1 | // $Id: standard.lib,v 1.41 1999-08-19 13:49:39 obachman Exp $ |
---|
2 | ////////////////////////////////////////////////////////////////////////////// |
---|
3 | |
---|
4 | version="$Id: standard.lib,v 1.41 1999-08-19 13:49:39 obachman Exp $"; |
---|
5 | info=" |
---|
6 | LIBRARY: standard.lib PROCEDURES WHICH ARE ALWAYS LOADED AT START-UP |
---|
7 | |
---|
8 | PROCEDURES: |
---|
9 | stdfglm(ideal[,ord]) standard basis of ideal via fglm [and ordering ord] |
---|
10 | stdhilb(ideal[,h]) standard basis of ideal using the Hilbert function |
---|
11 | groebner(ideal/module) standard basis using a heuristically chosen method |
---|
12 | quot(any,any[,n]) quotient using heuristically chosen method |
---|
13 | res(ideal/module,[i]) free resolution of ideal or module |
---|
14 | sprintf(fmt,...) returns fomatted string |
---|
15 | fprintf(link,fmt,..) writes formatted string to link |
---|
16 | printf(fmt,...) displays formatted string |
---|
17 | "; |
---|
18 | |
---|
19 | ////////////////////////////////////////////////////////////////////////////// |
---|
20 | |
---|
21 | proc stdfglm (ideal i, list #) |
---|
22 | "USAGE: stdfglm(i[,s]); i ideal, s string (any allowed ordstr of a ring) |
---|
23 | RETURN: stdfglm(i): standard basis of i in the basering, calculated via fglm |
---|
24 | from ordering \"dp\" to the ordering of the basering. |
---|
25 | stdfglm(i,s): standard basis of i in the basering, calculated via |
---|
26 | fglm from ordering s to the ordering of the basering. |
---|
27 | SEE ALSO: stdhilb, std, groebner |
---|
28 | KEYWORDS: fglm |
---|
29 | EXAMPLE: example stdfglm; shows an example" |
---|
30 | { |
---|
31 | string os; |
---|
32 | def dr= basering; |
---|
33 | if( (size(#)==0) or (typeof(#[1]) != "string") ) |
---|
34 | { |
---|
35 | os = "dp(" + string( nvars(dr) ) + ")"; |
---|
36 | if ( (find( ordstr(dr), os ) != 0) and (find( ordstr(dr), "a") == 0) ) |
---|
37 | { |
---|
38 | os= "Dp"; |
---|
39 | } |
---|
40 | else |
---|
41 | { |
---|
42 | os= "dp"; |
---|
43 | } |
---|
44 | } |
---|
45 | else { os = #[1]; } |
---|
46 | execute "ring sr=("+charstr(dr)+"),("+varstr(dr)+"),"+os+";"; |
---|
47 | ideal i= fetch(dr,i); |
---|
48 | intvec opt= option(get); |
---|
49 | option(redSB); |
---|
50 | i=std(i); |
---|
51 | option(set,opt); |
---|
52 | setring dr; |
---|
53 | return (fglm(sr,i)); |
---|
54 | } |
---|
55 | example |
---|
56 | { "EXAMPLE:"; echo = 2; |
---|
57 | ring r = 0,(x,y,z),lp; |
---|
58 | ideal i = y3+x2, x2y+x2, x3-x2, z4-x2-y; |
---|
59 | ideal i1= stdfglm(i); //uses fglm from "dp" to "lp" |
---|
60 | i1; |
---|
61 | ideal i2= stdfglm(i,"Dp"); //uses fglm from "Dp" to "lp" |
---|
62 | i2; |
---|
63 | } |
---|
64 | ///////////////////////////////////////////////////////////////////////////// |
---|
65 | |
---|
66 | proc stdhilb(ideal i,list #) |
---|
67 | "USAGE: stdhilb(i); i ideal |
---|
68 | stdhilb(i,v); i homogeneous ideal, v intvec (the Hilbert function) |
---|
69 | RETURN: stdhilb(i): a standard basis of i (computing v internally) |
---|
70 | stdhilb(i,v): standard basis of i, using the given Hilbert function |
---|
71 | SEE ALSO: stdfglm, std, groebner |
---|
72 | KEYWORDS: Hilbert function |
---|
73 | EXAMPLE: example stdhilb; shows an example" |
---|
74 | { |
---|
75 | def R=basering; |
---|
76 | |
---|
77 | if((homog(i)==1)||(ordstr(basering)[1]=="d")) |
---|
78 | { |
---|
79 | if ((size(#)!=0)&&(homog(i)==1)) |
---|
80 | { |
---|
81 | return(std(i,#[1])); |
---|
82 | } |
---|
83 | return(std(i)); |
---|
84 | } |
---|
85 | |
---|
86 | execute "ring S = ("+charstr(R)+"),("+varstr(R)+",@t),dp;"; |
---|
87 | ideal i=homog(imap(R,i),@t); |
---|
88 | intvec v=hilb(std(i),1); |
---|
89 | execute "ring T = ("+charstr(R)+"),("+varstr(R)+",@t),("+ordstr(R)+");"; |
---|
90 | ideal i=fetch(S,i); |
---|
91 | ideal a=std(i,v); |
---|
92 | setring R; |
---|
93 | map phi=T,maxideal(1),1; |
---|
94 | ideal a=phi(a); |
---|
95 | |
---|
96 | int k,j; |
---|
97 | poly m; |
---|
98 | int c=size(i); |
---|
99 | |
---|
100 | for(j=1;j<c;j++) |
---|
101 | { |
---|
102 | if(deg(a[j])==0) |
---|
103 | { |
---|
104 | a=ideal(1); |
---|
105 | attrib(a,"isSB",1); |
---|
106 | return(a); |
---|
107 | } |
---|
108 | if(deg(a[j])>0) |
---|
109 | { |
---|
110 | m=lead(a[j]); |
---|
111 | for(k=j+1;k<=c;k++) |
---|
112 | { |
---|
113 | if(size(lead(a[k])/m)>0) |
---|
114 | { |
---|
115 | a[k]=0; |
---|
116 | } |
