1 | #include <kernel/polys.h> |
---|
2 | #include <Singular/ipid.h> |
---|
3 | |
---|
4 | #include <libpolys/polys/monomials/p_polys.h> |
---|
5 | #include <singularWishlist.h> |
---|
6 | #include <tropicalStrategy.h> |
---|
7 | |
---|
8 | #include <map> |
---|
9 | #include <set> |
---|
10 | |
---|
11 | /*** |
---|
12 | * changes a polynomial g with the help p-t such that |
---|
13 | * 1) each term of g has a distinct monomial in x |
---|
14 | * 2) no term of g has a coefficient divisible by p |
---|
15 | * in particular, this means that all g_\alpha can be obtained |
---|
16 | * by reading the coefficients and that g is initially reduced |
---|
17 | * with respect to p-t |
---|
18 | **/ |
---|
19 | static bool pReduce(poly &g, const number p, const ring r) |
---|
20 | { |
---|
21 | if (g==NULL) |
---|
22 | return false; |
---|
23 | |
---|
24 | poly toBeChecked = pNext(g); |
---|
25 | pNext(g) = NULL; poly gEnd = g; |
---|
26 | poly gCache; |
---|
27 | |
---|
28 | number coeff, pPower; int power; poly subst; |
---|
29 | while(toBeChecked) |
---|
30 | { |
---|
31 | for (gCache = g; gCache; pIter(gCache)) |
---|
32 | if (p_LeadmonomDivisibleBy(gCache,toBeChecked,r)) break; |
---|
33 | if (gCache) |
---|
34 | { |
---|
35 | n_Power(p,p_GetExp(toBeChecked,1,r)-p_GetExp(gCache,1,r),&pPower,r->cf); |
---|
36 | coeff = n_Mult(p_GetCoeff(toBeChecked,r),pPower,r->cf); |
---|
37 | p_SetCoeff(gCache,n_Add(p_GetCoeff(gCache,r),coeff,r->cf),r); |
---|
38 | n_Delete(&pPower,r->cf); n_Delete(&coeff,r->cf); |
---|
39 | toBeChecked=p_LmDeleteAndNext(toBeChecked,r); |
---|
40 | } |
---|
41 | else |
---|
42 | { |
---|
43 | if (n_DivBy(p_GetCoeff(toBeChecked,r),p,r->cf)) |
---|
44 | { |
---|
45 | coeff=n_Div(p_GetCoeff(toBeChecked,r),p,r->cf); |
---|
46 | power=1; |
---|
47 | while (n_DivBy(coeff,p,r->cf)) |
---|
48 | { |
---|
49 | coeff=n_Div(p_GetCoeff(pNext(g),r),p,r->cf); |
---|
50 | power++; |
---|
51 | if (power<1) |
---|
52 | { |
---|
53 | WerrorS("pReduce: overflow in exponent"); |
---|
54 | return true; |
---|
55 | } |
---|
56 | } |
---|
57 | subst=p_LmInit(toBeChecked,r); |
---|
58 | p_AddExp(subst,1,power,r); |
---|
59 | p_SetCoeff(subst,coeff,r); |
---|
60 | p_Setm(subst,r); p_Test(subst,r); |
---|
61 | toBeChecked=p_LmDeleteAndNext(toBeChecked,r); |
---|
62 | toBeChecked=p_Add_q(toBeChecked,subst,r); |
---|
63 | p_Test(toBeChecked,r); |
---|
64 | } |
---|
65 | else |
---|
66 | { |
---|
67 | pNext(gEnd)=toBeChecked; |
---|
68 | pIter(gEnd); pIter(toBeChecked); |
---|
69 | pNext(gEnd)=NULL; |
---|
70 | } |
---|
71 | } |
---|
72 | } |
---|
73 | p_Test(g,r); |
---|
74 | return false; |
---|
75 | } |
---|
76 | |
---|
77 | |
---|
78 | #ifndef NDEBUG |
---|
79 | BOOLEAN pppReduce(leftv res, leftv args) |
---|
80 | { |
---|
81 | leftv u = args; |
---|
82 | if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
83 | { |
---|
84 | poly g; number p = n_Init(3,currRing->cf); |
---|
85 | omUpdateInfo(); |
---|
86 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
87 | g = (poly) u->CopyD(); |
---|
88 | (void) pReduce(g,p,currRing); |
