1 | // $Id: sing.lib,v 1.5 1997-09-12 10:29:48 pohl Exp $ |
---|
2 | //system("random",787422842); |
---|
3 | //(GMG/BM, last modified 26.06.96) |
---|
4 | /////////////////////////////////////////////////////////////////////////////// |
---|
5 | |
---|
6 | LIBRARY: sing.lib PROCEDURES FOR SINGULARITIES |
---|
7 | |
---|
8 | codim (id1, id2); vector space dimension of of id2/id1 if finite |
---|
9 | deform(i); infinitesimal deformations of ideal i |
---|
10 | dim_slocus(i); dimension of singular locus of ideal i |
---|
11 | is_active(f,id); is poly f an active element mod id? (id ideal/module) |
---|
12 | is_ci(i); is ideal i a complete intersection? |
---|
13 | is_is(i); is ideal i an isolated singularity? |
---|
14 | is_reg(f,id); is poly f a regular element mod id? (id ideal/module) |
---|
15 | is_regs(i[,id]); are gen's of ideal i regular sequence modulo id? |
---|
16 | milnor(i); milnor number of ideal i; (assume i is ICIS in nf) |
---|
17 | nf_icis(i); generic combinations of generators; get ICIS in nf |
---|
18 | slocus(i); ideal of singular locus of ideal i |
---|
19 | spectrum(f,w); spectrum numbers of w-homogeneous polynomial f |
---|
20 | Tjurina(i); SB of Tjurina module of ideal i (assume i is ICIS) |
---|
21 | tjurina(i); Tjurina number of ideal i (assume i is ICIS) |
---|
22 | T1(i); T1-module of ideal i |
---|
23 | T2((i); T2-module of ideal i |
---|
24 | T12(i); T1- and T2-module of ideal i |
---|
25 | |
---|
26 | LIB "inout.lib"; |
---|
27 | LIB "random.lib"; |
---|
28 | /////////////////////////////////////////////////////////////////////////////// |
---|
29 | |
---|
30 | proc codim (id1, id2) |
---|
31 | USAGE: codim(id1,id2); id1,id2 ideal or module |
---|
32 | ASSUME: both must be standard bases w.r.t. ordering ds or Ds or homogeneous |
---|
33 | and standardbases w.r.t. ordering dp or Dp |
---|
34 | RETURN: int, which is: |
---|
35 | 1. the codimension of id2 in id1, i.e. the vectorspace dimension of |
---|
36 | id1/id2 if id2 is contained in id1 and if this number is finite |
---|
37 | 2. -1 if the dimension of id1/id2 is infinite |
---|
38 | 3. -2 if id2 is not contained in id1, |
---|
39 | COMPUTE: consider the two hilberseries iv1(t) and iv2(t), then, in case 1., |
---|
40 | q(t)=(iv2(t)-iv1(t))/(1-t)^n must be rational, and the result is the |
---|
41 | sum of the coefficients of q(t) (n number of variables) |
---|
42 | NOTE: As always, id1 and id2 must be consider as ideals in the localization |
---|
43 | of the polynomial ring w.r.t. the monomial ordering |
---|
44 | EXAMPLE: example codim; shows an example |
---|
45 | { |
---|
46 | ideal le1, le2; |
---|
47 | intvec iv1, iv2, iv; |
---|
48 | int i, d1, d2, dd, i1, i2, ia, ie; |
---|
49 | //--------------------------- check id2 < id1 ------------------------------- |
---|
50 | le1 = lead(id1); |
---|
51 | if (attrib(id1,"isSB") != 0) |
---|
52 | { |
---|
53 | attrib(le1,"isSB",1); |
---|
54 | } |
---|
55 | le2 = lead(id2); |
---|
56 | if (attrib(id2,"isSB") != 0) |
---|
57 | { |
---|
58 | attrib(le2,"isSB",1); |
---|
59 | } |
---|
60 | i = size(NF(le2,le1)); |
---|
61 | if ( i > 0 ) |
---|
62 | { |
---|
63 | return(-2); |
---|
64 | } |
---|
65 | //--------------------------- 1. check finiteness --------------------------- |
---|
66 | i1 = dim(le1); |
---|
67 | i2 = dim(le2); |
---|
68 | if (i1 <= 0) |
---|
69 | { |
---|
70 | if (i2 <= 0) |
---|
71 | { |
---|
72 | return(vdim(le2)-vdim(le1)); |
---|
73 | } |
---|
74 | else |
---|
75 | { |
---|
76 | return(-1); |
---|
77 | } |
---|
78 | } |
---|
79 | if (i2 != i1) |
---|
80 | { |
---|
81 | return(-1); |
---|
82 | } |
---|
83 | if (mult(le2) != mult(le1)) |
---|
84 | { |
---|
85 | return(-1); |
---|
86 | } |
---|
87 | //--------------------------- module --------------------------------------- |
---|
88 | d1 = nrows(le1); |
---|
89 | d2 = nrows(le2); |
---|
90 | dd = 0; |
---|
91 | if (d1 > d2) |
---|
92 | { |
---|
93 | le2=le2,maxideal(1)*gen(d1); |
---|
94 | dd = -1; |
---|
95 | } |
---|
96 | if (d2 > d1) |
---|
97 | { |
---|
98 | le1=le1,maxideal(1)*gen(d2); |
---|
99 | dd = 1; |
---|
100 | } |
---|
101 | //--------------------------- compute first hilbertseries ------------------ |
---|
102 | iv1 = hilb(id1,1); |
---|
103 | i1 = size(iv1); |
---|
104 | iv2 = hilb(id2,1); |
---|
105 | i2 = size(iv2); |
---|
106 | kill le1,le2; |
---|
107 | //--------------------------- difference of hilbertseries ------------------ |
---|
108 | if (i2 > i1) |
---|
109 | { |
---|
110 | for ( i=1; i<=i1; i=i+1) |
---|
111 | { |
---|
112 | iv2[i] = iv2[i]-iv1[i]; |
---|
113 | } |
---|
114 | ie = i2; |
---|
115 | iv = iv2; |
---|
116 | } |
---|
117 | else |
---|
118 | { |
---|
119 | for ( i=1; i<=i2; i=i+1) |
---|
120 | { |
---|
121 | iv1[i] = iv2[i]-iv1[i]; |
---|
122 | } |
---|
123 | iv = iv1; |
---|
124 | for (ie=i1;ie>=0;ie=ie-1) |
---|
125 | { |
---|
126 | if (ie == 0) |
---|
127 | { |
---|
128 | return(0); |
---|
129 | } |
---|
130 | if (iv[ie] != 0) |
---|
131 | { |
---|
132 | break; |
---|
133 | } |
---|
134 | } |
---|
135 | } |
---|
136 | ia = 1; |
---|