---|
117 | } |
---|
118 | } |
---|
119 | } |
---|
120 | a=simplify(a,2); |
---|
121 | attrib(a,"isSB",1); |
---|
122 | return(a); |
---|
123 | } |
---|
124 | example |
---|
125 | { "EXAMPLE:"; echo = 2; |
---|
126 | ring r = 0,(x,y,z),lp; |
---|
127 | ideal i = y3+x2, x2y+x2, x3-x2, z4-x2-y; |
---|
128 | ideal i1= stdhilb(i); i1; |
---|
129 | // is in this case equivalent to: |
---|
130 | intvec v=1,0,0,-3,0,1,0,3,-1,-1; |
---|
131 | ideal i2=stdhilb(i,v); |
---|
132 | } |
---|
133 | ////////////////////////////////////////////////////////////////////////// |
---|
134 | |
---|
135 | proc groebner(def i, list #) |
---|
136 | "USAGE: groebner(i[, wait]) i -- ideal/module; wait -- int |
---|
137 | RETURNS: Standard basis of ideal or module which is computed using a |
---|
138 | heuristically chosen method: |
---|
139 | If the ordering of the current ring is a local ordering, or |
---|
140 | if it is a non-block ordering and the current ring has no |
---|
141 | parameters, then std(i) is returned. |
---|
142 | Otherwise, i is mapped into a ring with no parameters and |
---|
143 | ordering dp, where its Hilbert series is computed. This is |
---|
144 | followed by a Hilbert-series based std computation in the |
---|
145 | original ring. |
---|
146 | NOTE: If a 2nd argument 'wait' is given, then the computation proceeds |
---|
147 | at most 'wait' seconds. That is, if no result could be computed in |
---|
148 | 'wait' seconds, then the computation is interrupted, 0 is returned, |
---|
149 | a warning message is displayed, and the global variable |
---|
150 | 'groebner_error' is defined. |
---|
151 | SEE ALSO: stdhilb, stdfglm, std |
---|
152 | KEYWORDS: time limit on computations; MP, groebner basis computations |
---|
153 | EXAMPLE: example groebner; shows an example" |
---|
154 | { |
---|
155 | def P=basering; |
---|
156 | |
---|
157 | // we have two arguments -- try to use MPfork links |
---|
158 | if (size(#) > 0) |
---|
159 | { |
---|
160 | if (system("with", "MP")) |
---|
161 | { |
---|
162 | if (typeof(#[1]) == "int") |
---|
163 | { |
---|
164 | int wait = #[1]; |
---|
165 | int j = 10; |
---|
166 | |
---|
167 | string bs = nameof(basering); |
---|
168 | link l_fork = "MPtcp:fork"; |
---|
169 | open(l_fork); |
---|
170 | write(l_fork, quote(system("pid"))); |
---|
171 | int pid = read(l_fork); |
---|
172 | write(l_fork, quote(groebner(eval(i)))); |
---|
173 | |
---|
174 | // sleep in small intervalls for appr. one second |
---|
175 | if (wait > 0) |
---|
176 | { |
---|
177 | while(j < 1000000) |
---|
178 | { |
---|
179 | if (status(l_fork, "read", "ready", j)) {break;} |
---|
180 | j = j + j; |
---|
181 | } |
---|
182 | } |
---|
183 | |
---|
184 | // sleep in intervalls of one second from now on |
---|
185 | j = 1; |
---|
186 | while (j < wait) |
---|
187 | { |
---|
188 | if (status(l_fork, "read", "ready", 1000000)) {break;} |
---|
189 | j = j + 1; |
---|
190 | } |
---|
191 | |
---|
192 | if (status(l_fork, "read", "ready")) |
---|
193 | { |
---|
194 | def result = read(l_fork); |
---|
195 | if (bs != nameof(basering)) |
---|
196 | { |
---|
197 | def PP = basering; |
---|
198 | setring P; |
---|
199 | def result = imap(PP, result); |
---|
200 | kill PP; |
---|
201 | } |
---|
202 | if (defined(groebner_error)) |
---|
203 | { |
---|
204 | kill(groebner_error); |
---|
205 | } |
---|
206 | kill (l_fork); |
---|
207 | } |
---|
208 | else |
---|
209 | { |
---|
210 | ideal result; |
---|
211 | if (! defined(groebner_error)) |
---|
212 | { |
---|
213 | int groebner_error = 1; |
---|
214 | export groebner_error; |
---|
215 | } |
---|
216 | "// ** groebner did not finish"; |
---|
217 | j = system("sh", "kill " + string(pid)); |
---|
218 | } |
---|
219 | return (result); |
---|
220 | } |
---|
221 | else |
---|
222 | { |
---|
223 | "// ** groebner needs int as 2nd arg"; |
---|
224 | } |
---|
225 | } |
---|
226 | else |
---|
227 | { |
---|
228 | "// ** groebner with two args is not supported in this configuration"; |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | // we are still here -- do the actual computation |
---|
233 | string ordstr_P = ordstr(P); |
---|
234 | if (find(ordstr_P,"s") > 0) |
---|
235 | { |
---|
236 | //spaeter den lokalen fall ueber lp oder aehnlich behandeln |
---|
237 | return(std(i)); |
---|
238 | } |
---|
239 | |
---|
240 | int IsSimple_P; |
---|
241 | if (system("nblocks") <= 2) |
---|
242 | { |
---|
