1 | #include <kernel/polys.h> |
---|
2 | #include <Singular/ipid.h> |
---|
3 | |
---|
4 | #include <libpolys/polys/monomials/p_polys.h> |
---|
5 | #include <singularWishlist.h> |
---|
6 | #include <tropicalStrategy.h> |
---|
7 | |
---|
8 | #include <map> |
---|
9 | #include <set> |
---|
10 | |
---|
11 | /*** |
---|
12 | * changes a polynomial g with the help p-t such that |
---|
13 | * 1) each term of g has a distinct monomial in x |
---|
14 | * 2) no term of g has a coefficient divisible by p |
---|
15 | * in particular, this means that all g_\alpha can be obtained |
---|
16 | * by reading the coefficients and that g is initially reduced |
---|
17 | * with respect to p-t |
---|
18 | **/ |
---|
19 | static bool pReduce(poly &g, const number p, const ring r) |
---|
20 | { |
---|
21 | poly toBeChecked = pNext(g); |
---|
22 | pNext(g) = NULL; poly gEnd = g; |
---|
23 | poly gCache; |
---|
24 | |
---|
25 | number coeff, pPower; int power; poly subst; |
---|
26 | while(toBeChecked) |
---|
27 | { |
---|
28 | for (gCache = g; gCache; pIter(gCache)) |
---|
29 | if (p_LeadmonomDivisibleBy(gCache,toBeChecked,r)) break; |
---|
30 | if (gCache) |
---|
31 | { |
---|
32 | n_Power(p,p_GetExp(toBeChecked,1,r)-p_GetExp(gCache,1,r),&pPower,r->cf); |
---|
33 | coeff = n_Mult(p_GetCoeff(toBeChecked,r),pPower,r->cf); |
---|
34 | p_SetCoeff(gCache,n_Add(p_GetCoeff(gCache,r),coeff,r->cf),r); |
---|
35 | n_Delete(&pPower,r->cf); n_Delete(&coeff,r->cf); |
---|
36 | toBeChecked=p_LmDeleteAndNext(toBeChecked,r); |
---|
37 | } |
---|
38 | else |
---|
39 | { |
---|
40 | if (n_DivBy(p_GetCoeff(toBeChecked,r),p,r->cf)) |
---|
41 | { |
---|
42 | coeff=n_Div(p_GetCoeff(toBeChecked,r),p,r->cf); |
---|
43 | power=1; |
---|
44 | while (n_DivBy(coeff,p,r->cf)) |
---|
45 | { |
---|
46 | coeff=n_Div(p_GetCoeff(pNext(g),r),p,r->cf); |
---|
47 | power++; |
---|
48 | if (power<1) |
---|
49 | { |
---|
50 | WerrorS("pReduce: overflow in exponent"); |
---|
51 | return true; |
---|
52 | } |
---|
53 | } |
---|
54 | subst=p_LmInit(toBeChecked,r); |
---|
55 | p_AddExp(subst,1,power,r); |
---|
56 | p_SetCoeff(subst,coeff,r); |
---|
57 | p_Setm(subst,r); p_Test(subst,r); |
---|
58 | toBeChecked=p_LmDeleteAndNext(toBeChecked,r); |
---|
59 | toBeChecked=p_Add_q(toBeChecked,subst,r); |
---|
60 | p_Test(toBeChecked,r); |
---|
61 | } |
---|
62 | else |
---|
63 | { |
---|
64 | pNext(gEnd)=toBeChecked; |
---|
65 | pIter(gEnd); pIter(toBeChecked); |
---|
66 | pNext(gEnd)=NULL; |
---|
67 | } |
---|
68 | } |
---|
69 | } |
---|
70 | p_Test(g,r); |
---|
71 | return false; |
---|
72 | } |
---|
73 | |
---|
74 | |
---|
75 | #ifndef NDEBUG |
---|
76 | BOOLEAN pppReduce(leftv res, leftv args) |
---|
77 | { |
---|
78 | leftv u = args; |
---|
79 | if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
80 | { |
---|
81 | poly g; number p = n_Init(3,currRing->cf); |
---|
82 | omUpdateInfo(); |
---|
83 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
84 | g = (poly) u->CopyD(); |
