1 | ////////////////////////////////////////////////////////////////////////////// |
---|
2 | version="$Id: standard.lib,v 1.61 2001-11-05 16:05:08 pfister Exp $"; |
---|
3 | category="Miscellaneous"; |
---|
4 | info=" |
---|
5 | LIBRARY: standard.lib Procedures which are always loaded at Start-up |
---|
6 | |
---|
7 | PROCEDURES: |
---|
8 | stdfglm(ideal[,ord]) standard basis of ideal via fglm [and ordering ord] |
---|
9 | stdhilb(ideal[,h]) standard basis of ideal using the Hilbert function |
---|
10 | groebner(ideal/module) standard basis using a heuristically chosen method |
---|
11 | quot(any,any[,n]) quotient using heuristically chosen method |
---|
12 | res(ideal/module,[i]) free resolution of ideal or module |
---|
13 | sprintf(fmt,...) returns fomatted string |
---|
14 | fprintf(link,fmt,..) writes formatted string to link |
---|
15 | printf(fmt,...) displays formatted string |
---|
16 | timeStd(i,d) std(i) if the standard basis computation finished after |
---|
17 | d-1 seconds and i otherwhise |
---|
18 | timeFactorize(p,d) factorize(p) if the factorization finished after d-1 |
---|
19 | seconds otherwhise f is considered to be irreducible |
---|
20 | factorH(p) changes variables to become the last variable the |
---|
21 | principal one in the multivariate factorization and |
---|
22 | factorizes then the polynomial |
---|
23 | |
---|
24 | "; |
---|
25 | |
---|
26 | ////////////////////////////////////////////////////////////////////////////// |
---|
27 | |
---|
28 | proc stdfglm (ideal i, list #) |
---|
29 | "SYNTAX: @code{stdfglm (} ideal_expression @code{)} @* |
---|
30 | @code{stdfglm (} ideal_expression@code{,} string_expression @code{)} |
---|
31 | TYPE: ideal |
---|
32 | PURPOSE: computes the standard basis of the ideal in the basering |
---|
33 | via @code{fglm} (from the ordering given as the second argument |
---|
34 | to the ordering of the basering).@* |
---|
35 | If no second argument is given, \"dp\" is used. |
---|
36 | SEE ALSO: fglm, groebner, std, stdhilb |
---|
37 | KEYWORDS: fglm |
---|
38 | EXAMPLE: example stdfglm; shows an example" |
---|
39 | { |
---|
40 | string os; |
---|
41 | def dr= basering; |
---|
42 | if( (size(#)==0) or (typeof(#[1]) != "string") ) |
---|
43 | { |
---|
44 | os = "dp(" + string( nvars(dr) ) + ")"; |
---|
45 | if ( (find( ordstr(dr), os ) != 0) and (find( ordstr(dr), "a") == 0) ) |
---|
46 | { |
---|
47 | os= "Dp"; |
---|
48 | } |
---|
49 | else |
---|
50 | { |
---|
51 | os= "dp"; |
---|
52 | } |
---|
53 | } |
---|
54 | else { os = #[1]; } |
---|
55 | execute("ring sr=("+charstr(dr)+"),("+varstr(dr)+"),"+os+";"); |
---|
56 | ideal i= fetch(dr,i); |
---|
57 | intvec opt= option(get); |
---|
58 | option(redSB); |
---|
59 | i=std(i); |
---|
60 | option(set,opt); |
---|
61 | setring dr; |
---|
62 | return (fglm(sr,i)); |
---|
63 | } |
---|
64 | example |
---|
65 | { "EXAMPLE:"; echo = 2; |
---|
66 | ring r=0,(x,y,z),lp; |
---|
67 | ideal i=y3+x2,x2y+x2,x3-x2,z4-x2-y; |
---|
68 | ideal i1=stdfglm(i); //uses fglm from "dp" to "lp" |
---|
69 | i1; |
---|
70 | ideal i2=stdfglm(i,"Dp"); //uses fglm from "Dp" to "lp" |
---|
71 | i2; |
---|
72 | } |
---|
73 | ///////////////////////////////////////////////////////////////////////////// |
---|
74 | |
---|
75 | proc stdhilb(ideal i,list #) |
---|
76 | "SYNTAX: @code{stdhilb (} ideal_expression @code{)} @* |
---|
77 | @code{stdhilb (} ideal_expression@code{,} intvec_expression @code{)} |
---|
78 | TYPE: ideal |
---|
79 | PURPOSE: computes the standard basis of the homogeneous ideal in the basering, |
---|
80 | via a Hilbert driven standard basis computation.@* |
---|
81 | An optional second argument will be used as 1st Hilbert function. |
---|
82 | ASSUME: The optional second argument is the first Hilbert series as computed |
---|
83 | by @code{hilb}. |
---|
84 | SEE ALSO: stdfglm, std, groebner |
---|
85 | KEYWORDS: Hilbert function |
---|
86 | EXAMPLE: example stdhilb; shows an example" |
---|
87 | { |
---|
88 | def R=basering; |
---|
89 | |
---|
90 | if((homog(i)==1)||(ordstr(basering)[1]=="d")) |
---|
91 | { |
---|
92 | if ((size(#)!=0)&&(homog(i)==1)) |
---|
93 | { |
---|
94 | return(std(i,#[1])); |
---|
95 | } |
---|
96 | return(std(i)); |
---|
97 | } |
---|
98 | |
---|
99 | execute("ring S = ("+charstr(R)+"),("+varstr(R)+",@t),dp;"); |
---|
100 | ideal i=homog(imap(R,i),@t); |
---|
101 | intvec v=hilb(std(i),1); |
---|
102 | execute("ring T = ("+charstr(R)+"),("+varstr(R)+",@t),("+ordstr(R)+");"); |
---|
103 | ideal i=fetch(S,i); |
---|
104 | ideal a=std(i,v); |
---|
105 | setring R; |
---|
106 | map phi=T,maxideal(1),1; |
---|
107 | ideal a=phi(a); |
---|
108 | |
---|
109 | int k,j; |
---|
110 | poly m; |
---|
111 | int c=size(i); |
---|
112 | |
---|
113 | for(j=1;j<c;j++) |
---|
114 | { |
---|
115 | if(deg(a[j])==0) |
---|
116 | { |
---|
117 | a=ideal(1); |
---|
118 | attrib(a,"isSB",1); |
---|
119 | return(a); |
---|
120 | } |
---|
121 | if(deg(a[j])>0) |
---|
122 | { |
---|
123 | m=lead(a[j]); |
---|
124 | for(k=j+1;k<=c;k++) |
---|
125 | { |
---|
126 | if(size(lead(a[k])/m)>0) |
---|
127 | { |
---|
128 | a[k]=0; |
---|
129 | } |
---|
130 | } |
---|
131 | } |
---|
132 | } |
---|
133 | a=simplify(a,2); |
---|
134 | attrib(a,"isSB",1); |
---|
135 | return(a); |
---|
136 | } |
---|
137 | example |
---|
138 | { "EXAMPLE:"; echo = 2; |
---|
139 | ring r=0,(x,y,z),dp; |
---|
140 | ideal i=y3+x2,x2y+x2,x3-x2,z4-x2-y; |
---|
141 | ideal i1=stdhilb(i); i1; |
---|
142 | // the latter computation is equivalent to: |
