1 | #include "config.h" |
---|
2 | #include <kernel/mod2.h> |
---|
3 | |
---|
4 | // include before anything to avoid clashes with stdio.h included elsewhere |
---|
5 | // #include <cstdio> |
---|
6 | |
---|
7 | #include "MinorInterface.h" |
---|
8 | #include "MinorProcessor.h" |
---|
9 | |
---|
10 | #include <polys/simpleideals.h> |
---|
11 | |
---|
12 | #include <kernel/polys.h> |
---|
13 | #include <kernel/structs.h> |
---|
14 | #include <kernel/kstd1.h> |
---|
15 | #include <kernel/ideals.h> |
---|
16 | |
---|
17 | using namespace std; |
---|
18 | |
---|
19 | bool currRingIsOverIntegralDomain () |
---|
20 | { |
---|
21 | if (rField_is_Ring_PtoM(currRing)) return false; |
---|
22 | if (rField_is_Ring_2toM(currRing)) return false; |
---|
23 | if (rField_is_Ring_ModN(currRing)) return false; |
---|
24 | return true; |
---|
25 | } |
---|
26 | |
---|
27 | bool currRingIsOverField () |
---|
28 | { |
---|
29 | if (rField_is_Ring_PtoM(currRing)) return false; |
---|
30 | if (rField_is_Ring_2toM(currRing)) return false; |
---|
31 | if (rField_is_Ring_ModN(currRing)) return false; |
---|
32 | if (rField_is_Ring_Z(currRing)) return false; |
---|
33 | return true; |
---|
34 | } |
---|
35 | |
---|
36 | /* returns true iff the given polyArray has only number entries; |
---|
37 | if so, the int's corresponding to these numbers will be written |
---|
38 | into intArray[0..(length-1)]; |
---|
39 | the method assumes that both polyArray and intArray have valid |
---|
40 | entries for the indices 0..(length-1); |
---|
41 | after the call, zeroCounter contains the number of zero entries |
---|
42 | in the matrix */ |
---|
43 | bool arrayIsNumberArray (const poly* polyArray, const ideal iSB, |
---|
44 | const int length, int* intArray, |
---|
45 | poly* nfPolyArray, int& zeroCounter) |
---|
46 | { |
---|
47 | int n = 0; if (currRing != 0) n = currRing->N; |
---|
48 | int characteristic = 0; if (currRing != 0) characteristic = rChar(currRing); |
---|
49 | zeroCounter = 0; |
---|
50 | bool result = true; |
---|
51 | |
---|
52 | for (int i = 0; i < length; i++) |
---|
53 | { |
---|
54 | nfPolyArray[i] = pCopy(polyArray[i]); |
---|
55 | if (iSB != 0) nfPolyArray[i] = kNF(iSB, currRing->qideal, nfPolyArray[i]); |
---|
56 | if (nfPolyArray[i] == NULL) |
---|
57 | { |
---|
58 | intArray[i] = 0; |
---|
59 | zeroCounter++; |
---|
60 | } |
---|
61 | else |
---|
62 | { |
---|
63 | bool isConstant = true; |
---|
64 | for (int j = 1; j <= n; j++) |
---|
65 | if (pGetExp(nfPolyArray[i], j) > 0) |
---|
66 | isConstant = false; |
---|
67 | if (!isConstant) result = false; |
---|
68 | else |
---|
69 | { |
---|
70 | intArray[i] = n_Int(pGetCoeff(nfPolyArray[i]), currRing->cf); |
---|
71 | if (characteristic != 0) intArray[i] = intArray[i] % characteristic; |
---|
72 | if (intArray[i] == 0) zeroCounter++; |
---|
73 | } |
---|
74 | } |
---|
75 | } |
---|
76 | return result; |
---|
77 | } |
---|
78 | |
---|
79 | /* special implementation for the case that the matrix has only number entries; |
---|
80 | if i is not the zero pointer, then it is assumed to contain a std basis, and |
---|
81 | the number entries of the matrix are then assumed to be reduced w.r.t. i and |