243 | if (find(ordstr_P, "M") <= 0) |
---|
244 | { |
---|
245 | IsSimple_P = 1; |
---|
246 | } |
---|
247 | } |
---|
248 | int npars_P = npars(P); |
---|
249 | |
---|
250 | // return std if no parameters and (dp or wp) |
---|
251 | if ((npars_P <= 1) && IsSimple_P) |
---|
252 | { |
---|
253 | if (find(ordstr_P, "d") > 0) |
---|
254 | { |
---|
255 | return (std(i)); |
---|
256 | } |
---|
257 | if (find(ordstr_P,"w") > 0) |
---|
258 | { |
---|
259 | return (std(i)); |
---|
260 | } |
---|
261 | } |
---|
262 | |
---|
263 | // reset options |
---|
264 | intvec opt=option(get); |
---|
265 | int p_opt; |
---|
266 | string s_opt = option(); |
---|
267 | option(none); |
---|
268 | // turn on option(prot) and/or option(mem), if previously set |
---|
269 | if (find(s_opt, "prot")) |
---|
270 | { |
---|
271 | option(prot); |
---|
272 | p_opt = 1; |
---|
273 | } |
---|
274 | if (find(s_opt, "mem")) |
---|
275 | { |
---|
276 | option(mem); |
---|
277 | } |
---|
278 | |
---|
279 | // construct ring in which first std computation is done |
---|
280 | string varstr_P = varstr(P); |
---|
281 | string parstr_P = parstr(P); |
---|
282 | int is_homog = (homog(i) && (npars_P <= 1)); |
---|
283 | int add_vars = 0; |
---|
284 | string ri = "ring Phelp ="; |
---|
285 | |
---|
286 | // more than one parameters are converted to ring variables |
---|
287 | if (npars_P > 1) |
---|
288 | { |
---|
289 | ri = ri + string(char(P)) + ",(" + varstr_P + "," + parstr_P; |
---|
290 | add_vars = npars_P; |
---|
291 | } |
---|
292 | else |
---|
293 | { |
---|
294 | ri = ri + "(" + charstr(P) + "),(" + varstr_P; |
---|
295 | } |
---|
296 | |
---|
297 | // a homogenizing variable is added, if necessary |
---|
298 | if (! is_homog) |
---|
299 | { |
---|
300 | ri = ri + ",@t"; |
---|
301 | add_vars = add_vars + 1; |
---|
302 | } |
---|
303 | // ordering is set to (dp, C) |
---|
304 | ri = ri + "),(dp,C);"; |
---|
305 | |
---|
306 | // change the ring |
---|
307 | execute(ri); |
---|
308 | |
---|
309 | // get ideal from previous ring |
---|
310 | if (is_homog) |
---|
311 | { |
---|
312 | ideal qh = imap(P, i); |
---|
313 | } |
---|
314 | else |
---|
315 | { |
---|
316 | // and homogenize |
---|
317 | ideal qh=homog(imap(P,i),@t); |
---|
318 | } |
---|
319 | |
---|
320 | // compute std and hilbert series |
---|
321 | if (p_opt) |
---|
322 | { |
---|
323 | "std in " + ri[13, size(ri) - 13]; |
---|
324 | } |
---|
325 | ideal qh1=std(qh); |
---|
326 | intvec hi=hilb(qh1,1); |
---|
327 | |
---|
328 | if (add_vars == 0) |
---|
329 | { |
---|
330 | // no additional variables were introduced |
---|
331 | setring P; // can immediately change to original ring |
---|
332 | // simply compute std with hilbert series in original ring |
---|
333 | if (p_opt) |
---|
334 | { |
---|
335 | "std with hilb in basering"; |
---|
336 | } |
---|
337 | i = std(i, hi); |
---|
338 | } |
---|
339 | else |
---|
340 | { |
---|
341 | // additional variables were introduced |
---|
342 | // need another intermediate ring |
---|
343 | ri = "ring Phelp1 = (" + charstr(Phelp) |
---|
344 | + "),(" + varstr(Phelp) + "),(" + ordstr_P; |
---|
345 | |
---|
346 | // for lp wit at most one parameter, we do not need a block ordering |
---|
347 | if ( ! (IsSimple_P && (add_vars <2) && find(ordstr_P, "l"))) |
---|
348 | { |
---|
349 | // need block ordering |
---|
350 | ri = ri + ", dp(" + string(add_vars) + ")"; |
---|
351 | } |
---|
352 | ri = ri + ");"; |
---|
353 | |
---|
354 | // change to intermediate ring |
---|
355 | execute(ri); |
---|
356 | ideal qh = imap(Phelp, qh); |
---|
357 | kill Phelp; |
---|
358 | if (p_opt) |
---|
359 | { |
---|
360 | "std with hilb in " + ri[14,size(ri)-14]; |
---|
361 | } |
---|
362 | // compute std with Hilbert series |
---|
363 | qh = std(qh, hi); |
---|
364 | // subst 1 for homogenizing var |
---|
365 | if (!is_homog) |
---|
366 | { |
---|
367 | if (p_opt) |
---|
368 | { |
---|
369 | "dehomogenization"; |
---|
370 | } |
---|
371 | qh = subst(qh, @t, 1); |
---|
372 | } |
---|
373 | |
---|
374 | // go back to original ring |
---|
375 | setring P; |
---|
376 | // get ideal, delete zeros and clean SB |
---|
377 | if (p_opt) |
---|
378 | { |
---|
379 | "imap to original ring"; |
---|
380 | } |
---|
381 | i = imap(Phelp1,qh); |
---|
382 | if (p_opt) |
---|
383 | { |
---|
384 | "simplification"; |
---|
385 | } |
---|
386 | i = simplify(i, 34); |
---|
387 | kill Phelp1; |
---|
388 | } |
---|