---|
143 | intvec v=hilb(i,1); |
---|
144 | ideal i2=stdhilb(i,v); i2; |
---|
145 | } |
---|
146 | ////////////////////////////////////////////////////////////////////////// |
---|
147 | |
---|
148 | proc groebner(def i, list #) |
---|
149 | "SYNTAX: @code{groebner (} ideal_expression @code{)} @* |
---|
150 | @code{groebner (} module_expression @code{)} @* |
---|
151 | @code{groebner (} ideal_expression@code{,} int_expression @code{)} @* |
---|
152 | @code{groebner (} module_expression@code{,} int_expression @code{)} |
---|
153 | TYPE: type of the first argument |
---|
154 | PURPOSE: computes the standard basis of the first argument @code{I} |
---|
155 | (ideal or module), by a heuristically chosen method: if the |
---|
156 | ordering of the current ring is a local ordering, or if it is a |
---|
157 | non-block ordering and the current ring has no parameters, then |
---|
158 | @code{std(I)} is returned. Otherwise, @code{I} is mapped into a |
---|
159 | ring with no parameters and ordering dp, where its Hilbert series |
---|
160 | is computed. This is followed by a Hilbert-series based std |
---|
161 | computation in the original ring. |
---|
162 | NOTE: If a 2nd argument @code{wait} is given, then the computation proceeds |
---|
163 | at most @code{wait} seconds. That is, if no result could be computed in |
---|
164 | @code{wait} seconds, then the computation is interrupted, 0 is returned, |
---|
165 | a warning message is displayed, and the global variable |
---|
166 | @code{groebner_error} is defined. |
---|
167 | SEE ALSO: stdhilb, stdfglm, std |
---|
168 | KEYWORDS: time limit on computations; MP, groebner basis computations |
---|
169 | EXAMPLE: example groebner; shows an example" |
---|
170 | { |
---|
171 | def P=basering; |
---|
172 | |
---|
173 | // we have two arguments -- try to use MPfork links |
---|
174 | if (size(#) > 0) |
---|
175 | { |
---|
176 | if (system("with", "MP")) |
---|
177 | { |
---|
178 | if (typeof(#[1]) == "int") |
---|
179 | { |
---|
180 | int wait = #[1]; |
---|
181 | int j = 10; |
---|
182 | |
---|
183 | string bs = nameof(basering); |
---|
184 | link l_fork = "MPtcp:fork"; |
---|
185 | open(l_fork); |
---|
186 | write(l_fork, quote(system("pid"))); |
---|
187 | int pid = read(l_fork); |
---|
188 | write(l_fork, quote(groebner(eval(i)))); |
---|
189 | |
---|
190 | // sleep in small intervalls for appr. one second |
---|
191 | if (wait > 0) |
---|
192 | { |
---|
193 | while(j < 1000000) |
---|
194 | { |
---|
195 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
196 | j = j + j; |
---|
197 | } |
---|
198 | } |
---|
199 | |
---|
200 | // sleep in intervalls of one second from now on |
---|
201 | j = 1; |
---|
202 | while (j < wait) |
---|
203 | { |
---|
204 | if (status(l_fork, "read", "ready", 1000000)) {break;} |
---|
205 | j = j + 1; |
---|
206 | } |
---|
207 | |
---|
208 | if (status(l_fork, "read", "ready")) |
---|
209 | { |
---|
210 | def result = read(l_fork); |
---|
211 | if (bs != nameof(basering)) |
---|
212 | { |
---|
213 | def PP = basering; |
---|
214 | setring P; |
---|
215 | def result = imap(PP, result); |
---|
216 | kill PP; |
---|
217 | } |
---|
218 | if (defined(groebner_error)) |
---|
219 | { |
---|
220 | kill(groebner_error); |
---|
221 | } |
---|
222 | kill (l_fork); |
---|
223 | } |
---|
224 | else |
---|
225 | { |
---|
226 | ideal result; |
---|
227 | if (! defined(groebner_error)) |
---|
228 | { |
---|
229 | int groebner_error = 1; |
---|
230 | export groebner_error; |
---|
231 | } |
---|
232 | "// ** groebner did not finish"; |
---|
233 | j = system("sh", "kill " + string(pid)); |
---|
234 | } |
---|
235 | return (result); |
---|
236 | } |
---|
237 | else |
---|
238 | { |
---|
239 | "// ** groebner needs int as 2nd arg"; |
---|
240 | } |
---|
241 | } |
---|
242 | else |
---|
243 | { |
---|
244 | "// ** groebner with two args is not supported in this configuration"; |
---|
245 | } |
---|
246 | } |
---|
247 | |
---|
248 | // we are still here -- do the actual computation |
---|
249 | string ordstr_P = ordstr(P); |
---|
250 | if ((find(ordstr_P,"s") > 0) |
---|
251 | ||(find(ordstr_P,"M") > 0) |
---|
252 | ||(find(ordstr_P,"w") > 0) |
---|
253 | ||(find(ordstr_P,"W") > 0)) |
---|
254 | { |
---|
255 | //spaeter den lokalen fall ueber lp oder aehnlich behandeln |
---|
256 | return(std(i)); |
---|
257 | } |
---|
258 | |
---|
259 | int IsSimple_P; |
---|
260 | if (system("nblocks") <= 2) |
---|
261 | { |
---|
262 | if (find(ordstr_P, "M") <= 0) |
---|
263 | { |
---|
264 | IsSimple_P = 1; |
---|
265 | } |
---|
266 | } |
---|
267 | int npars_P = npars(P); |
---|
268 | |
---|
269 | // return std if no parameters and (dp or wp) |
---|
270 | if ((npars_P <= 1) && IsSimple_P) |
---|
271 | { |
---|
272 | if (find(ordstr_P, "d") > 0) |
---|
273 | { |
---|
274 | return (std(i)); |
---|
275 | } |
---|
276 | if (find(ordstr_P,"w") > 0) |
---|
277 | { |
---|
278 | return (std(i)); |
---|
279 | } |
---|
280 | } |
---|
281 | |
---|
282 | // reset options |
---|
283 | intvec opt=option(get); |
---|
284 | int p_opt; |
---|
285 | string s_opt = option(); |
---|
286 | option(none); |
---|
287 | // turn on option(prot) and/or option(mem), if previously set |
---|
288 | if (find(s_opt, "prot")) |
---|
289 | { |
---|
290 | option(prot); |
---|
291 | p_opt = 1; |
---|
292 | } |
---|
293 | if (find(s_opt, "mem")) |
---|
294 | { |
---|
295 | option(mem); |
---|
296 | } |
---|
297 | |
---|
298 | // construct ring in which first std computation is done |
