33*a*d^3*e+29*b*d^3*e-10*c*d^3*e+5*d^4*e+15*a^3*e^2+12*a^2*b*e^2-12*a*b^2*e^2+17*b^3*e^2+26*a^2*c*e^2+23*a*b*c*e^2+4*b^2*c*e^2-8*a*c^2*e^2+49*b*c^2*e^2-25*c^3*e^2-24*a^2*d*e^2-19*a*b*d*e^2+26*b^2*d*e^2+38*a*c*d*e^2+48*b*c*d*e^2-28*c^2*d*e^2-15*a*d^2*e^2+31*b*d^2*e^2-47*c*d^2*e^2-5*d^3*e^2-28*a^2*e^3+46*a*b*e^3-25*b^2*e^3-25*a*c*e^3-42*b*c*e^3-39*c^2*e^3-22*a*d*e^3+7*b*d*e^3+4*c*d*e^3-9*d^2*e^3+50*a*e^4-39*b*e^4+44*c*e^4+28*d*e^4+36*e^5,
2830a*b^3*d-32*a^2*c^2*d-43*a*b*c^2*d-38*b^2*c^2*d-33*a*c^3*d-34*b*c^3*d+15*c^4*d-10*a^3*d^2+20*a^2*b*d^2+23*a*b^2*d^2-6*b^3*d^2-46*a^2*c*d^2-29*a*b*c*d^2-20*b^2*c*d^2+17*a*c^2*d^2-42*b*c^2*d^2+27*c^3*d^2-15*a^2*d^3-27*a*b*d^3+43*b^2*d^3-a*c*d^3+45*b*c*d^3+7*c^2*d^3+4*a*d^4-5*b*d^4-13*c*d^4-26*d^5-24*a^4*e-5*a^2*b^2*e-27*a*b^3*e-23*b^4*e+9*a^3*c*e+33*a^2*b*c*e+25*a*b^2*c*e+39*b^3*c*e-30*a^2*c^2*e-33*a*b*c^2*e-37*b^2*c^2*e-13*a*c^3*e+49*b*c^3*e-30*c^4*e+8*a^3*d*e+20*a^2*b*d*e+18*a*b^2*d*e-34*b^3*d*e-19*a^2*c*d*e+39*a*b*c*d*e+21*b^2*c*d*e+12*a*c^2*d*e-15*b*c^2*d*e+39*c^3*d*e+34*a^2*d^2*e+49*a*b*d^2*e-10*b^2*d^2*e-46*a*c*d^2*e+18*b*c*d^2*e-6*c^2*d^2*e+9*a*d^3*e+30*b*d^3*e+20*c*d^3*e+3*d^4*e-15*a^3*e^2-18*a^2*b*e^2+5*a*b^2*e^2+14*b^3*e^2+19*a^2*c*e^2+30*a*b*c*e^2-b^2*c*e^2+33*a*c^2*e^2+41*b*c^2*e^2-7*c^3*e^2+12*a^2*d*e^2-13*a*b*d*e^2-3*b^2*d*e^2-49*a*c*d*e^2-17*b*c*d*e^2+29*c^2*d*e^2-19*a*d^2*e^2-38*b*d^2*e^2-10*c*d^2*e^2+50*d^3*e^2-17*a^2*e^3+47*a*b*e^3-7*b^2*e^3-25*a*c*e^3+29*b*c*e^3-41*c^2*e^3-35*a*d*e^3+b*d*e^3+32*c*d*e^3-15*d^2*e^3+9*a*e^4+22*c*e^4+12*d*e^4+36*e^5,
2831a^2*b^2*d-a^2*c^2*d-5*a*b*c^2*d+40*b^2*c^2*d+4*a*c^3*d+35*b*c^3*d+42*c^4*d-23*a^3*d^2-34*a^2*b*d^2+4*a*b^2*d^2+27*b^3*d^2+38*a^2*c*d^2-47*a*b*c*d^2+50*b^2*c*d^2+17*a*c^2*d^2+8*c^3*d^2+26*a^2*d^3-32*a*b*d^3+3*b^2*d^3+16*a*c*d^3-47*b*c*d^3-41*c^2*d^3-22*a*d^4-47*b*d^4-17*c*d^4-43*d^5-49*a^4*e+6*a^3*b*e-46*a^2*b^2*e+30*a*b^3*e-21*b^4*e+30*a^3*c*e+17*a^2*b*c*e+39*a*b^2*c*e+37*b^3*c*e+36*a^2*c^2*e+21*a*b*c^2*e-36*b^2*c^2*e-2*a*c^3*e+18*b*c^3*e-49*c^4*e-47*a^3*d*e+35*a^2*b*d*e+10*a*b^2*d*e+22*b^3*d*e-10*a^2*c*d*e-24*a*b*c*d*e-43*b^2*c*d*e-11*a*c^2*d*e+39*b*c^2*d*e+14*c^3*d*e-15*a^2*d^2*e+36*a*b*d^2*e+42*b^2*d^2*e+32*a*c*d^2*e+7*b*c*d^2*e-4*c^2*d^2*e-13*a*d^3*e+39*b*d^3*e+20*c*d^3*e+7*d^4*e+49*a^3*e^2+39*a^2*b*e^2-12*a*b^2*e^2+36*b^3*e^2+12*a^2*c*e^2-45*a*b*c*e^2+47*b^2*c*e^2+16*a*c^2*e^2+21*b*c^2*e^2+2*c^3*e^2+43*a^2*d*e^2+16*a*b*d*e^2+15*b^2*d*e^2+44*a*c*d*e^2+47*b*c*d*e^2+6*c^2*d*e^2+29*a*d^2*e^2-10*b*d^2*e^2-14*c*d^2*e^2+40*d^3*e^2+10*a^2*e^3-2*a*b*e^3-12*b^2*e^3-11*a*c*e^3+4*b*c*e^3+c^2*e^3-41*a*d*e^3-33*b*d*e^3+13*c*d*e^3+32*d^2*e^3-43*a*e^4+42*b*e^4-4*c*e^4-36*d*e^4,
2832a^3*b*d-15*a^2*c^2*d-32*a*b*c^2*d+24*b^2*c^2*d+48*a*c^3*d+6*b*c^3*d-40*a^3*d^2+34*a^2*b*d^2+29*a*b^2*d^2+18*b^3*d^2-17*a^2*c*d^2+34*a*b*c*d^2+5*b^2*c*d^2-31*a*c^2*d^2-29*b*c^2*d^2-12*c^3*d^2+11*a^2*d^3+8*a*b*d^3+3*b^2*d^3-33*a*c*d^3-34*b*c*d^3-12*c^2*d^3-48*a*d^4+18*b*d^4+41*c*d^4-45*d^5-22*a^4*e+a^3*b*e-25*a^2*b^2*e+3*a*b^3*e+49*b^4*e-27*a^3*c*e-42*a^2*b*c*e+2*a*b^2*c*e+3*b^3*c*e-40*a^2*c^2*e-30*a*b*c^2*e+2*b^2*c^2*e-14*a*c^3*e-6*b*c^3*e+22*c^4*e-16*a^3*d*e+32*a^2*b*d*e-2*a*b^2*d*e-27*b^3*d*e+16*a^2*c*d*e+42*a*b*c*d*e-6*b^2*c*d*e-46*a*c^2*d*e-9*b*c^2*d*e+31*c^3*d*e-23*a^2*d^2*e-a*b*d^2*e+22*b^2*d^2*e+29*a*c*d^2*e+22*b*c*d^2*e-28*c^2*d^2*e-32*a*d^3*e-10*b*d^3*e-10*c*d^3*e+19*d^4*e-41*a^3*e^2+27*a^2*b*e^2+44*a*b^2*e^2-32*b^3*e^2-24*a^2*c*e^2-6*a*b*c*e^2-25*b^2*c*e^2+29*a*c^2*e^2+19*b*c^2*e^2-47*c^3*e^2+20*a^2*d*e^2-3*a*b*d*e^2+43*b^2*d*e^2-14*a*c*d*e^2+2*b*c*d*e^2-37*c^2*d*e^2-24*a*d^2*e^2-19*b*d^2*e^2+30*c*d^2*e^2+29*d^3*e^2-a^2*e^3-6*a*b*e^3-18*b^2*e^3-48*a*c*e^3+13*b*c*e^3+40*c^2*e^3-48*a*d*e^3-45*b*d*e^3-23*c*d*e^3-6*d^2*e^3+4*a*e^4+12*b*e^4+36*c*e^4+32*d*e^4-20*e^5,
2833a^4*d+17*a^2*c^2*d-6*a*b*c^2*d-16*b^2*c^2*d-8*a*c^3*d+12*b*c^3*d+31*c^4*d-2*a^3*d^2+45*a^2*b*d^2+29*a*b^2*d^2-47*b^3*d^2+17*a^2*c*d^2-28*a*b*c*d^2-12*b^2*c*d^2-49*a*c^2*d^2-34*b*c^2*d^2-49*c^3*d^2-13*a^2*d^3+12*a*b*d^3-50*b^2*d^3-27*a*c*d^3+17*b*c*d^3+26*c^2*d^3-40*a*d^4+37*b*d^4+31*c*d^4+42*d^5-3*a^4*e+40*a^3*b*e+39*a^2*b^2*e-35*a*b^3*e+2*b^4*e-47*a^3*c*e-45*a^2*b*c*e-24*a*b^2*c*e-20*b^3*c*e+a^2*c^2*e-3*a*b*c^2*e+8*b^2*c^2*e-42*a*c^3*e-49*b*c^3*e-49*c^4*e+42*a^3*d*e+25*a^2*b*d*e+45*a*b^2*d*e+35*b^3*d*e+43*a^2*c*d*e-18*a*b*c*d*e+24*b^2*c*d*e-2*a*c^2*d*e-43*b*c^2*d*e+16*c^3*d*e-44*a^2*d^2*e+31*a*b*d^2*e+17*b^2*d^2*e-36*a*c*d^2*e+25*b*c*d^2*e-20*c^2*d^2*e+17*a*d^3*e-39*b*d^3*e-37*c*d^3*e+10*d^4*e-30*a^3*e^2+34*a^2*b*e^2-43*a*b^2*e^2-2*b^3*e^2-48*a^2*c*e^2+32*a*b*c*e^2+47*b^2*c*e^2+34*a*c^2*e^2-32*b*c^2*e^2+4*c^3*e^2-26*a^2*d*e^2+22*a*b*d*e^2+23*b^2*d*e^2-37*a*c*d*e^2+26*b*c*d*e^2-33*c^2*d*e^2-5*a*d^2*e^2+15*b*d^2*e^2+19*c*d^2*e^2-31*d^3*e^2+42*a^2*e^3+27*a*b*e^3+30*b^2*e^3+22*a*c*e^3-49*b*c*e^3-19*c^2*e^3+42*a*d*e^3+5*b*d*e^3+32*c*d*e^3+9*d^2*e^3-17*a*e^4-46*b*e^4+23*c*e^4-32*d*e^4-2*e^5,
2834c^5+40*a^2*c^2*d+34*a*b*c^2*d-16*b^2*c^2*d+9*a*c^3*d-13*b*c^3*d+30*c^4*d+18*a^3*d^2+27*a^2*b*d^2+37*a*b^2*d^2-30*b^3*d^2-38*a^2*c*d^2-40*a*b*c*d^2-10*b^2*c*d^2-28*a*c^2*d^2-26*b*c^2*d^2+15*c^3*d^2-7*a^2*d^3+2*a*b*d^3+28*b^2*d^3+27*a*c*d^3+11*b*c*d^3-9*c^2*d^3-18*a*d^4+39*b*d^4+8*c*d^4+20*d^5+34*a^4*e+27*a^3*b*e+10*a^2*b^2*e-10*a*b^3*e+15*b^4*e+a^3*c*e+16*a^2*b*c*e+47*a*b^2*c*e-50*b^3*c*e-45*a^2*c^2*e-47*a*b*c^2*e-38*b^2*c^2*e+49*a*c^3*e+11*b*c^3*e-8*c^4*e-24*a^3*d*e+41*a^2*b*d*e+31*a*b^2*d*e-31*b^3*d*e-44*a^2*c*d*e-a*b*c*d*e-15*b^2*c*d*e-27*a*c^2*d*e-50*b*c^2*d*e+29*c^3*d*e+30*a^2*d^2*e+41*a*b*d^2*e-31*b^2*d^2*e-40*a*c*d^2*e+14*b*c*d^2*e-18*c^2*d^2*e+4*a*d^3*e-27*b*d^3*e-36*c*d^3*e-26*d^4*e-2*a^3*e^2+39*a^2*b*e^2-17*a*b^2*e^2-b^3*e^2+24*a^2*c*e^2-6*a*b*c*e^2-12*b^2*c*e^2+38*a*c^2*e^2+6*b*c^2*e^2+38*c^3*e^2+15*a^2*d*e^2-2*a*b*d*e^2-22*b^2*d*e^2+30*a*c*d*e^2+50*b*c*d*e^2-37*c^2*d*e^2+2*a*d^2*e^2+27*b*d^2*e^2+2*c*d^2*e^2+19*d^3*e^2+48*a^2*e^3+24*a*b*e^3+49*b^2*e^3-35*a*c*e^3+49*b*c*e^3+2*c^2*e^3+20*a*d*e^3+34*b*d*e^3-50*c*d*e^3-41*d^2*e^3+48*a*e^4-24*b*e^4-14*c*e^4+32*d*e^4-11*e^5,
2835b*c^4+9*a^2*c^2*d-47*a*b*c^2*d-29*b^2*c^2*d+24*a*c^3*d-19*b*c^3*d-25*c^4*d+50*a^3*d^2-6*a^2*b*d^2-32*a*b^2*d^2-43*b^3*d^2+42*a^2*c*d^2-16*a*b*c*d^2-40*b^2*c*d^2+3*a*c^2*d^2+9*b*c^2*d^2+34*c^3*d^2-48*a^2*d^3-8*a*b*d^3-22*b^2*d^3+42*a*c*d^3+25*b*c*d^3-31*c^2*d^3-12*a*d^4+25*b*d^4+c*d^4+13*d^5-26*a^4*e+2*a^3*b*e-37*a^2*b^2*e+23*a*b^3*e+25*b^4*e+43*a^3*c*e-10*a^2*b*c*e+16*a*b^2*c*e-24*b^3*c*e+43*a^2*c^2*e-25*a*b*c^2*e+39*b^2*c^2*e+31*a*c^3*e-21*b*c^3*e+16*c^4*e+17*a^3*d*e-33*a^2*b*d*e+34*a*b^2*d*e-16*b^3*d*e+49*a^2*c*d*e+10*a*b*c*d*e-14*b^2*c*d*e+6*a*c^2*d*e+32*b*c^2*d*e-25*c^3*d*e-16*a^2*d^2*e-26*a*b*d^2*e+36*b^2*d^2*e+41*a*c*d^2*e-43*b*c*d^2*e-44*c^2*d^2*e+24*a*d^3*e+12*b*d^3*e-40*c*d^3*e+46*d^4*e-18*a^3*e^2+36*a^2*b*e^2-49*a*b^2*e^2+47*b^3*e^2-30*a^2*c*e^2+11*a*b*c*e^2-17*b^2*c*e^2-19*a*c^2*e^2-33*b*c^2*e^2+4*c^3*e^2-14*a^2*d*e^2-13*a*b*d*e^2-4*b^2*d*e^2-a*c*d*e^2+22*b*c*d*e^2-41*c^2*d*e^2+50*a*d^2*e^2+24*b*d^2*e^2-29*c*d^2*e^2-9*d^3*e^2+10*a^2*e^3+44*a*b*e^3+11*b^2*e^3+25*a*c*e^3+31*b*c*e^3+22*c^2*e^3+a*d*e^3-6*c*d*e^3+26*d^2*e^3-40*a*e^4+31*b*e^4-50*c*e^4+9*d*e^4+39*e^5,
2836a*c^4-47*a^2*c^2*d+40*a*b*c^2*d-8*b^2*c^2*d+3*a*c^3*d-3*b*c^3*d+38*c^4*d-13*a^3*d^2+3*a^2*b*d^2+19*a*b^2*d^2+24*b^3*d^2-27*a^2*c*d^2-12*a*b*c*d^2-45*b^2*c*d^2+28*a*c^2*d^2+35*b*c^2*d^2-28*c^3*d^2+7*a^2*d^3+3*a*b*d^3-34*b^2*d^3+15*a*c*d^3+36*b*c*d^3-18*c^2*d^3-49*a*d^4+44*b*d^4+c*d^4-10*d^5+31*a^4*e-18*a^3*b*e+7*a^2*b^2*e+38*a*b^3*e+37*b^4*e+18*a^3*c*e-50*a^2*b*c*e+12*a*b^2*c*e+43*b^3*c*e+33*a^2*c^2*e+13*a*b*c^2*e+13*b^2*c^2*e-4*a*c^3*e+13*b*c^3*e+20*c^4*e-32*a^3*d*e-36*a^2*b*d*e+47*a*b^2*d*e+43*b^3*d*e-13*a^2*c*d*e-27*a*b*c*d*e+7*b^2*c*d*e-40*a*c^2*d*e-30*b*c^2*d*e+21*c^3*d*e-18*a^2*d^2*e-32*a*b*d^2*e-20*b^2*d^2*e-47*a*c*d^2*e+34*b*c*d^2*e-3*c^2*d^2*e-22*a*d^3*e-29*b*d^3*e-47*c*d^3*e-33*d^4*e-3*a^3*e^2+46*a^2*b*e^2-42*a*b^2*e^2+6*b^3*e^2+16*a^2*c*e^2-9*a*b*c*e^2-35*b^2*c*e^2-24*b*c^2*e^2-5*c^3*e^2+18*a^2*d*e^2+43*a*b*d*e^2-43*b^2*d*e^2+6*a*c*d*e^2+8*b*c*d*e^2-33*c^2*d*e^2-26*a*d^2*e^2+31*b*d^2*e^2-29*c*d^2*e^2+d^3*e^2+45*a^2*e^3+45*a*b*e^3-31*b^2*e^3-26*a*c*e^3+35*b*c*e^3+30*c^2*e^3-33*a*d*e^3-4*b*d*e^3+34*c*d*e^3+21*d^2*e^3+41*a*e^4-14*b*e^4-32*c*e^4-19*d*e^4+29*e^5,
2837b^2*c^3+10*a^2*c^2*d+20*a*b*c^2*d+36*b^2*c^2*d-7*a*c^3*d+13*b*c^3*d+42*c^4*d-6*a^3*d^2+13*a^2*b*d^2+31*a*b^2*d^2-29*b^3*d^2+44*a^2*c*d^2-20*a*b*c*d^2+27*b^2*c*d^2+17*a*c^2*d^2-7*b*c^2*d^2-18*c^3*d^2-44*a^2*d^3-35*a*b*d^3-11*b^2*d^3-28*a*c*d^3+b*c*d^3+22*c^2*d^3-13*a*d^4-32*b*d^4-33*c*d^4-48*d^5-16*a^4*e+7*a^3*b*e-40*a^2*b^2*e-47*a*b^3*e+20*b^4*e-41*a^3*c*e+50*a^2*b*c*e-35*a*b^2*c*e+44*b^3*c*e-43*a^2*c^2*e+15*a*b*c^2*e-33*b^2*c^2*e-38*a*c^3*e-16*b*c^3*e+11*c^4*e+46*a^3*d*e+32*a^2*b*d*e+3*a*b^2*d*e+39*b^3*d*e-32*a^2*c*d*e-19*a*b*c*d*e+23*b^2*c*d*e-2*a*c^2*d*e-44*b*c^2*d*e-44*c^3*d*e+18*a^2*d^2*e+31*a*b*d^2*e+16*b^2*d^2*e+a*c*d^2*e+45*b*c*d^2*e-18*c^2*d^2*e+22*a*d^3*e+16*b*d^3*e+2*c*d^3*e+48*d^4*e-32*a^3*e^2+49*a^2*b*e^2-3*a*b^2*e^2+30*b^3*e^2+31*a^2*c*e^2+28*a*b*c*e^2-4*b^2*c*e^2+7*a*c^2*e^2+48*b*c^2*e^2+40*c^3*e^2-a^2*d*e^2+19*a*b*d*e^2+40*b^2*d*e^2-3*a*c*d*e^2+9*b*c*d*e^2+21*c^2*d*e^2+28*a*d^2*e^2+49*b*d^2*e^2+19*c*d^2*e^2+41*d^3*e^2-30*a^2*e^3-30*a*b*e^3+5*b^2*e^3-2*a*c*e^3+17*b*c*e^3-16*c^2*e^3+42*b*d*e^3-22*c*d*e^3+34*d^2*e^3+20*a*e^4+42*b*e^4+8*c*e^4+36*d*e^4-25*e^5,
2838a*b*c^3-48*a^2*c^2*d-19*a*b*c^2*d+46*b^2*c^2*d-49*a*c^3*d-43*b*c^3*d+c^4*d-12*a^3*d^2+28*a^2*b*d^2+11*a*b^2*d^2+13*b^3*d^2+36*a^2*c*d^2+20*a*b*c*d^2+8*b^2*c*d^2-5*a*c^2*d^2+44*b*c^2*d^2-50*c^3*d^2+34*a^2*d^3+a*b*d^3-25*b^2*d^3+5*a*c*d^3-47*b*c*d^3-4*c^2*d^3-33*a*d^4-29*b*d^4+34*c*d^4+d^5-15*a^4*e+50*a^3*b*e+14*a^2*b^2*e+15*a*b^3*e+34*b^4*e+9*a^3*c*e+38*a^2*b*c*e+12*a*b^2*c*e+21*b^3*c*e+18*a^2*c^2*e+37*a*b*c^2*e-16*b^2*c^2*e+13*a*c^3*e+47*b*c^3*e-41*c^4*e-29*a^3*d*e-45*a^2*b*d*e+3*a*b^2*d*e+44*b^3*d*e-31*a^2*c*d*e-8*a*b*c*d*e-5*b^2*c*d*e-22*a*c^2*d*e-6*b*c^2*d*e+3*c^3*d*e-43*a^2*d^2*e-45*a*b*d^2*e-24*b^2*d^2*e+15*a*c*d^2*e+15*b*c*d^2*e+7*c^2*d^2*e-17*a*d^3*e-8*b*d^3*e-31*c*d^3*e+19*d^4*e-41*a^3*e^2-25*a^2*b*e^2-11*a*b^2*e^2-4*b^3*e^2-25*a^2*c*e^2-32*a*b*c*e^2-42*b^2*c*e^2-46*a*c^2*e^2-41*b*c^2*e^2-36*c^3*e^2+40*a^2*d*e^2-43*a*b*d*e^2+35*b^2*d*e^2+2*a*c*d*e^2-28*b*c*d*e^2-43*c^2*d*e^2+21*a*d^2*e^2+8*b*d^2*e^2-42*c*d^2*e^2+50*d^3*e^2+48*a^2*e^3-25*a*b*e^3+22*b^2*e^3-3*a*c*e^3-42*b*c*e^3+22*c^2*e^3-5*a*d*e^3-35*b*d*e^3+36*c*d*e^3-34*d^2*e^3+14*a*e^4+34*b*e^4+23*c*e^4-35*d*e^4+46*e^5,
2839a^2*c^3-17*a^2*c^2*d-7*a*b*c^2*d+15*b^2*c^2*d+35*a*c^3*d-36*b*c^3*d-19*c^4*d+20*a^3*d^2-39*a^2*b*d^2-3*a*b^2*d^2-2*b^3*d^2+8*a^2*c*d^2+13*a*b*c*d^2-20*b^2*c*d^2+6*a*c^2*d^2-48*b*c^2*d^2-21*c^3*d^2+46*a^2*d^3+39*a*b*d^3+32*b^2*d^3-2*a*c*d^3+47*b*c*d^3+16*c^2*d^3+20*a*d^4-36*b*d^4-12*c*d^4+28*d^5+24*a^4*e+17*a^3*b*e-21*a^2*b^2*e+31*a*b^3*e+24*b^4*e-45*a^3*c*e+34*a^2*b*c*e+3*a*b^2*c*e+34*b^3*c*e+39*a^2*c^2*e+12*a*b*c^2*e+18*b^2*c^2*e+19*a*c^3*e-13*b*c^3*e+7*c^4*e+16*a^3*d*e-4*a^2*b*d*e+35*a*b^2*d*e+20*b^3*d*e+38*a^2*c*d*e-41*a*b*c*d*e+49*b^2*c*d*e+7*a*c^2*d*e+39*b*c^2*d*e+15*c^3*d*e+32*a^2*d^2*e+35*a*b*d^2*e-36*b^2*d^2*e+11*a*c*d^2*e+11*b*c*d^2*e-26*c^2*d^2*e+2*a*d^3*e-30*b*d^3*e-2*c*d^3*e+5*d^4*e-2*a^3*e^2-45*a^2*b*e^2-10*a*b^2*e^2-42*b^3*e^2+13*a^2*c*e^2+38*a*b*c*e^2+22*b^2*c*e^2+42*a*c^2*e^2+16*b*c^2*e^2+40*c^3*e^2-19*a^2*d*e^2-35*a*b*d*e^2-24*b^2*d*e^2+33*a*c*d*e^2-48*b*c*d*e^2-6*a*d^2*e^2+2*b*d^2*e^2-31*c*d^2*e^2-5*d^3*e^2+45*a^2*e^3+17*a*b*e^3+50*b^2*e^3-18*a*c*e^3+3*b*c*e^3+32*c^2*e^3+34*a*d*e^3-39*b*d*e^3-35*c*d*e^3+22*d^2*e^3-40*a*e^4+43*b*e^4+48*c*e^4-42*d*e^4+8*e^5,
2840b^3*c^2+2*a^2*c^2*d-42*a*b*c^2*d-42*b^2*c^2*d+22*a*c^3*d-28*b*c^3*d-24*c^4*d-24*a^3*d^2+40*a^2*b*d^2-7*a*b^2*d^2+31*b^3*d^2+13*a^2*c*d^2+33*a*b*c*d^2+6*b^2*c*d^2+40*a*c^2*d^2+37*b*c^2*d^2+40*c^3*d^2-12*a^2*d^3+26*a*b*d^3+23*b^2*d^3+44*a*c*d^3+13*b*c*d^3-24*c^2*d^3+31*a*d^4+44*b*d^4+32*c*d^4+48*d^5+42*a^4*e+2*a^3*b*e-25*a^2*b^2*e-27*a*b^3*e-21*b^4*e+44*a^3*c*e+50*a^2*b*c*e+42*a*b^2*c*e+28*b^3*c*e+28*a^2*c^2*e+20*a*b*c^2*e+11*b^2*c^2*e-25*a*c^3*e+35*b*c^3*e+11*c^4*e+13*a^3*d*e+13*a^2*b*d*e-33*a*b^2*d*e+26*b^3*d*e+10*a^2*c*d*e-47*a*b*c*d*e+44*b^2*c*d*e-50*a*c^2*d*e+6*b*c^2*d*e+38*c^3*d*e-43*a^2*d^2*e-43*a*b*d^2*e+50*b^2*d^2*e-36*a*c*d^2*e+39*b*c*d^2*e+4*c^2*d^2*e+26*a*d^3*e+6*b*d^3*e-30*c*d^3*e-21*d^4*e+16*a^3*e^2-19*a^2*b*e^2+43*a*b^2*e^2-b^3*e^2-9*a^2*c*e^2-3*a*b*c*e^2-44*b^2*c*e^2-34*a*c^2*e^2-24*b*c^2*e^2+15*c^3*e^2+47*a^2*d*e^2-45*a*b*d*e^2-22*b^2*d*e^2-21*a*c*d*e^2+36*b*c*d*e^2+c^2*d*e^2-13*a*d^2*e^2+47*b*d^2*e^2-12*c*d^2*e^2+16*d^3*e^2-30*a^2*e^3-49*a*b*e^3+40*b^2*e^3+46*a*c*e^3-25*b*c*e^3-38*c^2*e^3-30*a*d*e^3-27*b*d*e^3+47*c*d*e^3+37*d^2*e^3+49*a*e^4+6*b*e^4-6*c*e^4+43*d*e^4+5*e^5,
2841a*b^2*c^2-9*a^2*c^2*d+49*a*b*c^2*d+17*b^2*c^2*d-45*a*c^3*d+27*b*c^3*d-8*c^4*d-25*a^3*d^2-23*a^2*b*d^2+47*a*b^2*d^2+8*b^3*d^2+20*a^2*c*d^2+37*a*b*c*d^2+28*b^2*c*d^2+8*a*c^2*d^2+36*b*c^2*d^2+34*c^3*d^2+37*a^2*d^3+23*a*b*d^3+11*b^2*d^3-46*a*c*d^3+45*b*c*d^3-16*c^2*d^3-27*a*d^4-39*b*d^4+31*c*d^4-24*d^5+42*a^4*e-30*a^3*b*e+12*a^2*b^2*e-18*a*b^3*e+8*b^4*e-33*a^3*c*e+21*a^2*b*c*e-9*a*b^2*c*e+10*b^3*c*e+11*a^2*c^2*e-33*a*b*c^2*e-27*b^2*c^2*e+47*a*c^3*e-35*b*c^3*e+15*c^4*e-19*a^3*d*e+20*a^2*b*d*e+41*a*b^2*d*e+39*b^3*d*e+24*a^2*c*d*e-12*a*b*c*d*e-16*b^2*c*d*e+38*a*c^2*d*e-43*b*c^2*d*e+39*c^3*d*e-14*a^2*d^2*e+39*a*b*d^2*e+24*b^2*d^2*e-35*a*c*d^2*e-8*b*c*d^2*e-26*c^2*d^2*e-5*a*d^3*e+34*b*d^3*e+16*c*d^3*e+35*d^4*e-a^3*e^2+44*a^2*b*e^2+33*a*b^2*e^2+41*b^3*e^2+26*a^2*c*e^2-6*a*b*c*e^2-15*b^2*c*e^2-46*a*c^2*e^2-37*b*c^2*e^2-49*c^3*e^2-6*a^2*d*e^2+20*a*b*d*e^2-7*b^2*d*e^2+16*a*c*d*e^2+49*b*c*d*e^2-23*c^2*d*e^2+37*a*d^2*e^2+31*b*d^2*e^2+17*c*d^2*e^2-39*d^3*e^2-46*a^2*e^3-17*a*b*e^3+46*b^2*e^3-31*a*c*e^3+39*b*c*e^3-13*c^2*e^3+40*a*d*e^3+18*b*d*e^3+3*c*d*e^3-6*d^2*e^3-35*a*e^4+22*b*e^4-47*c*e^4-4*d*e^4+35*e^5,
2842a^2*b*c^2+25*a^2*c^2*d-27*a*b*c^2*d+43*b^2*c^2*d+3*a*c^3*d+35*b*c^3*d+39*c^4*d+12*a^3*d^2-39*a^2*b*d^2-38*a*b^2*d^2+8*b^3*d^2+14*a^2*c*d^2+42*a*b*c*d^2-16*b^2*c*d^2+32*a*c^2*d^2-26*b*c^2*d^2+31*c^3*d^2-34*a^2*d^3-4*a*b*d^3+40*b^2*d^3+34*a*c*d^3-31*b*c*d^3+11*c^2*d^3+9*a*d^4+27*b*d^4+19*c*d^4-44*d^5-45*a^4*e+43*a^3*b*e-36*a^2*b^2*e+23*a*b^3*e-14*b^4*e-2*a^3*c*e+20*a^2*b*c*e-34*a*b^2*c*e+26*b^3*c*e+2*a^2*c^2*e-32*a*b*c^2*e+35*b^2*c^2*e-44*a*c^3*e-47*b*c^3*e-6*c^4*e+4*a^3*d*e+34*a^2*b*d*e-38*a*b^2*d*e-21*b^3*d*e+45*a^2*c*d*e-25*a*b*c*d*e+30*b^2*c*d*e+43*a*c^2*d*e-2*b*c^2*d*e+17*c^3*d*e+30*a^2*d^2*e+48*a*b*d^2*e+5*b^2*d^2*e+31*a*c*d^2*e+46*b*c*d^2*e+42*c^2*d^2*e-39*a*d^3*e-30*b*d^3*e+34*c*d^3*e+37*d^4*e+45*a^3*e^2-37*a^2*b*e^2+16*a*b^2*e^2-12*b^3*e^2+21*a^2*c*e^2-36*a*b*c*e^2+45*b^2*c*e^2-39*a*c^2*e^2+8*c^3*e^2-47*a^2*d*e^2+38*a*b*d*e^2+48*b^2*d*e^2-30*a*c*d*e^2-40*b*c*d*e^2+34*c^2*d*e^2+42*a*d^2*e^2-38*b*d^2*e^2+24*c*d^2*e^2+37*d^3*e^2-26*a^2*e^3-50*a*b*e^3+10*b^2*e^3-29*a*c*e^3-48*b*c*e^3+8*c^2*e^3+26*a*d*e^3-26*b*d*e^3-44*c*d*e^3+30*d^2*e^3-31*a*e^4-21*b*e^4-44*c*e^4-17*d*e^4+26*e^5,
