1 | #include <kernel/polys.h> |
---|
2 | #include <Singular/ipid.h> |
---|
3 | |
---|
4 | #include <libpolys/polys/monomials/ring.h> |
---|
5 | #include <kernel/ideals.h> |
---|
6 | #include <gfanlib/gfanlib.h> |
---|
7 | |
---|
8 | #include <callgfanlib_conversion.h> |
---|
9 | #include <groebnerCone.h> |
---|
10 | #include <initial.h> |
---|
11 | |
---|
12 | /*** |
---|
13 | * Computes the Groebner cone of a polynomial g in ring r containing w relatively. |
---|
14 | * Assumes that r has a weighted ordering with weight in the said Groebner cone. |
---|
15 | **/ |
---|
16 | gfan::ZCone sloppyGroebnerCone(const poly g, const ring r, const gfan::ZVector w) |
---|
17 | { |
---|
18 | int n = r->N; |
---|
19 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
20 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
21 | |
---|
22 | int* expv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
23 | p_GetExpV(g,expv,r); |
---|
24 | gfan::ZVector leadexp = intStar2ZVector(n,expv); |
---|
25 | long d = wDeg(g,r,w); |
---|
26 | |
---|
27 | poly h=g->next; |
---|
28 | for (; h && wDeg(h,r,w)==d; pIter(h)) |
---|
29 | { |
---|
30 | p_GetExpV(h,expv,r); |
---|
31 | equations.appendRow(leadexp-intStar2ZVector(n,expv)); |
---|
32 | } |
---|
33 | |
---|
34 | for (; h; pIter(h)) |
---|
35 | { |
---|
36 | p_GetExpV(h,expv,r); |
---|
37 | inequalities.appendRow(leadexp-intStar2ZVector(n,expv)); |
---|
38 | } |
---|
39 | |
---|
40 | omFreeSize(expv,(n+1)*sizeof(int)); |
---|
41 | return gfan::ZCone(inequalities,equations); |
---|
42 | } |
---|
43 | |
---|
44 | /*** |
---|
45 | * Computes the Groebner cone of an ideal I in ring r containing w relatively. |
---|
46 | * Assumes that r has a weighted ordering with weight in the said Groebner cone. |
---|
47 | **/ |
---|
48 | gfan::ZCone sloppyGroebnerCone(const ideal I, const ring r, const gfan::ZVector w) |
---|
49 | { |
---|
50 | int k = idSize(I); |
---|
51 | gfan::ZCone zc = gfan::ZCone(r->N); |
---|
52 | for (int i=0; i<k; i++) |
---|
53 | zc = intersection(zc,sloppyGroebnerCone(I->m[i],r,w)); |
---|
54 | return zc; |
---|
55 | } |
---|
56 | |
---|
57 | /*** |
---|
58 | * Computes the Groebner cone of a polynomial g in ring r containing w relatively. |
---|
59 | **/ |
---|
60 | gfan::ZCone groebnerCone(const poly g, const ring r, const gfan::ZVector w) |
---|
61 | { |
---|
62 | int n = r->N; |
---|
63 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
64 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
65 | |
---|
66 | int* expv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
67 | p_GetExpV(g,expv,r); |
---|
68 | gfan::ZVector leadexp = intStar2ZVector(n,expv); |
---|
69 | long d = wDeg(g,r,w); |
---|
70 | |
---|
71 | for (poly h=g->next; h; pIter(h)) |
---|
72 | { |
---|
73 | p_GetExpV(h,expv,r); |
---|
74 | if (wDeg(h,r,w)<d) |
---|
75 | inequalities.appendRow(leadexp-intStar2ZVector(n,expv)); |
---|
76 | else |
---|
77 | equations.appendRow(leadexp-intStar2ZVector(n,expv)); |
---|
78 | } |
---|