---|
299 | string varstr_P = varstr(P); |
---|
300 | string parstr_P = parstr(P); |
---|
301 | int is_homog = (homog(i) && (npars_P <= 1)); |
---|
302 | int add_vars = 0; |
---|
303 | string ri = "ring Phelp ="; |
---|
304 | |
---|
305 | // more than one parameters are converted to ring variables |
---|
306 | if (npars_P > 1) |
---|
307 | { |
---|
308 | ri = ri + string(char(P)) + ",(" + varstr_P + "," + parstr_P; |
---|
309 | add_vars = npars_P; |
---|
310 | } |
---|
311 | else |
---|
312 | { |
---|
313 | ri = ri + "(" + charstr(P) + "),(" + varstr_P; |
---|
314 | } |
---|
315 | |
---|
316 | // a homogenizing variable is added, if necessary |
---|
317 | if (! is_homog) |
---|
318 | { |
---|
319 | ri = ri + ",@t"; |
---|
320 | add_vars = add_vars + 1; |
---|
321 | } |
---|
322 | // ordering is set to (dp, C) |
---|
323 | ri = ri + "),(dp,C);"; |
---|
324 | |
---|
325 | // change the ring |
---|
326 | execute(ri); |
---|
327 | |
---|
328 | // get ideal from previous ring |
---|
329 | if (is_homog) |
---|
330 | { |
---|
331 | ideal qh = imap(P, i); |
---|
332 | } |
---|
333 | else |
---|
334 | { |
---|
335 | // and homogenize |
---|
336 | ideal qh=homog(imap(P,i),@t); |
---|
337 | } |
---|
338 | |
---|
339 | // compute std and hilbert series |
---|
340 | if (p_opt) |
---|
341 | { |
---|
342 | "std in " + ri[13, size(ri) - 13]; |
---|
343 | } |
---|
344 | intvec hi=hilb(std(qh),1); |
---|
345 | |
---|
346 | if (add_vars == 0) |
---|
347 | { |
---|
348 | // no additional variables were introduced |
---|
349 | setring P; // can immediately change to original ring |
---|
350 | // simply compute std with hilbert series in original ring |
---|
351 | if (p_opt) |
---|
352 | { |
---|
353 | "std with hilb in basering"; |
---|
354 | } |
---|
355 | i = std(i, hi); |
---|
356 | } |
---|
357 | else |
---|
358 | { |
---|
359 | // additional variables were introduced |
---|
360 | // need another intermediate ring |
---|
361 | ri = "ring Phelp1 = (" + charstr(Phelp) |
---|
362 | + "),(" + varstr(Phelp) + "),(" + ordstr_P; |
---|
363 | |
---|
364 | // for lp wit at most one parameter, we do not need a block ordering |
---|
365 | if ( ! (IsSimple_P && (add_vars <2) && find(ordstr_P, "l"))) |
---|
366 | { |
---|
367 | // need block ordering |
---|
368 | ri = ri + ", dp(" + string(add_vars) + ")"; |
---|
369 | } |
---|
370 | ri = ri + ");"; |
---|
371 | |
---|
372 | // change to intermediate ring |
---|
373 | execute(ri); |
---|
374 | ideal qh = imap(Phelp, qh); |
---|
375 | kill Phelp; |
---|
376 | if (p_opt) |
---|
377 | { |
---|
378 | "std with hilb in " + ri[14,size(ri)-14]; |
---|
379 | } |
---|
380 | // compute std with Hilbert series |
---|
381 | qh = std(qh, hi); |
---|
382 | // subst 1 for homogenizing var |
---|
383 | if (!is_homog) |
---|
384 | { |
---|
385 | if (p_opt) |
---|
386 | { |
---|
387 | "dehomogenization"; |
---|
388 | } |
---|
389 | qh = subst(qh, @t, 1); |
---|
390 | } |
---|
391 | |
---|
392 | // go back to original ring |
---|
393 | setring P; |
---|
394 | // get ideal, delete zeros and clean SB |
---|
395 | if (p_opt) |
---|
396 | { |
---|
397 | "imap to original ring"; |
---|
398 | } |
---|
399 | i = imap(Phelp1,qh); |
---|
400 | if (p_opt) |
---|
401 | { |
---|
402 | "simplification"; |
---|
403 | } |
---|
404 | i = simplify(i, 34); |
---|
405 | kill Phelp1; |
---|
406 | } |
---|
407 | |
---|
408 | // clean-up time |
---|
409 | option(set, opt); |
---|
410 | if (find(s_opt, "redSB") > 0) |
---|
411 | { |
---|
412 | if (p_opt) |
---|
413 | { |
---|
414 | "interreduction"; |
---|
415 | } |
---|
416 | i=interred(i); |
---|
417 | } |
---|
418 | attrib(i, "isSB", 1); |
---|
419 | return (i); |
---|
420 | } |
---|
421 | example |
---|
422 | { "EXAMPLE: "; echo=2; |
---|
423 | ring r=0,(a,b,c,d),lp; |
---|
424 | option(prot); |
---|
425 | ideal i=a+b+c+d,ab+ad+bc+cd,abc+abd+acd+bcd,abcd-1; // cyclic 4 |
---|
426 | groebner(i); |
---|
427 | ring rp=(0,a,b),(c,d), lp; |
---|
428 | ideal i=imap(r,i); |
---|
429 | ideal j=groebner(i); |
---|
430 | option(noprot); |
---|
431 | j; simplify(j,1); std(i); |
---|
432 | if (system("with","MP")) {groebner(i,0);} |
---|
433 | defined(groebner_error); |
---|
434 | } |
---|
435 | ////////////////////////////////////////////////////////////////////////// |
---|
436 | |
---|
437 | proc res(list #) |
---|
438 | "@c we do texinfo here: |
---|
439 | @cindex resolution, computation of |
---|
440 | @table @code |
---|
441 | @item @strong{Syntax:} |
---|
442 | @code{res (} ideal_expression@code{,} int_expression @code{[,} any_expression @code{])} |
---|
443 | @*@code{res (} module_expression@code{,} int_expression @code{[,} any_expression @code{])} |
---|
444 | @item @strong{Type:} |
---|
445 | resolution |
---|
446 | @item @strong{Purpose:} |
---|
447 | computes a (possibly minimal) free resolution of an ideal or module using |
---|
448 | a heuristically chosen method. |
---|
449 | @* The second (int) argument (say, @code{k}) specifies the length of |
---|
450 | the resolution. If it is not positive then @code{k} is assumed to be the |
---|
451 | number of variables of the basering. |
---|
452 | @* If a third argument is given, the returned resolution is minimized. |
---|
453 | |
---|
454 | Depending on the input, the returned resolution is computed using the |
---|
455 | following methods: |
---|
456 | @table @asis |
---|
457 | @item @strong{quotient rings:} |
---|
458 | @code{nres} (classical method using syzygies) , see @ref{nres}. |
---|
459 | |
---|
