1 | #include "mod2.h" |
---|
2 | |
---|
3 | #ifdef HAVE_MINOR |
---|
4 | |
---|
5 | #include "structs.h" |
---|
6 | #include "polys.h" |
---|
7 | #include <Minor.h> |
---|
8 | #include "febase.h" |
---|
9 | |
---|
10 | void MinorKey::reset() { |
---|
11 | _numberOfRowBlocks = 0; |
---|
12 | _numberOfColumnBlocks = 0; |
---|
13 | delete [] _rowKey; |
---|
14 | delete [] _columnKey; |
---|
15 | _rowKey = 0; |
---|
16 | _columnKey = 0; |
---|
17 | } |
---|
18 | |
---|
19 | MinorKey::MinorKey (const MinorKey& mk) { |
---|
20 | //printf("\n%s", "MinorKey::MinorKey copy"); |
---|
21 | _numberOfRowBlocks = mk.getNumberOfRowBlocks(); |
---|
22 | _numberOfColumnBlocks = mk.getNumberOfColumnBlocks();; |
---|
23 | |
---|
24 | // allocate memory for new entries in _rowKey and _columnKey; |
---|
25 | _rowKey = new unsigned int[_numberOfRowBlocks]; |
---|
26 | _columnKey = new unsigned int[_numberOfColumnBlocks]; |
---|
27 | |
---|
28 | // copying values from parameter arrays to private arrays |
---|
29 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
30 | _rowKey[r] = mk.getRowKey(r); |
---|
31 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
32 | _columnKey[c] = mk.getColumnKey(c); |
---|
33 | } |
---|
34 | |
---|
35 | MinorKey& MinorKey::operator=(const MinorKey& mk) { |
---|
36 | if (_numberOfRowBlocks != 0) delete [] _rowKey; |
---|
37 | if (_numberOfColumnBlocks != 0) delete [] _columnKey; |
---|
38 | _numberOfRowBlocks = 0; |
---|
39 | _numberOfColumnBlocks = 0; |
---|
40 | _rowKey = 0; |
---|
41 | _columnKey = 0; |
---|
42 | |
---|
43 | _numberOfRowBlocks = mk.getNumberOfRowBlocks(); |
---|
44 | _numberOfColumnBlocks = mk.getNumberOfColumnBlocks();; |
---|
45 | |
---|
46 | // allocate memory for new entries in _rowKey and _columnKey; |
---|
47 | _rowKey = new unsigned int[_numberOfRowBlocks]; |
---|
48 | _columnKey = new unsigned int[_numberOfColumnBlocks]; |
---|
49 | |
---|
50 | // copying values from parameter arrays to private arrays |
---|
51 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
52 | _rowKey[r] = mk.getRowKey(r); |
---|
53 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
54 | _columnKey[c] = mk.getColumnKey(c); |
---|
55 | |
---|
56 | return *this; |
---|
57 | } |
---|
58 | |
---|
59 | void MinorKey::set(const int lengthOfRowArray, const unsigned int* rowKey, |
---|
60 | const int lengthOfColumnArray, const unsigned int* columnKey) { |
---|
61 | // free memory of _rowKey and _columnKey |
---|
62 | if (_numberOfRowBlocks > 0) { delete [] _rowKey; } |
---|
63 | if (_numberOfColumnBlocks > 0) { delete [] _columnKey; } |
---|
64 | |
---|
65 | _numberOfRowBlocks = lengthOfRowArray; |
---|
66 | _numberOfColumnBlocks = lengthOfColumnArray; |
---|
67 | |
---|
68 | // allocate memory for new entries in _rowKey and _columnKey; |
---|
69 | _rowKey = new unsigned int[_numberOfRowBlocks]; |
---|
70 | _columnKey = new unsigned int[_numberOfColumnBlocks]; |
---|
71 | |
---|
72 | // copying values from parameter arrays to private arrays |
---|
73 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
74 | _rowKey[r] = rowKey[r]; |
---|
75 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
76 | _columnKey[c] = columnKey[c]; |
---|
77 | } |
---|
78 | |
---|
79 | MinorKey::MinorKey(const int lengthOfRowArray, const unsigned int* const rowKey, |
---|
80 | const int lengthOfColumnArray, const unsigned int* const columnKey) { |
---|
81 | //printf("\n%s", "MinorKey::MinorKey (args)"); |
---|
82 | _numberOfRowBlocks = lengthOfRowArray; |
---|
83 | _numberOfColumnBlocks = lengthOfColumnArray; |
---|
84 | |
---|
85 | // allocate memory for new entries in _rowKey and _columnKey; |
---|
86 | _rowKey = new unsigned int[_numberOfRowBlocks]; |
---|
87 | _columnKey = new unsigned int[_numberOfColumnBlocks]; |
---|
88 | |
---|
89 | // copying values from parameter arrays to private arrays |
---|
90 | for (int r = 0; r < _numberOfRowBlocks; r++) |
---|
91 | _rowKey[r] = rowKey[r]; |
---|
92 | |
---|
93 | for (int c = 0; c < _numberOfColumnBlocks; c++) |
---|
94 | _columnKey[c] = columnKey[c]; |
---|
95 | } |
---|
96 | |
---|
97 | MinorKey::~MinorKey() { |
---|
98 | //printf("\n%s", "MinorKey::~MinorKey"); |
---|
99 | // free memory of _rowKey and _columnKey |
---|
100 | delete [] _rowKey; |
---|
101 | delete [] _columnKey; |
---|
102 | } |
---|
103 | |
---|
104 | void MinorKey::print() const { |
---|
105 | cout << this->toString(); |
---|
106 | } |
---|
107 | |
---|
108 | int MinorKey::getAbsoluteRowIndex(const int i) const { |
---|
109 | // This method is to return the absolute (0-based) index of the i-th row encoded in \a this. |
---|
110 | // Example: bit-pattern of rows: "10010001101", i = 3: |
---|
111 | // This should yield the 0-based absolute index of the 3-rd bit (counted from the right), i.e. 7. |
---|
112 | |
---|
113 | int matchedBits = -1; // counter for matched bits; this needs to reach i, then we're done |
---|
114 | for (int block = 0; block < getNumberOfRowBlocks(); block ++) { // start with lowest bits, i.e. in block No. 0 |
---|
115 | unsigned int blockBits = getRowKey(block); // the bits in this block of 32 bits |
---|
116 | unsigned int shiftedBit = 1; |
---|
117 | int exponent = 0; |
---|
118 | // The invariant "shiftedBit = 2^exponent" will hold throughout the entire while loop. |
---|
119 | while (exponent < 32) { |
---|
120 | if (shiftedBit & blockBits) matchedBits++; |
---|
121 | if (matchedBits == i) return exponent + (32 * block); |
---|
122 | shiftedBit = shiftedBit << 1; |
---|
123 | exponent++; |
---|
124 | } |
---|
125 | } |
---|
126 | // We should never reach this line of code. |
---|
127 | assert(false); |
---|
128 | } |
---|
129 | |
---|
130 | int MinorKey::getAbsoluteColumnIndex(const int i) const { |
---|
