1 | #include <utility> |
---|
2 | |
---|
3 | #include <kernel/kstd1.h> |
---|
4 | #include <kernel/ideals.h> |
---|
5 | #include <Singular/ipid.h> |
---|
6 | |
---|
7 | #include <libpolys/polys/monomials/p_polys.h> |
---|
8 | #include <libpolys/polys/monomials/ring.h> |
---|
9 | #include <libpolys/polys/prCopy.h> |
---|
10 | |
---|
11 | #include <gfanlib/gfanlib.h> |
---|
12 | #include <gfanlib/gfanlib_matrix.h> |
---|
13 | |
---|
14 | #include <tropicalStrategy.h> |
---|
15 | #include <groebnerCone.h> |
---|
16 | #include <callgfanlib_conversion.h> |
---|
17 | #include <containsMonomial.h> |
---|
18 | #include <initial.h> |
---|
19 | #include <flip.h> |
---|
20 | #include <tropicalCurves.h> |
---|
21 | #include <bbcone.h> |
---|
22 | |
---|
23 | static bool checkPolynomialInput(const ideal I, const ring r) |
---|
24 | { |
---|
25 | if (r) rTest(r); |
---|
26 | if (I && r) id_Test(I,r); |
---|
27 | return ((!I) || (I && r)); |
---|
28 | } |
---|
29 | |
---|
30 | static bool checkOrderingAndCone(const ring r, const gfan::ZCone zc) |
---|
31 | { |
---|
32 | if (r) |
---|
33 | { |
---|
34 | int n = rVar(r); int* w = r->wvhdl[0]; |
---|
35 | gfan::ZVector v = wvhdlEntryToZVector(n,w); |
---|
36 | if (!zc.contains(v)) |
---|
37 | { |
---|
38 | std::cout << "ERROR: weight of ordering not inside Groebner cone!" << std::endl |
---|
39 | << "cone: " << std::endl |
---|
40 | << toString(&zc) |
---|
41 | << "weight: " << std::endl |
---|
42 | << v << std::endl; |
---|
43 | } |
---|
44 | return zc.contains(v); |
---|
45 | } |
---|
46 | return (zc.dimension()==0); |
---|
47 | } |
---|
48 | |
---|
49 | static bool checkPolyhedralInput(const gfan::ZCone zc, const gfan::ZVector p) |
---|
50 | { |
---|
51 | return zc.containsRelatively(p); |
---|
52 | } |
---|
53 | |
---|
54 | groebnerCone::groebnerCone(): |
---|
55 | polynomialIdeal(NULL), |
---|
56 | polynomialRing(NULL), |
---|
57 | polyhedralCone(gfan::ZCone(0)), |
---|
58 | interiorPoint(gfan::ZVector(0)), |
---|
59 | currentStrategy(NULL) |
---|
60 | { |
---|
61 | } |
---|
62 | |
---|
63 | groebnerCone::groebnerCone(const ideal I, const ring r, const tropicalStrategy& currentCase): |
---|
64 | polynomialIdeal(NULL), |
---|
65 | polynomialRing(NULL), |
---|
66 | currentStrategy(¤tCase) |
---|
67 | { |
---|
68 | assume(checkPolynomialInput(I,r)); |
---|
69 | if (I) polynomialIdeal = id_Copy(I,r); |
---|
70 | if (r) polynomialRing = rCopy(r); |
---|
71 | |
---|
72 | int n = rVar(polynomialRing); |
---|
73 | poly g = NULL; |
---|
74 | int* leadexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
75 | int* tailexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
76 | gfan::ZVector leadexpw = gfan::ZVector(n); |
---|
77 | gfan::ZVector tailexpw = gfan::ZVector(n); |
---|
78 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
79 | for (int i=0; i<idSize(polynomialIdeal); i++) |
---|
80 | { |
---|
81 | g = polynomialIdeal->m[i]; |
---|
82 | pGetExpV(g,leadexpv); |
---|
83 | leadexpw = intStar2ZVector(n, leadexpv); |
---|
84 | pIter(g); |
---|
85 | while (g) |
---|
86 | { |
---|
87 | pGetExpV(g,tailexpv); |
---|
88 | tailexpw = intStar2ZVector(n, tailexpv); |
---|
89 | inequalities.appendRow(leadexpw-tailexpw); |
---|
90 | pIter(g); |
---|
91 | } |
---|
92 | } |
---|
93 | omFreeSize(leadexpv,(n+1)*sizeof(int)); |
---|
94 | omFreeSize(tailexpv,(n+1)*sizeof(int)); |
---|
95 | polyhedralCone = gfan::ZCone(inequalities,gfan::ZMatrix(0, inequalities.getWidth())); |