2843a^3*c^2+32*a^2*c^2*d+18*a*b*c^2*d+26*b^2*c^2*d-34*a*c^3*d+29*b*c^3*d+6*c^4*d-46*a^3*d^2-37*a^2*b*d^2-9*a*b^2*d^2+13*b^3*d^2-46*a^2*c*d^2-25*a*b*c*d^2-19*b^2*c*d^2-36*a*c^2*d^2-28*b*c^2*d^2+c^3*d^2-16*a^2*d^3-32*a*b*d^3-39*b^2*d^3-a*c*d^3-44*b*c*d^3-24*c^2*d^3+44*a*d^4-18*b*d^4-11*c*d^4+31*d^5-37*a^4*e+50*a^3*b*e-3*a^2*b^2*e+40*a*b^3*e-19*b^4*e+31*a^3*c*e+49*a^2*b*c*e+14*a*b^2*c*e+22*b^3*c*e-27*a^2*c^2*e-46*a*b*c^2*e+31*b^2*c^2*e+22*a*c^3*e+27*b*c^3*e+25*c^4*e+10*a^3*d*e-21*a^2*b*d*e-13*a*b^2*d*e-46*b^3*d*e-34*a^2*c*d*e+24*a*b*c*d*e-38*b^2*c*d*e-14*a*c^2*d*e+50*b*c^2*d*e+28*c^3*d*e+44*a^2*d^2*e+23*a*b*d^2*e-38*b^2*d^2*e-4*a*c*d^2*e-34*b*c*d^2*e-21*c^2*d^2*e+9*a*d^3*e-14*b*d^3*e-19*c*d^3*e+14*d^4*e+31*a^3*e^2-33*a^2*b*e^2-39*a*b^2*e^2+9*b^3*e^2+7*a^2*c*e^2+13*a*b*c*e^2-12*b^2*c*e^2+24*a*c^2*e^2+18*b*c^2*e^2+19*c^3*e^2+24*a^2*d*e^2-24*a*b*d*e^2-47*b^2*d*e^2-46*a*c*d*e^2+31*b*c*d*e^2+31*c^2*d*e^2-9*a*d^2*e^2+6*b*d^2*e^2+46*c*d^2*e^2+23*d^3*e^2-37*a^2*e^3+14*a*b*e^3-40*b^2*e^3+14*a*c*e^3-46*b*c*e^3-42*c^2*e^3+32*a*d*e^3+5*b*d*e^3-4*c*d*e^3-16*d^2*e^3-4*a*e^4+36*b*e^4+38*c*e^4+30*d*e^4-18*e^5,
2844b^4*c+25*a^2*c^2*d+37*a*b*c^2*d+12*b^2*c^2*d-31*b*c^3*d+40*c^4*d-49*a^3*d^2+8*a^2*b*d^2+36*a*b^2*d^2+48*b^3*d^2-15*a^2*c*d^2+20*a*b*c*d^2-13*b^2*c*d^2-2*a*c^2*d^2+11*b*c^2*d^2+46*c^3*d^2+49*a^2*d^3-3*a*b*d^3-31*b^2*d^3-11*a*c*d^3+4*b*c*d^3+7*c^2*d^3-27*b*d^4+c*d^4+43*d^5+41*a^4*e-28*a^3*b*e+37*a^2*b^2*e-18*a*b^3*e+20*b^4*e-3*a^3*c*e+42*a^2*b*c*e-26*a*b^2*c*e-36*b^3*c*e-32*a^2*c^2*e+33*a*b*c^2*e-18*b^2*c^2*e-45*a*c^3*e+22*b*c^3*e+22*c^4*e+28*a^3*d*e-17*a^2*b*d*e-37*a*b^2*d*e-11*b^3*d*e+44*a^2*c*d*e-21*a*b*c*d*e+27*b^2*c*d*e-16*a*c^2*d*e+45*b*c^2*d*e+37*c^3*d*e+13*a^2*d^2*e-24*a*b*d^2*e+46*b^2*d^2*e-18*a*c*d^2*e-24*b*c*d^2*e+10*c^2*d^2*e-22*a*d^3*e-19*b*d^3*e+26*c*d^3*e+24*d^4*e+50*a^3*e^2-21*a^2*b*e^2-31*a*b^2*e^2+12*b^3*e^2+18*a^2*c*e^2-9*a*b*c*e^2-3*b^2*c*e^2+49*a*c^2*e^2-22*b*c^2*e^2-7*c^3*e^2+34*a^2*d*e^2+14*a*b*d*e^2-10*b^2*d*e^2-21*a*c*d*e^2-49*b*c*d*e^2-32*c^2*d*e^2-31*a*d^2*e^2-37*b*d^2*e^2+17*c*d^2*e^2-2*d^3*e^2+23*a^2*e^3+38*a*b*e^3+16*b^2*e^3+7*a*c*e^3-6*b*c*e^3+7*c^2*e^3-35*a*d*e^3+46*b*d*e^3-2*c*d*e^3-47*d^2*e^3+15*a*e^4-22*b*e^4+25*c*e^4+12*d*e^4+36*e^5,
2845a*b^3*c+7*a^2*c^2*d-37*a*b*c^2*d-27*b^2*c^2*d-a*c^3*d-28*b*c^3*d+32*c^4*d-17*a^3*d^2+30*a^2*b*d^2+7*a*b^2*d^2-32*b^3*d^2-10*a^2*c*d^2+38*a*b*c*d^2-15*b^2*c*d^2+a*c^2*d^2-37*b*c^2*d^2-9*c^3*d^2-13*a^2*d^3+27*a*b*d^3-11*b^2*d^3+6*a*c*d^3+b*c*d^3-9*c^2*d^3+44*a*d^4+3*b*d^4-36*c*d^4+41*d^5-3*a^4*e+10*a^3*b*e-8*a*b^3*e-3*b^4*e-3*a^3*c*e+34*a^2*b*c*e+3*a*b^2*c*e+15*b^3*c*e-22*a^2*c^2*e-33*a*b*c^2*e-4*b^2*c^2*e+48*a*c^3*e+7*b*c^3*e-29*c^4*e+38*a^3*d*e+14*a^2*b*d*e-26*a*b^2*d*e+48*b^3*d*e-3*a^2*c*d*e-45*a*b*c*d*e+26*b^2*c*d*e+46*a*c^2*d*e+26*b*c^2*d*e+15*c^3*d*e+29*a^2*d^2*e+42*a*b*d^2*e+11*b^2*d^2*e+26*a*c*d^2*e+44*b*c*d^2*e-18*c^2*d^2*e-19*a*d^3*e+47*b*d^3*e+c*d^3*e+50*d^4*e+8*a^3*e^2-19*a^2*b*e^2+49*a*b^2*e^2+17*b^3*e^2-27*a^2*c*e^2+30*a*b*c*e^2+10*b^2*c*e^2+21*a*c^2*e^2+11*b*c^2*e^2+38*c^3*e^2+36*a^2*d*e^2-28*a*b*d*e^2+22*b^2*d*e^2-45*a*c*d*e^2-45*b*c*d*e^2+43*c^2*d*e^2-21*a*d^2*e^2+5*b*d^2*e^2-41*c*d^2*e^2+36*d^3*e^2-25*a^2*e^3-22*a*b*e^3-6*b^2*e^3+31*a*c*e^3+19*b*c*e^3-35*c^2*e^3+44*a*d*e^3+40*b*d*e^3-14*c*d*e^3+6*d^2*e^3+2*a*e^4-26*b*e^4+43*c*e^4+39*d*e^4+7*e^5,
2846a^2*b^2*c-22*a^2*c^2*d+2*a*b*c^2*d-39*b^2*c^2*d-32*a*c^3*d-39*b*c^3*d+32*c^4*d+47*a^3*d^2-9*a^2*b*d^2+36*a*b^2*d^2-22*b^3*d^2+a^2*c*d^2+7*a*b*c*d^2+21*b^2*c*d^2+35*a*c^2*d^2+31*b*c^2*d^2+38*c^3*d^2+4*a^2*d^3+50*a*b*d^3-10*b^2*d^3-7*a*c*d^3-8*b*c*d^3-23*c^2*d^3+18*a*d^4+13*b*d^4+5*c*d^4-6*d^5-41*a^4*e+50*a^3*b*e+3*a^2*b^2*e+20*a*b^3*e-26*b^4*e-22*a^3*c*e+9*a^2*b*c*e+5*a*b^2*c*e+38*b^3*c*e-16*a^2*c^2*e-35*a*b*c^2*e-17*b^2*c^2*e-4*a*c^3*e-32*b*c^3*e-19*c^4*e-21*a^3*d*e+23*a^2*b*d*e+37*a*b^2*d*e+48*b^3*d*e-2*a^2*c*d*e-48*a*b*c*d*e-44*b^2*c*d*e+4*a*c^2*d*e+9*b*c^2*d*e-33*c^3*d*e+30*a^2*d^2*e+25*a*b*d^2*e+34*b^2*d^2*e-39*a*c*d^2*e+27*b*c*d^2*e+25*c^2*d^2*e+3*a*d^3*e-50*b*d^3*e-49*c*d^3*e-9*d^4*e-39*a^3*e^2+10*a^2*b*e^2-33*a*b^2*e^2+36*b^3*e^2+20*a^2*c*e^2+43*a*b*c*e^2+7*b^2*c*e^2+36*a*c^2*e^2-39*b*c^2*e^2-33*c^3*e^2+14*a^2*d*e^2-46*a*b*d*e^2+8*b^2*d*e^2+23*a*c*d*e^2+30*b*c*d*e^2-8*c^2*d*e^2+28*a*d^2*e^2-5*b*d^2*e^2+25*c*d^2*e^2+17*d^3*e^2+28*a^2*e^3-38*a*b*e^3-46*b^2*e^3-27*a*c*e^3-5*b*c*e^3-20*c^2*e^3+2*a*d*e^3-4*b*d*e^3+15*c*d*e^3-36*d^2*e^3+41*a*e^4+6*b*e^4+20*c*e^4+8*d*e^4-2*e^5,
2847a^3*b*c+40*a^2*c^2*d-47*a*b*c^2*d-27*b^2*c^2*d+41*a*c^3*d-39*b*c^3*d-32*c^4*d+5*a^3*d^2-5*a^2*b*d^2-34*a*b^2*d^2-35*b^3*d^2+29*a^2*c*d^2+4*a*b*c*d^2-6*b^2*c*d^2+25*a*c^2*d^2+6*b*c^2*d^2-44*c^3*d^2-38*a^2*d^3-31*a*b*d^3+37*b^2*d^3-49*a*c*d^3-17*b*c*d^3+9*c^2*d^3+25*a*d^4+4*b*d^4-25*c*d^4-49*d^5-15*a^4*e-11*a^3*b*e+7*a^2*b^2*e+37*a*b^3*e-21*b^4*e+18*a^3*c*e+46*a^2*b*c*e+6*a*b^2*c*e+43*b^3*c*e-5*a^2*c^2*e+49*a*b*c^2*e+44*b^2*c^2*e-18*a*c^3*e+30*b*c^3*e+30*c^4*e+37*a^3*d*e-47*a^2*b*d*e+23*a*b^2*d*e-26*b^3*d*e-12*a^2*c*d*e+49*a*b*c*d*e+37*b^2*c*d*e+3*a*c^2*d*e-15*b*c^2*d*e+c^3*d*e-13*a^2*d^2*e+32*a*b*d^2*e-29*b^2*d^2*e-11*a*c*d^2*e-28*b*c*d^2*e+21*c^2*d^2*e-10*a*d^3*e-20*b*d^3*e-2*c*d^3*e-25*d^4*e-18*a^3*e^2-10*a^2*b*e^2-26*a*b^2*e^2+15*b^3*e^2-6*a^2*c*e^2+48*a*b*c*e^2-36*b^2*c*e^2-18*a*c^2*e^2+8*b*c^2*e^2+36*c^3*e^2+2*a^2*d*e^2+48*a*b*d*e^2-32*b^2*d*e^2+47*a*c*d*e^2+b*c*d*e^2-35*c^2*d*e^2+16*a*d^2*e^2-26*b*d^2*e^2+40*c*d^2*e^2+50*d^3*e^2+16*a^2*e^3+32*a*b*e^3-22*b^2*e^3-43*a*c*e^3+4*b*c*e^3-26*c^2*e^3-29*a*d*e^3+7*b*d*e^3+20*c*d*e^3+8*d^2*e^3-9*a*e^4-7*b*e^4+3*c*e^4+49*d*e^4-48*e^5,
2848a^4*c-40*a^2*c^2*d+21*a*b*c^2*d+43*b^2*c^2*d+31*a*c^3*d-4*b*c^3*d+49*c^4*d+24*a^3*d^2-14*a^2*b*d^2+3*a*b^2*d^2-6*b^3*d^2+27*a^2*c*d^2+24*a*b*c*d^2-47*b^2*c*d^2-16*a*c^2*d^2+21*b*c^2*d^2-33*c^3*d^2+39*a^2*d^3-34*a*b*d^3-7*b^2*d^3+3*a*c*d^3+30*b*c*d^3-10*c^2*d^3+17*a*d^4+28*b*d^4+16*c*d^4-19*d^5+16*a^4*e-14*a^3*b*e+19*a^2*b^2*e-12*a*b^3*e-41*b^4*e-28*a^3*c*e+13*a^2*b*c*e+35*a*b^2*c*e-35*b^3*c*e+37*a^2*c^2*e-7*a*b*c^2*e+33*b^2*c^2*e-30*a*c^3*e+36*b*c^3*e-26*c^4*e-27*a^3*d*e+28*a^2*b*d*e+2*a*b^2*d*e+22*b^3*d*e-9*a^2*c*d*e+39*a*b*c*d*e-11*b^2*c*d*e+48*a*c^2*d*e+b*c^2*d*e-25*c^3*d*e-28*a^2*d^2*e-38*a*b*d^2*e-13*b^2*d^2*e-12*a*c*d^2*e-35*b*c*d^2*e-45*c^2*d^2*e-27*a*d^3*e-31*b*d^3*e+20*c*d^3*e+40*d^4*e+11*a^3*e^2-33*a^2*b*e^2-3*a*b^2*e^2+32*b^3*e^2+10*a^2*c*e^2+48*a*b*c*e^2-50*b^2*c*e^2+2*a*c^2*e^2-46*b*c^2*e^2+15*c^3*e^2-15*a^2*d*e^2+29*a*b*d*e^2+4*b^2*d*e^2-16*a*c*d*e^2+34*b*c*d*e^2-21*c^2*d*e^2+44*a*d^2*e^2-35*b*d^2*e^2+4*c*d^2*e^2-16*d^3*e^2-14*a^2*e^3+39*a*b*e^3+44*b^2*e^3-22*a*c*e^3-16*b*c*e^3+38*c^2*e^3-a*d*e^3+14*b*d*e^3-44*c*d*e^3-31*d^2*e^3+4*a*e^4+33*c*e^4-5*d*e^4+46*e^5,
2849b^5-5*a^2*c^2*d-23*a*b*c^2*d+3*b^2*c^2*d-30*a*c^3*d-48*b*c^3*d-40*c^4*d-21*a^3*d^2-13*a^2*b*d^2+36*a*b^2*d^2-35*b^3*d^2-9*a^2*c*d^2+32*a*b*c*d^2-19*b^2*c*d^2+3*a*c^2*d^2-2*b*c^2*d^2+22*c^3*d^2-37*a^2*d^3+46*a*b*d^3-38*b^2*d^3-33*a*c*d^3-7*b*c*d^3+3*c^2*d^3-33*a*d^4+b*d^4+22*c*d^4+50*d^5-33*a^4*e+18*a^3*b*e+11*a^2*b^2*e-19*a*b^3*e+49*b^4*e+3*a^3*c*e-10*a^2*b*c*e-29*a*b^2*c*e-17*b^3*c*e-15*a^2*c^2*e+30*a*b*c^2*e+39*b^2*c^2*e+7*a*c^3*e-46*b*c^3*e+29*c^4*e-17*a^3*d*e+26*a^2*b*d*e+27*a*b^2*d*e-27*b^3*d*e-27*a^2*c*d*e-7*a*b*c*d*e-36*b^2*c*d*e+18*a*c^2*d*e-34*b*c^2*d*e+31*c^3*d*e+22*a^2*d^2*e-2*a*b*d^2*e+39*b^2*d^2*e+40*a*c*d^2*e+49*b*c*d^2*e-41*c^2*d^2*e-46*a*d^3*e-33*b*d^3*e-40*c*d^3*e+16*d^4*e-37*a^3*e^2-14*a^2*b*e^2-49*a*b^2*e^2+39*b^3*e^2-20*a^2*c*e^2-39*a*b*c*e^2+20*b^2*c*e^2+10*a*c^2*e^2+29*b*c^2*e^2+20*c^3*e^2-19*a^2*d*e^2+37*a*b*d*e^2+20*b^2*d*e^2+26*a*c*d*e^2-8*b*c*d*e^2+14*c^2*d*e^2+24*a*d^2*e^2-14*b*d^2*e^2-33*c*d^2*e^2-18*d^3*e^2-2*a^2*e^3-32*a*b*e^3-37*b^2*e^3+45*a*c*e^3-33*b*c*e^3+28*c^2*e^3-19*a*d*e^3-43*b*d*e^3-10*c*d*e^3+30*d^2*e^3+44*a*e^4+40*b*e^4-20*c*e^4-40*d*e^4-2*e^5,
2850a*b^4-14*a^2*c^2*d+14*b^2*c^2*d+36*a*c^3*d+7*b*c^3*d-14*c^4*d-11*a^3*d^2+40*a^2*b*d^2-29*a*b^2*d^2-45*b^3*d^2+23*a^2*c*d^2+8*a*b*c*d^2+28*b^2*c*d^2+42*a*c^2*d^2+14*b*c^2*d^2+42*c^3*d^2-36*a^2*d^3-4*a*b*d^3+6*a*c*d^3-18*b*c*d^3+40*c^2*d^3-47*a*d^4-19*b*d^4-16*c*d^4+31*d^5-15*a^4*e+46*a^3*b*e+13*a^2*b^2*e-18*a*b^3*e+9*b^4*e+50*a^3*c*e-10*a^2*b*c*e-12*a*b^2*c*e+44*b^3*c*e+7*a^2*c^2*e+39*a*b*c^2*e-36*b^2*c^2*e+29*a*c^3*e-37*b*c^3*e-28*c^4*e-43*a^3*d*e+50*a^2*b*d*e-16*a*b^2*d*e+17*b^3*d*e+23*a^2*c*d*e-14*a*b*c*d*e+10*b^2*c*d*e+18*a*c^2*d*e+40*b*c^2*d*e-30*c^3*d*e+44*a^2*d^2*e+26*a*b*d^2*e+17*b^2*d^2*e+9*a*c*d^2*e+37*b*c*d^2*e-38*c^2*d^2*e+46*a*d^3*e+15*b*d^3*e+33*c*d^3*e+20*d^4*e+4*a^3*e^2-43*a^2*b*e^2-14*a*b^2*e^2-29*b^3*e^2+44*a^2*c*e^2-37*a*b*c*e^2-2*b^2*c*e^2+39*a*c^2*e^2-36*b*c^2*e^2+45*c^3*e^2-34*a^2*d*e^2-48*a*b*d*e^2-25*b^2*d*e^2+48*a*c*d*e^2+5*b*c*d*e^2-16*c^2*d*e^2+20*a*d^2*e^2+8*b*d^2*e^2-48*c*d^2*e^2+27*d^3*e^2-39*a^2*e^3-23*a*b*e^3-45*b^2*e^3-34*a*c*e^3-50*b*c*e^3-42*c^2*e^3+50*a*d*e^3+26*b*d*e^3+48*c*d*e^3-37*d^2*e^3-20*a*e^4-19*b*e^4+23*c*e^4+23*d*e^4+12*e^5,
2851a^2*b^3-25*a^2*c^2*d+26*a*b*c^2*d+32*b^2*c^2*d-48*a*c^3*d-7*b*c^3*d-44*c^4*d+14*a^3*d^2+19*a^2*b*d^2-7*a*b^2*d^2-15*b^3*d^2+50*a^2*c*d^2-11*a*b*c*d^2-13*b^2*c*d^2-33*a*c^2*d^2-46*b*c^2*d^2+12*c^3*d^2-26*a^2*d^3-11*a*b*d^3+22*b^2*d^3+24*a*c*d^3-12*b*c*d^3-22*c^2*d^3+40*a*d^4-23*b*d^4-48*c*d^4-20*d^5+17*a^4*e-41*a^3*b*e-a^2*b^2*e-12*a*b^3*e-9*b^4*e-30*a^3*c*e+50*a^2*b*c*e+31*a*b^2*c*e+5*b^3*c*e+33*a^2*c^2*e+15*a*b*c^2*e-50*b^2*c^2*e+24*a*c^3*e-b*c^3*e-6*c^4*e-31*a^3*d*e-26*a^2*b*d*e+49*a*b^2*d*e-13*b^3*d*e+43*a^2*c*d*e-10*a*b*c*d*e+35*b^2*c*d*e+36*a*c^2*d*e-22*b*c^2*d*e+40*c^3*d*e-7*a^2*d^2*e+28*a*b*d^2*e-b^2*d^2*e+17*a*c*d^2*e+13*b*c*d^2*e+26*c^2*d^2*e+32*a*d^3*e+3*b*d^3*e+12*c*d^3*e+40*d^4*e-40*a^3*e^2+12*a^2*b*e^2+27*a*b^2*e^2-24*b^3*e^2+13*a^2*c*e^2-19*a*b*c*e^2-27*b^2*c*e^2-28*a*c^2*e^2+50*b*c^2*e^2-48*c^3*e^2-14*a^2*d*e^2+26*a*b*d*e^2+35*b^2*d*e^2-43*a*c*d*e^2+42*b*c*d*e^2+9*c^2*d*e^2-10*a*d^2*e^2+21*c*d^2*e^2-5*d^3*e^2-30*a^2*e^3+38*a*b*e^3-25*b^2*e^3-28*a*c*e^3+23*b*c*e^3+38*c^2*e^3-30*a*d*e^3-16*b*d*e^3-35*c*d*e^3+2*d^2*e^3+33*a*e^4+12*b*e^4-25*c*e^4+26*d*e^4-40*e^5,
2852a^3*b^2-40*a^2*c^2*d+50*a*b*c^2*d+25*b^2*c^2*d+46*a*c^3*d-45*b*c^3*d-6*c^4*d-24*a^3*d^2-9*a^2*b*d^2-15*a*b^2*d^2+5*b^3*d^2+36*a^2*c*d^2-19*a*b*c*d^2+19*b^2*c*d^2+17*a*c^2*d^2+12*b*c^2*d^2-25*c^3*d^2-33*a^2*d^3-27*a*b*d^3+42*b^2*d^3-4*a*c*d^3+33*b*c*d^3+32*c^2*d^3+10*a*d^4+47*c*d^4-3*d^5-23*a^4*e-45*a^3*b*e+41*a^2*b^2*e+47*a*b^3*e+15*b^4*e-2*a^3*c*e+12*a^2*b*c*e+13*a*b^2*c*e-45*b^3*c*e-28*a^2*c^2*e-3*a*b*c^2*e-37*b^2*c^2*e+39*a*c^3*e+37*c^4*e-12*a^3*d*e-48*a^2*b*d*e-5*a*b^2*d*e+47*b^3*d*e-41*a^2*c*d*e-36*a*b*c*d*e-37*b^2*c*d*e-a*c^2*d*e-38*b*c^2*d*e+17*c^3*d*e-29*a^2*d^2*e-3*a*b*d^2*e-23*b^2*d^2*e-19*a*c*d^2*e+43*b*c*d^2*e-48*c^2*d^2*e-46*a*d^3*e+48*b*d^3*e+40*c*d^3*e-15*d^4*e-23*a^3*e^2-22*a^2*b*e^2-50*a*b^2*e^2-33*b^3*e^2+27*a^2*c*e^2-46*a*b*c*e^2+29*b^2*c*e^2-14*a*c^2*e^2+9*b*c^2*e^2-43*c^3*e^2-19*a^2*d*e^2-38*a*b*d*e^2+12*b^2*d*e^2+18*a*c*d*e^2+20*b*c*d*e^2+3*c^2*d*e^2-9*a*d^2*e^2-27*b*d^2*e^2-6*c*d^2*e^2+38*d^3*e^2+43*a^2*e^3+43*a*b*e^3+3*b^2*e^3+10*a*c*e^3+8*b*c*e^3+13*c^2*e^3+37*a*d*e^3+b*d*e^3-21*c*d*e^3+27*d^2*e^3+26*a*e^4-29*b*e^4-39*c*e^4+29*d*e^4+21*e^5,
2853a^4*b-45*a^2*c^2*d-6*a*b*c^2*d-42*b^2*c^2*d-4*a*c^3*d-49*b*c^3*d+14*c^4*d+35*a^3*d^2-3*a^2*b*d^2+23*a*b^2*d^2+21*b^3*d^2-24*a^2*c*d^2-14*a*b*c*d^2+20*b^2*c*d^2-20*a*c^2*d^2+41*b*c^2*d^2-34*c^3*d^2-13*a^2*d^3-48*a*b*d^3-13*b^2*d^3+38*a*c*d^3+21*b*c*d^3+40*c^2*d^3-28*a*d^4-34*b*d^4+38*c*d^4-24*d^5-48*a^4*e-2*a^3*b*e-35*a^2*b^2*e+2*a*b^3*e-25*b^4*e+47*a^3*c*e-14*a^2*b*c*e+25*a*b^2*c*e-12*b^3*c*e-11*a^2*c^2*e+22*a*b*c^2*e+15*b^2*c^2*e+17*a*c^3*e+47*b*c^3*e-43*c^4*e+28*a^3*d*e+9*a^2*b*d*e+6*a*b^2*d*e+30*a^2*c*d*e+31*a*b*c*d*e-2*b^2*c*d*e-6*a*c^2*d*e-45*b*c^2*d*e-24*c^3*d*e-39*a^2*d^2*e-7*a*b*d^2*e-11*b^2*d^2*e+8*a*c*d^2*e-47*b*c*d^2*e+c^2*d^2*e+30*a*d^3*e-30*b*d^3*e-38*c*d^3*e-14*d^4*e-25*a^3*e^2-14*a^2*b*e^2+24*a*b^2*e^2-37*b^3*e^2-14*a^2*c*e^2+40*a*b*c*e^2+27*b^2*c*e^2+22*a*c^2*e^2-38*b*c^2*e^2+43*c^3*e^2-44*a^2*d*e^2+28*a*b*d*e^2-4*b^2*d*e^2-26*a*c*d*e^2+18*b*c*d*e^2+24*c^2*d*e^2-35*a*d^2*e^2+6*b*d^2*e^2+5*c*d^2*e^2-38*d^3*e^2-37*a^2*e^3+34*a*b*e^3-27*b^2*e^3-4*a*c*e^3-3*b*c*e^3-16*c^2*e^3+22*a*d*e^3-4*b*d*e^3-41*c*d*e^3+25*d^2*e^3-38*a*e^4+49*b*e^4+c*e^4+14*d*e^4+47*e^5,
2854a^5-45*a^2*c^2*d-14*a*b*c^2*d-47*b^2*c^2*d-8*a*c^3*d+13*b*c^3*d+50*c^4*d-34*a^3*d^2-5*a^2*b*d^2+36*a*b^2*d^2+11*b^3*d^2+41*a^2*c*d^2-32*a*b*c*d^2+41*b^2*c*d^2-40*a*c^2*d^2+14*b*c^2*d^2+5*c^3*d^2+25*a^2*d^3+10*a*b*d^3-24*b^2*d^3-33*b*c*d^3-21*c^2*d^3+a*d^4+44*b*d^4-46*c*d^4-23*d^5-13*a^4*e+13*a^3*b*e-49*a*b^3*e+18*b^4*e+2*a^3*c*e+15*a^2*b*c*e-14*a*b^2*c*e-38*b^3*c*e+34*a^2*c^2*e+42*a*b*c^2*e-42*b^2*c^2*e-36*a*c^3*e+35*b*c^3*e-11*c^4*e+20*a^3*d*e+41*a*b^2*d*e+40*b^3*d*e-39*a^2*c*d*e-35*a*b*c*d*e-7*b^2*c*d*e-34*a*c^2*d*e-35*b*c^2*d*e+45*c^3*d*e+17*a^2*d^2*e+39*a*b*d^2*e+5*b^2*d^2*e-35*a*c*d^2*e-26*b*c*d^2*e-47*c^2*d^2*e+5*a*d^3*e-2*b*d^3*e+44*c*d^3*e+9*d^4*e-12*a^3*e^2+49*a^2*b*e^2-2*a*b^2*e^2-11*b^3*e^2-49*a^2*c*e^2-16*a*b*c*e^2-34*b^2*c*e^2+19*a*c^2*e^2-24*b*c^2*e^2-33*c^3*e^2-39*a^2*d*e^2+2*a*b*d*e^2+46*b^2*d*e^2-17*a*c*d*e^2+47*b*c*d*e^2+39*c^2*d*e^2+13*a*d^2*e^2+50*b*d^2*e^2-11*c*d^2*e^2+3*d^3*e^2+22*a^2*e^3-50*a*b*e^3+30*b^2*e^3-22*a*c*e^3-29*b*c*e^3-40*c^2*e^3+34*a*d*e^3+15*b*d*e^3-17*c*d*e^3+43*d^2*e^3+46*a*e^4-19*b*e^4-46*c*e^4-39*d*e^4-e^5,
2855e^6, d*e^5, c*e^5, b*e^5, a*e^5, d^2*e^4, c*d*e^4, b*d*e^4, a*d*e^4, c^2*e^4,
2856b*c*e^4, a*c*e^4, b^2*e^4, a*b*e^4, a^2*e^4, d^3*e^3, c*d^2*e^3, b*d^2*e^3,
2857a*d^2*e^3, c^2*d*e^3, b*c*d*e^3, a*c*d*e^3, b^2*d*e^3, a*b*d*e^3, a^2*d*e^3,
2858c^3*e^3, b*c^2*e^3, a*c^2*e^3, b^2*c*e^3, a*b*c*e^3, a^2*c*e^3, b^3*e^3,
2859a*b^2*e^3, a^2*b*e^3, a^3*e^3, d^4*e^2, c*d^3*e^2, b*d^3*e^2, a*d^3*e^2,
2860c^2*d^2*e^2, b*c*d^2*e^2, a*c*d^2*e^2, b^2*d^2*e^2, a*b*d^2*e^2, a^2*d^2*e^2,
2861c^3*d*e^2, b*c^2*d*e^2, a*c^2*d*e^2, b^2*c*d*e^2, a*b*c*d*e^2, a^2*c*d*e^2,
2862b^3*d*e^2, a*b^2*d*e^2, a^2*b*d*e^2, a^3*d*e^2, c^4*e^2, b*c^3*e^2, a*c^3*e^2,
2863b^2*c^2*e^2, a*b*c^2*e^2;
2864  TestSSresAttribs2tr(M, "AGR101n4d007s021%4");
2865/*
2866options:  1 1 0 :  Time:  5/9/10 (35 without LCM)
2867options:  1 1 1 :  Time:  6/8/25
2868lres  Time:  5
2869nres  Time:  5
2870sres  Time:  693
2871*/
2872
2873  kill M;
2874
2875
2876
2877  // AGR101n4d008s020%1, too big?