131 | // This method is to return the absolute (0-based) index of the i-th column encoded in \a this. |
---|
132 | // Example: bit-pattern of columns: "10010001101", i = 3: |
---|
133 | // This should yield the 0-based absolute index of the 3-rd bit (counted from the right), i.e. 7. |
---|
134 | |
---|
135 | int matchedBits = -1; // counter for matched bits; this needs to reach i, then we're done |
---|
136 | for (int block = 0; block < getNumberOfColumnBlocks(); block ++) { // start with lowest bits, i.e. in block No. 0 |
---|
137 | unsigned int blockBits = getColumnKey(block); // the bits in this block of 32 bits |
---|
138 | unsigned int shiftedBit = 1; |
---|
139 | int exponent = 0; |
---|
140 | // The invariant "shiftedBit = 2^exponent" will hold throughout the entire while loop. |
---|
141 | while (exponent < 32) { |
---|
142 | if (shiftedBit & blockBits) matchedBits++; |
---|
143 | if (matchedBits == i) return exponent + (32 * block); |
---|
144 | shiftedBit = shiftedBit << 1; |
---|
145 | exponent++; |
---|
146 | } |
---|
147 | } |
---|
148 | // We should never reach this line of code. |
---|
149 | assert(false); |
---|
150 | } |
---|
151 | |
---|
152 | void MinorKey::getAbsoluteRowIndices(int* const target) const { |
---|
153 | int i = 0; // index for filling the target array |
---|
154 | for (int block = 0; block < getNumberOfRowBlocks(); block ++) { // start with lowest bits, i.e. in block No. 0 |
---|
155 | unsigned int blockBits = getRowKey(block); // the bits in this block of 32 bits |
---|
156 | unsigned int shiftedBit = 1; |
---|
157 | int exponent = 0; |
---|
158 | // The invariant "shiftedBit = 2^exponent" will hold throughout the entire while loop. |
---|
159 | while (exponent < 32) { |
---|
160 | if (shiftedBit & blockBits) target[i++] = exponent + (32 * block); |
---|
161 | shiftedBit = shiftedBit << 1; |
---|
162 | exponent++; |
---|
163 | } |
---|
164 | } |
---|
165 | return; |
---|
166 | } |
---|
167 | |
---|
168 | void MinorKey::getAbsoluteColumnIndices(int* const target) const { |
---|
169 | int i = 0; // index for filling the target array |
---|
170 | for (int block = 0; block < getNumberOfColumnBlocks(); block ++) { // start with lowest bits, i.e. in block No. 0 |
---|
171 | unsigned int blockBits = getColumnKey(block); // the bits in this block of 32 bits |
---|
172 | unsigned int shiftedBit = 1; |
---|
173 | int exponent = 0; |
---|
174 | // The invariant "shiftedBit = 2^exponent" will hold throughout the entire while loop. |
---|
175 | while (exponent < 32) { |
---|
176 | if (shiftedBit & blockBits) target[i++] = exponent + (32 * block); |
---|
177 | shiftedBit = shiftedBit << 1; |
---|
178 | exponent++; |
---|
179 | } |
---|
180 | } |
---|
181 | return; |
---|
182 | } |
---|
183 | |
---|
184 | int MinorKey::getRelativeRowIndex(const int i) const { |
---|
185 | // This method is to return the relative (0-based) index of the row with absolute index \c i. |
---|
186 | // Example: bit-pattern of rows: "10010001101", i = 7: |
---|
187 | // This should yield the 0-based relative index of the bit corresponding to row no. 7, |
---|
188 | // i.e. 3. |
---|
189 | |
---|
190 | int matchedBits = -1; // counter for matched bits; this is going to contain our return value |
---|
191 | for (int block = 0; block < getNumberOfRowBlocks(); block ++) { // start with lowest bits, i.e. in block No. 0 |
---|
192 | unsigned int blockBits = getRowKey(block); // the bits in this block of 32 bits |
---|
193 | unsigned int shiftedBit = 1; |
---|
194 | int exponent = 0; |
---|
195 | // The invariant "shiftedBit = 2^exponent" will hold throughout the entire while loop. |
---|
196 | while (exponent < 32) { |
---|
197 | if (shiftedBit & blockBits) matchedBits++; |
---|
198 | if (exponent + (32 * block) == i) return matchedBits; |
---|
199 | shiftedBit = shiftedBit << 1; |
---|
200 | exponent++; |
---|
201 | } |
---|
202 | } |
---|
203 | // We should never reach this line of code. |
---|
204 | assert(false); |
---|
205 | } |
---|
206 | |
---|
207 | int MinorKey::getRelativeColumnIndex(const int i) const { |
---|
208 | // This method is to return the relative (0-based) index of the column with absolute index \c i. |
---|
209 | // Example: bit-pattern of columns: "10010001101", i = 7: |
---|
210 | // This should yield the 0-based relative index of the bit corresponding to column no. 7, |
---|
211 | // i.e. 3. |
---|
212 | |
---|
213 | int matchedBits = -1; // counter for matched bits; this is going to contain our return value |
---|
214 | for (int block = 0; block < getNumberOfColumnBlocks(); block ++) { // start with lowest bits, i.e. in block No. 0 |
---|
215 | unsigned int blockBits = getColumnKey(block); // the bits in this block of 32 bits |
---|
216 | unsigned int shiftedBit = 1; |
---|
217 | int exponent = 0; |
---|
218 | // The invariant "shiftedBit = 2^exponent" will hold throughout the entire while loop. |
---|
219 | while (exponent < 32) { |
---|
220 | if (shiftedBit & blockBits) matchedBits++; |
---|
221 | if (exponent + (32 * block) == i) return matchedBits; |
---|
222 | shiftedBit = shiftedBit << 1; |
---|
223 | exponent++; |
---|
224 | } |
---|
225 | } |
---|
226 | // We should never reach this line of code. |
---|
227 | assert(false); |
---|
228 | } |
---|
229 | |
---|
230 | unsigned int MinorKey::getRowKey(const int blockIndex) const { |
---|
231 | return _rowKey[blockIndex]; |
---|
232 | } |
---|
233 | |
---|
234 | unsigned int MinorKey::getColumnKey(const int blockIndex) const { |
---|
235 | return _columnKey[blockIndex]; |
---|
236 | } |
---|
237 | |
---|
238 | int MinorKey::getNumberOfRowBlocks() const { |
---|
239 | return _numberOfRowBlocks; |
---|
240 | } |
---|
241 | |
---|
242 | int MinorKey::getNumberOfColumnBlocks() const { |