137 | while (iv[ia] == 0) { ia=ia+1; } |
---|
138 | //--------------------------- ia <= nonzeros <= ie ------------------------- |
---|
139 | iv1 = iv[ia]; |
---|
140 | for(i=ia+1;i<=ie;i=i+1) |
---|
141 | { |
---|
142 | iv1=iv1,iv[i]; |
---|
143 | } |
---|
144 | //--------------------------- compute second hilbertseries ----------------- |
---|
145 | iv2 = hilb(iv1); |
---|
146 | //--------------------------- check finitenes ------------------------------ |
---|
147 | i2 = size(iv2); |
---|
148 | i1 = ie - ia + 1 - i2; |
---|
149 | if (i1 != nvars(basering)) |
---|
150 | { |
---|
151 | return(-1); |
---|
152 | } |
---|
153 | //--------------------------- compute result ------------------------------- |
---|
154 | i1 = 0; |
---|
155 | for ( i=1; i<=i2; i=i+1) |
---|
156 | { |
---|
157 | i1 = i1 + iv2[i]; |
---|
158 | } |
---|
159 | return(i1+dd); |
---|
160 | } |
---|
161 | example |
---|
162 | { "EXAMPLE:"; echo = 2; |
---|
163 | ring r = 0,(x,y,z),dp; |
---|
164 | ideal j = y6,x4; |
---|
165 | ideal m = x,y; |
---|
166 | attrib(m,"isSB",1); //let Singular know that ideals are a standard basis |
---|
167 | attrib(j,"isSB",1); |
---|
168 | codim(m,j); // should be 23 (Milnor number -1 of y7-x5) |
---|
169 | } |
---|
170 | /////////////////////////////////////////////////////////////////////////////// |
---|
171 | |
---|
172 | proc deform (ideal id) |
---|
173 | USAGE: deform(id); id=ideal or poly |
---|
174 | RETURN: matrix, columns are kbase of infinitesimal deformations |
---|
175 | EXAMPLE: example deform; shows an example |
---|
176 | { |
---|
177 | list L=T1(id,""); |
---|
178 | def K=L[1]; attrib(K,"isSB",1); |
---|
179 | return(L[2]*kbase(K)); |
---|
180 | } |
---|
181 | example |
---|
182 | { "EXAMPLE:"; echo = 2; |
---|
183 | ring r = 32003,(x,y,z),ds; |
---|
184 | ideal i = xy,xz,yz; |
---|
185 | matrix T = deform(i); |
---|
186 | print(T); |
---|
187 | print(deform(x3+y5+z2)); |
---|
188 | } |
---|
189 | /////////////////////////////////////////////////////////////////////////////// |
---|
190 | |
---|
191 | proc dim_slocus (ideal i) |
---|
192 | USAGE: dim_slocus(i); i ideal or poly |
---|
193 | RETURN: dimension of singular locus of i |
---|
194 | EXAMPLE: example dim_slocus; shows an example |
---|
195 | { |
---|
196 | return(dim(std(slocus(i)))); |
---|
197 | } |
---|
198 | example |
---|
199 | { "EXAMPLE:"; echo = 2; |
---|
200 | ring r = 32003,(x,y,z),ds; |
---|
201 | ideal i = x5+y6+z6,x2+2y2+3z2; |
---|
202 | dim_slocus(i); |
---|
203 | } |
---|
204 | /////////////////////////////////////////////////////////////////////////////// |
---|
205 | |
---|
206 | proc is_active (poly f, id) |
---|
207 | USAGE: is_active(f,id); f poly, id ideal or module |
---|
208 | RETURN: 1 if f is an active element modulo id (i.e. dim(id)=dim(id+f*R^n)+1, |
---|
209 | if id is a submodule of R^n) resp. 0 if f is not active. |
---|
210 | The basering may be a quotient ring |
---|
211 | NOTE: regular parameters are active but not vice versa (id may have embedded |
---|
212 | components). proc is_reg tests whether f is a regular parameter |
---|
213 | EXAMPLE: example is_active; shows an example |
---|
214 | { |
---|
215 | if( size(id)==0 ) { return(1); } |
---|
216 | if( typeof(id)=="ideal" ) { ideal m=f; } |
---|
217 | if( typeof(id)=="module" ) { module m=f*freemodule(nrows(id)); } |
---|
218 | return(dim(std(id))-dim(std(id+m))); |
---|
219 | } |
---|
220 | example |
---|
221 | { "EXAMPLE:"; echo = 2; |
---|
222 | ring r =32003,(x,y,z),ds; |
---|
223 | ideal i = yx3+y,yz3+y3z; |
---|
224 | poly f = x; |
---|
225 | is_active(f,i); |
---|
226 | qring q = std(x4y5); |
---|
227 | poly f = x; |
---|
228 | module m = [yx3+x,yx3+y3x]; |
---|
229 | is_active(f,m); |
---|
230 | } |
---|
231 | /////////////////////////////////////////////////////////////////////////////// |
---|
232 | |
---|
233 | proc is_ci (ideal i) |
---|
234 | USAGE: is_ci(i); i ideal |
---|
235 | RETURN: intvec = sequence of dimensions of ideals (j[1],...,j[k]), for |
---|
236 | k=1,...,size(j), where j is minimal base of i. i is a complete |
---|
237 | intersection if last number equals nvars-size(i) |
---|
238 | NOTE: dim(0-ideal) = -1. You may first apply simplify(i,10); in order to |
---|
239 | delete zeroes and multiples from set of generators |
---|
240 | printlevel >=0: display comments (default) |
---|
241 | EXAMPLE: example is_ci; shows an example |
---|
242 | { |
---|
243 | int n; intvec dimvec; ideal id; |
---|
244 | i=minbase(i); |
---|
245 | int s = ncols(i); |
---|
246 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
247 | //--------------------------- compute dimensions ------------------------------ |
---|
248 | for( n=1; n<=s; n=n+1 ) |
---|
249 | { |
---|
250 | id = i[1..n]; |
---|
251 | dimvec[n] = dim(std(id)); |
---|
252 | } |
---|
253 | n = dimvec[s]; |
---|
254 | //--------------------------- output ------------------------------------------ |
---|
255 | if( n+s != nvars(basering) ) |
---|
256 | { dbprint(p,"// no complete intersection"); } |
---|
257 | if( n+s == nvars(basering) ) |
---|