---|
96 | interiorPoint = polyhedralCone.getRelativeInteriorPoint(); |
---|
97 | assume(checkOrderingAndCone(polynomialRing,polyhedralCone)); |
---|
98 | } |
---|
99 | |
---|
100 | static bool checkOrderingAndWeight(const ideal I, const ring r, const gfan::ZVector w, const tropicalStrategy& currentCase) |
---|
101 | { |
---|
102 | groebnerCone sigma(I,r,currentCase); |
---|
103 | gfan::ZCone zc = sigma.getPolyhedralCone(); |
---|
104 | return zc.contains(w); |
---|
105 | } |
---|
106 | |
---|
107 | groebnerCone::groebnerCone(const ideal I, const ring r, const gfan::ZVector& w, const tropicalStrategy& currentCase): |
---|
108 | polynomialIdeal(NULL), |
---|
109 | polynomialRing(NULL), |
---|
110 | currentStrategy(¤tCase) |
---|
111 | { |
---|
112 | assume(checkPolynomialInput(I,r)); |
---|
113 | if (I) polynomialIdeal = id_Copy(I,r); |
---|
114 | if (r) polynomialRing = rCopy(r); |
---|
115 | |
---|
116 | int n = rVar(r); |
---|
117 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
118 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
119 | int* expv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
120 | for (int i=0; i<idSize(polynomialIdeal); i++) |
---|
121 | { |
---|
122 | poly g = polynomialIdeal->m[i]; |
---|
123 | p_GetExpV(g,expv,polynomialRing); |
---|
124 | gfan::ZVector leadexpv = intStar2ZVector(n,expv); |
---|
125 | long d = wDeg(g,polynomialRing,w); |
---|
126 | for (pIter(g); g; pIter(g)) |
---|
127 | { |
---|
128 | p_GetExpV(g,expv,polynomialRing); |
---|
129 | gfan::ZVector tailexpv = intStar2ZVector(n,expv); |
---|
130 | if (wDeg(g,polynomialRing,w)==d) |
---|
131 | equations.appendRow(leadexpv-tailexpv); |
---|
132 | else |
---|
133 | { |
---|
134 | assume(wDeg(g,polynomialRing,w)<d); |
---|
135 | inequalities.appendRow(leadexpv-tailexpv); |
---|
136 | } |
---|
137 | } |
---|
138 | } |
---|
139 | omFreeSize(expv,(n+1)*sizeof(int)); |
---|
140 | |
---|
141 | polyhedralCone = gfan::ZCone(inequalities,equations); |
---|
142 | interiorPoint = polyhedralCone.getRelativeInteriorPoint(); |
---|
143 | assume(checkOrderingAndCone(polynomialRing,polyhedralCone)); |
---|
144 | } |
---|
145 | |
---|
146 | groebnerCone::groebnerCone(const ideal I, const ideal inI, const ring r, const tropicalStrategy& currentCase): |
---|
147 | polynomialIdeal(id_Copy(I,r)), |
---|
148 | polynomialRing(rCopy(r)), |
---|
149 | currentStrategy(¤tCase) |
---|
150 | { |
---|
151 | assume(checkPolynomialInput(I,r)); |
---|
152 | assume(checkPolynomialInput(inI,r)); |
---|
153 | int n = rVar(r); |
---|
154 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
155 | int* expv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
156 | for (int i=0; i<idSize(inI); i++) |
---|
157 | { |
---|
158 | poly g = inI->m[i]; |
---|
159 | p_GetExpV(g,expv,r); |
---|
160 | gfan::ZVector leadexpv = intStar2ZVector(n,expv); |
---|
161 | for (pIter(g); g; pIter(g)) |
---|
162 | { |
---|
163 | p_GetExpV(g,expv,r); |
---|
164 | gfan::ZVector tailexpv = intStar2ZVector(n,expv); |
---|
165 | equations.appendRow(leadexpv-tailexpv); |
---|
166 | } |
---|
167 | } |
---|
168 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
169 | for (int i=0; i<idSize(I); i++) |
---|
170 | { |
---|
171 | poly g = I->m[i]; |
---|
172 | p_GetExpV(g,expv,r); |
---|
173 | gfan::ZVector leadexpv = intStar2ZVector(n,expv); |
---|
174 | for (pIter(g); g; pIter(g)) |
---|
175 | { |
---|
176 | p_GetExpV(g,expv,r); |