---|
89 | p_Delete(&g,currRing); |
---|
90 | omUpdateInfo(); |
---|
91 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
92 | g = (poly) u->CopyD(); |
---|
93 | (void) pReduce(g,p,currRing); |
---|
94 | n_Delete(&p,currRing->cf); |
---|
95 | res->rtyp = POLY_CMD; |
---|
96 | res->data = (char*) g; |
---|
97 | return FALSE; |
---|
98 | } |
---|
99 | return TRUE; |
---|
100 | } |
---|
101 | #endif //NDEBUG |
---|
102 | |
---|
103 | |
---|
104 | /*** |
---|
105 | * reduces h initially with respect to g, |
---|
106 | * returns false if h was initially reduced in the first place, |
---|
107 | * returns true if reductions have taken place. |
---|
108 | * assumes that h and g are in pReduced form and homogeneous in x of the same degree |
---|
109 | **/ |
---|
110 | bool ppreduceInitially(poly &h, const poly g, const ring r) |
---|
111 | { |
---|
112 | if (h==NULL || g==NULL) |
---|
113 | return false; |
---|
114 | p_Test(h,r); |
---|
115 | p_Test(g,r); |
---|
116 | poly hCache; |
---|
117 | for (hCache=h; hCache; pIter(hCache)) |
---|
118 | if (p_LeadmonomDivisibleBy(g,hCache,r)) break; |
---|
119 | if (hCache) |
---|
120 | { |
---|
121 | number gAlpha = p_GetCoeff(g,r); |
---|
122 | poly hAlphaT = p_Init(r); |
---|
123 | p_SetCoeff(hAlphaT,n_Copy(p_GetCoeff(hCache,r),r->cf),r); |
---|
124 | p_SetExp(hAlphaT,1,p_GetExp(hCache,1,r)-p_GetExp(g,1,r),r); |
---|
125 | for (int i=2; i<=r->N; i++) |
---|
126 | p_SetExp(hAlphaT,i,0,r); |
---|
127 | p_Setm(hAlphaT,r); p_Test(hAlphaT,r); |
---|
128 | poly q1 = p_Mult_nn(h,gAlpha,r); p_Test(q1,r); |
---|
129 | poly q2 = p_Mult_q(p_Copy(g,r),hAlphaT,r); p_Test(q2,r); |
---|
130 | q2 = p_Neg(q2,r); p_Test(q2,r); |
---|
131 | h = p_Add_q(q1,q2,r); |
---|
132 | p_Test(h,r); |
---|
133 | return true; |
---|
134 | } |
---|
135 | return false; |
---|
136 | } |
---|
137 | |
---|
138 | |
---|
139 | #ifndef NDEBUG |
---|
140 | BOOLEAN ppreduceInitially0(leftv res, leftv args) |
---|
141 | { |
---|
142 | leftv u = args; |
---|
143 | if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
144 | { |
---|
145 | leftv v = u->next; |
---|
146 | if ((v != NULL) && (v->Typ() == POLY_CMD)) |
---|
147 | { |
---|
148 | poly g,h; |
---|
149 | omUpdateInfo(); |
---|
150 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
151 | h = (poly) u->CopyD(); |
---|
152 | g = (poly) v->CopyD(); |
---|
153 | (void)ppreduceInitially(h,g,currRing); |
---|
154 | p_Delete(&h,currRing); |
---|
155 | p_Delete(&g,currRing); |
---|
156 | omUpdateInfo(); |
---|
157 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
158 | h = (poly) u->CopyD(); |
---|
159 | g = (poly) v->CopyD(); |
---|
160 | (void)ppreduceInitially(h,g,currRing); |
---|
161 | p_Delete(&g,currRing); |
---|
162 | res->rtyp = POLY_CMD; |
---|
163 | res->data = (char*) h; |
---|
164 | return FALSE; |
---|
165 | } |
---|
166 | } |
---|
167 | return TRUE; |
---|
168 | } |
---|
169 | #endif //NDEBUG |
---|
170 | |
---|
171 | |
---|
172 | /*** |
---|
173 | * reduces I initially with respect to itself and with respect to p-t. |
---|