258 | { dbprint(p,"// complete intersection of dim "+string(n)); } |
---|
259 | dbprint(p,"// dim-sequence:"); |
---|
260 | return(dimvec); |
---|
261 | } |
---|
262 | example |
---|
263 | { "EXAMPLE:"; echo = 2; |
---|
264 | int p = printlevel; |
---|
265 | printlevel = 1; // display comments |
---|
266 | ring r = 32003,(x,y,z),ds; |
---|
267 | ideal i = x4+y5+z6,xyz,yx2+xz2+zy7; |
---|
268 | is_ci(i); |
---|
269 | i = xy,yz; |
---|
270 | is_ci(i); |
---|
271 | printlevel = p; |
---|
272 | } |
---|
273 | /////////////////////////////////////////////////////////////////////////////// |
---|
274 | |
---|
275 | proc is_is (ideal i) |
---|
276 | USAGE: is_is(id); id ideal or poly |
---|
277 | RETURN: intvec = sequence of dimensions of singular loci of ideals |
---|
278 | generated by id[1]..id[i], k = 1..size(id); dim(0-ideal) = -1; |
---|
279 | id defines an isolated singularity if last number is 0 |
---|
280 | NOTE: printlevel >=0: display comments (default) |
---|
281 | EXAMPLE: example is_is; shows an example |
---|
282 | { |
---|
283 | int l; intvec dims; ideal j; |
---|
284 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
285 | //--------------------------- compute dimensions ------------------------------ |
---|
286 | for( l=1; l<=ncols(i); l=l+1 ) |
---|
287 | { |
---|
288 | j = i[1..l]; |
---|
289 | dims[l] = dim(std(slocus(j))); |
---|
290 | } |
---|
291 | dbprint(p,"// dim of singular locus = "+string(dims[size(dims)]), |
---|
292 | "// isolated singularity if last number is 0 in dim-sequence:"); |
---|
293 | return(dims); |
---|
294 | } |
---|
295 | example |
---|
296 | { "EXAMPLE:"; echo = 2; |
---|
297 | int p = printlevel; |
---|
298 | printlevel = 1; |
---|
299 | ring r = 32003,(x,y,z),ds; |
---|
300 | ideal i = x2y,x4+y5+z6,yx2+xz2+zy7; |
---|
301 | is_is(i); |
---|
302 | poly f = xy+yz; |
---|
303 | is_is(f); |
---|
304 | printlevel = p; |
---|
305 | } |
---|
306 | /////////////////////////////////////////////////////////////////////////////// |
---|
307 | |
---|
308 | proc is_reg (poly f, id) |
---|
309 | USAGE: is_reg(f,id); f poly, id ideal or module |
---|
310 | RETURN: 1 if multiplication with f is injective modulo id, 0 otherwise |
---|
311 | NOTE: let R be the basering and id a submodule of R^n. The procedure checks |
---|
312 | injectivity of multiplication with f on R^n/id. The basering may be a |
---|
313 | //**quotient ring |
---|
314 | EXAMPLE: example is_reg; shows an example |
---|
315 | { |
---|
316 | if( f==0 ) { return(0); } |
---|
317 | int d,ii; |
---|
318 | def q = quotient(id,ideal(f)); |
---|
319 | id=std(id); |
---|
320 | d=size(q); |
---|
321 | for( ii=1; ii<=d; ii=ii+1 ) |
---|
322 | { |
---|
323 | if( reduce(q[ii],id)!=0 ) |
---|
324 | { return(0); } |
---|
325 | } |
---|
326 | return(1); |
---|
327 | } |
---|
328 | example |
---|
329 | { "EXAMPLE:"; echo = 2; |
---|
330 | ring r = 32003,(x,y),ds; |
---|
331 | ideal i = x8,y8; |
---|
332 | ideal j = (x+y)^4; |
---|
333 | i = intersect(i,j); |
---|
334 | poly f = xy; |
---|
335 | is_reg(f,i); |
---|
336 | } |
---|
337 | /////////////////////////////////////////////////////////////////////////////// |
---|
338 | |
---|
339 | proc is_regs (ideal i, list #) |
---|
340 | USAGE: is_regs(i[,id]); i poly, id ideal or module (default: id=0) |
---|
341 | RETURN: 1 if generators of i are a regular sequence modulo id, 0 otherwise |
---|
342 | NOTE: let R be the basering and id a submodule of R^n. The procedure checks |
---|
343 | injectivity of multiplication with i[k] on R^n/id+i[1..k-1]. |
---|
344 | The basering may be a quotient ring |
---|
345 | printlevel >=0: display comments (default) |
---|
346 | printlevel >=1: display comments during computation |
---|
347 | EXAMPLE: example is_regs; shows an example |
---|
348 | { |
---|
349 | int d,ii,r; |
---|
350 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
351 | if( size(#)==0 ) { ideal id; } |
---|
352 | else { def id=#[1]; } |
---|
353 | if( size(i)==0 ) { return(0); } |
---|
354 | d=size(i); |
---|
355 | if( typeof(id)=="ideal" ) { ideal m=1; } |
---|
356 | if( typeof(id)=="module" ) { module m=freemodule(nrows(id)); } |
---|
357 | for( ii=1; ii<=d; ii=ii+1 ) |
---|
358 | { |
---|
359 | if( p>=2 ) |
---|
360 | { "// checking whether element",ii,"is regular mod 1 ..",ii-1; } |
---|
361 | if( is_reg(i[ii],id)==0 ) |
---|
362 | { |
---|
363 | dbprint(p,"// elements 1.."+string(ii-1)+" are regular, " + |
---|
364 | string(ii)+" is not regular mod 1.."+string(ii-1)); |
---|
365 | return(0); |
---|
366 | } |
---|
367 | id=id+i[ii]*m; |
---|
368 | } |
---|
369 | if( p>=1 ) { "// elements are a regular sequence of length",d; } |
---|
370 | return(1); |
---|
371 | } |
---|
372 | example |
---|
373 | { "EXAMPLE:"; echo = 2; |
---|
374 | int p = printlevel; |
---|
375 | printlevel = 1; |
---|
376 | ring r1 = 32003,(x,y,z),ds; |
---|
377 | ideal i = x8,y8,(x+y)^4; |
---|
378 | is_regs(i); |
---|
379 | module m = [x,0,y]; |
---|
380 | i = x8,(x+z)^4;; |
---|
381 | is_regs(i,m); |
---|
382 | printlevel = p; |
---|
383 | } |
---|