---|
177 | gfan::ZVector tailexpv = intStar2ZVector(n,expv); |
---|
178 | inequalities.appendRow(leadexpv-tailexpv); |
---|
179 | } |
---|
180 | } |
---|
181 | omFreeSize(expv,(n+1)*sizeof(int)); |
---|
182 | |
---|
183 | polyhedralCone = gfan::ZCone(inequalities,equations); |
---|
184 | interiorPoint = polyhedralCone.getRelativeInteriorPoint(); |
---|
185 | assume(checkOrderingAndCone(polynomialRing,polyhedralCone)); |
---|
186 | } |
---|
187 | |
---|
188 | groebnerCone::groebnerCone(const groebnerCone &sigma): |
---|
189 | polynomialIdeal(NULL), |
---|
190 | polynomialRing(NULL), |
---|
191 | polyhedralCone(gfan::ZCone(sigma.getPolyhedralCone())), |
---|
192 | interiorPoint(gfan::ZVector(sigma.getInteriorPoint())), |
---|
193 | currentStrategy(sigma.getTropicalStrategy()) |
---|
194 | { |
---|
195 | assume(checkPolynomialInput(sigma.getPolynomialIdeal(),sigma.getPolynomialRing())); |
---|
196 | assume(checkOrderingAndCone(sigma.getPolynomialRing(),sigma.getPolyhedralCone())); |
---|
197 | assume(checkPolyhedralInput(sigma.getPolyhedralCone(),sigma.getInteriorPoint())); |
---|
198 | if (sigma.getPolynomialIdeal()) polynomialIdeal = id_Copy(sigma.getPolynomialIdeal(),sigma.getPolynomialRing()); |
---|
199 | if (sigma.getPolynomialRing()) polynomialRing = rCopy(sigma.getPolynomialRing()); |
---|
200 | } |
---|
201 | |
---|
202 | groebnerCone::~groebnerCone() |
---|
203 | { |
---|
204 | assume(checkPolynomialInput(polynomialIdeal,polynomialRing)); |
---|
205 | assume(checkOrderingAndCone(polynomialRing,polyhedralCone)); |
---|
206 | assume(checkPolyhedralInput(polyhedralCone,interiorPoint)); |
---|
207 | if (polynomialIdeal) id_Delete(&polynomialIdeal,polynomialRing); |
---|
208 | if (polynomialRing) rDelete(polynomialRing); |
---|
209 | } |
---|
210 | |
---|
211 | groebnerCone& groebnerCone::operator=(const groebnerCone& sigma) |
---|
212 | { |
---|
213 | assume(checkPolynomialInput(sigma.getPolynomialIdeal(),sigma.getPolynomialRing())); |
---|
214 | assume(checkOrderingAndCone(sigma.getPolynomialRing(),sigma.getPolyhedralCone())); |
---|
215 | assume(checkPolyhedralInput(sigma.getPolyhedralCone(),sigma.getInteriorPoint())); |
---|
216 | if (sigma.getPolynomialIdeal()) polynomialIdeal = id_Copy(sigma.getPolynomialIdeal(),sigma.getPolynomialRing()); |
---|
217 | if (sigma.getPolynomialRing()) polynomialRing = rCopy(sigma.getPolynomialRing()); |
---|
218 | polyhedralCone = sigma.getPolyhedralCone(); |
---|
219 | interiorPoint = sigma.getInteriorPoint(); |
---|
220 | currentStrategy = sigma.getTropicalStrategy(); |
---|
221 | return *this; |
---|
222 | } |
---|
223 | |
---|
224 | |
---|
225 | /*** |
---|
226 | * Returns a point in the tropical variety, if the groebnerCone contains one. |
---|
227 | * Returns an empty vector otherwise. |
---|
228 | **/ |
---|
229 | gfan::ZVector groebnerCone::tropicalPoint() const |
---|
230 | { |
---|
231 | ideal I = polynomialIdeal; |
---|
232 | ring r = polynomialRing; |
---|
233 | gfan::ZCone zc = polyhedralCone; |
---|
234 | gfan::ZMatrix R = zc.extremeRays(); |
---|
235 | assume(checkOrderingAndCone(r,zc)); |
---|
236 | for (int i=0; i<R.getHeight(); i++) |
---|
237 | { |
---|
238 | ideal inI = initial(I,r,R[i]); |
---|
239 | poly s = checkForMonomialViaSuddenSaturation(inI,r); |
---|
240 | id_Delete(&inI,r); |
---|
241 | if (s == NULL) |
---|
242 | { |
---|
243 | p_Delete(&s,r); |
---|
244 | return R[i]; |
---|
245 | } |
---|
246 | p_Delete(&s,r); |