---|
243 | return _numberOfColumnBlocks; |
---|
244 | } |
---|
245 | |
---|
246 | int MinorKey::getSetBits(const int a) const { |
---|
247 | int b = 0; |
---|
248 | if (a == 1) { // rows |
---|
249 | for (int i = 0; i < _numberOfRowBlocks; i++) { |
---|
250 | unsigned int m = _rowKey[i]; |
---|
251 | unsigned int k = 1; |
---|
252 | for (int j = 0; j < 32; j++) { |
---|
253 | // k = 2^j |
---|
254 | if (m & k) b++; |
---|
255 | k = k << 1; |
---|
256 | } |
---|
257 | } |
---|
258 | } |
---|
259 | else { // columns |
---|
260 | for (int i = 0; i < _numberOfColumnBlocks; i++) { |
---|
261 | unsigned int m = _columnKey[i]; |
---|
262 | unsigned int k = 1; |
---|
263 | for (int j = 0; j < 32; j++) { |
---|
264 | // k = 2^j |
---|
265 | if (m & k) b++; |
---|
266 | k = k << 1; |
---|
267 | } |
---|
268 | } |
---|
269 | } |
---|
270 | return b; |
---|
271 | } |
---|
272 | |
---|
273 | MinorKey MinorKey::getSubMinorKey (const int absoluteEraseRowIndex, |
---|
274 | const int absoluteEraseColumnIndex) const { |
---|
275 | int rowBlock = absoluteEraseRowIndex / 32; |
---|
276 | int exponent = absoluteEraseRowIndex % 32; |
---|
277 | unsigned int newRowBits = getRowKey(rowBlock) - (1 << exponent); |
---|
278 | int highestRowBlock = getNumberOfRowBlocks() - 1; |
---|
279 | // highestRowBlock will finally contain the highest block index with non-zero bit pattern |
---|
280 | if ((newRowBits == 0) && (rowBlock == highestRowBlock)) { |
---|
281 | // we have thus nullified the highest block; |
---|
282 | // we can now forget about the highest block... |
---|
283 | highestRowBlock -= 1; |
---|
284 | while (getRowKey(highestRowBlock) == 0) // ...and maybe even some more zero-blocks |
---|
285 | highestRowBlock -= 1; |
---|
286 | } |
---|
287 | // highestRowBlock now contains the highest row block index with non-zero bit pattern |
---|
288 | |
---|
289 | int columnBlock = absoluteEraseColumnIndex / 32; |
---|
290 | exponent = absoluteEraseColumnIndex % 32; |
---|
291 | unsigned int newColumnBits = getColumnKey(columnBlock) - (1 << exponent); |
---|
292 | int highestColumnBlock = getNumberOfColumnBlocks() - 1; |
---|
293 | // highestColumnBlock will finally contain the highest block index with non-zero bit pattern |
---|
294 | if ((newColumnBits == 0) && (columnBlock == highestColumnBlock)) { |
---|
295 | // we have thus nullified the highest block; |
---|
296 | // we can now forget about the highest block... |
---|
297 | highestColumnBlock -= 1; |
---|
298 | while (getColumnKey(highestColumnBlock) == 0) // ...and maybe even some more zero-blocks |
---|
299 | highestColumnBlock -= 1; |
---|
300 | } |
---|
301 | // highestColumnBlock now contains the highest column block index with non-zero bit pattern |
---|
302 | |
---|
303 | MinorKey result(highestRowBlock + 1, _rowKey, highestColumnBlock + 1, _columnKey); |
---|
304 | // This is just a copy with maybe some leading bit blocks omitted. We still need to re-define |
---|
305 | // the row block at index 'rowBlock' and the column block at index 'columnBlock': |
---|
306 | if ((newRowBits != 0) || (rowBlock < getNumberOfRowBlocks() - 1)) result.setRowKey(rowBlock, newRowBits); |
---|
307 | if ((newColumnBits != 0) || (columnBlock < getNumberOfColumnBlocks() - 1)) result.setColumnKey(columnBlock, newColumnBits); |
---|
308 | |
---|
309 | if (result.getSetBits(1) != result.getSetBits(2)) { // asserts that the number of selected rows and columns are equal |
---|
310 | cout << endl; |
---|
311 | this->print(); |
---|
312 | cout << endl; |
---|
313 | result.print(); |
---|
314 | cout << endl; |
---|
315 | cout << "rows: " << result.getSetBits(1) << " / columns: " << result.getSetBits(2); |
---|
316 | cout << endl; |
---|
317 | cout << "row to be erased: " << absoluteEraseRowIndex << " / column to be erased: " << absoluteEraseColumnIndex << endl; |
---|
318 | assert(false); |
---|
319 | } |
---|
320 | |
---|
321 | return result; |
---|
322 | } |
---|
323 | |
---|
324 | void MinorKey::setRowKey (const int blockIndex, const unsigned int rowKey) { |
---|
325 | _rowKey[blockIndex] = rowKey; |
---|
326 | } |
---|
327 | |
---|
328 | void MinorKey::setColumnKey (const int blockIndex, const unsigned int columnKey) { |
---|
329 | _columnKey[blockIndex] = columnKey; |
---|
330 | } |
---|
331 | |
---|
332 | int MinorKey::compare (const MinorKey& that) const { |
---|
333 | // compare by rowKeys first; in case of equality, use columnKeys |
---|
334 | if (this->getNumberOfRowBlocks() < that.getNumberOfRowBlocks()) |
---|
335 | return -1; |
---|
336 | if (this->getNumberOfRowBlocks() > that.getNumberOfRowBlocks()) |
---|
337 | return 1; |
---|
338 | // Here, numbers of rows are equal. |
---|
339 | for (int r = this->getNumberOfRowBlocks() - 1; r >= 0; r--) { |
---|
340 | if (this->getRowKey(r) < that.getRowKey(r)) return -1; |
---|
341 | if (this->getRowKey(r) > that.getRowKey(r)) return 1; |
---|
342 | } |
---|
343 | // Here, this and that encode ecaxtly the same sets of rows. |
---|
344 | // Now, we take a look at the columns. |
---|
345 | if (this->getNumberOfColumnBlocks() < that.getNumberOfColumnBlocks()) |
---|
346 | return -1; |
---|
347 | if (this->getNumberOfColumnBlocks() > that.getNumberOfColumnBlocks()) |
---|
348 | return 1; |
---|
349 | // Here, numbers of columns are equal. |
---|
350 | for (int c = this->getNumberOfColumnBlocks() - 1; c >= 0; c--) { |
---|
351 | if (this->getColumnKey(c) < that.getColumnKey(c)) return -1; |
---|
352 | if (this->getColumnKey(c) > that.getColumnKey(c)) return 1; |
---|
353 | } |
---|
354 | // Here, this and that encode exactly the same sets of rows and columns. |
---|
355 | return 0; |
---|
356 | } |
---|
357 | |
---|
358 | // just to make the compiler happy; |
---|