2878  ideal M =
2879c^5*d-49*a^4*d^2-36*a^3*b*d^2-a^2*b^2*d^2-26*a*b^3*d^2+2*b^4*d^2+8*a^3*c*d^2-46*a^2*b*c*d^2-43*a*b^2*c*d^2-46*b^3*c*d^2-3*a^2*c^2*d^2-43*a*b*c^2*d^2+49*b^2*c^2*d^2-10*a*c^3*d^2+35*b*c^3*d^2+20*c^4*d^2-42*a^3*d^3+45*a^2*b*d^3+32*a*b^2*d^3-45*b^3*d^3-27*a^2*c*d^3+13*a*b*c*d^3+25*b^2*c*d^3+8*a*c^2*d^3+9*b*c^2*d^3+9*c^3*d^3+45*a^2*d^4+30*a*b*d^4+39*b^2*d^4-23*a*c*d^4+2*b*c*d^4-16*c^2*d^4+32*a*d^5-34*b*d^5+39*c*d^5+12*d^6-29*a^5*e-23*a^4*b*e-29*a^3*b^2*e-a^2*b^3*e-20*a*b^4*e+42*b^5*e+20*a^4*c*e-27*a^3*b*c*e-5*a^2*b^2*c*e-14*b^4*c*e-27*a^3*c^2*e-7*a^2*b*c^2*e-25*a*b^2*c^2*e+14*b^3*c^2*e+19*a^2*c^3*e+43*a*b*c^3*e-31*b^2*c^3*e+37*a*c^4*e-34*b*c^4*e+44*c^5*e+21*a^4*d*e+22*a^3*b*d*e+14*a^2*b^2*d*e-35*a*b^3*d*e-29*b^4*d*e-9*a^3*c*d*e-41*a^2*b*c*d*e+28*a*b^2*c*d*e+35*b^3*c*d*e+48*a^2*c^2*d*e+26*a*b*c^2*d*e-47*b^2*c^2*d*e+18*a*c^3*d*e+8*b*c^3*d*e-46*c^4*d*e+50*a^3*d^2*e-46*a^2*b*d^2*e-41*a*b^2*d^2*e-44*b^3*d^2*e+7*a^2*c*d^2*e-a*b*c*d^2*e+38*b^2*c*d^2*e+33*a*c^2*d^2*e-24*b*c^2*d^2*e-7*c^3*d^2*e+27*a^2*d^3*e+19*a*b*d^3*e-14*b^2*d^3*e+9*a*c*d^3*e+3*b*c*d^3*e+34*c^2*d^3*e-49*a*d^4*e-2*b*d^4*e+9*c*d^4*e+17*d^5*e+12*a^4*e^2-17*a^3*b*e^2+16*a^2*b^2*e^2+2*a*b^3*e^2+25*b^4*e^2+49*a^3*c*e^2+10*a^2*b*c*e^2-43*a*b^2*c*e^2+5*b^3*c*e^2+4*a^2*c^2*e^2-44*a*b*c^2*e^2-25*b^2*c^2*e^2+15*a*c^3*e^2-44*b*c^3*e^2-17*c^4*e^2+17*a^3*d*e^2+40*a^2*b*d*e^2+3*a*b^2*d*e^2-25*b^3*d*e^2-47*a^2*c*d*e^2-45*a*b*c*d*e^2+9*b^2*c*d*e^2-41*a*c^2*d*e^2-36*b*c^2*d*e^2-17*c^3*d*e^2-15*a^2*d^2*e^2+49*a*b*d^2*e^2+13*b^2*d^2*e^2-39*a*c*d^2*e^2+36*b*c*d^2*e^2-32*c^2*d^2*e^2+23*a*d^3*e^2+14*b*d^3*e^2+10*c*d^3*e^2-d^4*e^2+24*a^3*e^3+27*a^2*b*e^3+31*a*b^2*e^3-45*b^3*e^3-50*a^2*c*e^3-a*b*c*e^3+43*b^2*c*e^3+46*a*c^2*e^3-25*b*c^2*e^3+2*c^3*e^3+44*a^2*d*e^3+43*a*b*d*e^3-30*b^2*d*e^3-18*a*c*d*e^3+44*b*c*d*e^3-34*c^2*d*e^3-49*a*d^2*e^3-18*b*d^2*e^3-21*c*d^2*e^3-43*d^3*e^3-26*a^2*e^4-18*a*b*e^4+6*b^2*e^4-48*a*c*e^4+6*b*c*e^4-16*c^2*e^4-2*a*d*e^4-21*b*d*e^4+5*c*d*e^4-18*d^2*e^4+33*a*e^5-23*b*e^5-48*c*e^5+37*d*e^5-44*e^6,
2880b*c^4*d-26*a^4*d^2-47*a^3*b*d^2+28*a^2*b^2*d^2+5*a*b^3*d^2+37*b^4*d^2-32*a^3*c*d^2+44*a^2*b*c*d^2+13*a*b^2*c*d^2-45*b^3*c*d^2+35*a^2*c^2*d^2-18*a*b*c^2*d^2-3*b^2*c^2*d^2-4*a*c^3*d^2-27*b*c^3*d^2-37*a^3*d^3-44*a^2*b*d^3-36*a*b^2*d^3+49*b^3*d^3-16*a^2*c*d^3+24*a*b*c*d^3+43*b^2*c*d^3-40*a*c^2*d^3-3*b*c^2*d^3-16*c^3*d^3+6*a^2*d^4+46*a*b*d^4+8*b^2*d^4-11*a*c*d^4-4*b*c*d^4-40*c^2*d^4-31*a*d^5-41*b*d^5-35*c*d^5-35*d^6+5*a^5*e-20*a^4*b*e+48*a^3*b^2*e-42*a^2*b^3*e+46*a*b^4*e-28*b^5*e+42*a^4*c*e+22*a^3*b*c*e+23*a^2*b^2*c*e-6*a*b^3*c*e-2*b^4*c*e+26*a^3*c^2*e+28*a^2*b*c^2*e+28*a*b^2*c^2*e-31*b^3*c^2*e-50*a^2*c^3*e+3*a*b*c^3*e+39*b^2*c^3*e-21*b*c^4*e+24*c^5*e-a^4*d*e+12*a^3*b*d*e+43*a^2*b^2*d*e+17*a*b^3*d*e-33*b^4*d*e-31*a^3*c*d*e+11*a^2*b*c*d*e-16*a*b^2*c*d*e-49*b^3*c*d*e+6*a^2*c^2*d*e+49*a*b*c^2*d*e-47*b^2*c^2*d*e-40*a*c^3*d*e-11*b*c^3*d*e-7*a^3*d^2*e+10*a^2*b*d^2*e-37*a*b^2*d^2*e+37*b^3*d^2*e+49*a^2*c*d^2*e+11*b^2*c*d^2*e-43*a*c^2*d^2*e+46*b*c^2*d^2*e-18*c^3*d^2*e+38*a^2*d^3*e+20*a*b*d^3*e-22*b^2*d^3*e-32*a*c*d^3*e+41*b*c*d^3*e+c^2*d^3*e+7*a*d^4*e+18*b*d^4*e-12*c*d^4*e-15*d^5*e+34*a^4*e^2-a^3*b*e^2+47*a^2*b^2*e^2+47*a*b^3*e^2-37*b^4*e^2-36*a^3*c*e^2-21*a^2*b*c*e^2-3*b^3*c*e^2-34*a^2*c^2*e^2-4*a*b*c^2*e^2+33*b^2*c^2*e^2+19*a*c^3*e^2+3*b*c^3*e^2-13*c^4*e^2-45*a^3*d*e^2+28*a^2*b*d*e^2-23*a*b^2*d*e^2+30*b^3*d*e^2+15*a^2*c*d*e^2+a*b*c*d*e^2-50*a*c^2*d*e^2-6*b*c^2*d*e^2+32*c^3*d*e^2+17*a^2*d^2*e^2-15*a*b*d^2*e^2+6*b^2*d^2*e^2+15*a*c*d^2*e^2-b*c*d^2*e^2+41*c^2*d^2*e^2-47*a*d^3*e^2+49*b*d^3*e^2-4*c*d^3*e^2-5*d^4*e^2+35*a^3*e^3+36*a^2*b*e^3+49*a*b^2*e^3+b^3*e^3-11*a^2*c*e^3+a*b*c*e^3+18*b^2*c*e^3+19*a*c^2*e^3+11*b*c^2*e^3-41*c^3*e^3-42*a^2*d*e^3+6*a*b*d*e^3-23*b^2*d*e^3+47*a*c*d*e^3+35*b*c*d*e^3+39*c^2*d*e^3-30*a*d^2*e^3-21*b*d^2*e^3-48*c*d^2*e^3-6*d^3*e^3+38*a^2*e^4-43*a*b*e^4-10*b^2*e^4-a*c*e^4+2*b*c*e^4-29*c^2*e^4+31*a*d*e^4+24*b*d*e^4+18*c*d*e^4+38*d^2*e^4+36*a*e^5-32*b*e^5-17*c*e^5+36*d*e^5+13*e^6,
2881a*c^4*d+8*a^4*d^2+41*a^3*b*d^2-36*a^2*b^2*d^2+7*a*b^3*d^2+35*b^4*d^2+19*a^3*c*d^2-31*a^2*b*c*d^2+23*a*b^2*c*d^2-18*b^3*c*d^2+14*a*b*c^2*d^2-8*b^2*c^2*d^2+31*a*c^3*d^2-46*b*c^3*d^2-29*c^4*d^2-42*a^3*d^3+46*a^2*b*d^3-24*a*b^2*d^3+46*b^3*d^3-18*a^2*c*d^3-49*a*b*c*d^3-6*b^2*c*d^3+20*a*c^2*d^3+17*b*c^2*d^3+38*c^3*d^3-36*a^2*d^4+16*a*b*d^4+23*b^2*d^4-34*a*c*d^4-9*b*c*d^4-18*c^2*d^4-18*a*d^5+26*b*d^5-9*c*d^5-3*d^6-17*a^5*e+32*a^4*b*e-23*a^3*b^2*e-4*a^2*b^3*e+42*a*b^4*e-43*b^5*e+28*a^4*c*e+5*a^3*b*c*e-14*a^2*b^2*c*e-43*a*b^3*c*e+41*b^4*c*e+2*a^3*c^2*e-27*a^2*b*c^2*e-35*a*b^2*c^2*e+2*b^3*c^2*e-42*a^2*c^3*e+47*a*b*c^3*e+50*b^2*c^3*e-a*c^4*e+10*b*c^4*e+47*c^5*e-23*a^4*d*e+25*a^3*b*d*e-41*a^2*b^2*d*e+32*a*b^3*d*e-35*b^4*d*e+14*a^3*c*d*e-25*a^2*b*c*d*e+47*a*b^2*c*d*e-32*b^3*c*d*e+50*a^2*c^2*d*e-30*a*b*c^2*d*e+39*b^2*c^2*d*e+30*a*c^3*d*e-33*b*c^3*d*e+37*c^4*d*e-21*a^3*d^2*e+34*a^2*b*d^2*e+7*a*b^2*d^2*e-43*b^3*d^2*e+13*a^2*c*d^2*e+32*a*b*c*d^2*e-35*b^2*c*d^2*e+18*a*c^2*d^2*e-2*b*c^2*d^2*e+9*c^3*d^2*e+13*a^2*d^3*e-32*a*b*d^3*e-9*b^2*d^3*e-35*a*c*d^3*e-14*b*c*d^3*e+9*c^2*d^3*e+19*a*d^4*e-50*b*d^4*e+28*c*d^4*e-40*d^5*e+17*a^4*e^2-44*a^3*b*e^2+30*a^2*b^2*e^2+41*a*b^3*e^2+20*b^4*e^2+21*a^3*c*e^2+48*a^2*b*c*e^2+15*a*b^2*c*e^2-40*b^3*c*e^2-6*a^2*c^2*e^2-29*a*b*c^2*e^2-42*b^2*c^2*e^2-40*a*c^3*e^2-48*b*c^3*e^2+36*c^4*e^2+38*a^3*d*e^2+19*a^2*b*d*e^2+41*a*b^2*d*e^2+34*b^3*d*e^2+20*a^2*c*d*e^2-23*a*b*c*d*e^2-2*b^2*c*d*e^2+36*a*c^2*d*e^2-37*b*c^2*d*e^2+9*c^3*d*e^2-47*a^2*d^2*e^2-35*a*b*d^2*e^2+13*b^2*d^2*e^2-20*a*c*d^2*e^2-45*b*c*d^2*e^2+17*c^2*d^2*e^2-32*a*d^3*e^2+13*b*d^3*e^2-4*c*d^3*e^2-26*d^4*e^2+32*a^3*e^3-25*a^2*b*e^3+30*a*b^2*e^3-12*b^3*e^3+28*a^2*c*e^3+41*a*b*c*e^3-49*b^2*c*e^3+35*a*c^2*e^3+38*b*c^2*e^3+49*c^3*e^3-9*a^2*d*e^3-31*a*b*d*e^3-6*b^2*d*e^3+29*a*c*d*e^3+13*b*c*d*e^3-14*c^2*d*e^3+36*a*d^2*e^3+33*b*d^2*e^3-46*c*d^2*e^3+50*d^3*e^3-47*a^2*e^4+5*a*b*e^4+36*b^2*e^4-5*a*c*e^4+4*b*c*e^4-20*c^2*e^4+29*a*d*e^4+25*b*d*e^4-24*c*d*e^4-10*d^2*e^4-2*a*e^5-29*b*e^5-34*c*e^5-d*e^5+e^6,
2882b^2*c^3*d-49*a^4*d^2+36*a^3*b*d^2-3*a^2*b^2*d^2+12*a*b^3*d^2+11*b^4*d^2+10*a^3*c*d^2+9*a^2*b*c*d^2-13*a*b^2*c*d^2+43*b^3*c*d^2-27*a^2*c^2*d^2-20*a*b*c^2*d^2+34*b^2*c^2*d^2-30*a*c^3*d^2-50*b*c^3*d^2+43*c^4*d^2+17*a^3*d^3+5*a^2*b*d^3+16*a*b^2*d^3+27*b^3*d^3-26*a^2*c*d^3+17*a*b*c*d^3-31*b^2*c*d^3-43*a*c^2*d^3-18*b*c^2*d^3-8*c^3*d^3-8*a^2*d^4+8*a*b*d^4+23*b^2*d^4+7*a*c*d^4-48*b*c*d^4+21*c^2*d^4+5*a*d^5+4*b*d^5+40*c*d^5-22*d^6+3*a^5*e-a^4*b*e+26*a^3*b^2*e+16*a^2*b^3*e-29*a*b^4*e-50*b^5*e-6*a^4*c*e+31*a^3*b*c*e+43*a^2*b^2*c*e+12*a*b^3*c*e+31*b^4*c*e-21*a^3*c^2*e+25*a^2*b*c^2*e+20*a*b^2*c^2*e+15*b^3*c^2*e-4*a^2*c^3*e-48*a*b*c^3*e-29*b^2*c^3*e+43*a*c^4*e-41*b*c^4*e-15*c^5*e-13*a^4*d*e-29*a^3*b*d*e+7*a^2*b^2*d*e+4*a*b^3*d*e-50*b^4*d*e+3*a^3*c*d*e+4*a^2*b*c*d*e+7*a*b^2*c*d*e+4*b^3*c*d*e+16*a^2*c^2*d*e-42*a*b*c^2*d*e+36*b^2*c^2*d*e-5*a*c^3*d*e+13*b*c^3*d*e+17*c^4*d*e+18*a^3*d^2*e-16*a^2*b*d^2*e-32*a*b^2*d^2*e-16*b^3*d^2*e-34*a^2*c*d^2*e-22*a*b*c*d^2*e-12*b^2*c*d^2*e+35*a*c^2*d^2*e+33*b*c^2*d^2*e-47*c^3*d^2*e+12*a^2*d^3*e-43*a*b*d^3*e+11*b^2*d^3*e+2*a*c*d^3*e+42*b*c*d^3*e-18*c^2*d^3*e+44*a*d^4*e+25*b*d^4*e+41*c*d^4*e+40*d^5*e+40*a^4*e^2-3*a^3*b*e^2-8*a^2*b^2*e^2+a*b^3*e^2-27*b^4*e^2+15*a^3*c*e^2+49*a^2*b*c*e^2-14*a*b^2*c*e^2+31*b^3*c*e^2+36*a^2*c^2*e^2-14*a*b*c^2*e^2-31*b^2*c^2*e^2+48*a*c^3*e^2-24*b*c^3*e^2-30*c^4*e^2-47*a^3*d*e^2+12*a^2*b*d*e^2+44*a*b^2*d*e^2+47*b^3*d*e^2-5*a^2*c*d*e^2+23*a*b*c*d*e^2+48*b^2*c*d*e^2-25*a*c^2*d*e^2-7*b*c^2*d*e^2+32*a^2*d^2*e^2+35*a*b*d^2*e^2-19*b^2*d^2*e^2+19*a*c*d^2*e^2+26*b*c*d^2*e^2+26*c^2*d^2*e^2+8*a*d^3*e^2-21*b*d^3*e^2-6*c*d^3*e^2-35*d^4*e^2-30*a^3*e^3+36*a^2*b*e^3-27*a*b^2*e^3-33*b^3*e^3-50*a^2*c*e^3+41*a*b*c*e^3+13*b^2*c*e^3+20*a*c^2*e^3+36*b*c^2*e^3+14*c^3*e^3+40*a^2*d*e^3-35*a*b*d*e^3+11*b^2*d*e^3+36*a*c*d*e^3+23*b*c*d*e^3-34*c^2*d*e^3+25*a*d^2*e^3-14*b*d^2*e^3-5*c*d^2*e^3+11*d^3*e^3+42*a^2*e^4-48*a*b*e^4-27*b^2*e^4-17*a*c*e^4+32*b*c*e^4-3*c^2*e^4-3*a*d*e^4-33*b*d*e^4-3*c*d*e^4-14*d^2*e^4+8*a*e^5+14*b*e^5+3*c*e^5-34*d*e^5-46*e^6,
2883a*b*c^3*d-20*a^4*d^2+23*a^3*b*d^2-14*a^2*b^2*d^2+29*a*b^3*d^2-36*b^4*d^2-48*a^3*c*d^2+39*a^2*b*c*d^2-34*a*b^2*c*d^2+b^3*c*d^2-25*a^2*c^2*d^2+22*a*b*c^2*d^2-12*b^2*c^2*d^2+48*a*c^3*d^2-41*b*c^3*d^2+13*c^4*d^2-24*a^3*d^3-43*a^2*b*d^3-31*a*b^2*d^3-13*b^3*d^3+10*a^2*c*d^3-16*a*b*c*d^3+48*b^2*c*d^3-18*a*c^2*d^3+7*b*c^2*d^3+8*c^3*d^3-14*a^2*d^4-14*a*b*d^4+49*b^2*d^4+43*a*c*d^4+7*b*c*d^4-50*c^2*d^4-21*a*d^5-33*b*d^5-44*c*d^5-40*d^6-42*a^5*e+39*a^4*b*e-14*a^3*b^2*e+34*a^2*b^3*e+22*a*b^4*e+37*b^5*e+24*a^4*c*e+39*a^3*b*c*e-43*a^2*b^2*c*e-40*a*b^3*c*e-6*b^4*c*e-45*a^3*c^2*e+18*a^2*b*c^2*e-8*a*b^2*c^2*e+22*b^3*c^2*e-36*a^2*c^3*e+31*a*b*c^3*e+15*b^2*c^3*e+7*a*c^4*e-18*b*c^4*e-31*c^5*e-20*a^4*d*e+25*a^3*b*d*e-11*a^2*b^2*d*e-21*a*b^3*d*e-23*b^4*d*e+18*a^3*c*d*e-49*a^2*b*c*d*e+5*a*b^2*c*d*e+21*b^3*c*d*e-2*a^2*c^2*d*e+42*a*b*c^2*d*e-37*b^2*c^2*d*e+28*a*c^3*d*e-8*b*c^3*d*e+c^4*d*e+10*a^3*d^2*e-16*a^2*b*d^2*e-20*a*b^2*d^2*e+42*b^3*d^2*e+23*a^2*c*d^2*e-16*a*b*c*d^2*e+39*b^2*c*d^2*e+3*a*c^2*d^2*e+25*b*c^2*d^2*e-16*c^3*d^2*e-33*a^2*d^3*e-28*a*b*d^3*e+4*b^2*d^3*e-15*a*c*d^3*e-30*b*c*d^3*e-5*c^2*d^3*e-8*b*d^4*e-21*c*d^4*e+6*d^5*e-9*a^4*e^2-23*a^3*b*e^2-45*a^2*b^2*e^2+33*a*b^3*e^2+14*b^4*e^2+8*a^3*c*e^2+5*a^2*b*c*e^2-13*a*b^2*c*e^2-39*b^3*c*e^2-4*a^2*c^2*e^2+30*a*b*c^2*e^2-38*b^2*c^2*e^2+24*a*c^3*e^2-29*b*c^3*e^2-3*c^4*e^2+3*a^3*d*e^2+43*a^2*b*d*e^2-21*a*b^2*d*e^2-45*b^3*d*e^2-3*a^2*c*d*e^2-22*a*b*c*d*e^2+16*b^2*c*d*e^2-42*b*c^2*d*e^2-43*c^3*d*e^2-10*a*b*d^2*e^2+23*b^2*d^2*e^2-36*a*c*d^2*e^2+29*b*c*d^2*e^2-11*c^2*d^2*e^2+18*a*d^3*e^2-46*b*d^3*e^2-34*c*d^3*e^2+21*d^4*e^2+4*a^3*e^3+23*a^2*b*e^3-18*a*b^2*e^3-10*b^3*e^3+3*a^2*c*e^3+a*b*c*e^3-32*b^2*c*e^3-19*a*c^2*e^3-5*b*c^2*e^3+25*c^3*e^3-40*a^2*d*e^3-37*a*b*d*e^3-10*b^2*d*e^3-20*a*c*d*e^3+35*b*c*d*e^3+2*c^2*d*e^3+46*a*d^2*e^3+46*b*d^2*e^3+25*c*d^2*e^3+14*d^3*e^3-28*a^2*e^4+24*a*b*e^4-38*b^2*e^4+11*a*c*e^4+15*b*c*e^4-10*c^2*e^4-32*a*d*e^4+37*b*d*e^4+21*c*d*e^4-25*d^2*e^4-47*a*e^5-32*b*e^5+5*c*e^5+17*d*e^5+44*e^6,
2884a^2*c^3*d+25*a^4*d^2-40*a^3*b*d^2-49*a^2*b^2*d^2+30*a*b^3*d^2-36*b^4*d^2+41*a^3*c*d^2+23*a^2*b*c*d^2-16*a*b^2*c*d^2-20*b^3*c*d^2-46*a^2*c^2*d^2-29*a*b*c^2*d^2-14*b^2*c^2*d^2-38*a*c^3*d^2+9*b*c^3*d^2+50*c^4*d^2-20*a^3*d^3-14*a^2*b*d^3+13*a*b^2*d^3+5*b^3*d^3+7*a^2*c*d^3+46*a*b*c*d^3+40*b^2*c*d^3-46*a*c^2*d^3+27*b*c^2*d^3-5*c^3*d^3+43*a^2*d^4+5*a*b*d^4+3*b^2*d^4+29*a*c*d^4-43*b*c*d^4-31*c^2*d^4-24*a*d^5-45*b*d^5-26*c*d^5-6*d^6+18*a^5*e+22*a^4*b*e-12*a^3*b^2*e+40*a^2*b^3*e-8*a*b^4*e+36*b^5*e+5*a^4*c*e+46*a^3*b*c*e+6*a^2*b^2*c*e-39*a*b^3*c*e-29*b^4*c*e+36*a^3*c^2*e+35*a^2*b*c^2*e+11*a*b^2*c^2*e-12*b^3*c^2*e+13*a^2*c^3*e+15*a*b*c^3*e+38*b^2*c^3*e-4*a*c^4*e-46*b*c^4*e+25*c^5*e-31*a^4*d*e+35*a^3*b*d*e+37*a^2*b^2*d*e+27*a*b^3*d*e-30*b^4*d*e-37*a^3*c*d*e-2*a^2*b*c*d*e+10*a*b^2*c*d*e+12*b^3*c*d*e+39*a^2*c^2*d*e+35*a*b*c^2*d*e-17*b^2*c^2*d*e-30*a*c^3*d*e+32*b*c^3*d*e+41*c^4*d*e+49*a^3*d^2*e-42*a^2*b*d^2*e-22*a*b^2*d^2*e-3*b^3*d^2*e+17*a^2*c*d^2*e+31*a*b*c*d^2*e+23*b^2*c*d^2*e+4*a*c^2*d^2*e+50*b*c^2*d^2*e+43*c^3*d^2*e+17*a^2*d^3*e-30*a*b*d^3*e+43*b^2*d^3*e+7*a*c*d^3*e+30*b*c*d^3*e+37*c^2*d^3*e-a*d^4*e+6*b*d^4*e+22*c*d^4*e-34*d^5*e-48*a^4*e^2+14*a^3*b*e^2+17*a^2*b^2*e^2-39*a*b^3*e^2+37*b^4*e^2-27*a^3*c*e^2+14*a^2*b*c*e^2-43*a*b^2*c*e^2+42*b^3*c*e^2-31*a^2*c^2*e^2+43*a*b*c^2*e^2-34*b^2*c^2*e^2-40*a*c^3*e^2-14*b*c^3*e^2+19*c^4*e^2+11*a^3*d*e^2+23*a^2*b*d*e^2+11*a*b^2*d*e^2+22*b^3*d*e^2+41*a^2*c*d*e^2-20*a*b*c*d*e^2+b^2*c*d*e^2-34*a*c^2*d*e^2-39*b*c^2*d*e^2-20*c^3*d*e^2+25*a^2*d^2*e^2+33*a*b*d^2*e^2-38*b^2*d^2*e^2-34*a*c*d^2*e^2-37*b*c*d^2*e^2-15*c^2*d^2*e^2-13*a*d^3*e^2-42*b*d^3*e^2+49*c*d^3*e^2+29*d^4*e^2-48*a^3*e^3+49*a^2*b*e^3-50*a*b^2*e^3-44*b^3*e^3-42*a^2*c*e^3+14*a*b*c*e^3-34*b^2*c*e^3+3*a*c^2*e^3-b*c^2*e^3+28*c^3*e^3+24*a^2*d*e^3+37*a*b*d*e^3+29*b^2*d*e^3-a*c*d*e^3+31*b*c*d*e^3-14*c^2*d*e^3-36*a*d^2*e^3-4*b*d^2*e^3+29*c*d^2*e^3-47*d^3*e^3-36*a^2*e^4-13*a*b*e^4-45*b^2*e^4-23*a*c*e^4-32*b*c*e^4+2*c^2*e^4+11*a*d*e^4-24*b*d*e^4-46*c*d*e^4-40*d^2*e^4-4*a*e^5-29*b*e^5+14*c*e^5-44*d*e^5+32*e^6,
2885b^3*c^2*d+13*a^4*d^2+14*a^3*b*d^2-11*a^2*b^2*d^2-12*a*b^3*d^2-8*b^4*d^2-46*a^3*c*d^2-26*a^2*b*c*d^2+28*a*b^2*c*d^2+13*b^3*c*d^2-36*a^2*c^2*d^2+35*a*b*c^2*d^2+49*b^2*c^2*d^2+32*a*c^3*d^2+17*b*c^3*d^2+34*c^4*d^2-8*a^3*d^3-10*a^2*b*d^3+31*a*b^2*d^3-22*b^3*d^3+a^2*c*d^3+32*a*b*c*d^3+33*b^2*c*d^3+34*a*c^2*d^3-36*b*c^2*d^3-11*c^3*d^3-42*a^2*d^4-15*a*b*d^4-3*b^2*d^4-48*a*c*d^4+12*b*c*d^4+35*c^2*d^4-43*a*d^5+9*b*d^5+47*c*d^5+19*d^6-18*a^5*e+9*a^4*b*e+34*a^3*b^2*e+5*a^2*b^3*e+46*a*b^4*e-34*b^5*e-42*a^4*c*e-36*a^3*b*c*e+5*a^2*b^2*c*e+43*a*b^3*c*e-18*b^4*c*e+21*a^3*c^2*e-45*a^2*b*c^2*e-31*a*b^2*c^2*e+2*b^3*c^2*e+a*b*c^3*e-45*b^2*c^3*e+41*a*c^4*e+37*b*c^4*e-32*c^5*e+19*a^4*d*e-30*a^3*b*d*e+5*a^2*b^2*d*e+17*a*b^3*d*e+47*b^4*d*e-23*a^3*c*d*e+4*a^2*b*c*d*e+14*a*b^2*c*d*e-31*b^3*c*d*e+50*a^2*c^2*d*e-18*a*b*c^2*d*e-37*b^2*c^2*d*e-35*a*c^3*d*e+29*b*c^3*d*e-28*c^4*d*e+3*a^3*d^2*e+13*a^2*b*d^2*e-30*a*b^2*d^2*e-9*b^3*d^2*e+20*a^2*c*d^2*e+17*a*b*c*d^2*e-21*b^2*c*d^2*e-41*a*c^2*d^2*e-32*b*c^2*d^2*e+33*c^3*d^2*e-3*a^2*d^3*e-23*a*b*d^3*e-47*b^2*d^3*e-19*c^2*d^3*e+12*a*d^4*e-32*b*d^4*e-37*c*d^4*e+20*d^5*e+21*a^4*e^2+18*a^3*b*e^2-4*a^2*b^2*e^2+25*a*b^3*e^2-13*b^4*e^2+28*a^3*c*e^2-28*a^2*b*c*e^2-37*a*b^2*c*e^2-32*b^3*c*e^2+8*a^2*c^2*e^2+34*a*b*c^2*e^2-21*b^2*c^2*e^2+15*a*c^3*e^2-39*b*c^3*e^2-45*c^4*e^2-26*a^3*d*e^2+34*a^2*b*d*e^2-25*a*b^2*d*e^2+24*b^3*d*e^2+5*a^2*c*d*e^2+36*a*b*c*d*e^2-27*b^2*c*d*e^2+31*a*c^2*d*e^2+31*b*c^2*d*e^2+13*c^3*d*e^2-3*a^2*d^2*e^2-18*a*b*d^2*e^2+47*b^2*d^2*e^2+20*a*c*d^2*e^2+8*b*c*d^2*e^2-37*c^2*d^2*e^2+21*a*d^3*e^2+3*b*d^3*e^2-34*c*d^3*e^2+28*d^4*e^2-19*a^3*e^3+33*a^2*b*e^3-50*a*b^2*e^3-44*b^3*e^3+17*a^2*c*e^3-48*a*b*c*e^3-3*b^2*c*e^3+33*a*c^2*e^3+13*b*c^2*e^3-29*c^3*e^3+38*a^2*d*e^3-44*a*b*d*e^3-36*b^2*d*e^3-17*a*c*d*e^3+38*b*c*d*e^3+47*c^2*d*e^3+4*a*d^2*e^3-11*b*d^2*e^3-14*c*d^2*e^3-46*d^3*e^3-17*a^2*e^4-23*a*b*e^4+26*b^2*e^4+24*a*c*e^4-37*b*c*e^4+34*c^2*e^4+24*a*d*e^4-32*b*d*e^4-19*c*d*e^4+15*d^2*e^4-33*a*e^5+7*b*e^5-29*c*e^5+37*d*e^5-16*e^6,
2886a*b^2*c^2*d-26*a^4*d^2-24*a^3*b*d^2-36*a^2*b^2*d^2+26*a*b^3*d^2+26*b^4*d^2+44*a^3*c*d^2-31*a^2*b*c*d^2-49*a*b^2*c*d^2-30*b^3*c*d^2-13*a^2*c^2*d^2+49*a*b*c^2*d^2-50*b^2*c^2*d^2+27*a*c^3*d^2+24*c^4*d^2-47*a^3*d^3+29*a^2*b*d^3+31*a*b^2*d^3-30*b^3*d^3+39*a^2*c*d^3+23*a*b*c*d^3+5*b^2*c*d^3-30*a*c^2*d^3-20*b*c^2*d^3-27*c^3*d^3-40*a^2*d^4+36*a*b*d^4+28*b^2*d^4+29*a*c*d^4+2*b*c*d^4+14*c^2*d^4-41*a*d^5+22*b*d^5+22*c*d^5+9*d^6-22*a^5*e-33*a^4*b*e-19*a^3*b^2*e+30*a^2*b^3*e+4*a*b^4*e+42*b^5*e-13*a^4*c*e+27*a^3*b*c*e-10*a^2*b^2*c*e+21*a*b^3*c*e-46*b^4*c*e-22*a^3*c^2*e-9*a^2*b*c^2*e+11*a*b^2*c^2*e+33*b^3*c^2*e-4*a^2*c^3*e-26*a*b*c^3*e+47*b^2*c^3*e+41*a*c^4*e-23*b*c^4*e-35*c^5*e-28*a^4*d*e+6*a^3*b*d*e+39*a^2*b^2*d*e+12*a*b^3*d*e-46*b^4*d*e+5*a^3*c*d*e-4*a^2*b*c*d*e+45*a*b^2*c*d*e-8*b^3*c*d*e-46*a^2*c^2*d*e-34*a*b*c^2*d*e-47*b^2*c^2*d*e+20*a*c^3*d*e+10*b*c^3*d*e+2*c^4*d*e+22*a^3*d^2*e-5*a^2*b*d^2*e+24*a*b^2*d^2*e+27*b^3*d^2*e+10*a^2*c*d^2*e-27*a*b*c*d^2*e+13*b^2*c*d^2*e+38*a*c^2*d^2*e+20*b*c^2*d^2*e-46*c^3*d^2*e-47*a^2*d^3*e+42*a*b*d^3*e-34*b^2*d^3*e-3*a*c*d^3*e+4*b*c*d^3*e+4*c^2*d^3*e+47*a*d^4*e+46*b*d^4*e+29*c*d^4*e+28*d^5*e+18*a^4*e^2+19*a^3*b*e^2+6*a^2*b^2*e^2-38*a*b^3*e^2-22*b^4*e^2-21*a^3*c*e^2+44*a^2*b*c*e^2-23*a*b^2*c*e^2-20*b^3*c*e^2-35*a^2*c^2*e^2-33*a*b*c^2*e^2+b^2*c^2*e^2+2*a*c^3*e^2+36*b*c^3*e^2+29*c^4*e^2-14*a^2*b*d*e^2-44*a*b^2*d*e^2+7*b^3*d*e^2+17*a^2*c*d*e^2-2*a*b*c*d*e^2+18*b^2*c*d*e^2-41*a*c^2*d*e^2+41*b*c^2*d*e^2+40*c^3*d*e^2+6*a^2*d^2*e^2-15*a*b*d^2*e^2-39*b^2*d^2*e^2-50*a*c*d^2*e^2-43*b*c*d^2*e^2-3*c^2*d^2*e^2+29*a*d^3*e^2-3*b*d^3*e^2+48*c*d^3*e^2+22*d^4*e^2+24*a^3*e^3+5*a^2*b*e^3-3*a*b^2*e^3-36*b^3*e^3-50*a^2*c*e^3+23*a*b*c*e^3+9*b^2*c*e^3+3*a*c^2*e^3+45*b*c^2*e^3-24*c^3*e^3-30*a^2*d*e^3+31*a*b*d*e^3+26*b^2*d*e^3-37*a*c*d*e^3-38*b*c*d*e^3-36*c^2*d*e^3-8*a*d^2*e^3-41*b*d^2*e^3-40*c*d^2*e^3+25*d^3*e^3-25*a^2*e^4+12*a*b*e^4-25*b^2*e^4-39*a*c*e^4-19*b*c*e^4-21*c^2*e^4+34*a*d*e^4-35*b*d*e^4+9*c*d*e^4-32*d^2*e^4+29*a*e^5+32*b*e^5-25*c*e^5-31*d*e^5-34*e^6,
