1 | #include "mod2.h" |
---|
2 | |
---|
3 | #ifdef HAVE_MINOR |
---|
4 | |
---|
5 | #include "structs.h" |
---|
6 | #include "polys.h" |
---|
7 | #include <MinorProcessor.h> |
---|
8 | #include "febase.h" |
---|
9 | |
---|
10 | void MinorProcessor::print() const { |
---|
11 | PrintS(this->toString().c_str()); |
---|
12 | } |
---|
13 | |
---|
14 | int MinorProcessor::getBestLine (const int k, const MinorKey& mk) const { |
---|
15 | // This method identifies the row or column with the most zeros. |
---|
16 | // The returned index (bestIndex) is absolute within the pre-defined matrix. |
---|
17 | // If some row has the most zeros, then the absolute (0-based) row index is returned. |
---|
18 | // If, contrariwise, some column has the most zeros, then -1 minus the absolute (0-based) column index is returned. |
---|
19 | int numberOfZeros = 0; |
---|
20 | int bestIndex = 100000; // We start with an invalid row/column index. |
---|
21 | int maxNumberOfZeros = -1; // We update this variable whenever we find a new so-far optimal row or column. |
---|
22 | for (int r = 0; r < k; r++) { |
---|
23 | // iterate through all k rows of the momentary minor |
---|
24 | int absoluteR = mk.getAbsoluteRowIndex(r); |
---|
25 | numberOfZeros = 0; |
---|
26 | for (int c = 0; c < k; c++) { |
---|
27 | int absoluteC = mk.getAbsoluteColumnIndex(c); |
---|
28 | if (isEntryZero(absoluteR, absoluteC)) numberOfZeros++; |
---|
29 | } |
---|
30 | if (numberOfZeros > maxNumberOfZeros) { |
---|
31 | // We found a new best line which is a row. |
---|
32 | bestIndex = absoluteR; |
---|
33 | maxNumberOfZeros = numberOfZeros; |
---|
34 | } |
---|
35 | }; |
---|
36 | for (int c = 0; c < k; c++) { |
---|
37 | int absoluteC = mk.getAbsoluteColumnIndex(c); |
---|
38 | numberOfZeros = 0; |
---|
39 | for (int r = 0; r < k; r++) { |
---|
40 | int absoluteR = mk.getAbsoluteRowIndex(r); |
---|
41 | if (isEntryZero(absoluteR, absoluteC)) numberOfZeros++; |
---|
42 | } |
---|
43 | if (numberOfZeros > maxNumberOfZeros) { |
---|
44 | // We found a new best line which is a column. So we transform the return value. |
---|
45 | // Note that we can easily get back absoluteC from bestLine: absoluteC = - 1 - bestLine. |
---|
46 | bestIndex = - absoluteC - 1; |
---|
47 | maxNumberOfZeros = numberOfZeros; |
---|
48 | } |
---|
49 | }; |
---|
50 | return bestIndex; |
---|
51 | } |
---|
52 | |
---|
53 | void MinorProcessor::setMinorSize(const int minorSize) { |
---|
54 | _minorSize = minorSize; |
---|
55 | _minor.reset(); |
---|
56 | } |
---|
57 | |
---|
58 | bool MinorProcessor::hasNextMinor() { |
---|
59 | return setNextKeys(_minorSize); |
---|
60 | } |
---|
61 | |
---|
62 | void MinorProcessor::getCurrentRowIndices(int* const target) const { |
---|
63 | return _minor.getAbsoluteRowIndices(target); |
---|
64 | } |
---|
65 | |
---|
66 | void MinorProcessor::getCurrentColumnIndices(int* const target) const { |
---|
67 | return _minor.getAbsoluteColumnIndices(target); |
---|
68 | } |
---|
69 | |
---|
70 | void MinorProcessor::defineSubMatrix(const int numberOfRows, const int* rowIndices, |
---|
71 | const int numberOfColumns, const int* columnIndices) { |
---|
72 | // The method assumes ascending row and column indices in the two argument arrays. |
---|
73 | // These indices are understood to be zero-based. |
---|
74 | // The method will set the two arrays of ints in _container. |
---|
75 | // Example: The indices 0, 2, 3, 7 will be converted to an array with one int |
---|
76 | // representing the binary number 10001101 (check bits from right to left). |
---|
77 | |
---|
78 | _containerRows = numberOfRows; |
---|
79 | int highestRowIndex = rowIndices[numberOfRows - 1]; |
---|
80 | int rowBlockCount = (highestRowIndex / 32) + 1; |
---|
81 | unsigned int rowBlocks[rowBlockCount]; |
---|
82 | for (int i = 0; i < rowBlockCount; i++) rowBlocks[i] = 0; |
---|
83 | for (int i = 0; i < numberOfRows; i++) { |
---|
84 | int blockIndex = rowIndices[i] / 32; |
---|
85 | int offset = rowIndices[i] % 32; |
---|
86 | rowBlocks[blockIndex] += (1 << offset); |
---|
87 | } |
---|
88 | |
---|
89 | _containerColumns = numberOfColumns; |
---|
90 | int highestColumnIndex = columnIndices[numberOfColumns - 1]; |
---|
91 | int columnBlockCount = (highestColumnIndex / 32) + 1; |
---|
92 | unsigned int columnBlocks[columnBlockCount]; |
---|
93 | for (int i = 0; i < columnBlockCount; i++) columnBlocks[i] = 0; |
---|
94 | for (int i = 0; i < numberOfColumns; i++) { |
---|
95 | int blockIndex = columnIndices[i] / 32; |
---|
96 | int offset = columnIndices[i] % 32; |
---|
97 | columnBlocks[blockIndex] += (1 << offset); |
---|
98 | } |
---|
99 | |
---|
100 | _container.set(rowBlockCount, rowBlocks, columnBlockCount, columnBlocks); |
---|
101 | } |
---|
102 | |
---|
103 | bool MinorProcessor::setNextKeys(const int k) { |
---|
104 | // This method moves _minor to the next valid kxk-minor within _container. |
---|
105 | // It returns true iff this is successful, i.e. iff _minor did not already encode the final kxk-minor. |
---|
106 | if (_minor.compare(MinorKey(0, 0, 0, 0)) == 0) { |
---|
107 | // This means that we haven't started yet. Thus, we are about to compute the first kxk-minor. |
---|
108 | _minor.selectFirstRows(k, _container); |
---|