359 | // this method should never be called |
---|
360 | bool MinorKey::operator==(const MinorKey& mk) const { |
---|
361 | assert(false); |
---|
362 | return this->compare(mk) == 0; |
---|
363 | } |
---|
364 | |
---|
365 | // just to make the compiler happy; |
---|
366 | // this method should never be called |
---|
367 | bool MinorKey::operator<(const MinorKey& mk) const { |
---|
368 | assert(false); |
---|
369 | return this->compare(mk) == -1; |
---|
370 | } |
---|
371 | |
---|
372 | void MinorKey::selectFirstRows (const int k, const MinorKey& mk) { |
---|
373 | int hitBits = 0; // the number of bits we have hit; in the end, this has to be equal to k, |
---|
374 | // the dimension of the minor |
---|
375 | int blockIndex = -1; // the index of the current int in mk |
---|
376 | unsigned int highestInt = 0; // the new highest block of this MinorKey |
---|
377 | // We determine which ints of mk we can copy. Their indices will be 0, 1, ..., blockIndex - 1. |
---|
378 | // And highestInt is going to capture the highest int (which may be only a portion of |
---|
379 | // the corresponding int in mk. We loop until hitBits = k: |
---|
380 | while (hitBits < k) { |
---|
381 | blockIndex++; |
---|
382 | highestInt = 0; |
---|
383 | unsigned int currentInt = mk.getRowKey(blockIndex); |
---|
384 | unsigned int shiftedBit = 1; |
---|
385 | int exponent = 0; |
---|
386 | // invariant in the loop: shiftedBit = 2^exponent |
---|
387 | while (exponent < 32 && hitBits < k) { |
---|
388 | if (shiftedBit & currentInt) { |
---|
389 | highestInt += shiftedBit; |
---|
390 | hitBits++; |
---|
391 | } |
---|
392 | shiftedBit = shiftedBit << 1; |
---|
393 | exponent++; |
---|
394 | } |
---|
395 | } |
---|
396 | // free old memory |
---|
397 | delete [] _rowKey; _rowKey = 0; |
---|
398 | _numberOfRowBlocks = blockIndex + 1; |
---|
399 | // allocate memory for new entries in _rowKey; |
---|
400 | _rowKey = new unsigned int[_numberOfRowBlocks]; |
---|
401 | // copying values from mk to this MinorKey |
---|
402 | for (int r = 0; r < blockIndex; r++) |
---|
403 | _rowKey[r] = mk.getRowKey(r); |
---|
404 | _rowKey[blockIndex] = highestInt; |
---|
405 | } |
---|
406 | |
---|
407 | void MinorKey::selectFirstColumns (const int k, const MinorKey& mk) { |
---|
408 | int hitBits = 0; // the number of bits we have hit; in the end, this has to be equal to k, |
---|
409 | // the dimension of the minor |
---|
410 | int blockIndex = -1; // the index of the current int in mk |
---|
411 | unsigned int highestInt = 0; // the new highest block of this MinorKey |
---|
412 | // We determine which ints of mk we can copy. Their indices will be 0, 1, ..., blockIndex - 1. |
---|
413 | // And highestInt is going to capture the highest int (which may be only a portion of |
---|
414 | // the corresponding int in mk. We loop until hitBits = k: |
---|
415 | while (hitBits < k) { |
---|
416 | blockIndex++; |
---|
417 | highestInt = 0; |
---|
418 | unsigned int currentInt = mk.getColumnKey(blockIndex); |
---|
419 | unsigned int shiftedBit = 1; |
---|
420 | int exponent = 0; |
---|
421 | // invariant in the loop: shiftedBit = 2^exponent |
---|
422 | while (exponent < 32 && hitBits < k) { |
---|
423 | if (shiftedBit & currentInt) { |
---|
424 | highestInt += shiftedBit; |
---|
425 | hitBits++; |
---|
426 | } |
---|
427 | shiftedBit = shiftedBit << 1; |
---|
428 | exponent++; |
---|
429 | } |
---|
430 | } |
---|
431 | // free old memory |
---|
432 | delete [] _columnKey; _columnKey = 0; |
---|
433 | _numberOfColumnBlocks = blockIndex + 1; |
---|
434 | // allocate memory for new entries in _columnKey; |
---|
435 | _columnKey = new unsigned int[_numberOfColumnBlocks]; |
---|
436 | // copying values from mk to this MinorKey |
---|
437 | for (int c = 0; c < blockIndex; c++) |
---|
438 | _columnKey[c] = mk.getColumnKey(c); |
---|
439 | _columnKey[blockIndex] = highestInt; |
---|
440 | } |
---|
441 | |
---|
442 | bool MinorKey::selectNextRows (const int k, const MinorKey& mk) { |
---|
443 | // We need to compute the set of k rows which must all be contained in mk. |
---|
444 | // AND: This set must be the least possible of this kind which is larger |
---|
445 | // than the currently encoded set of rows. (Here, '<' is w.r.t. to the natural |
---|
446 | // ordering on multi-indices. |
---|
447 | // Example: mk encodes the rows according to the bit pattern 11010111, k = 3, this |
---|
448 | // MinorKey encodes 10010100. Then, the method must shift the set of rows in |
---|
449 | // this MinorKey to 11000001 (, and return true). |
---|
450 | |
---|
451 | // The next two variables will finally name a row which is |
---|
452 | // (1) currently not yet among the rows in this MinorKey, but |
---|
453 | // (2) among the rows in mk, and |
---|
454 | // (3) which is "higher" than the lowest row in this MinorKey, and |
---|
455 | // (4) which is the lowest possible choice such that (1) - (3) hold. |
---|
456 | // If we should not be able to find such a row, then there is no next subset of rows. |
---|
457 | // In this case, the method will return false; otherwise always true. |
---|
458 | int newBitBlockIndex = 0; // the block index of the bit |
---|
459 | unsigned int newBitToBeSet = 0; // the bit as 2^e, where 0 <= e <= 31 |
---|
460 | |
---|
461 | int blockCount = this->getNumberOfRowBlocks(); // number of ints (representing rows) in this MinorKey |
---|
462 | int mkBlockIndex = mk.getNumberOfRowBlocks(); // for iterating along the blocks of mk |
---|
463 | |
---|
464 | int hitBits = 0; // the number of bits we have hit |
---|
465 | int bitCounter = 0; // for storing the number of bits hit before a specific moment; see below |
---|
466 | |
---|
467 | while (hitBits < k) { |
---|
468 | mkBlockIndex--; |
---|