---|
82 | modulo the characteristic of the gound field/ring; |
---|
83 | this method should also work when currRing == null, i.e. when no ring has |
---|
84 | been declared */ |
---|
85 | ideal getMinorIdeal_Int (const int* intMatrix, const int rowCount, |
---|
86 | const int columnCount, const int minorSize, |
---|
87 | const int k, const char* algorithm, |
---|
88 | const ideal i, const bool allDifferent) |
---|
89 | { |
---|
90 | /* setting up a MinorProcessor for matrices with integer entries: */ |
---|
91 | IntMinorProcessor mp; |
---|
92 | mp.defineMatrix(rowCount, columnCount, intMatrix); |
---|
93 | int *myRowIndices=new int[rowCount]; |
---|
94 | for (int j = 0; j < rowCount; j++) myRowIndices[j] = j; |
---|
95 | int *myColumnIndices=new int[columnCount]; |
---|
96 | for (int j = 0; j < columnCount; j++) myColumnIndices[j] = j; |
---|
97 | mp.defineSubMatrix(rowCount, myRowIndices, columnCount, myColumnIndices); |
---|
98 | mp.setMinorSize(minorSize); |
---|
99 | |
---|
100 | /* containers for all upcoming results: */ |
---|
101 | IntMinorValue theMinor; |
---|
102 | int value = 0; |
---|
103 | int collectedMinors = 0; |
---|
104 | int characteristic = 0; if (currRing != 0) characteristic = rChar(currRing); |
---|
105 | |
---|
106 | /* the ideal to be returned: */ |
---|
107 | ideal iii = idInit(1); |
---|
108 | |
---|
109 | bool zeroOk = ((k < 0) ? true : false); /* for k = 0, all minors are requested, |
---|
110 | omitting zero minors */ |
---|
111 | bool duplicatesOk = (allDifferent ? false : true); |
---|
112 | int kk = ((k < 0) ? -k : k); /* absolute value of k */ |
---|
113 | |
---|
114 | /* looping over all minors: */ |
---|
115 | while (mp.hasNextMinor() && ((kk == 0) || (collectedMinors < kk))) |
---|
116 | { |
---|
117 | /* retrieving the next minor: */ |
---|
118 | theMinor = mp.getNextMinor(characteristic, i, algorithm); |
---|
119 | poly f = NULL; |
---|
120 | if (theMinor.getResult() != 0) f = pISet(theMinor.getResult()); |
---|
121 | if (idInsertPolyWithTests(iii, collectedMinors, f, zeroOk, duplicatesOk)) |
---|
122 | collectedMinors++; |
---|
123 | } |
---|
124 | |
---|
125 | /* before we return the result, let's omit zero generators |
---|
126 | in iii which come after the computed minors */ |
---|
127 | ideal jjj; |
---|
128 | if (collectedMinors == 0) jjj = idInit(1); |
---|
129 | else jjj = idCopyFirstK(iii, collectedMinors); |
---|
130 | idDelete(&iii); |
---|
131 | delete[] myColumnIndices; |
---|
132 | delete[] myRowIndices; |
---|
133 | return jjj; |
---|
134 | } |
---|
135 | |
---|
136 | /* special implementation for the case that the matrix has non-number, |
---|
137 | i.e., actual polynomial entries; |
---|
138 | if i is not the zero pointer than it is assumed to be a std basis (ideal), |
---|
139 | and the poly matrix is assumed to be already reduced w.r.t. i */ |
---|
140 | ideal getMinorIdeal_Poly (const poly* polyMatrix, const int rowCount, |
---|
141 | const int columnCount, const int minorSize, |
---|
142 | const int k, const char* algorithm, |
---|
143 | const ideal i, const bool allDifferent) |
---|
144 | { |
---|