109 | _minor.selectFirstColumns(k, _container); |
---|
110 | return true; |
---|
111 | } |
---|
112 | else if (_minor.selectNextColumns(k, _container)) { |
---|
113 | // Here we were able to pick a next subset of columns (within the same subset of rows). |
---|
114 | return true; |
---|
115 | } |
---|
116 | else if (_minor.selectNextRows(k, _container)) { |
---|
117 | // Here we were not able to pick a next subset of columns (within the same subset of rows). |
---|
118 | // But we could pick a next subset of rows. We must hence reset the subset of columns: |
---|
119 | _minor.selectFirstColumns(k, _container); |
---|
120 | return true; |
---|
121 | } |
---|
122 | else { |
---|
123 | // We were neither able to pick a next subset of columns nor of rows. |
---|
124 | // I.e., we have iterated through all sensible choices of subsets of rows and columns. |
---|
125 | return false; |
---|
126 | } |
---|
127 | } |
---|
128 | |
---|
129 | bool MinorProcessor::isEntryZero (const int absoluteRowIndex, const int absoluteColumnIndex) const |
---|
130 | { |
---|
131 | assume(false); |
---|
132 | return false; |
---|
133 | } |
---|
134 | |
---|
135 | string MinorProcessor::toString () const |
---|
136 | { |
---|
137 | assume(false); |
---|
138 | return ""; |
---|
139 | } |
---|
140 | |
---|
141 | int MinorProcessor::IOverJ(const int i, const int j) { |
---|
142 | // This is a non-recursive implementation. |
---|
143 | assert(i >= 0 && j >= 0 && i >= j); |
---|
144 | if (j == 0 || i == j) return 1; |
---|
145 | int result = 1; |
---|
146 | for (int k = i - j + 1; k <= i; k++) result *= k; |
---|
147 | // Here, we have result = (i - j + 1) * ... * i. |
---|
148 | for (int k = 2; k <= j; k++) result /= k; |
---|
149 | // Here, we have result = (i - j + 1) * ... * i / 1 / 2 ... / j = i! / j! / (i - j)!. |
---|
150 | return result; |
---|
151 | } |
---|
152 | |
---|
153 | int MinorProcessor::Faculty(const int i) { |
---|
154 | // This is a non-recursive implementation. |
---|
155 | assert(i >= 0); |
---|
156 | int result = 1; |
---|
157 | for (int j = 1; j <= i; j++) result *= j; |
---|
158 | // Here, we have result = 1 * 2 * ... * i = i! |
---|
159 | return result; |
---|
160 | } |
---|
161 | |
---|
162 | int MinorProcessor::NumberOfRetrievals (const int rows, const int columns, const int containerMinorSize, |
---|
163 | const int minorSize, const bool multipleMinors) { |
---|
164 | // This method computes the number of potential retrievals of a single minor when computing |
---|
165 | // all minors of a given size within a matrix of given size. |
---|
166 | int result = 0; |
---|
167 | if (multipleMinors) { |
---|
168 | // Here, we would like to compute all minors of size |
---|
169 | // containerMinorSize x containerMinorSize in a matrix of size rows x columns. |
---|
170 | // Then, we need to retrieve any minor of size minorSize x minorSize exactly |
---|
171 | // n times, where n is as follows: |
---|
172 | result = IOverJ(rows - minorSize, containerMinorSize - minorSize) |
---|
173 | * IOverJ(columns - minorSize, containerMinorSize - minorSize) |
---|
174 | * Faculty(containerMinorSize - minorSize); |
---|
175 | } |
---|
176 | else { |
---|
177 | // Here, we would like to compute just one minor of size |
---|
178 | // containerMinorSize x containerMinorSize. Then, we need to retrieve |
---|
179 | // any minor of size minorSize x minorSize exactly |
---|
180 | // (containerMinorSize - minorSize)! times: |
---|
181 | result = Faculty(containerMinorSize - minorSize); |
---|
182 | } |
---|
183 | return result; |
---|
184 | } |
---|
185 | |
---|
186 | MinorProcessor::MinorProcessor () { |
---|
187 | _container = MinorKey(0, 0, 0, 0); |
---|
188 | _minor = MinorKey(0, 0, 0, 0); |
---|
189 | _containerRows = 0; |
---|
190 | _containerColumns = 0; |
---|
191 | _minorSize = 0; |
---|
192 | _rows = 0; |
---|
193 | _columns = 0; |
---|
194 | } |
---|
195 | |
---|
196 | IntMinorProcessor::IntMinorProcessor () { |
---|
197 | _matrix = 0; |
---|
198 | } |
---|
199 | |
---|
200 | string IntMinorProcessor::toString () const { |
---|
201 | char h[32]; |
---|
202 | string t = ""; |
---|
203 | string s = "IntMinorProcessor:"; |
---|
204 | s += "\n matrix: "; |
---|
205 | sprintf(h, "%d", _rows); s += h; |
---|
206 | s += " x "; |
---|
207 | sprintf(h, "%d", _columns); s += h; |
---|
208 | for (int r = 0; r < _rows; r++) { |
---|
209 | s += "\n "; |
---|
210 | for (int c = 0; c < _columns; c++) { |
---|
211 | sprintf(h, "%d", _matrix[r][c]); t = h; |
---|
212 | for (int k = 0; k < int(4 - strlen(h)); k++) s += " "; |
---|
213 | s += t; |
---|
214 | } |
---|
215 | } |
---|
216 | int myIndexArray[500]; |
---|
217 | s += "\n considered submatrix has row indices: "; |
---|
218 | _container.getAbsoluteRowIndices(myIndexArray); |
---|
219 | for (int k = 0; k < _containerRows; k++) { |
---|
220 | if (k != 0) s += ", "; |
---|
221 | sprintf(h, "%d", myIndexArray[k]); s += h; |
---|
222 | } |
---|
223 | s += " (first row of matrix has index 0)"; |
---|
224 | s += "\n considered submatrix has column indices: "; |
---|
225 | _container.getAbsoluteColumnIndices(myIndexArray); |
---|
226 | for (int k = 0; k < _containerColumns; k++) { |
---|
227 | if (k != 0) s += ", "; |
---|
228 | sprintf(h, "%d", myIndexArray[k]); s += h; |