469 | unsigned int currentInt = mk.getRowKey(mkBlockIndex); |
---|
470 | unsigned int shiftedBit = 1 << 31; // initially, this equals 2^31, i.e. the highest bit |
---|
471 | while (hitBits < k && shiftedBit > 0) { |
---|
472 | if ((blockCount - 1 >= mkBlockIndex) && |
---|
473 | (shiftedBit & this->getRowKey(mkBlockIndex))) hitBits++; |
---|
474 | else if (shiftedBit & currentInt) { |
---|
475 | newBitToBeSet = shiftedBit; |
---|
476 | newBitBlockIndex = mkBlockIndex; |
---|
477 | bitCounter = hitBits; // So, whenever we set newBitToBeSet, we want to remember the momentary |
---|
478 | // number of hit bits. This will later be needed; see below. |
---|
479 | } |
---|
480 | shiftedBit = shiftedBit >> 1; |
---|
481 | } |
---|
482 | } |
---|
483 | |
---|
484 | if (newBitToBeSet == 0) { |
---|
485 | return false; |
---|
486 | } |
---|
487 | else { |
---|
488 | // Note that the following must hold when reaching this line of code: |
---|
489 | // (1) The row with bit newBitToBeSet in this->getRowKey(newBitBlockIndex) is currently |
---|
490 | // not among the rows in this MinorKey, but |
---|
491 | // (2) it is among the rows in mk, and |
---|
492 | // (3) it is higher than the lowest row in this MinorKey, and |
---|
493 | // (4) it is the lowest possible choice such that (1) - (3) hold. |
---|
494 | // In the above example, we would reach this line with |
---|
495 | // newBitToBeSet == 2^6 and bitCounter == 1 (resulting from the bit 2^7). |
---|
496 | |
---|
497 | if (blockCount - 1 < newBitBlockIndex) { // In this case, _rowKey is to small. |
---|
498 | // free old memory |
---|
499 | delete [] _rowKey; _rowKey = 0; |
---|
500 | _numberOfRowBlocks = newBitBlockIndex + 1; |
---|
501 | // allocate memory for new entries in _rowKey; |
---|
502 | _rowKey = new unsigned int[_numberOfRowBlocks]; |
---|
503 | } |
---|
504 | else { |
---|
505 | // We need to delete all bits in _rowKey[newBitBlockIndex] that are below newBitToBeSet: |
---|
506 | unsigned int anInt = this->getRowKey(newBitBlockIndex); |
---|
507 | unsigned int deleteBit = newBitToBeSet >> 1; // in example: = 2^5 |
---|
508 | while (deleteBit > 0) { |
---|
509 | if (anInt & deleteBit) anInt -= deleteBit; |
---|
510 | deleteBit = deleteBit >> 1; |
---|
511 | }; |
---|
512 | _rowKey[newBitBlockIndex] = anInt; |
---|
513 | // ...and we delete all entries in _rowKey[i] for 0 <= i < newBitBlockIndex |
---|
514 | for (int i = 0; i < newBitBlockIndex; i++) |
---|
515 | _rowKey[i] = 0; |
---|
516 | } |
---|
517 | |
---|
518 | // We have now deleted all bits from _rowKey[...] below the bit 2^newBitToBeSet. |
---|
519 | // In the example we shall have at this point: _rowKey[...] = 10000000. |
---|
520 | // Now let's set the new bit: |
---|
521 | _rowKey[newBitBlockIndex] += newBitToBeSet; // _rowKey[newBitBlockIndex] = 11000000 |
---|
522 | bitCounter++; // This is now the number of correct bits in _rowKey[...]; i.e. in the |
---|
523 | // example this will be equal to 2. |
---|
524 | |
---|
525 | // Now we only need to fill _rowKey[...] with the lowest possible bits until it |
---|
526 | // consists of exactly k bits. (We know that we need to set exactly (k - bitCounter) |
---|
527 | // additional bits.) |
---|
528 | mkBlockIndex = -1; |
---|
529 | while (bitCounter < k) { |
---|
530 | mkBlockIndex++; |
---|
531 | unsigned int currentInt = mk.getRowKey(mkBlockIndex); |
---|
532 | unsigned int shiftedBit = 1; |
---|
533 | int exponent = 0; |
---|
534 | // invariant: shiftedBit = 2^exponent |
---|
535 | while (bitCounter < k && exponent < 32) { |
---|
536 | if (shiftedBit & currentInt) { |
---|
537 | _rowKey[mkBlockIndex] += shiftedBit; |
---|
538 | bitCounter++; |
---|
539 | }; |
---|
540 | shiftedBit = shiftedBit << 1; |
---|
541 | exponent++; |
---|
542 | } |
---|
543 | }; |
---|
544 | // in the example, we shall obtain _rowKey[...] = 11000001 |
---|
545 | |
---|
546 | return true; |
---|
547 | } |
---|
548 | } |
---|
549 | |
---|
550 | bool MinorKey::selectNextColumns (const int k, const MinorKey& mk) { |
---|
551 | // We need to compute the set of k columns which must all be contained in mk. |
---|
552 | // AND: This set must be the least possible of this kind which is larger |
---|
553 | // than the currently encoded set of columns. (Here, '<' is w.r.t. to the natural |
---|
554 | // ordering on multi-indices. |
---|
555 | // Example: mk encodes the columns according to the bit pattern 11010111, k = 3, this |
---|
556 | // MinorKey encodes 10010100. Then, the method must shift the set of columns in |
---|
557 | // this MinorKey to 11000001 (, and return true). |
---|
558 | |
---|
559 | // The next two variables will finally name a columns which is |
---|
560 | // (1) currently not yet among the columns in this MinorKey, but |
---|
561 | // (2) among the columns in mk, and |
---|
562 | // (3) which is "higher" than the lowest columns in this MinorKey, and |
---|
563 | // (4) which is the lowest possible choice such that (1) - (3) hold. |
---|
564 | // If we should not be able to find such a columns, then there is no next subset of columns. |
---|
565 | // In this case, the method will return false; otherwise always true. |
---|
566 | int newBitBlockIndex = 0; // the block index of the bit |
---|
567 | unsigned int newBitToBeSet = 0; // the bit as 2^e, where 0 <= e <= 31 |
---|
568 | |
---|
569 | int blockCount = this->getNumberOfColumnBlocks(); // number of ints (representing columns) in this MinorKey |
---|
570 | int mkBlockIndex = mk.getNumberOfColumnBlocks(); // for iterating along the blocks of mk |
---|
571 | |
---|
572 | int hitBits = 0; // the number of bits we have hit |
---|
573 | int bitCounter = 0; // for storing the number of bits hit before a specific moment; see below |
---|
574 | |
---|