174 | * also sorts the generators of I with respect to the leading monomials in descending order. |
---|
175 | * assumes that I is generated by elements which are homogeneous in x of the same degree. |
---|
176 | **/ |
---|
177 | bool ppreduceInitially(ideal I, const number p, const ring r) |
---|
178 | { |
---|
179 | int m=idSize(I),n=m; poly cache; |
---|
180 | do |
---|
181 | { |
---|
182 | int j=0; |
---|
183 | for (int i=1; i<n; i++) |
---|
184 | { |
---|
185 | if (p_LmCmp(I->m[i-1],I->m[i],r)<0) |
---|
186 | { |
---|
187 | cache=I->m[i-1]; |
---|
188 | I->m[i-1]=I->m[i]; |
---|
189 | I->m[i]=cache; |
---|
190 | j = i; |
---|
191 | } |
---|
192 | } |
---|
193 | n=j; |
---|
194 | } while(n); |
---|
195 | for (int i=1; i<m; i++) |
---|
196 | if (pReduce(I->m[i],p,r)) return true; |
---|
197 | |
---|
198 | /*** |
---|
199 | * the first pass. removing terms with the same monomials in x as lt(g_i) out of g_j for i<j |
---|
200 | **/ |
---|
201 | for (int i=0; i<m-1; i++) |
---|
202 | for (int j=i+1; j<m; j++) |
---|
203 | if (ppreduceInitially(I->m[j], I->m[i], r) && pReduce(I->m[j],p,r)) return true; |
---|
204 | |
---|
205 | /*** |
---|
206 | * the second pass. removing terms divisible by lt(g_j) out of g_i for i<j |
---|
207 | **/ |
---|
208 | for (int i=0; i<m-1; i++) |
---|
209 | for (int j=i+1; j<m; j++) |
---|
210 | if (ppreduceInitially(I->m[i], I->m[j],r) && pReduce(I->m[i],p,r)) return true; |
---|
211 | |
---|
212 | /*** |
---|
213 | * removes the elements of I which have been reduced to 0 in the previous two passes |
---|
214 | **/ |
---|
215 | idSkipZeroes(I); |
---|
216 | return false; |
---|
217 | } |
---|
218 | |
---|
219 | |
---|
220 | #ifndef NDEBUG |
---|
221 | BOOLEAN ppreduceInitially1(leftv res, leftv args) |
---|
222 | { |
---|
223 | leftv u = args; |
---|
224 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
225 | { |
---|
226 | leftv v = u->next; |
---|
227 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
228 | { |
---|
229 | ideal I; number p; |
---|
230 | omUpdateInfo(); |
---|
231 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
232 | I = (ideal) u->CopyD(); |
---|
233 | p = (number) v->CopyD(); |
---|
234 | (void) ppreduceInitially(I,p,currRing); |
---|
235 | id_Delete(&I,currRing); |
---|
236 | n_Delete(&p,currRing->cf); |
---|
237 | omUpdateInfo(); |
---|
238 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
239 | I = (ideal) u->CopyD(); |
---|
240 | p = (number) v->CopyD(); |
---|
241 | (void) ppreduceInitially(I,p,currRing); |
---|
242 | n_Delete(&p,currRing->cf); |
---|
243 | res->rtyp = IDEAL_CMD; |
---|
244 | res->data = (char*) I; |
---|
245 | return FALSE; |
---|
246 | } |
---|
247 | } |
---|
248 | return TRUE; |
---|
249 | } |
---|
250 | #endif //NDEBUG |
---|
251 | |
---|
252 | |
---|
253 | /*** |
---|
254 | * inserts g into I and reduces I with respect to itself and p-t |
---|
255 | * assumes that I was already sorted and initially reduced in the first place |
---|
256 | **/ |
---|
257 | bool ppreduceInitially(ideal I, const number p, const poly g, const ring r) |