---|
229 | } |
---|
230 | s += " (first column of matrix has index 0)"; |
---|
231 | s += "\n size of considered minor(s): "; |
---|
232 | sprintf(h, "%d", _minorSize); s += h; |
---|
233 | s += "x"; |
---|
234 | s += h; |
---|
235 | return s; |
---|
236 | } |
---|
237 | |
---|
238 | bool IntMinorProcessor::isEntryZero (const int absoluteRowIndex, const int absoluteColumnIndex) const |
---|
239 | { |
---|
240 | return _matrix[absoluteRowIndex][absoluteColumnIndex] == 0; |
---|
241 | } |
---|
242 | |
---|
243 | IntMinorProcessor::~IntMinorProcessor() { |
---|
244 | // free memory of _matrix |
---|
245 | for (int i = 0; i < _rows; i++) { |
---|
246 | delete [] _matrix[i]; _matrix[i] = 0; |
---|
247 | } |
---|
248 | delete [] _matrix; _matrix = 0; |
---|
249 | } |
---|
250 | |
---|
251 | void IntMinorProcessor::defineMatrix (const int numberOfRows, const int numberOfColumns, const int* matrix) { |
---|
252 | // free memory of _matrix |
---|
253 | for (int i = 0; i < _rows; i++) { |
---|
254 | delete [] _matrix[i]; _matrix[i] = 0; |
---|
255 | } |
---|
256 | delete [] _matrix; _matrix = 0; |
---|
257 | |
---|
258 | _rows = numberOfRows; |
---|
259 | _columns = numberOfColumns; |
---|
260 | |
---|
261 | // allocate memory for new entries in _matrix |
---|
262 | _matrix = new int*[_rows]; |
---|
263 | for (int i = 0; i < _rows; i++) _matrix[i] = new int[_columns]; |
---|
264 | |
---|
265 | // copying values from one-dimensional method parameter "matrix" |
---|
266 | for (int r = 0; r < _rows; r++) |
---|
267 | for (int c = 0; c < _columns; c++) |
---|
268 | _matrix[r][c] = matrix[r * _columns + c]; |
---|
269 | } |
---|
270 | |
---|
271 | IntMinorValue IntMinorProcessor::getMinor(const int dimension, const int* rowIndices, const int* columnIndices, |
---|
272 | Cache<MinorKey, IntMinorValue>& c, const int characteristic) { |
---|
273 | defineSubMatrix(dimension, rowIndices, dimension, columnIndices); |
---|
274 | _minorSize = dimension; |
---|
275 | // call a helper method which recursively computes the minor using the cache c: |
---|
276 | return getMinorPrivate(dimension, _container, false, c, characteristic); |
---|
277 | } |
---|
278 | |
---|
279 | IntMinorValue IntMinorProcessor::getMinor(const int dimension, const int* rowIndices, const int* columnIndices, const int characteristic) { |
---|
280 | defineSubMatrix(dimension, rowIndices, dimension, columnIndices); |
---|
281 | _minorSize = dimension; |
---|
282 | // call a helper method which recursively computes the minor (without using a cache): |
---|
283 | return getMinorPrivate(_minorSize, _container, characteristic); |
---|
284 | } |
---|
285 | |
---|
286 | IntMinorValue IntMinorProcessor::getNextMinor(const int characteristic) { |
---|
287 | // computation without cache |
---|
288 | return getMinorPrivate(_minorSize, _minor, characteristic); |
---|
289 | } |
---|
290 | |
---|
291 | IntMinorValue IntMinorProcessor::getNextMinor(Cache<MinorKey, IntMinorValue>& c, const int characteristic) { |
---|
292 | // computation with cache |
---|
293 | return getMinorPrivate(_minorSize, _minor, true, c, characteristic); |
---|
294 | } |
---|
295 | |
---|
296 | IntMinorValue IntMinorProcessor::getMinorPrivate(const int k, const MinorKey& mk, const int characteristic) { |
---|
297 | assert(k > 0); // k is the minor's dimension; the minor must be at least 1x1 |
---|
298 | // The method works by recursion, and using Lapace's Theorem along the row/column with the most zeros. |
---|
299 | if (k == 1) { |
---|
300 | return IntMinorValue(_matrix[mk.getAbsoluteRowIndex(0)][mk.getAbsoluteColumnIndex(0)], |
---|
301 | 0, 0, 0, 0, -1, -1); // "-1" is to signal that any statistics about the |
---|
302 | // number of retrievals does not make sense, as we do not use a cache. |
---|
303 | } |
---|
304 | else { |
---|
305 | // Here, the minor must be 2x2 or larger. |
---|
306 | int b = getBestLine(k, mk); // row or column with most zeros |
---|
307 | int result = 0; // This will contain the value of the minor. |
---|
308 | int s = 0; int m = 0; int as = 0; int am = 0; // counters for additions and multiplications, |
---|
309 | // ..."a*" for accumulated operation counters |
---|
310 | if (b >= 0) { |
---|
311 | // This means that the best line is the row with absolute (0-based) index b. |
---|
312 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
313 | // the initial sign depends on the relative index of b in minorRowKey: |
---|
314 | int sign = (mk.getRelativeRowIndex(b) % 2 == 0 ? 1 : -1); |
---|
315 | for (int c = 0; c < k; c++) { |
---|
316 | int absoluteC = mk.getAbsoluteColumnIndex(c); // This iterates over all involved columns. |
---|
317 | if (_matrix[b][absoluteC] != 0) { // Only then do we have to consider this sub-determinante. |
---|
318 | MinorKey subMk = mk.getSubMinorKey(b, absoluteC); // This is mk with row b and column absoluteC omitted. |
---|
319 | IntMinorValue mv = getMinorPrivate(k - 1, subMk, characteristic); // recursive call |
---|
320 | m += mv.getMultiplications(); |
---|
321 | s += mv.getAdditions(); |
---|
322 | am += mv.getAccumulatedMultiplications(); |
---|
323 | as += mv.getAccumulatedAdditions(); |
---|
324 | result += sign * mv.getResult() * _matrix[b][absoluteC]; // adding sub-determinante times matrix entry |