2887a^2*b*c^2*d+14*a^4*d^2+25*a^3*b*d^2-2*a^2*b^2*d^2-32*a*b^3*d^2-31*b^4*d^2-40*a^3*c*d^2-15*a^2*b*c*d^2+50*a*b^2*c*d^2+b^3*c*d^2-7*a^2*c^2*d^2-14*a*b*c^2*d^2+8*b^2*c^2*d^2+25*a*c^3*d^2+6*b*c^3*d^2+25*c^4*d^2-20*a^3*d^3+a^2*b*d^3-27*a*b^2*d^3+24*b^3*d^3+33*a^2*c*d^3-14*a*b*c*d^3-48*b^2*c*d^3+10*a*c^2*d^3+8*b*c^2*d^3+13*c^3*d^3-11*a^2*d^4+41*a*b*d^4+48*b^2*d^4+29*a*c*d^4-29*b*c*d^4+40*c^2*d^4+50*a*d^5+33*b*d^5-35*c*d^5-17*d^6-31*a^5*e+42*a^4*b*e+48*a^3*b^2*e-48*a^2*b^3*e-6*a*b^4*e+27*b^5*e+31*a^4*c*e+6*a^3*b*c*e-20*a^2*b^2*c*e-10*a*b^3*c*e-34*b^4*c*e-45*a^3*c^2*e+15*a^2*b*c^2*e+37*a*b^2*c^2*e+34*b^3*c^2*e-14*a^2*c^3*e-9*a*b*c^3*e-33*b^2*c^3*e-42*a*c^4*e+20*b*c^4*e+4*c^5*e+28*a^4*d*e+10*a^3*b*d*e-23*a^2*b^2*d*e-17*a*b^3*d*e-44*b^4*d*e-8*a^3*c*d*e-13*a^2*b*c*d*e+35*a*b^2*c*d*e-49*b^3*c*d*e-23*a^2*c^2*d*e-43*a*b*c^2*d*e+11*b^2*c^2*d*e+45*a*c^3*d*e-38*b*c^3*d*e-44*c^4*d*e+45*a^3*d^2*e+9*a^2*b*d^2*e+31*a*b^2*d^2*e-18*b^3*d^2*e-30*a^2*c*d^2*e+4*a*b*c*d^2*e+50*b^2*c*d^2*e+24*a*c^2*d^2*e+24*b*c^2*d^2*e-11*c^3*d^2*e-11*a^2*d^3*e-36*a*b*d^3*e+5*b^2*d^3*e+26*a*c*d^3*e-18*b*c*d^3*e-41*c^2*d^3*e-2*a*d^4*e+17*b*d^4*e+46*c*d^4*e+9*d^5*e-49*a^4*e^2-13*a^3*b*e^2+47*a^2*b^2*e^2+19*a*b^3*e^2+42*b^4*e^2+15*a^3*c*e^2-48*a^2*b*c*e^2+33*a*b^2*c*e^2-28*b^3*c*e^2-5*a^2*c^2*e^2-32*a*b*c^2*e^2+2*b^2*c^2*e^2-25*a*c^3*e^2-8*b*c^3*e^2+8*c^4*e^2-48*a^3*d*e^2-12*a^2*b*d*e^2-49*a*b^2*d*e^2+49*b^3*d*e^2-4*a^2*c*d*e^2-40*a*b*c*d*e^2+42*b^2*c*d*e^2-11*a*c^2*d*e^2+12*b*c^2*d*e^2+5*c^3*d*e^2+40*a^2*d^2*e^2+21*a*b*d^2*e^2-37*b^2*d^2*e^2+10*a*c*d^2*e^2-38*b*c*d^2*e^2-22*c^2*d^2*e^2-a*d^3*e^2+20*b*d^3*e^2-31*c*d^3*e^2-15*d^4*e^2+31*a^3*e^3-24*a^2*b*e^3-6*b^3*e^3-10*a^2*c*e^3-27*a*b*c*e^3+15*b^2*c*e^3-40*b*c^2*e^3+36*c^3*e^3+12*a^2*d*e^3+32*a*b*d*e^3-39*b^2*d*e^3-9*a*c*d*e^3+13*b*c*d*e^3+35*c^2*d*e^3+31*a*d^2*e^3-4*b*d^2*e^3+14*c*d^2*e^3+19*d^3*e^3-36*a^2*e^4-44*a*b*e^4-10*b^2*e^4+29*a*c*e^4-26*b*c*e^4+43*c^2*e^4+5*a*d*e^4+3*b*d*e^4-17*c*d*e^4+48*d^2*e^4-16*a*e^5+2*b*e^5-41*c*e^5-15*d*e^5-19*e^6,
2888a^3*c^2*d+17*a^4*d^2+4*a^3*b*d^2+a^2*b^2*d^2+20*a*b^3*d^2-36*b^4*d^2-13*a^3*c*d^2+40*a^2*b*c*d^2-21*a*b^2*c*d^2-35*b^3*c*d^2-33*a^2*c^2*d^2-a*b*c^2*d^2+12*b^2*c^2*d^2+33*a*c^3*d^2-34*b*c^3*d^2-11*c^4*d^2+9*a^3*d^3-32*a^2*b*d^3+42*a*b^2*d^3-49*b^3*d^3-12*a^2*c*d^3-12*a*b*c*d^3+12*b^2*c*d^3+20*a*c^2*d^3+44*b*c^2*d^3+15*c^3*d^3+16*a^2*d^4+46*a*b*d^4+26*b^2*d^4+2*a*c*d^4-28*b*c*d^4-45*c^2*d^4+17*a*d^5-29*b*d^5+28*c*d^5-39*d^6+16*a^5*e+50*a^4*b*e+5*a^3*b^2*e+5*a^2*b^3*e-30*a*b^4*e-8*b^5*e+29*a^4*c*e-48*a^3*b*c*e-33*a^2*b^2*c*e-25*a*b^3*c*e+40*b^4*c*e-31*a^3*c^2*e-15*a^2*b*c^2*e+2*a*b^2*c^2*e+28*b^3*c^2*e-39*a^2*c^3*e+10*a*b*c^3*e-35*b^2*c^3*e+33*a*c^4*e-26*b*c^4*e-23*c^5*e+27*a^4*d*e-34*a^3*b*d*e+9*a^2*b^2*d*e+22*a*b^3*d*e-35*b^4*d*e+24*a^3*c*d*e+6*a^2*b*c*d*e+29*a*b^2*c*d*e-43*b^3*c*d*e+12*a^2*c^2*d*e+50*a*b*c^2*d*e-21*b^2*c^2*d*e-5*a*c^3*d*e-3*b*c^3*d*e-25*c^4*d*e+38*a^3*d^2*e-37*a^2*b*d^2*e+6*a*b^2*d^2*e+47*b^3*d^2*e+25*a^2*c*d^2*e+27*a*b*c*d^2*e+6*b^2*c*d^2*e-12*a*c^2*d^2*e-45*b*c^2*d^2*e-31*c^3*d^2*e-40*a^2*d^3*e+44*b^2*d^3*e-32*a*c*d^3*e-4*b*c*d^3*e-31*c^2*d^3*e+16*a*d^4*e-24*b*d^4*e+40*c*d^4*e-13*d^5*e-10*a^4*e^2+26*a^3*b*e^2+12*a^2*b^2*e^2+45*a*b^3*e^2+43*b^4*e^2+26*a^3*c*e^2+21*a^2*b*c*e^2-3*a*b^2*c*e^2-18*b^3*c*e^2+24*a^2*c^2*e^2+20*a*b*c^2*e^2-13*b^2*c^2*e^2+43*a*c^3*e^2+34*b*c^3*e^2-24*c^4*e^2+29*a^3*d*e^2+13*a^2*b*d*e^2-7*a*b^2*d*e^2-5*b^3*d*e^2+45*a^2*c*d*e^2+10*a*b*c*d*e^2+30*b^2*c*d*e^2-13*a*c^2*d*e^2+43*b*c^2*d*e^2+37*c^3*d*e^2+29*a^2*d^2*e^2+46*a*b*d^2*e^2+33*b^2*d^2*e^2+18*a*c*d^2*e^2-22*b*c*d^2*e^2+13*c^2*d^2*e^2+44*a*d^3*e^2+38*b*d^3*e^2+27*c*d^3*e^2+44*d^4*e^2-29*a^2*b*e^3-36*a*b^2*e^3+40*b^3*e^3+9*a^2*c*e^3-19*a*b*c*e^3+36*b^2*c*e^3+5*a*c^2*e^3+20*b*c^2*e^3+3*c^3*e^3+49*a^2*d*e^3-46*a*b*d*e^3+7*b^2*d*e^3-26*a*c*d*e^3+17*b*c*d*e^3-48*c^2*d*e^3-9*a*d^2*e^3-25*b*d^2*e^3-25*c*d^2*e^3-12*d^3*e^3+13*a^2*e^4+a*b*e^4+5*b^2*e^4+44*a*c*e^4+14*b*c*e^4+42*c^2*e^4+16*a*d*e^4+12*b*d*e^4+20*c*d*e^4+16*d^2*e^4-27*a*e^5+13*b*e^5+38*c*e^5-d*e^5-26*e^6,
2889b^4*c*d-16*a^4*d^2-19*a^3*b*d^2+43*a^2*b^2*d^2+18*a*b^3*d^2-14*b^4*d^2-6*a^3*c*d^2-33*a^2*b*c*d^2-38*a*b^2*c*d^2-4*b^3*c*d^2+16*a^2*c^2*d^2-38*a*b*c^2*d^2+40*b^2*c^2*d^2+11*a*c^3*d^2+36*b*c^3*d^2+26*c^4*d^2+a^3*d^3-37*a^2*b*d^3-5*a*b^2*d^3-36*b^3*d^3+38*a^2*c*d^3+32*a*b*c*d^3+12*b^2*c*d^3+24*a*c^2*d^3-40*b*c^2*d^3-9*c^3*d^3+15*a^2*d^4+36*a*b*d^4-50*b^2*d^4-43*a*c*d^4+43*b*c*d^4+33*c^2*d^4-8*a*d^5-28*b*d^5-42*c*d^5-20*d^6+16*a^5*e+4*a^4*b*e+41*a^3*b^2*e+18*a^2*b^3*e+26*a*b^4*e+12*b^5*e+3*a^4*c*e-50*a^3*b*c*e+12*a^2*b^2*c*e-6*a*b^3*c*e-40*b^4*c*e+48*a^3*c^2*e+46*a^2*b*c^2*e-24*a*b^2*c^2*e+47*b^3*c^2*e-30*a^2*c^3*e+30*a*b*c^3*e+19*b^2*c^3*e-9*a*c^4*e-33*b*c^4*e-43*c^5*e-31*a^4*d*e-46*a^3*b*d*e-19*a^2*b^2*d*e-40*a*b^3*d*e+17*b^4*d*e-7*a^3*c*d*e+27*a^2*b*c*d*e-18*a*b^2*c*d*e+40*b^3*c*d*e+13*a^2*c^2*d*e-40*a*b*c^2*d*e-21*b^2*c^2*d*e+48*a*c^3*d*e-23*b*c^3*d*e-41*c^4*d*e-19*a^3*d^2*e+26*a^2*b*d^2*e-35*a*b^2*d^2*e-5*b^3*d^2*e+23*a^2*c*d^2*e+44*a*b*c*d^2*e-11*b^2*c*d^2*e+2*a*c^2*d^2*e-23*b*c^2*d^2*e-9*c^3*d^2*e+26*a^2*d^3*e+3*a*b*d^3*e+27*b^2*d^3*e+24*a*c*d^3*e+b*c*d^3*e-33*c^2*d^3*e+27*a*d^4*e-49*b*d^4*e-33*c*d^4*e+3*d^5*e-5*a^4*e^2-39*a^3*b*e^2-a^2*b^2*e^2+9*a*b^3*e^2+38*b^4*e^2+48*a^3*c*e^2-50*a^2*b*c*e^2+31*a*b^2*c*e^2-b^3*c*e^2+40*a^2*c^2*e^2+46*a*b*c^2*e^2-9*b^2*c^2*e^2-5*a*c^3*e^2+2*b*c^3*e^2-3*c^4*e^2-4*a^3*d*e^2+20*a^2*b*d*e^2-42*a*b^2*d*e^2+5*b^3*d*e^2-29*a^2*c*d*e^2+21*a*b*c*d*e^2-36*b^2*c*d*e^2+34*a*c^2*d*e^2+18*b*c^2*d*e^2-45*c^3*d*e^2+13*a^2*d^2*e^2-25*a*b*d^2*e^2+27*b^2*d^2*e^2+32*b*c*d^2*e^2+38*c^2*d^2*e^2+2*a*d^3*e^2+10*b*d^3*e^2+31*c*d^3*e^2-6*d^4*e^2+8*a^3*e^3-40*a^2*b*e^3+34*a*b^2*e^3+50*b^3*e^3-10*a^2*c*e^3-36*a*b*c*e^3-17*b^2*c*e^3-39*a*c^2*e^3+19*b*c^2*e^3-13*c^3*e^3+28*a^2*d*e^3+27*a*b*d*e^3+28*b^2*d*e^3+13*a*c*d*e^3+47*b*c*d*e^3-32*c^2*d*e^3+6*a*d^2*e^3+16*b*d^2*e^3-2*c*d^2*e^3+39*d^3*e^3+12*a^2*e^4-12*a*b*e^4+27*b^2*e^4-4*a*c*e^4+7*b*c*e^4-2*c^2*e^4+30*a*d*e^4-16*b*d*e^4-13*c*d*e^4+18*d^2*e^4-6*a*e^5+32*b*e^5-46*c*e^5+33*d*e^5+26*e^6,
2890a*b^3*c*d-15*a^4*d^2-41*a^3*b*d^2-50*a^2*b^2*d^2-45*b^4*d^2+29*a^3*c*d^2+43*a^2*b*c*d^2-7*a*b^2*c*d^2-49*b^3*c*d^2+10*a^2*c^2*d^2+13*a*b*c^2*d^2-8*b^2*c^2*d^2+22*a*c^3*d^2+21*b*c^3*d^2-20*c^4*d^2-25*a^3*d^3+28*a^2*b*d^3+36*a*b^2*d^3+b^3*d^3-38*a^2*c*d^3+34*a*b*c*d^3-33*b^2*c*d^3+11*a*c^2*d^3+48*b*c^2*d^3+33*c^3*d^3+5*a^2*d^4+5*a*b*d^4+4*b^2*d^4+37*a*c*d^4+44*b*c*d^4-35*c^2*d^4+8*a*d^5+38*b*d^5+43*c*d^5-15*d^6+15*a^5*e+31*a^4*b*e-30*a^3*b^2*e+46*a^2*b^3*e-29*a*b^4*e+13*b^5*e-38*a^4*c*e+39*a^3*b*c*e+3*a^2*b^2*c*e-19*a*b^3*c*e-50*b^4*c*e-a^3*c^2*e+3*a^2*b*c^2*e-8*a*b^2*c^2*e-34*b^3*c^2*e-40*a^2*c^3*e+43*a*b*c^3*e+45*b^2*c^3*e-31*a*c^4*e+19*b*c^4*e+38*c^5*e+5*a^4*d*e-43*a^3*b*d*e+23*a^2*b^2*d*e+38*a*b^3*d*e-35*b^4*d*e-46*a^3*c*d*e+46*a^2*b*c*d*e-41*a*b^2*c*d*e+16*b^3*c*d*e-37*a^2*c^2*d*e+28*a*b*c^2*d*e-8*b^2*c^2*d*e+40*a*c^3*d*e-42*b*c^3*d*e-22*c^4*d*e+36*a^3*d^2*e+17*a^2*b*d^2*e+4*a*b^2*d^2*e+38*b^3*d^2*e-41*a^2*c*d^2*e-7*a*b*c*d^2*e-34*b^2*c*d^2*e+10*a*c^2*d^2*e-7*b*c^2*d^2*e-35*c^3*d^2*e-26*a^2*d^3*e-a*b*d^3*e-12*b^2*d^3*e+46*a*c*d^3*e-44*b*c*d^3*e+14*c^2*d^3*e-42*a*d^4*e-8*b*d^4*e+39*c*d^4*e+17*d^5*e+43*a^4*e^2+10*a^3*b*e^2-13*a^2*b^2*e^2-a*b^3*e^2+32*b^4*e^2+4*a^3*c*e^2+10*a^2*b*c*e^2-34*a*b^2*c*e^2+5*b^3*c*e^2-30*a^2*c^2*e^2-6*a*b*c^2*e^2+38*b^2*c^2*e^2-44*a*c^3*e^2+9*b*c^3*e^2+11*c^4*e^2+10*a^3*d*e^2+50*a^2*b*d*e^2-2*a*b^2*d*e^2-26*b^3*d*e^2+15*a^2*c*d*e^2-40*a*b*c*d*e^2+21*b^2*c*d*e^2-45*a*c^2*d*e^2-5*b*c^2*d*e^2-8*c^3*d*e^2+5*a^2*d^2*e^2+8*a*b*d^2*e^2-40*b^2*d^2*e^2+28*a*c*d^2*e^2-26*b*c*d^2*e^2+28*c^2*d^2*e^2+20*a*d^3*e^2-32*b*d^3*e^2-c*d^3*e^2-47*d^4*e^2-41*a^3*e^3-10*a^2*b*e^3-9*a*b^2*e^3+18*b^3*e^3-36*a^2*c*e^3+43*a*b*c*e^3+b^2*c*e^3+5*a*c^2*e^3+35*b*c^2*e^3-29*c^3*e^3+49*a^2*d*e^3+11*a*b*d*e^3-14*b^2*d*e^3-18*a*c*d*e^3+48*b*c*d*e^3-5*c^2*d*e^3-39*a*d^2*e^3+16*c*d^2*e^3+21*d^3*e^3+29*a^2*e^4+42*a*b*e^4+16*b^2*e^4+21*a*c*e^4-40*b*c*e^4-23*a*d*e^4-27*b*d*e^4+19*c*d*e^4-3*d^2*e^4+29*a*e^5+23*b*e^5-48*c*e^5-14*d*e^5-39*e^6,
2891a^2*b^2*c*d+30*a^4*d^2-8*a^3*b*d^2-31*a^2*b^2*d^2-48*a*b^3*d^2-8*b^4*d^2-a^3*c*d^2-45*a^2*b*c*d^2+24*a*b^2*c*d^2-50*b^3*c*d^2+26*a^2*c^2*d^2-21*a*b*c^2*d^2+7*b^2*c^2*d^2-23*a*c^3*d^2-3*b*c^3*d^2-37*c^4*d^2+30*a^3*d^3-49*a^2*b*d^3-10*a*b^2*d^3+19*b^3*d^3-a^2*c*d^3-23*a*b*c*d^3+27*b^2*c*d^3+8*a*c^2*d^3+36*b*c^2*d^3+14*c^3*d^3-14*a^2*d^4+11*a*b*d^4+24*b^2*d^4-22*a*c*d^4+14*b*c*d^4-12*c^2*d^4+33*a*d^5-35*b*d^5-20*c*d^5-22*d^6-25*a^5*e-50*a^4*b*e-3*a^3*b^2*e-49*a^2*b^3*e-47*a*b^4*e-12*b^5*e+24*a^4*c*e+10*a^3*b*c*e-49*a^2*b^2*c*e-46*a*b^3*c*e-39*b^4*c*e+47*a^3*c^2*e-a^2*b*c^2*e+45*a*b^2*c^2*e-46*b^3*c^2*e+27*a^2*c^3*e-27*a*b*c^3*e+7*b^2*c^3*e+48*a*c^4*e-17*b*c^4*e+13*c^5*e+40*a^4*d*e+50*a^3*b*d*e-9*a^2*b^2*d*e-9*a*b^3*d*e+18*b^4*d*e+30*a^3*c*d*e-36*a^2*b*c*d*e-41*a*b^2*c*d*e+34*b^3*c*d*e+10*a^2*c^2*d*e-19*a*b*c^2*d*e+38*b^2*c^2*d*e-17*a*c^3*d*e-15*b*c^3*d*e-25*c^4*d*e+26*a^3*d^2*e-22*a^2*b*d^2*e+33*a*b^2*d^2*e+3*b^3*d^2*e+33*a^2*c*d^2*e+13*a*b*c*d^2*e-36*b^2*c*d^2*e+16*a*c^2*d^2*e+16*b*c^2*d^2*e+27*c^3*d^2*e-20*a^2*d^3*e+8*a*b*d^3*e+12*b^2*d^3*e-7*a*c*d^3*e-11*b*c*d^3*e-32*c^2*d^3*e+49*a*d^4*e-45*b*d^4*e+4*c*d^4*e+23*d^5*e-42*a^4*e^2-10*a^3*b*e^2+47*a^2*b^2*e^2+31*a*b^3*e^2-9*b^4*e^2-45*a^3*c*e^2-16*a^2*b*c*e^2-16*a*b^2*c*e^2+6*b^3*c*e^2+9*a^2*c^2*e^2-35*a*b*c^2*e^2-17*b^2*c^2*e^2-48*a*c^3*e^2-6*b*c^3*e^2+33*c^4*e^2+46*a^3*d*e^2-22*a^2*b*d*e^2+41*a*b^2*d*e^2+28*b^3*d*e^2+37*a^2*c*d*e^2-35*a*b*c*d*e^2+11*b^2*c*d*e^2-40*a*c^2*d*e^2-25*b*c^2*d*e^2-6*c^3*d*e^2+50*a^2*d^2*e^2-29*a*b*d^2*e^2-30*b^2*d^2*e^2+12*a*c*d^2*e^2+37*b*c*d^2*e^2-23*c^2*d^2*e^2-30*a*d^3*e^2-43*b*d^3*e^2+31*c*d^3*e^2-35*d^4*e^2+32*a^3*e^3-45*a^2*b*e^3-35*a*b^2*e^3+26*b^3*e^3-43*a^2*c*e^3-41*a*b*c*e^3-6*b^2*c*e^3-14*a*c^2*e^3-20*b*c^2*e^3-44*c^3*e^3+10*a^2*d*e^3-4*a*b*d*e^3-38*b^2*d*e^3-28*a*c*d*e^3+8*b*c*d*e^3+30*c^2*d*e^3-5*a*d^2*e^3+24*b*d^2*e^3+2*c*d^2*e^3-19*d^3*e^3-25*a^2*e^4+21*a*b*e^4-20*b^2*e^4-11*a*c*e^4+40*b*c*e^4+12*c^2*e^4-30*a*d*e^4+8*b*d*e^4-14*c*d*e^4-23*d^2*e^4+20*a*e^5-7*b*e^5-38*c*e^5-50*d*e^5-30*e^6,
2892a^3*b*c*d+41*a^4*d^2+15*a^3*b*d^2-2*a^2*b^2*d^2-33*a*b^3*d^2+9*b^4*d^2+25*a^3*c*d^2-22*a^2*b*c*d^2-7*a*b^2*c*d^2-14*b^3*c*d^2-34*a^2*c^2*d^2-30*a*b*c^2*d^2+50*b^2*c^2*d^2+12*a*c^3*d^2-6*b*c^3*d^2+25*c^4*d^2-41*a^3*d^3-2*a^2*b*d^3+10*a*b^2*d^3+6*b^3*d^3-26*a^2*c*d^3+17*a*b*c*d^3+24*b^2*c*d^3+42*a*c^2*d^3-28*b*c^2*d^3+9*c^3*d^3+41*a^2*d^4-48*a*b*d^4+18*b^2*d^4-26*a*c*d^4+33*b*c*d^4-8*c^2*d^4+35*a*d^5+14*b*d^5-48*c*d^5-23*d^6+49*a^5*e+16*a^4*b*e+2*a^3*b^2*e+26*a^2*b^3*e+5*a*b^4*e+39*b^5*e-32*a^4*c*e+19*a^3*b*c*e-37*a^2*b^2*c*e+44*a*b^3*c*e+34*b^4*c*e+37*a^3*c^2*e-25*a^2*b*c^2*e-43*a*b^2*c^2*e+31*b^3*c^2*e-17*a^2*c^3*e-7*a*b*c^3*e-29*b^2*c^3*e+39*a*c^4*e-13*b*c^4*e+46*c^5*e-14*a^4*d*e-23*a^3*b*d*e-31*a^2*b^2*d*e+14*a*b^3*d*e+35*b^4*d*e-44*a^3*c*d*e+15*a^2*b*c*d*e-38*a*b^2*c*d*e-38*b^3*c*d*e-7*a^2*c^2*d*e-36*a*b*c^2*d*e-36*b^2*c^2*d*e+36*a*c^3*d*e+4*b*c^3*d*e+14*c^4*d*e+35*a^2*b*d^2*e+35*a*b^2*d^2*e-28*b^3*d^2*e+3*a^2*c*d^2*e+11*a*b*c*d^2*e-41*b^2*c*d^2*e-12*a*c^2*d^2*e-4*b*c^2*d^2*e+2*c^3*d^2*e+15*a^2*d^3*e-18*a*b*d^3*e+2*b^2*d^3*e+2*a*c*d^3*e-21*b*c*d^3*e+27*c^2*d^3*e+34*a*d^4*e+22*b*d^4*e-38*c*d^4*e+45*d^5*e+3*a^4*e^2+21*a^3*b*e^2-2*a^2*b^2*e^2+11*a*b^3*e^2-29*b^4*e^2-31*a^3*c*e^2+27*a^2*b*c*e^2-44*a*b^2*c*e^2-27*b^3*c*e^2-26*a^2*c^2*e^2+48*a*b*c^2*e^2-46*b^2*c^2*e^2-46*a*c^3*e^2-44*b*c^3*e^2-3*c^4*e^2+18*a^3*d*e^2-34*a^2*b*d*e^2+14*a*b^2*d*e^2+32*b^3*d*e^2+40*a^2*c*d*e^2+20*a*b*c*d*e^2+35*b^2*c*d*e^2-19*a*c^2*d*e^2+16*b*c^2*d*e^2-6*c^3*d*e^2-a^2*d^2*e^2+38*a*b*d^2*e^2+23*b^2*d^2*e^2-26*a*c*d^2*e^2-47*b*c*d^2*e^2+11*c^2*d^2*e^2+34*a*d^3*e^2-27*b*d^3*e^2-41*c*d^3*e^2-2*d^4*e^2+7*a^3*e^3-46*a^2*b*e^3-17*a*b^2*e^3+18*b^3*e^3+25*a^2*c*e^3+24*a*b*c*e^3+48*b^2*c*e^3-25*a*c^2*e^3-12*b*c^2*e^3+17*c^3*e^3+15*a^2*d*e^3+49*a*b*d*e^3-44*b^2*d*e^3+31*a*c*d*e^3-14*b*c*d*e^3-13*c^2*d*e^3-49*a*d^2*e^3-42*b*d^2*e^3-40*c*d^2*e^3+49*d^3*e^3-13*a^2*e^4-3*a*b*e^4-33*b^2*e^4+21*a*c*e^4-23*b*c*e^4+35*c^2*e^4+41*a*d*e^4-6*b*d*e^4+23*c*d*e^4-44*d^2*e^4-10*a*e^5-5*b*e^5+22*c*e^5-13*d*e^5-24*e^6,
2893a^4*c*d-22*a^3*b*d^2+25*a^2*b^2*d^2+46*a*b^3*d^2+4*b^4*d^2-49*a^3*c*d^2+10*a^2*b*c*d^2-18*a*b^2*c*d^2-24*b^3*c*d^2+a^2*c^2*d^2-44*a*b*c^2*d^2+19*b^2*c^2*d^2+2*a*c^3*d^2-16*b*c^3*d^2+23*c^4*d^2-34*a^3*d^3+29*a^2*b*d^3+18*a*b^2*d^3-31*b^3*d^3-26*a^2*c*d^3+35*a*b*c*d^3-2*b^2*c*d^3-3*a*c^2*d^3-8*b*c^2*d^3+50*c^3*d^3-11*a^2*d^4+30*a*b*d^4-41*b^2*d^4+41*a*c*d^4+12*b*c*d^4+2*c^2*d^4+44*a*d^5+5*b*d^5-8*c*d^5-37*d^6+10*a^5*e+20*a^4*b*e-32*a^3*b^2*e-7*a^2*b^3*e-11*a*b^4*e-3*b^5*e+47*a^4*c*e-39*a^3*b*c*e+27*a^2*b^2*c*e+14*a*b^3*c*e+25*b^4*c*e+45*a^3*c^2*e-22*a^2*b*c^2*e-4*a*b^2*c^2*e+8*b^3*c^2*e+10*a^2*c^3*e-18*a*b*c^3*e-25*b^2*c^3*e-35*a*c^4*e+7*b*c^4*e+44*c^5*e+13*a^4*d*e-17*a^3*b*d*e+23*a^2*b^2*d*e-4*a*b^3*d*e+23*b^4*d*e-4*a^3*c*d*e+34*a^2*b*c*d*e+48*a*b^2*c*d*e-32*b^3*c*d*e-44*a^2*c^2*d*e+37*a*b*c^2*d*e-38*b^2*c^2*d*e-23*a*c^3*d*e-42*b*c^3*d*e-19*c^4*d*e-48*a^3*d^2*e+29*a^2*b*d^2*e-25*a*b^2*d^2*e+36*b^3*d^2*e-46*a^2*c*d^2*e+37*a*b*c*d^2*e+28*b^2*c*d^2*e+12*a*c^2*d^2*e+2*b*c^2*d^2*e-13*c^3*d^2*e-40*a^2*d^3*e+44*a*b*d^3*e+29*b^2*d^3*e+20*a*c*d^3*e+23*b*c*d^3*e-44*c^2*d^3*e+23*a*d^4*e+22*b*d^4*e+12*c*d^4*e-16*d^5*e+50*a^4*e^2+12*a^3*b*e^2-16*a^2*b^2*e^2+27*a*b^3*e^2+27*b^4*e^2-25*a^3*c*e^2+13*a^2*b*c*e^2-21*a*b^2*c*e^2+46*b^3*c*e^2-6*a^2*c^2*e^2+13*a*b*c^2*e^2-8*b^2*c^2*e^2+39*a*c^3*e^2+36*b*c^3*e^2+46*c^4*e^2-9*a^3*d*e^2-35*a^2*b*d*e^2-47*a*b^2*d*e^2-41*b^3*d*e^2+26*a^2*c*d*e^2-38*a*b*c*d*e^2+48*b^2*c*d*e^2-36*a*c^2*d*e^2+32*b*c^2*d*e^2-17*c^3*d*e^2+39*a^2*d^2*e^2-a*b*d^2*e^2+48*a*c*d^2*e^2-20*b*c*d^2*e^2-49*c^2*d^2*e^2-37*a*d^3*e^2-8*b*d^3*e^2-c*d^3*e^2-8*d^4*e^2-47*a^3*e^3+2*a^2*b*e^3-14*a*b^2*e^3-32*b^3*e^3+18*a^2*c*e^3+49*a*b*c*e^3-43*b^2*c*e^3-8*a*c^2*e^3-36*b*c^2*e^3+18*c^3*e^3+11*a^2*d*e^3+4*a*b*d*e^3+49*b^2*d*e^3+26*a*c*d*e^3+5*b*c*d*e^3-14*c^2*d*e^3+12*a*d^2*e^3+b*d^2*e^3-49*c*d^2*e^3+24*d^3*e^3+11*a^2*e^4-43*a*b*e^4-36*b^2*e^4+30*a*c*e^4-12*b*c*e^4+10*c^2*e^4-29*a*d*e^4-12*b*d*e^4+37*c*d*e^4+46*d^2*e^4+34*a*e^5+14*b*e^5-26*c*e^5+d*e^5+35*e^6,
2894b^5*d-5*a^4*d^2-29*a^3*b*d^2-36*a^2*b^2*d^2-11*a*b^3*d^2+32*b^4*d^2-17*a^3*c*d^2+47*a^2*b*c*d^2+16*a*b^2*c*d^2-24*b^3*c*d^2+12*a^2*c^2*d^2+20*a*b*c^2*d^2-24*b^2*c^2*d^2-10*a*c^3*d^2-26*b*c^3*d^2+22*c^4*d^2-14*a^3*d^3-49*a^2*b*d^3-44*a*b^2*d^3-20*b^3*d^3+11*a^2*c*d^3-45*a*b*c*d^3-5*b^2*c*d^3-19*a*c^2*d^3-10*b*c^2*d^3-35*c^3*d^3-13*a^2*d^4+18*a*b*d^4+10*b^2*d^4+46*a*c*d^4+15*b*c*d^4-13*c^2*d^4-8*a*d^5+50*b*d^5+2*c*d^5-43*d^6-18*a^5*e-2*a^4*b*e-31*a^3*b^2*e-37*a^2*b^3*e+32*a*b^4*e-4*b^5*e+19*a^4*c*e-42*a^3*b*c*e+40*a^2*b^2*c*e+37*a*b^3*c*e+17*b^4*c*e+39*a^3*c^2*e+10*a^2*b*c^2*e-38*a*b^2*c^2*e+4*b^3*c^2*e+18*a^2*c^3*e+35*a*b*c^3*e-29*b^2*c^3*e-19*a*c^4*e-4*b*c^4*e+28*c^5*e+17*a^4*d*e-20*a^3*b*d*e+18*a^2*b^2*d*e+11*a*b^3*d*e+30*b^4*d*e-2*a^3*c*d*e+43*a^2*b*c*d*e+46*a*b^2*c*d*e+14*b^3*c*d*e+48*a^2*c^2*d*e-5*a*b*c^2*d*e-7*b^2*c^2*d*e+13*a*c^3*d*e+11*b*c^3*d*e+48*c^4*d*e+41*a^3*d^2*e+10*a^2*b*d^2*e-43*a*b^2*d^2*e-41*b^3*d^2*e+47*a^2*c*d^2*e-42*a*b*c*d^2*e+34*b^2*c*d^2*e+34*a*c^2*d^2*e-14*b*c^2*d^2*e-16*c^3*d^2*e-39*a^2*d^3*e+23*a*b*d^3*e-32*b^2*d^3*e-20*a*c*d^3*e+7*b*c*d^3*e-4*c^2*d^3*e+2*a*d^4*e+42*b*d^4*e-38*c*d^4*e-14*d^5*e-9*a^4*e^2+2*a^3*b*e^2-20*a^2*b^2*e^2-15*a*b^3*e^2+30*b^4*e^2-44*a^3*c*e^2-47*a^2*b*c*e^2+11*a*b^2*c*e^2+20*b^3*c*e^2-2*a^2*c^2*e^2+4*a*b*c^2*e^2+49*b^2*c^2*e^2-41*a*c^3*e^2-36*b*c^3*e^2+31*c^4*e^2+22*a^3*d*e^2+39*a^2*b*d*e^2-21*a*b^2*d*e^2+26*b^3*d*e^2+28*a^2*c*d*e^2+41*a*b*c*d*e^2-14*b^2*c*d*e^2+44*a*c^2*d*e^2+27*b*c^2*d*e^2-25*c^3*d*e^2-28*a^2*d^2*e^2-37*a*b*d^2*e^2+20*b^2*d^2*e^2+45*a*c*d^2*e^2+45*b*c*d^2*e^2-28*c^2*d^2*e^2-18*a*d^3*e^2+5*b*d^3*e^2-3*c*d^3*e^2+17*d^4*e^2+18*a^3*e^3+46*a^2*b*e^3+28*a*b^2*e^3-22*b^3*e^3-15*a^2*c*e^3+30*a*b*c*e^3-40*b^2*c*e^3-20*a*c^2*e^3+10*b*c^2*e^3-31*c^3*e^3+19*a^2*d*e^3+29*a*b*d*e^3+12*b^2*d*e^3-39*a*c*d*e^3-32*b*c*d*e^3+12*a*d^2*e^3-26*c*d^2*e^3+14*a^2*e^4+40*a*b*e^4-b^2*e^4+15*a*c*e^4+27*b*c*e^4+34*c^2*e^4-30*a*d*e^4+25*b*d*e^4-50*c*d*e^4+35*d^2*e^4+25*a*e^5+21*b*e^5-10*c*e^5-4*d*e^5-43*e^6,
2895a*b^4*d+47*a^4*d^2+25*a^3*b*d^2-13*a^2*b^2*d^2+26*a*b^3*d^2-24*b^4*d^2-4*a^3*c*d^2-30*a^2*b*c*d^2+11*a*b^2*c*d^2+49*b^3*c*d^2-11*a^2*c^2*d^2-4*a*b*c^2*d^2+44*b^2*c^2*d^2+46*a*c^3*d^2-3*b*c^3*d^2-30*c^4*d^2+8*a^3*d^3+49*a^2*b*d^3+33*a*b^2*d^3+8*b^3*d^3-34*a^2*c*d^3-29*a*b*c*d^3-35*b^2*c*d^3-10*a*c^2*d^3+13*b*c^2*d^3-22*c^3*d^3+8*a^2*d^4+2*a*b*d^4+7*b^2*d^4-14*a*c*d^4+40*b*c*d^4+41*c^2*d^4-14*a*d^5+10*c*d^5-11*d^6-43*a^5*e-2*a^4*b*e-10*a^3*b^2*e-39*a^2*b^3*e+15*a*b^4*e-8*b^5*e+19*a^4*c*e+35*a^3*b*c*e+48*a^2*b^2*c*e-24*a*b^3*c*e-41*b^4*c*e-24*a^3*c^2*e+35*a^2*b*c^2*e-47*a*b^2*c^2*e+28*b^3*c^2*e-10*a^2*c^3*e+28*a*b*c^3*e-43*b^2*c^3*e+10*a*c^4*e-26*b*c^4*e-30*c^5*e+3*a^4*d*e-42*a^3*b*d*e-23*a^2*b^2*d*e+41*a*b^3*d*e+12*b^4*d*e-16*a^3*c*d*e+4*a^2*b*c*d*e+30*a*b^2*c*d*e+14*b^3*c*d*e+15*a^2*c^2*d*e-11*a*b*c^2*d*e+34*b^2*c^2*d*e-48*a*c^3*d*e+15*b*c^3*d*e+38*c^4*d*e+26*a^3*d^2*e-41*a^2*b*d^2*e-8*a*b^2*d^2*e+44*b^3*d^2*e-7*a^2*c*d^2*e+11*a*b*c*d^2*e-3*b^2*c*d^2*e+42*a*c^2*d^2*e+31*b*c^2*d^2*e-35*c^3*d^2*e-23*a^2*d^3*e+47*a*b*d^3*e+26*b^2*d^3*e+40*a*c*d^3*e-24*b*c*d^3*e-34*c^2*d^3*e+4*a*d^4*e-48*b*d^4*e-49*c*d^4*e-23*d^5*e-5*a^4*e^2-15*a^3*b*e^2+5*a^2*b^2*e^2+41*a*b^3*e^2-7*b^4*e^2-35*a^3*c*e^2+5*a^2*b*c*e^2+25*a*b^2*c*e^2-50*b^3*c*e^2+23*a^2*c^2*e^2+43*a*b*c^2*e^2+41*b^2*c^2*e^2+9*a*c^3*e^2-36*b*c^3*e^2-49*c^4*e^2-36*a^3*d*e^2-43*a^2*b*d*e^2-24*a*b^2*d*e^2+34*b^3*d*e^2-29*a^2*c*d*e^2-48*a*b*c*d*e^2+42*b^2*c*d*e^2+34*a*c^2*d*e^2+20*b*c^2*d*e^2-31*c^3*d*e^2+18*a^2*d^2*e^2-3*a*b*d^2*e^2+24*b^2*d^2*e^2-39*a*c*d^2*e^2+39*b*c*d^2*e^2-48*c^2*d^2*e^2-30*a*d^3*e^2-28*b*d^3*e^2+4*c*d^3*e^2+13*d^4*e^2-30*a^3*e^3+47*a^2*b*e^3+2*a*b^2*e^3+31*b^3*e^3+35*a^2*c*e^3+36*a*b*c*e^3-47*b^2*c*e^3+48*a*c^2*e^3-8*b*c^2*e^3-23*c^3*e^3+35*a^2*d*e^3+21*a*b*d*e^3+17*b^2*d*e^3-15*a*c*d*e^3-41*b*c*d*e^3+13*c^2*d*e^3+17*a*d^2*e^3-19*b*d^2*e^3+26*c*d^2*e^3-26*d^3*e^3-38*a^2*e^4+17*a*b*e^4+22*b^2*e^4-6*a*c*e^4-18*b*c*e^4+42*c^2*e^4+26*a*d*e^4-19*b*d*e^4-36*c*d*e^4-22*d^2*e^4+44*a*e^5+32*b*e^5-15*c*e^5-16*d*e^5+2*e^6,