---|
258 | { |
---|
259 | int n=idSize(I); |
---|
260 | idInsertPoly(I,g); |
---|
261 | int j; |
---|
262 | for (j=n; j>0; j--) |
---|
263 | { |
---|
264 | if (p_LmCmp(I->m[j], I->m[j-1],r)>0) |
---|
265 | { |
---|
266 | poly cache = I->m[j]; |
---|
267 | I->m[j] = I->m[j-1]; |
---|
268 | I->m[j-1] = cache; |
---|
269 | } |
---|
270 | else |
---|
271 | break; |
---|
272 | } |
---|
273 | |
---|
274 | /*** |
---|
275 | * the first pass. removing terms with the same monomials in x as lt(g_i) out of g_j for i<j |
---|
276 | * removing terms with the same monomials in x as lt(g_j) out of g_k for j<k |
---|
277 | **/ |
---|
278 | for (int i=0; i<j; i++) |
---|
279 | if (ppreduceInitially(I->m[j], I->m[i], r) && pReduce(I->m[j],p,r)) return true; |
---|
280 | for (int k=j+1; k<n; k++) |
---|
281 | if (ppreduceInitially(I->m[k], I->m[j], r) && pReduce(I->m[k],p,r)) return true; |
---|
282 | |
---|
283 | /*** |
---|
284 | * the second pass. removing terms divisible by lt(g_j) and lt(g_k) out of g_i for i<j<k |
---|
285 | * removing terms divisible by lt(g_k) out of g_j for j<k |
---|
286 | **/ |
---|
287 | for (int i=0; i<j; i++) |
---|
288 | for (int k=j; k<n; k++) |
---|
289 | if (ppreduceInitially(I->m[i], I->m[k], r) && pReduce(I->m[i],p,r)) return true; |
---|
290 | for (int k=j+1; k<n; k++) |
---|
291 | if (ppreduceInitially(I->m[j], I->m[k], r) && pReduce(I->m[j],p,r)) return true; |
---|
292 | |
---|
293 | /*** |
---|
294 | * removes the elements of I which have been reduced to 0 in the previous two passes |
---|
295 | **/ |
---|
296 | idSkipZeroes(I); |
---|
297 | return false; |
---|
298 | } |
---|
299 | |
---|
300 | |
---|
301 | #ifndef NDEBUG |
---|
302 | BOOLEAN ppreduceInitially2(leftv res, leftv args) |
---|
303 | { |
---|
304 | leftv u = args; |
---|
305 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
306 | { |
---|
307 | leftv v = u->next; |
---|
308 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
309 | { |
---|
310 | leftv w = v->next; |
---|
311 | if ((w != NULL) && (w->Typ() == POLY_CMD)) |
---|
312 | { |
---|
313 | ideal I; number p; poly g; |
---|
314 | omUpdateInfo(); |
---|
315 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
316 | I = (ideal) u->CopyD(); |
---|
317 | p = (number) v->CopyD(); |
---|
318 | g = (poly) w->CopyD(); |
---|
319 | (void) ppreduceInitially(I,p,g,currRing); |
---|
320 | id_Delete(&I,currRing); |
---|
321 | n_Delete(&p,currRing->cf); |
---|
322 | omUpdateInfo(); |
---|
323 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
324 | I = (ideal) u->CopyD(); |
---|
325 | p = (number) v->CopyD(); |
---|
326 | g = (poly) w->CopyD(); |
---|
327 | (void) ppreduceInitially(I,p,g,currRing); |
---|
328 | n_Delete(&p,currRing->cf); |
---|
329 | res->rtyp = IDEAL_CMD; |
---|
330 | res->data = (char*) I; |
---|
331 | return FALSE; |
---|
332 | } |
---|
333 | } |
---|
334 | } |
---|
335 | return TRUE; |
---|
336 | } |
---|
337 | #endif //NDEBUG |
---|
338 | |
---|
339 | |
---|
340 | /*** |
---|
341 | * reduces H initially with respect to itself, with respect to p-t, |