384 | /////////////////////////////////////////////////////////////////////////////// |
---|
385 | |
---|
386 | proc milnor (ideal i) |
---|
387 | USAGE: milnor(i); i ideal or poly |
---|
388 | RETURN: Milnor number of i, if i is ICIS (isolated complete intersection |
---|
389 | singularity) in generic form, resp. -1 if not |
---|
390 | NOTE: use proc nf_icis to put generators in generic form |
---|
391 | printlevel >=0: display comments (default) |
---|
392 | EXAMPLE: example milnor; shows an example |
---|
393 | { |
---|
394 | i = simplify(i,10); //delete zeroes and multiples from set of generators |
---|
395 | int n = size(i); |
---|
396 | int l,q,m_nr; ideal t; intvec disc; |
---|
397 | int p = printlevel-voice+3; // p=printlevel+1 (default: p=1) |
---|
398 | //---------------------------- hypersurface case ------------------------------ |
---|
399 | if( n==1 ) |
---|
400 | { |
---|
401 | i = std(jacob(i[1])); |
---|
402 | m_nr = vdim(i); |
---|
403 | if( m_nr<0 and p>=1 ) { "// no isolated singularity"; } |
---|
404 | return(m_nr); |
---|
405 | } |
---|
406 | //------------ isolated complete intersection singularity (ICIS) -------------- |
---|
407 | for( l=n; l>0; l=l-1) |
---|
408 | { t = minor(jacob(i),l); |
---|
409 | i[l] = 0; |
---|
410 | q = vdim(std(i+t)); |
---|
411 | disc[l]= q; |
---|
412 | if( q ==-1 ) |
---|
413 | { if( p>=1 ) |
---|
414 | { "// not in generic form or no ICIS; use proc nf_icis to put"; |
---|
415 | "// generators in generic form and then try milnor again!"; } |
---|
416 | return(q); |
---|
417 | } |
---|
418 | m_nr = q-m_nr; |
---|
419 | } |
---|
420 | //---------------------------- change sign ------------------------------------ |
---|
421 | if (m_nr < 0) { m_nr=-m_nr; } |
---|
422 | if( p>=1 ) { "//sequence of discriminant numbers:",disc; } |
---|
423 | return(m_nr); |
---|
424 | } |
---|
425 | example |
---|
426 | { "EXAMPLE:"; echo = 2; |
---|
427 | int p = printlevel; |
---|
428 | printlevel = 1; |
---|
429 | ring r = 32003,(x,y,z),ds; |
---|
430 | ideal j = x5+y6+z6,x2+2y2+3z2,xyz+yx; |
---|
431 | milnor(j); |
---|
432 | poly f = x7+y7+(x-y)^2*x2y2+z2; |
---|
433 | milnor(f); |
---|
434 | printlevel = p; |
---|
435 | } |
---|
436 | /////////////////////////////////////////////////////////////////////////////// |
---|
437 | |
---|
438 | proc nf_icis (ideal i) |
---|
439 | USAGE: nf_icis(i); i ideal |
---|
440 | RETURN: ideal = generic linear combination of generators of i if i is an ICIS |
---|
441 | (isolated complete intersection singularity), return i if not |
---|
442 | NOTE: this proc is useful in connection with proc milnor |
---|
443 | printlevel >=0: display comments (default) |
---|
444 | EXAMPLE: example nf_icis; shows an example |
---|
445 | { |
---|
446 | i = simplify(i,10); //delete zeroes and multiples from set of generators |
---|
447 | int p,b = 100,0; |
---|
448 | int n = size(i); |
---|
449 | matrix mat=freemodule(n); |
---|
450 | int P = printlevel-voice+3; // P=printlevel+1 (default: P=1) |
---|
451 | //---------------------------- test: complete intersection? ------------------- |
---|
452 | intvec sl = is_ci(i); |
---|
453 | if( n+sl[n] != nvars(basering) ) |
---|
454 | { |
---|
455 | dbprint(P,"// no complete intersection"); |
---|
456 | return(i); |
---|
457 | } |
---|
458 | //--------------- test: isolated singularity in generic form? ----------------- |
---|
459 | sl = is_is(i); |
---|
460 | if ( sl[n] != 0 ) |
---|
461 | { |
---|
462 | dbprint(P,"// no isolated singularity"); |
---|
463 | return(i); |
---|
464 | } |
---|
465 | //------------ produce generic linear combinations of generators -------------- |
---|
466 | int prob; |
---|
467 | while ( sum(sl) != 0 ) |
---|
468 | { prob=prob+1; |
---|
469 | p=p-25; b=b+10; |
---|
470 | i = genericid(i,p,b); // proc genericid from random.lib |
---|
471 | sl = is_is(i); |
---|
472 | } |
---|
473 | dbprint(P,"// ICIS in generic form after "+string(prob)+" genericity loop(s)"); |
---|
474 | return(i); |
---|
475 | } |
---|
476 | example |
---|
477 | { "EXAMPLE:"; echo = 2; |
---|
478 | int p = printlevel; |
---|
479 | printlevel = 1; |
---|
480 | ring r = 32003,(x,y,z),ds; |
---|
481 | ideal i = x3+y4,z4+yx; |
---|
482 | nf_icis(i); |
---|
483 | ideal j = x3+y4,xy,yz; |
---|
484 | nf_icis(j); |
---|
485 | printlevel = p; |
---|
486 | } |
---|
487 | /////////////////////////////////////////////////////////////////////////////// |
---|
488 | |
---|
489 | proc slocus (ideal i) |
---|
490 | USAGE: slocus(i); i dieal |
---|
491 | RETURN: ideal of singular locus of i |
---|
492 | NOTE: this proc considers lower dimensional components as singular |
---|
493 | EXAMPLE: example slocus; shows an example |
---|
494 | { |
---|
495 | int cod = nvars(basering)-dim(std(i)); |
---|
496 | i = i+minor(jacob(i),cod); |
---|
497 | return(i); |
---|
498 | } |
---|
499 | example |
---|
500 | { "EXAMPLE:"; echo = 2; |
---|
501 | ring r = 32003,(x,y,z),ds; |
---|
502 | ideal i = x5+y6+z6,x2+2y2+3z2; |
---|
503 | dim(std(slocus(i))); |
---|
504 | } |
---|
505 | /////////////////////////////////////////////////////////////////////////////// |