---|
85 | (void) pReduce(g,p,currRing); |
---|
86 | p_Delete(&g,currRing); |
---|
87 | omUpdateInfo(); |
---|
88 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
89 | g = (poly) u->CopyD(); |
---|
90 | (void) pReduce(g,p,currRing); |
---|
91 | n_Delete(&p,currRing->cf); |
---|
92 | res->rtyp = POLY_CMD; |
---|
93 | res->data = (char*) g; |
---|
94 | return FALSE; |
---|
95 | } |
---|
96 | return TRUE; |
---|
97 | } |
---|
98 | #endif //NDEBUG |
---|
99 | |
---|
100 | |
---|
101 | /*** |
---|
102 | * reduces h initially with respect to g, |
---|
103 | * returns false if h was initially reduced in the first place, |
---|
104 | * returns true if reductions have taken place. |
---|
105 | * assumes that h and g are in pReduced form and homogeneous in x of the same degree |
---|
106 | **/ |
---|
107 | bool ppreduceInitially(poly &h, const poly g, const ring r) |
---|
108 | { |
---|
109 | p_Test(h,r); |
---|
110 | p_Test(g,r); |
---|
111 | poly hCache; |
---|
112 | for (hCache=h; hCache; pIter(hCache)) |
---|
113 | if (p_LeadmonomDivisibleBy(g,hCache,r)) break; |
---|
114 | if (hCache) |
---|
115 | { |
---|
116 | number gAlpha = p_GetCoeff(g,r); |
---|
117 | poly hAlphaT = p_Init(r); |
---|
118 | p_SetCoeff(hAlphaT,n_Copy(p_GetCoeff(hCache,r),r->cf),r); |
---|
119 | p_SetExp(hAlphaT,1,p_GetExp(hCache,1,r)-p_GetExp(g,1,r),r); |
---|
120 | for (int i=2; i<=r->N; i++) |
---|
121 | p_SetExp(hAlphaT,i,0,r); |
---|
122 | p_Setm(hAlphaT,r); p_Test(hAlphaT,r); |
---|
123 | poly q1 = p_Mult_nn(h,gAlpha,r); p_Test(q1,r); |
---|
124 | poly q2 = p_Mult_q(p_Copy(g,r),hAlphaT,r); p_Test(q2,r); |
---|
125 | q2 = p_Neg(q2,r); p_Test(q2,r); |
---|
126 | h = p_Add_q(q1,q2,r); |
---|
127 | p_Test(h,r); |
---|
128 | return true; |
---|
129 | } |
---|
130 | return false; |
---|
131 | } |
---|
132 | |
---|
133 | |
---|
134 | #ifndef NDEBUG |
---|
135 | BOOLEAN ppreduceInitially0(leftv res, leftv args) |
---|
136 | { |
---|
137 | leftv u = args; |
---|
138 | if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
139 | { |
---|
140 | leftv v = u->next; |
---|
141 | if ((v != NULL) && (v->Typ() == POLY_CMD)) |
---|
142 | { |
---|
143 | poly g,h; |
---|
144 | omUpdateInfo(); |
---|
145 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
146 | h = (poly) u->CopyD(); |
---|
147 | g = (poly) v->CopyD(); |
---|
148 | (void)ppreduceInitially(h,g,currRing); |
---|
149 | p_Delete(&h,currRing); |
---|
150 | p_Delete(&g,currRing); |
---|
151 | omUpdateInfo(); |
---|
152 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
153 | h = (poly) u->CopyD(); |
---|
154 | g = (poly) v->CopyD(); |
---|
155 | (void)ppreduceInitially(h,g,currRing); |
---|
156 | p_Delete(&g,currRing); |
---|
157 | res->rtyp = POLY_CMD; |
---|
158 | res->data = (char*) h; |
---|
159 | return FALSE; |
---|
160 | } |
---|
161 | } |
---|
162 | return TRUE; |
---|
163 | } |
---|
164 | #endif //NDEBUG |
---|
165 | |
---|
166 | |
---|
167 | /*** |
---|