---|
342 | * and with respect to G. |
---|
343 | * assumes that the generators of H are homogeneous in x of the same degree, |
---|
344 | * assumes that the generators of G are homogeneous in x of lesser degree. |
---|
345 | **/ |
---|
346 | bool ppreduceInitially(ideal H, const number p, const ideal G, const ring r) |
---|
347 | { |
---|
348 | /*** |
---|
349 | * Step 1: reduce H initially with respect to itself and with respect to p-t |
---|
350 | **/ |
---|
351 | if (ppreduceInitially(H,p,r)) return true; |
---|
352 | |
---|
353 | /*** |
---|
354 | * Step 2: initialize a working list T and an ideal I in which the reductions will take place |
---|
355 | **/ |
---|
356 | int m=idSize(H),n=0; |
---|
357 | ideal I = idInit(m), T = idInit(m); |
---|
358 | for (int i=0; i<m; i++) |
---|
359 | { |
---|
360 | I->m[i]=H->m[i]; |
---|
361 | if (pNext(H->m[i])) T->m[n++]=H->m[i]; |
---|
362 | } |
---|
363 | poly g; int k=n; |
---|
364 | do |
---|
365 | { |
---|
366 | int j=0; |
---|
367 | for (int i=1; i<k; i++) |
---|
368 | { |
---|
369 | if (p_LmCmp(pNext(T->m[i-1]),pNext(T->m[i]),r)<0) |
---|
370 | { |
---|
371 | g=T->m[i-1]; |
---|
372 | T->m[i-1]=I->m[i]; |
---|
373 | T->m[i]=g; |
---|
374 | j = i; |
---|
375 | } |
---|
376 | } |
---|
377 | k=j; |
---|
378 | } while(k); |
---|
379 | |
---|
380 | /*** |
---|
381 | * Step 3: as long as the working list is not empty, successively reduce terms in it |
---|
382 | * by adding suitable elements to I and reducing it initially with respect to itself |
---|
383 | **/ |
---|
384 | k=idSize(G); |
---|
385 | while (n) |
---|
386 | { |
---|
387 | int i=0; for (; i<k; i++) |
---|
388 | if (p_LeadmonomDivisibleBy(G->m[i],pNext(T->m[0]),r)) break; |
---|
389 | if (i<k) |
---|
390 | { |
---|
391 | g = p_Init(r); |
---|
392 | for (int j=2; j<=r->N; j++) |
---|
393 | p_SetExp(g,j,p_GetExp(pNext(T->m[0]),j,r)-p_GetExp(G->m[i],j,r),r); |
---|
394 | p_SetCoeff(g,n_Init(1,r->cf),r); p_Setm(g,r); |
---|
395 | g = p_Mult_q(g,p_Copy(G->m[i],r),r); |
---|
396 | ppreduceInitially(I,p,g,r); |
---|
397 | } |
---|
398 | else |
---|
399 | pIter(T->m[0]); |
---|
400 | for (int i=0; i<n;) |
---|
401 | { |
---|
402 | if (!pNext(T->m[i])) |
---|
403 | { |
---|
404 | for (int j=i; j<n-1; j++) |
---|
405 | T->m[j]=T->m[j+1]; |
---|
406 | T->m[--n]=NULL; |
---|
407 | } |
---|
408 | else |
---|
409 | i++; |
---|
410 | } |
---|
411 | int l = n; |
---|
412 | do |
---|
413 | { |
---|
414 | int j=0; |
---|
415 | for (int i=1; i<l; i++) |
---|
416 | { |
---|
417 | if (p_LmCmp(pNext(T->m[i-1]),pNext(T->m[i]),r)<0) |
---|
418 | { |
---|
419 | g=T->m[i-1]; |
---|
420 | T->m[i-1]=I->m[i]; |
---|
421 | T->m[i]=g; |
---|
422 | j = i; |
---|
423 | } |
---|
424 | } |
---|
425 | l=j; |
---|
426 | } while(l); |
---|
427 | } |
---|
428 | |
---|
429 | /*** |
---|
430 | * Step 4: cleanup, delete all polynomials in I which have been added in Step 3 |
---|
431 | **/ |
---|
432 | k=idSize(I); |
---|
433 | for (int i=0; i<k; i++) |
---|
434 | { |
---|
435 | for (int j=0; j<m; j++) |
---|
436 | { |
---|