145 | /* setting up a MinorProcessor for matrices with polynomial entries: */ |
---|
146 | PolyMinorProcessor mp; |
---|
147 | mp.defineMatrix(rowCount, columnCount, polyMatrix); |
---|
148 | int *myRowIndices=new int[rowCount]; |
---|
149 | for (int j = 0; j < rowCount; j++) myRowIndices[j] = j; |
---|
150 | int *myColumnIndices=new int[columnCount]; |
---|
151 | for (int j = 0; j < columnCount; j++) myColumnIndices[j] = j; |
---|
152 | mp.defineSubMatrix(rowCount, myRowIndices, columnCount, myColumnIndices); |
---|
153 | mp.setMinorSize(minorSize); |
---|
154 | |
---|
155 | /* containers for all upcoming results: */ |
---|
156 | PolyMinorValue theMinor; |
---|
157 | poly f = NULL; |
---|
158 | int collectedMinors = 0; |
---|
159 | |
---|
160 | /* the ideal to be returned: */ |
---|
161 | ideal iii = idInit(1); |
---|
162 | |
---|
163 | bool zeroOk = ((k < 0) ? true : false); /* for k = 0, all minors are |
---|
164 | requested, omitting zero minors */ |
---|
165 | bool duplicatesOk = (allDifferent ? false : true); |
---|
166 | int kk = ((k < 0) ? -k : k); /* absolute value of k */ |
---|
167 | #ifdef COUNT_AND_PRINT_OPERATIONS |
---|
168 | printCounters ("starting", true); |
---|
169 | int qqq = 0; |
---|
170 | #endif |
---|
171 | /* looping over all minors: */ |
---|
172 | while (mp.hasNextMinor() && ((kk == 0) || (collectedMinors < kk))) |
---|
173 | { |
---|
174 | /* retrieving the next minor: */ |
---|
175 | theMinor = mp.getNextMinor(algorithm, i); |
---|
176 | #if (defined COUNT_AND_PRINT_OPERATIONS) && (COUNT_AND_PRINT_OPERATIONS > 1) |
---|
177 | qqq++; |
---|
178 | Print("after %d", qqq); |
---|
179 | printCounters ("-th minor", false); |
---|
180 | #endif |
---|
181 | f = theMinor.getResult(); |
---|
182 | if (idInsertPolyWithTests(iii, collectedMinors, pCopy(f), |
---|
183 | zeroOk, duplicatesOk)) |
---|
184 | collectedMinors++; |
---|
185 | } |
---|
186 | #ifdef COUNT_AND_PRINT_OPERATIONS |
---|
187 | printCounters ("ending", true); |
---|
188 | #endif |
---|
189 | |
---|
190 | /* before we return the result, let's omit zero generators |
---|
191 | in iii which come after the computed minors */ |
---|
192 | idKeepFirstK(iii, collectedMinors); |
---|
193 | delete[] myColumnIndices; |
---|
194 | delete[] myRowIndices; |
---|
195 | return(iii); |
---|
196 | } |
---|
197 | |
---|
198 | ideal getMinorIdeal_toBeDone (const matrix mat, const int minorSize, |
---|
199 | const int k, const char* algorithm, |
---|
200 | const ideal i, const bool allDifferent) |
---|
201 | { |
---|
202 | int rowCount = mat->nrows; |
---|
203 | int columnCount = mat->ncols; |
---|
204 | poly* myPolyMatrix = (poly*)(mat->m); |
---|
205 | ideal iii; /* the ideal to be filled and returned */ |
---|
206 | int zz = 0; |
---|
207 | |
---|
208 | /* divert to special implementations for pure number matrices and actual |
---|
209 | polynomial matrices: */ |
---|
210 | int* myIntMatrix = new int [rowCount * columnCount]; |
---|
211 | poly* nfPolyMatrix = new poly[rowCount * columnCount]; |
---|
212 | if (arrayIsNumberArray(myPolyMatrix, i, rowCount * columnCount, |
---|
213 | myIntMatrix, nfPolyMatrix, zz)) |
---|
214 | iii = getMinorIdeal_Int(myIntMatrix, rowCount, columnCount, minorSize, k, |