575 | while (hitBits < k) { |
---|
576 | mkBlockIndex--; |
---|
577 | unsigned int currentInt = mk.getColumnKey(mkBlockIndex); |
---|
578 | unsigned int shiftedBit = 1 << 31; // initially, this equals 2^31, i.e. the highest bit |
---|
579 | while (hitBits < k && shiftedBit > 0) { |
---|
580 | if ((blockCount - 1 >= mkBlockIndex) && |
---|
581 | (shiftedBit & this->getColumnKey(mkBlockIndex))) hitBits++; |
---|
582 | else if (shiftedBit & currentInt) { |
---|
583 | newBitToBeSet = shiftedBit; |
---|
584 | newBitBlockIndex = mkBlockIndex; |
---|
585 | bitCounter = hitBits; // So, whenever we set newBitToBeSet, we want to remember the momentary |
---|
586 | // number of hit bits. This will later be needed; see below. |
---|
587 | } |
---|
588 | shiftedBit = shiftedBit >> 1; |
---|
589 | } |
---|
590 | } |
---|
591 | |
---|
592 | if (newBitToBeSet == 0) { |
---|
593 | return false; |
---|
594 | } |
---|
595 | else { |
---|
596 | // Note that the following must hold when reaching this line of code: |
---|
597 | // (1) The columns with bit newBitToBeSet in this->getColumnKey(newBitBlockIndex) is currently |
---|
598 | // not among the columns in this MinorKey, but |
---|
599 | // (2) it is among the columns in mk, and |
---|
600 | // (3) it is higher than the lowest columns in this MinorKey, and |
---|
601 | // (4) it is the lowest possible choice such that (1) - (3) hold. |
---|
602 | // In the above example, we would reach this line with |
---|
603 | // newBitToBeSet == 2^6 and bitCounter == 1 (resulting from the bit 2^7). |
---|
604 | |
---|
605 | if (blockCount - 1 < newBitBlockIndex) { // In this case, _columnKey is to small. |
---|
606 | // free old memory |
---|
607 | delete [] _columnKey; _columnKey = 0; |
---|
608 | _numberOfColumnBlocks = newBitBlockIndex + 1; |
---|
609 | // allocate memory for new entries in _columnKey; |
---|
610 | _columnKey = new unsigned int[_numberOfColumnBlocks]; |
---|
611 | } |
---|
612 | else { |
---|
613 | // We need to delete all bits in _columnKey[newBitBlockIndex] that are below newBitToBeSet: |
---|
614 | unsigned int anInt = this->getColumnKey(newBitBlockIndex); |
---|
615 | unsigned int deleteBit = newBitToBeSet >> 1; // in example: = 2^5 |
---|
616 | while (deleteBit > 0) { |
---|
617 | if (anInt & deleteBit) anInt -= deleteBit; |
---|
618 | deleteBit = deleteBit >> 1; |
---|
619 | }; |
---|
620 | _columnKey[newBitBlockIndex] = anInt; |
---|
621 | // ...and we delete all entries in _columnKey[i] for 0 <= i < newBitBlockIndex |
---|
622 | for (int i = 0; i < newBitBlockIndex; i++) |
---|
623 | _columnKey[i] = 0; |
---|
624 | } |
---|
625 | |
---|
626 | // We have now deleted all bits from _columnKey[...] below the bit 2^newBitToBeSet. |
---|
627 | // In the example we shall have at this point: _columnKey[...] = 10000000. |
---|
628 | // Now let's set the new bit: |
---|
629 | _columnKey[newBitBlockIndex] += newBitToBeSet; // _columnKey[newBitBlockIndex] = 11000000 |
---|
630 | bitCounter++; // This is now the number of correct bits in _columnKey[...]; i.e. in the |
---|
631 | // example this will be equal to 2. |
---|
632 | |
---|
633 | // Now we only need to fill _columnKey[...] with the lowest possible bits until it |
---|
634 | // consists of exactly k bits. (We know that we need to set exactly (k - bitCounter) |
---|
635 | // additional bits.) |
---|
636 | mkBlockIndex = -1; |
---|
637 | while (bitCounter < k) { |
---|
638 | mkBlockIndex++; |
---|
639 | unsigned int currentInt = mk.getColumnKey(mkBlockIndex); |
---|
640 | unsigned int shiftedBit = 1; |
---|
641 | int exponent = 0; |
---|
642 | // invariant: shiftedBit = 2^exponent |
---|
643 | while (bitCounter < k && exponent < 32) { |
---|
644 | if (shiftedBit & currentInt) { |
---|
645 | _columnKey[mkBlockIndex] += shiftedBit; |
---|
646 | bitCounter++; |
---|
647 | }; |
---|
648 | shiftedBit = shiftedBit << 1; |
---|
649 | exponent++; |
---|
650 | } |
---|
651 | }; |
---|
652 | // in the example, we shall obtain _columnKey[...] = 11000001 |
---|
653 | |
---|
654 | return true; |
---|
655 | } |
---|
656 | } |
---|
657 | |
---|
658 | string MinorKey::toString() const { |
---|
659 | char h[32]; |
---|
660 | string t = ""; |
---|
661 | string s = "("; |
---|
662 | for (int r = this->getNumberOfRowBlocks() - 1; r >= 0; r--) { |
---|
663 | sprintf(h, "%u", this->getRowKey(r)); t += h; |
---|
664 | if (r < this->getNumberOfRowBlocks() - 1) |
---|
665 | t = string(32 - t.length(), '0') + t; |
---|
666 | s += t; |
---|
667 | } |
---|
668 | s += ", "; |
---|
669 | for (int c = this->getNumberOfColumnBlocks() - 1; c >= 0; c--) { |
---|
670 | sprintf(h, "%u", this->getColumnKey(c)); t += h; |
---|
671 | if (c < this->getNumberOfColumnBlocks() - 1) |
---|
672 | t = string(32 - t.length(), '0') + t; |
---|
673 | s += t; |
---|
674 | } |
---|
675 | s += ")"; |
---|
676 | return s; |
---|
677 | } |
---|
678 | |
---|
679 | int MinorValue::_RankingStrategy = -1; |
---|
680 | |
---|
681 | int MinorValue::getWeight () const |
---|
682 | { |
---|
683 | assert(false); // must be overridden in derived classes |
---|
684 | return 0; |
---|
685 | } |
---|
686 | |
---|
687 | // just to make the compiler happy; |
---|
688 | // this method should never be called |
---|
689 | bool MinorValue::operator==(const MinorValue& mv) const { |
---|
690 | assert(false); |
---|
691 | return (this == &mv); // compare addresses of both objects |
---|
692 | } |
---|
693 | |
---|
694 | string MinorValue::toString () const |
---|
695 | { |
---|
696 | assert(false); // must be overridden in derived classes |
---|
697 | return ""; |
---|
698 | } |
---|
699 | |
---|
700 | // just to make the compiler happy; |
---|
701 | // this method should never be called |
---|