437 | if (p_LeadmonomDivisibleBy(H->m[j],I->m[i],r)) |
---|
438 | { |
---|
439 | I->m[i]=NULL; |
---|
440 | break; |
---|
441 | } |
---|
442 | } |
---|
443 | } |
---|
444 | id_Delete(&I,r); |
---|
445 | id_Delete(&T,r); |
---|
446 | return false; |
---|
447 | } |
---|
448 | |
---|
449 | |
---|
450 | #ifndef NDEBUG |
---|
451 | BOOLEAN ppreduceInitially3(leftv res, leftv args) |
---|
452 | { |
---|
453 | leftv u = args; |
---|
454 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
455 | { |
---|
456 | leftv v = u->next; |
---|
457 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
458 | { |
---|
459 | leftv w = v->next; |
---|
460 | if ((w != NULL) && (w->Typ() == IDEAL_CMD)) |
---|
461 | { |
---|
462 | ideal H,G; number p; |
---|
463 | omUpdateInfo(); |
---|
464 | Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
465 | H = (ideal) u->CopyD(); |
---|
466 | p = (number) v->CopyD(); |
---|
467 | G = (ideal) w->CopyD(); |
---|
468 | (void) ppreduceInitially(H,p,G,currRing); |
---|
469 | id_Delete(&H,currRing); |
---|
470 | id_Delete(&G,currRing); |
---|
471 | n_Delete(&p,currRing->cf); |
---|
472 | omUpdateInfo(); |
---|
473 | Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
474 | H = (ideal) u->CopyD(); |
---|
475 | p = (number) v->CopyD(); |
---|
476 | G = (ideal) w->CopyD(); |
---|
477 | (void) ppreduceInitially(H,p,G,currRing); |
---|
478 | n_Delete(&p,currRing->cf); |
---|
479 | id_Delete(&G,currRing); |
---|
480 | res->rtyp = IDEAL_CMD; |
---|
481 | res->data = (char*) H; |
---|
482 | return FALSE; |
---|
483 | } |
---|
484 | } |
---|
485 | } |
---|
486 | return TRUE; |
---|
487 | } |
---|
488 | #endif //NDEBUG |
---|
489 | |
---|
490 | |
---|
491 | /** |
---|
492 | * reduces I initially with respect to itself. |
---|
493 | * assumes that the generators of I are homogeneous in x and that p-t is in I. |
---|
494 | */ |
---|
495 | bool ppreduceInitially(ideal I, ring r, number p) |
---|
496 | { |
---|
497 | assume(!n_IsUnit(p,r->cf)); |
---|
498 | |
---|
499 | /*** |
---|
500 | * Step 1: split up I into components of same degree in x |
---|
501 | * the lowest component should only contain p-t |
---|
502 | **/ |
---|
503 | std::map<long,ideal> H; int n = idSize(I); |
---|
504 | for (int i=0; i<n; i++) |
---|
505 | { |
---|
506 | long d = 0; |
---|
507 | for (int j=2; j<=r->N; j++) |
---|
508 | d += p_GetExp(I->m[i],j,r); |
---|
509 | std::map<long,ideal>::iterator it = H.find(d); |
---|
510 | if (it != H.end()) |
---|
511 | idInsertPoly(it->second,I->m[i]); |
---|
512 | else |
---|
513 | { |
---|
514 | std::pair<long,ideal> Hd(d,idInit(1)); |
---|
515 | Hd.second->m[0] = I->m[i]; |
---|
516 | H.insert(Hd); |
---|
517 | } |
---|
518 | } |
---|
519 | |
---|
520 | std::map<long,ideal>::iterator it=H.begin(); |
---|
521 | ideal Hi = it->second; |
---|
522 | assume(idSize(Hi)==1); |
---|
523 | assume(pLength(Hi->m[0])==2); |
---|
524 | it++; |
---|
525 | Hi = it->second; |
---|
526 | |
---|
527 | /*** |
---|
528 | * Step 2: reduce each component initially with respect to itself |
---|