---|
325 | // times appropriate sign |
---|
326 | if (characteristic != 0) result = result % characteristic; |
---|
327 | s++; m++; as++, am++; // This is for the addition and multiplication in the previous line of code. |
---|
328 | } |
---|
329 | sign = - sign; // alternating the sign |
---|
330 | } |
---|
331 | } |
---|
332 | else { |
---|
333 | b = - b - 1; |
---|
334 | // This means that the best line is the column with absolute (0-based) index b. |
---|
335 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
336 | // the initial sign depends on the relative index of b in minorColumnKey: |
---|
337 | int sign = (mk.getRelativeColumnIndex(b) % 2 == 0 ? 1 : -1); |
---|
338 | for (int r = 0; r < k; r++) { |
---|
339 | int absoluteR = mk.getAbsoluteRowIndex(r); // This iterates over all involved rows. |
---|
340 | if (_matrix[absoluteR][b] != 0) { // Only then do we have to consider this sub-determinante. |
---|
341 | MinorKey subMk = mk.getSubMinorKey(absoluteR, b); // This is mk with row absoluteR and column b omitted. |
---|
342 | IntMinorValue mv = getMinorPrivate(k - 1, subMk, characteristic); // recursive call |
---|
343 | m += mv.getMultiplications(); |
---|
344 | s += mv.getAdditions(); |
---|
345 | am += mv.getAccumulatedMultiplications(); |
---|
346 | as += mv.getAccumulatedAdditions(); |
---|
347 | result += sign * mv.getResult() * _matrix[absoluteR][b]; // adding sub-determinante times matrix entry |
---|
348 | // times appropriate sign |
---|
349 | if (characteristic != 0) result = result % characteristic; |
---|
350 | s++; m++; as++, am++; // This is for the addition and multiplication in the previous line of code. |
---|
351 | } |
---|
352 | sign = - sign; // alternating the sign |
---|
353 | } |
---|
354 | } |
---|
355 | s--; as--; // first addition was 0 + ..., so we do not count it |
---|
356 | if (s < 0) s = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
357 | if (as < 0) as = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
358 | IntMinorValue newMV(result, m, s, am, as, -1, -1); // "-1" is to signal that any statistics about the |
---|
359 | // number of retrievals does not make sense, as we |
---|
360 | // do not use a cache. |
---|
361 | return newMV; |
---|
362 | } |
---|
363 | } |
---|
364 | |
---|
365 | IntMinorValue IntMinorProcessor::getMinorPrivate(const int k, const MinorKey& mk, |
---|
366 | const bool multipleMinors, |
---|
367 | Cache<MinorKey, IntMinorValue>& cch, |
---|
368 | const int characteristic) { |
---|
369 | assert(k > 0); // k is the minor's dimension; the minor must be at least 1x1 |
---|
370 | // The method works by recursion, and using Lapace's Theorem along the row/column with the most zeros. |
---|
371 | if (k == 1) { |
---|
372 | return IntMinorValue(_matrix[mk.getAbsoluteRowIndex(0)][mk.getAbsoluteColumnIndex(0)], |
---|
373 | 0, 0, 0, 0, -1, -1); // we set "-1" as, for k == 1, we do not have any cache retrievals |
---|
374 | } |
---|
375 | else { |
---|
376 | int b = getBestLine(k, mk); // row or column with most zeros |
---|
377 | int result = 0; // This will contain the value of the minor. |
---|
378 | int s = 0; int m = 0; int as = 0; int am = 0; // counters for additions and multiplications, |
---|
379 | // ..."a*" for accumulated operation counters |
---|
380 | IntMinorValue mv(0, 0, 0, 0, 0, 0, 0); // for storing all intermediate minors |
---|
381 | if (b >= 0) { |
---|
382 | // This means that the best line is the row with absolute (0-based) index b. |
---|
383 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
384 | // the initial sign depends on the relative index of b in minorRowKey: |
---|
385 | int sign = (mk.getRelativeRowIndex(b) % 2 == 0 ? 1 : -1); |
---|
386 | for (int c = 0; c < k; c++) { |
---|
387 | int absoluteC = mk.getAbsoluteColumnIndex(c); // This iterates over all involved columns. |
---|
388 | if (_matrix[b][absoluteC] != 0) { // Only then do we have to consider this sub-determinante. |
---|
389 | MinorKey subMk = mk.getSubMinorKey(b, absoluteC); // This is mk with row b and column absoluteC omitted. |
---|
390 | if (cch.hasKey(subMk)) { // trying to find the result in the cache |
---|
391 | mv = cch.getValue(subMk); |
---|
392 | mv.incrementRetrievals(); // once more, we made use of the cached value for key mk |
---|
393 | cch.put(subMk, mv); // We need to do this with "put", as the (altered) number of retrievals may have |
---|
394 | // an impact on the internal ordering among cache entries. |
---|
395 | } |
---|
396 | else { |
---|
397 | mv = getMinorPrivate(k - 1, subMk, multipleMinors, cch, characteristic); // recursive call |
---|
398 | // As this minor was not in the cache, we count the additions and |
---|
399 | // multiplications that we needed to do in the recursive call: |
---|
400 | m += mv.getMultiplications(); |
---|
401 | s += mv.getAdditions(); |
---|
402 | } |
---|
403 | // In any case, we count all nested operations in the accumulative counters: |
---|
404 | am += mv.getAccumulatedMultiplications(); |
---|
405 | as += mv.getAccumulatedAdditions(); |
---|
406 | result += sign * mv.getResult() * _matrix[b][absoluteC]; // adding sub-determinante times matrix entry |
---|
407 | // times appropriate sign |
---|