389 | |
---|
390 | // clean-up time |
---|
391 | option(set, opt); |
---|
392 | if (find(s_opt, "redSB") > 0) |
---|
393 | { |
---|
394 | if (p_opt) |
---|
395 | { |
---|
396 | "interreduction"; |
---|
397 | } |
---|
398 | i=interred(i); |
---|
399 | } |
---|
400 | attrib(i, "isSB", 1); |
---|
401 | return (i); |
---|
402 | } |
---|
403 | example |
---|
404 | { "EXAMPLE: "; echo = 2; |
---|
405 | ring r = 0, (a,b,c,d), lp; |
---|
406 | option(prot); |
---|
407 | ideal i = a+b+c+d, ab+ad+bc+cd, abc+abd+acd+bcd, abcd-1; // cyclic 4 |
---|
408 | groebner(i); |
---|
409 | ring rp = (0, a, b), (c,d), lp; |
---|
410 | ideal i = imap(r, i); |
---|
411 | ideal j = groebner(i); |
---|
412 | option(noprot); |
---|
413 | j; simplify(j, 1); std(i); |
---|
414 | if (system("with", "MP")) {groebner(i, 0);} |
---|
415 | defined(groebner_error); |
---|
416 | } |
---|
417 | |
---|
418 | |
---|
419 | ////////////////////////////////////////////////////////////////////////// |
---|
420 | proc res(list #) |
---|
421 | "@c we do texinfo here: |
---|
422 | @cindex resolution, computation of |
---|
423 | @table @code |
---|
424 | @item @strong{Syntax:} |
---|
425 | @code{res (} ideal_expression@code{,} int_expression @code{[,} any_expression @code{])} |
---|
426 | @*@code{res (} module_expression@code{,} int_expression @code{[,} any_expression @code{])} |
---|
427 | @item @strong{Type:} |
---|
428 | resolution |
---|
429 | @item @strong{Purpose:} |
---|
430 | computes a (possibly minimal) free resolution of an ideal or module using |
---|
431 | a heuristically choosen method. |
---|
432 | @* The second (int) argument (say, @code{k}) specifies the length of |
---|
433 | the resolution. If @code{k <=0 } then k is assumed to be the number of |
---|
434 | variables of the basering. |
---|
435 | @* If a third argument is given, the returned resolution is minimized. |
---|
436 | |
---|
437 | Depending on the input, the returned resolution is computed using the |
---|
438 | following methods: |
---|
439 | @table @asis |
---|
440 | @item @strong{quotient rings:} |
---|
441 | @code{nres} (classical method using syzygies) , see @ref{nres}. |
---|
442 | |
---|
443 | @item @strong{homogenous ideals and k == 0:} |
---|
444 | @code{lres} (La'Scala's method), see @ref{lres}. |
---|
445 | |
---|
446 | @item @strong{not minimized resolution, and, homogenous input with k != 0 or local rings:} |
---|
447 | @code{sres} (Schreyer's method), see @ref{sres}. |
---|
448 | |
---|
449 | @item @strong{all other inputs:} |
---|
450 | @code{mres} (classical method), see @ref{mres}. |
---|
451 | @end table |
---|
452 | @item @strong{Note:} |
---|
453 | Accessing single elements of a resolution may require that some partial computations have to be finished and may therefor take some time. |
---|
454 | @end table |
---|
455 | @c ref |
---|
456 | See also |
---|
457 | @ref{betti}; |
---|
458 | @ref{ideal}; |
---|
459 | @ref{minres}; |
---|
460 | @ref{module}; |
---|
461 | @ref{mres}; |
---|
462 | @ref{nres}; |
---|
463 | @ref{lres}; |
---|
464 | @ref{sres}. |
---|
465 | @ref{resolution} |
---|
466 | @c ref |
---|
467 | " |
---|
468 | { |
---|
469 | def P=basering; |
---|
470 | if (size(#) < 2) |
---|
471 | { |
---|
472 | ERROR("res: need at least two arguments: ideal/module, int"); |
---|
473 | } |
---|
474 | |
---|
475 | def m=#[1]; //the ideal or module |
---|
476 | int i=#[2]; //the length of the resolution |
---|
477 | if (i< 0) { i=0;} |
---|
478 | |
---|
479 | string varstr_P = varstr(P); |
---|
480 | |
---|
481 | |
---|
482 | if(size(ideal(basering)) > 0) |
---|
483 | { |
---|
484 | // the quick hack for qrings - seems to fit most needs |
---|
485 | // (lres is not implemented for qrings, sres is not so efficient) |
---|
486 | return(nres(m,i)); |
---|
487 | } |
---|
488 | |
---|
489 | if(homog(m)==1) |
---|
490 | { |
---|
491 | resolution re; |
---|
492 | if (((i==0) or (i>=nvars(basering))) && typeof(m) != "module") |
---|
493 | { |
---|
494 | //LaScala for the homogeneous case and i == 0 |
---|
495 | re=lres(m,i); |
---|
496 | if(size(#)>2) |
---|
497 | { |
---|
498 | re=minres(re); |
---|
499 | } |
---|
500 | } |
---|
501 | else |
---|
502 | { |
---|
503 | if(size(#)>2) |
---|
504 | { |
---|
505 | re=mres(m,i); |
---|
506 | } |
---|
507 | else |
---|
508 | { |
---|
509 | re=sres(std(m),i); |
---|
510 | } |
---|
511 | } |
---|
512 | return(re); |
---|
513 | } |
---|
514 | |