168 | * reduces I initially with respect to itself and with respect to p-t. |
---|
169 | * also sorts the generators of I with respect to the leading monomials in descending order. |
---|
170 | * assumes that I is generated by elements which are homogeneous in x of the same degree. |
---|
171 | **/ |
---|
172 | bool ppreduceInitially(ideal I, const number p, const ring r) |
---|
173 | { |
---|
174 | int m=idSize(I),n=m; poly cache; |
---|
175 | do |
---|
176 | { |
---|
177 | int j=0; |
---|
178 | for (int i=1; i<n; i++) |
---|
179 | { |
---|
180 | if (p_LmCmp(I->m[i-1],I->m[i],r)<0) |
---|
181 | { |
---|
182 | cache=I->m[i-1]; |
---|
183 | I->m[i-1]=I->m[i]; |
---|
184 | I->m[i]=cache; |
---|
185 | j = i; |
---|
186 | } |
---|
187 | } |
---|
188 | n=j; |
---|
189 | } while(n); |
---|
190 | for (int i=1; i<m; i++) |
---|
191 | if (pReduce(I->m[i],p,r)) return true; |
---|
192 | |
---|
193 | /*** |
---|
194 | * the first pass. removing terms with the same monomials in x as lt(g_i) out of g_j for i<j |
---|
195 | **/ |
---|
196 | for (int i=0; i<m-1; i++) |
---|
197 | for (int j=i+1; j<m; j++) |
---|
198 | if (ppreduceInitially(I->m[j], I->m[i], r) && pReduce(I->m[j],p,r)) return true; |
---|
199 | |
---|
200 | /*** |
---|
201 | * the second pass. removing terms divisible by lt(g_j) out of g_i for i<j |
---|
202 | **/ |
---|
203 | for (int i=0; i<m-1; i++) |
---|
204 | for (int j=i+1; j<m; j++) |
---|
205 | if (ppreduceInitially(I->m[i], I->m[j],r) && pReduce(I->m[i],p,r)) return true; |
---|
206 | return false; |
---|
207 | } |
---|
208 | |
---|
209 | |
---|
210 | #ifndef NDEBUG |
---|
211 | BOOLEAN ppreduceInitially1(leftv res, leftv args) |
---|
212 | { |
---|
213 | leftv u = args; |
---|
214 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
215 | { |
---|
216 | leftv v = u->next; |
---|
217 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
218 | { |
---|
219 | ideal I; number p; |
---|
220 | omUpdateInfo(); |
---|
221 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
222 | I = (ideal) u->CopyD(); |
---|
223 | p = (number) v->CopyD(); |
---|
224 | (void) ppreduceInitially(I,p,currRing); |
---|
225 | id_Delete(&I,currRing); |
---|
226 | n_Delete(&p,currRing->cf); |
---|
227 | omUpdateInfo(); |
---|
228 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
229 | I = (ideal) u->CopyD(); |
---|
230 | p = (number) v->CopyD(); |
---|
231 | (void) ppreduceInitially(I,p,currRing); |
---|
232 | n_Delete(&p,currRing->cf); |
---|
233 | res->rtyp = IDEAL_CMD; |
---|
234 | res->data = (char*) I; |
---|
235 | return FALSE; |
---|
236 | } |
---|
237 | } |
---|
238 | return TRUE; |
---|
239 | } |
---|
240 | #endif //NDEBUG |
---|
241 | |
---|
242 | |
---|
243 | /*** |
---|
244 | * inserts g into I and reduces I with respect to itself and p-t |
---|
245 | * assumes that I was already sorted and initially reduced in the first place |
---|
246 | **/ |
---|
247 | bool ppreduceInitially(ideal I, const number p, const poly g, const ring r) |
---|