---|
247 | } |
---|
248 | return gfan::ZVector(); |
---|
249 | } |
---|
250 | |
---|
251 | bool groebnerCone::checkFlipConeInput(const gfan::ZVector interiorPoint, const gfan::ZVector facetNormal) const |
---|
252 | { |
---|
253 | /* check first whether interiorPoint lies on the boundary of the cone */ |
---|
254 | if (!polyhedralCone.contains(interiorPoint)) |
---|
255 | { |
---|
256 | std::cout << "ERROR: interiorPoint is not contained in the Groebner cone!" << std::endl |
---|
257 | << "cone: " << std::endl |
---|
258 | << toString(&polyhedralCone) |
---|
259 | << "interiorPoint:" << std::endl |
---|
260 | << interiorPoint << std::endl; |
---|
261 | return false; |
---|
262 | } |
---|
263 | gfan::ZCone hopefullyAFacet = polyhedralCone.faceContaining(interiorPoint); |
---|
264 | if (hopefullyAFacet.dimension()!=(polyhedralCone.dimension()-1)) |
---|
265 | { |
---|
266 | std::cout << "ERROR: interiorPoint is not contained in the interior of a facet!" << std::endl |
---|
267 | << "cone: " << std::endl |
---|
268 | << toString(&polyhedralCone) |
---|
269 | << "interiorPoint:" << std::endl |
---|
270 | << interiorPoint << std::endl; |
---|
271 | return false; |
---|
272 | } |
---|
273 | /* check whether facet normal points outwards */ |
---|
274 | gfan::ZMatrix halfSpaceInequality(0,facetNormal.size()); |
---|
275 | halfSpaceInequality.appendRow(facetNormal); |
---|
276 | gfan::ZCone halfSpace = gfan::ZCone(halfSpaceInequality,gfan::ZMatrix(0,facetNormal.size())); |
---|
277 | hopefullyAFacet = intersection(polyhedralCone, halfSpace); |
---|
278 | if (hopefullyAFacet.dimension()!=(polyhedralCone.dimension()-1)) |
---|
279 | { |
---|
280 | std::cout << "ERROR: facetNormal is not pointing outwards!" << std::endl |
---|
281 | << "cone: " << std::endl |
---|
282 | << toString(&polyhedralCone) |
---|
283 | << "facetNormal:" << std::endl |
---|
284 | << facetNormal << std::endl; |
---|
285 | return false; |
---|
286 | } |
---|
287 | return true; |
---|
288 | } |
---|
289 | |
---|
290 | /*** |
---|
291 | * Given an interior point on the facet and the outer normal factor on the facet, |
---|
292 | * returns the adjacent groebnerCone sharing that facet |
---|
293 | **/ |
---|
294 | groebnerCone groebnerCone::flipCone(const gfan::ZVector interiorPoint, const gfan::ZVector facetNormal) const |
---|
295 | { |
---|
296 | assume(this->checkFlipConeInput(interiorPoint,facetNormal)); |
---|
297 | /* Note: the polynomial ring created will have a weighted ordering with respect to interiorPoint |
---|
298 | * and with a weighted ordering with respect to facetNormal as tiebreaker. |
---|
299 | * Hence it is sufficient to compute the initial form with respect to facetNormal, |
---|
300 | * to obtain an initial form with respect to interiorPoint+e*facetNormal, |
---|
301 | * for e>0 sufficiently small */ |
---|
302 | std::pair<ideal,ring> flipped = flip(polynomialIdeal,polynomialRing,interiorPoint,facetNormal,*currentStrategy); |
---|
303 | assume(checkPolynomialInput(flipped.first,flipped.second)); |
---|
304 | groebnerCone flippedCone(flipped.first, flipped.second, facetNormal, *currentStrategy); |
---|
305 | return flippedCone; |
---|
306 | } |
---|
307 | |
---|
308 | |
---|
309 | /*** |
---|
310 | * Computes a relative interior point and an outer normal vector for each facet of zc |
---|
311 | **/ |
---|
312 | static std::pair<gfan::ZMatrix,gfan::ZMatrix> interiorPointsAndNormalsOfFacets(const gfan::ZCone zc) |