2896a^2*b^3*d-26*a^4*d^2+24*a^3*b*d^2-21*a^2*b^2*d^2-7*a*b^3*d^2-39*b^4*d^2-47*a^3*c*d^2+37*a^2*b*c*d^2+24*a*b^2*c*d^2-6*b^3*c*d^2+20*a^2*c^2*d^2-4*b^2*c^2*d^2+21*a*c^3*d^2-15*b*c^3*d^2-22*c^4*d^2-23*a^3*d^3+21*a^2*b*d^3-16*a*b^2*d^3-38*b^3*d^3-16*a^2*c*d^3+7*a*b*c*d^3-37*b^2*c*d^3-12*a*c^2*d^3+42*b*c^2*d^3+40*c^3*d^3-35*a^2*d^4+29*a*b*d^4-b^2*d^4+21*a*c*d^4+47*b*c*d^4-22*c^2*d^4-11*a*d^5-44*b*d^5+49*c*d^5+33*d^6-35*a^5*e-41*a^4*b*e+17*a^3*b^2*e-6*a^2*b^3*e-12*a*b^4*e+36*b^5*e-6*a^4*c*e-28*a^3*b*c*e+22*a^2*b^2*c*e+10*a*b^3*c*e-34*b^4*c*e+28*a^3*c^2*e-2*a^2*b*c^2*e-48*a*b^2*c^2*e-28*b^3*c^2*e+42*a^2*c^3*e+30*a*b*c^3*e-43*b^2*c^3*e-34*a*c^4*e+33*b*c^4*e-38*c^5*e+39*a^4*d*e-27*a^3*b*d*e+44*a^2*b^2*d*e+12*a*b^3*d*e+18*b^4*d*e-19*a^3*c*d*e-42*a^2*b*c*d*e+24*a*b^2*c*d*e-49*b^3*c*d*e+17*a^2*c^2*d*e+3*a*b*c^2*d*e+39*b^2*c^2*d*e-31*a*c^3*d*e-8*b*c^3*d*e+42*c^4*d*e-42*a^3*d^2*e+49*a^2*b*d^2*e-17*a*b^2*d^2*e-49*b^3*d^2*e-20*a^2*c*d^2*e-11*a*b*c*d^2*e-17*b^2*c*d^2*e+16*a*c^2*d^2*e+41*b*c^2*d^2*e+50*c^3*d^2*e-28*a^2*d^3*e+44*a*b*d^3*e-25*b^2*d^3*e-24*a*c*d^3*e-b*c*d^3*e-45*c^2*d^3*e-3*a*d^4*e-26*b*d^4*e-12*c*d^4*e+4*d^5*e+5*a^4*e^2+28*a^3*b*e^2-42*a^2*b^2*e^2+33*a*b^3*e^2-15*b^4*e^2-40*a^3*c*e^2+47*a^2*b*c*e^2-4*a*b^2*c*e^2-22*b^3*c*e^2-35*a^2*c^2*e^2-8*a*b*c^2*e^2-11*b^2*c^2*e^2-37*a*c^3*e^2-23*b*c^3*e^2+33*c^4*e^2-34*a^3*d*e^2+16*a^2*b*d*e^2-38*a*b^2*d*e^2+32*b^3*d*e^2+10*a^2*c*d*e^2-30*a*b*c*d*e^2+32*b^2*c*d*e^2-6*a*c^2*d*e^2-45*b*c^2*d*e^2-5*c^3*d*e^2-16*a^2*d^2*e^2-14*a*b*d^2*e^2+22*b^2*d^2*e^2+4*a*c*d^2*e^2-37*b*c*d^2*e^2-28*c^2*d^2*e^2-16*a*d^3*e^2+6*b*d^3*e^2+9*c*d^3*e^2-46*d^4*e^2-10*a^3*e^3-50*a^2*b*e^3+18*a*b^2*e^3+20*b^3*e^3-34*a^2*c*e^3+33*a*b*c*e^3-17*b^2*c*e^3-19*a*c^2*e^3-5*b*c^2*e^3+19*c^3*e^3-23*a^2*d*e^3+4*a*b*d*e^3+28*b^2*d*e^3+17*a*c*d*e^3+7*b*c*d*e^3+39*c^2*d*e^3+4*a*d^2*e^3-39*b*d^2*e^3-16*c*d^2*e^3-23*d^3*e^3-23*a^2*e^4-16*a*b*e^4-2*b^2*e^4-24*a*c*e^4-5*b*c*e^4+45*c^2*e^4-10*a*d*e^4-b*d*e^4+50*c*d*e^4+31*d^2*e^4+31*a*e^5-37*b*e^5-44*c*e^5+37*d*e^5-43*e^6,
2897a^3*b^2*d-42*a^4*d^2-17*a^3*b*d^2-23*a^2*b^2*d^2-17*a*b^3*d^2-27*b^4*d^2-50*a^3*c*d^2+27*a^2*b*c*d^2-30*a*b^2*c*d^2-7*b^3*c*d^2+21*a^2*c^2*d^2+13*a*b*c^2*d^2+29*b^2*c^2*d^2-46*a*c^3*d^2+43*b*c^3*d^2-2*c^4*d^2-2*a^3*d^3+45*a^2*b*d^3-15*a*b^2*d^3-47*b^3*d^3-17*a^2*c*d^3-25*a*b*c*d^3+9*b^2*c*d^3-24*a*c^2*d^3+32*b*c^2*d^3+37*c^3*d^3+14*a^2*d^4+23*a*b*d^4+49*b^2*d^4+10*a*c*d^4+19*b*c*d^4-13*c^2*d^4-9*a*d^5+44*b*d^5+39*c*d^5-28*d^6-2*a^5*e+5*a^4*b*e-36*a^3*b^2*e-12*a^2*b^3*e+2*a*b^4*e+15*b^5*e-31*a^4*c*e-3*a^3*b*c*e+46*a^2*b^2*c*e+33*a*b^3*c*e+16*b^4*c*e+24*a^3*c^2*e-36*a^2*b*c^2*e+10*a*b^2*c^2*e+4*b^3*c^2*e+44*a^2*c^3*e+18*a*b*c^3*e-37*b^2*c^3*e-47*a*c^4*e+32*b*c^4*e-29*c^5*e+14*a^4*d*e+6*a^3*b*d*e+44*a^2*b^2*d*e+23*a*b^3*d*e+33*b^4*d*e-7*a^3*c*d*e+10*a^2*b*c*d*e+30*a*b^2*c*d*e+41*b^3*c*d*e-50*a^2*c^2*d*e+a*b*c^2*d*e+33*b^2*c^2*d*e-26*a*c^3*d*e-32*b*c^3*d*e+47*c^4*d*e+39*a^3*d^2*e+40*a^2*b*d^2*e+6*a*b^2*d^2*e+30*b^3*d^2*e-30*a^2*c*d^2*e-21*a*b*c*d^2*e-41*b^2*c*d^2*e-21*a*c^2*d^2*e-17*b*c^2*d^2*e-21*c^3*d^2*e+26*a^2*d^3*e+50*a*b*d^3*e+39*b^2*d^3*e-34*a*c*d^3*e-25*b*c*d^3*e-34*c^2*d^3*e+9*a*d^4*e-40*b*d^4*e-45*c*d^4*e-3*d^5*e-34*a^4*e^2-22*a^3*b*e^2-5*a^2*b^2*e^2+45*a*b^3*e^2-16*b^4*e^2-12*a^3*c*e^2+33*a^2*b*c*e^2+31*a*b^2*c*e^2+19*b^3*c*e^2+49*a^2*c^2*e^2-19*a*b*c^2*e^2+8*b^2*c^2*e^2+32*a*c^3*e^2+31*b*c^3*e^2+21*c^4*e^2+13*a^3*d*e^2-35*a^2*b*d*e^2-29*a*b^2*d*e^2-41*b^3*d*e^2+11*a^2*c*d*e^2+46*a*b*c*d*e^2+b^2*c*d*e^2+5*a*c^2*d*e^2+18*c^3*d*e^2-17*a^2*d^2*e^2+45*a*b*d^2*e^2-40*b^2*d^2*e^2-6*a*c*d^2*e^2-32*b*c*d^2*e^2-19*c^2*d^2*e^2+48*a*d^3*e^2+41*b*d^3*e^2-30*c*d^3*e^2-38*d^4*e^2+4*a^3*e^3+8*a^2*b*e^3-49*a*b^2*e^3+36*b^3*e^3-5*a^2*c*e^3-21*a*b*c*e^3-27*b^2*c*e^3+5*a*c^2*e^3+31*b*c^2*e^3+15*c^3*e^3+41*a^2*d*e^3+19*a*b*d*e^3+10*b^2*d*e^3+41*a*c*d*e^3+45*b*c*d*e^3+12*c^2*d*e^3-28*a*d^2*e^3+14*b*d^2*e^3+4*c*d^2*e^3-25*d^3*e^3+38*a^2*e^4+37*a*b*e^4-15*b^2*e^4-11*a*c*e^4-24*b*c*e^4+33*c^2*e^4-31*a*d*e^4+14*b*d*e^4+49*c*d*e^4+34*d^2*e^4-34*a*e^5-23*b*e^5+50*c*e^5+19*d*e^5+26*e^6,
2898a^4*b*d+4*a^4*d^2-24*a^3*b*d^2+8*a^2*b^2*d^2-24*a*b^3*d^2-b^4*d^2+31*a^3*c*d^2-45*a^2*b*c*d^2-12*a*b^2*c*d^2+45*b^3*c*d^2+29*a^2*c^2*d^2+41*a*b*c^2*d^2-2*b^2*c^2*d^2-44*a*c^3*d^2-9*b*c^3*d^2+32*c^4*d^2+50*a^3*d^3-6*a^2*b*d^3+11*a*b^2*d^3-6*b^3*d^3-36*a^2*c*d^3-13*a*b*c*d^3-44*b^2*c*d^3+35*a*c^2*d^3+29*b*c^2*d^3-32*c^3*d^3+45*a^2*d^4-24*a*b*d^4-b^2*d^4+48*a*c*d^4+29*b*c*d^4+43*c^2*d^4+34*a*d^5-b*d^5+14*c*d^5+12*d^6-50*a^5*e-26*a^4*b*e-38*a^3*b^2*e-5*a^2*b^3*e+41*a*b^4*e+38*b^5*e-14*a^4*c*e+46*a^3*b*c*e-14*a^2*b^2*c*e-24*a*b^3*c*e+31*b^4*c*e-24*a^3*c^2*e-50*a^2*b*c^2*e+47*a*b^2*c^2*e+42*b^3*c^2*e-15*a^2*c^3*e-26*a*b*c^3*e+26*b^2*c^3*e-38*a*c^4*e-34*b*c^4*e+44*c^5*e-29*a^4*d*e+26*a^3*b*d*e-25*a^2*b^2*d*e+41*a*b^3*d*e+46*b^4*d*e+46*a^3*c*d*e-28*a^2*b*c*d*e-10*a*b^2*c*d*e+18*b^3*c*d*e+28*a^2*c^2*d*e+25*a*b*c^2*d*e-8*b^2*c^2*d*e-36*a*c^3*d*e+50*b*c^3*d*e-25*c^4*d*e+7*a^3*d^2*e+29*a^2*b*d^2*e-50*a*b^2*d^2*e-34*b^3*d^2*e-6*a^2*c*d^2*e-13*a*b*c*d^2*e+21*b^2*c*d^2*e+32*a*c^2*d^2*e-10*b*c^2*d^2*e-19*c^3*d^2*e-27*a^2*d^3*e+46*a*b*d^3*e-4*b^2*d^3*e+17*a*c*d^3*e+11*b*c*d^3*e+7*c^2*d^3*e+18*a*d^4*e-23*b*d^4*e-45*c*d^4*e+40*d^5*e+36*a^4*e^2-2*a^3*b*e^2-17*a^2*b^2*e^2+11*a*b^3*e^2+49*b^4*e^2-31*a^3*c*e^2+8*a^2*b*c*e^2-12*a*b^2*c*e^2-15*b^3*c*e^2+14*a^2*c^2*e^2-a*b*c^2*e^2+38*b^2*c^2*e^2-40*a*c^3*e^2-25*b*c^3*e^2+34*c^4*e^2-2*a^3*d*e^2-19*a^2*b*d*e^2+35*a*b^2*d*e^2-49*b^3*d*e^2-20*a^2*c*d*e^2+47*a*b*c*d*e^2-42*b^2*c*d*e^2+41*a*c^2*d*e^2+23*b*c^2*d*e^2+22*c^3*d*e^2-16*a^2*d^2*e^2+14*a*b*d^2*e^2-10*b^2*d^2*e^2+47*a*c*d^2*e^2+43*b*c*d^2*e^2+50*c^2*d^2*e^2-35*b*d^3*e^2+45*c*d^3*e^2+5*d^4*e^2+18*a^3*e^3+42*a^2*b*e^3+a*b^2*e^3+26*b^3*e^3+16*a^2*c*e^3+40*b^2*c*e^3-27*a*c^2*e^3-9*b*c^2*e^3-26*c^3*e^3-24*a^2*d*e^3-6*a*b*d*e^3-26*b^2*d*e^3+47*a*c*d*e^3-40*b*c*d*e^3+30*c^2*d*e^3-46*a*d^2*e^3-27*b*d^2*e^3-42*c*d^2*e^3-10*d^3*e^3+25*a^2*e^4+a*b*e^4-15*b^2*e^4-13*a*c*e^4-33*b*c*e^4+20*c^2*e^4+5*a*d*e^4-42*b*d*e^4-5*c*d*e^4-24*d^2*e^4-34*a*e^5+35*b*e^5-27*c*e^5-43*d*e^5-43*e^6,
2899a^5*d+14*a^4*d^2-3*a^3*b*d^2+7*a^2*b^2*d^2-31*a*b^3*d^2-42*b^4*d^2-16*a^3*c*d^2+36*a^2*b*c*d^2-17*a*b^2*c*d^2-15*b^3*c*d^2+17*a^2*c^2*d^2+36*a*b*c^2*d^2+12*b^2*c^2*d^2-47*a*c^3*d^2-16*b*c^3*d^2-9*c^4*d^2-38*a^3*d^3-43*a^2*b*d^3+2*a*b^2*d^3-44*b^3*d^3-12*a^2*c*d^3+32*a*b*c*d^3+21*b^2*c*d^3-10*a*c^2*d^3-28*b*c^2*d^3-c^3*d^3+18*a^2*d^4-13*a*b*d^4+13*b^2*d^4+31*a*c*d^4+27*b*c*d^4+34*c^2*d^4-19*a*d^5-36*b*d^5-46*c*d^5+11*d^6-26*a^5*e-24*a^4*b*e-5*a^3*b^2*e+27*a^2*b^3*e-6*a*b^4*e-30*b^5*e+35*a^4*c*e-42*a^3*b*c*e+a^2*b^2*c*e-22*a*b^3*c*e+12*b^4*c*e+7*a^3*c^2*e-26*a^2*b*c^2*e-43*a*b^2*c^2*e-18*b^3*c^2*e+10*a^2*c^3*e-10*a*b*c^3*e+48*b^2*c^3*e-19*a*c^4*e-29*b*c^4*e-3*c^5*e+20*a^4*d*e+10*a^3*b*d*e+28*a^2*b^2*d*e+14*a*b^3*d*e-15*b^4*d*e-7*a^3*c*d*e-24*a^2*b*c*d*e-26*a*b^2*c*d*e+32*b^3*c*d*e+2*a^2*c^2*d*e+16*a*b*c^2*d*e+44*b^2*c^2*d*e-48*a*c^3*d*e+7*b*c^3*d*e+3*c^4*d*e-8*a^3*d^2*e+23*a^2*b*d^2*e-39*a*b^2*d^2*e+35*b^3*d^2*e-2*a^2*c*d^2*e-17*a*b*c*d^2*e+46*b^2*c*d^2*e-26*a*c^2*d^2*e+7*b*c^2*d^2*e+47*c^3*d^2*e-38*a^2*d^3*e+12*a*b*d^3*e-14*b^2*d^3*e-a*c*d^3*e+12*b*c*d^3*e+30*c^2*d^3*e-50*a*d^4*e-34*b*d^4*e-6*c*d^4*e-24*d^5*e-37*a^4*e^2-15*a^3*b*e^2+17*a^2*b^2*e^2+26*a*b^3*e^2-31*b^4*e^2+14*a^3*c*e^2+30*a^2*b*c*e^2-9*a*b^2*c*e^2-42*b^3*c*e^2-39*a^2*c^2*e^2-43*a*b*c^2*e^2+41*b^2*c^2*e^2-38*a*c^3*e^2-47*b*c^3*e^2+33*c^4*e^2+15*a^3*d*e^2-36*a^2*b*d*e^2+6*a*b^2*d*e^2-15*b^3*d*e^2+24*a^2*c*d*e^2-50*a*b*c*d*e^2-6*b^2*c*d*e^2-41*a*c^2*d*e^2+42*b*c^2*d*e^2+28*c^3*d*e^2-19*a^2*d^2*e^2-47*a*b*d^2*e^2+49*b^2*d^2*e^2-41*a*c*d^2*e^2-3*b*c*d^2*e^2-38*c^2*d^2*e^2+4*a*d^3*e^2-30*b*d^3*e^2+47*c*d^3*e^2+11*d^4*e^2-44*a^3*e^3-25*a^2*b*e^3+18*a*b^2*e^3-14*b^3*e^3+18*a^2*c*e^3-15*a*b*c*e^3+32*b^2*c*e^3+38*a*c^2*e^3-30*b*c^2*e^3-3*c^3*e^3-33*a^2*d*e^3-42*a*b*d*e^3-8*b^2*d*e^3-14*a*c*d*e^3+49*b*c*d*e^3-40*c^2*d*e^3-40*a*d^2*e^3+32*b*d^2*e^3-40*c*d^2*e^3+11*d^3*e^3-43*a^2*e^4-29*a*b*e^4+9*b^2*e^4-20*a*c*e^4+14*b*c*e^4+38*c^2*e^4-32*a*d*e^4+22*b*d*e^4-9*c*d*e^4-34*d^2*e^4+6*a*e^5-15*b*e^5+13*c*e^5-40*d*e^5-40*e^6,
2900c^6+36*a^4*d^2-8*a^3*b*d^2-40*a^2*b^2*d^2-45*a*b^3*d^2+36*b^4*d^2-21*a^3*c*d^2-27*a^2*b*c*d^2+46*a*b^2*c*d^2+30*b^3*c*d^2+4*a*b*c^2*d^2-20*b^2*c^2*d^2+3*a*c^3*d^2-48*b*c^3*d^2-29*c^4*d^2+13*a^3*d^3-3*a^2*b*d^3-13*a*b^2*d^3-38*b^3*d^3+35*a^2*c*d^3-5*a*b*c*d^3-46*b^2*c*d^3-26*a*c^2*d^3-20*b*c^2*d^3-4*c^3*d^3+6*a^2*d^4-14*a*b*d^4+16*b^2*d^4+44*a*c*d^4-10*b*c*d^4+15*c^2*d^4+31*a*d^5-22*b*d^5-36*c*d^5-34*d^6-28*a^5*e+46*a^4*b*e+5*a^3*b^2*e+36*a^2*b^3*e-2*a*b^4*e+13*b^5*e-40*a^4*c*e+31*a^3*b*c*e+49*a^2*b^2*c*e+50*a*b^3*c*e+8*b^4*c*e-23*a^2*b*c^2*e+7*a*b^2*c^2*e+36*b^3*c^2*e-12*a^2*c^3*e-a*b*c^3*e-32*b^2*c^3*e+33*a*c^4*e-45*b*c^4*e+7*c^5*e-13*a^4*d*e-38*a^3*b*d*e+17*a^2*b^2*d*e-33*a*b^3*d*e-33*b^4*d*e-47*a^3*c*d*e+42*a^2*b*c*d*e-5*a*b^2*c*d*e-35*b^3*c*d*e-34*a^2*c^2*d*e-36*a*b*c^2*d*e+17*b^2*c^2*d*e+19*a*c^3*d*e+41*b*c^3*d*e-8*c^4*d*e-15*a^3*d^2*e-10*a^2*b*d^2*e-37*a*b^2*d^2*e-40*b^3*d^2*e-2*a^2*c*d^2*e-28*a*b*c*d^2*e+30*b^2*c*d^2*e+45*a*c^2*d^2*e+26*b*c^2*d^2*e-20*c^3*d^2*e-48*a^2*d^3*e+16*a*b*d^3*e+12*b^2*d^3*e+47*a*c*d^3*e-11*b*c*d^3*e+27*c^2*d^3*e-29*a*d^4*e+33*b*d^4*e+6*c*d^4*e-10*d^5*e-2*a^4*e^2-27*a^3*b*e^2-18*a^2*b^2*e^2-46*a*b^3*e^2-19*b^4*e^2+9*a^3*c*e^2+45*a^2*b*c*e^2+30*a*b^2*c*e^2+35*b^3*c*e^2-31*a^2*c^2*e^2+33*a*b*c^2*e^2+36*b^2*c^2*e^2-18*a*c^3*e^2+5*b*c^3*e^2-8*c^4*e^2-37*a^3*d*e^2+46*a^2*b*d*e^2-37*a*b^2*d*e^2+28*b^3*d*e^2+6*a^2*c*d*e^2-24*a*b*c*d*e^2+9*b^2*c*d*e^2+36*a*c^2*d*e^2-44*b*c^2*d*e^2+32*c^3*d*e^2+49*a^2*d^2*e^2-44*a*b*d^2*e^2-12*b^2*d^2*e^2-6*a*c*d^2*e^2+7*b*c*d^2*e^2-2*c^2*d^2*e^2+17*a*d^3*e^2-15*b*d^3*e^2+18*c*d^3*e^2-24*d^4*e^2-26*a^3*e^3+44*a^2*b*e^3-28*a*b^2*e^3+28*b^3*e^3-8*a^2*c*e^3+6*a*b*c*e^3-12*b^2*c*e^3-25*a*c^2*e^3-37*b*c^2*e^3+36*c^3*e^3-18*a^2*d*e^3-38*a*b*d*e^3+b^2*d*e^3+3*a*c*d*e^3+47*b*c*d*e^3+3*c^2*d*e^3-5*a*d^2*e^3-34*c*d^2*e^3-11*d^3*e^3-19*a^2*e^4+16*a*b*e^4+17*b^2*e^4+23*a*c*e^4-26*b*c*e^4+10*c^2*e^4+23*a*d*e^4-30*b*d*e^4-46*c*d*e^4-13*d^2*e^4-23*a*e^5+41*b*e^5+6*c*e^5-50*d*e^5+28*e^6,
2901b*c^5+8*a^4*d^2-16*a^3*b*d^2+26*a^2*b^2*d^2+a*b^3*d^2+40*b^4*d^2-34*a^3*c*d^2+5*a^2*b*c*d^2+18*a*b^2*c*d^2-30*b^3*c*d^2+9*a^2*c^2*d^2+30*a*b*c^2*d^2-17*b^2*c^2*d^2+26*a*c^3*d^2+49*b*c^3*d^2+42*c^4*d^2+2*a^3*d^3+28*a^2*b*d^3-7*a*b^2*d^3-37*b^3*d^3+38*a^2*c*d^3-5*a*b*c*d^3-13*b^2*c*d^3-11*a*c^2*d^3-37*b*c^2*d^3+4*c^3*d^3-8*a^2*d^4-9*a*b*d^4+28*b^2*d^4+4*a*c*d^4+27*b*c*d^4+39*c^2*d^4+9*a*d^5-24*b*d^5+27*c*d^5+13*d^6-23*a^5*e-41*a^4*b*e-23*a^3*b^2*e+28*a^2*b^3*e+29*a*b^4*e-49*b^5*e-4*a^4*c*e-16*a^3*b*c*e-16*a^2*b^2*c*e+29*a*b^3*c*e-15*b^4*c*e-27*a^3*c^2*e+44*a^2*b*c^2*e-23*a*b^2*c^2*e-18*b^3*c^2*e-24*a^2*c^3*e-12*b^2*c^3*e-48*a*c^4*e+12*b*c^4*e+28*c^5*e-49*a^4*d*e+18*a^3*b*d*e+40*a^2*b^2*d*e-5*a*b^3*d*e-23*b^4*d*e-9*a^3*c*d*e-12*a^2*b*c*d*e-39*a*b^2*c*d*e-43*b^3*c*d*e+36*a^2*c^2*d*e+19*a*b*c^2*d*e+11*b^2*c^2*d*e+24*a*c^3*d*e+22*b*c^3*d*e+14*c^4*d*e-23*a^3*d^2*e-14*a^2*b*d^2*e+47*a*b^2*d^2*e+32*b^3*d^2*e+47*a^2*c*d^2*e+26*a*b*c*d^2*e-39*b^2*c*d^2*e+11*a*c^2*d^2*e-44*b*c^2*d^2*e-20*c^3*d^2*e-23*a^2*d^3*e-3*a*b*d^3*e-11*b^2*d^3*e-34*a*c*d^3*e+5*b*c*d^3*e-3*c^2*d^3*e-6*a*d^4*e-15*b*d^4*e+41*c*d^4*e+18*d^5*e+44*a^4*e^2-49*a^3*b*e^2+38*a^2*b^2*e^2+7*a*b^3*e^2-11*b^4*e^2+2*a^3*c*e^2-6*a^2*b*c*e^2-34*a*b^2*c*e^2-21*b^3*c*e^2+12*a^2*c^2*e^2+7*a*b*c^2*e^2-20*b^2*c^2*e^2-3*a*c^3*e^2-38*b*c^3*e^2-5*c^4*e^2-46*a^3*d*e^2-20*a^2*b*d*e^2+21*a*b^2*d*e^2-36*b^3*d*e^2-14*a^2*c*d*e^2+6*a*b*c*d*e^2+29*b^2*c*d*e^2+12*a*c^2*d*e^2-2*b*c^2*d*e^2+41*c^3*d*e^2+41*a^2*d^2*e^2+34*a*b*d^2*e^2-2*b^2*d^2*e^2+9*a*c*d^2*e^2+10*b*c*d^2*e^2-11*c^2*d^2*e^2+45*a*d^3*e^2+38*b*d^3*e^2-20*c*d^3*e^2-12*d^4*e^2-35*a^3*e^3+23*a*b^2*e^3+37*b^3*e^3+10*a^2*c*e^3+6*a*b*c*e^3+21*b^2*c*e^3-24*a*c^2*e^3+28*b*c^2*e^3+26*c^3*e^3+22*a^2*d*e^3+26*a*b*d*e^3+50*b^2*d*e^3+43*a*c*d*e^3+39*b*c*d*e^3-42*c^2*d*e^3-27*a*d^2*e^3+38*b*d^2*e^3+19*c*d^2*e^3-15*d^3*e^3+37*a^2*e^4+7*a*b*e^4-12*b^2*e^4-34*a*c*e^4+25*b*c*e^4+26*c^2*e^4+a*d*e^4-25*b*d*e^4-15*c*d*e^4-50*d^2*e^4-50*a*e^5-45*b*e^5+30*c*e^5+6*d*e^5+49*e^6,
2902a*c^5+28*a^4*d^2-23*a^3*b*d^2+10*a^2*b^2*d^2-36*a*b^3*d^2+6*b^4*d^2+25*a^3*c*d^2-47*a^2*b*c*d^2+28*a*b^2*c*d^2-36*b^3*c*d^2-31*a^2*c^2*d^2-35*a*b*c^2*d^2-42*b^2*c^2*d^2+20*a*c^3*d^2-45*b*c^3*d^2+49*c^4*d^2-24*a^3*d^3+25*a^2*b*d^3+27*a*b^2*d^3+49*b^3*d^3-9*a^2*c*d^3-46*a*b*c*d^3-39*b^2*c*d^3-9*a*c^2*d^3-46*b*c^2*d^3+43*c^3*d^3-35*a^2*d^4+11*a*b*d^4+15*b^2*d^4-4*a*c*d^4+42*b*c*d^4+19*c^2*d^4-35*a*d^5-23*b*d^5-45*c*d^5+6*d^6-36*a^5*e-35*a^4*b*e+47*a^3*b^2*e-20*a^2*b^3*e+28*a*b^4*e+37*b^5*e-50*a^4*c*e-35*a^3*b*c*e+a^2*b^2*c*e+15*a*b^3*c*e-2*b^4*c*e-10*a^3*c^2*e-50*a^2*b*c^2*e-34*a*b^2*c^2*e+28*b^3*c^2*e+18*a^2*c^3*e-13*a*b*c^3*e-17*b^2*c^3*e-19*a*c^4*e+9*b*c^4*e-43*c^5*e-29*a^4*d*e-17*a^3*b*d*e+47*a^2*b^2*d*e+26*a*b^3*d*e-13*b^4*d*e+11*a^3*c*d*e+5*a^2*b*c*d*e-25*a*b^2*c*d*e+26*b^3*c*d*e-17*a^2*c^2*d*e-37*a*b*c^2*d*e-7*b^2*c^2*d*e+28*a*c^3*d*e+28*b*c^3*d*e-16*c^4*d*e+30*a^3*d^2*e-25*a^2*b*d^2*e+9*a*b^2*d^2*e+34*b^3*d^2*e+2*a^2*c*d^2*e+30*a*b*c*d^2*e-37*b^2*c*d^2*e+33*a*c^2*d^2*e-5*b*c^2*d^2*e-4*c^3*d^2*e+50*a^2*d^3*e-50*a*b*d^3*e+9*b^2*d^3*e+11*a*c*d^3*e-31*b*c*d^3*e+29*c^2*d^3*e-37*a*d^4*e-22*b*d^4*e-20*c*d^4*e-30*d^5*e+19*a^4*e^2+42*a^3*b*e^2+43*a^2*b^2*e^2-22*a*b^3*e^2+40*b^4*e^2-12*a^3*c*e^2-37*a^2*b*c*e^2-38*a*b^2*c*e^2+47*b^3*c*e^2+33*a^2*c^2*e^2-26*a*b*c^2*e^2+8*b^2*c^2*e^2+43*a*c^3*e^2+43*b*c^3*e^2-26*c^4*e^2+13*a^3*d*e^2+7*a^2*b*d*e^2-38*a*b^2*d*e^2+28*b^3*d*e^2-35*a^2*c*d*e^2+41*a*b*c*d*e^2+2*b^2*c*d*e^2-44*a*c^2*d*e^2-5*b*c^2*d*e^2+35*c^3*d*e^2+46*a^2*d^2*e^2-32*a*b*d^2*e^2-37*b^2*d^2*e^2+4*a*c*d^2*e^2+15*b*c*d^2*e^2+13*c^2*d^2*e^2+14*a*d^3*e^2+3*b*d^3*e^2-7*c*d^3*e^2+9*d^4*e^2-43*a^3*e^3+46*a^2*b*e^3-17*a*b^2*e^3+12*b^3*e^3-9*a^2*c*e^3+40*a*b*c*e^3+7*b^2*c*e^3-31*a*c^2*e^3+32*b*c^2*e^3-49*a^2*d*e^3+22*a*b*d*e^3+27*b^2*d*e^3+34*a*c*d*e^3-39*b*c*d*e^3-17*c^2*d*e^3-39*a*d^2*e^3+20*b*d^2*e^3-10*c*d^2*e^3+2*d^3*e^3+4*a^2*e^4+21*a*b*e^4+20*b^2*e^4+36*a*c*e^4+49*b*c*e^4+24*c^2*e^4-31*a*d*e^4+23*b*d*e^4+48*c*d*e^4-12*d^2*e^4+8*a*e^5-8*b*e^5-15*c*e^5-d*e^5+24*e^6,
2903b^2*c^4-39*a^4*d^2+a^3*b*d^2+26*a^2*b^2*d^2+29*a*b^3*d^2-5*b^4*d^2+13*a^3*c*d^2-47*a^2*b*c*d^2+17*a*b^2*c*d^2+22*b^3*c*d^2+25*a^2*c^2*d^2-2*a*b*c^2*d^2+18*b^2*c^2*d^2+43*a*c^3*d^2+48*b*c^3*d^2-24*c^4*d^2-17*a^3*d^3-16*a^2*b*d^3-3*a*b^2*d^3+35*b^3*d^3+8*a^2*c*d^3+30*a*b*c*d^3-6*b^2*c*d^3+17*a*c^2*d^3-25*b*c^2*d^3+34*c^3*d^3+13*a^2*d^4-49*a*b*d^4-48*b^2*d^4-6*a*c*d^4+43*b*c*d^4+31*c^2*d^4+30*a*d^5-12*b*d^5+4*c*d^5+39*d^6+48*a^5*e+15*a^4*b*e-41*a^3*b^2*e+41*a^2*b^3*e-16*a*b^4*e+28*b^5*e-48*a^4*c*e+11*a^3*b*c*e+42*a^2*b^2*c*e+34*a*b^3*c*e+48*b^4*c*e-24*a^3*c^2*e+29*a^2*b*c^2*e+6*a*b^2*c^2*e+18*b^3*c^2*e-31*a^2*c^3*e+15*a*b*c^3*e+22*b^2*c^3*e-a*c^4*e+15*b*c^4*e-46*c^5*e-36*a^4*d*e+a^3*b*d*e+46*a^2*b^2*d*e-29*a*b^3*d*e+41*b^4*d*e-13*a^3*c*d*e-4*a^2*b*c*d*e-39*a*b^2*c*d*e-39*b^3*c*d*e+35*a^2*c^2*d*e-29*a*b*c^2*d*e-26*b^2*c^2*d*e-37*a*c^3*d*e-8*b*c^3*d*e-13*c^4*d*e+44*a^3*d^2*e-9*a^2*b*d^2*e-38*a*b^2*d^2*e-30*b^3*d^2*e+49*a^2*c*d^2*e+8*a*b*c*d^2*e-35*b^2*c*d^2*e+40*a*c^2*d^2*e-19*b*c^2*d^2*e-25*c^3*d^2*e+47*a^2*d^3*e+17*a*b*d^3*e-41*b^2*d^3*e-18*a*c*d^3*e+38*b*c*d^3*e+22*c^2*d^3*e-30*a*d^4*e+25*b*d^4*e-11*c*d^4*e-8*d^5*e+47*a^4*e^2+2*a^3*b*e^2+5*a^2*b^2*e^2-31*a*b^3*e^2+21*b^4*e^2-46*a^3*c*e^2-28*a^2*b*c*e^2+49*a*b^2*c*e^2+31*b^3*c*e^2-45*a^2*c^2*e^2+26*a*b*c^2*e^2+18*b^2*c^2*e^2+6*a*c^3*e^2-17*b*c^3*e^2-4*c^4*e^2-8*a^3*d*e^2-37*a^2*b*d*e^2-43*a*b^2*d*e^2+10*b^3*d*e^2+32*a^2*c*d*e^2+21*a*b*c*d*e^2+9*b^2*c*d*e^2-34*a*c^2*d*e^2-50*b*c^2*d*e^2-7*c^3*d*e^2+31*a^2*d^2*e^2+22*b^2*d^2*e^2-35*a*c*d^2*e^2-3*b*c*d^2*e^2+13*c^2*d^2*e^2-35*a*d^3*e^2-45*b*d^3*e^2-44*c*d^3*e^2+44*d^4*e^2+7*a^3*e^3+17*a^2*b*e^3+8*a*b^2*e^3+30*b^3*e^3-28*a^2*c*e^3-25*a*b*c*e^3+6*b^2*c*e^3-29*a*c^2*e^3-29*b*c^2*e^3-23*c^3*e^3-43*a^2*d*e^3+44*a*b*d*e^3+41*b^2*d*e^3-8*a*c*d*e^3-13*b*c*d*e^3+27*c^2*d*e^3+5*a*d^2*e^3+8*b*d^2*e^3+11*c*d^2*e^3-50*d^3*e^3+4*a^2*e^4-31*a*b*e^4-2*b^2*e^4-2*a*c*e^4-27*b*c*e^4-c^2*e^4-17*a*d*e^4-30*b*d*e^4-15*c*d*e^4+5*d^2*e^4-34*a*e^5-49*b*e^5+26*c*e^5-44*d*e^5+46*e^6,