---|
215 | algorithm, i, allDifferent); |
---|
216 | else |
---|
217 | { |
---|
218 | if ((k == 0) && (strcmp(algorithm, "Bareiss") == 0) |
---|
219 | && (!rField_is_Ring_Z(currRing)) && (!allDifferent)) |
---|
220 | { |
---|
221 | /* In this case, we call an optimized procedure, dating back to |
---|
222 | Wilfried Pohl. It may be used whenever |
---|
223 | - all minors are requested, |
---|
224 | - requested minors need not be mutually distinct, and |
---|
225 | - coefficients come from a field (i.e., Z is also not allowed |
---|
226 | for this implementation). */ |
---|
227 | iii = (i == 0 ? idMinors(mat, minorSize) : idMinors(mat, minorSize, i)); |
---|
228 | } |
---|
229 | else |
---|
230 | { |
---|
231 | iii = getMinorIdeal_Poly(nfPolyMatrix, rowCount, columnCount, minorSize, |
---|
232 | k, algorithm, i, allDifferent); |
---|
233 | } |
---|
234 | } |
---|
235 | |
---|
236 | /* clean up */ |
---|
237 | delete [] myIntMatrix; |
---|
238 | for (int j = 0; j < rowCount * columnCount; j++) pDelete(&nfPolyMatrix[j]); |
---|
239 | delete [] nfPolyMatrix; |
---|
240 | |
---|
241 | return iii; |
---|
242 | } |
---|
243 | |
---|
244 | /* When called with algorithm == "Bareiss", the coefficients are assumed |
---|
245 | to come from a field or from a ring which does not have zero-divisors |
---|
246 | (other than 0), i.e. from an integral domain. |
---|
247 | E.g. Bareiss may be used over fields or over Z but not over |
---|
248 | Z/6 (which has non-zero zero divisors, namely 2 and 3). */ |
---|
249 | ideal getMinorIdeal (const matrix mat, const int minorSize, const int k, |
---|
250 | const char* algorithm, const ideal iSB, |
---|
251 | const bool allDifferent) |
---|
252 | { |
---|
253 | /* Note that this method should be replaced by getMinorIdeal_toBeDone, |
---|
254 | to enable faster computations in the case of matrices which contain |
---|
255 | only numbers. But so far, this method is not yet usable as it replaces |
---|
256 | the numbers by ints which may result in overflows during computations |
---|
257 | of minors. */ |
---|
258 | int rowCount = mat->nrows; |
---|
259 | int columnCount = mat->ncols; |
---|
260 | poly* myPolyMatrix = (poly*)(mat->m); |
---|
261 | int length = rowCount * columnCount; |
---|
262 | poly* nfPolyMatrix = new poly[length]; |
---|
263 | ideal iii; /* the ideal to be filled and returned */ |
---|
264 | |
---|
265 | /* copy all polynomials and reduce them w.r.t. iSB |
---|
266 | (if iSB is present, i.e., not the NULL pointer) */ |
---|
267 | for (int i = 0; i < length; i++) |
---|
268 | { |
---|
269 | nfPolyMatrix[i] = pCopy(myPolyMatrix[i]); |
---|
270 | if (iSB != 0) nfPolyMatrix[i] = kNF(iSB, currRing->qideal, |
---|
271 | nfPolyMatrix[i]); |
---|
272 | } |
---|
273 | |
---|
274 | if ((k == 0) && (strcmp(algorithm, "Bareiss") == 0) |
---|
275 | && (!rField_is_Ring_Z(currRing)) && (!allDifferent)) |
---|
276 | { |
---|
277 | /* In this case, we call an optimized procedure, dating back to |
---|
278 | Wilfried Pohl. It may be used whenever |
---|
279 | - all minors are requested, |
---|
280 | - requested minors need not be mutually distinct, and |