460 | @item @strong{homogeneous ideals and k=0:} |
---|
461 | @code{lres} (La'Scala's method), see @ref{lres}. |
---|
462 | |
---|
463 | @item @strong{not minimized resolution and (homogeneous input with k not 0, or local rings):} |
---|
464 | @code{sres} (Schreyer's method), see @ref{sres}. |
---|
465 | |
---|
466 | @item @strong{all other inputs:} |
---|
467 | @code{mres} (classical method), see @ref{mres}. |
---|
468 | @end table |
---|
469 | @item @strong{Note:} |
---|
470 | Accessing single elements of a resolution may require that some partial |
---|
471 | computations have to be finished and may therefore take some time. |
---|
472 | @end table |
---|
473 | @c ref |
---|
474 | See also |
---|
475 | @ref{betti}; |
---|
476 | @ref{ideal}; |
---|
477 | @ref{minres}; |
---|
478 | @ref{module}; |
---|
479 | @ref{mres}; |
---|
480 | @ref{nres}; |
---|
481 | @ref{lres}; |
---|
482 | @ref{hres}; |
---|
483 | @ref{sres}. |
---|
484 | @ref{resolution} |
---|
485 | @c ref |
---|
486 | " |
---|
487 | { |
---|
488 | def P=basering; |
---|
489 | if (size(#) < 2) |
---|
490 | { |
---|
491 | ERROR("res: need at least two arguments: ideal/module, int"); |
---|
492 | } |
---|
493 | |
---|
494 | def m=#[1]; //the ideal or module |
---|
495 | int i=#[2]; //the length of the resolution |
---|
496 | if (i< 0) { i=0;} |
---|
497 | |
---|
498 | string varstr_P = varstr(P); |
---|
499 | |
---|
500 | int p_opt; |
---|
501 | string s_opt = option(); |
---|
502 | // set p_opt, if option(prot) is set |
---|
503 | if (find(s_opt, "prot")) |
---|
504 | { |
---|
505 | p_opt = 1; |
---|
506 | } |
---|
507 | |
---|
508 | if(size(ideal(basering)) > 0) |
---|
509 | { |
---|
510 | // the quick hack for qrings - seems to fit most needs |
---|
511 | // (lres is not implemented for qrings, sres is not so efficient) |
---|
512 | if (p_opt) { "using nres";} |
---|
513 | return(nres(m,i)); |
---|
514 | } |
---|
515 | |
---|
516 | if(homog(m)==1) |
---|
517 | { |
---|
518 | resolution re; |
---|
519 | if (((i==0) or (i>=nvars(basering))) && typeof(m) != "module") |
---|
520 | { |
---|
521 | //LaScala for the homogeneous case and i == 0 |
---|
522 | if (p_opt) { "using lres";} |
---|
523 | re=lres(m,i); |
---|
524 | if(size(#)>2) |
---|
525 | { |
---|
526 | re=minres(re); |
---|
527 | } |
---|
528 | } |
---|
529 | else |
---|
530 | { |
---|
531 | if(size(#)>2) |
---|
532 | { |
---|
533 | if (p_opt) { "using mres";} |
---|
534 | re=mres(m,i); |
---|
535 | } |
---|
536 | else |
---|
537 | { |
---|
538 | if (p_opt) { "using sres";} |
---|
539 | re=sres(std(m),i); |
---|
540 | } |
---|
541 | } |
---|
542 | return(re); |
---|
543 | } |
---|
544 | |
---|
545 | //mres for the global non homogeneous case |
---|
546 | if(find(ordstr(P),"s")==0) |
---|
547 | { |
---|
548 | string ri= "ring Phelp =" |
---|
549 | +string(char(P))+",("+varstr_P+"),(dp,C);"; |
---|
550 | execute(ri); |
---|
551 | def m=imap(P,m); |
---|
552 | if (p_opt) { "using mres in another ring";} |
---|
553 | list re=mres(m,i); |
---|
554 | setring P; |
---|
555 | resolution result=imap(Phelp,re); |
---|
556 | if (size(#) > 2) {result = minres(result);} |
---|
557 | return(result); |
---|
558 | } |
---|
559 | |
---|
560 | //sres for the local case and not minimal resolution |
---|
561 | if(size(#)<=2) |
---|
562 | { |
---|
563 | string ri= "ring Phelp =" |
---|
564 | +string(char(P))+",("+varstr_P+"),(ls,c);"; |
---|
565 | execute(ri); |
---|
566 | def m=imap(P,m); |
---|
567 | m=std(m); |
---|
568 | if (p_opt) { "using sres in another ring";} |
---|
569 | list re=sres(m,i); |
---|
570 | setring P; |
---|
571 | resolution result=imap(Phelp,re); |
---|
572 | return(result); |
---|
573 | } |
---|
574 | |
---|
575 | //mres for the local case and minimal resolution |
---|
576 | string ri= "ring Phelp =" |
---|
577 | +string(char(P))+",("+varstr_P+"),(ls,C);"; |
---|
578 | execute(ri); |
---|
579 | def m=imap(P,m); |
---|
580 | if (p_opt) { "using mres in another ring";} |
---|
581 | list re=mres(m,i); |
---|
582 | setring P; |
---|
583 | resolution result=imap(Phelp,re); |
---|
584 | result = minres(result); |
---|
585 | return(result); |
---|
586 | } |
---|
587 | example |
---|
588 | {"EXAMPLE:"; echo = 2; |
---|
589 | ring r=0,(x,y,z),dp; |
---|
590 | ideal i=xz,yz,x3-y3; |
---|
591 | def l=res(i,0); // homogeneous ideal: uses lres |
---|
592 | l; |
---|
593 | print(betti(l), "betti"); // input to betti may be of type resolution |
---|
594 | l[2]; // element access may take some time |
---|
595 | i=i,x+1; |
---|
596 | l=res(i,0); // inhomogeneous ideal: uses mres |
---|
597 | l; |
---|
598 | ring rs=0,(x,y,z),ds; |
---|
599 | ideal i=imap(r,i); |
---|
600 | def l=res(i,0); // local ring not minimized: uses sres |
---|
601 | l; |
---|
602 | res(i,0,0); // local ring and minimized: uses mres |
---|
603 | } |
---|
604 | ///////////////////////////////////////////////////////////////////////// |
---|
605 | |
---|
606 | proc quot (m1,m2,list #) |
---|
607 | "SYNTAX: @code{quot (} module_expression@code{,} module_expression @code{)} |
---|
608 | @*@code{quot (} module_expression@code{,} module_expression@code{,} |
---|
609 | int_expression @code{)} |
---|
610 | @*@code{quot (} ideal_expression@code{,} ideal_expression @code{)} |
---|
611 | @*@code{quot (} ideal_expression@code{,} ideal_expression@code{,} |
---|
612 | int_expression @code{)} |
---|
613 | TYPE: ideal |
---|
614 | SYNTAX: @code{quot (} module_expression@code{,} ideal_expression @code{)} |
---|
615 | TYPE: module |
---|