2904a*b*c^4+44*a^4*d^2-12*a^3*b*d^2-6*a^2*b^2*d^2-20*a*b^3*d^2+48*b^4*d^2+19*a^3*c*d^2+4*a^2*b*c*d^2+50*a*b^2*c*d^2+34*b^3*c*d^2-a^2*c^2*d^2-24*a*b*c^2*d^2+43*b^2*c^2*d^2-21*a*c^3*d^2-29*b*c^3*d^2+36*c^4*d^2+48*a^3*d^3-26*a^2*b*d^3-16*a*b^2*d^3+29*b^3*d^3-48*a^2*c*d^3-19*a*b*c*d^3-17*b^2*c*d^3-44*a*c^2*d^3+5*b*c^2*d^3-6*c^3*d^3-a^2*d^4-30*a*b*d^4-16*b^2*d^4+20*a*c*d^4+17*b*c*d^4-50*c^2*d^4+36*a*d^5-36*b*d^5-2*c*d^5+46*d^6-10*a^5*e-39*a^4*b*e+20*a^3*b^2*e+45*a^2*b^3*e-35*a*b^4*e+2*b^5*e+23*a^4*c*e-12*a^3*b*c*e-5*a^2*b^2*c*e+5*a*b^3*c*e-8*b^4*c*e+49*a^3*c^2*e+11*a^2*b*c^2*e-11*a*b^2*c^2*e+28*b^3*c^2*e+34*a^2*c^3*e+50*a*b*c^3*e+33*b^2*c^3*e-48*a*c^4*e-12*b*c^4*e+30*c^5*e+3*a^4*d*e-34*a^3*b*d*e+14*a^2*b^2*d*e-47*a*b^3*d*e+34*b^4*d*e-50*a^3*c*d*e-18*a^2*b*c*d*e-39*a*b^2*c*d*e-27*b^3*c*d*e-42*a^2*c^2*d*e-43*a*b*c^2*d*e+28*b^2*c^2*d*e+45*a*c^3*d*e+37*b*c^3*d*e-36*c^4*d*e+21*a^3*d^2*e+36*a^2*b*d^2*e+8*a*b^2*d^2*e-16*b^3*d^2*e+43*a^2*c*d^2*e+24*b^2*c*d^2*e-21*a*c^2*d^2*e+29*b*c^2*d^2*e-14*c^3*d^2*e+11*a^2*d^3*e+16*a*b*d^3*e-24*b^2*d^3*e+8*a*c*d^3*e-44*b*c*d^3*e+13*c^2*d^3*e-32*a*d^4*e+b*d^4*e-31*c*d^4*e-32*d^5*e+32*a^4*e^2-27*a^3*b*e^2+29*a^2*b^2*e^2-30*a*b^3*e^2+35*b^4*e^2-19*a^3*c*e^2+45*a^2*b*c*e^2-9*a*b^2*c*e^2+9*b^3*c*e^2-33*a^2*c^2*e^2+24*a*b*c^2*e^2-5*b^2*c^2*e^2-42*a*c^3*e^2+32*b*c^3*e^2+37*c^4*e^2+36*a^3*d*e^2-44*a^2*b*d*e^2+46*a*b^2*d*e^2+37*b^3*d*e^2+31*a^2*c*d*e^2+32*a*b*c*d*e^2-37*b^2*c*d*e^2-45*a*c^2*d*e^2-37*b*c^2*d*e^2+38*c^3*d*e^2+40*a^2*d^2*e^2-44*a*b*d^2*e^2+39*b^2*d^2*e^2-20*a*c*d^2*e^2+46*b*c*d^2*e^2+c^2*d^2*e^2-13*a*d^3*e^2+16*b*d^3*e^2-17*c*d^3*e^2+41*d^4*e^2-18*a^3*e^3+12*a^2*b*e^3-20*a*b^2*e^3+34*b^3*e^3+21*a^2*c*e^3+19*a*b*c*e^3+22*b^2*c*e^3+41*a*c^2*e^3+42*b*c^2*e^3-32*c^3*e^3-24*a^2*d*e^3-26*a*b*d*e^3-43*b^2*d*e^3-17*a*c*d*e^3-24*b*c*d*e^3+36*c^2*d*e^3+48*a*d^2*e^3+38*b*d^2*e^3-43*c*d^2*e^3-31*d^3*e^3-21*a^2*e^4+45*a*b*e^4-12*b^2*e^4-42*a*c*e^4-38*b*c*e^4-27*c^2*e^4-3*a*d*e^4-45*b*d*e^4-17*c*d*e^4+15*d^2*e^4+48*a*e^5+21*b*e^5-7*c*e^5-36*d*e^5+12*e^6,
2905a^2*c^4+45*a^4*d^2-49*a^3*b*d^2-20*a^2*b^2*d^2-12*a*b^3*d^2-21*b^4*d^2-29*a^3*c*d^2+23*a^2*b*c*d^2+6*a*b^2*c*d^2-30*b^3*c*d^2-33*a^2*c^2*d^2+31*a*b*c^2*d^2+12*b^2*c^2*d^2+20*a*c^3*d^2-48*b*c^3*d^2-21*c^4*d^2-23*a^3*d^3-38*a^2*b*d^3-41*a*b^2*d^3-3*b^3*d^3+13*a^2*c*d^3-10*a*b*c*d^3-14*b^2*c*d^3+47*a*c^2*d^3+46*b*c^2*d^3-49*c^3*d^3-a^2*d^4-13*a*b*d^4+34*b^2*d^4+8*a*c*d^4-44*b*c*d^4+c^2*d^4-10*a*d^5-b*d^5-34*c*d^5-8*d^6-28*a^5*e+21*a^4*b*e-44*a^3*b^2*e-3*a^2*b^3*e-7*a*b^4*e+49*b^5*e-25*a^4*c*e+22*a^3*b*c*e+18*a^2*b^2*c*e-15*a*b^3*c*e+31*b^4*c*e-27*a^3*c^2*e+9*a^2*b*c^2*e-9*a*b^2*c^2*e+50*b^3*c^2*e-a^2*c^3*e-20*a*b*c^3*e+21*b^2*c^3*e+25*a*c^4*e-29*b*c^4*e-41*c^5*e+28*a^4*d*e-7*a^3*b*d*e-18*a^2*b^2*d*e-33*a*b^3*d*e-32*b^4*d*e-9*a^3*c*d*e-18*a^2*b*c*d*e-7*a*b^2*c*d*e-49*b^3*c*d*e+23*a^2*c^2*d*e+32*a*b*c^2*d*e+17*b^2*c^2*d*e-26*a*c^3*d*e+30*b*c^3*d*e-4*c^4*d*e+17*a^3*d^2*e-31*a^2*b*d^2*e+7*a*b^2*d^2*e-10*a^2*c*d^2*e+9*a*b*c*d^2*e+49*b^2*c*d^2*e-26*a*c^2*d^2*e-21*b*c^2*d^2*e+13*c^3*d^2*e+32*a^2*d^3*e+8*a*b*d^3*e+44*b^2*d^3*e+49*a*c*d^3*e-b*c*d^3*e+39*c^2*d^3*e-a*d^4*e-19*b*d^4*e-40*c*d^4*e-30*d^5*e-2*a^4*e^2-5*a^3*b*e^2-10*a^2*b^2*e^2-31*a*b^3*e^2+37*b^4*e^2+45*a^3*c*e^2+17*a^2*b*c*e^2-34*a*b^2*c*e^2-32*b^3*c*e^2-7*a^2*c^2*e^2-21*a*b*c^2*e^2+50*b^2*c^2*e^2+35*a*c^3*e^2-38*b*c^3*e^2+14*c^4*e^2-21*a^3*d*e^2-4*a^2*b*d*e^2-14*a*b^2*d*e^2+13*b^3*d*e^2-38*a^2*c*d*e^2+44*a*b*c*d*e^2+7*b^2*c*d*e^2-16*a*c^2*d*e^2+38*b*c^2*d*e^2+38*c^3*d*e^2+25*a^2*d^2*e^2-34*a*b*d^2*e^2-32*b^2*d^2*e^2+22*a*c*d^2*e^2+40*b*c*d^2*e^2+4*c^2*d^2*e^2-16*a*d^3*e^2+36*b*d^3*e^2-39*c*d^3*e^2-45*d^4*e^2+39*a^3*e^3+31*a^2*b*e^3-43*a*b^2*e^3-18*b^3*e^3+44*a^2*c*e^3-8*a*b*c*e^3+38*b^2*c*e^3-4*a*c^2*e^3+3*b*c^2*e^3-43*c^3*e^3-6*a^2*d*e^3+34*a*b*d*e^3+6*b^2*d*e^3-13*a*c*d*e^3+32*b*c*d*e^3+30*c^2*d*e^3+28*a*d^2*e^3+17*b*d^2*e^3-19*c*d^2*e^3-46*d^3*e^3+12*a^2*e^4+44*a*b*e^4-42*b^2*e^4-41*a*c*e^4-35*b*c*e^4-37*c^2*e^4+42*a*d*e^4+43*b*d*e^4+5*c*d*e^4+11*d^2*e^4+25*a*e^5-9*b*e^5-27*c*e^5+50*d*e^5+23*e^6,
2906b^3*c^3-13*a^4*d^2-41*a^3*b*d^2+27*a^2*b^2*d^2+a*b^3*d^2+33*b^4*d^2+47*a^3*c*d^2-19*a^2*b*c*d^2-27*a*b^2*c*d^2-6*b^3*c*d^2+37*a^2*c^2*d^2+40*a*b*c^2*d^2+12*b^2*c^2*d^2+36*a*c^3*d^2-25*b*c^3*d^2-45*c^4*d^2-12*a^3*d^3-5*a^2*b*d^3+31*a*b^2*d^3-b^3*d^3-37*a^2*c*d^3+26*a*b*c*d^3-48*b^2*c*d^3+36*a*c^2*d^3+16*b*c^2*d^3+44*c^3*d^3+47*a^2*d^4-20*a*b*d^4-13*b^2*d^4+39*a*c*d^4+17*b*c*d^4-32*c^2*d^4-24*a*d^5-41*b*d^5-31*c*d^5+29*a^5*e+26*a^4*b*e+12*a^3*b^2*e-45*a^2*b^3*e+40*a*b^4*e+20*b^5*e-21*a^4*c*e-28*a^3*b*c*e+38*a^2*b^2*c*e+40*a*b^3*c*e-13*b^4*c*e-9*a^3*c^2*e-9*a^2*b*c^2*e-a*b^2*c^2*e-b^3*c^2*e+32*a^2*c^3*e+43*a*b*c^3*e-44*b^2*c^3*e+39*a*c^4*e+8*b*c^4*e-8*c^5*e+27*a^4*d*e+15*a^3*b*d*e-12*a^2*b^2*d*e-33*a*b^3*d*e+16*b^4*d*e+19*a^3*c*d*e-34*a^2*b*c*d*e+5*a*b^2*c*d*e-31*b^3*c*d*e+5*a^2*c^2*d*e-20*a*b*c^2*d*e-4*b^2*c^2*d*e-50*a*c^3*d*e+44*b*c^3*d*e-31*a^3*d^2*e+31*a^2*b*d^2*e+28*a*b^2*d^2*e-10*b^3*d^2*e+2*a^2*c*d^2*e-19*a*b*c*d^2*e-9*a*c^2*d^2*e+2*b*c^2*d^2*e+40*c^3*d^2*e+45*a^2*d^3*e+9*a*b*d^3*e+26*b^2*d^3*e-14*a*c*d^3*e+2*b*c*d^3*e+7*c^2*d^3*e+36*a*d^4*e-43*b*d^4*e-27*c*d^4*e-4*d^5*e+23*a^4*e^2+45*a^3*b*e^2+41*a^2*b^2*e^2+22*a*b^3*e^2+14*b^4*e^2-30*a^3*c*e^2+19*a^2*b*c*e^2-34*a*b^2*c*e^2+17*b^3*c*e^2-42*a^2*c^2*e^2-12*a*b*c^2*e^2-9*b^2*c^2*e^2-3*a*c^3*e^2+47*b*c^3*e^2+47*c^4*e^2+7*a^3*d*e^2+6*a^2*b*d*e^2+26*a*b^2*d*e^2+10*b^3*d*e^2-11*a^2*c*d*e^2-17*a*b*c*d*e^2+34*b^2*c*d*e^2+21*a*c^2*d*e^2+11*b*c^2*d*e^2+5*c^3*d*e^2-40*a^2*d^2*e^2+11*a*b*d^2*e^2+17*b^2*d^2*e^2+38*a*c*d^2*e^2-18*b*c*d^2*e^2+23*c^2*d^2*e^2+35*a*d^3*e^2+4*b*d^3*e^2-2*c*d^3*e^2+46*d^4*e^2+44*a^3*e^3-14*a^2*b*e^3+25*a*b^2*e^3-41*b^3*e^3-34*a^2*c*e^3-44*a*b*c*e^3+17*a*c^2*e^3+9*b*c^2*e^3+45*c^3*e^3+23*a^2*d*e^3-15*a*b*d*e^3+9*b^2*d*e^3-14*a*c*d*e^3-23*b*c*d*e^3+17*c^2*d*e^3+46*a*d^2*e^3+30*b*d^2*e^3+35*c*d^2*e^3-27*d^3*e^3-40*a^2*e^4-50*a*b*e^4-23*b^2*e^4-46*a*c*e^4+44*b*c*e^4+7*c^2*e^4+14*a*d*e^4-4*b*d*e^4-9*c*d*e^4+44*d^2*e^4-9*a*e^5+28*b*e^5+25*c*e^5+36*d*e^5+28*e^6,
2907a*b^2*c^3+41*a^4*d^2-33*a^3*b*d^2+21*a^2*b^2*d^2-47*a*b^3*d^2-23*b^4*d^2+9*a^3*c*d^2+49*a^2*b*c*d^2+44*a*b^2*c*d^2-25*b^3*c*d^2-28*a^2*c^2*d^2+37*a*b*c^2*d^2+9*b^2*c^2*d^2-21*a*c^3*d^2+36*b*c^3*d^2+48*c^4*d^2+2*a^3*d^3+15*a^2*b*d^3-3*a*b^2*d^3-40*b^3*d^3-19*a^2*c*d^3+4*a*b*c*d^3-29*b^2*c*d^3-48*a*c^2*d^3+41*b*c^2*d^3+34*c^3*d^3+33*a^2*d^4-13*a*b*d^4-34*b^2*d^4-47*a*c*d^4+36*b*c*d^4+34*c^2*d^4+41*a*d^5+25*b*d^5-28*c*d^5-31*d^6+22*a^5*e+a^4*b*e+27*a^3*b^2*e+5*a^2*b^3*e-33*a*b^4*e+2*b^5*e+20*a^4*c*e-30*a^3*b*c*e+11*a^2*b^2*c*e+44*a*b^3*c*e-37*b^4*c*e+a^3*c^2*e+7*a^2*b*c^2*e-20*a*b^2*c^2*e+34*b^3*c^2*e-35*a^2*c^3*e+28*a*b*c^3*e-50*b^2*c^3*e-11*a*c^4*e-26*b*c^4*e+c^5*e-37*a^4*d*e+23*a^3*b*d*e+50*a^2*b^2*d*e+35*a*b^3*d*e-4*b^4*d*e-15*a^3*c*d*e-39*a^2*b*c*d*e-50*a*b^2*c*d*e+47*b^3*c*d*e-38*a^2*c^2*d*e-42*a*b*c^2*d*e+43*b^2*c^2*d*e+24*a*c^3*d*e+31*b*c^3*d*e+41*c^4*d*e-15*a^3*d^2*e+20*a^2*b*d^2*e-24*a*b^2*d^2*e-47*b^3*d^2*e+4*a^2*c*d^2*e+42*a*b*c*d^2*e+20*b^2*c*d^2*e-37*a*c^2*d^2*e+42*b*c^2*d^2*e+6*c^3*d^2*e-45*a^2*d^3*e-7*a*b*d^3*e-37*b^2*d^3*e-34*a*c*d^3*e-44*b*c*d^3*e-c^2*d^3*e-29*a*d^4*e+22*b*d^4*e-27*c*d^4*e-34*d^5*e-13*a^4*e^2+48*a^3*b*e^2+22*a^2*b^2*e^2+30*a*b^3*e^2-10*b^4*e^2-2*a^3*c*e^2+10*a^2*b*c*e^2+23*a*b^2*c*e^2+27*b^3*c*e^2+15*a^2*c^2*e^2-a*b*c^2*e^2+33*b^2*c^2*e^2-13*a*c^3*e^2-13*b*c^3*e^2+44*c^4*e^2-34*a^3*d*e^2+7*a^2*b*d*e^2+a*b^2*d*e^2-50*b^3*d*e^2+23*a^2*c*d*e^2+12*a*b*c*d*e^2+50*b^2*c*d*e^2+29*a*c^2*d*e^2+41*b*c^2*d*e^2+22*c^3*d*e^2-20*a^2*d^2*e^2+4*a*b*d^2*e^2-33*b^2*d^2*e^2-38*a*c*d^2*e^2+47*b*c*d^2*e^2+21*c^2*d^2*e^2+18*b*d^3*e^2+44*c*d^3*e^2+31*d^4*e^2-3*a^3*e^3-32*a^2*b*e^3-45*a*b^2*e^3-20*b^3*e^3+29*a^2*c*e^3-35*a*b*c*e^3-11*b^2*c*e^3-13*a*c^2*e^3-38*b*c^2*e^3+17*c^3*e^3-41*a^2*d*e^3-36*a*b*d*e^3-6*b^2*d*e^3-14*a*c*d*e^3-16*b*c*d*e^3-6*c^2*d*e^3+20*a*d^2*e^3-29*b*d^2*e^3+50*c*d^2*e^3-37*d^3*e^3-27*a^2*e^4+15*a*b*e^4+46*b^2*e^4+39*a*c*e^4-26*b*c*e^4-10*c^2*e^4-40*a*d*e^4-5*b*d*e^4-23*c*d*e^4+36*d^2*e^4-21*a*e^5+4*b*e^5-48*c*e^5+38*d*e^5-36*e^6,
2908a^2*b*c^3+6*a^4*d^2-4*a^3*b*d^2+37*a^2*b^2*d^2+18*a*b^3*d^2-34*b^4*d^2+23*a^3*c*d^2-9*a^2*b*c*d^2-46*a*b^2*c*d^2+19*b^3*c*d^2+42*a^2*c^2*d^2-34*a*b*c^2*d^2-14*b^2*c^2*d^2-10*a*c^3*d^2+13*b*c^3*d^2+14*c^4*d^2-38*a^3*d^3-13*a^2*b*d^3+47*a*b^2*d^3-9*b^3*d^3-a^2*c*d^3+33*a*b*c*d^3+9*b^2*c*d^3+33*a*c^2*d^3+37*b*c^2*d^3+41*c^3*d^3+12*a^2*d^4-50*a*b*d^4+11*b^2*d^4-48*a*c*d^4+27*b*c*d^4-48*c^2*d^4-48*a*d^5-19*b*d^5+46*c*d^5+5*d^6+43*a^5*e-13*a^4*b*e-16*a^3*b^2*e+34*a^2*b^3*e+25*a*b^4*e+29*b^5*e-8*a^4*c*e-2*a^3*b*c*e+4*a^2*b^2*c*e+23*a*b^3*c*e+7*b^4*c*e-6*a^3*c^2*e-39*a^2*b*c^2*e-10*a*b^2*c^2*e+18*b^3*c^2*e-18*a^2*c^3*e+35*a*b*c^3*e+18*b^2*c^3*e-2*a*c^4*e+16*b*c^4*e-21*c^5*e-44*a^4*d*e-a^3*b*d*e+19*a^2*b^2*d*e+32*a*b^3*d*e+20*b^4*d*e+36*a^3*c*d*e+16*a^2*b*c*d*e+7*a*b^2*c*d*e+21*b^3*c*d*e+21*a^2*c^2*d*e-31*a*b*c^2*d*e+10*b^2*c^2*d*e-16*a*c^3*d*e+40*b*c^3*d*e-16*c^4*d*e-43*a^3*d^2*e+50*a^2*b*d^2*e-14*a*b^2*d^2*e-24*b^3*d^2*e-23*a^2*c*d^2*e-21*a*b*c*d^2*e-2*b^2*c*d^2*e+38*a*c^2*d^2*e+40*b*c^2*d^2*e+38*c^3*d^2*e-5*a^2*d^3*e+31*a*b*d^3*e-50*b^2*d^3*e+46*a*c*d^3*e-14*b*c*d^3*e+45*c^2*d^3*e-25*a*d^4*e-8*b*d^4*e+3*c*d^4*e+7*d^5*e-a^4*e^2-29*a^3*b*e^2-23*a^2*b^2*e^2+19*a*b^3*e^2-41*b^4*e^2+46*a^3*c*e^2-27*a^2*b*c*e^2-24*a*b^2*c*e^2+26*b^3*c*e^2+8*a^2*c^2*e^2-11*a*b*c^2*e^2-9*b^2*c^2*e^2+29*a*c^3*e^2+15*b*c^3*e^2-10*c^4*e^2-37*a^3*d*e^2+25*a^2*b*d*e^2-26*a*b^2*d*e^2+7*b^3*d*e^2-19*a^2*c*d*e^2-12*a*b*c*d*e^2+50*b^2*c*d*e^2-40*a*c^2*d*e^2-28*b*c^2*d*e^2+26*c^3*d*e^2+28*a^2*d^2*e^2+38*a*b*d^2*e^2+44*b^2*d^2*e^2-32*a*c*d^2*e^2-14*b*c*d^2*e^2+23*c^2*d^2*e^2+44*a*d^3*e^2+47*b*d^3*e^2+46*c*d^3*e^2+3*d^4*e^2-27*a^3*e^3+5*a^2*b*e^3-48*a*b^2*e^3+22*b^3*e^3+32*a^2*c*e^3+23*a*b*c*e^3+34*b^2*c*e^3+4*a*c^2*e^3-25*b*c^2*e^3+13*c^3*e^3+25*a^2*d*e^3-24*a*b*d*e^3+11*b^2*d*e^3+32*a*c*d*e^3-14*b*c*d*e^3+4*c^2*d*e^3+10*a*d^2*e^3-7*b*d^2*e^3+22*c*d^2*e^3-4*d^3*e^3+6*a^2*e^4+19*a*b*e^4+15*b^2*e^4+9*a*c*e^4-49*b*c*e^4+37*c^2*e^4-46*a*d*e^4+33*b*d*e^4+41*c*d*e^4-41*d^2*e^4+11*a*e^5-44*b*e^5+46*c*e^5+12*d*e^5-50*e^6,
2909a^3*c^3-8*a^4*d^2+24*a^3*b*d^2-28*a^2*b^2*d^2+27*a*b^3*d^2-17*b^4*d^2-40*a^3*c*d^2+28*a^2*b*c*d^2+2*a*b^2*c*d^2-18*b^3*c*d^2+45*a^2*c^2*d^2-13*a*b*c^2*d^2-14*b^2*c^2*d^2+35*a*c^3*d^2-32*b*c^3*d^2+2*c^4*d^2-27*a^3*d^3-41*a^2*b*d^3-36*a*b^2*d^3-50*b^3*d^3+23*a^2*c*d^3+25*a*b*c*d^3+22*b^2*c*d^3+15*a*c^2*d^3-36*b*c^2*d^3-43*c^3*d^3-26*a^2*d^4-43*a*b*d^4-25*b^2*d^4-14*a*c*d^4+32*b*c*d^4+25*c^2*d^4+23*a*d^5-32*b*d^5+28*c*d^5-24*d^6+4*a^5*e-15*a^4*b*e-45*a^3*b^2*e-47*a^2*b^3*e+50*a*b^4*e+3*b^5*e+41*a^4*c*e+45*a^2*b^2*c*e+7*a*b^3*c*e-41*b^4*c*e+13*a^3*c^2*e+5*a^2*b*c^2*e+33*a*b^2*c^2*e+35*b^3*c^2*e+9*a^2*c^3*e-4*a*b*c^3*e-43*b^2*c^3*e-8*a*c^4*e+10*b*c^4*e-17*c^5*e+24*a^4*d*e-6*a^3*b*d*e+22*a^2*b^2*d*e+3*a*b^3*d*e+31*b^4*d*e-24*a^3*c*d*e+10*a^2*b*c*d*e+28*a*b^2*c*d*e-28*b^3*c*d*e+49*a^2*c^2*d*e+17*a*b*c^2*d*e+21*b^2*c^2*d*e-29*a*c^3*d*e-18*b*c^3*d*e+18*c^4*d*e+46*a^3*d^2*e+27*a^2*b*d^2*e+5*a*b^2*d^2*e+17*b^3*d^2*e+42*a^2*c*d^2*e+37*a*b*c*d^2*e+48*b^2*c*d^2*e+34*a*c^2*d^2*e+35*b*c^2*d^2*e+8*c^3*d^2*e+a^2*d^3*e-27*a*b*d^3*e+31*b^2*d^3*e+16*a*c*d^3*e+49*b*c*d^3*e-c^2*d^3*e+3*a*d^4*e-22*b*d^4*e+50*c*d^4*e-18*d^5*e+26*a^4*e^2+23*a^3*b*e^2+23*a^2*b^2*e^2-47*a*b^3*e^2+32*b^4*e^2-5*a^3*c*e^2-10*a^2*b*c*e^2-32*a*b^2*c*e^2+21*b^3*c*e^2+50*a^2*c^2*e^2+9*a*b*c^2*e^2+39*b^2*c^2*e^2+24*a*c^3*e^2-15*b*c^3*e^2-12*c^4*e^2+25*a^3*d*e^2+39*a^2*b*d*e^2+34*a*b^2*d*e^2+9*b^3*d*e^2+4*a^2*c*d*e^2+45*a*b*c*d*e^2+14*b^2*c*d*e^2+24*a*c^2*d*e^2+25*b*c^2*d*e^2-33*c^3*d*e^2+43*a^2*d^2*e^2-27*a*b*d^2*e^2+19*b^2*d^2*e^2-20*a*c*d^2*e^2-35*b*c*d^2*e^2+45*c^2*d^2*e^2-17*a*d^3*e^2-48*b*d^3*e^2-25*c*d^3*e^2-19*d^4*e^2+44*a^3*e^3+10*a^2*b*e^3+21*a*b^2*e^3-42*b^3*e^3+40*a^2*c*e^3-50*a*b*c*e^3-9*a*c^2*e^3+39*b*c^2*e^3+25*c^3*e^3+23*a^2*d*e^3-14*a*b*d*e^3+16*b^2*d*e^3+16*a*c*d*e^3+43*b*c*d*e^3-13*c^2*d*e^3-9*a*d^2*e^3-7*b*d^2*e^3+26*c*d^2*e^3-44*d^3*e^3-24*a^2*e^4+34*a*b*e^4+41*b^2*e^4-9*a*c*e^4+13*b*c*e^4-37*c^2*e^4-20*a*d*e^4-37*b*d*e^4+29*c*d*e^4+34*d^2*e^4+45*a*e^5+8*b*e^5+7*d*e^5+e^6,
2910b^4*c^2-14*a^4*d^2-37*a^3*b*d^2+19*a^2*b^2*d^2+4*a*b^3*d^2+20*b^4*d^2+34*a^3*c*d^2+17*a^2*b*c*d^2-35*a*b^2*c*d^2-21*b^3*c*d^2+32*a^2*c^2*d^2-31*a*b*c^2*d^2+18*b^2*c^2*d^2+6*a*c^3*d^2+21*b*c^3*d^2+24*c^4*d^2-4*a^3*d^3+41*a^2*b*d^3-14*a*b^2*d^3+38*b^3*d^3-26*a^2*c*d^3-48*a*b*c*d^3-39*b^2*c*d^3+a*c^2*d^3+50*b*c^2*d^3-13*c^3*d^3+21*a^2*d^4-17*a*b*d^4+47*b^2*d^4+16*a*c*d^4+12*b*c*d^4+30*c^2*d^4+11*a*d^5-5*b*d^5-42*c*d^5-15*d^6+15*a^5*e-15*a^4*b*e+36*a^3*b^2*e-21*a^2*b^3*e-9*a*b^4*e-34*b^5*e-40*a^4*c*e+7*a^3*b*c*e-22*a^2*b^2*c*e+48*a*b^3*c*e-24*b^4*c*e-40*a^3*c^2*e+17*a^2*b*c^2*e-15*a*b^2*c^2*e+19*b^3*c^2*e-19*a^2*c^3*e-36*a*b*c^3*e+26*b^2*c^3*e-32*a*c^4*e-46*b*c^4*e+26*c^5*e-33*a^4*d*e+33*a^3*b*d*e+28*a^2*b^2*d*e+48*a*b^3*d*e-22*b^4*d*e+46*a^3*c*d*e+35*a^2*b*c*d*e-21*a*b^2*c*d*e+b^3*c*d*e+8*a^2*c^2*d*e+14*a*b*c^2*d*e+12*b^2*c^2*d*e-4*a*c^3*d*e+32*b*c^3*d*e-17*c^4*d*e-42*a^3*d^2*e-43*a^2*b*d^2*e+17*a*b^2*d^2*e+21*b^3*d^2*e-31*a^2*c*d^2*e-46*a*b*c*d^2*e-26*b^2*c*d^2*e+35*a*c^2*d^2*e+14*b*c^2*d^2*e-35*c^3*d^2*e-3*a^2*d^3*e+50*a*b*d^3*e+41*b^2*d^3*e+36*a*c*d^3*e+7*b*c*d^3*e+7*c^2*d^3*e+15*a*d^4*e-38*b*d^4*e-37*c*d^4*e-34*d^5*e+15*a^4*e^2+44*a^3*b*e^2+42*a^2*b^2*e^2+10*a*b^3*e^2-23*b^4*e^2+37*a^3*c*e^2+50*a^2*b*c*e^2+20*a*b^2*c*e^2-50*b^3*c*e^2-4*a^2*c^2*e^2-3*a*b*c^2*e^2-14*b^2*c^2*e^2-28*a*c^3*e^2-10*b*c^3*e^2-33*c^4*e^2-11*a^3*d*e^2-8*a^2*b*d*e^2-23*a*b^2*d*e^2-14*a^2*c*d*e^2+42*a*b*c*d*e^2-42*b^2*c*d*e^2-36*a*c^2*d*e^2+41*b*c^2*d*e^2-27*c^3*d*e^2+30*a^2*d^2*e^2+3*a*b*d^2*e^2+33*b^2*d^2*e^2-28*a*c*d^2*e^2-26*b*c*d^2*e^2+c^2*d^2*e^2+46*a*d^3*e^2+21*b*d^3*e^2-32*c*d^3*e^2-16*d^4*e^2-23*a^3*e^3+6*a^2*b*e^3+40*a*b^2*e^3-38*b^3*e^3+28*a^2*c*e^3-14*a*b*c*e^3+6*b^2*c*e^3+45*a*c^2*e^3+2*b*c^2*e^3-11*c^3*e^3+18*a^2*d*e^3+36*a*b*d*e^3-40*b^2*d*e^3-43*a*c*d*e^3+44*b*c*d*e^3-26*c^2*d*e^3+23*a*d^2*e^3+28*b*d^2*e^3+15*c*d^2*e^3-18*d^3*e^3-13*a^2*e^4-47*a*b*e^4-28*b^2*e^4-22*a*c*e^4+20*b*c*e^4+17*c^2*e^4+a*d*e^4+46*b*d*e^4-15*c*d*e^4+40*d^2*e^4+34*a*e^5-9*b*e^5-29*c*e^5+15*d*e^5+32*e^6,
2911a*b^3*c^2-37*a^4*d^2-46*a^3*b*d^2+11*a^2*b^2*d^2+21*a*b^3*d^2+21*b^4*d^2-23*a^3*c*d^2-3*a^2*b*c*d^2+3*a*b^2*c*d^2-32*b^3*c*d^2-37*a^2*c^2*d^2-36*a*b*c^2*d^2+37*b^2*c^2*d^2-6*a*c^3*d^2-34*b*c^3*d^2+48*c^4*d^2+28*a^3*d^3+43*a^2*b*d^3+43*a*b^2*d^3+17*b^3*d^3+26*a^2*c*d^3+33*a*b*c*d^3-2*b^2*c*d^3-21*a*c^2*d^3-14*b*c^2*d^3-39*c^3*d^3-a^2*d^4-22*a*b*d^4-39*b^2*d^4-35*a*c*d^4+13*b*c*d^4-24*c^2*d^4-11*a*d^5+16*b*d^5+30*c*d^5-22*d^6-22*a^5*e+19*a^4*b*e-15*a^3*b^2*e-8*a^2*b^3*e+14*a*b^4*e-5*b^5*e+6*a^4*c*e+6*a^3*b*c*e+46*a^2*b^2*c*e+39*a*b^3*c*e+21*b^4*c*e-22*a^3*c^2*e+26*a^2*b*c^2*e+24*a*b^2*c^2*e+10*b^3*c^2*e-23*a^2*c^3*e+26*a*b*c^3*e+b^2*c^3*e+39*a*c^4*e+35*b*c^4*e-19*c^5*e+17*a^4*d*e+38*a^3*b*d*e+9*a^2*b^2*d*e-19*a*b^3*d*e+42*b^4*d*e-11*a^3*c*d*e-6*a^2*b*c*d*e+10*a*b^2*c*d*e-10*b^3*c*d*e+41*a^2*c^2*d*e+10*a*b*c^2*d*e+46*b^2*c^2*d*e-33*a*c^3*d*e-6*b*c^3*d*e+11*c^4*d*e-33*a^3*d^2*e-22*a^2*b*d^2*e-6*a*b^2*d^2*e-11*b^3*d^2*e+34*a^2*c*d^2*e-39*a*b*c*d^2*e-45*b^2*c*d^2*e-17*a*c^2*d^2*e-8*b*c^2*d^2*e-41*c^3*d^2*e+13*a^2*d^3*e-11*a*b*d^3*e-13*b^2*d^3*e+3*a*c*d^3*e-28*b*c*d^3*e+33*c^2*d^3*e-8*a*d^4*e+24*b*d^4*e-34*c*d^4*e-7*d^5*e+26*a^4*e^2+12*a^3*b*e^2-20*a^2*b^2*e^2+5*a*b^3*e^2+30*b^4*e^2+6*a^3*c*e^2-45*a^2*b*c*e^2-49*a*b^2*c*e^2+43*b^3*c*e^2-29*a^2*c^2*e^2+4*a*b*c^2*e^2+17*b^2*c^2*e^2+13*a*c^3*e^2+21*b*c^3*e^2+16*c^4*e^2-25*a^3*d*e^2-7*a^2*b*d*e^2+42*a*b^2*d*e^2-44*b^3*d*e^2+19*a^2*c*d*e^2+5*a*b*c*d*e^2-38*b^2*c*d*e^2-17*a*c^2*d*e^2-15*b*c^2*d*e^2-26*c^3*d*e^2+47*a^2*d^2*e^2-42*a*b*d^2*e^2-26*b^2*d^2*e^2-50*a*c*d^2*e^2+25*b*c*d^2*e^2-3*c^2*d^2*e^2-47*a*d^3*e^2-40*b*d^3*e^2+24*c*d^3*e^2+35*d^4*e^2-22*a^3*e^3-5*a^2*b*e^3-10*a*b^2*e^3-7*b^3*e^3+6*a^2*c*e^3-16*a*b*c*e^3-28*b^2*c*e^3-43*a*c^2*e^3+24*b*c^2*e^3-9*c^3*e^3+42*a^2*d*e^3-12*a*b*d*e^3-29*b^2*d*e^3+35*a*c*d*e^3+27*b*c*d*e^3+40*c^2*d*e^3-17*a*d^2*e^3+29*b*d^2*e^3+38*c*d^2*e^3+13*d^3*e^3-23*a^2*e^4+32*a*b*e^4+5*b^2*e^4+11*a*c*e^4-b*c*e^4-37*c^2*e^4+3*a*d*e^4-3*b*d*e^4+37*c*d*e^4-28*d^2*e^4-33*a*e^5+18*b*e^5+45*c*e^5-11*d*e^5+42*e^6,
2912a^2*b^2*c^2+34*a^4*d^2+5*a^3*b*d^2-6*a^2*b^2*d^2-24*a*b^3*d^2+14*b^4*d^2+24*a^3*c*d^2-13*a^2*b*c*d^2+27*a*b^2*c*d^2+10*b^3*c*d^2-38*a^2*c^2*d^2+14*a*b*c^2*d^2+49*b^2*c^2*d^2+42*a*c^3*d^2-4*b*c^3*d^2+32*c^4*d^2+47*a^3*d^3+38*a^2*b*d^3+12*a*b^2*d^3-7*b^3*d^3+30*a^2*c*d^3+2*a*b*c*d^3+23*b^2*c*d^3-42*a*c^2*d^3+19*b*c^2*d^3-19*c^3*d^3-12*a^2*d^4+37*a*b*d^4+47*b^2*d^4+31*a*c*d^4+4*b*c*d^4-36*c^2*d^4-10*a*d^5-7*b*d^5+6*c*d^5-12*d^6-46*a^5*e-47*a^4*b*e+49*a^3*b^2*e+45*a^2*b^3*e+44*a*b^4*e+35*b^5*e+24*a^4*c*e+8*a^3*b*c*e-31*a^2*b^2*c*e+21*a*b^3*c*e+40*b^4*c*e-35*a^3*c^2*e+38*a^2*b*c^2*e+12*a*b^2*c^2*e-27*b^3*c^2*e+39*a^2*c^3*e-48*a*b*c^3*e+21*b^2*c^3*e+29*a*c^4*e-36*b*c^4*e-46*c^5*e-46*a^4*d*e+a^3*b*d*e+11*a^2*b^2*d*e+10*a*b^3*d*e-29*b^4*d*e-16*a^3*c*d*e-18*a^2*b*c*d*e+15*a*b^2*c*d*e-30*b^3*c*d*e-34*a^2*c^2*d*e+36*a*b*c^2*d*e+6*a*c^3*d*e-6*b*c^3*d*e+40*c^4*d*e+49*a^3*d^2*e-14*a^2*b*d^2*e-33*a*b^2*d^2*e+34*b^3*d^2*e-26*a^2*c*d^2*e-31*a*b*c*d^2*e-10*b^2*c*d^2*e+40*a*c^2*d^2*e+34*b*c^2*d^2*e+17*c^3*d^2*e-32*a^2*d^3*e-5*a*b*d^3*e-47*b^2*d^3*e-4*a*c*d^3*e+b*c*d^3*e+47*c^2*d^3*e+8*a*d^4*e+48*b*d^4*e-38*c*d^4*e+34*d^5*e-12*a^4*e^2+6*a^2*b^2*e^2-9*a*b^3*e^2-17*b^4*e^2-16*a^3*c*e^2-32*a^2*b*c*e^2+49*a*b^2*c*e^2+3*b^3*c*e^2+27*a^2*c^2*e^2-42*a*b*c^2*e^2-b^2*c^2*e^2+42*a*c^3*e^2+21*b*c^3*e^2-18*c^4*e^2-a^3*d*e^2+8*a^2*b*d*e^2+45*a*b^2*d*e^2+36*b^3*d*e^2+42*a^2*c*d*e^2-29*a*b*c*d*e^2+45*b^2*c*d*e^2-9*a*c^2*d*e^2-32*b*c^2*d*e^2-50*c^3*d*e^2-25*a^2*d^2*e^2+14*a*b*d^2*e^2-44*b^2*d^2*e^2-16*a*c*d^2*e^2+29*b*c*d^2*e^2+17*c^2*d^2*e^2-12*a*d^3*e^2+28*b*d^3*e^2+36*c*d^3*e^2+24*d^4*e^2+24*a^3*e^3-39*a^2*b*e^3-2*a*b^2*e^3-28*b^3*e^3+31*a^2*c*e^3-47*a*b*c*e^3-b^2*c*e^3-17*a*c^2*e^3+50*b*c^2*e^3-c^3*e^3-a^2*d*e^3+41*a*b*d*e^3-13*b^2*d*e^3-13*a*c*d*e^3+4*b*c*d*e^3+32*c^2*d*e^3-16*a*d^2*e^3-11*b*d^2*e^3+49*c*d^2*e^3+d^3*e^3+32*a^2*e^4-11*a*b*e^4+5*b^2*e^4+3*a*c*e^4-49*b*c*e^4+32*c^2*e^4-11*a*d*e^4-43*b*d*e^4+35*c*d*e^4-5*d^2*e^4+40*a*e^5+18*b*e^5+3*c*e^5+25*d*e^5+28*e^6,