702 | bool MinorValue::operator<(const MinorValue& mv) const { |
---|
703 | assert(false); |
---|
704 | return (this < &mv); // compare addresses of both objects |
---|
705 | } |
---|
706 | |
---|
707 | int MinorValue::getRetrievals() const { |
---|
708 | return _retrievals; |
---|
709 | } |
---|
710 | |
---|
711 | void MinorValue::incrementRetrievals() { |
---|
712 | _retrievals++; |
---|
713 | } |
---|
714 | |
---|
715 | int MinorValue::getPotentialRetrievals() const { |
---|
716 | return _potentialRetrievals; |
---|
717 | } |
---|
718 | |
---|
719 | int MinorValue::getMultiplications() const { |
---|
720 | return _multiplications; |
---|
721 | } |
---|
722 | |
---|
723 | int MinorValue::getAdditions() const { |
---|
724 | return _additions; |
---|
725 | } |
---|
726 | |
---|
727 | int MinorValue::getAccumulatedMultiplications() const { |
---|
728 | return _accumulatedMult; |
---|
729 | } |
---|
730 | |
---|
731 | int MinorValue::getAccumulatedAdditions() const { |
---|
732 | return _accumulatedSum; |
---|
733 | } |
---|
734 | |
---|
735 | void MinorValue::print() const { |
---|
736 | cout << this->toString(); |
---|
737 | } |
---|
738 | |
---|
739 | |
---|
740 | void MinorValue::SetRankingStrategy(const int rankingStrategy) { |
---|
741 | _RankingStrategy = rankingStrategy; |
---|
742 | if (_RankingStrategy == 6) { |
---|
743 | // initialize the random generator with system time |
---|
744 | srand ( time(NULL) ); |
---|
745 | } |
---|
746 | } |
---|
747 | |
---|
748 | int MinorValue::GetRankingStrategy() { |
---|
749 | return _RankingStrategy; |
---|
750 | } |
---|
751 | |
---|
752 | // this is for generically accessing the rank measure regardless of |
---|
753 | // which strategy has been set |
---|
754 | int MinorValue::getUtility () const { |
---|
755 | switch (this->GetRankingStrategy()) { |
---|
756 | case 1: return this->rankMeasure1(); |
---|
757 | case 2: return this->rankMeasure2(); |
---|
758 | case 3: return this->rankMeasure3(); |
---|
759 | case 4: return this->rankMeasure4(); |
---|
760 | case 5: return this->rankMeasure5(); |
---|
761 | default: return this->rankMeasure1(); |
---|
762 | } |
---|
763 | } |
---|
764 | |
---|
765 | // here are some sensible caching strategies: |
---|
766 | int MinorValue::rankMeasure1 () const { |
---|
767 | // number of actually performed multiplications |
---|
768 | return this->getMultiplications(); |
---|
769 | } |
---|
770 | |
---|
771 | int MinorValue::rankMeasure2 () const { |
---|
772 | // accumulated number of performed multiplications, i.e. all including nested multiplications |
---|
773 | return this->getAccumulatedMultiplications(); |
---|
774 | } |
---|
775 | |
---|
776 | int MinorValue::rankMeasure3 () const { |
---|
777 | // number of performed multiplications, weighted with the ratio of |
---|
778 | // not yet performed retrievals over the maximal number of retrievals |
---|
779 | return this->getMultiplications() * (this->getPotentialRetrievals() - this->getRetrievals()) |
---|
780 | / this->getPotentialRetrievals(); |
---|
781 | } |
---|
782 | |
---|
783 | int MinorValue::rankMeasure4 () const { |
---|
784 | // number of performed multiplications, |
---|
785 | // multiplied with the number of not yet performed retrievals |
---|
786 | return this->getMultiplications() * (this->getPotentialRetrievals() - this->getRetrievals()); |
---|
787 | } |
---|
788 | |
---|
789 | int MinorValue::rankMeasure5 () const { |
---|
790 | // number of not yet performed retrievals; |
---|
791 | // tends to cache entries longer when they are going to be retrieved more often in the future |
---|
792 | return this->getPotentialRetrievals() - this->getRetrievals(); |
---|
793 | } |
---|
794 | |
---|
795 | int IntMinorValue::getWeight () const { |
---|
796 | // put measure for size of MinorValue here, i.e. number of monomials in polynomial; |
---|
797 | // so far, we use the accumulated number of multiplications (i.e., including all nested ones) |
---|
798 | // to simmulate the size of a polynomial |
---|
799 | return _accumulatedMult; |
---|
800 | } |
---|
801 | |
---|
802 | IntMinorValue::IntMinorValue (const int result, const int multiplications, const int additions, |
---|
803 | const int accumulatedMultiplications, const int accumulatedAdditions, |
---|
804 | const int retrievals, const int potentialRetrievals) { |
---|
805 | _result = result; |
---|
806 | _multiplications = multiplications; |
---|
807 | _additions = additions; |
---|
808 | _accumulatedMult = accumulatedMultiplications; |
---|
809 | _accumulatedSum = accumulatedAdditions; |
---|
810 | _potentialRetrievals = potentialRetrievals; |
---|
811 | _retrievals = retrievals; |
---|
812 | } |
---|
813 | |
---|
814 | IntMinorValue::IntMinorValue () { |
---|
815 | _result = -1; |
---|
816 | _multiplications = -1; |
---|
817 | _additions = -1; |
---|
818 | _accumulatedMult = -1; |
---|
819 | _accumulatedSum = -1; |
---|
820 | _potentialRetrievals = -1; |
---|
821 | _retrievals = -1; |
---|
822 | } |
---|
823 | |
---|
824 | IntMinorValue::~IntMinorValue() |
---|
825 | { |
---|
826 | } |
---|
827 | |
---|
828 | int IntMinorValue::getResult() const { |
---|
829 | return _result; |
---|
830 | } |
---|
831 | |
---|
832 | string IntMinorValue::toString () const { |
---|
833 | char h[10]; |
---|
834 | |
---|
835 | // Let's see whether a cache has been used to compute this MinorValue: |
---|
836 | bool cacheHasBeenUsed = true; |
---|
837 | if (this->getRetrievals() == -1) cacheHasBeenUsed = false; |
---|
838 | |
---|
839 | sprintf(h, "%d", this->getResult()); |
---|
840 | string s = h; |
---|
841 | s += " [retrievals: "; |
---|
842 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getRetrievals()); s += h; } |
---|
843 | else s += "/"; |
---|
844 | s += " (of "; |
---|