---|
281 | - coefficients come from a field (i.e., the ring Z is not |
---|
282 | allowed for this implementation). */ |
---|
283 | iii = (iSB == 0 ? idMinors(mat, minorSize) : idMinors(mat, minorSize, |
---|
284 | iSB)); |
---|
285 | } |
---|
286 | else |
---|
287 | { |
---|
288 | iii = getMinorIdeal_Poly(nfPolyMatrix, rowCount, columnCount, minorSize, |
---|
289 | k, algorithm, iSB, allDifferent); |
---|
290 | } |
---|
291 | |
---|
292 | /* clean up */ |
---|
293 | for (int j = 0; j < length; j++) pDelete(&nfPolyMatrix[j]); |
---|
294 | delete [] nfPolyMatrix; |
---|
295 | |
---|
296 | return iii; |
---|
297 | } |
---|
298 | |
---|
299 | /* special implementation for the case that the matrix has only number entries; |
---|
300 | if i is not the zero pointer, then it is assumed to contain a std basis, and |
---|
301 | the number entries of the matrix are then assumed to be reduced w.r.t. i and |
---|
302 | modulo the characteristic of the gound field/ring; |
---|
303 | this method should also work when currRing == null, i.e. when no ring has |
---|
304 | been declared */ |
---|
305 | ideal getMinorIdealCache_Int(const int* intMatrix, const int rowCount, |
---|
306 | const int columnCount, const int minorSize, |
---|
307 | const int k, const ideal i, |
---|
308 | const int cacheStrategy, const int cacheN, |
---|
309 | const int cacheW, const bool allDifferent) |
---|
310 | { |
---|
311 | /* setting up a MinorProcessor for matrices with integer entries: */ |
---|
312 | IntMinorProcessor mp; |
---|
313 | mp.defineMatrix(rowCount, columnCount, intMatrix); |
---|
314 | int *myRowIndices=new int[rowCount]; |
---|
315 | for (int j = 0; j < rowCount; j++) myRowIndices[j] = j; |
---|
316 | int *myColumnIndices=new int[columnCount]; |
---|
317 | for (int j = 0; j < columnCount; j++) myColumnIndices[j] = j; |
---|
318 | mp.defineSubMatrix(rowCount, myRowIndices, columnCount, myColumnIndices); |
---|
319 | mp.setMinorSize(minorSize); |
---|
320 | MinorValue::SetRankingStrategy(cacheStrategy); |
---|
321 | Cache<MinorKey, IntMinorValue> cch(cacheN, cacheW); |
---|
322 | |
---|
323 | /* containers for all upcoming results: */ |
---|
324 | IntMinorValue theMinor; |
---|
325 | int value = 0; |
---|
326 | int collectedMinors = 0; |
---|
327 | int characteristic = 0; if (currRing != 0) characteristic = rChar(currRing); |
---|
328 | |
---|
329 | /* the ideal to be returned: */ |
---|
330 | ideal iii = idInit(1); |
---|
331 | |
---|
332 | bool zeroOk = ((k < 0) ? true : false); /* for k = 0, all minors are |
---|
333 | requested, omitting zero minors */ |
---|
334 | bool duplicatesOk = (allDifferent ? false : true); |
---|
335 | int kk = ((k < 0) ? -k : k); /* absolute value of k */ |
---|
336 | |
---|
337 | /* looping over all minors: */ |
---|
338 | while (mp.hasNextMinor() && ((kk == 0) || (collectedMinors < kk))) |
---|
339 | { |
---|
340 | /* retrieving the next minor: */ |
---|
341 | theMinor = mp.getNextMinor(cch, characteristic, i); |
---|
342 | poly f = NULL; |
---|
343 | if (theMinor.getResult() != 0) f = pISet(theMinor.getResult()); |
---|
344 | if (idInsertPolyWithTests(iii, collectedMinors, f, zeroOk, duplicatesOk)) |