2913a^3*b*c^2-30*a^4*d^2+28*a^3*b*d^2+41*a^2*b^2*d^2-11*a*b^3*d^2+27*b^4*d^2-36*a^3*c*d^2+27*a^2*b*c*d^2+50*a*b^2*c*d^2-34*b^3*c*d^2-21*a^2*c^2*d^2-6*a*b*c^2*d^2-8*b^2*c^2*d^2-14*a*c^3*d^2-35*b*c^3*d^2+21*c^4*d^2+37*a^3*d^3-14*a^2*b*d^3-41*a*b^2*d^3+30*b^3*d^3+35*a^2*c*d^3-28*a*b*c*d^3+26*b^2*c*d^3+19*a*c^2*d^3+b*c^2*d^3-5*c^3*d^3-29*a^2*d^4+25*a*b*d^4-38*b^2*d^4+50*a*c*d^4+10*b*c*d^4+30*c^2*d^4+31*a*d^5-49*b*d^5+39*c*d^5-40*d^6+16*a^5*e-47*a^4*b*e+39*a^3*b^2*e-41*a^2*b^3*e-27*a*b^4*e+10*b^5*e-20*a^4*c*e+23*a^3*b*c*e-39*a^2*b^2*c*e+28*a*b^3*c*e-16*b^4*c*e+20*a^3*c^2*e+22*a^2*b*c^2*e+45*a*b^2*c^2*e-b^3*c^2*e+37*a^2*c^3*e-3*a*b*c^3*e-49*b^2*c^3*e+8*a*c^4*e-3*b*c^4*e+41*c^5*e+33*a^4*d*e+35*a^3*b*d*e+10*a^2*b^2*d*e-42*a*b^3*d*e+14*b^4*d*e+a^3*c*d*e-28*a^2*b*c*d*e-26*a*b^2*c*d*e+35*b^3*c*d*e-24*a^2*c^2*d*e-3*a*b*c^2*d*e+20*b^2*c^2*d*e+a*c^3*d*e+8*b*c^3*d*e-41*c^4*d*e-12*a^3*d^2*e-43*a^2*b*d^2*e+32*a*b^2*d^2*e-26*b^3*d^2*e-37*a^2*c*d^2*e+50*a*b*c*d^2*e-21*b^2*c*d^2*e+46*a*c^2*d^2*e-26*b*c^2*d^2*e+41*c^3*d^2*e+39*a^2*d^3*e+6*a*b*d^3*e-34*b^2*d^3*e+13*a*c*d^3*e-12*b*c*d^3*e-7*c^2*d^3*e-31*a*d^4*e+19*b*d^4*e-22*c*d^4*e+44*d^5*e+15*a^4*e^2-24*a^3*b*e^2-23*a^2*b^2*e^2-25*a*b^3*e^2+21*b^4*e^2+28*a^3*c*e^2+32*a^2*b*c*e^2+6*a*b^2*c*e^2-6*b^3*c*e^2-32*a^2*c^2*e^2+37*a*b*c^2*e^2-15*b^2*c^2*e^2-3*a*c^3*e^2+5*b*c^3*e^2+33*c^4*e^2+50*a^3*d*e^2+46*a^2*b*d*e^2+3*a*b^2*d*e^2+11*b^3*d*e^2-6*a^2*c*d*e^2-26*a*b*c*d*e^2-26*b^2*c*d*e^2+49*a*c^2*d*e^2+48*b*c^2*d*e^2+14*c^3*d*e^2-11*a^2*d^2*e^2-49*a*b*d^2*e^2+37*b^2*d^2*e^2-20*a*c*d^2*e^2+10*b*c*d^2*e^2+22*c^2*d^2*e^2+46*a*d^3*e^2+3*b*d^3*e^2+24*c*d^3*e^2-49*d^4*e^2-31*a^3*e^3+35*a^2*b*e^3-38*a*b^2*e^3+4*b^3*e^3-10*a^2*c*e^3+a*b*c*e^3-15*b^2*c*e^3-8*a*c^2*e^3-18*b*c^2*e^3-26*c^3*e^3+26*a^2*d*e^3+23*a*b*d*e^3+4*b^2*d*e^3-37*a*c*d*e^3+49*b*c*d*e^3-9*c^2*d*e^3-39*a*d^2*e^3+44*b*d^2*e^3+44*c*d^2*e^3+6*d^3*e^3+49*a^2*e^4+23*a*b*e^4+15*a*c*e^4-10*b*c*e^4+24*c^2*e^4+23*a*d*e^4-34*b*d*e^4-9*c*d*e^4-11*d^2*e^4+49*a*e^5+32*b*e^5-12*c*e^5+32*d*e^5+13*e^6,
2914a^4*c^2-10*a^4*d^2+38*a^3*b*d^2-a^2*b^2*d^2+6*a*b^3*d^2+39*b^4*d^2-11*a^3*c*d^2+9*a^2*b*c*d^2+21*a*b^2*c*d^2-13*b^3*c*d^2+22*a^2*c^2*d^2+33*a*b*c^2*d^2-19*b^2*c^2*d^2-18*a*c^3*d^2-38*b*c^3*d^2-50*c^4*d^2-11*a^3*d^3-41*a^2*b*d^3-9*a*b^2*d^3-40*b^3*d^3-8*a^2*c*d^3+49*a*b*c*d^3+34*b^2*c*d^3+36*a*c^2*d^3-37*b*c^2*d^3+14*c^3*d^3-2*a^2*d^4+34*a*b*d^4+47*b^2*d^4+47*a*c*d^4-20*b*c*d^4-13*c^2*d^4+6*a*d^5-31*b*d^5+28*c*d^5-31*d^6-3*a^5*e+39*a^4*b*e+16*a^3*b^2*e+16*a^2*b^3*e+9*a*b^4*e+37*b^5*e-39*a^4*c*e+5*a^3*b*c*e+36*a^2*b^2*c*e-7*a*b^3*c*e+16*b^4*c*e-43*a^3*c^2*e-5*a^2*b*c^2*e+30*a*b^2*c^2*e+12*b^3*c^2*e-26*a^2*c^3*e+45*a*b*c^3*e+9*b^2*c^3*e+17*a*c^4*e-19*b*c^4*e-6*c^5*e-47*a^4*d*e-33*a^3*b*d*e+12*a^2*b^2*d*e+4*a*b^3*d*e+33*b^4*d*e+3*a^3*c*d*e-33*a^2*b*c*d*e-13*a*b^2*c*d*e+28*b^3*c*d*e-46*a^2*c^2*d*e-32*a*b*c^2*d*e+26*b^2*c^2*d*e-14*a*c^3*d*e+8*b*c^3*d*e-40*c^4*d*e+38*a^3*d^2*e-29*a^2*b*d^2*e+45*a*b^2*d^2*e+6*b^3*d^2*e-34*a^2*c*d^2*e-15*a*b*c*d^2*e-20*b^2*c*d^2*e-24*a*c^2*d^2*e-5*b*c^2*d^2*e-36*c^3*d^2*e+17*a^2*d^3*e-17*a*b*d^3*e-18*b^2*d^3*e+44*a*c*d^3*e+11*b*c*d^3*e-14*c^2*d^3*e-31*a*d^4*e-39*b*d^4*e-48*c*d^4*e+20*d^5*e+a^4*e^2-8*a^3*b*e^2+13*a^2*b^2*e^2-18*a*b^3*e^2-28*b^4*e^2-26*a^3*c*e^2+21*a^2*b*c*e^2-12*a*b^2*c*e^2-46*b^3*c*e^2-45*a^2*c^2*e^2+32*a*b*c^2*e^2-9*b^2*c^2*e^2+36*a*c^3*e^2+38*b*c^3*e^2-15*c^4*e^2-21*a^3*d*e^2+25*a^2*b*d*e^2-6*a*b^2*d*e^2+2*b^3*d*e^2-21*a*b*c*d*e^2+38*b^2*c*d*e^2-3*a*c^2*d*e^2-29*b*c^2*d*e^2-9*c^3*d*e^2-20*a^2*d^2*e^2+32*a*b*d^2*e^2-12*b^2*d^2*e^2-21*a*c*d^2*e^2-b*c*d^2*e^2-31*c^2*d^2*e^2-24*a*d^3*e^2-16*b*d^3*e^2+47*c*d^3*e^2+41*d^4*e^2-12*a^3*e^3-38*a^2*b*e^3-23*a*b^2*e^3+44*b^3*e^3-7*a^2*c*e^3+28*a*b*c*e^3+42*b^2*c*e^3+10*a*c^2*e^3-12*b*c^2*e^3-7*c^3*e^3+33*a^2*d*e^3+37*a*b*d*e^3+39*b^2*d*e^3-43*a*c*d*e^3-21*b*c*d*e^3+20*c^2*d*e^3+48*a*d^2*e^3+25*b*d^2*e^3-20*c*d^2*e^3+35*d^3*e^3+a^2*e^4+40*a*b*e^4+23*b^2*e^4+45*a*c*e^4-4*b*c*e^4-15*c^2*e^4+42*a*d*e^4-49*b*d*e^4-28*c*d*e^4-8*d^2*e^4-38*a*e^5-12*b*e^5+42*c*e^5+11*d*e^5+45*e^6,
2915b^5*c+40*a^4*d^2-47*a^3*b*d^2+16*a^2*b^2*d^2+18*a*b^3*d^2+33*b^4*d^2+9*a^3*c*d^2-38*a^2*b*c*d^2-22*a*b^2*c*d^2+8*b^3*c*d^2-21*a^2*c^2*d^2-2*a*b*c^2*d^2+33*b^2*c^2*d^2+5*a*c^3*d^2-50*b*c^3*d^2-35*c^4*d^2+29*a^3*d^3+25*a^2*b*d^3-38*a*b^2*d^3+17*b^3*d^3-32*a^2*c*d^3-44*a*b*c*d^3-20*b^2*c*d^3-26*a*c^2*d^3-37*b*c^2*d^3+47*c^3*d^3+19*a^2*d^4-34*a*b*d^4-20*b^2*d^4+31*a*c*d^4-14*b*c*d^4-37*c^2*d^4-37*a*d^5+7*b*d^5-42*c*d^5+16*d^6-23*a^5*e-48*a^3*b^2*e-41*a^2*b^3*e+6*a*b^4*e+49*a^4*c*e+34*a^3*b*c*e-8*a^2*b^2*c*e+17*a*b^3*c*e+39*b^4*c*e+2*a^3*c^2*e+42*a^2*b*c^2*e+21*a*b^2*c^2*e-8*b^3*c^2*e-11*a^2*c^3*e+50*a*b*c^3*e+25*b^2*c^3*e-46*a*c^4*e-4*b*c^4*e-10*c^5*e+12*a^4*d*e+9*a^3*b*d*e-46*a^2*b^2*d*e-12*a*b^3*d*e-44*b^4*d*e-35*a^3*c*d*e-46*a^2*b*c*d*e+17*a*b^2*c*d*e+48*b^3*c*d*e-28*a^2*c^2*d*e-50*a*b*c^2*d*e-46*b^2*c^2*d*e+4*a*c^3*d*e-41*b*c^3*d*e-8*c^4*d*e+42*a^3*d^2*e+39*a^2*b*d^2*e+27*a*b^2*d^2*e-40*b^3*d^2*e-8*a^2*c*d^2*e+40*a*b*c*d^2*e-20*b^2*c*d^2*e+35*a*c^2*d^2*e-26*b*c^2*d^2*e-2*c^3*d^2*e-14*a^2*d^3*e-34*a*b*d^3*e-24*b^2*d^3*e+22*a*c*d^3*e+45*b*c*d^3*e-9*c^2*d^3*e-38*a*d^4*e-14*b*d^4*e+50*c*d^4*e-49*d^5*e-23*a^4*e^2-10*a^3*b*e^2-4*a^2*b^2*e^2+49*a*b^3*e^2+28*b^4*e^2-50*a^3*c*e^2+38*a^2*b*c*e^2+26*a*b^2*c*e^2-44*b^3*c*e^2+3*a^2*c^2*e^2+46*a*b*c^2*e^2+42*b^2*c^2*e^2+9*a*c^3*e^2+18*b*c^3*e^2-9*c^4*e^2+16*a^3*d*e^2-42*a^2*b*d*e^2+37*a*b^2*d*e^2-10*b^3*d*e^2-41*a^2*c*d*e^2-5*a*b*c*d*e^2+19*b^2*c*d*e^2+17*a*c^2*d*e^2-19*b*c^2*d*e^2+16*c^3*d*e^2+21*a^2*d^2*e^2-17*a*b*d^2*e^2-15*b^2*d^2*e^2-49*a*c*d^2*e^2+36*b*c*d^2*e^2-41*c^2*d^2*e^2+37*a*d^3*e^2-13*b*d^3*e^2-27*c*d^3*e^2-37*d^4*e^2+37*a^3*e^3-50*a^2*b*e^3+21*a*b^2*e^3+14*b^3*e^3-16*a^2*c*e^3+24*a*b*c*e^3-44*b^2*c*e^3+18*b*c^2*e^3+3*c^3*e^3-38*a^2*d*e^3+41*a*b*d*e^3+29*b^2*d*e^3-9*a*c*d*e^3+9*b*c*d*e^3-39*c^2*d*e^3+42*a*d^2*e^3+22*b*d^2*e^3+18*c*d^2*e^3+35*d^3*e^3+43*a^2*e^4+5*a*b*e^4+5*b^2*e^4+16*a*c*e^4-37*b*c*e^4+20*c^2*e^4-10*a*d*e^4+45*b*d*e^4-46*c*d*e^4+42*d^2*e^4+14*a*e^5+15*b*e^5+38*c*e^5+49*d*e^5+3*e^6,
2916a*b^4*c+32*a^4*d^2+43*a^3*b*d^2+49*a^2*b^2*d^2+38*a*b^3*d^2+47*b^4*d^2+19*a^3*c*d^2+43*a^2*b*c*d^2-25*a*b^2*c*d^2+25*b^3*c*d^2+26*a^2*c^2*d^2-5*a*b*c^2*d^2-19*b^2*c^2*d^2+33*a*c^3*d^2-3*b*c^3*d^2-37*c^4*d^2+18*a^3*d^3-27*a^2*b*d^3-33*a*b^2*d^3-49*b^3*d^3+48*a^2*c*d^3-12*a*b*c*d^3+17*b^2*c*d^3+6*a*c^2*d^3-36*b*c^2*d^3+36*c^3*d^3+a^2*d^4-12*b^2*d^4-3*a*c*d^4-43*b*c*d^4-24*c^2*d^4-14*a*d^5-43*b*d^5-20*c*d^5+24*d^6-42*a^5*e-48*a^4*b*e+29*a^3*b^2*e-29*a^2*b^3*e-37*a*b^4*e+b^5*e-31*a^4*c*e+35*a^3*b*c*e+9*a^2*b^2*c*e-17*a*b^3*c*e-34*b^4*c*e+42*a^3*c^2*e-47*a^2*b*c^2*e+31*a*b^2*c^2*e+9*b^3*c^2*e+48*a^2*c^3*e-15*a*b*c^3*e+34*b^2*c^3*e+15*a*c^4*e-23*b*c^4*e+45*c^5*e-12*a^4*d*e+42*a^3*b*d*e-15*a^2*b^2*d*e-14*a*b^3*d*e+33*b^4*d*e-41*a^3*c*d*e+9*a^2*b*c*d*e+15*a*b^2*c*d*e-44*b^3*c*d*e-32*a^2*c^2*d*e+9*a*b*c^2*d*e+22*b^2*c^2*d*e-23*a*c^3*d*e+43*b*c^3*d*e-37*c^4*d*e+19*a^3*d^2*e-47*a^2*b*d^2*e+39*a*b^2*d^2*e-24*b^3*d^2*e-44*a^2*c*d^2*e-27*a*b*c*d^2*e-30*b^2*c*d^2*e-19*a*c^2*d^2*e-28*b*c^2*d^2*e-30*c^3*d^2*e-41*a^2*d^3*e+17*a*b*d^3*e-30*b^2*d^3*e+3*a*c*d^3*e+50*b*c*d^3*e+47*c^2*d^3*e+47*a*d^4*e-40*b*d^4*e+3*c*d^4*e+28*d^5*e-35*a^4*e^2+23*a^3*b*e^2+2*a^2*b^2*e^2-17*a*b^3*e^2-22*b^4*e^2+35*a^3*c*e^2-38*a^2*b*c*e^2-7*a*b^2*c*e^2-12*b^3*c*e^2+38*a^2*c^2*e^2-12*a*b*c^2*e^2+13*b^2*c^2*e^2+19*b*c^3*e^2-25*c^4*e^2-45*a^3*d*e^2-35*a^2*b*d*e^2+41*a*b^2*d*e^2+10*b^3*d*e^2+17*a^2*c*d*e^2-10*a*b*c*d*e^2-42*b^2*c*d*e^2+13*a*c^2*d*e^2-3*b*c^2*d*e^2-42*c^3*d*e^2-2*a^2*d^2*e^2-7*a*b*d^2*e^2+46*b^2*d^2*e^2+43*a*c*d^2*e^2+29*b*c*d^2*e^2+19*c^2*d^2*e^2-26*a*d^3*e^2+28*b*d^3*e^2+27*c*d^3*e^2+32*d^4*e^2+49*a^3*e^3+48*a^2*b*e^3+34*a*b^2*e^3-48*b^3*e^3+12*a^2*c*e^3+30*a*b*c*e^3+18*b^2*c*e^3-50*a*c^2*e^3+13*b*c^2*e^3+48*c^3*e^3+17*a^2*d*e^3+22*a*b*d*e^3-6*b^2*d*e^3-40*a*c*d*e^3-33*b*c*d*e^3-2*c^2*d*e^3-48*a*d^2*e^3-7*b*d^2*e^3+32*c*d^2*e^3-31*d^3*e^3+46*a^2*e^4+17*a*b*e^4+14*b^2*e^4+8*a*c*e^4-43*b*c*e^4+24*a*d*e^4-41*b*d*e^4-35*c*d*e^4-44*d^2*e^4-29*a*e^5+11*b*e^5+50*c*e^5-32*d*e^5+23*e^6,
2917a^2*b^3*c-22*a^4*d^2+38*a^3*b*d^2+10*a^2*b^2*d^2-31*a*b^3*d^2+42*b^4*d^2-7*a^3*c*d^2-47*a^2*b*c*d^2+37*a*b^2*c*d^2-23*b^3*c*d^2-43*a^2*c^2*d^2+38*a*b*c^2*d^2+18*b^2*c^2*d^2+18*a*c^3*d^2+25*b*c^3*d^2+4*c^4*d^2+36*a^3*d^3-21*a^2*b*d^3+35*a*b^2*d^3+28*b^3*d^3+13*a^2*c*d^3+36*a*b*c*d^3-33*b^2*c*d^3+9*a*c^2*d^3+18*b*c^2*d^3-49*c^3*d^3-5*a^2*d^4-8*a*b*d^4-34*b^2*d^4-43*a*c*d^4-47*b*c*d^4-12*c^2*d^4+34*a*d^5+50*b*d^5-13*c*d^5-20*d^6+29*a^5*e-10*a^4*b*e+17*a^3*b^2*e+7*a^2*b^3*e+45*a*b^4*e-23*b^5*e+41*a^4*c*e+31*a^3*b*c*e+9*a^2*b^2*c*e+3*a*b^3*c*e-11*b^4*c*e+6*a^3*c^2*e+11*a^2*b*c^2*e-42*a*b^2*c^2*e+17*b^3*c^2*e+5*a^2*c^3*e-44*a*b*c^3*e-44*b^2*c^3*e+42*a*c^4*e-29*b*c^4*e+6*c^5*e+7*a^4*d*e-50*a^3*b*d*e+29*a^2*b^2*d*e-42*a*b^3*d*e-25*b^4*d*e-5*a^3*c*d*e-33*a^2*b*c*d*e+36*a*b^2*c*d*e+47*b^3*c*d*e-41*a^2*c^2*d*e+4*a*b*c^2*d*e+44*b^2*c^2*d*e-10*a*c^3*d*e-2*b*c^3*d*e+20*c^4*d*e+21*a^3*d^2*e+6*a^2*b*d^2*e-50*a*b^2*d^2*e+35*b^3*d^2*e-8*a^2*c*d^2*e-17*a*b*c*d^2*e+7*b^2*c*d^2*e+35*a*c^2*d^2*e+28*b*c^2*d^2*e+25*c^3*d^2*e-6*a^2*d^3*e-16*a*b*d^3*e+35*b^2*d^3*e-12*a*c*d^3*e+46*b*c*d^3*e+7*c^2*d^3*e+16*a*d^4*e-24*b*d^4*e+32*c*d^4*e-26*d^5*e+6*a^4*e^2+48*a^3*b*e^2-27*a^2*b^2*e^2+15*a*b^3*e^2-15*b^4*e^2-25*a^3*c*e^2+39*a^2*b*c*e^2-21*a*b^2*c*e^2-8*b^3*c*e^2+15*a^2*c^2*e^2+31*a*b*c^2*e^2+33*b^2*c^2*e^2-31*a*c^3*e^2-27*b*c^3*e^2-16*c^4*e^2+41*a^3*d*e^2-17*a^2*b*d*e^2-25*a*b^2*d*e^2-3*b^3*d*e^2+6*a^2*c*d*e^2-24*a*b*c*d*e^2+b^2*c*d*e^2-a*c^2*d*e^2-15*b*c^2*d*e^2+16*c^3*d*e^2+42*a^2*d^2*e^2+6*a*b*d^2*e^2-25*b^2*d^2*e^2+21*a*c*d^2*e^2+48*b*c*d^2*e^2-10*c^2*d^2*e^2+31*b*d^3*e^2-32*c*d^3*e^2+2*d^4*e^2+35*a^3*e^3+42*a^2*b*e^3+10*a*b^2*e^3-38*b^3*e^3+32*a^2*c*e^3+34*a*b*c*e^3+14*b^2*c*e^3-7*a*c^2*e^3+22*b*c^2*e^3+37*c^3*e^3+2*a^2*d*e^3-42*a*b*d*e^3-6*b^2*d*e^3-9*a*c*d*e^3+22*b*c*d*e^3+19*c^2*d*e^3-21*a*d^2*e^3-37*b*d^2*e^3+43*c*d^2*e^3-36*d^3*e^3+16*a^2*e^4-21*a*b*e^4+44*b^2*e^4-48*a*c*e^4+35*b*c*e^4-25*c^2*e^4+15*a*d*e^4+42*b*d*e^4-27*c*d*e^4+27*d^2*e^4-25*a*e^5-12*b*e^5+20*c*e^5+7*d*e^5+3*e^6,
2918a^3*b^2*c-24*a^4*d^2+20*a^3*b*d^2+24*a^2*b^2*d^2-29*a*b^3*d^2-24*b^4*d^2+13*a^3*c*d^2+31*a*b^2*c*d^2-26*b^3*c*d^2-29*a^2*c^2*d^2-27*a*b*c^2*d^2+4*b^2*c^2*d^2+23*a*c^3*d^2+42*b*c^3*d^2-47*c^4*d^2+50*a^3*d^3+48*a^2*b*d^3-22*a*b^2*d^3+16*b^3*d^3-46*a^2*c*d^3-43*a*b*c*d^3+50*b^2*c*d^3-35*a*c^2*d^3-29*b*c^2*d^3-12*c^3*d^3+23*a^2*d^4+31*a*b*d^4+22*b^2*d^4-27*a*c*d^4-25*b*c*d^4-41*c^2*d^4+42*a*d^5-50*b*d^5+33*c*d^5+11*d^6+19*a^5*e-22*a^4*b*e+33*a^3*b^2*e+43*a^2*b^3*e+43*a*b^4*e-5*b^5*e-14*a^4*c*e-46*a^3*b*c*e-21*a^2*b^2*c*e+29*a*b^3*c*e+15*b^4*c*e+12*a^3*c^2*e-a^2*b*c^2*e-43*a*b^2*c^2*e+48*b^3*c^2*e+26*a^2*c^3*e-46*a*b*c^3*e-35*b^2*c^3*e+a*c^4*e+16*b*c^4*e+6*c^5*e-47*a^4*d*e-a^3*b*d*e+a^2*b^2*d*e-32*a*b^3*d*e-19*b^4*d*e-44*a^3*c*d*e+22*a^2*b*c*d*e+40*a*b^2*c*d*e-19*b^3*c*d*e+12*a^2*c^2*d*e-a*b*c^2*d*e-23*b^2*c^2*d*e-11*a*c^3*d*e-26*b*c^3*d*e-4*c^4*d*e-32*a^3*d^2*e-13*a^2*b*d^2*e-b^3*d^2*e+8*a^2*c*d^2*e-28*a*b*c*d^2*e+46*b^2*c*d^2*e-24*a*c^2*d^2*e+26*b*c^2*d^2*e+27*c^3*d^2*e+12*a^2*d^3*e+10*a*b*d^3*e-32*b^2*d^3*e-12*a*c*d^3*e-30*b*c*d^3*e+50*c^2*d^3*e+6*a*d^4*e+32*b*d^4*e+6*c*d^4*e-48*d^5*e+14*a^4*e^2+48*a^3*b*e^2+16*a^2*b^2*e^2+34*a*b^3*e^2+39*b^4*e^2+2*a^3*c*e^2+5*a^2*b*c*e^2-11*a*b^2*c*e^2-4*b^3*c*e^2-39*a^2*c^2*e^2+46*a*b*c^2*e^2-16*b^2*c^2*e^2-46*a*c^3*e^2-b*c^3*e^2+47*c^4*e^2-3*a^3*d*e^2-48*a^2*b*d*e^2-34*a*b^2*d*e^2+19*b^3*d*e^2+46*a^2*c*d*e^2-49*a*b*c*d*e^2-45*b^2*c*d*e^2-4*a*c^2*d*e^2+33*b*c^2*d*e^2-8*c^3*d*e^2-39*a^2*d^2*e^2-34*a*b*d^2*e^2+9*b^2*d^2*e^2-15*a*c*d^2*e^2+b*c*d^2*e^2+44*c^2*d^2*e^2-39*a*d^3*e^2+10*b*d^3*e^2+9*c*d^3*e^2-6*d^4*e^2-7*a^3*e^3+2*a^2*b*e^3+39*a*b^2*e^3+4*b^3*e^3-49*a^2*c*e^3+48*a*b*c*e^3+b^2*c*e^3+28*a*c^2*e^3-29*b*c^2*e^3-7*c^3*e^3+23*a^2*d*e^3+16*a*b*d*e^3+24*b^2*d*e^3-47*a*c*d*e^3+20*b*c*d*e^3+26*c^2*d*e^3+9*a*d^2*e^3+49*b*d^2*e^3+32*c*d^2*e^3+33*d^3*e^3-3*a^2*e^4+48*a*b*e^4-18*b^2*e^4-43*a*c*e^4-14*b*c*e^4-29*c^2*e^4+49*a*d*e^4-49*b*d*e^4-18*c*d*e^4-18*d^2*e^4+45*a*e^5-40*b*e^5-13*c*e^5+3*d*e^5+5*e^6,
2919a^4*b*c-38*a^4*d^2+23*a^3*b*d^2-28*a^2*b^2*d^2-49*a*b^3*d^2-37*b^4*d^2+46*a^3*c*d^2-39*a^2*b*c*d^2+31*a*b^2*c*d^2+43*b^3*c*d^2+40*a^2*c^2*d^2-30*a*b*c^2*d^2-7*b^2*c^2*d^2+32*a*c^3*d^2+50*b*c^3*d^2+13*c^4*d^2-9*a^3*d^3+23*a^2*b*d^3-12*a*b^2*d^3-42*b^3*d^3+4*a^2*c*d^3-3*a*b*c*d^3+50*b^2*c*d^3+16*a*c^2*d^3+40*b*c^2*d^3-23*c^3*d^3+39*a^2*d^4+35*a*b*d^4-45*b^2*d^4+45*a*c*d^4-15*b*c*d^4-26*c^2*d^4+29*a*d^5+37*b*d^5+3*c*d^5-22*d^6-8*a^5*e+15*a^4*b*e+19*a^3*b^2*e-12*a^2*b^3*e+22*a*b^4*e-48*b^5*e+32*a^4*c*e+48*a^3*b*c*e-14*a^2*b^2*c*e+43*a*b^3*c*e-23*b^4*c*e-36*a^3*c^2*e+36*a^2*b*c^2*e+15*a*b^2*c^2*e-34*b^3*c^2*e-16*a^2*c^3*e+20*a*b*c^3*e-23*b^2*c^3*e+39*a*c^4*e-37*b*c^4*e+43*c^5*e+30*a^4*d*e-38*a^3*b*d*e-25*a^2*b^2*d*e-5*a*b^3*d*e-24*b^4*d*e+5*a^3*c*d*e-47*a^2*b*c*d*e-17*a*b^2*c*d*e+30*b^3*c*d*e-a^2*c^2*d*e-43*a*b*c^2*d*e-6*b^2*c^2*d*e-46*a*c^3*d*e-37*b*c^3*d*e-43*c^4*d*e+48*a^3*d^2*e+20*a^2*b*d^2*e+21*a*b^2*d^2*e+35*b^3*d^2*e-47*a^2*c*d^2*e+27*a*b*c*d^2*e+b^2*c*d^2*e+7*a*c^2*d^2*e-11*b*c^2*d^2*e+46*c^3*d^2*e+40*a^2*d^3*e+43*a*b*d^3*e-31*b^2*d^3*e+22*a*c*d^3*e+2*b*c*d^3*e-18*c^2*d^3*e+35*a*d^4*e+31*b*d^4*e-48*c*d^4*e+43*d^5*e+16*a^4*e^2+27*a^3*b*e^2-28*a^2*b^2*e^2-13*a*b^3*e^2+17*b^4*e^2-34*a^3*c*e^2+12*a^2*b*c*e^2-25*a*b^2*c*e^2+7*b^3*c*e^2-19*a^2*c^2*e^2-31*a*b*c^2*e^2+22*b^2*c^2*e^2-45*a*c^3*e^2-25*b*c^3*e^2+7*c^4*e^2-9*a^3*d*e^2-3*a^2*b*d*e^2+20*a*b^2*d*e^2+28*b^3*d*e^2+41*a^2*c*d*e^2-2*a*b*c*d*e^2+8*b^2*c*d*e^2-20*a*c^2*d*e^2+35*b*c^2*d*e^2-11*c^3*d*e^2-27*a^2*d^2*e^2-29*a*b*d^2*e^2+28*b^2*d^2*e^2+10*a*c*d^2*e^2-8*b*c*d^2*e^2+13*c^2*d^2*e^2-32*a*d^3*e^2+23*b*d^3*e^2-50*c*d^3*e^2+20*d^4*e^2+49*a^3*e^3+9*a^2*b*e^3+27*a*b^2*e^3-15*b^3*e^3-38*a^2*c*e^3+26*a*b*c*e^3-47*b^2*c*e^3+10*a*c^2*e^3-21*b*c^2*e^3+2*c^3*e^3+7*a^2*d*e^3-8*a*b*d*e^3-25*b^2*d*e^3+15*a*c*d*e^3+17*b*c*d*e^3-39*c^2*d*e^3+7*a*d^2*e^3-47*b*d^2*e^3+6*c*d^2*e^3+5*d^3*e^3+21*a^2*e^4-49*a*b*e^4-35*b^2*e^4+32*a*c*e^4-16*b*c*e^4+7*c^2*e^4-25*a*d*e^4+30*b*d*e^4-31*c*d*e^4-21*d^2*e^4+42*a*e^5-b*e^5+14*c*e^5+18*d*e^5+28*e^6,
2920a^5*c-2*a^4*d^2-22*a^3*b*d^2-38*a^2*b^2*d^2+10*a*b^3*d^2+32*b^4*d^2-28*a^3*c*d^2+11*a^2*b*c*d^2-12*a*b^2*c*d^2-39*b^3*c*d^2+43*a^2*c^2*d^2+39*a*b*c^2*d^2-24*b^2*c^2*d^2+27*a*c^3*d^2+47*b*c^3*d^2+9*c^4*d^2+12*a^3*d^3+34*a^2*b*d^3-37*a*b^2*d^3+18*b^3*d^3+45*a^2*c*d^3+21*a*b*c*d^3+29*b^2*c*d^3+31*a*c^2*d^3+23*b*c^2*d^3+44*c^3*d^3-19*a^2*d^4+32*a*b*d^4+46*b^2*d^4+27*a*c*d^4+8*b*c*d^4-20*c^2*d^4-35*a*d^5-21*b*d^5+15*c*d^5-45*d^6-38*a^5*e-35*a^4*b*e-28*a^3*b^2*e-30*a^2*b^3*e-19*a*b^4*e-49*b^5*e+34*a^4*c*e-2*a^3*b*c*e-16*a^2*b^2*c*e-8*a*b^3*c*e-10*b^4*c*e-22*a^3*c^2*e+50*a^2*b*c^2*e-29*a*b^2*c^2*e-19*b^3*c^2*e+39*a^2*c^3*e-4*a*b*c^3*e-36*b^2*c^3*e-24*a*c^4*e-2*b*c^4*e-12*c^5*e-22*a^4*d*e-22*a^3*b*d*e-a^2*b^2*d*e-42*a*b^3*d*e-10*b^4*d*e-7*a^3*c*d*e-6*a^2*b*c*d*e+5*a*b^2*c*d*e+36*b^3*c*d*e-5*a^2*c^2*d*e-21*a*b*c^2*d*e-14*b^2*c^2*d*e-21*a*c^3*d*e+18*b*c^3*d*e+49*c^4*d*e-32*a^3*d^2*e-5*a^2*b*d^2*e-45*a*b^2*d^2*e+6*b^3*d^2*e-40*a*b*c*d^2*e-17*b^2*c*d^2*e-47*a*c^2*d^2*e+12*b*c^2*d^2*e-18*c^3*d^2*e-a^2*d^3*e+6*a*b*d^3*e+2*b^2*d^3*e-29*a*c*d^3*e+15*b*c*d^3*e+21*c^2*d^3*e-36*a*d^4*e-7*b*d^4*e+c*d^4*e-23*d^5*e-24*a^4*e^2+47*a^3*b*e^2+19*a^2*b^2*e^2-44*a*b^3*e^2-13*b^4*e^2+49*a^3*c*e^2+39*a^2*b*c*e^2+44*a*b^2*c*e^2+41*b^3*c*e^2-29*a^2*c^2*e^2+24*a*b*c^2*e^2+34*a*c^3*e^2+14*b*c^3*e^2+7*c^4*e^2+44*a^3*d*e^2+22*a^2*b*d*e^2+41*a*b^2*d*e^2+21*a^2*c*d*e^2+12*a*b*c*d*e^2-33*b^2*c*d*e^2-40*a*c^2*d*e^2+16*b*c^2*d*e^2-36*c^3*d*e^2+13*a^2*d^2*e^2-22*a*b*d^2*e^2+28*b^2*d^2*e^2+29*a*c*d^2*e^2+50*b*c*d^2*e^2+48*c^2*d^2*e^2+40*a*d^3*e^2+2*c*d^3*e^2-5*d^4*e^2-37*a^3*e^3+49*a^2*b*e^3-10*a*b^2*e^3-41*b^3*e^3+11*a^2*c*e^3-37*a*b*c*e^3+26*b^2*c*e^3-39*a*c^2*e^3-46*b*c^2*e^3-3*c^3*e^3+47*a^2*d*e^3+5*a*b*d*e^3-45*b^2*d*e^3+28*a*c*d*e^3+22*b*c*d*e^3+29*c^2*d*e^3+11*a*d^2*e^3+21*b*d^2*e^3+14*c*d^2*e^3+14*d^3*e^3+32*a^2*e^4-27*a*b*e^4-47*b^2*e^4-6*b*c*e^4-38*c^2*e^4-38*a*d*e^4-17*b*d*e^4+20*c*d*e^4-d^2*e^4-4*a*e^5-11*b*e^5-41*c*e^5+25*d*e^5-e^6,