616 | PURPOSE: computes the quotient of the 1st and the 2nd argument. |
---|
617 | If a 3rd argument 'n' is given the n-th method is used |
---|
618 | (n=1...5). |
---|
619 | SEE ALSO: quotient |
---|
620 | EXAMPLE: example quot; shows an example" |
---|
621 | { |
---|
622 | if (((typeof(m1)!="ideal") and (typeof(m1)!="module")) |
---|
623 | or ((typeof(m2)!="ideal") and (typeof(m2)!="module"))) |
---|
624 | { |
---|
625 | "USAGE: quot(m1, m2[, n]); m1, m2 two submodules of k^s,"; |
---|
626 | " n (optional) integer (1<= n <=5)"; |
---|
627 | "RETURN: the quotient of m1 and m2"; |
---|
628 | "EXAMPLE: example quot; shows an example"; |
---|
629 | return(); |
---|
630 | } |
---|
631 | if (typeof(m1)!=typeof(m2)) |
---|
632 | { |
---|
633 | return(quotient(m1,m2)); |
---|
634 | } |
---|
635 | if (size(#)>0) |
---|
636 | { |
---|
637 | if (typeof(#[1])=="int" ) |
---|
638 | { |
---|
639 | return(quot1(m1,m2,#[1])); |
---|
640 | } |
---|
641 | } |
---|
642 | else |
---|
643 | { |
---|
644 | return(quot1(m1,m2,2)); |
---|
645 | } |
---|
646 | } |
---|
647 | example |
---|
648 | { "EXAMPLE:"; echo = 2; |
---|
649 | ring r=181,(x,y,z),(c,ls); |
---|
650 | ideal id1=maxideal(4); |
---|
651 | ideal id2=x2+xyz,y2-z3y,z3+y5xz; |
---|
652 | option(prot); |
---|
653 | ideal id3=quotient(id1,id2); |
---|
654 | id3; |
---|
655 | ideal id4=quot(id1,id2,1); |
---|
656 | id4; |
---|
657 | ideal id5=quot(id1,id2,2); |
---|
658 | id5; |
---|
659 | } |
---|
660 | |
---|
661 | static proc quot1 (module m1, module m2,int n) |
---|
662 | "USAGE: quot1(m1, m2, n); m1, m2 two submodules of k^s, |
---|
663 | n integer (1<= n <=5) |
---|
664 | RETURN: the quotient of m1 and m2 |
---|
665 | EXAMPLE: example quot1; shows an example" |
---|
666 | { |
---|
667 | if (n==1) |
---|
668 | { |
---|
669 | return(quotient1(m1,m2)); |
---|
670 | } |
---|
671 | else |
---|
672 | { |
---|
673 | if (n==2) |
---|
674 | { |
---|
675 | return(quotient2(m1,m2)); |
---|
676 | } |
---|
677 | else |
---|
678 | { |
---|
679 | if (n==3) |
---|
680 | { |
---|
681 | return(quotient3(m1,m2)); |
---|
682 | } |
---|
683 | else |
---|
684 | { |
---|
685 | if (n==4) |
---|
686 | { |
---|
687 | return(quotient4(m1,m2)); |
---|
688 | } |
---|
689 | else |
---|
690 | { |
---|
691 | if (n==5) |
---|
692 | { |
---|
693 | return(quotient5(m1,m2)); |
---|
694 | } |
---|
695 | else |
---|
696 | { |
---|
697 | return(quotient(m1,m2)); |
---|
698 | } |
---|
699 | } |
---|
700 | } |
---|
701 | } |
---|
702 | } |
---|
703 | } |
---|
704 | example |
---|
705 | { "EXAMPLE:"; echo = 2; |
---|
706 | ring r=181,(x,y,z),(c,ls); |
---|
707 | ideal id1=maxideal(4); |
---|
708 | ideal id2=x2+xyz,y2-z3y,z3+y5xz; |
---|
709 | option(prot); |
---|
710 | ideal id6=quotient(id1,id2); |
---|
711 | id6; |
---|
712 | ideal id7=quot1(id1,id2,1); |
---|
713 | id7; |
---|
714 | ideal id8=quot1(id1,id2,2); |
---|
715 | id8; |
---|
716 | } |
---|
717 | |
---|
718 | static proc quotient0(module a,module b) |
---|
719 | { |
---|
720 | module mm=b+a; |
---|
721 | resolution rs=lres(mm,0); |
---|
722 | list I=list(rs); |
---|
723 | matrix M=I[2]; |
---|
724 | matrix A[1][nrows(M)]=M[1..nrows(M),1]; |
---|
725 | ideal i=A; |
---|
726 | return (i); |
---|
727 | } |
---|
728 | proc quotient1(module a,module b) //17sec |
---|
729 | "USAGE: quotient1(m1, m2); m1, m2 two submodules of k^s, |
---|
730 | RETURN: the quotient of m1 and m2" |
---|
731 | { |
---|
732 | int i; |
---|
733 | a=std(a); |
---|
734 | module dummy; |
---|
735 | module B=NF(b,a)+dummy; |
---|
736 | ideal re=quotient(a,module(B[1])); |
---|
737 | for(i=2;i<=size(B);i++) |
---|
738 | { |
---|
739 | re=intersect1(re,quotient(a,module(B[i]))); |
---|
740 | } |
---|
741 | return(re); |
---|
742 | } |
---|
743 | proc quotient2(module a,module b) //13sec |
---|
744 | "USAGE: quotient2(m1, m2); m1, m2 two submodules of k^s, |
---|
745 | RETURN: the quotient of m1 and m2" |
---|
746 | { |
---|
747 | a=std(a); |
---|
748 | module dummy; |
---|
749 | module bb=NF(b,a)+dummy; |
---|
750 | int i=size(bb); |
---|
751 | ideal re=quotient(a,module(bb[i])); |
---|
752 | bb[i]=0; |
---|
753 | module temp; |
---|
754 | module temp1; |
---|
755 | module bbb; |
---|
756 | int mx; |
---|
757 | i=i-1; |
---|
758 | while (1) |
---|
759 | { |
---|
760 | if (i==0) break; |
---|
761 | temp = a+bb*re; |
---|
762 | temp1 = lead(interred(temp)); |
---|
763 | mx=ncols(a); |
---|
764 | if (ncols(temp1)>ncols(a)) |
---|
765 | { |
---|
766 | mx=ncols(temp1); |
---|
767 | } |
---|
768 | temp1 = matrix(temp1,1,mx)-matrix(lead(a),1,mx); |
---|
769 | temp1 = dummy+temp1; |
---|
770 | if (deg(temp1[1])<0) break; |
---|
771 | re=intersect1(re,quotient(a,module(bb[i]))); |
---|
772 | bb[i]=0; |
---|
773 | i = i-1; |
---|
774 | } |
---|
775 | return(re); |
---|
776 | } |
---|
777 | proc quotient3(module a,module b) //89sec |
---|
778 | "USAGE: quotient3(m1, m2); m1, m2 two submodules of k^s, |
---|
779 | only for global rings |
---|
780 | RETURN: the quotient of m1 and m2" |
---|
781 | { |
---|
782 | string s="ring @newr=("+charstr(basering)+ |
---|
783 | "),("+varstr(basering)+",@t,@w),dp;"; |
---|
784 | def @newP=basering; |
---|
785 | execute(s); |
---|
786 | module b=imap(@newP,b); |
---|
787 | module a=imap(@newP,a); |
---|
788 | int i; |
---|
789 | int j=size(b); |
---|
790 | vector @b; |
---|
791 | for(i=1;i<=j;i++) |
---|
792 | { |
---|
793 | @b=@b+@t^(i-1)*@w^(j-i+1)*b[i]; |
---|
794 | } |
---|
795 | ideal re=quotient(a,module(@b)); |
---|
796 | setring @newP; |
---|