---|
515 | //mres for the global non homogeneous case |
---|
516 | if(find(ordstr(P),"s")==0) |
---|
517 | { |
---|
518 | string ri= "ring Phelp =" |
---|
519 | +string(char(P))+",("+varstr_P+"),(dp,C);"; |
---|
520 | execute(ri); |
---|
521 | def m=imap(P,m); |
---|
522 | list re=mres(m,i); |
---|
523 | setring P; |
---|
524 | resolution result=imap(Phelp,re); |
---|
525 | if (size(#) > 2) {result = minres(result);} |
---|
526 | return(result); |
---|
527 | } |
---|
528 | |
---|
529 | //sres for the local case and not minimal resolution |
---|
530 | if(size(#)<=2) |
---|
531 | { |
---|
532 | string ri= "ring Phelp =" |
---|
533 | +string(char(P))+",("+varstr_P+"),(ls,c);"; |
---|
534 | execute(ri); |
---|
535 | def m=imap(P,m); |
---|
536 | m=std(m); |
---|
537 | list re=sres(m,i); |
---|
538 | setring P; |
---|
539 | resolution result=imap(Phelp,re); |
---|
540 | return(result); |
---|
541 | } |
---|
542 | |
---|
543 | //mres for the local case and minimal resolution |
---|
544 | string ri= "ring Phelp =" |
---|
545 | +string(char(P))+",("+varstr_P+"),(ls,C);"; |
---|
546 | execute(ri); |
---|
547 | def m=imap(P,m); |
---|
548 | list re=mres(m,i); |
---|
549 | setring P; |
---|
550 | resolution result=imap(Phelp,re); |
---|
551 | result = minres(result); |
---|
552 | return(result); |
---|
553 | } |
---|
554 | example |
---|
555 | {"EXAMPLE:"; echo = 2; |
---|
556 | ring r=0,(x,y,z),dp; |
---|
557 | ideal i=xz,yz,x^3-y^3; |
---|
558 | def l=res(i,0); // homogenous ideal: uses lres |
---|
559 | l; // resolution is not yet minimized |
---|
560 | print(betti(l), "betti"); // input to betti may be of type resolution |
---|
561 | l[2]; // element access may take some time |
---|
562 | i=i, x+1; |
---|
563 | l=res(i,0); // inhomogenous ideal: uses mres |
---|
564 | l; // resolution is not yet minimized |
---|
565 | ring rs=0,(x,y,z),ds; |
---|
566 | ideal i = imap(r, i); |
---|
567 | def l=res(i,0); // local ring not minimized: uses sres |
---|
568 | l; // resolution is minimized |
---|
569 | res(i,0,0); // local ring and minimized: uses mres |
---|
570 | } |
---|
571 | |
---|
572 | |
---|
573 | proc quot (m1,m2,list #) |
---|
574 | "USAGE: quot(m1, m2[, n]); m1, m2 two submodules of k^s, |
---|
575 | n (optional) integer (1<= n <=5) |
---|
576 | RETURN: the quotient of m1 and m2 |
---|
577 | SEE ALSO: quotient |
---|
578 | EXAMPLE: example quot; shows an example" |
---|
579 | { |
---|
580 | if (((typeof(m1)!="ideal") and (typeof(m1)!="module")) |
---|
581 | or ((typeof(m2)!="ideal") and (typeof(m2)!="module"))) |
---|
582 | { |
---|
583 | "USAGE: quot(m1, m2[, n]); m1, m2 two submodules of k^s,"; |
---|
584 | " n (optional) integer (1<= n <=5)"; |
---|
585 | "RETURN: the quotient of m1 and m2"; |
---|
586 | "EXAMPLE: example quot; shows an example"; |
---|
587 | return(); |
---|
588 | } |
---|
589 | if (typeof(m1)!=typeof(m2)) |
---|
590 | { |
---|
591 | return(quotient(m1,m2)); |
---|
592 | } |
---|
593 | if (size(#)>0) |
---|
594 | { |
---|
595 | if (typeof(#[1])=="int" ) |
---|
596 | { |
---|
597 | return(quot1(m1,m2,#[1])); |
---|
598 | } |
---|
599 | } |
---|
600 | else |
---|
601 | { |
---|
602 | return(quot1(m1,m2,2)); |
---|
603 | } |
---|
604 | } |
---|
605 | example |
---|
606 | { "EXAMPLE:"; echo = 2; |
---|
607 | ring r=181,(x,y,z),(c,ls); |
---|
608 | ideal id1=maxideal(4); |
---|
609 | ideal id2=x2+xyz,y2-z3y,z3+y5xz; |
---|
610 | option(prot); |
---|
611 | ideal id6=quotient(id1,id2); |
---|
612 | id6; |
---|
613 | ideal id7=quot(id1,id2,1); |
---|
614 | id7; |
---|
615 | ideal id8=quot(id1,id2,2); |
---|
616 | id8; |
---|
617 | } |
---|
618 | |
---|
619 | static proc quot1 (module m1, module m2,int n) |
---|
620 | "USAGE: quot1(m1, m2, n); m1, m2 two submodules of k^s, |
---|
621 | n integer (1<= n <=5) |
---|
622 | RETURN: the quotient of m1 and m2 |
---|
623 | EXAMPLE: example quot1; shows an example" |
---|
624 | { |
---|
625 | if (n==1) |
---|
626 | { |
---|
627 | return(quotient1(m1,m2)); |
---|
628 | } |
---|
629 | else |
---|
630 | { |
---|
631 | if (n==2) |
---|
632 | { |
---|
633 | return(quotient2(m1,m2)); |
---|
634 | } |
---|
635 | else |
---|
636 | { |
---|
637 | if (n==3) |
---|
638 | { |
---|
639 | return(quotient3(m1,m2)); |
---|
640 | } |
---|
641 | else |
---|
642 | { |
---|
643 | if (n==4) |
---|
644 | { |
---|
645 | return(quotient4(m1,m2)); |
---|
646 | } |
---|
647 | else |
---|
648 | { |
---|