---|
313 | { |
---|
314 | gfan::ZMatrix inequalities = zc.getFacets(); |
---|
315 | gfan::ZMatrix equations = zc.getImpliedEquations(); |
---|
316 | int r = inequalities.getHeight(); |
---|
317 | int c = inequalities.getWidth(); |
---|
318 | |
---|
319 | /* our cone has r facets, if r==0 return empty matrices */ |
---|
320 | gfan::ZMatrix relativeInteriorPoints = gfan::ZMatrix(0,c); |
---|
321 | gfan::ZMatrix outerFacetNormals = gfan::ZMatrix(0,c); |
---|
322 | if (r==0) |
---|
323 | return std::make_pair(relativeInteriorPoints,outerFacetNormals); |
---|
324 | |
---|
325 | /* next we iterate over each of the r facets, |
---|
326 | * build the respective cone and add it to the list |
---|
327 | * this is the i=0 case */ |
---|
328 | gfan::ZMatrix newInequalities = inequalities.submatrix(1,0,r,c); |
---|
329 | gfan::ZMatrix newEquations = equations; |
---|
330 | newEquations.appendRow(inequalities[0]); |
---|
331 | gfan::ZCone facet = gfan::ZCone(newInequalities,newEquations); |
---|
332 | relativeInteriorPoints.appendRow(facet.getRelativeInteriorPoint()); |
---|
333 | assume(zc.contains(relativeInteriorPoints[0]) && !zc.containsRelatively(relativeInteriorPoints[0])); |
---|
334 | outerFacetNormals.appendRow(-inequalities[0]); |
---|
335 | |
---|
336 | /* these are the cases i=1,...,r-2 */ |
---|
337 | for (int i=1; i<r-1; i++) |
---|
338 | { |
---|
339 | newInequalities = inequalities.submatrix(0,0,i,c); |
---|
340 | newInequalities.append(inequalities.submatrix(i+1,0,r,c)); |
---|
341 | newEquations = equations; |
---|
342 | newEquations.appendRow(inequalities[i]); |
---|
343 | facet = gfan::ZCone(newInequalities,newEquations); |
---|
344 | relativeInteriorPoints.appendRow(facet.getRelativeInteriorPoint()); |
---|
345 | assume(zc.contains(relativeInteriorPoints[i]) && !zc.containsRelatively(relativeInteriorPoints[i])); |
---|
346 | outerFacetNormals.appendRow(-inequalities[i]); |
---|
347 | } |
---|
348 | |
---|
349 | /* this is the i=r-1 case */ |
---|
350 | newInequalities = inequalities.submatrix(0,0,r-1,c); |
---|
351 | newEquations = equations; |
---|
352 | newEquations.appendRow(inequalities[r-1]); |
---|
353 | facet = gfan::ZCone(newInequalities,newEquations); |
---|
354 | relativeInteriorPoints.appendRow(facet.getRelativeInteriorPoint()); |
---|
355 | assume(zc.contains(relativeInteriorPoints[r-1]) && !zc.containsRelatively(relativeInteriorPoints[r-1])); |
---|
356 | outerFacetNormals.appendRow(-inequalities[r-1]); |
---|
357 | |
---|
358 | return std::make_pair(relativeInteriorPoints,outerFacetNormals); |
---|
359 | } |
---|
360 | |
---|
361 | |
---|
362 | /*** |
---|
363 | * Returns a complete list of neighboring Groebner cones. |
---|
364 | **/ |
---|
365 | groebnerCones groebnerCone::groebnerNeighbours() const |
---|
366 | { |
---|
367 | std::pair<gfan::ZMatrix, gfan::ZMatrix> facetsData = interiorPointsAndNormalsOfFacets(polyhedralCone); |
---|
368 | gfan::ZMatrix interiorPoints = facetsData.first; |
---|
369 | gfan::ZMatrix facetNormals = facetsData.second; |
---|
370 | |
---|
371 | groebnerCones neighbours; |
---|
372 | for (int i=0; i<interiorPoints.getHeight(); i++) |
---|
373 | neighbours.insert(this->flipCone(interiorPoints[i],facetNormals[i])); |
---|
374 | |
---|
375 | return neighbours; |
---|
376 | } |
---|
377 | |
---|
378 | |
---|
379 | /*** |
---|
380 | * Computes a relative interior point for each facet of zc |
---|
381 | **/ |
---|