---|
345 | collectedMinors++; |
---|
346 | } |
---|
347 | |
---|
348 | /* before we return the result, let's omit zero generators |
---|
349 | in iii which come after the computed minors */ |
---|
350 | ideal jjj; |
---|
351 | if (collectedMinors == 0) jjj = idInit(1); |
---|
352 | else jjj = idCopyFirstK(iii, collectedMinors); |
---|
353 | idDelete(&iii); |
---|
354 | delete[] myColumnIndices; |
---|
355 | delete[] myRowIndices; |
---|
356 | return jjj; |
---|
357 | } |
---|
358 | |
---|
359 | /* special implementation for the case that the matrix has non-number, |
---|
360 | i.e. real poly entries; |
---|
361 | if i is not the zero pointer, then it is assumed to contain a std basis, |
---|
362 | and the entries of the matrix are then assumed to be reduced w.r.t. i */ |
---|
363 | ideal getMinorIdealCache_Poly(const poly* polyMatrix, const int rowCount, |
---|
364 | const int columnCount, const int minorSize, |
---|
365 | const int k, const ideal i, |
---|
366 | const int cacheStrategy, const int cacheN, |
---|
367 | const int cacheW, const bool allDifferent) |
---|
368 | { |
---|
369 | /* setting up a MinorProcessor for matrices with polynomial entries: */ |
---|
370 | PolyMinorProcessor mp; |
---|
371 | mp.defineMatrix(rowCount, columnCount, polyMatrix); |
---|
372 | int *myRowIndices=new int[rowCount]; |
---|
373 | for (int j = 0; j < rowCount; j++) myRowIndices[j] = j; |
---|
374 | int *myColumnIndices=new int[columnCount]; |
---|
375 | for (int j = 0; j < columnCount; j++) myColumnIndices[j] = j; |
---|
376 | mp.defineSubMatrix(rowCount, myRowIndices, columnCount, myColumnIndices); |
---|
377 | mp.setMinorSize(minorSize); |
---|
378 | MinorValue::SetRankingStrategy(cacheStrategy); |
---|
379 | Cache<MinorKey, PolyMinorValue> cch(cacheN, cacheW); |
---|
380 | |
---|
381 | /* containers for all upcoming results: */ |
---|
382 | PolyMinorValue theMinor; |
---|
383 | poly f = NULL; |
---|
384 | int collectedMinors = 0; |
---|
385 | |
---|
386 | /* the ideal to be returned: */ |
---|
387 | ideal iii = idInit(1); |
---|
388 | |
---|
389 | bool zeroOk = ((k < 0) ? true : false); /* for k = 0, all minors are |
---|
390 | requested, omitting zero minors */ |
---|
391 | bool duplicatesOk = (allDifferent ? false : true); |
---|
392 | int kk = ((k < 0) ? -k : k); /* absolute value of k */ |
---|
393 | #ifdef COUNT_AND_PRINT_OPERATIONS |
---|
394 | printCounters ("starting", true); |
---|
395 | int qqq = 0; |
---|
396 | #endif |
---|
397 | /* looping over all minors: */ |
---|
398 | while (mp.hasNextMinor() && ((kk == 0) || (collectedMinors < kk))) |
---|
399 | { |
---|
400 | /* retrieving the next minor: */ |
---|
401 | theMinor = mp.getNextMinor(cch, i); |
---|
402 | #if (defined COUNT_AND_PRINT_OPERATIONS) && (COUNT_AND_PRINT_OPERATIONS > 1) |
---|
403 | qqq++; |
---|
404 | Print("after %d", qqq); |
---|
405 | printCounters ("-th minor", false); |
---|
406 | #endif |
---|
407 | f = theMinor.getResult(); |
---|
408 | if (idInsertPolyWithTests(iii, collectedMinors, pCopy(f), zeroOk, |
---|
409 | duplicatesOk)) |
---|
410 | collectedMinors++; |
---|
411 | } |
---|
412 | #ifdef COUNT_AND_PRINT_OPERATIONS |
---|