408 | if (characteristic != 0) result = result % characteristic; |
---|
409 | s++; m++; as++; am++; // This is for the addition and multiplication in the previous line of code. |
---|
410 | } |
---|
411 | sign = - sign; // alternating the sign |
---|
412 | } |
---|
413 | } |
---|
414 | else { |
---|
415 | b = - b - 1; |
---|
416 | // This means that the best line is the column with absolute (0-based) index b. |
---|
417 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
418 | // the initial sign depends on the relative index of b in minorColumnKey: |
---|
419 | int sign = (mk.getRelativeColumnIndex(b) % 2 == 0 ? 1 : -1); |
---|
420 | for (int r = 0; r < k; r++) { |
---|
421 | int absoluteR = mk.getAbsoluteRowIndex(r); // This iterates over all involved rows. |
---|
422 | if (_matrix[absoluteR][b] != 0) { // Only then do we have to consider this sub-determinante. |
---|
423 | MinorKey subMk = mk.getSubMinorKey(absoluteR, b); // This is mk with row absoluteR and column b omitted. |
---|
424 | if (cch.hasKey(subMk)) { // trying to find the result in the cache |
---|
425 | mv = cch.getValue(subMk); |
---|
426 | mv.incrementRetrievals(); // once more, we made use of the cached value for key mk |
---|
427 | cch.put(subMk, mv); // We need to do this with "put", as the (altered) number of retrievals may have |
---|
428 | // an impact on the internal ordering among cache entries. |
---|
429 | } |
---|
430 | else { |
---|
431 | mv = getMinorPrivate(k - 1, subMk, multipleMinors, cch, characteristic); // recursive call |
---|
432 | // As this minor was not in the cache, we count the additions and |
---|
433 | // multiplications that we needed to do in the recursive call: |
---|
434 | m += mv.getMultiplications(); |
---|
435 | s += mv.getAdditions(); |
---|
436 | } |
---|
437 | // In any case, we count all nested operations in the accumulative counters: |
---|
438 | am += mv.getAccumulatedMultiplications(); |
---|
439 | as += mv.getAccumulatedAdditions(); |
---|
440 | result += sign * mv.getResult() * _matrix[absoluteR][b]; // adding sub-determinante times matrix entry |
---|
441 | // times appropriate sign |
---|
442 | if (characteristic != 0) result = result % characteristic; |
---|
443 | s++; m++; as++; am++; // This is for the addition and multiplication in the previous line of code. |
---|
444 | } |
---|
445 | sign = - sign; // alternating the sign |
---|
446 | } |
---|
447 | } |
---|
448 | // Let's cache the newly computed minor: |
---|
449 | int potentialRetrievals = NumberOfRetrievals(_containerRows, _containerColumns, _minorSize, k, multipleMinors); |
---|
450 | s--; as--; // first addition was 0 + ..., so we do not count it |
---|
451 | if (s < 0) s = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
452 | if (as < 0) as = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
453 | IntMinorValue newMV(result, m, s, am, as, 1, potentialRetrievals); |
---|
454 | cch.put(mk, newMV); // Here's the actual put inside the cache. |
---|
455 | return newMV; |
---|
456 | } |
---|
457 | } |
---|
458 | |
---|
459 | PolyMinorProcessor::PolyMinorProcessor () { |
---|
460 | _polyMatrix = 0; |
---|
461 | } |
---|
462 | |
---|
463 | string PolyMinorProcessor::toString () const { |
---|
464 | char h[32]; |
---|
465 | string t = ""; |
---|
466 | string s = "PolyMinorProcessor:"; |
---|
467 | s += "\n matrix: "; |
---|
468 | sprintf(h, "%d", _rows); s += h; |
---|
469 | s += " x "; |
---|
470 | sprintf(h, "%d", _columns); s += h; |
---|
471 | int myIndexArray[500]; |
---|
472 | s += "\n considered submatrix has row indices: "; |
---|
473 | _container.getAbsoluteRowIndices(myIndexArray); |
---|
474 | for (int k = 0; k < _containerRows; k++) { |
---|
475 | if (k != 0) s += ", "; |
---|
476 | sprintf(h, "%d", myIndexArray[k]); s += h; |
---|
477 | } |
---|
478 | s += " (first row of matrix has index 0)"; |
---|
479 | s += "\n considered submatrix has column indices: "; |
---|
480 | _container.getAbsoluteColumnIndices(myIndexArray); |
---|
481 | for (int k = 0; k < _containerColumns; k++) { |
---|
482 | if (k != 0) s += ", "; |
---|
483 | sprintf(h, "%d", myIndexArray[k]); s += h; |
---|
484 | } |
---|
485 | s += " (first column of matrix has index 0)"; |
---|
486 | s += "\n size of considered minor(s): "; |
---|
487 | sprintf(h, "%d", _minorSize); s += h; |
---|
488 | s += "x"; |
---|
489 | s += h; |
---|
490 | return s; |
---|
491 | } |
---|
492 | |
---|
493 | bool PolyMinorProcessor::isEntryZero (const int absoluteRowIndex, const int absoluteColumnIndex) const |
---|
494 | { |
---|
495 | return (_polyMatrix[absoluteRowIndex][absoluteColumnIndex] == NULL); |
---|
496 | } |
---|
497 | |
---|
498 | PolyMinorProcessor::~PolyMinorProcessor() { |
---|
499 | // free memory of _polyMatrix |
---|
500 | for (int i = 0; i < _rows; i++) { |
---|
501 | for (int j = 0; j < _columns; j++) { |
---|
502 | p_Delete(&_polyMatrix[i][j], currRing); |
---|
503 | } |
---|
504 | delete [] _polyMatrix[i]; _polyMatrix[i] = 0; |
---|
505 | } |
---|
506 | delete [] _polyMatrix; _polyMatrix = 0; |
---|
507 | } |
---|
508 | |
---|
509 | void PolyMinorProcessor::defineMatrix (const int numberOfRows, const int numberOfColumns, const poly* polyMatrix) { |
---|
510 | // free memory of _polyMatrix |
---|
511 | for (int i = 0; i < _rows; i++) { |