248 | { |
---|
249 | int n=idSize(I); |
---|
250 | idInsertPoly(I,g); |
---|
251 | poly cache; n++; int j; |
---|
252 | for (j=n-1; j>0; j--) |
---|
253 | { |
---|
254 | if (p_LmCmp(I->m[j], I->m[j-1],r)>0) |
---|
255 | { |
---|
256 | cache = I->m[j]; |
---|
257 | I->m[j] = I->m[j-1]; |
---|
258 | I->m[j-1] = cache; |
---|
259 | } |
---|
260 | else |
---|
261 | break; |
---|
262 | } |
---|
263 | |
---|
264 | /*** |
---|
265 | * the first pass. removing terms with the same monomials in x as lt(g_i) out of g_j for i<j |
---|
266 | * removing terms with the same monomials in x as lt(g_j) out of g_k for j<k |
---|
267 | **/ |
---|
268 | for (int i=0; i<j; i++) |
---|
269 | if (ppreduceInitially(I->m[j], I->m[i], r) && pReduce(I->m[j],p,r)) return true; |
---|
270 | for (int k=j+1; k<n; k++) |
---|
271 | if (ppreduceInitially(I->m[k], I->m[j], r) && pReduce(I->m[k],p,r)) return true; |
---|
272 | |
---|
273 | /*** |
---|
274 | * the second pass. removing terms divisible by lt(g_j) and lt(g_k) out of g_i for i<j<k |
---|
275 | * removing terms divisible by lt(g_k) out of g_j for j<k |
---|
276 | **/ |
---|
277 | for (int i=0; i<j; i++) |
---|
278 | for (int k=j; k<n; k++) |
---|
279 | if (ppreduceInitially(I->m[i], I->m[k], r) && pReduce(I->m[i],p,r)) return true; |
---|
280 | for (int k=j+1; k<n; k++) |
---|
281 | if (ppreduceInitially(I->m[j], I->m[k], r) && pReduce(I->m[j],p,r)) return true; |
---|
282 | |
---|
283 | return false; |
---|
284 | } |
---|
285 | |
---|
286 | |
---|
287 | #ifndef NDEBUG |
---|
288 | BOOLEAN ppreduceInitially2(leftv res, leftv args) |
---|
289 | { |
---|
290 | leftv u = args; |
---|
291 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
292 | { |
---|
293 | leftv v = u->next; |
---|
294 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
295 | { |
---|
296 | leftv w = v->next; |
---|
297 | if ((w != NULL) && (w->Typ() == POLY_CMD)) |
---|
298 | { |
---|
299 | ideal I; number p; poly g; |
---|
300 | omUpdateInfo(); |
---|
301 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
302 | I = (ideal) u->CopyD(); |
---|
303 | p = (number) v->CopyD(); |
---|
304 | g = (poly) w->CopyD(); |
---|
305 | (void) ppreduceInitially(I,p,g,currRing); |
---|
306 | id_Delete(&I,currRing); |
---|
307 | n_Delete(&p,currRing->cf); |
---|
308 | omUpdateInfo(); |
---|
309 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
310 | I = (ideal) u->CopyD(); |
---|
311 | p = (number) v->CopyD(); |
---|
312 | g = (poly) w->CopyD(); |
---|
313 | (void) ppreduceInitially(I,p,g,currRing); |
---|
314 | n_Delete(&p,currRing->cf); |
---|
315 | res->rtyp = IDEAL_CMD; |
---|
316 | res->data = (char*) I; |
---|
317 | return FALSE; |
---|
318 | } |
---|
319 | } |
---|
320 | } |
---|
321 | return TRUE; |
---|
322 | } |
---|
323 | #endif //NDEBUG |
---|
324 | |
---|
325 | |
---|
326 | /*** |
---|
327 | * reduces H initially with respect to itself, with respect to p-t, |
---|
328 | * and with respect to G. |
---|