413 | printCounters ("ending", true); |
---|
414 | #endif |
---|
415 | |
---|
416 | /* before we return the result, let's omit zero generators |
---|
417 | in iii which come after the computed minors */ |
---|
418 | ideal jjj; |
---|
419 | if (collectedMinors == 0) jjj = idInit(1); |
---|
420 | else jjj = idCopyFirstK(iii, collectedMinors); |
---|
421 | idDelete(&iii); |
---|
422 | delete[] myColumnIndices; |
---|
423 | delete[] myRowIndices; |
---|
424 | return jjj; |
---|
425 | } |
---|
426 | |
---|
427 | ideal getMinorIdealCache_toBeDone (const matrix mat, const int minorSize, |
---|
428 | const int k, const ideal iSB, |
---|
429 | const int cacheStrategy, const int cacheN, |
---|
430 | const int cacheW, const bool allDifferent) |
---|
431 | { |
---|
432 | int rowCount = mat->nrows; |
---|
433 | int columnCount = mat->ncols; |
---|
434 | poly* myPolyMatrix = (poly*)(mat->m); |
---|
435 | ideal iii; /* the ideal to be filled and returned */ |
---|
436 | int zz = 0; |
---|
437 | |
---|
438 | /* divert to special implementation when myPolyMatrix has only number |
---|
439 | entries: */ |
---|
440 | int* myIntMatrix = new int [rowCount * columnCount]; |
---|
441 | poly* nfPolyMatrix = new poly[rowCount * columnCount]; |
---|
442 | if (arrayIsNumberArray(myPolyMatrix, iSB, rowCount * columnCount, |
---|
443 | myIntMatrix, nfPolyMatrix, zz)) |
---|
444 | iii = getMinorIdealCache_Int(myIntMatrix, rowCount, columnCount, |
---|
445 | minorSize, k, iSB, cacheStrategy, cacheN, |
---|
446 | cacheW, allDifferent); |
---|
447 | else |
---|
448 | iii = getMinorIdealCache_Poly(nfPolyMatrix, rowCount, columnCount, |
---|
449 | minorSize, k, iSB, cacheStrategy, cacheN, |
---|
450 | cacheW, allDifferent); |
---|
451 | |
---|
452 | /* clean up */ |
---|
453 | delete [] myIntMatrix; |
---|
454 | for (int j = 0; j < rowCount * columnCount; j++) pDelete(&nfPolyMatrix[j]); |
---|
455 | delete [] nfPolyMatrix; |
---|
456 | |
---|
457 | return iii; |
---|
458 | } |
---|
459 | |
---|
460 | ideal getMinorIdealCache (const matrix mat, const int minorSize, const int k, |
---|
461 | const ideal iSB, const int cacheStrategy, |
---|
462 | const int cacheN, const int cacheW, |
---|
463 | const bool allDifferent) |
---|
464 | { |
---|
465 | /* Note that this method should be replaced by getMinorIdealCache_toBeDone, |
---|
466 | to enable faster computations in the case of matrices which contain |
---|
467 | only numbers. But so far, this method is not yet usable as it replaces |
---|
468 | the numbers by ints which may result in overflows during computations |
---|
469 | of minors. */ |
---|
470 | int rowCount = mat->nrows; |
---|
471 | int columnCount = mat->ncols; |
---|
472 | poly* myPolyMatrix = (poly*)(mat->m); |
---|
473 | int length = rowCount * columnCount; |
---|
474 | poly* nfPolyMatrix = new poly[length]; |
---|
475 | ideal iii; /* the ideal to be filled and returned */ |
---|
476 | |
---|
477 | /* copy all polynomials and reduce them w.r.t. iSB |
---|
478 | (if iSB is present, i.e., not the NULL pointer) */ |
---|
479 | for (int i = 0; i < length; i++) |
---|
480 | { |
---|
481 | nfPolyMatrix[i] = pCopy(myPolyMatrix[i]); |
---|