529 | * and all lower components |
---|
530 | **/ |
---|
531 | if (ppreduceInitially(Hi,p,r)) return true; |
---|
532 | |
---|
533 | ideal G = idInit(n); int m=0; |
---|
534 | ideal GG = (ideal) omAllocBin(sip_sideal_bin); |
---|
535 | GG->nrows = 1; GG->rank = 1; GG->m=NULL; |
---|
536 | |
---|
537 | for (it++; it!=H.end(); it++) |
---|
538 | { |
---|
539 | int l=idSize(Hi); int k=l; poly cache; |
---|
540 | /** |
---|
541 | * sorts Hi according to degree in t in descending order |
---|
542 | * (lowest first, highest last) |
---|
543 | */ |
---|
544 | do |
---|
545 | { |
---|
546 | int j=0; |
---|
547 | for (int i=1; i<k; i++) |
---|
548 | { |
---|
549 | if (p_GetExp(Hi->m[i-1],1,r)<p_GetExp(Hi->m[i],1,r)) |
---|
550 | { |
---|
551 | cache=Hi->m[i-1]; |
---|
552 | Hi->m[i-1]=Hi->m[i]; |
---|
553 | Hi->m[i]=cache; |
---|
554 | j = i; |
---|
555 | } |
---|
556 | } |
---|
557 | k=j; |
---|
558 | } while(k); |
---|
559 | int kG=n-m, kH=0; |
---|
560 | for (int i=n-m-l; i<n; i++) |
---|
561 | { |
---|
562 | if (kG==n) |
---|
563 | { |
---|
564 | memcpy(&(G->m[i]),&(Hi->m[kH]),(n-i)*sizeof(poly)); |
---|
565 | break; |
---|
566 | } |
---|
567 | if (p_GetExp(G->m[kG],1,r)>p_GetExp(Hi->m[kH],1,r)) |
---|
568 | G->m[i] = G->m[kG++]; |
---|
569 | else |
---|
570 | G->m[i] = Hi->m[kH++]; |
---|
571 | } |
---|
572 | m += l; IDELEMS(GG) = m; GG->m = &G->m[n-m]; |
---|
573 | if (ppreduceInitially(it->second,p,GG,r)) return true; |
---|
574 | idShallowDelete(&Hi); Hi = it->second; |
---|
575 | } |
---|
576 | idShallowDelete(&Hi); |
---|
577 | |
---|
578 | omFreeBin((ADDRESS)GG, sip_sideal_bin); idShallowDelete(&G); |
---|
579 | return false; |
---|
580 | } |
---|
581 | |
---|
582 | |
---|
583 | // #ifndef NDEBUG |
---|
584 | // BOOLEAN ppreduceInitially4(leftv res, leftv args) |
---|
585 | // { |
---|
586 | // leftv u = args; |
---|
587 | // if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
588 | // { |
---|
589 | // ideal I; |
---|
590 | // omUpdateInfo(); |
---|
591 | // Print("usedBytesBefore=%ld\n",om_Info.UsedBytes); |
---|
592 | // I = (ideal) u->CopyD(); |
---|
593 | // (void) ppreduceInitially(I,currRing); |
---|
594 | // id_Delete(&I,currRing); |
---|
595 | // omUpdateInfo(); |
---|
596 | // Print("usedBytesAfter=%ld\n",om_Info.UsedBytes); |
---|
597 | // I = (ideal) u->CopyD(); |
---|
598 | // (void) ppreduceInitially(I,currRing); |
---|
599 | // res->rtyp = IDEAL_CMD; |
---|
600 | // res->data = (char*) I; |
---|
601 | // return FALSE; |
---|
602 | // } |
---|
603 | // return TRUE; |
---|
604 | // } |
---|
605 | // #endif |
---|
606 | |
---|
607 | |
---|
608 | // BOOLEAN ppreduceInitially(leftv res, leftv args) |
---|
609 | // { |
---|
610 | // leftv u = args; |
---|
611 | // if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
612 | // { |
---|
613 | // ideal I = (ideal) u->CopyD(); |
---|
614 | // (void) ppreduceInitially(I,currRing); |
---|
615 | // res->rtyp = IDEAL_CMD; |
---|
616 | // res->data = (char*) I; |
---|
617 | // return FALSE; |
---|
618 | // } |
---|
619 | // return TRUE; |
---|
620 | // } |
---|