329 | * assumes that the generators of H are homogeneous in x of the same degree, |
---|
330 | * assumes that the generators of G are homogeneous in x of lesser degree. |
---|
331 | **/ |
---|
332 | bool ppreduceInitially(ideal H, const number p, const ideal G, const ring r) |
---|
333 | { |
---|
334 | /*** |
---|
335 | * Step 1: reduce H initially with respect to itself and with respect to p-t |
---|
336 | **/ |
---|
337 | if (ppreduceInitially(H,p,r)) return true; |
---|
338 | |
---|
339 | /*** |
---|
340 | * Step 2: initialize a working list T and an ideal I in which the reductions will take place |
---|
341 | **/ |
---|
342 | int m=idSize(H),n=0; |
---|
343 | ideal I = idInit(m), T = idInit(m); |
---|
344 | for (int i=0; i<m; i++) |
---|
345 | { |
---|
346 | I->m[i]=H->m[i]; |
---|
347 | if (pNext(H->m[i])) T->m[n++]=H->m[i]; |
---|
348 | } |
---|
349 | poly g; int k=n; |
---|
350 | do |
---|
351 | { |
---|
352 | int j=0; |
---|
353 | for (int i=1; i<k; i++) |
---|
354 | { |
---|
355 | if (p_LmCmp(pNext(T->m[i-1]),pNext(T->m[i]),r)<0) |
---|
356 | { |
---|
357 | g=T->m[i-1]; |
---|
358 | T->m[i-1]=I->m[i]; |
---|
359 | T->m[i]=g; |
---|
360 | j = i; |
---|
361 | } |
---|
362 | } |
---|
363 | k=j; |
---|
364 | } while(k); |
---|
365 | |
---|
366 | /*** |
---|
367 | * Step 3: as long as the working list is not empty, successively reduce terms in it |
---|
368 | * by adding suitable elements to I and reducing it initially with respect to itself |
---|
369 | **/ |
---|
370 | k=idSize(G); |
---|
371 | while (n) |
---|
372 | { |
---|
373 | int i=0; for (; i<k; i++) |
---|
374 | if (p_LeadmonomDivisibleBy(G->m[i],pNext(T->m[0]),r)) break; |
---|
375 | if (i<k) |
---|
376 | { |
---|
377 | g = p_Init(r); |
---|
378 | for (int j=2; j<=r->N; j++) |
---|
379 | p_SetExp(g,j,p_GetExp(pNext(T->m[0]),j,r)-p_GetExp(G->m[i],j,r),r); |
---|
380 | p_SetCoeff(g,n_Init(1,r->cf),r); p_Setm(g,r); |
---|
381 | g = p_Mult_q(g,p_Copy(G->m[i],r),r); |
---|
382 | ppreduceInitially(I,p,g,r); |
---|
383 | } |
---|
384 | else |
---|
385 | pIter(T->m[0]); |
---|
386 | for (int i=0; i<n;) |
---|
387 | { |
---|
388 | if (!pNext(T->m[i])) |
---|
389 | { |
---|
390 | for (int j=i; j<n-1; j++) |
---|
391 | T->m[j]=T->m[j+1]; |
---|
392 | T->m[--n]=NULL; |
---|
393 | } |
---|
394 | else |
---|
395 | i++; |
---|
396 | } |
---|
397 | int l = n; |
---|
398 | do |
---|
399 | { |
---|
400 | int j=0; |
---|
401 | for (int i=1; i<l; i++) |
---|
402 | { |
---|
403 | if (p_LmCmp(pNext(T->m[i-1]),pNext(T->m[i]),r)<0) |
---|
404 | { |
---|
405 | g=T->m[i-1]; |
---|
406 | T->m[i-1]=I->m[i]; |
---|
407 | T->m[i]=g; |
---|
408 | j = i; |
---|
409 | } |
---|
410 | } |
---|
411 | l=j; |
---|
412 | } while(l); |
---|
413 | } |
---|
414 | |
---|
415 | /*** |
---|
416 | * Step 4: cleanup, delete all polynomials in I which have been added in Step 3 |
---|
417 | **/ |
---|
418 | k=idSize(I); |
---|
419 | for (int i=0; i<k; i++) |
---|
420 | { |
---|
421 | for (int j=0; j<m; j++) |