797 | ideal re=imap(@newr,re); |
---|
798 | return(re); |
---|
799 | } |
---|
800 | proc quotient5(module a,module b) //89sec |
---|
801 | "USAGE: quotient5(m1, m2); m1, m2 two submodules of k^s, |
---|
802 | only for global rings |
---|
803 | RETURN: the quotient of m1 and m2" |
---|
804 | { |
---|
805 | string s="ring @newr=("+charstr(basering)+ |
---|
806 | "),("+varstr(basering)+",@t),dp;"; |
---|
807 | def @newP=basering; |
---|
808 | execute(s); |
---|
809 | module b=imap(@newP,b); |
---|
810 | module a=imap(@newP,a); |
---|
811 | int i; |
---|
812 | int j=size(b); |
---|
813 | vector @b; |
---|
814 | for(i=1;i<=j;i++) |
---|
815 | { |
---|
816 | @b=@b+@t^(i-1)*b[i]; |
---|
817 | } |
---|
818 | @b=homog(@b,@w); |
---|
819 | ideal re=quotient(a,module(@b)); |
---|
820 | setring @newP; |
---|
821 | ideal re=imap(@newr,re); |
---|
822 | return(re); |
---|
823 | } |
---|
824 | proc quotient4(module a,module b) //95sec |
---|
825 | "USAGE: quotient4(m1, m2); m1, m2 two submodules of k^s, |
---|
826 | only for global rings |
---|
827 | RETURN: the quotient of m1 and m2" |
---|
828 | { |
---|
829 | string s="ring @newr=("+charstr(basering)+ |
---|
830 | "),("+varstr(basering)+",@t),dp;"; |
---|
831 | def @newP=basering; |
---|
832 | execute(s); |
---|
833 | module b=imap(@newP,b); |
---|
834 | module a=imap(@newP,a); |
---|
835 | int i; |
---|
836 | vector @b=b[1]; |
---|
837 | for(i=2;i<=size(b);i++) |
---|
838 | { |
---|
839 | @b=@b+@t^(i-1)*b[i]; |
---|
840 | } |
---|
841 | matrix sy=modulo(@b,a); |
---|
842 | ideal re=sy; |
---|
843 | setring @newP; |
---|
844 | ideal re=imap(@newr,re); |
---|
845 | return(re); |
---|
846 | } |
---|
847 | static proc intersect1(ideal i,ideal j) |
---|
848 | { |
---|
849 | def R=basering; |
---|
850 | execute("ring gnir = ("+charstr(basering)+"), |
---|
851 | ("+varstr(basering)+",@t),(C,dp);"); |
---|
852 | ideal i=var(nvars(basering))*imap(R,i)+(var(nvars(basering))-1)*imap(R,j); |
---|
853 | ideal j=eliminate(i,var(nvars(basering))); |
---|
854 | setring R; |
---|
855 | map phi=gnir,maxideal(1); |
---|
856 | return(phi(j)); |
---|
857 | } |
---|
858 | |
---|
859 | ////////////////////////////////////////////////////////////////// |
---|
860 | /// |
---|
861 | /// sprintf, fprintf printf |
---|
862 | /// |
---|
863 | proc sprintf(string fmt, list #) |
---|
864 | "SYNTAX: @code{sprintf (} string_expression @code{[,} any_expressions |
---|
865 | @code{] )} |
---|
866 | RETURN: string |
---|
867 | PURPOSE: @code{sprintf(fmt,...);} performs output formatting. The first |
---|
868 | argument is a format control string. Additional arguments may be |
---|
869 | required, depending on the content of the control string. A series |
---|
870 | of output characters is generated as directed by the control string; |
---|
871 | these characters are returned as a string. @* |
---|
872 | The control string @code{fmt} is simply text to be copied, |
---|
873 | except that the string may contain conversion specifications.@* |
---|
874 | Do @code{help print;} for a listing of valid conversion |
---|
875 | specifications. As an addition to the conversions of @code{print}, |
---|
876 | the @code{%n} and @code{%2} conversion specification does not |
---|
877 | consume an additional argument, but simply generates a newline |
---|
878 | character. |
---|
879 | NOTE: If one of the additional arguments is a list, then it should be |
---|
880 | enclosed once more into a @code{list()} command, since passing a list |
---|
881 | as an argument flattens the list by one level. |
---|
882 | SEE ALSO: fprintf, printf, print, string |
---|
883 | EXAMPLE : example sprintf; shows an example |
---|
884 | " |
---|
885 | { |
---|
886 | int sfmt = size(fmt); |
---|
887 | if (sfmt <= 1) |
---|
888 | { |
---|
889 | return (fmt); |
---|
890 | } |
---|
891 | int next, l, nnext; |
---|
892 | string ret; |
---|
893 | list formats = "%l", "%s", "%2l", "%2s", "%t", "%;", "%p", "%b", "%n", "%2"; |
---|
894 | while (1) |
---|
895 | { |
---|
896 | if (size(#) <= 0) |
---|
897 | { |
---|
898 | return (ret + fmt); |
---|
899 | } |
---|
900 | nnext = 0; |
---|
901 | while (nnext < sfmt) |
---|
902 | { |
---|
903 | nnext = find(fmt, "%", nnext + 1); |
---|
904 | if (nnext == 0) |
---|
905 | { |
---|
906 | next = 0; |
---|
907 | break; |
---|
908 | } |
---|
909 | l = 1; |
---|
910 | while (l <= size(formats)) |
---|
911 | { |
---|
912 | next = find(fmt, formats[l], nnext); |
---|
913 | if (next == nnext) break; |
---|
914 | l++; |
---|
915 | } |
---|
916 | if (next == nnext) break; |
---|
917 | } |
---|
918 | if (next == 0) |
---|
919 | { |
---|
920 | return (ret + fmt); |
---|
921 | } |
---|
922 | if (formats[l] != "%2" && formats[l] != "%n") |
---|
923 | { |
---|
924 | ret = ret + fmt[1, next - 1] + print(#[1], formats[l]); |
---|
925 | # = delete(#, 1); |
---|
926 | } |
---|
927 | else |
---|
928 | { |
---|
929 | ret = ret + fmt[1, next - 1] + print("", "%2s"); |
---|
930 | } |
---|
931 | if (size(fmt) <= (next + size(formats[l]) - 1)) |
---|
932 | { |
---|
933 | return (ret); |
---|
934 | } |
---|
935 | fmt = fmt[next + size(formats[l]), size(fmt)-next-size(formats[l]) + 1]; |
---|
936 | } |
---|
937 | } |
---|
938 | example |
---|
939 | { "EXAMPLE:"; echo=2; |
---|
940 | ring r=0,(x,y,z),dp; |
---|
941 | module m=[1,y],[0,x+z]; |
---|
942 | intmat M=betti(mres(m,0)); |
---|
943 | list l = r, m, M; |
---|
944 | string s = sprintf("s:%s,%n l:%l", 1, 2); s; |
---|
945 | s = sprintf("s:%n%s", l); s; |
---|