845 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getPotentialRetrievals()); s += h; } |
---|
846 | else s += "/"; |
---|
847 | s += "), *: "; |
---|
848 | sprintf(h, "%d", this->getMultiplications()); s += h; |
---|
849 | s += " (accumulated: "; |
---|
850 | sprintf(h, "%d", this->getAccumulatedMultiplications()); s += h; |
---|
851 | s += "), +: "; |
---|
852 | sprintf(h, "%d", this->getAdditions()); s += h; |
---|
853 | s += " (accumulated: "; |
---|
854 | sprintf(h, "%d", this->getAccumulatedAdditions()); s += h; |
---|
855 | s += "), rank: "; |
---|
856 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getUtility()); s += h; } |
---|
857 | else s += "/"; |
---|
858 | s += "]"; |
---|
859 | return s; |
---|
860 | } |
---|
861 | |
---|
862 | IntMinorValue::IntMinorValue (const IntMinorValue& mv) { |
---|
863 | _result = mv.getResult(); |
---|
864 | _retrievals = mv.getRetrievals(); |
---|
865 | _potentialRetrievals = mv.getPotentialRetrievals(); |
---|
866 | _multiplications = mv.getMultiplications(); |
---|
867 | _additions = mv.getAdditions(); |
---|
868 | _accumulatedMult = mv.getAccumulatedMultiplications(); |
---|
869 | _accumulatedSum = mv.getAccumulatedAdditions(); |
---|
870 | } |
---|
871 | |
---|
872 | PolyMinorValue::PolyMinorValue (const poly result, const int multiplications, const int additions, |
---|
873 | const int accumulatedMultiplications, const int accumulatedAdditions, |
---|
874 | const int retrievals, const int potentialRetrievals) { |
---|
875 | //printf("\n%s(%s)", "PolyMinorValue::PolyMinorValue (args)", pString(result)); |
---|
876 | _result = pCopy(result); |
---|
877 | // std::cout << std::endl << "PolyMinorValue creator, " << pString(_result); |
---|
878 | _multiplications = multiplications; |
---|
879 | _additions = additions; |
---|
880 | _accumulatedMult = accumulatedMultiplications; |
---|
881 | _accumulatedSum = accumulatedAdditions; |
---|
882 | _potentialRetrievals = potentialRetrievals; |
---|
883 | _retrievals = retrievals; |
---|
884 | } |
---|
885 | |
---|
886 | PolyMinorValue::PolyMinorValue () { |
---|
887 | //printf("\n%s", "PolyMinorValue::PolyMinorValue ()"); |
---|
888 | _result = NULL; |
---|
889 | // std::cout << std::endl << "PolyMinorValue creator, " << pString(_result) << " STANDARD!"; |
---|
890 | _multiplications = -1; |
---|
891 | _additions = -1; |
---|
892 | _accumulatedMult = -1; |
---|
893 | _accumulatedSum = -1; |
---|
894 | _potentialRetrievals = -1; |
---|
895 | _retrievals = -1; |
---|
896 | } |
---|
897 | |
---|
898 | PolyMinorValue::~PolyMinorValue() |
---|
899 | { |
---|
900 | //printf("\n%s", "PolyMinorValue::~PolyMinorValue"); |
---|
901 | p_Delete(&_result, currRing); |
---|
902 | } |
---|
903 | |
---|
904 | poly PolyMinorValue::getResult() const { |
---|
905 | return _result; |
---|
906 | } |
---|
907 | |
---|
908 | int PolyMinorValue::getWeight () const { |
---|
909 | // put measure for size of PolyMinorValue here, e.g. the number of monomials |
---|
910 | // in the cached polynomial |
---|
911 | return pLength(_result); // the number of monomials in the polynomial |
---|
912 | } |
---|
913 | |
---|
914 | string PolyMinorValue::toString () const { |
---|
915 | char h[20]; |
---|
916 | |
---|
917 | // Let's see whether a cache has been used to compute this MinorValue: |
---|
918 | bool cacheHasBeenUsed = true; |
---|
919 | if (this->getRetrievals() == -1) cacheHasBeenUsed = false; |
---|
920 | |
---|
921 | string s = pString(_result); |
---|
922 | s += " [retrievals: "; |
---|
923 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getRetrievals()); s += h; } |
---|
924 | else s += "/"; |
---|
925 | s += " (of "; |
---|
926 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getPotentialRetrievals()); s += h; } |
---|
927 | else s += "/"; |
---|
928 | s += "), *: "; |
---|
929 | sprintf(h, "%d", this->getMultiplications()); s += h; |
---|
930 | s += " (accumulated: "; |
---|
931 | sprintf(h, "%d", this->getAccumulatedMultiplications()); s += h; |
---|
932 | s += "), +: "; |
---|
933 | sprintf(h, "%d", this->getAdditions()); s += h; |
---|
934 | s += " (accumulated: "; |
---|
935 | sprintf(h, "%d", this->getAccumulatedAdditions()); s += h; |
---|
936 | s += "), rank: "; |
---|
937 | if (cacheHasBeenUsed) { sprintf(h, "%d", this->getUtility()); s += h; } |
---|
938 | else s += "/"; |
---|
939 | s += "]"; |
---|
940 | return s; |
---|
941 | } |
---|
942 | |
---|
943 | PolyMinorValue::PolyMinorValue (const PolyMinorValue& mv) { |
---|
944 | //printf("\n%s", "PolyMinorValue::PolyMinorValue copy"); |
---|
945 | _result = pCopy(mv.getResult()); |
---|
946 | _retrievals = mv.getRetrievals(); |
---|
947 | _potentialRetrievals = mv.getPotentialRetrievals(); |
---|
948 | _multiplications = mv.getMultiplications(); |
---|
949 | _additions = mv.getAdditions(); |
---|
950 | _accumulatedMult = mv.getAccumulatedMultiplications(); |
---|
951 | _accumulatedSum = mv.getAccumulatedAdditions(); |
---|
952 | } |
---|
953 | |
---|
954 | void PolyMinorValue::operator= (const PolyMinorValue& mv) |
---|
955 | { |
---|
956 | //printf("\nPolyMinorValue::operator=; mv = %s", mv.toString().c_str()); |
---|
957 | if (_result != mv.getResult()) pDelete(&_result); |
---|
958 | _result = pCopy(mv.getResult()); |
---|
959 | //printf("\nPolyMinorValue::operator=; _result = %s", pString(_result)); |
---|
960 | _retrievals = mv.getRetrievals(); |
---|
961 | _potentialRetrievals = mv.getPotentialRetrievals(); |
---|
962 | _multiplications = mv.getMultiplications(); |
---|
963 | _additions = mv.getAdditions(); |
---|
964 | _accumulatedMult = mv.getAccumulatedMultiplications(); |
---|
965 | _accumulatedSum = mv.getAccumulatedAdditions(); |
---|
966 | } |
---|
967 | |
---|
968 | #endif // HAVE_MINOR |
---|