---|
422 | { |
---|
423 | if (p_LeadmonomDivisibleBy(H->m[j],I->m[i],r)) |
---|
424 | { |
---|
425 | I->m[i]=NULL; |
---|
426 | break; |
---|
427 | } |
---|
428 | } |
---|
429 | } |
---|
430 | id_Delete(&I,r); |
---|
431 | id_Delete(&T,r); |
---|
432 | return false; |
---|
433 | } |
---|
434 | |
---|
435 | |
---|
436 | #ifndef NDEBUG |
---|
437 | BOOLEAN ppreduceInitially3(leftv res, leftv args) |
---|
438 | { |
---|
439 | leftv u = args; |
---|
440 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
441 | { |
---|
442 | leftv v = u->next; |
---|
443 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
444 | { |
---|
445 | leftv w = v->next; |
---|
446 | if ((w != NULL) && (w->Typ() == IDEAL_CMD)) |
---|
447 | { |
---|
448 | ideal H,G; number p; |
---|
449 | omUpdateInfo(); |
---|
450 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
451 | H = (ideal) u->CopyD(); |
---|
452 | p = (number) v->CopyD(); |
---|
453 | G = (ideal) w->CopyD(); |
---|
454 | (void) ppreduceInitially(H,p,G,currRing); |
---|
455 | id_Delete(&H,currRing); |
---|
456 | id_Delete(&G,currRing); |
---|
457 | n_Delete(&p,currRing->cf); |
---|
458 | omUpdateInfo(); |
---|
459 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
460 | H = (ideal) u->CopyD(); |
---|
461 | p = (number) v->CopyD(); |
---|
462 | G = (ideal) w->CopyD(); |
---|
463 | (void) ppreduceInitially(H,p,G,currRing); |
---|
464 | n_Delete(&p,currRing->cf); |
---|
465 | id_Delete(&G,currRing); |
---|
466 | res->rtyp = IDEAL_CMD; |
---|
467 | res->data = (char*) H; |
---|
468 | return FALSE; |
---|
469 | } |
---|
470 | } |
---|
471 | } |
---|
472 | return TRUE; |
---|
473 | } |
---|
474 | #endif //NDEBUG |
---|
475 | |
---|
476 | |
---|
477 | /*** |
---|
478 | * reduces I initially with respect to itself. |
---|
479 | * assumes that the generators of I are homogeneous in x and that p-t is in I. |
---|
480 | **/ |
---|
481 | bool ppreduceInitially(ideal I, ring r, number p) |
---|
482 | { |
---|
483 | assume(!n_IsUnit(p,r->cf)); |
---|
484 | |
---|
485 | /*** |
---|
486 | * Step 1: split up I into components of same degree in x |
---|
487 | * the lowest component should only contain p-t |
---|
488 | **/ |
---|
489 | std::map<long,ideal> H; int n = idSize(I); |
---|
490 | for (int i=0; i<n; i++) |
---|
491 | { |
---|
492 | long d = 0; |
---|
493 | for (int j=2; j<=r->N; j++) |
---|
494 | d += p_GetExp(I->m[i],j,r); |
---|
495 | std::map<long,ideal>::iterator it = H.find(d); |
---|
496 | if (it != H.end()) |
---|
497 | idInsertPoly(it->second,I->m[i]); |
---|
498 | else |
---|
499 | { |
---|
500 | std::pair<std::map<long,ideal>::iterator,bool> ret; |
---|
501 | ret = H.insert(std::pair<long,ideal>(d,idInit(16))); |
---|
502 | idInsertPoly(ret.first->second,I->m[i]); |
---|
503 | } |
---|
504 | } |
---|
505 | |
---|
506 | std::map<long,ideal>::iterator it=H.begin(); |
---|
507 | ideal Hi = it->second; |
---|
508 | |
---|
509 | /*** |
---|