946 | s = sprintf("s:%2%s", list(l)); s; |
---|
947 | s = sprintf("2l:%n%2l", list(l)); s; |
---|
948 | s = sprintf("%p", list(l)); s; |
---|
949 | s = sprintf("%;", list(l)); s; |
---|
950 | s = sprintf("%b", M); s; |
---|
951 | } |
---|
952 | |
---|
953 | proc printf(string fmt, list #) |
---|
954 | "SYNTAX: @code{printf (} string_expression @code{[,} any_expressions@code{] )} |
---|
955 | RETURN: none |
---|
956 | PURPOSE: @code{printf(fmt,...);} performs output formatting. The first |
---|
957 | argument is a format control string. Additional arguments may be |
---|
958 | required, depending on the content of the control string. A series |
---|
959 | of output characters is generated as directed by the control string; |
---|
960 | these characters are displayed (i.e., printed to standard out). @* |
---|
961 | The control string @code{fmt} is simply text to be copied, except |
---|
962 | that the string may contain conversion specifications. @* |
---|
963 | Do @code{help print;} for a listing of valid conversion |
---|
964 | specifications. As an addition to the conversions of @code{print}, |
---|
965 | the @code{%n} and @code{%2} conversion specification does not |
---|
966 | consume an additional argument, but simply generates a newline |
---|
967 | character. |
---|
968 | NOTE: If one of the additional arguments is a list, then it should be |
---|
969 | enclosed once more into a @code{list()} command, since passing a |
---|
970 | list as an argument flattens the list by one level. |
---|
971 | SEE ALSO: sprintf, fprintf, print, string |
---|
972 | EXAMPLE : example printf; shows an example |
---|
973 | " |
---|
974 | { |
---|
975 | write("", sprintf(fmt, #)); |
---|
976 | } |
---|
977 | example |
---|
978 | { "EXAMPLE:"; echo=2; |
---|
979 | ring r=0,(x,y,z),dp; |
---|
980 | module m=[1,y],[0,x+z]; |
---|
981 | intmat M=betti(mres(m,0)); |
---|
982 | list l=r,m,M; |
---|
983 | printf("s:%s,l:%l",1,2); |
---|
984 | printf("s:%s",l); |
---|
985 | printf("s:%s",list(l)); |
---|
986 | printf("2l:%2l",list(l)); |
---|
987 | printf("%p",list(l)); |
---|
988 | printf("%;",list(l)); |
---|
989 | printf("%b",M); |
---|
990 | } |
---|
991 | |
---|
992 | |
---|
993 | proc fprintf(link l, string fmt, list #) |
---|
994 | "SYNTAX: @code{fprintf (} link_expression@code{,} string_expression @code{[,} |
---|
995 | any_expressions@code{] )} |
---|
996 | RETURN: none |
---|
997 | PURPOSE: @code{fprintf(l,fmt,...);} performs output formatting. |
---|
998 | The second argument is a format control string. Additional |
---|
999 | arguments may be required, depending on the content of the |
---|
1000 | control string. A series of output characters is generated as |
---|
1001 | directed by the control string; these characters are |
---|
1002 | written to the link l. |
---|
1003 | The control string @code{fmt} is simply text to be copied, except |
---|
1004 | that the string may contain conversion specifications.@* |
---|
1005 | Do @code{help print;} for a listing of valid conversion |
---|
1006 | specifications. As an addition to the conversions of @code{print}, |
---|
1007 | the @code{%n} and @code{%2} conversion specification does not |
---|
1008 | consume an additional argument, but simply generates a newline |
---|
1009 | character. |
---|
1010 | NOTE: If one of the additional arguments is a list, then it should be |
---|
1011 | enclosed once more into a @code{list()} command, since passing |
---|
1012 | a list as an argument flattens the list by one level. |
---|
1013 | SEE ALSO: sprintf, printf, print, string |
---|
1014 | EXAMPLE : example fprintf; shows an example |
---|
1015 | " |
---|
1016 | { |
---|
1017 | write(l, sprintf(fmt, #)); |
---|
1018 | } |
---|
1019 | example |
---|
1020 | { "EXAMPLE:"; echo=2; |
---|
1021 | ring r=0,(x,y,z),dp; |
---|
1022 | module m=[1,y],[0,x+z]; |
---|
1023 | intmat M=betti(mres(m,0)); |
---|
1024 | list l=r,m,M; |
---|
1025 | link li=""; // link to stdout |
---|
1026 | fprintf(li,"s:%s,l:%l",1,2); |
---|
1027 | fprintf(li,"s:%s",l); |
---|
1028 | fprintf(li,"s:%s",list(l)); |
---|
1029 | fprintf(li,"2l:%2l",list(l)); |
---|
1030 | fprintf(li,"%p",list(l)); |
---|
1031 | fprintf(li,"%;",list(l)); |
---|
1032 | fprintf(li,"%b",M); |
---|
1033 | } |
---|
1034 | |
---|
1035 | proc timeFactorize(poly i,list #) |
---|
1036 | "USAGE: timeFactorize(p,d) poly p , integer d |
---|
1037 | RETURN: factorize(p) if the factorization finished after d-1 |
---|
1038 | seconds otherwhise f is considered to be irreducible |
---|
1039 | EXAMPLE: example timeFactorize; shows an example |
---|
1040 | " |
---|
1041 | { |
---|
1042 | def P=basering; |
---|
1043 | if (size(#) > 0) |
---|
1044 | { |
---|
1045 | if (system("with", "MP")) |
---|
1046 | { |
---|
1047 | if ((typeof(#[1]) == "int")&&(#[1])) |
---|
1048 | { |
---|
1049 | int wait = #[1]; |
---|
1050 | int j = 10; |
---|
1051 | |
---|
1052 | string bs = nameof(basering); |
---|
1053 | link l_fork = "MPtcp:fork"; |
---|
1054 | open(l_fork); |
---|
1055 | write(l_fork, quote(system("pid"))); |
---|
1056 | int pid = read(l_fork); |
---|
1057 | write(l_fork, quote(timeFactorize(eval(i)))); |
---|
1058 | |
---|
1059 | // sleep in small intervalls for appr. one second |
---|
1060 | if (wait > 0) |
---|
1061 | { |
---|
1062 | while(j < 1000000) |
---|
1063 | { |
---|
1064 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
1065 | j = j + j; |
---|
1066 | } |
---|
1067 | } |
---|
1068 | |
---|
1069 | // sleep in intervalls of one second from now on |