---|
506 | |
---|
507 | proc spectrum (poly f, intvec w) |
---|
508 | USAGE: spectrum(f,w); f=poly, w=intvec; |
---|
509 | ASSUME: f is a weighted homogeneous isolated singularity w.r.t. the weights |
---|
510 | given by w; w must consist of as many positive integers as there |
---|
511 | are variables of the basering |
---|
512 | COMPUTE: the spectral numbers of the w-homogeneous polynomial f, computed in a |
---|
513 | ring of charcteristik 0 |
---|
514 | RETURN: intvec d,s1,...,su where: |
---|
515 | d = w-degree(f) and si/d = ith spectral-number(f) |
---|
516 | No return value if basering has parameters or if f is no isolated |
---|
517 | singularity, displays a warning in this case |
---|
518 | EXAMPLE: example spectrum; shows an example |
---|
519 | { |
---|
520 | int i,d,W; |
---|
521 | intvec sp; |
---|
522 | def r = basering; |
---|
523 | if( find(charstr(r),",")!=0 ) |
---|
524 | { |
---|
525 | "// coefficient field must not have parameters!"; |
---|
526 | return(); |
---|
527 | } |
---|
528 | ring s = 0,x(1..nvars(r)),ws(w); |
---|
529 | map phi = r,maxideal(1); |
---|
530 | poly f = phi(f); |
---|
531 | d = ord(f); |
---|
532 | W = sum(w)-d; |
---|
533 | ideal k = std(jacob(f)); |
---|
534 | if( vdim(k) == -1 ) |
---|
535 | { |
---|
536 | "// f is no isolated singuarity!"; |
---|
537 | return(); |
---|
538 | } |
---|
539 | k = kbase(k); |
---|
540 | for (i=1; i<=size(k); i++) |
---|
541 | { |
---|
542 | sp[i]=W+ord(k[i]); |
---|
543 | } |
---|
544 | list L = sort(sp); |
---|
545 | sp = d,L[1]; |
---|
546 | return(sp); |
---|
547 | } |
---|
548 | example |
---|
549 | { "EXAMPLE:"; echo = 2; |
---|
550 | ring r; |
---|
551 | poly f=x3+y5+z2; |
---|
552 | intvec w=10,6,15; |
---|
553 | spectrum(f,w); |
---|
554 | // the spectrum numbers are: |
---|
555 | // 1/30,7/30,11/30,13/30,17/30,19/30,23/30,29/30 |
---|
556 | } |
---|
557 | /////////////////////////////////////////////////////////////////////////////// |
---|
558 | |
---|
559 | proc Tjurina (id, list #) |
---|
560 | USAGE: Tjurina(id[,<any>]); id=ideal or poly |
---|
561 | ASSUME: id=ICIS (isolated complete intersection singularity) |
---|
562 | RETURN: standard basis of Tjurina-module of id, |
---|
563 | of type module if id=ideal, resp. of type ideal if id=poly. |
---|
564 | If a second argument is present (of any type) return a list: |
---|
565 | [1] = Tjurina number, |
---|
566 | [2] = k-basis of miniversal deformation, |
---|
567 | [3] = SB of Tjurina module, |
---|
568 | [4] = Tjurina module |
---|
569 | DISPLAY: Tjurina number if printlevel >= 0 (default) |
---|
570 | NOTE: Tjurina number = -1 implies that id is not an ICIS |
---|
571 | EXAMPLE: example Tjurina; shows examples |
---|
572 | { |
---|
573 | //---------------------------- initialisation --------------------------------- |
---|
574 | def i = simplify(id,10); |
---|
575 | int tau,n = 0,size(i); |
---|
576 | if( size(ideal(i))==1 ) { def m=i; } // hypersurface case |
---|
577 | else { def m=i*freemodule(n); } // complete intersection case |
---|
578 | //--------------- compute Tjurina module, Tjurina number etc ------------------ |
---|
579 | def t1 = jacob(i)+m; // Tjurina module/ideal |
---|
580 | def st1 = std(t1); // SB of Tjurina module/ideal |
---|
581 | tau = vdim(st1); // Tjurina number |
---|
582 | dbprint(printlevel-voice+3,"// Tjurina number = "+string(tau)); |
---|
583 | if( size(#)>0 ) |
---|
584 | { |
---|
585 | def kB = kbase(st1); // basis of miniversal deformation |
---|
586 | return(tau,kB,st1,t1); |
---|
587 | } |
---|
588 | return(st1); |
---|
589 | } |
---|
590 | example |
---|
591 | { "EXAMPLE:"; echo = 2; |
---|
592 | int p = printlevel; |
---|
593 | printlevel = 1; |
---|
594 | ring r = 0,(x,y,z),ds; |
---|
595 | poly f = x5+y6+z7+xyz; // singularity T[5,6,7] |
---|
596 | list T = Tjurina(f,""); |
---|
597 | show(T[1]); // Tjurina number, should be 16 |
---|
598 | show(T[2]); // basis of miniversal deformation |
---|
599 | show(T[3]); // SB of Tjurina ideal |
---|
600 | show(T[4]); ""; // Tjurina ideal |
---|
601 | ideal j = x2+y2+z2,x2+2y2+3z2; |
---|
602 | show(kbase(Tjurina(j))); // basis of miniversal deformation |
---|
603 | hilb(Tjurina(j)); // Hilbert series of Tjurina module |
---|
604 | printlevel = p; |
---|
605 | } |
---|
606 | /////////////////////////////////////////////////////////////////////////////// |
---|
607 | |
---|
608 | proc tjurina (ideal i) |
---|
609 | USAGE: tjurina(id); id=ideal or poly |
---|
610 | ASSUME: id=ICIS (isolated complete intersection singularity) |
---|
611 | RETURN: int = Tjurina number of id |
---|
612 | NOTE: Tjurina number = -1 implies that id is not an ICIS |
---|
613 | EXAMPLE: example tjurina; shows an example |
---|
614 | { |
---|
615 | return(vdim(Tjurina(i))); |
---|
616 | } |
---|
617 | example |
---|
618 | { "EXAMPLE:"; echo = 2; |
---|
619 | ring r=32003,(x,y,z),(c,ds); |
---|
620 | ideal j=x2+y2+z2,x2+2y2+3z2; |
---|
621 | tjurina(j); |
---|
622 | } |
---|
623 | /////////////////////////////////////////////////////////////////////////////// |
---|
624 | |
---|
