1 | #include <bbcone.h> |
---|
2 | #include <kernel/polys.h> |
---|
3 | #include <kernel/kstd1.h> |
---|
4 | #include <libpolys/polys/prCopy.h> |
---|
5 | |
---|
6 | #if 0 |
---|
7 | // /*** |
---|
8 | // * Creates an int* representing the transposition of the last two variables |
---|
9 | // **/ |
---|
10 | // static inline int* createPermutationVectorForSaturation(static const ring &r) |
---|
11 | // { |
---|
12 | // int* w = (int*) omAlloc0((rVar(r)+1)*sizeof(int)); |
---|
13 | // for (int i=1; i<=rVar(r)-2; i++) |
---|
14 | // w[i] = i; |
---|
15 | // w[rVar(r)-1] = rVar(r); |
---|
16 | // w[rVar(r)] = rVar(r)-1; |
---|
17 | // } |
---|
18 | |
---|
19 | |
---|
20 | /*** |
---|
21 | * Creates an int* representing the permutation |
---|
22 | * 1 -> 1, ..., i-1 -> i-1, i -> n, i+1 -> n-1, ... , n -> i |
---|
23 | **/ |
---|
24 | static inline int* createPermutationVectorForSaturation(const ring &r, const int i) |
---|
25 | { |
---|
26 | int* sigma = (int*) omAlloc0((rVar(r)+1)*sizeof(int)); |
---|
27 | int j; |
---|
28 | for (j=1; j<i; j++) |
---|
29 | sigma[j] = j; |
---|
30 | for (; j<=rVar(r); j++) |
---|
31 | sigma[j] = rVar(r)-j+i; |
---|
32 | return(sigma); |
---|
33 | } |
---|
34 | |
---|
35 | |
---|
36 | /*** |
---|
37 | * Changes the int* representing the permutation |
---|
38 | * 1 -> 1, ..., i -> i, i+1 -> n, i+2 -> n-1, ... , n -> i+1 |
---|
39 | * to an int* representing the permutation |
---|
40 | * 1 -> 1, ..., i-1 -> i-1, i -> n, i+1 -> n-1, ... , n -> i |
---|
41 | **/ |
---|
42 | static void changePermutationVectorForSaturation(int* sigma, const ring &r, const int i) |
---|
43 | { |
---|
44 | for (int j=i; j<rVar(r); j++) |
---|
45 | sigma[j] = rVar(r)-j+i; |
---|
46 | sigma[rVar(r)] = i; |
---|
47 | } |
---|
48 | |
---|
49 | |
---|
50 | /*** |
---|
51 | * returns a ring in which the weights of the ring variables are permuted |
---|
52 | * if handed over a poly in which the variables are permuted, this is basically |
---|
53 | * as good as permuting the variables of the ring itself. |
---|
54 | **/ |
---|
55 | static ring permuteWeighstOfRingVariables(const ring &r, const int* const sigma) |
---|
56 | { |
---|
57 | ring s = rCopy0(r); |
---|
58 | for (int j=0; j<rVar(r); j++) |
---|
59 | { |
---|
60 | s->wvhdl[0][j] = r->wvhdl[0][sigma[j+1]]; |
---|
61 | s->wvhdl[1][j] = r->wvhdl[1][sigma[j+1]]; |
---|
62 | } |
---|
63 | rComplete(s,1); |
---|
64 | return s; |
---|
65 | } |
---|
66 | |
---|
67 | |
---|
68 | /*** |
---|
69 | * creates a ring s that is a copy of r except with ordering wp(w) |
---|
70 | **/ |
---|
71 | static inline ring createInitialRingForSaturation(const ring &r, const gfan::ZVector &w, bool &ok) |
---|
72 | { |
---|
73 | assume(rVar(r) == (int) w.size()); |
---|
74 | |
---|
75 | ring s = rCopy0(r); int i; |
---|
76 | for (i=0; s->order[i]; i++) |
---|
77 | omFreeSize(s->wvhdl[i],rVar(r)*sizeof(int)); |
---|
78 | i++; |
---|
79 | omFreeSize(s->order,i*sizeof(int)); |
---|
80 | s->order = (int*) omAlloc0(3*sizeof(int)); |
---|
81 | omFreeSize(s->block0,i*sizeof(int)); |
---|
82 | s->block0 = (int*) omAlloc0(3*sizeof(int)); |
---|
83 | omFreeSize(s->block1,i*sizeof(int)); |
---|
84 | s->block1 = (int*) omAlloc0(3*sizeof(int)); |
---|
85 | omFreeSize(s->wvhdl,i*sizeof(int*)); |
---|
86 | s->wvhdl = (int**) omAlloc0(3*sizeof(int*)); |
---|
87 | |
---|
88 | s->order[0] = ringorder_wp; |
---|
89 | s->block0[0] = 1; |
---|
90 | s->block1[0] = rVar(r); |
---|
91 | s->wvhdl[0] = ZVectorToIntStar(w,ok); |
---|
92 | s->order[1]=ringorder_C; |
---|
93 | |
---|
94 | rComplete(s,1); |
---|
95 | return s; |
---|
96 | } |
---|
97 | |
---|
98 | |
---|
99 | /*** |
---|
100 | * Given an weighted homogeneous ideal I with respect to weight w |
---|
101 | * that in standard basis form with respect to the ordering ws(-w), |
---|
102 | * derives the standard basis of I:<x_n>^\infty |
---|
103 | * and returns a long k such that I:<x_n>^\infty=I:<x_n>^k |
---|
104 | **/ |
---|
105 | static long deriveStandardBasisOfSaturation(ideal &I, ring &r) |
---|
106 | { |
---|
107 | long k=0, l; poly current; |
---|
108 | for (int i=0; i<IDELEMS(I); i++) |