---|
512 | for (int j = 0; j < _columns; j++) |
---|
513 | p_Delete(&_polyMatrix[i][j], currRing); |
---|
514 | delete [] _polyMatrix[i]; _polyMatrix[i] = 0; |
---|
515 | } |
---|
516 | delete [] _polyMatrix; _polyMatrix = 0; |
---|
517 | |
---|
518 | _rows = numberOfRows; |
---|
519 | _columns = numberOfColumns; |
---|
520 | |
---|
521 | // allocate memory for new entries in _matrix |
---|
522 | _polyMatrix = new poly*[_rows]; |
---|
523 | for (int i = 0; i < _rows; i++) _polyMatrix[i] = new poly[_columns]; |
---|
524 | |
---|
525 | // copying values from one-dimensional method parameter "matrix" |
---|
526 | for (int r = 0; r < _rows; r++) |
---|
527 | for (int c = 0; c < _columns; c++) |
---|
528 | _polyMatrix[r][c] = pCopy(polyMatrix[r * _columns + c]); |
---|
529 | } |
---|
530 | |
---|
531 | PolyMinorValue PolyMinorProcessor::getMinor(const int dimension, const int* rowIndices, const int* columnIndices, |
---|
532 | Cache<MinorKey, PolyMinorValue>& c) { |
---|
533 | defineSubMatrix(dimension, rowIndices, dimension, columnIndices); |
---|
534 | _minorSize = dimension; |
---|
535 | // call a helper method which recursively computes the minor using the cache c: |
---|
536 | return getMinorPrivate(dimension, _container, false, c); |
---|
537 | } |
---|
538 | |
---|
539 | PolyMinorValue PolyMinorProcessor::getMinor(const int dimension, const int* rowIndices, const int* columnIndices) { |
---|
540 | defineSubMatrix(dimension, rowIndices, dimension, columnIndices); |
---|
541 | _minorSize = dimension; |
---|
542 | // call a helper method which recursively computes the minor (without using a cache): |
---|
543 | return getMinorPrivate(_minorSize, _container); |
---|
544 | } |
---|
545 | |
---|
546 | PolyMinorValue PolyMinorProcessor::getNextMinor() { |
---|
547 | // computation without cache |
---|
548 | return getMinorPrivate(_minorSize, _minor); |
---|
549 | } |
---|
550 | |
---|
551 | PolyMinorValue PolyMinorProcessor::getNextMinor(Cache<MinorKey, PolyMinorValue>& c) { |
---|
552 | // computation with cache |
---|
553 | return getMinorPrivate(_minorSize, _minor, true, c); |
---|
554 | } |
---|
555 | |
---|
556 | PolyMinorValue PolyMinorProcessor::getMinorPrivate(const int k, const MinorKey& mk) { |
---|
557 | assert(k > 0); // k is the minor's dimension; the minor must be at least 1x1 |
---|
558 | // The method works by recursion, and using Lapace's Theorem along the row/column with the most zeros. |
---|
559 | if (k == 1) { |
---|
560 | return PolyMinorValue(_polyMatrix[mk.getAbsoluteRowIndex(0)][mk.getAbsoluteColumnIndex(0)], |
---|
561 | 0, 0, 0, 0, -1, -1); // "-1" is to signal that any statistics about the |
---|
562 | // number of retrievals does not make sense, as we do not use a cache. |
---|
563 | } |
---|
564 | else { |
---|
565 | // Here, the minor must be 2x2 or larger. |
---|
566 | int b = getBestLine(k, mk); // row or column with most zeros |
---|
567 | poly result = NULL; // This will contain the value of the minor. |
---|
568 | int s = 0; int m = 0; int as = 0; int am = 0; // counters for additions and multiplications, |
---|
569 | // ..."a*" for accumulated operation counters |
---|
570 | if (b >= 0) { |
---|
571 | // This means that the best line is the row with absolute (0-based) index b. |
---|
572 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
573 | // the initial sign depends on the relative index of b in minorRowKey: |
---|
574 | int sign = (mk.getRelativeRowIndex(b) % 2 == 0 ? 1 : -1); |
---|
575 | poly signPoly = NULL; |
---|
576 | for (int c = 0; c < k; c++) { |
---|
577 | int absoluteC = mk.getAbsoluteColumnIndex(c); // This iterates over all involved columns. |
---|
578 | if (!isEntryZero(b, absoluteC)) { // Only then do we have to consider this sub-determinante. |
---|
579 | MinorKey subMk = mk.getSubMinorKey(b, absoluteC); // This is MinorKey with row b and column absoluteC omitted. |
---|
580 | PolyMinorValue mv = getMinorPrivate(k - 1, subMk); // recursive call |
---|
581 | m += mv.getMultiplications(); |
---|
582 | s += mv.getAdditions(); |
---|
583 | am += mv.getAccumulatedMultiplications(); |
---|
584 | as += mv.getAccumulatedAdditions(); |
---|
585 | pDelete(&signPoly); |
---|
586 | signPoly = pISet(sign); |
---|
587 | poly temp = pp_Mult_qq(mv.getResult(), _polyMatrix[b][absoluteC], currRing); |
---|
588 | temp = p_Mult_q(signPoly, temp, currRing); |
---|
589 | result = p_Add_q(result, temp, currRing); |
---|
590 | signPoly = NULL; |
---|
591 | s++; m++; as++, am++; // This is for the addition and multiplication in the previous line of code. |
---|
592 | } |
---|
593 | sign = - sign; // alternating the sign |
---|
594 | } |
---|
595 | } |
---|
596 | else { |
---|
597 | b = - b - 1; |
---|
598 | // This means that the best line is the column with absolute (0-based) index b. |
---|
599 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
600 | // the initial sign depends on the relative index of b in minorColumnKey: |
---|
601 | int sign = (mk.getRelativeColumnIndex(b) % 2 == 0 ? 1 : -1); |
---|
602 | poly signPoly = NULL; |
---|
603 | for (int r = 0; r < k; r++) { |
---|
604 | int absoluteR = mk.getAbsoluteRowIndex(r); // This iterates over all involved rows. |
---|