625 | proc T1 (ideal id, list #) |
---|
626 | USAGE: T1(id[,<any>]); id = ideal or poly |
---|
627 | RETURN: T1(id): of type module/ideal if id is of type ideal/poly. |
---|
628 | We call T1(id) the T1-module of id. It is a std basis of the |
---|
629 | presentation of 1st order deformations of P/id, if P is the basering. |
---|
630 | If a second argument is present (of any type) return a list of |
---|
631 | 3 modules: |
---|
632 | [1]= T1(id) |
---|
633 | [2]= generators of normal bundle of id, lifted to P |
---|
634 | [3]= module of relations of [2], lifted to P |
---|
635 | (note: transpose[3]*[2]=0 mod id) |
---|
636 | The list contains all non-easy objects which must be computed |
---|
637 | to get T1(id). |
---|
638 | DISPLAY: k-dimension of T1(id) if printlevel >= 0 (default) |
---|
639 | NOTE: T1(id) itself is usually of minor importance. Nevertheless, from it |
---|
640 | all relevant information can be obtained. The most important are |
---|
641 | probably vdim(T1(id)); (which computes the Tjurina number), |
---|
642 | hilb(T1(id)); and kbase(T1(id)); |
---|
643 | If T1 is called with two argument, then matrix([2])*(kbase([1])) |
---|
644 | represents a basis of 1st order semiuniversal deformation of id |
---|
645 | (use proc 'deform', to get this in a direct way). |
---|
646 | For a complete intersection the proc Tjurina is faster |
---|
647 | EXAMPLE: example T1; shows an example |
---|
648 | { |
---|
649 | ideal J=simplify(id,10); |
---|
650 | //--------------------------- hypersurface case ------------------------------- |
---|
651 | if( size(J)<2 ) |
---|
652 | { |
---|
653 | ideal t1 = std(J+jacob(J[1])); |
---|
654 | module nb = [1]; module pnb; |
---|
655 | dbprint(printlevel-voice+3,"// dim T1 = "+string(vdim(t1))); |
---|
656 | if( size(#)>0 ) |
---|
657 | { |
---|
658 | module st1 = t1*gen(1); |
---|
659 | attrib(st1,"isSB",1); |
---|
660 | return(st1,nb,pnb); |
---|
661 | } |
---|
662 | return(t1); |
---|
663 | } |
---|
664 | //--------------------------- presentation of J ------------------------------- |
---|
665 | int rk; |
---|
666 | def P = basering; |
---|
667 | module jac, t1; |
---|
668 | jac = jacob(J); // jacobian matrix of J converted to module |
---|
669 | res(J,2,A); // compute presentation of J |
---|
670 | // A(2) = 1st syzygy module of J |
---|
671 | //---------- go to quotient ring mod J and compute normal bundle -------------- |
---|
672 | qring R = std(J); |
---|
673 | module jac = fetch(P,jac); |
---|
674 | module t1 = transpose(fetch(P,A(2))); |
---|
675 | res(t1,2,B); // resolve t1, B(2)=(J/J^2)*=normal_bdl |
---|
676 | t1 = modulo(B(2),jac); // pres. of normal_bdl/trivial_deformations |
---|
677 | rk=nrows(t1); |
---|
678 | //-------------------------- pull back to basering ---------------------------- |
---|
679 | setring P; |
---|
680 | t1 = fetch(R,t1)+J*freemodule(rk); // T1-module, presentation of T1 |
---|
681 | t1 = std(t1); |
---|
682 | dbprint(printlevel-voice+3,"// dim T1 = "+string(vdim(t1))); |
---|
683 | if( size(#)>0 ) |
---|
684 | { |
---|
685 | module B2 = fetch(R,B(2)); // presentation of normal bundle |
---|
686 | list L = t1,B2,A(2); |
---|
687 | attrib(L[1],"isSB",1); |
---|
688 | return(L); |
---|
689 | } |
---|
690 | return(t1); |
---|
691 | } |
---|
692 | example |
---|
693 | { "EXAMPLE:"; echo = 2; |
---|
694 | int p = printlevel; |
---|
695 | printlevel = 1; |
---|
696 | ring r = 32003,(x,y,z),(c,ds); |
---|
697 | ideal i = xy,xz,yz; |
---|
698 | module T = T1(i); |
---|
699 | vdim(T); // Tjurina number = dim_K(T1), should be 3 |
---|
700 | list L=T1(i,""); |
---|
701 | module kB = kbase(L[1]); |
---|
702 | print(L[2]*kB); // basis of 1st order miniversal deformation |
---|
703 | show(L[2]); // presentation of normal bundle |
---|
704 | print(L[3]); // relations of i |
---|
705 | print(transpose(L[3])*L[2]); // should be 0 (mod i) |
---|
706 | printlevel = p; |
---|
707 | } |
---|
708 | /////////////////////////////////////////////////////////////////////////////// |
---|
709 | |
---|
710 | proc T2 (ideal id, list #) |
---|
711 | USAGE: T2(id[,<any>]); id = ideal |
---|
712 | RETURN: T2(id): T2-module of id . This is a std basis of a presentation of |
---|
713 | the module of obstructions of R=P/id, if P is the basering. |
---|
714 | If a second argument is present (of any type) return a list of |
---|
715 | 4 modules and 1 ideal: |
---|
716 | [1]= T2(id) |
---|
717 | [2]= standard basis of id (ideal) |
---|
718 | [3]= module of relations of id (=1st syzygy module of id) |
---|
719 | [4]= presentation of syz/kos |
---|
720 | [5]= relations of Hom_P([3]/kos,R), lifted to P |
---|
721 | The list contains all non-easy objects which must be computed |
---|
722 | to get T2(id). |
---|
723 | DISPLAY: k-dimension of T2(id) if printlevel >= 0 (default) |
---|
724 | NOTE: The most important information is probably vdim(T2(id)). |
---|
725 | Use proc miniversal to get equations of miniversal deformation. |
---|
726 | EXAMPLE: example T2; shows an example |
---|
727 | { |
---|
728 | //--------------------------- initialisation ---------------------------------- |