649 | if (n==5) |
---|
650 | { |
---|
651 | return(quotient5(m1,m2)); |
---|
652 | } |
---|
653 | else |
---|
654 | { |
---|
655 | return(quotient(m1,m2)); |
---|
656 | } |
---|
657 | } |
---|
658 | } |
---|
659 | } |
---|
660 | } |
---|
661 | } |
---|
662 | example |
---|
663 | { "EXAMPLE:"; echo = 2; |
---|
664 | ring r=181,(x,y,z),(c,ls); |
---|
665 | ideal id1=maxideal(4); |
---|
666 | ideal id2=x2+xyz,y2-z3y,z3+y5xz; |
---|
667 | option(prot); |
---|
668 | ideal id6=quotient(id1,id2); |
---|
669 | id6; |
---|
670 | ideal id7=quot1(id1,id2,1); |
---|
671 | id7; |
---|
672 | ideal id8=quot1(id1,id2,2); |
---|
673 | id8; |
---|
674 | } |
---|
675 | |
---|
676 | static proc quotient0(module a,module b) |
---|
677 | { |
---|
678 | module mm=b+a; |
---|
679 | resolution rs=lres(mm,0); |
---|
680 | list I=list(rs); |
---|
681 | matrix M=I[2]; |
---|
682 | matrix A[1][nrows(M)]=M[1..nrows(M),1]; |
---|
683 | ideal i=A; |
---|
684 | return (i); |
---|
685 | } |
---|
686 | proc quotient1(module a,module b) //17sec |
---|
687 | "USAGE: quotient1(m1, m2); m1, m2 two submodules of k^s, |
---|
688 | RETURN: the quotient of m1 and m2" |
---|
689 | { |
---|
690 | int i; |
---|
691 | a=std(a); |
---|
692 | module dummy; |
---|
693 | module B=NF(b,a)+dummy; |
---|
694 | ideal re=quotient(a,module(B[1])); |
---|
695 | for(i=2;i<=size(B);i++) |
---|
696 | { |
---|
697 | re=intersect1(re,quotient(a,module(B[i]))); |
---|
698 | } |
---|
699 | return(re); |
---|
700 | } |
---|
701 | proc quotient2(module a,module b) //13sec |
---|
702 | "USAGE: quotient2(m1, m2); m1, m2 two submodules of k^s, |
---|
703 | RETURN: the quotient of m1 and m2" |
---|
704 | { |
---|
705 | a=std(a); |
---|
706 | module dummy; |
---|
707 | module bb=NF(b,a)+dummy; |
---|
708 | int i=size(bb); |
---|
709 | ideal re=quotient(a,module(bb[i])); |
---|
710 | bb[i]=0; |
---|
711 | module temp; |
---|
712 | module temp1; |
---|
713 | module bbb; |
---|
714 | int mx; |
---|
715 | i=i-1; |
---|
716 | while (1) |
---|
717 | { |
---|
718 | if (i==0) break; |
---|
719 | temp = a+bb*re; |
---|
720 | temp1 = lead(interred(temp)); |
---|
721 | mx=ncols(a); |
---|
722 | if (ncols(temp1)>ncols(a)) |
---|
723 | { |
---|
724 | mx=ncols(temp1); |
---|
725 | } |
---|
726 | temp1 = matrix(temp1,1,mx)-matrix(lead(a),1,mx); |
---|
727 | temp1 = dummy+temp1; |
---|
728 | if (deg(temp1[1])<0) break; |
---|
729 | re=intersect1(re,quotient(a,module(bb[i]))); |
---|
730 | bb[i]=0; |
---|
731 | i = i-1; |
---|
732 | } |
---|
733 | return(re); |
---|
734 | } |
---|
735 | proc quotient3(module a,module b) //89sec |
---|
736 | "USAGE: quotient3(m1, m2); m1, m2 two submodules of k^s, |
---|
737 | only for global rings |
---|
738 | RETURN: the quotient of m1 and m2" |
---|
739 | { |
---|
740 | string s="ring @newr=("+charstr(basering)+ |
---|
741 | "),("+varstr(basering)+",@t,@w),dp;"; |
---|
742 | def @newP=basering; |
---|
743 | execute s; |
---|
744 | module b=imap(@newP,b); |
---|
745 | module a=imap(@newP,a); |
---|
746 | int i; |
---|
747 | int j=size(b); |
---|
748 | vector @b; |
---|
749 | for(i=1;i<=j;i++) |
---|
750 | { |
---|
751 | @b=@b+@t^(i-1)*@w^(j-i+1)*b[i]; |
---|
752 | } |
---|
753 | ideal re=quotient(a,module(@b)); |
---|
754 | setring @newP; |
---|
755 | ideal re=imap(@newr,re); |
---|
756 | return(re); |
---|
757 | } |
---|
758 | proc quotient5(module a,module b) //89sec |
---|
759 | "USAGE: quotient5(m1, m2); m1, m2 two submodules of k^s, |
---|
760 | only for global rings |
---|
761 | RETURN: the quotient of m1 and m2" |
---|
762 | { |
---|
763 | string s="ring @newr=("+charstr(basering)+ |
---|
764 | "),("+varstr(basering)+",@t),dp;"; |
---|
765 | def @newP=basering; |
---|
766 | execute s; |
---|
767 | module b=imap(@newP,b); |
---|
768 | module a=imap(@newP,a); |
---|
769 | int i; |
---|
770 | int j=size(b); |
---|
771 | vector @b; |
---|
772 | for(i=1;i<=j;i++) |
---|
773 | { |
---|
774 | @b=@b+@t^(i-1)*b[i]; |
---|
775 | } |
---|
776 | @b=homog(@b,@w); |
---|
777 | ideal re=quotient(a,module(@b)); |
---|
778 | setring @newP; |
---|
779 | ideal re=imap(@newr,re); |
---|
780 | return(re); |
---|
781 | } |
---|
782 | proc quotient4(module a,module b) //95sec |
---|
783 | "USAGE: quotient4(m1, m2); m1, m2 two submodules of k^s, |
---|
784 | only for global rings |
---|
785 | RETURN: the quotient of m1 and m2" |
---|
786 | { |
---|
787 | string s="ring @newr=("+charstr(basering)+ |