605 | if (!isEntryZero(absoluteR, b)) { // Only then do we have to consider this sub-determinante. |
---|
606 | MinorKey subMk = mk.getSubMinorKey(absoluteR, b); // This is MinorKey with row absoluteR and column b omitted. |
---|
607 | PolyMinorValue mv = getMinorPrivate(k - 1, subMk); // recursive call |
---|
608 | m += mv.getMultiplications(); |
---|
609 | s += mv.getAdditions(); |
---|
610 | am += mv.getAccumulatedMultiplications(); |
---|
611 | as += mv.getAccumulatedAdditions(); |
---|
612 | pDelete(&signPoly); |
---|
613 | signPoly = pISet(sign); |
---|
614 | poly temp = pp_Mult_qq(mv.getResult(), _polyMatrix[absoluteR][b], currRing); |
---|
615 | temp = p_Mult_q(signPoly, temp, currRing); |
---|
616 | result = p_Add_q(result, temp, currRing); |
---|
617 | signPoly = NULL; |
---|
618 | s++; m++; as++, am++; // This is for the addition and multiplication in the previous line of code. |
---|
619 | } |
---|
620 | sign = - sign; // alternating the sign |
---|
621 | } |
---|
622 | } |
---|
623 | s--; as--; // first addition was 0 + ..., so we do not count it |
---|
624 | if (s < 0) s = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
625 | if (as < 0) as = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
626 | PolyMinorValue newMV(result, m, s, am, as, -1, -1); // "-1" is to signal that any statistics about the |
---|
627 | // number of retrievals does not make sense, as we |
---|
628 | // do not use a cache. |
---|
629 | //printf("\nMINOR to put: %s", pString(result)); |
---|
630 | pDelete(&result); |
---|
631 | return newMV; |
---|
632 | } |
---|
633 | } |
---|
634 | |
---|
635 | PolyMinorValue PolyMinorProcessor::getMinorPrivate(const int k, const MinorKey& mk, |
---|
636 | const bool multipleMinors, |
---|
637 | Cache<MinorKey, PolyMinorValue>& cch) { |
---|
638 | //omUpdateInfo(); printf("\nused bytes: %12ld, called: %s (k = %d)", om_Info.UsedBytes, "getMinorPrivate", k); |
---|
639 | assert(k > 0); // k is the minor's dimension; the minor must be at least 1x1 |
---|
640 | // The method works by recursion, and using Lapace's Theorem along the row/column with the most zeros. |
---|
641 | if (k == 1) { |
---|
642 | return PolyMinorValue(_polyMatrix[mk.getAbsoluteRowIndex(0)][mk.getAbsoluteColumnIndex(0)], |
---|
643 | 0, 0, 0, 0, -1, -1); // we set "-1" as, for k == 1, we do not have any cache retrievals |
---|
644 | } |
---|
645 | else { |
---|
646 | int b = getBestLine(k, mk); // row or column with most zeros |
---|
647 | poly result = NULL; // This will contain the value of the minor. |
---|
648 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d)", om_Info.UsedBytes, "poly result = NULL;", k); |
---|
649 | int s = 0; int m = 0; int as = 0; int am = 0; // counters for additions and multiplications, |
---|
650 | // ..."a*" for accumulated operation counters |
---|
651 | if (b >= 0) { |
---|
652 | // This means that the best line is the row with absolute (0-based) index b. |
---|
653 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
654 | // the initial sign depends on the relative index of b in minorRowKey: |
---|
655 | int sign = (mk.getRelativeRowIndex(b) % 2 == 0 ? 1 : -1); |
---|
656 | poly signPoly = NULL; |
---|
657 | for (int c = 0; c < k; c++) { |
---|
658 | int absoluteC = mk.getAbsoluteColumnIndex(c); // This iterates over all involved columns. |
---|
659 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "MinorKey subMk = mk.getSubMinorKey(b, absoluteC);", k); |
---|
660 | if (!isEntryZero(b, absoluteC)) { // Only then do we have to consider this sub-determinante. |
---|
661 | PolyMinorValue mv; // for storing all intermediate minors |
---|
662 | MinorKey subMk = mk.getSubMinorKey(b, absoluteC); // This is mk with row b and column absoluteC omitted. |
---|
663 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "PolyMinorValue mv;", k); |
---|
664 | if (cch.hasKey(subMk)) { // trying to find the result in the cache |
---|
665 | mv = cch.getValue(subMk); |
---|
666 | mv.incrementRetrievals(); // once more, we made use of the cached value for key mk |
---|
667 | cch.put(subMk, mv); // We need to do this with "put", as the (altered) number of retrievals may have |
---|
668 | // an impact on the internal ordering among cache entries. |
---|
669 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "cch.put(subMk, mv);", k); |
---|
670 | } |
---|
671 | else { |
---|
672 | //omUpdateInfo(); printf("\nused bytes: %12ld, before: %s (k = %d, case 1)", om_Info.UsedBytes, "mv = getMinorPrivate(k - 1, subMk, multipleMinors, cch);", k); |
---|
673 | mv = getMinorPrivate(k - 1, subMk, multipleMinors, cch); // recursive call |
---|
674 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "mv = getMinorPrivate(k - 1, subMk, multipleMinors, cch);", k); |
---|
675 | // As this minor was not in the cache, we count the additions and |
---|
676 | // multiplications that we needed to do in the recursive call: |
---|
677 | m += mv.getMultiplications(); |
---|
678 | s += mv.getAdditions(); |
---|
679 | } |
---|
680 | // In any case, we count all nested operations in the accumulative counters: |
---|
681 | am += mv.getAccumulatedMultiplications(); |
---|
682 | as += mv.getAccumulatedAdditions(); |
---|
683 | pDelete(&signPoly); |
---|
684 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "pDelete(&signPoly);", k); |