---|
1070 | j = 1; |
---|
1071 | while (j < wait) |
---|
1072 | { |
---|
1073 | if (status(l_fork, "read", "ready", 1000000)) {break;} |
---|
1074 | j = j + 1; |
---|
1075 | } |
---|
1076 | |
---|
1077 | if (status(l_fork, "read", "ready")) |
---|
1078 | { |
---|
1079 | def result = read(l_fork); |
---|
1080 | if (bs != nameof(basering)) |
---|
1081 | { |
---|
1082 | def PP = basering; |
---|
1083 | setring P; |
---|
1084 | def result = imap(PP, result); |
---|
1085 | kill PP; |
---|
1086 | } |
---|
1087 | kill (l_fork); |
---|
1088 | } |
---|
1089 | else |
---|
1090 | { |
---|
1091 | list result; |
---|
1092 | intvec v=1,1; |
---|
1093 | result[1]=list(1,i); |
---|
1094 | result[2]=v; |
---|
1095 | j = system("sh", "kill " + string(pid)); |
---|
1096 | } |
---|
1097 | return (result); |
---|
1098 | } |
---|
1099 | } |
---|
1100 | } |
---|
1101 | return(factorH(i)); |
---|
1102 | } |
---|
1103 | example |
---|
1104 | { "EXAMPLE:"; echo = 2; |
---|
1105 | ring r=0,(x,y),dp; |
---|
1106 | poly p=((x2+y3)^2+xy6)*((x3+y2)^2+x10y); |
---|
1107 | p=p^2; |
---|
1108 | timeFactorize(p,2); |
---|
1109 | timeFactorize(p,20); |
---|
1110 | } |
---|
1111 | |
---|
1112 | proc timeStd(ideal i,list #) |
---|
1113 | "USAGE: timeStd(i,d), i ideal, d integer |
---|
1114 | RETURN: std(i) if the standard basis computation finished after |
---|
1115 | d-1 seconds and i otherwhise |
---|
1116 | EXAMPLE: example timeStd; shows an example |
---|
1117 | " |
---|
1118 | { |
---|
1119 | def P=basering; |
---|
1120 | if (size(#) > 0) |
---|
1121 | { |
---|
1122 | if (system("with", "MP")) |
---|
1123 | { |
---|
1124 | if ((typeof(#[1]) == "int")&&(#[1])) |
---|
1125 | { |
---|
1126 | int wait = #[1]; |
---|
1127 | int j = 10; |
---|
1128 | |
---|
1129 | string bs = nameof(basering); |
---|
1130 | link l_fork = "MPtcp:fork"; |
---|
1131 | open(l_fork); |
---|
1132 | write(l_fork, quote(system("pid"))); |
---|
1133 | int pid = read(l_fork); |
---|
1134 | write(l_fork, quote(timeStd(eval(i)))); |
---|
1135 | |
---|
1136 | // sleep in small intervalls for appr. one second |
---|
1137 | if (wait > 0) |
---|
1138 | { |
---|
1139 | while(j < 1000000) |
---|
1140 | { |
---|
1141 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
1142 | j = j + j; |
---|
1143 | } |
---|
1144 | } |
---|
1145 | j = 1; |
---|
1146 | while (j < wait) |
---|
1147 | { |
---|
1148 | if (status(l_fork, "read", "ready", 1000000)) {break;} |
---|
1149 | j = j + 1; |
---|
1150 | } |
---|
1151 | if (status(l_fork, "read", "ready")) |
---|
1152 | { |
---|
1153 | def result = read(l_fork); |
---|
1154 | if (bs != nameof(basering)) |
---|
1155 | { |
---|
1156 | def PP = basering; |
---|
1157 | setring P; |
---|
1158 | def result = imap(PP, result); |
---|
1159 | kill PP; |
---|
1160 | } |
---|
1161 | kill (l_fork); |
---|
1162 | } |
---|
1163 | else |
---|
1164 | { |
---|
1165 | ideal result=i; |
---|
1166 | j = system("sh", "kill " + string(pid)); |
---|
1167 | } |
---|
1168 | return (result); |
---|
1169 | } |
---|
1170 | } |
---|
1171 | } |
---|
1172 | return(std(i)); |
---|
1173 | } |
---|
1174 | example |
---|
1175 | { "EXAMPLE:"; echo = 2; |
---|
1176 | ring r=32003,(a,b,c,d,e),dp; |
---|
1177 | int n=6; |
---|
1178 | ideal i= |
---|
1179 | a^n-b^n, |
---|
1180 | b^n-c^n, |
---|
1181 | c^n-d^n, |
---|
1182 | d^n-e^n, |
---|
1183 | a^(n-1)*b+b^(n-1)*c+c^(n-1)*d+d^(n-1)*e+e^(n-1)*a; |
---|
1184 | timeStd(i,2); |
---|
1185 | timeStd(i,20); |
---|
1186 | } |
---|
1187 | |
---|
1188 | proc factorH(poly p) |
---|
1189 | "USAGE: factorH(p) p poly |
---|
1190 | RETURN: factorize(p) |
---|
1191 | NOTE: changes variables to become the last variable the principal |
---|
1192 | one in the multivariate factorization and factorizes then |
---|
1193 | the polynomial |
---|
1194 | EXAMPLE: example factorH; shows an example |
---|
1195 | " |
---|
1196 | { |
---|
1197 | def R=basering; |
---|
1198 | int i,j; |
---|
1199 | int n=1; |
---|
1200 | int d=nrows(coeffs(p,var(1))); |
---|
1201 | for(i=1;i<=nvars(R);i++) |
---|
1202 | { |
---|
1203 | j=nrows(coeffs(p,var(i))); |
---|
1204 | if(d>j) |
---|
1205 | { |
---|
1206 | n=i; |
---|
1207 | d=j; |
---|
1208 | } |
---|
1209 | } |
---|
1210 | ideal ma=maxideal(1); //die letzte Variable ist die Hauptvariable |
---|
1211 | ma[nvars(R)]=var(n); |
---|
1212 | ma[n]=var(nvars(R)); |
---|
1213 | map phi=R,ma; |
---|
1214 | list fac=factorize(phi(p)); |
---|
1215 | list re=phi(fac); |
---|
1216 | return(re); |
---|
1217 | } |
---|
1218 | example |
---|
1219 | { "EXAMPLE:"; echo = 2; |
---|
1220 | system("random",992851144); |
---|
1221 | ring r=32003,(x,y,z,w,t),lp; |
---|
1222 | poly p=y2w9+yz7t-yz5w4-z2w4t4-w8t3; |
---|
1223 | factorize(p); //fast |
---|
1224 | system("random",992851262); |
---|
1225 | factorize(p); //slow |
---|
1226 | system("random",992851262); |
---|
1227 | factorH(p); |
---|
1228 | } |
---|
1229 | |
---|
1230 | /* |
---|
1231 | proc minres(list #) |
---|
1232 | { |
---|
1233 | if (size(#) == 2) |
---|
1234 | { |
---|
1235 | if (typeof(#[1]) == "ideal" || typeof(#[1]) == "module") |
---|
1236 | { |
---|
1237 | if (typeof(#[2] == "int")) |
---|
1238 | { |
---|
1239 | return (res(#[1],#[2],1)); |
---|
1240 | } |
---|
1241 | } |
---|
1242 | } |
---|
1243 | |
---|
1244 | if (typeof(#[1]) == "resolution") |
---|
1245 | { |
---|
1246 | return minimizeres(#[1]); |
---|
1247 | } |
---|
1248 | else |
---|
1249 | { |
---|
1250 | return minimizeres(#); |
---|
1251 | } |
---|
1252 | |
---|
1253 | } |
---|
1254 | */ |
---|