---|
788 | "),("+varstr(basering)+",@t),dp;"; |
---|
789 | def @newP=basering; |
---|
790 | execute s; |
---|
791 | module b=imap(@newP,b); |
---|
792 | module a=imap(@newP,a); |
---|
793 | int i; |
---|
794 | vector @b=b[1]; |
---|
795 | for(i=2;i<=size(b);i++) |
---|
796 | { |
---|
797 | @b=@b+@t^(i-1)*b[i]; |
---|
798 | } |
---|
799 | matrix sy=modulo(@b,a); |
---|
800 | ideal re=sy; |
---|
801 | setring @newP; |
---|
802 | ideal re=imap(@newr,re); |
---|
803 | return(re); |
---|
804 | } |
---|
805 | static proc intersect1(ideal i,ideal j) |
---|
806 | { |
---|
807 | def R=basering; |
---|
808 | execute "ring gnir = ("+charstr(basering)+"), |
---|
809 | ("+varstr(basering)+",@t),(C,dp);"; |
---|
810 | ideal i=var(nvars(basering))*imap(R,i)+(var(nvars(basering))-1)*imap(R,j); |
---|
811 | ideal j=eliminate(i,var(nvars(basering))); |
---|
812 | setring R; |
---|
813 | map phi=gnir,maxideal(1); |
---|
814 | return(phi(j)); |
---|
815 | } |
---|
816 | |
---|
817 | ////////////////////////////////////////////////////////////////// |
---|
818 | /// |
---|
819 | /// sprintf, fprintf printf |
---|
820 | /// |
---|
821 | proc sprintf(string fmt, list #) |
---|
822 | "USAGE: sprintf(fmt, ...) fmt string |
---|
823 | RETURN: string |
---|
824 | PURPOSE: sprintf performs output formatting. The first argument is a format |
---|
825 | control string. Additional arguments may be required, depending on |
---|
826 | the contents of the control string. A series of output characters is |
---|
827 | generated as directed by the control string; these characters are |
---|
828 | returned as a string. The control string is simply text to be copied, |
---|
829 | except that the string may contain conversion specifications. Do |
---|
830 | 'help print:' for a listing of valid conversion specifications. |
---|
831 | As an addition to the conversions of 'print', the '%n' and '%2' |
---|
832 | conversion specification does not consume an additional argument, |
---|
833 | but simply generates a newline character. |
---|
834 | NOTE: If one of the additional arguments is a list, then it should be |
---|
835 | enclosed once more into a list() command, since passing a list |
---|
836 | as an argument flattens the list by one level. |
---|
837 | SEE ALSO: fprintf, printf, print, string |
---|
838 | EXAMPLE : example sprintf; shows an example |
---|
839 | " |
---|
840 | { |
---|
841 | int sfmt = size(fmt); |
---|
842 | if (sfmt <= 1) |
---|
843 | { |
---|
844 | return (fmt); |
---|
845 | } |
---|
846 | int next, l, nnext; |
---|
847 | string ret; |
---|
848 | list formats = "%l", "%s", "%2l", "%2s", "%t", "%;", "%p", "%b", "%n", "%2"; |
---|
849 | while (1) |
---|
850 | { |
---|
851 | if (size(#) <= 0) |
---|
852 | { |
---|
853 | return (ret + fmt); |
---|
854 | } |
---|
855 | nnext = 0; |
---|
856 | while (nnext < sfmt) |
---|
857 | { |
---|
858 | nnext = find(fmt, "%", nnext + 1); |
---|
859 | if (nnext == 0) |
---|
860 | { |
---|
861 | next = 0; |
---|
862 | break; |
---|
863 | } |
---|
864 | l = 1; |
---|
865 | while (l <= size(formats)) |
---|
866 | { |
---|
867 | next = find(fmt, formats[l], nnext); |
---|
868 | if (next == nnext) break; |
---|
869 | l++; |
---|
870 | } |
---|
871 | if (next == nnext) break; |
---|
872 | } |
---|
873 | if (next == 0) |
---|
874 | { |
---|
875 | return (ret + fmt); |
---|
876 | } |
---|
877 | if (formats[l] != "%2" && formats[l] != "%n") |
---|
878 | { |
---|
879 | ret = ret + fmt[1, next - 1] + print(#[1], formats[l]); |
---|
880 | # = delete(#, 1); |
---|
881 | } |
---|
882 | else |
---|
883 | { |
---|
884 | ret = ret + fmt[1, next - 1] + print("", "%2s"); |
---|
885 | } |
---|
886 | if (size(fmt) <= (next + size(formats[l]) - 1)) |
---|
887 | { |
---|
888 | return (ret); |
---|
889 | } |
---|
890 | fmt = fmt[next + size(formats[l]), size(fmt)-next-size(formats[l]) + 1]; |
---|
891 | } |
---|
892 | } |
---|
893 | example |
---|
894 | { "EXAMPLE:"; echo=2; |
---|
895 | ring r=0,(x,y,z),dp; |
---|
896 | module m=[1,y],[0,x+z]; |
---|
897 | intmat M=betti(mres(m,0)); |
---|
898 | list l = r, m, M; |
---|
899 | string s = sprintf("s:%s,%n l:%l", 1, 2); s; |
---|
900 | s = sprintf("s:%n%s", l); s; |
---|
901 | s = sprintf("s:%2%s", list(l)); s; |
---|
902 | s = sprintf("2l:%n%2l", list(l)); s; |
---|
903 | s = sprintf("%p", list(l)); s; |
---|
904 | s = sprintf("%;", list(l)); s; |
---|
905 | s = sprintf("%b", M); s; |