482 | if (iSB != 0) nfPolyMatrix[i] = kNF(iSB, currRing->qideal, |
---|
483 | nfPolyMatrix[i]); |
---|
484 | } |
---|
485 | |
---|
486 | iii = getMinorIdealCache_Poly(nfPolyMatrix, rowCount, columnCount, |
---|
487 | minorSize, k, iSB, cacheStrategy, |
---|
488 | cacheN, cacheW, allDifferent); |
---|
489 | |
---|
490 | /* clean up */ |
---|
491 | for (int j = 0; j < length; j++) pDelete(&nfPolyMatrix[j]); |
---|
492 | delete [] nfPolyMatrix; |
---|
493 | |
---|
494 | return iii; |
---|
495 | } |
---|
496 | |
---|
497 | ideal getMinorIdealHeuristic (const matrix mat, const int minorSize, |
---|
498 | const int k, const ideal iSB, |
---|
499 | const bool allDifferent) |
---|
500 | { |
---|
501 | int vars = 0; if (currRing != 0) vars = currRing->N; |
---|
502 | int rowCount = mat->nrows; |
---|
503 | int columnCount = mat->ncols; |
---|
504 | |
---|
505 | /* here comes the heuristic, as of 29 January 2010: |
---|
506 | |
---|
507 | integral domain and minorSize <= 2 -> Bareiss |
---|
508 | integral domain and minorSize >= 3 and vars <= 2 -> Bareiss |
---|
509 | field case and minorSize >= 3 and vars = 3 |
---|
510 | and c in {2, 3, ..., 32003} -> Bareiss |
---|
511 | |
---|
512 | otherwise: |
---|
513 | if not all minors are requested -> Laplace, no Caching |
---|
514 | otherwise: |
---|
515 | minorSize >= 3 and vars <= 4 and |
---|
516 | (rowCount over minorSize)*(columnCount over minorSize) >= 100 |
---|
517 | -> Laplace with Caching |
---|
518 | minorSize >= 3 and vars >= 5 and |
---|
519 | (rowCount over minorSize)*(columnCount over minorSize) >= 40 |
---|
520 | -> Laplace with Caching |
---|
521 | |
---|
522 | otherwise: -> Laplace, no Caching |
---|
523 | */ |
---|
524 | |
---|
525 | bool b = false; /* Bareiss */ |
---|
526 | bool l = false; /* Laplace without caching */ |
---|
527 | bool c = false; /* Laplace with caching */ |
---|
528 | if (currRingIsOverIntegralDomain()) |
---|
529 | { /* the field case or ring Z */ |
---|
530 | if (minorSize <= 2) b = true; |
---|
531 | else if (vars <= 2) b = true; |
---|
532 | else if (currRingIsOverField() && (vars == 3) |
---|
533 | && (currRing->cf->ch >= 2) && (currRing->cf->ch <= 32003)) |
---|
534 | b = true; |
---|
535 | } |
---|
536 | if (!b) |
---|
537 | { /* the non-Bareiss cases */ |
---|
538 | if (k != 0) /* this means, not all minors are requested */ l = true; |
---|
539 | else |
---|
540 | { /* k == 0, i.e., all minors are requested */ |
---|
541 | int minorCount = binom(rowCount, minorSize); |
---|
542 | minorCount *= binom(columnCount, minorSize); |
---|
543 | if ((minorSize >= 3) && (vars <= 4) |
---|
544 | && (minorCount >= 100)) c = true; |
---|
545 | else if ((minorSize >= 3) && (vars >= 5) |
---|
546 | && (minorCount >= 40)) c = true; |
---|
547 | else l = true; |
---|
548 | } |
---|
549 | } |
---|
550 | |
---|
551 | if (b) return getMinorIdeal(mat, minorSize, k, "Bareiss", iSB, |
---|
552 | allDifferent); |
---|
553 | else if (l) return getMinorIdeal(mat, minorSize, k, "Laplace", iSB, |
---|
554 | allDifferent); |
---|
555 | else /* (c) */ return getMinorIdealCache(mat, minorSize, k, iSB, |
---|
556 | 3, 200, 100000, allDifferent); |
---|
557 | } |
---|