510 | * Step 2: reduce each component initially with respect to itself |
---|
511 | * and all lower components |
---|
512 | **/ |
---|
513 | if (ppreduceInitially(Hi,p,r)) return true; |
---|
514 | |
---|
515 | ideal G = idInit(n); int m=0; |
---|
516 | ideal GG = (ideal) omAllocBin(sip_sideal_bin); |
---|
517 | GG->nrows = 1; GG->rank = 1; GG->m=NULL; |
---|
518 | |
---|
519 | for (it++; it!=H.end(); it++) |
---|
520 | { |
---|
521 | int l=idSize(Hi); int k=l; poly cache; |
---|
522 | do |
---|
523 | { |
---|
524 | int j=0; |
---|
525 | for (int i=1; i<k; i++) |
---|
526 | { |
---|
527 | if (p_GetExp(Hi->m[i-1],1,r)<p_GetExp(Hi->m[i],1,r)) |
---|
528 | { |
---|
529 | cache=Hi->m[i-1]; |
---|
530 | Hi->m[i-1]=Hi->m[i]; |
---|
531 | Hi->m[i]=cache; |
---|
532 | j = i; |
---|
533 | } |
---|
534 | } |
---|
535 | k=j; |
---|
536 | } while(k); |
---|
537 | int kG=n-m, kH=0; |
---|
538 | for (int i=n-m-l; i<n; i++) |
---|
539 | { |
---|
540 | if (kG==n) |
---|
541 | { |
---|
542 | memcpy(&(G->m[i]),&(Hi->m[kH]),(n-i)*sizeof(poly)); |
---|
543 | break; |
---|
544 | } |
---|
545 | if (p_GetExp(G->m[kG],1,r)>p_GetExp(Hi->m[kH],1,r)) |
---|
546 | G->m[i] = G->m[kG++]; |
---|
547 | else |
---|
548 | G->m[i] = Hi->m[kH++]; |
---|
549 | } |
---|
550 | m += l; IDELEMS(GG) = m; GG->m = &G->m[n-m]; |
---|
551 | if (ppreduceInitially(it->second,p,GG,r)) return true; |
---|
552 | idShallowDelete(&Hi); Hi = it->second; |
---|
553 | } |
---|
554 | idShallowDelete(&Hi); |
---|
555 | |
---|
556 | omFreeBin((ADDRESS)GG, sip_sideal_bin); idShallowDelete(&G); |
---|
557 | return false; |
---|
558 | } |
---|
559 | |
---|
560 | |
---|
561 | // #ifndef NDEBUG |
---|
562 | // BOOLEAN ppreduceInitially4(leftv res, leftv args) |
---|
563 | // { |
---|
564 | // leftv u = args; |
---|
565 | // if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
566 | // { |
---|
567 | // ideal I; |
---|
568 | // omUpdateInfo(); |
---|
569 | // Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
570 | // I = (ideal) u->CopyD(); |
---|
571 | // (void) ppreduceInitially(I,currRing); |
---|
572 | // id_Delete(&I,currRing); |
---|
573 | // omUpdateInfo(); |
---|
574 | // Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
575 | // I = (ideal) u->CopyD(); |
---|
576 | // (void) ppreduceInitially(I,currRing); |
---|
577 | // res->rtyp = IDEAL_CMD; |
---|
578 | // res->data = (char*) I; |
---|
579 | // return FALSE; |
---|
580 | // } |
---|
581 | // return TRUE; |
---|
582 | // } |
---|
583 | // #endif |
---|
584 | |
---|
585 | |
---|
586 | // BOOLEAN ppreduceInitially(leftv res, leftv args) |
---|
587 | // { |
---|
588 | // leftv u = args; |
---|
589 | // if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
590 | // { |
---|
591 | // ideal I = (ideal) u->CopyD(); |
---|
592 | // (void) ppreduceInitially(I,currRing); |
---|
593 | // res->rtyp = IDEAL_CMD; |
---|
594 | // res->data = (char*) I; |
---|
595 | // return FALSE; |
---|
596 | // } |
---|
597 | // return TRUE; |
---|
598 | // } |
---|