---|
729 | def P = basering; |
---|
730 | ideal J = id; |
---|
731 | module kos,SK,B2,t2; |
---|
732 | list L; |
---|
733 | int n,rk; |
---|
734 | //------------------- presentation of non-trivial syzygies -------------------- |
---|
735 | res(J,2,A); // resolve J, A(2)=syz |
---|
736 | kos = koszul(2,J); // module of Koszul relations |
---|
737 | SK = modulo(A(2),kos); // presentation of syz/kos |
---|
738 | ideal J0 = std(J); // standard basis of J |
---|
739 | //?*** sollte bei der Berechnung von res mit anfallen, zu aendern!! |
---|
740 | //---------------------- fetch to quotient ring mod J ------------------------- |
---|
741 | qring R = J0; // make P/J the basering |
---|
742 | module A2' = transpose(fetch(P,A(2))); // dual of syz |
---|
743 | module t2 = transpose(fetch(P,SK)); // dual of syz/kos |
---|
744 | res(t2,2,B); // resolve (syz/kos)* |
---|
745 | t2 = modulo(B(2),A2'); // presentation of T2 |
---|
746 | rk = nrows(t2); |
---|
747 | //--------------------- fetch back to basering ------------------------------- |
---|
748 | setring P; |
---|
749 | t2 = fetch(R,t2)+J*freemodule(rk); |
---|
750 | t2 = std(t2); |
---|
751 | dbprint(printlevel-voice+3,"// dim T2 = "+string(vdim(t2))); |
---|
752 | if( size(#)>0 ) |
---|
753 | { |
---|
754 | B2 = fetch(R,B(2)); // generators of Hom_P(syz/kos,R) |
---|
755 | L = t2,J0,A(2),SK,B2; |
---|
756 | return(L); |
---|
757 | } |
---|
758 | return(t2); |
---|
759 | } |
---|
760 | example |
---|
761 | { "EXAMPLE:"; echo = 2; |
---|
762 | int p = printlevel; |
---|
763 | printlevel = 1; |
---|
764 | ring r = 32003,(x,y),(c,dp); |
---|
765 | ideal j = x6-y4,x6y6,x2y4-x5y2; |
---|
766 | module T = T2(j); |
---|
767 | vdim(T); |
---|
768 | hilb(T);""; |
---|
769 | ring r1 = 0,(x,y,z),dp; |
---|
770 | ideal id = xy,xz,yz; |
---|
771 | list L = T2(id,""); |
---|
772 | vdim(L[1]); // vdim of T2 |
---|
773 | print(L[3]); // syzygy module of id |
---|
774 | printlevel = p; |
---|
775 | } |
---|
776 | /////////////////////////////////////////////////////////////////////////////// |
---|
777 | |
---|
778 | proc T12 (ideal i, list #) |
---|
779 | USAGE: T12(i[,any]); i = ideal |
---|
780 | RETURN: T12(i): list of 2 modules: |
---|
781 | std basis of T1-module =T1(i), 1st order deformations |
---|
782 | std basid of T2-module =T2(i), obstructions of R=P/i |
---|
783 | If a second argument is present (of any type) return a list of |
---|
784 | 9 modules, matrices, integers: |
---|
785 | [1]= standard basis of T1-module |
---|
786 | [2]= standard basis of T2-module |
---|
787 | [3]= vdim of T1 |
---|
788 | [4]= vdim of T2 |
---|
789 | [5]= matrix, whose cols present infinitesimal deformations |
---|
790 | [6]= matrix, whose cols are generators of relations of i (=syz(i)) |
---|
791 | [7]= matrix, presenting Hom_P(syz/kos,R), lifted to P |
---|
792 | [8]= presentation of T1-module, no std basis |
---|
793 | [9]= presentation of T2-module, no std basis |
---|
794 | DISPLAY: k-dimension of T1 and T2 if printlevel >= 0 (default) |
---|
795 | NOTE: Use proc miniversal from deform.lib to get miniversal deformation of i, |
---|
796 | the list contains all objects used by proc miniversal |
---|
797 | EXAMPLE: example T12; shows an example |
---|
798 | { |
---|
799 | //--------------------------- initialisation ---------------------------------- |
---|
800 | int n,r1,r2,d1,d2; |
---|
801 | def P = basering; |
---|
802 | i = simplify(i,10); |
---|
803 | module jac,t1,t2,sbt1,sbt2; |
---|
804 | matrix Kos,Syz,SK,kbT1,Sx; |
---|
805 | list L; |
---|
806 | ideal i0 = std(i); |
---|
807 | //-------------------- presentation of non-trivial syzygies ------------------- |
---|
808 | list I= res(i,2); // resolve i |
---|
809 | Syz = matrix(I[2]); // syz(i) |
---|
810 | jac = jacob(i); // jacobi ideal |
---|
811 | Kos = koszul(2,i); // koszul-relations |
---|
812 | SK = modulo(Syz,Kos); // presentation of syz/kos |
---|
813 | //--------------------- fetch to quotient ring mod i ------------------------- |
---|
814 | qring Ox = i0; // make P/i the basering |
---|
815 | module Jac = fetch(P,jac); |
---|
816 | matrix No = transpose(fetch(P,Syz)); // ker(No) = Hom(syz,Ox) |
---|
817 | module So = transpose(fetch(P,SK)); // Hom(syz/kos,R) |
---|
818 | list resS = res(So,2); |
---|
819 | matrix Sx = resS[2]; |
---|
820 | list resN = res(No,2); |
---|
821 | matrix Nx = resN[2]; |
---|
822 | module T2 = modulo(Sx,No); // presentation of T2 |
---|
823 | r2 = nrows(T2); |
---|
824 | module T1 = modulo(Nx,Jac); // presentation of T1 |
---|
825 | r1 = nrows(T1); |
---|
826 | //------------------------ pull back to basering ------------------------------ |
---|
827 | setring P; |
---|
828 | t1 = fetch(Ox,T1)+i*freemodule(r1); |
---|
829 | t2 = fetch(Ox,T2)+i*freemodule(r2); |
---|
830 | sbt1 = std(t1); |
---|
831 | d1 = vdim(sbt1); |
---|
832 | sbt2 = std(t2); |
---|
833 | d2 = vdim(sbt2); |
---|
834 | dbprint(printlevel-voice+3,"// dim T1 = "+string(d1),"// dim T2 = "+string(d2)); |
---|
835 | if ( size(#)>0) |
---|
836 | { |
---|