382 | static gfan::ZMatrix interiorPointsOfFacets(const gfan::ZCone zc) |
---|
383 | { |
---|
384 | gfan::ZMatrix inequalities = zc.getFacets(); |
---|
385 | gfan::ZMatrix equations = zc.getImpliedEquations(); |
---|
386 | int r = inequalities.getHeight(); |
---|
387 | int c = inequalities.getWidth(); |
---|
388 | |
---|
389 | /* our cone has r facets, if r==0 return empty matrices */ |
---|
390 | gfan::ZMatrix relativeInteriorPoints = gfan::ZMatrix(0,c); |
---|
391 | if (r==0) return relativeInteriorPoints; |
---|
392 | |
---|
393 | /* next we iterate over each of the r facets, |
---|
394 | * build the respective cone and add it to the list |
---|
395 | * this is the i=0 case */ |
---|
396 | gfan::ZMatrix newInequalities = inequalities.submatrix(1,0,r,c); |
---|
397 | gfan::ZMatrix newEquations = equations; |
---|
398 | newEquations.appendRow(inequalities[0]); |
---|
399 | gfan::ZCone facet = gfan::ZCone(newInequalities,newEquations); |
---|
400 | relativeInteriorPoints.appendRow(facet.getRelativeInteriorPoint()); |
---|
401 | |
---|
402 | /* these are the cases i=1,...,r-2 */ |
---|
403 | for (int i=1; i<r-1; i++) |
---|
404 | { |
---|
405 | newInequalities = inequalities.submatrix(0,0,i-1,c); |
---|
406 | newInequalities.append(inequalities.submatrix(i+1,0,r,c)); |
---|
407 | newEquations = equations; |
---|
408 | newEquations.appendRow(inequalities[i]); |
---|
409 | facet = gfan::ZCone(newInequalities,newEquations); |
---|
410 | relativeInteriorPoints.appendRow(facet.getRelativeInteriorPoint()); |
---|
411 | } |
---|
412 | |
---|
413 | /* this is the i=r-1 case */ |
---|
414 | newInequalities = inequalities.submatrix(0,0,r-1,c); |
---|
415 | newEquations = equations; |
---|
416 | newEquations.appendRow(inequalities[r-1]); |
---|
417 | facet = gfan::ZCone(newInequalities,newEquations); |
---|
418 | relativeInteriorPoints.appendRow(facet.getRelativeInteriorPoint()); |
---|
419 | |
---|
420 | return relativeInteriorPoints; |
---|
421 | } |
---|
422 | |
---|
423 | |
---|
424 | /*** |
---|
425 | * Returns a complete list of neighboring Groebner cones in the tropical variety. |
---|
426 | **/ |
---|
427 | groebnerCones groebnerCone::tropicalNeighbours() const |
---|
428 | { |
---|
429 | gfan::ZMatrix interiorPoints = interiorPointsOfFacets(polyhedralCone); |
---|
430 | groebnerCones neighbours; |
---|
431 | for (int i=0; i<interiorPoints.getHeight(); i++) |
---|
432 | { |
---|
433 | ideal initialIdeal = initial(polynomialIdeal,polynomialRing,interiorPoints[i]); |
---|
434 | std::set<gfan::ZVector> rays = raysOfTropicalCurve(initialIdeal,polynomialRing,*currentStrategy); |
---|
435 | groebnerCones neighbours; |
---|
436 | for (std::set<gfan::ZVector>::iterator ray = rays.begin(); ray!=rays.end(); ray++) |
---|
437 | neighbours.insert(this->flipCone(interiorPoints[i],*ray)); |
---|
438 | } |
---|
439 | return neighbours; |
---|
440 | } |
---|
441 | |
---|
442 | |
---|
443 | gfan::ZFan* toFanStar(groebnerCones setOfCones) |
---|
444 | { |
---|
445 | if (setOfCones.size() > 0) |
---|
446 | { |
---|
447 | groebnerCones::iterator sigma = setOfCones.begin(); |
---|
448 | gfan::ZFan* zf = new gfan::ZFan(sigma->getPolyhedralCone().ambientDimension()); |
---|
449 | for (; sigma!=setOfCones.end(); sigma++) |
---|
450 | zf->insert(sigma->getPolyhedralCone()); |
---|
451 | return zf; |
---|
452 | } |
---|
453 | else |
---|
454 | return new gfan::ZFan(gfan::ZFan::fullFan(currRing->N)); |
---|
455 | } |
---|