79 | |
---|
80 | omFreeSize(expv,(n+1)*sizeof(int)); |
---|
81 | return gfan::ZCone(inequalities,equations); |
---|
82 | } |
---|
83 | |
---|
84 | /*** |
---|
85 | * Computes the Groebner cone of an ideal I in ring r containing w relatively. |
---|
86 | * Assumes that r has a weighted ordering with weight in the said Groebner cone. |
---|
87 | **/ |
---|
88 | gfan::ZCone groebnerCone(const ideal I, const ring r, const gfan::ZVector w) |
---|
89 | { |
---|
90 | int k = idSize(I); |
---|
91 | gfan::ZCone zc = gfan::ZCone(r->N); |
---|
92 | for (int i=0; i<k; i++) |
---|
93 | zc = intersection(zc,groebnerCone(I->m[i],r,w)); |
---|
94 | return zc; |
---|
95 | } |
---|
96 | |
---|
97 | groebnerConeData::groebnerConeData(): |
---|
98 | I(NULL), |
---|
99 | r(NULL), |
---|
100 | c(gfan::ZCone(0)), |
---|
101 | p(gfan::ZVector(0)) |
---|
102 | { |
---|
103 | } |
---|
104 | |
---|
105 | groebnerConeData::groebnerConeData(const groebnerConeData &sigma): |
---|
106 | I(id_Copy(sigma.getIdeal(),sigma.getRing())), |
---|
107 | r(rCopy(sigma.getRing())), |
---|
108 | c(gfan::ZCone(sigma.getCone())), |
---|
109 | p(gfan::ZVector(sigma.getInteriorPoint())) |
---|
110 | { |
---|
111 | } |
---|
112 | |
---|
113 | groebnerConeData::groebnerConeData(const ideal &J, const ring &s, const gfan::ZCone &d, const gfan::ZVector &q): |
---|
114 | I(J), |
---|
115 | r(s), |
---|
116 | c(d), |
---|
117 | p(q) |
---|
118 | { |
---|
119 | } |
---|
120 | |
---|
121 | groebnerConeData::groebnerConeData(const ideal &J, const ring &s): |
---|
122 | I(J), |
---|
123 | r(s) |
---|
124 | { |
---|
125 | } |
---|
126 | |
---|
127 | groebnerConeData::~groebnerConeData() |
---|
128 | { |
---|
129 | id_Delete(&I,r); |
---|
130 | rDelete(r); |
---|
131 | } |
---|
132 | |
---|
133 | |
---|
134 | groebnerConeData maximalGroebnerConeData(ideal I, const ring r) |
---|
135 | { |
---|
136 | int n = rVar(r); |
---|
137 | poly g = NULL; |
---|
138 | int* leadexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
139 | int* tailexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
140 | gfan::ZVector leadexpw = gfan::ZVector(n); |
---|
141 | gfan::ZVector tailexpw = gfan::ZVector(n); |
---|
142 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
143 | for (int i=0; i<IDELEMS(I); i++) |
---|
144 | { |
---|
145 | g = (poly) I->m[i]; pGetExpV(g,leadexpv); |
---|
146 | leadexpw = intStar2ZVector(n, leadexpv); |
---|
147 | pIter(g); |
---|
148 | while (g != NULL) |
---|
149 | { |
---|
150 | pGetExpV(g,tailexpv); |
---|
151 | tailexpw = intStar2ZVector(n, tailexpv); |
---|
152 | inequalities.appendRow(leadexpw-tailexpw); |
---|
153 | pIter(g); |
---|
154 | } |
---|
155 | } |
---|
156 | omFreeSize(leadexpv,(n+1)*sizeof(int)); |
---|
157 | omFreeSize(tailexpv,(n+1)*sizeof(int)); |
---|
158 | gfan::ZCone zc = gfan::ZCone(inequalities,gfan::ZMatrix(0, inequalities.getWidth())); |
---|
159 | gfan::ZVector p = zc.getRelativeInteriorPoint(); |
---|
160 | return groebnerConeData(I,r,zc,p); |
---|
161 | } |
---|