837 | kbT1 = fetch(Ox,Nx)*kbase(sbt1); |
---|
838 | Sx = fetch(Ox,Sx); |
---|
839 | L = sbt1,sbt2,d1,d2,kbT1,Syz,Sx,t1,t2; |
---|
840 | return(L); |
---|
841 | } |
---|
842 | L = sbt1,sbt2; |
---|
843 | return(L); |
---|
844 | } |
---|
845 | example |
---|
846 | { "EXAMPLE:"; echo = 2; |
---|
847 | int p = printlevel; |
---|
848 | printlevel = 1; |
---|
849 | ring r = 200,(x,y,z,u,v),(c,ws(4,3,2,3,4)); |
---|
850 | ideal i = xz-y2,yz2-xu,xv-yzu,yu-z3,z2u-yv,zv-u2; |
---|
851 | //a cyclic quotient singularity |
---|
852 | list L = T12(i,1); |
---|
853 | print(L[5]); //matrix of infin. deformations |
---|
854 | printlevel = p; |
---|
855 | } |
---|
856 | /////////////////////////////////////////////////////////////////////////////// |
---|
857 | proc codim (id1, id2) |
---|
858 | USAGE: codim(id1,id2); id1,id2 ideal or module, both must be standard bases |
---|
859 | RETURN: int, which is: |
---|
860 | 1. the codimension of id2 in id1, i.e. the vectorspace dimension of |
---|
861 | id1/id2 if id2 is contained in id1 and if this number is finite |
---|
862 | 2. -1 if the dimension of id1/id2 is infinite |
---|
863 | 3. -2 if id2 is not contained in id1, |
---|
864 | COMPUTE: consider the two hilberseries iv1(t) and iv2(t), then, in case 1., |
---|
865 | q(t)=(iv2(t)-iv1(t))/(1-t)^n must be rational, and the result is the |
---|
866 | sum of the coefficients of q(t) (n dimension of basering) |
---|
867 | EXAMPLE: example codim; shows an example |
---|
868 | { |
---|
869 | intvec iv1, iv2, iv; |
---|
870 | int i, d1, d2, dd, i1, i2, ia, ie; |
---|
871 | //--------------------------- check id2 < id1 ------------------------------- |
---|
872 | ideal led = lead(id1); |
---|
873 | attrib(led, "isSB",1); |
---|
874 | i = size(NF(lead(id2),led)); |
---|
875 | if ( i > 0 ) |
---|
876 | { |
---|
877 | return(-2); |
---|
878 | } |
---|
879 | //--------------------------- 1. check finiteness --------------------------- |
---|
880 | i1 = dim(id1); |
---|
881 | i2 = dim(id2); |
---|
882 | if (i1 < 0) |
---|
883 | { |
---|
884 | if (i2 == 0) |
---|
885 | { |
---|
886 | return vdim(id2); |
---|
887 | } |
---|
888 | else |
---|
889 | { |
---|
890 | return(-1); |
---|
891 | } |
---|
892 | } |
---|
893 | if (i2 != i1) |
---|
894 | { |
---|
895 | return(-1); |
---|
896 | } |
---|
897 | if (i2 <= 0) |
---|
898 | { |
---|
899 | return(vdim(id2)-vdim(id1)); |
---|
900 | } |
---|
901 | // if (mult(id2) != mult(id1)) |
---|
902 | //{ |
---|
903 | // return(-1); |
---|
904 | // } |
---|
905 | //--------------------------- module --------------------------------------- |
---|
906 | d1 = nrows(id1); |
---|
907 | d2 = nrows(id2); |
---|
908 | dd = 0; |
---|
909 | if (d1 > d2) |
---|
910 | { |
---|
911 | id2=id2,maxideal(1)*gen(d1); |
---|
912 | dd = -1; |
---|
913 | } |
---|
914 | if (d2 > d1) |
---|
915 | { |
---|
916 | id1=id1,maxideal(1)*gen(d2); |
---|
917 | dd = 1; |
---|
918 | } |
---|
919 | //--------------------------- compute first hilbertseries ------------------ |
---|
920 | iv1 = hilb(id1,1); |
---|
921 | i1 = size(iv1); |
---|
922 | iv2 = hilb(id2,1); |
---|
923 | i2 = size(iv2); |
---|
924 | //--------------------------- difference of hilbertseries ------------------ |
---|
925 | if (i2 > i1) |
---|
926 | { |
---|
927 | for ( i=1; i<=i1; i=i+1) |
---|
928 | { |
---|
929 | iv2[i] = iv2[i]-iv1[i]; |
---|
930 | } |
---|
931 | ie = i2; |
---|
932 | iv = iv2; |
---|
933 | } |
---|
934 | else |
---|
935 | { |
---|
936 | for ( i=1; i<=i2; i=i+1) |
---|
937 | { |
---|
938 | iv1[i] = iv2[i]-iv1[i]; |
---|
939 | } |
---|
940 | iv = iv1; |
---|
941 | for (ie=i1;ie>=0;ie=ie-1) |
---|
942 | { |
---|
943 | if (ie == 0) |
---|
944 | { |
---|
945 | return(0); |
---|
946 | } |
---|
947 | if (iv[ie] != 0) |
---|
948 | { |
---|
949 | break; |
---|
950 | } |
---|
951 | } |
---|
952 | } |
---|
953 | ia = 1; |
---|
954 | while (iv[ia] == 0) { ia=ia+1; } |
---|
955 | //--------------------------- ia <= nonzeros <= ie ------------------------- |
---|
956 | iv1 = iv[ia]; |
---|
957 | for(i=ia+1;i<=ie;i=i+1) |
---|
958 | { |
---|
959 | iv1=iv1,iv[i]; |
---|
960 | } |
---|
961 | //--------------------------- compute second hilbertseries ----------------- |
---|
962 | iv2 = hilb(iv1); |
---|
963 | //--------------------------- check finitenes ------------------------------ |
---|
964 | i2 = size(iv2); |
---|
965 | i1 = ie - ia + 1 - i2; |
---|
966 | if (i1 != nvars(basering)) |
---|
967 | { |
---|
968 | return(-1); |
---|
969 | } |
---|
970 | //--------------------------- compute result ------------------------------- |
---|
971 | i1 = 0; |
---|
972 | for ( i=1; i<=i2; i=i+1) |
---|
973 | { |
---|
974 | i1 = i1 + iv2[i]; |
---|
975 | } |
---|
976 | return(i1+dd); |
---|
977 | } |
---|
978 | example |
---|
979 | { "EXAMPLE:"; echo = 2; |
---|
980 | ring r = 0,(x,y,z),dp; |
---|
981 | ideal j = y6,x4; |
---|
982 | ideal m = x,y; |
---|
983 | attrib(m,"isSB",1); //let Singular know that ideals are a standard basis |
---|
984 | attrib(j,"isSB",1); |
---|
985 | codim(m,j); // should be 23 (Milnor number -1 of y7-x5) |
---|
986 | } |
---|