2921b^6-11*a^4*d^2+23*a^3*b*d^2+41*a^2*b^2*d^2+7*a*b^3*d^2+10*b^4*d^2-31*a^3*c*d^2+10*a^2*b*c*d^2+7*a*b^2*c*d^2+36*b^3*c*d^2-10*a^2*c^2*d^2+9*a*b*c^2*d^2-41*b^2*c^2*d^2-26*a*c^3*d^2+26*b*c^3*d^2+12*c^4*d^2+36*a^3*d^3-35*a^2*b*d^3+12*a*b^2*d^3-8*b^3*d^3+23*a^2*c*d^3+16*a*b*c*d^3-24*b^2*c*d^3+17*a*c^2*d^3-29*b*c^2*d^3-48*c^3*d^3+33*a^2*d^4+30*a*b*d^4-41*b^2*d^4-23*a*c*d^4+8*b*c*d^4-10*c^2*d^4+22*a*d^5+5*b*d^5-32*c*d^5+19*d^6+19*a^5*e+21*a^4*b*e-29*a^3*b^2*e+10*a^2*b^3*e-6*a*b^4*e-10*b^5*e-35*a^4*c*e-47*a^3*b*c*e-16*a^2*b^2*c*e-35*a*b^3*c*e+34*b^4*c*e-28*a^3*c^2*e-6*a^2*b*c^2*e-44*a*b^2*c^2*e-47*b^3*c^2*e-18*a^2*c^3*e+48*a*b*c^3*e-b^2*c^3*e-17*a*c^4*e-48*b*c^4*e-25*c^5*e-29*a^4*d*e-18*a^3*b*d*e-28*a^2*b^2*d*e-43*a*b^3*d*e-48*b^4*d*e+45*a^3*c*d*e+18*a^2*b*c*d*e+19*a*b^2*c*d*e-27*b^3*c*d*e-13*a^2*c^2*d*e+50*a*b*c^2*d*e+33*b^2*c^2*d*e+14*a*c^3*d*e+40*b*c^3*d*e+41*c^4*d*e-34*a^3*d^2*e-41*a^2*b*d^2*e+2*a*b^2*d^2*e+37*b^3*d^2*e-a^2*c*d^2*e+8*a*b*c*d^2*e-22*b^2*c*d^2*e-25*a*c^2*d^2*e+41*b*c^2*d^2*e+35*c^3*d^2*e-14*a^2*d^3*e+32*a*b*d^3*e+20*b^2*d^3*e+3*a*c*d^3*e+12*b*c*d^3*e-6*c^2*d^3*e+44*a*d^4*e+36*b*d^4*e+32*c*d^4*e-6*d^5*e+17*a^4*e^2-39*a^3*b*e^2+22*a^2*b^2*e^2+9*a*b^3*e^2+7*b^4*e^2-9*a^3*c*e^2-49*a^2*b*c*e^2+36*a*b^2*c*e^2+16*b^3*c*e^2-10*a^2*c^2*e^2+20*a*b*c^2*e^2+b^2*c^2*e^2-29*a*c^3*e^2-4*b*c^3*e^2-34*c^4*e^2-47*a^3*d*e^2+38*a^2*b*d*e^2+10*a*b^2*d*e^2+21*b^3*d*e^2-42*a^2*c*d*e^2-28*a*b*c*d*e^2-6*b^2*c*d*e^2+22*a*c^2*d*e^2+7*b*c^2*d*e^2-12*c^3*d*e^2-6*a^2*d^2*e^2+2*a*b*d^2*e^2-4*b^2*d^2*e^2+7*a*c*d^2*e^2-39*b*c*d^2*e^2-c^2*d^2*e^2+45*a*d^3*e^2+40*b*d^3*e^2+46*c*d^3*e^2+44*d^4*e^2-30*a^3*e^3+3*a^2*b*e^3+27*a*b^2*e^3+42*b^3*e^3-18*a^2*c*e^3+11*a*b*c*e^3+18*b^2*c*e^3-31*a*c^2*e^3-37*b*c^2*e^3+5*c^3*e^3-46*a^2*d*e^3+32*a*b*d*e^3+34*b^2*d*e^3-50*a*c*d*e^3+8*b*c*d*e^3+47*c^2*d*e^3-35*a*d^2*e^3+38*b*d^2*e^3-38*c*d^2*e^3-47*d^3*e^3+35*a^2*e^4+25*a*b*e^4+31*b^2*e^4+8*a*c*e^4+9*b*c*e^4+40*c^2*e^4-3*a*d*e^4-29*b*d*e^4+20*c*d*e^4+16*d^2*e^4+25*a*e^5+b*e^5+21*c*e^5+13*d*e^5-e^6,
2922a*b^5+6*a^4*d^2-30*a^3*b*d^2+48*a^2*b^2*d^2+22*a*b^3*d^2+49*b^4*d^2-4*a^3*c*d^2+45*a^2*b*c*d^2-28*a*b^2*c*d^2-12*b^3*c*d^2+12*a^2*c^2*d^2+47*a*b*c^2*d^2-14*b^2*c^2*d^2+35*a*c^3*d^2-b*c^3*d^2-39*c^4*d^2-40*a^3*d^3+7*a^2*b*d^3+16*a*b^2*d^3+45*b^3*d^3-a^2*c*d^3+20*a*b*c*d^3-9*b^2*c*d^3-31*a*c^2*d^3-44*b*c^2*d^3-13*c^3*d^3+36*a^2*d^4+8*a*b*d^4+25*b^2*d^4-4*a*c*d^4-10*b*c*d^4-40*c^2*d^4+39*a*d^5-4*b*d^5-24*c*d^5-11*d^6+33*a^5*e+40*a^4*b*e+21*a^3*b^2*e-7*a^2*b^3*e-22*a*b^4*e-48*b^5*e-2*a^4*c*e-32*a^3*b*c*e+4*a^2*b^2*c*e-4*a*b^3*c*e+38*b^4*c*e+50*a^3*c^2*e-15*a^2*b*c^2*e-14*a*b^2*c^2*e+43*b^3*c^2*e+44*a^2*c^3*e-11*a*b*c^3*e-20*b^2*c^3*e-14*a*c^4*e+30*b*c^4*e-44*c^5*e-27*a^4*d*e+2*a^3*b*d*e-31*a^2*b^2*d*e-8*a*b^3*d*e-47*a^3*c*d*e-39*a^2*b*c*d*e-46*a*b^2*c*d*e+6*b^3*c*d*e+32*a^2*c^2*d*e+43*a*b*c^2*d*e-30*b^2*c^2*d*e-31*a*c^3*d*e-48*b*c^3*d*e+31*c^4*d*e+49*a^3*d^2*e-2*a^2*b*d^2*e-7*a*b^2*d^2*e-38*b^3*d^2*e+6*a^2*c*d^2*e+7*a*b*c*d^2*e+5*b^2*c*d^2*e+29*a*c^2*d^2*e-39*b*c^2*d^2*e-15*c^3*d^2*e+9*a^2*d^3*e-28*a*b*d^3*e+19*b^2*d^3*e-11*a*c*d^3*e-5*b*c*d^3*e-46*c^2*d^3*e-34*a*d^4*e-27*b*d^4*e-27*c*d^4*e+11*d^5*e-36*a^4*e^2-28*a^3*b*e^2+7*a^2*b^2*e^2+20*a*b^3*e^2-34*b^4*e^2+43*a^3*c*e^2-44*a^2*b*c*e^2+30*a*b^2*c*e^2-b^3*c*e^2-15*a^2*c^2*e^2+47*a*b*c^2*e^2-5*b^2*c^2*e^2-34*a*c^3*e^2-42*b*c^3*e^2-44*c^4*e^2-7*a^3*d*e^2+32*a^2*b*d*e^2-18*a*b^2*d*e^2-45*b^3*d*e^2+50*a^2*c*d*e^2+27*a*b*c*d*e^2-43*b^2*c*d*e^2-49*a*c^2*d*e^2-12*b*c^2*d*e^2+30*c^3*d*e^2-38*a^2*d^2*e^2+16*a*b*d^2*e^2-32*b^2*d^2*e^2-45*a*c*d^2*e^2+41*b*c*d^2*e^2+8*c^2*d^2*e^2+42*a*d^3*e^2+43*b*d^3*e^2+18*c*d^3*e^2-37*d^4*e^2-13*a^3*e^3+33*a^2*b*e^3-12*a*b^2*e^3-31*b^3*e^3-24*a^2*c*e^3+5*a*b*c*e^3-29*b^2*c*e^3+5*a*c^2*e^3+10*b*c^2*e^3+38*c^3*e^3+31*a^2*d*e^3+49*a*b*d*e^3-39*b^2*d*e^3+49*a*c*d*e^3+11*b*c*d*e^3+17*c^2*d*e^3-a*d^2*e^3+45*b*d^2*e^3-16*c*d^2*e^3+28*d^3*e^3+8*a^2*e^4+19*a*b*e^4+5*b^2*e^4+36*a*c*e^4-19*b*c*e^4-18*c^2*e^4-29*a*d*e^4+33*b*d*e^4-15*c*d*e^4+46*d^2*e^4+43*a*e^5+50*b*e^5+35*c*e^5+38*d*e^5+39*e^6,
2923a^2*b^4-27*a^4*d^2-11*a^3*b*d^2+23*a^2*b^2*d^2+42*a*b^3*d^2+33*b^4*d^2-45*a^2*b*c*d^2+42*a*b^2*c*d^2+30*b^3*c*d^2-a^2*c^2*d^2+41*a*b*c^2*d^2+32*b^2*c^2*d^2-4*a*c^3*d^2-4*b*c^3*d^2+50*c^4*d^2+14*a^3*d^3-17*a^2*b*d^3+20*a*b^2*d^3-31*b^3*d^3+44*a^2*c*d^3+14*a*b*c*d^3+43*b^2*c*d^3+48*a*c^2*d^3-10*b*c^2*d^3-3*c^3*d^3-33*a^2*d^4+9*a*b*d^4+28*b^2*d^4-3*a*c*d^4+15*b*c*d^4+46*c^2*d^4-35*a*d^5-42*b*d^5+44*c*d^5-4*d^6+28*a^5*e+46*a^4*b*e+16*a^3*b^2*e+31*a^2*b^3*e-20*a*b^4*e-15*b^5*e-50*a^4*c*e-8*a^3*b*c*e+4*a^2*b^2*c*e+38*a*b^3*c*e+27*b^4*c*e-29*a^3*c^2*e+27*a^2*b*c^2*e-33*a*b^2*c^2*e-22*b^3*c^2*e-3*a^2*c^3*e-40*a*b*c^3*e+10*b^2*c^3*e-20*a*c^4*e-38*b*c^4*e+36*c^5*e-26*a^4*d*e+41*a^3*b*d*e-15*a^2*b^2*d*e+50*a*b^3*d*e+41*b^4*d*e-18*a^3*c*d*e+18*a^2*b*c*d*e-32*a*b^2*c*d*e+41*b^3*c*d*e-5*a^2*c^2*d*e-a*b*c^2*d*e-10*b^2*c^2*d*e-12*a*c^3*d*e-46*b*c^3*d*e+34*c^4*d*e-42*a^3*d^2*e+2*a^2*b*d^2*e+37*a*b^2*d^2*e-b^3*d^2*e-29*a^2*c*d^2*e+46*a*b*c*d^2*e-49*b^2*c*d^2*e+24*a*c^2*d^2*e-47*b*c^2*d^2*e-34*c^3*d^2*e+46*a^2*d^3*e-5*a*b*d^3*e-27*b^2*d^3*e-29*a*c*d^3*e+25*b*c*d^3*e-30*c^2*d^3*e-2*a*d^4*e-50*b*d^4*e-46*c*d^4*e+2*d^5*e+11*a^4*e^2+48*a^3*b*e^2+24*a^2*b^2*e^2+41*a*b^3*e^2-17*b^4*e^2-10*a^3*c*e^2+8*a^2*b*c*e^2+28*b^3*c*e^2-21*a^2*c^2*e^2+23*a*b*c^2*e^2+8*b^2*c^2*e^2+41*a*c^3*e^2+12*b*c^3*e^2+25*c^4*e^2+25*a^3*d*e^2-49*a^2*b*d*e^2+24*a*b^2*d*e^2-7*b^3*d*e^2-20*a^2*c*d*e^2-48*a*b*c*d*e^2+46*b^2*c*d*e^2-18*a*c^2*d*e^2+13*b*c^2*d*e^2-31*c^3*d*e^2-40*a^2*d^2*e^2+2*a*b*d^2*e^2-48*b^2*d^2*e^2-38*a*c*d^2*e^2+20*b*c*d^2*e^2+47*c^2*d^2*e^2-3*a*d^3*e^2+27*b*d^3*e^2+44*c*d^3*e^2+19*d^4*e^2+38*a^3*e^3+22*a^2*b*e^3+37*a*b^2*e^3+20*b^3*e^3-6*a^2*c*e^3-33*a*b*c*e^3+45*b^2*c*e^3+24*a*c^2*e^3+33*b*c^2*e^3+c^3*e^3+50*a^2*d*e^3-44*a*b*d*e^3-50*b^2*d*e^3-11*a*c*d*e^3-11*b*c*d*e^3-30*c^2*d*e^3-a*d^2*e^3-14*b*d^2*e^3-11*c*d^2*e^3-42*d^3*e^3+3*a^2*e^4-6*a*b*e^4+31*b^2*e^4-47*a*c*e^4+23*b*c*e^4-44*c^2*e^4-28*a*d*e^4-50*b*d*e^4+41*c*d*e^4-19*d^2*e^4+10*a*e^5+13*b*e^5+47*c*e^5+31*d*e^5-49*e^6,
2924a^3*b^3-15*a^4*d^2-17*a^3*b*d^2-a^2*b^2*d^2+18*a*b^3*d^2-30*b^4*d^2-37*a^3*c*d^2+21*a^2*b*c*d^2-a*b^2*c*d^2+16*b^3*c*d^2-41*a^2*c^2*d^2+39*a*b*c^2*d^2-16*b^2*c^2*d^2-22*a*c^3*d^2+19*b*c^3*d^2+46*c^4*d^2-14*a^3*d^3+2*a^2*b*d^3+45*a*b^2*d^3+12*b^3*d^3-28*a^2*c*d^3-19*a*b*c*d^3-20*b^2*c*d^3-6*a*c^2*d^3+17*b*c^2*d^3-20*c^3*d^3+34*a^2*d^4+15*a*b*d^4-8*b^2*d^4+31*a*c*d^4-5*b*c*d^4+41*c^2*d^4-32*a*d^5-38*b*d^5+35*c*d^5-4*d^6-26*a^5*e-20*a^4*b*e-12*a^3*b^2*e+22*a^2*b^3*e-48*a*b^4*e+39*b^5*e-46*a^4*c*e-50*a^3*b*c*e+11*a^2*b^2*c*e-2*a*b^3*c*e+23*b^4*c*e+44*a^3*c^2*e+4*a^2*b*c^2*e+17*a*b^2*c^2*e-39*b^3*c^2*e-a^2*c^3*e-20*a*b*c^3*e-16*b^2*c^3*e+7*a*c^4*e+31*b*c^4*e+18*c^5*e-44*a^4*d*e+7*a^3*b*d*e+26*a^2*b^2*d*e-19*a*b^3*d*e-35*b^4*d*e+47*a^3*c*d*e+17*a^2*b*c*d*e-27*a*b^2*c*d*e-6*b^3*c*d*e-16*a^2*c^2*d*e-10*a*b*c^2*d*e+21*b^2*c^2*d*e-27*a*c^3*d*e+4*b*c^3*d*e-32*c^4*d*e-22*a^3*d^2*e+50*a^2*b*d^2*e-a*b^2*d^2*e+41*b^3*d^2*e-46*a^2*c*d^2*e-18*a*b*c*d^2*e+8*b^2*c*d^2*e-16*a*c^2*d^2*e-38*b*c^2*d^2*e-c^3*d^2*e+18*a^2*d^3*e-25*a*b*d^3*e-47*b^2*d^3*e-23*a*c*d^3*e+8*b*c*d^3*e+20*c^2*d^3*e-41*a*d^4*e-18*b*d^4*e-18*c*d^4*e+33*d^5*e+17*a^4*e^2-10*a^3*b*e^2+28*a^2*b^2*e^2-12*a*b^3*e^2-19*b^4*e^2-20*a^3*c*e^2+45*a^2*b*c*e^2+39*a*b^2*c*e^2+37*b^3*c*e^2-6*a^2*c^2*e^2+19*a*b*c^2*e^2+23*b^2*c^2*e^2+34*a*c^3*e^2+24*b*c^3*e^2+20*c^4*e^2+14*a^3*d*e^2-8*a^2*b*d*e^2+15*a*b^2*d*e^2+19*b^3*d*e^2+14*a^2*c*d*e^2-42*a*b*c*d*e^2-27*b^2*c*d*e^2+11*a*c^2*d*e^2+24*b*c^2*d*e^2-10*c^3*d*e^2+12*a^2*d^2*e^2+18*a*b*d^2*e^2+21*b^2*d^2*e^2+35*a*c*d^2*e^2-15*b*c*d^2*e^2-32*c^2*d^2*e^2+8*a*d^3*e^2+40*b*d^3*e^2+50*c*d^3*e^2-41*d^4*e^2+42*a^3*e^3-38*a^2*b*e^3-27*a*b^2*e^3+32*b^3*e^3+41*a^2*c*e^3+3*a*b*c*e^3+28*b^2*c*e^3+21*a*c^2*e^3-8*b*c^2*e^3+22*c^3*e^3+8*a^2*d*e^3+49*a*b*d*e^3-24*b^2*d*e^3-8*a*c*d*e^3+30*b*c*d*e^3+35*c^2*d*e^3+49*a*d^2*e^3+39*b*d^2*e^3+23*c*d^2*e^3-47*d^3*e^3+43*a^2*e^4-15*a*b*e^4+20*b^2*e^4-35*b*c*e^4+28*c^2*e^4+35*b*d*e^4+12*c*d*e^4+40*d^2*e^4+32*a*e^5-32*b*e^5+25*c*e^5+9*d*e^5-26*e^6,
2925a^4*b^2-31*a^4*d^2+30*a^3*b*d^2-42*a^2*b^2*d^2-32*a*b^3*d^2-38*b^4*d^2-49*a^3*c*d^2-4*a^2*b*c*d^2-45*a*b^2*c*d^2+8*b^3*c*d^2+44*a^2*c^2*d^2+21*a*b*c^2*d^2-13*b^2*c^2*d^2-16*a*c^3*d^2+31*b*c^3*d^2-42*c^4*d^2+49*a^3*d^3+44*a^2*b*d^3+a*b^2*d^3+47*b^3*d^3-31*a^2*c*d^3+42*a*b*c*d^3-34*b^2*c*d^3-44*a*c^2*d^3-3*b*c^2*d^3-14*c^3*d^3+24*a^2*d^4+12*a*b*d^4+14*b^2*d^4-32*a*c*d^4+16*b*c*d^4+40*c^2*d^4+8*a*d^5+5*b*d^5+35*c*d^5+2*d^6+7*a^5*e+a^4*b*e-24*a^3*b^2*e-25*a^2*b^3*e-8*a*b^4*e-46*b^5*e+12*a^4*c*e-49*a^3*b*c*e+47*a^2*b^2*c*e-22*a*b^3*c*e-22*b^4*c*e+31*a^3*c^2*e-48*a^2*b*c^2*e-46*a*b^2*c^2*e+28*b^3*c^2*e-5*a^2*c^3*e+42*a*b*c^3*e-9*b^2*c^3*e+13*a*c^4*e+23*b*c^4*e-29*c^5*e+9*a^4*d*e+9*a^3*b*d*e+3*a^2*b^2*d*e+47*a*b^3*d*e+31*b^4*d*e-25*a^3*c*d*e-37*a*b^2*c*d*e-23*b^3*c*d*e+18*a^2*c^2*d*e+8*a*b*c^2*d*e-15*b^2*c^2*d*e-40*a*c^3*d*e+26*b*c^3*d*e-29*c^4*d*e+20*a^3*d^2*e-25*a^2*b*d^2*e+41*a*b^2*d^2*e+10*b^3*d^2*e-12*a^2*c*d^2*e+38*a*b*c*d^2*e-30*b^2*c*d^2*e-49*b*c^2*d^2*e-34*c^3*d^2*e+14*a^2*d^3*e+45*a*b*d^3*e-29*b^2*d^3*e-23*a*c*d^3*e+33*b*c*d^3*e-23*c^2*d^3*e-36*a*d^4*e+29*b*d^4*e+22*c*d^4*e+45*d^5*e-46*a^4*e^2-37*a^3*b*e^2-36*a^2*b^2*e^2-23*a*b^3*e^2-4*b^4*e^2+31*a^3*c*e^2+45*a^2*b*c*e^2-34*a*b^2*c*e^2+6*b^3*c*e^2-38*a^2*c^2*e^2-26*a*b*c^2*e^2-5*b^2*c^2*e^2-24*a*c^3*e^2-28*b*c^3*e^2+20*c^4*e^2+25*a^3*d*e^2+14*a^2*b*d*e^2+a*b^2*d*e^2+18*b^3*d*e^2+12*a^2*c*d*e^2+32*a*b*c*d*e^2+17*b^2*c*d*e^2+50*a*c^2*d*e^2-12*b*c^2*d*e^2-46*c^3*d*e^2+4*a^2*d^2*e^2-29*a*b*d^2*e^2-16*b^2*d^2*e^2+38*a*c*d^2*e^2+3*b*c*d^2*e^2-19*c^2*d^2*e^2+50*a*d^3*e^2+23*b*d^3*e^2+5*c*d^3*e^2+47*d^4*e^2-38*a^3*e^3-31*a^2*b*e^3+14*a*b^2*e^3-43*b^3*e^3+22*a^2*c*e^3+26*a*b*c*e^3-28*b^2*c*e^3-49*a*c^2*e^3+15*c^3*e^3-40*a^2*d*e^3+5*a*b*d*e^3-20*b^2*d*e^3-40*a*c*d*e^3+35*b*c*d*e^3+17*c^2*d*e^3-8*a*d^2*e^3-6*b*d^2*e^3+3*c*d^2*e^3-7*d^3*e^3+45*a^2*e^4-49*a*b*e^4+45*b^2*e^4-25*a*c*e^4+b*c*e^4-33*c^2*e^4-44*a*d*e^4+30*b*d*e^4-26*c*d*e^4+42*d^2*e^4+14*b*e^5-3*c*e^5-47*d*e^5+22*e^6,
2926a^5*b-48*a^4*d^2-33*a^3*b*d^2-34*a^2*b^2*d^2-14*a*b^3*d^2-29*b^4*d^2-7*a^3*c*d^2-13*a^2*b*c*d^2+15*a*b^2*c*d^2+27*b^3*c*d^2+49*a^2*c^2*d^2-a*b*c^2*d^2+46*b^2*c^2*d^2+37*a*c^3*d^2+20*b*c^3*d^2-27*c^4*d^2+33*a^3*d^3+30*a^2*b*d^3+32*a*b^2*d^3+b^3*d^3-47*a^2*c*d^3-2*a*b*c*d^3-36*b^2*c*d^3-7*a*c^2*d^3-23*b*c^2*d^3-41*c^3*d^3-43*a^2*d^4-4*a*b*d^4+14*b^2*d^4+38*a*c*d^4+41*b*c*d^4+27*c^2*d^4-33*a*d^5-50*b*d^5+8*c*d^5+42*d^6-21*a^5*e+46*a^4*b*e+6*a^3*b^2*e+22*a^2*b^3*e+2*a*b^4*e-15*b^5*e+50*a^4*c*e-40*a^2*b^2*c*e+49*a*b^3*c*e+5*b^4*c*e+a^3*c^2*e+47*a^2*b*c^2*e-36*a*b^2*c^2*e+25*b^3*c^2*e-36*a^2*c^3*e+46*a*b*c^3*e+24*b^2*c^3*e-9*a*c^4*e+39*b*c^4*e-40*c^5*e+29*a^4*d*e-49*a^3*b*d*e+16*a^2*b^2*d*e+7*a*b^3*d*e-30*b^4*d*e+42*a^3*c*d*e+22*a^2*b*c*d*e-49*a*b^2*c*d*e+19*b^3*c*d*e-23*a^2*c^2*d*e+7*a*b*c^2*d*e+2*b^2*c^2*d*e-2*a*c^3*d*e-2*b*c^3*d*e+5*c^4*d*e+35*a^3*d^2*e-47*a^2*b*d^2*e-28*a*b^2*d^2*e+5*b^3*d^2*e+45*a^2*c*d^2*e+7*a*b*c*d^2*e+3*b^2*c*d^2*e+33*a*c^2*d^2*e-37*b*c^2*d^2*e+26*c^3*d^2*e-18*a*b*d^3*e-42*b^2*d^3*e-22*a*c*d^3*e-46*b*c*d^3*e-25*c^2*d^3*e+6*a*d^4*e-50*b*d^4*e+22*c*d^4*e-4*d^5*e-42*a^4*e^2+43*a^3*b*e^2+39*a^2*b^2*e^2+12*a*b^3*e^2-20*b^4*e^2+2*a^3*c*e^2+27*a^2*b*c*e^2-21*a*b^2*c*e^2+36*b^3*c*e^2+47*a^2*c^2*e^2-41*a*b*c^2*e^2-23*b^2*c^2*e^2+34*a*c^3*e^2-29*b*c^3*e^2-46*c^4*e^2+15*a^3*d*e^2+4*a^2*b*d*e^2-13*a*b^2*d*e^2+43*b^3*d*e^2-7*a^2*c*d*e^2+4*a*b*c*d*e^2-37*a*c^2*d*e^2-34*b*c^2*d*e^2+20*c^3*d*e^2-5*a^2*d^2*e^2-42*a*b*d^2*e^2+14*b^2*d^2*e^2+9*a*c*d^2*e^2-19*b*c*d^2*e^2+15*c^2*d^2*e^2-35*a*d^3*e^2+24*b*d^3*e^2-35*c*d^3*e^2-14*d^4*e^2-27*a^3*e^3-39*a^2*b*e^3-44*a*b^2*e^3-6*b^3*e^3-30*a^2*c*e^3+47*a*b*c*e^3-26*b^2*c*e^3+9*a*c^2*e^3+16*b*c^2*e^3+37*c^3*e^3-49*a^2*d*e^3+19*a*b*d*e^3+44*b^2*d*e^3-9*a*c*d*e^3-41*b*c*d*e^3+29*c^2*d*e^3-43*a*d^2*e^3+33*b*d^2*e^3-2*c*d^2*e^3-15*d^3*e^3-4*a^2*e^4-46*a*b*e^4+15*b^2*e^4+21*a*c*e^4+13*b*c*e^4+38*c^2*e^4-20*a*d*e^4+16*b*d*e^4-9*c*d*e^4-19*d^2*e^4+14*a*e^5-33*b*e^5+34*c*e^5+16*d*e^5-24*e^6,
2927a^6-2*a^4*d^2+3*a^3*b*d^2+18*a^2*b^2*d^2-46*a*b^3*d^2-31*b^4*d^2+48*a^3*c*d^2+7*a^2*b*c*d^2+26*a*b^2*c*d^2+17*b^3*c*d^2-30*a^2*c^2*d^2-2*a*b*c^2*d^2+5*b^2*c^2*d^2-43*a*c^3*d^2-33*b*c^3*d^2-28*c^4*d^2-26*a^3*d^3-5*a^2*b*d^3+48*a*b^2*d^3+2*b^3*d^3-15*a^2*c*d^3-18*a*b*c*d^3-16*b^2*c*d^3-12*a*c^2*d^3+21*b*c^2*d^3-31*c^3*d^3+34*a^2*d^4-40*a*b*d^4+41*b^2*d^4+21*a*c*d^4+26*b*c*d^4+50*c^2*d^4-20*a*d^5+8*b*d^5+30*c*d^5+48*d^6-37*a^5*e+28*a^4*b*e+8*a^3*b^2*e+30*a^2*b^3*e-a*b^4*e-49*b^5*e-8*a^4*c*e+26*a^3*b*c*e+20*a^2*b^2*c*e+19*a*b^3*c*e-23*b^4*c*e+11*a^3*c^2*e+37*a^2*b*c^2*e+40*a*b^2*c^2*e-33*b^3*c^2*e-26*a^2*c^3*e+12*a*b*c^3*e+29*b^2*c^3*e-a*c^4*e-15*b*c^4*e-24*c^5*e-41*a^4*d*e-4*a^3*b*d*e+42*a^2*b^2*d*e+9*a*b^3*d*e-49*b^4*d*e-11*a^3*c*d*e+21*a^2*b*c*d*e+22*a*b^2*c*d*e+22*b^3*c*d*e-9*a^2*c^2*d*e+27*a*b*c^2*d*e-36*b^2*c^2*d*e-10*a*c^3*d*e-39*b*c^3*d*e-3*c^4*d*e+16*a^3*d^2*e+9*a^2*b*d^2*e+7*a*b^2*d^2*e+33*b^3*d^2*e+42*a^2*c*d^2*e-38*a*b*c*d^2*e+33*b^2*c*d^2*e+41*a*c^2*d^2*e-36*b*c^2*d^2*e-21*c^3*d^2*e+34*a^2*d^3*e-43*a*b*d^3*e+32*b^2*d^3*e-9*a*c*d^3*e-34*b*c*d^3*e-4*c^2*d^3*e-10*a*d^4*e-29*b*d^4*e+4*c*d^4*e+36*d^5*e+40*a^4*e^2-32*a^3*b*e^2+13*a^2*b^2*e^2+22*a*b^3*e^2-15*b^4*e^2+31*a^3*c*e^2+7*a^2*b*c*e^2-15*a*b^2*c*e^2+43*b^3*c*e^2-45*a^2*c^2*e^2-42*a*b*c^2*e^2+41*b^2*c^2*e^2-46*a*c^3*e^2-6*b*c^3*e^2+26*c^4*e^2+45*a^3*d*e^2+11*a^2*b*d*e^2+10*a*b^2*d*e^2+5*b^3*d*e^2+3*a^2*c*d*e^2-49*a*b*c*d*e^2-10*b^2*c*d*e^2-50*a*c^2*d*e^2+38*b*c^2*d*e^2+21*c^3*d*e^2+37*a^2*d^2*e^2+a*b*d^2*e^2+38*b^2*d^2*e^2+25*a*c*d^2*e^2-7*b*c*d^2*e^2-13*c^2*d^2*e^2+32*a*d^3*e^2+37*b*d^3*e^2-27*c*d^3*e^2-7*d^4*e^2+44*a^3*e^3+48*a^2*b*e^3+21*a*b^2*e^3+11*b^3*e^3+9*a^2*c*e^3+49*a*b*c*e^3-39*b^2*c*e^3+24*a*c^2*e^3+35*b*c^2*e^3-11*c^3*e^3+17*a^2*d*e^3+36*a*b*d*e^3-19*b^2*d*e^3-47*a*c*d*e^3-47*b*c*d*e^3-12*c^2*d*e^3+34*a*d^2*e^3+35*b*d^2*e^3+18*d^3*e^3-31*a^2*e^4+45*a*b*e^4+27*b^2*e^4+43*a*c*e^4-35*b*c*e^4-29*c^2*e^4-21*a*d*e^4+49*b*d*e^4-23*c*d*e^4+34*d^2*e^4-2*a*e^5+47*b*e^5+31*c*e^5-46*d*e^5-13*e^6,
2928e^7, d*e^6, c*e^6, b*e^6, a*e^6, d^2*e^5, c*d*e^5, b*d*e^5, a*d*e^5, c^2*e^5,
2929b*c*e^5, a*c*e^5, b^2*e^5, a*b*e^5, a^2*e^5, d^3*e^4, c*d^2*e^4, b*d^2*e^4,
2930a*d^2*e^4, c^2*d*e^4, b*c*d*e^4, a*c*d*e^4, b^2*d*e^4, a*b*d*e^4, a^2*d*e^4,
2931c^3*e^4, b*c^2*e^4, a*c^2*e^4, b^2*c*e^4, a*b*c*e^4, a^2*c*e^4, b^3*e^4,
2932a*b^2*e^4, a^2*b*e^4, a^3*e^4, d^4*e^3, c*d^3*e^3, b*d^3*e^3, a*d^3*e^3,
2933c^2*d^2*e^3, b*c*d^2*e^3, a*c*d^2*e^3, b^2*d^2*e^3, a*b*d^2*e^3, a^2*d^2*e^3,
2934c^3*d*e^3, b*c^2*d*e^3, a*c^2*d*e^3, b^2*c*d*e^3, a*b*c*d*e^3, a^2*c*d*e^3,
2935b^3*d*e^3, a*b^2*d*e^3, a^2*b*d*e^3, a^3*d*e^3, c^4*e^3, b*c^3*e^3, a*c^3*e^3,
2936b^2*c^2*e^3, a*b*c^2*e^3, a^2*c^2*e^3, b^3*c*e^3, a*b^2*c*e^3, a^2*b*c*e^3,
2937a^3*c*e^3, b^4*e^3, a*b^3*e^3, a^2*b^2*e^3, a^3*b*e^3, a^4*e^3, d^5*e^2,
2938c*d^4*e^2, b*d^4*e^2, a*d^4*e^2, c^2*d^3*e^2, b*c*d^3*e^2, a*c*d^3*e^2,
2939b^2*d^3*e^2, a*b*d^3*e^2, a^2*d^3*e^2, c^3*d^2*e^2, b*c^2*d^2*e^2,
2940a*c^2*d^2*e^2, b^2*c*d^2*e^2, a*b*c*d^2*e^2;
2941//  M;
2942  TestSSresAttribs2tr(M, "AGR101n4d008s020%1_big");
2943/*
2944options:  1 1 0 :  Time:  29/32/73/92 (316 without LCM)
2945options:  1 1 1 :  Time:  32/34/43/202
2946lres  Time:  24
2947nres  Time:  19
2948sres  Time:  71
2949*/
2950  kill M;
2951
2952  kill AGR;
2953
2954  ring AGR = (101), (a,b,c,d,e,f), dp; AGR;
2955
2956  // AGR@101n5d005s016%1, new, medium difficulty?
2957  ideal M =
2958b*d-13*c*d+7*a*e-32*b*e+31*c*e+3*d*e+46*a*f-13*b*f+22*c*f-19*d*f-33*e*f, a*d+2*c*d-42*a*e+46*b*e+7*c*e-38*d*e+31*a*f+9*b*f+27*c*f-19*d*f-24*e*f, b*c-35*c*d-34*a*e+4*b*e+33*c*e+23*d*e+4*a*f-43*b*f+43*c*f+17*d*f-13*e*f, a*c+49*c*d-28*a*e+18*b*e-23*c*e+3*d*e-5*a*f-23*b*f+2*c*f+46*d*f-40*e*f, a*b-38*c*d+a*e-49*b*e-20*c*e+32*d*e+13*a*f+25*b*f+37*c*f-27*d*f+25*e*f, f^4, e*f^3, d*f^3, c*f^3, b*f^3, a*f^3, e^2*f^2, d*e*f^2, c*e*f^2, b*e*f^2, a*e*f^2, d^2*f^2, c*d*f^2, c^2*f^2, b^2*f^2, a^2*f^2, e^3*f, d*e^2*f, c*e^2*f, b*e^2*f, a*e^2*f, d^2*e*f, d^3*f, c^3*f, b^3*f, a^3*f, e^4, d^4, c^4, b^4, a^4;
2959  TestSSresAttribs(M, "AGR@101n5d005s016%1");
2960  kill M;
2961}
2962
2963static proc testAGRhard(list #)
2964{
2965  def DEBUG = 0;
2966  if(size(#) > 0) { DEBUG = #[1]; }
2967
2968  system("--min-time", "0.01");
2969  system("--ticks-per-sec", 100);
2970
2971  attrib(SSinit, "DEBUG", 0);
2972  attrib(SSinit, "SYZCHECK", (DEBUG > 0));
2973  attrib(SSinit, "KERCHECK", 0);
2974  attrib(SSinit, "TREEOUTPUT", 0);
2975  attrib(SSinit, "PROFILE", 0);
2976 
2977  option(prot);
2978  // AGR@101n5d006s016%1, new, hard
2979  ring AGR = (101), (a,b,c,d,e,f), dp; AGR;
2980  ideal M =
2981b*d+47*c*d-27*a*e+37*b*e+21*c*e+31*d*e-31*a*f+23*b*f+47*c*f+42*d*f+11*e*f, a*d+7*c*d+19*a*e+28*b*e-33*c*e-28*d*e+15*a*f+28*b*f+47*c*f+3*d*f+14*e*f, b*c+29*c*d-25*a*e+12*b*e+23*c*e-50*d*e-17*a*f+30*b*f-37*c*f+35*d*f-e*f, a*c+46*c*d+12*a*e+27*b*e+39*c*e+23*d*e-45*a*f+39*b*f-35*c*f+4*d*f-10*e*f, a*b+38*c*d-18*a*e-34*b*e-30*c*e+38*d*e+22*a*f+34*b*f+39*c*f+30*d*f-19*e*f, f^5, e*f^4, d*f^4, c*f^4, b*f^4, a*f^4, e^2*f^3, d*e*f^3, c*e*f^3, b*e*f^3, a*e*f^3, d^2*f^3, c*d*f^3, c^2*f^3, b^2*f^3, a^2*f^3, e^3*f^2, d*e^2*f^2, c*e^2*f^2, b*e^2*f^2, a*e^2*f^2, d^2*e*f^2, d^3*f^2, c^3*f^2, b^3*f^2, a^3*f^2, e^4*f, e^5, d^5, c^5, b^5, a^5;
2982  TestSSresAttribs2tr(M, "AGR@101n5d006s016%1_hard");
2983 kill M;
2984}
Note: See TracBrowser for help on using the repository browser.