---|
109 | { |
---|
110 | current = I->m[i]; |
---|
111 | l = p_GetExp(current,rVar(r),r); |
---|
112 | if (k<l) k=l; |
---|
113 | while (current) |
---|
114 | { |
---|
115 | p_SubExp(current,rVar(r),l,r); p_Setm(current,r); |
---|
116 | pIter(current); |
---|
117 | } |
---|
118 | } |
---|
119 | return k; |
---|
120 | } |
---|
121 | |
---|
122 | |
---|
123 | /*** |
---|
124 | * Given a weighted homogeneous ideal I with respect to weight w |
---|
125 | * with constant first element, |
---|
126 | * returns NULL if I does not contain a monomial |
---|
127 | * otherwise returns the monomial contained in I |
---|
128 | **/ |
---|
129 | poly checkForMonomialsViaStepwiseSaturation(const ideal &I, const gfan::ZVector &w) |
---|
130 | { |
---|
131 | // assume(rField_is_Ring_Z(currRing)); |
---|
132 | |
---|
133 | // first we switch to the ground field currRing->cf / I->m[0] |
---|
134 | ring r = rCopy0(currRing); |
---|
135 | nKillChar(r->cf); |
---|
136 | r->cf = nInitChar(n_Zp,(void*)(long)n_Int(p_GetCoeff(I->m[0],currRing),currRing->cf)); |
---|
137 | rComplete(r); |
---|
138 | |
---|
139 | ideal J = id_Copy(I, currRing); poly cache; number temp; |
---|
140 | for (int i=0; i<IDELEMS(I); i++) |
---|
141 | { |
---|
142 | cache = J->m[i]; |
---|
143 | while (cache) |
---|
144 | { |
---|
145 | // TODO: temp = npMapGMP(p_GetCoeff(cache,currRing),currRing->cf,r->cf); |
---|
146 | p_SetCoeff(cache,temp,r); pIter(cache); |
---|
147 | } |
---|
148 | } |
---|
149 | |
---|
150 | J = kStd(J,NULL,isHomog,NULL); |
---|
151 | |
---|
152 | bool b = false; |
---|
153 | ring s = createInitialRingForSaturation(currRing, w, b); |
---|
154 | if (b) |
---|
155 | { |
---|
156 | WerrorS("containsMonomial: overflow in weight vector"); |
---|
157 | return NULL; |
---|
158 | } |
---|
159 | |
---|
160 | return NULL; |
---|
161 | } |
---|
162 | #endif |
---|
163 | |
---|
164 | |
---|
165 | poly checkForMonomialViaSuddenSaturation(const ideal I, const ring r) |
---|
166 | { |
---|
167 | ring origin = currRing; |
---|
168 | ideal M = idInit(1); |
---|
169 | M->m[0] = p_Init(r); |
---|
170 | for (int i=1; i<=rVar(r); i++) |
---|
171 | p_SetExp(M->m[0],i,1,r); |
---|
172 | p_SetCoeff(M->m[0],n_Init(1,r->cf),r); |
---|
173 | p_Setm(M->m[0],r); p_Test(M->m[0],r); |
---|
174 | |
---|
175 | ideal J = id_Copy(I,r); bool b; int k = 0; |
---|
176 | if (currRing != r) rChangeCurrRing(r); |
---|
177 | intvec* nullVector = NULL; |
---|
178 | do |
---|
179 | { |
---|
180 | ideal Jstd = kStd(J,currQuotient,testHomog,&nullVector); |
---|
181 | ideal JquotM = idQuot(Jstd,M,true,true); k++; |
---|
182 | ideal JquotMredJ = kNF(JquotM,currQuotient,Jstd); |
---|
183 | b = idIs0(JquotMredJ); |
---|
184 | id_Delete(&Jstd,r); id_Delete(&J,r); J = JquotM; |
---|
185 | id_Delete(&JquotMredJ,r); |
---|
186 | } while (!b); |
---|
187 | |
---|
188 | if (currRing != origin) rChangeCurrRing(origin); |
---|
189 | poly monom = NULL; |
---|
190 | if (id_IsConstant(J,r)) |
---|
191 | { |
---|
192 | monom = p_Init(r); |
---|
193 | for (int i=1; i<=rVar(r); i++) |
---|
194 | p_SetExp(monom,i,k,r); |
---|
195 | p_SetCoeff(monom,n_Init(1,r->cf),r); |
---|
196 | p_Setm(monom,r); |
---|
197 | } |
---|
198 | id_Delete(&M,r); |
---|
199 | id_Delete(&J,r); |
---|
200 | return monom; |
---|
201 | } |
---|
202 | |
---|
203 | |
---|
204 | BOOLEAN checkForMonomial(leftv res, leftv args) |
---|
205 | { |
---|
206 | leftv u = args; |
---|
207 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
208 | { |
---|
209 | ideal I; poly monom; |
---|
210 | omUpdateInfo(); |
---|
211 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
212 | I = (ideal) u->CopyD(); |
---|
213 | monom = checkForMonomialViaSuddenSaturation(I,currRing); |
---|
214 | id_Delete(&I,currRing); |
---|
215 | p_Delete(&monom,currRing); |
---|
216 | omUpdateInfo(); |
---|
217 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
218 | I = (ideal) u->Data(); |
---|
219 | res->rtyp = POLY_CMD; |
---|
220 | res->data = (char*) checkForMonomialViaSuddenSaturation(I,currRing); |
---|
221 | return FALSE; |
---|
222 | } |
---|
223 | return TRUE; |
---|
224 | } |
---|