---|
906 | } |
---|
907 | |
---|
908 | proc printf(string fmt, list #) |
---|
909 | "USAGE: printf(fmt, ...) fmt string |
---|
910 | RETURN: none |
---|
911 | PURPOSE: printf performs output formatting. The first argument is a format |
---|
912 | control string. Additional arguments may be required, depending on |
---|
913 | the contents of the control string. A series of output characters is |
---|
914 | generated as directed by the control string; these characters are |
---|
915 | displayed (i.e. printed to standard out). |
---|
916 | The control string is simply text to be copied, except that the |
---|
917 | string may contain conversion specifications. |
---|
918 | Do 'help print:' for a listing of valid conversion specifications. |
---|
919 | As an addition to the conversions of 'print', the '%n' and '%2' |
---|
920 | conversion specification does not consume an additional argument, |
---|
921 | but simply generates a newline character. |
---|
922 | |
---|
923 | NOTE: If one of the additional arguments is a list, then it should be |
---|
924 | enclosed once more into a list() command, since passing a list |
---|
925 | as an argument flattens the list by one level. |
---|
926 | SEE ALSO: sprintf, fprintf, print, string |
---|
927 | EXAMPLE : example printf; shows an example |
---|
928 | " |
---|
929 | { |
---|
930 | write("", sprintf(fmt, #)); |
---|
931 | } |
---|
932 | example |
---|
933 | { "EXAMPLE:"; echo=2; |
---|
934 | ring r=0,(x,y,z),dp; |
---|
935 | module m=[1,y],[0,x+z]; |
---|
936 | intmat M=betti(mres(m,0)); |
---|
937 | list l = r, m, M; |
---|
938 | printf("s:%s, l:%l", 1, 2); |
---|
939 | printf("s:%s", l); |
---|
940 | printf("s:%s", list(l)); |
---|
941 | printf("2l:%2l", list(l)); |
---|
942 | printf("%p", list(l)); |
---|
943 | printf("%;", list(l)); |
---|
944 | printf("%b", M); |
---|
945 | } |
---|
946 | |
---|
947 | |
---|
948 | proc fprintf(link l, string fmt, list #) |
---|
949 | "USAGE: fprintf(l, fmt, ...) l link; fmt string |
---|
950 | RETURN: none |
---|
951 | PURPOSE: fprintf performs output formatting. The second argument is a format |
---|
952 | control string. Additional arguments may be required, depending on |
---|
953 | the contents of the control string. A series of output characters is |
---|
954 | generated as directed by the control string; these characters are |
---|
955 | written to the link l. |
---|
956 | The control string is simply text to be copied, except that the |
---|
957 | string may contain conversion specifications. |
---|
958 | Do 'help print:' for a listing of valid conversion specifications. |
---|
959 | As an addition to the conversions of 'print', the '%n' and '%2' |
---|
960 | conversion specification does not consume an additional argument, |
---|
961 | but simply generates a newline character. |
---|
962 | |
---|
963 | NOTE: If one of the additional arguments is a list, then it should be |
---|
964 | enclosed once more into a list() command, since passing a list |
---|
965 | as an argument flattens the list by one level. |
---|
966 | SEE ALSO: sprintf, printf, print, string |
---|
967 | EXAMPLE : example fprintf; shows an example |
---|
968 | " |
---|
969 | { |
---|
970 | write(l, sprintf(fmt, #)); |
---|
971 | } |
---|
972 | example |
---|
973 | { "EXAMPLE:"; echo=2; |
---|
974 | ring r=0,(x,y,z),dp; |
---|
975 | module m=[1,y],[0,x+z]; |
---|
976 | intmat M=betti(mres(m,0)); |
---|
977 | list l = r, m, M; |
---|
978 | link li = ""; // link to stdout |
---|
979 | fprintf(li, "s:%s, l:%l", 1, 2); |
---|
980 | fprintf(li, "s:%s", l); |
---|
981 | fprintf(li, "s:%s", list(l)); |
---|
982 | fprintf(li, "2l:%2l", list(l)); |
---|
983 | fprintf(li, "%p", list(l)); |
---|
984 | fprintf(li, "%;", list(l)); |
---|
985 | fprintf(li, "%b", M); |
---|
986 | } |
---|
987 | |
---|
988 | /* |
---|
989 | proc minres(list #) |
---|
990 | { |
---|
991 | if (size(#) == 2) |
---|
992 | { |
---|
993 | if (typeof(#[1]) == "ideal" || typeof(#[1]) == "module") |
---|
994 | { |
---|
995 | if (typeof(#[2] == "int")) |
---|
996 | { |
---|
997 | return (res(#[1],#[2],1)); |
---|
998 | } |
---|
999 | } |
---|
1000 | } |
---|
1001 | |
---|
1002 | if (typeof(#[1]) == "resolution") |
---|
1003 | { |
---|
1004 | return minimizeres(#[1]); |
---|
1005 | } |
---|
1006 | else |
---|
1007 | { |
---|
1008 | return minimizeres(#); |
---|
1009 | } |
---|
1010 | |
---|
1011 | } |
---|
1012 | */ |
---|