---|
685 | signPoly = pISet(sign); |
---|
686 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "signPoly = pISet(sign);", k); |
---|
687 | //printf("\nmv.getResult() = %s", pString(mv.getResult())); |
---|
688 | poly temp = pp_Mult_qq(mv.getResult(), _polyMatrix[b][absoluteC], currRing); |
---|
689 | temp = p_Mult_q(signPoly, temp, currRing); |
---|
690 | result = p_Add_q(result, temp, currRing); |
---|
691 | //printf("\nresult = %s", pString(result)); |
---|
692 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 1)", om_Info.UsedBytes, "ops(result, signPoly, mv.getResult(), _polyMatrix[b][absoluteC]);", k); |
---|
693 | signPoly = NULL; |
---|
694 | s++; m++; as++; am++; // This is for the addition and multiplication in the previous line of code. |
---|
695 | } |
---|
696 | sign = - sign; // alternating the sign |
---|
697 | } |
---|
698 | } |
---|
699 | else { |
---|
700 | b = - b - 1; |
---|
701 | // This means that the best line is the column with absolute (0-based) index b. |
---|
702 | // Using Laplace, the sign of the contributing minors must be iterating; |
---|
703 | // the initial sign depends on the relative index of b in minorColumnKey: |
---|
704 | int sign = (mk.getRelativeColumnIndex(b) % 2 == 0 ? 1 : -1); |
---|
705 | poly signPoly = NULL; |
---|
706 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "poly signPoly = NULL;", k); |
---|
707 | for (int r = 0; r < k; r++) { |
---|
708 | int absoluteR = mk.getAbsoluteRowIndex(r); // This iterates over all involved rows. |
---|
709 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "MinorKey subMk = mk.getSubMinorKey(absoluteR, b);", k); |
---|
710 | if (!isEntryZero(absoluteR, b)) { // Only then do we have to consider this sub-determinante. |
---|
711 | PolyMinorValue mv; // for storing all intermediate minors |
---|
712 | MinorKey subMk = mk.getSubMinorKey(absoluteR, b); // This is mk with row absoluteR and column b omitted. |
---|
713 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "PolyMinorValue mv;", k); |
---|
714 | if (cch.hasKey(subMk)) { // trying to find the result in the cache |
---|
715 | mv = cch.getValue(subMk); |
---|
716 | mv.incrementRetrievals(); // once more, we made use of the cached value for key mk |
---|
717 | cch.put(subMk, mv); // We need to do this with "put", as the (altered) number of retrievals may have |
---|
718 | // an impact on the internal ordering among cache entries. |
---|
719 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "cch.put(subMk, mv);", k); |
---|
720 | } |
---|
721 | else { |
---|
722 | mv = getMinorPrivate(k - 1, subMk, multipleMinors, cch); // recursive call |
---|
723 | // As this minor was not in the cache, we count the additions and |
---|
724 | // multiplications that we needed to do in the recursive call: |
---|
725 | m += mv.getMultiplications(); |
---|
726 | s += mv.getAdditions(); |
---|
727 | } |
---|
728 | // In any case, we count all nested operations in the accumulative counters: |
---|
729 | am += mv.getAccumulatedMultiplications(); |
---|
730 | as += mv.getAccumulatedAdditions(); |
---|
731 | pDelete(&signPoly); |
---|
732 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "pDelete(&signPoly);", k); |
---|
733 | signPoly = pISet(sign); |
---|
734 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "signPoly = pISet(sign);", k); |
---|
735 | poly temp = pp_Mult_qq(mv.getResult(), _polyMatrix[absoluteR][b], currRing); |
---|
736 | temp = p_Mult_q(signPoly, temp, currRing); |
---|
737 | result = p_Add_q(result, temp, currRing); |
---|
738 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d, case 2)", om_Info.UsedBytes, "ops(result, signPoly, mv.getResult(), _polyMatrix[absoluteR][b]);", k); |
---|
739 | signPoly = NULL; |
---|
740 | s++; m++; as++; am++; // This is for the addition and multiplication in the previous line of code. |
---|
741 | } |
---|
742 | sign = - sign; // alternating the sign |
---|
743 | } |
---|
744 | } |
---|
745 | // Let's cache the newly computed minor: |
---|
746 | int potentialRetrievals = NumberOfRetrievals(_containerRows, _containerColumns, _minorSize, k, multipleMinors); |
---|
747 | s--; as--; // first addition was 0 + ..., so we do not count it |
---|
748 | if (s < 0) s = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
749 | if (as < 0) as = 0; // may happen when all subminors are zero and no addition needs to be performed |
---|
750 | PolyMinorValue newMV(result, m, s, am, as, 1, potentialRetrievals); |
---|
751 | //printf("\nMINOR to put: %s", pString(result)); |
---|
752 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d)", om_Info.UsedBytes, "PolyMinorValue newMV(result, m, s, am, as, 1, potentialRetrievals);", k); |
---|
753 | pDelete(&result); result = NULL; |
---|
754 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d)", om_Info.UsedBytes, "pDelete(&result);", k); |
---|
755 | cch.put(mk, newMV); // Here's the actual put inside the cache. |
---|
756 | //omUpdateInfo(); printf("\nused bytes: %12ld, after: %s (k = %d)", om_Info.UsedBytes, "cch.put(mk, newMV);", k); |
---|
757 | return newMV; |
---|
758 | } |
---|
759 | } |
---|
760 | |
---|
761 | #endif // HAVE_MINOR |
---|
762 | |
---|
763 | |
---|
764 | |
---|
765 | |
---|