1 | #include <callgfanlib_conversion.h> |
---|
2 | #include <containsMonomial.h> |
---|
3 | #include <tropical.h> |
---|
4 | #include <initial.h> |
---|
5 | #include <lift.h> |
---|
6 | #include <groebnerCone.h> |
---|
7 | #include <neighbours.h> |
---|
8 | #include <tropicalStrategy.h> |
---|
9 | #include <tropicalCurves.h> |
---|
10 | #include <bbcone.h> |
---|
11 | #include <tropicalVarietyOfPolynomials.h> |
---|
12 | #include <tropicalVariety.h> |
---|
13 | #include <tropicalStrategy.h> |
---|
14 | |
---|
15 | |
---|
16 | /*** |
---|
17 | * checks whether sigma is contained in the tropical variety |
---|
18 | * by testing whether the initial Ideal with respect to the interior point |
---|
19 | * is monomial free. |
---|
20 | **/ |
---|
21 | static bool checkContainmentInTropicalVariety(const groebnerCone sigma) |
---|
22 | { |
---|
23 | ideal I = sigma.getPolynomialIdeal(); |
---|
24 | ring r = sigma.getPolynomialRing(); |
---|
25 | const tropicalStrategy* currentStrategy = sigma.getTropicalStrategy(); |
---|
26 | |
---|
27 | gfan::ZCone zc = sigma.getPolyhedralCone(); |
---|
28 | gfan::ZMatrix zm = zc.extremeRays(); |
---|
29 | for (int i=0; i<zm.getHeight(); i++) |
---|
30 | { |
---|
31 | gfan::ZVector w = zm[i]; |
---|
32 | if (currentStrategy->isValuationNonTrivial() && w[0].sign()==0) |
---|
33 | continue; |
---|
34 | poly s = currentStrategy->checkInitialIdealForMonomial(I,r,w); |
---|
35 | if (s) |
---|
36 | { |
---|
37 | p_Delete(&s,r); |
---|
38 | return false; |
---|
39 | } |
---|
40 | } |
---|
41 | |
---|
42 | zm = zc.generatorsOfLinealitySpace(); |
---|
43 | for (int i=0; i<zm.getHeight(); i++) |
---|
44 | { |
---|
45 | gfan::ZVector w = zm[i]; |
---|
46 | if (currentStrategy->isValuationNonTrivial() && w[0].sign()==0) |
---|
47 | continue; |
---|
48 | poly s = currentStrategy->checkInitialIdealForMonomial(I,r,w); |
---|
49 | if (s) |
---|
50 | { |
---|
51 | p_Delete(&s,r); |
---|
52 | return false; |
---|
53 | } |
---|
54 | } |
---|
55 | |
---|
56 | return true; |
---|
57 | } |
---|
58 | |
---|
59 | |
---|
60 | static bool checkOneCodimensionalLinealitySpace(const groebnerCone sigma) |
---|
61 | { |
---|
62 | gfan::ZCone zc = sigma.getPolyhedralCone(); |
---|
63 | int linDim = zc.dimensionOfLinealitySpace(); |
---|
64 | int dim = zc.dimension(); |
---|
65 | return (linDim+1)==dim; |
---|
66 | } |
---|
67 | |
---|
68 | |
---|
69 | /** |
---|
70 | * Computes a starting point outside the lineatliy space by traversing the Groebner fan, |
---|
71 | * checking each cone whether it contains a ray in the tropical variety. |
---|
72 | * Returns a point in the tropical variety and a maximal Groebner cone containing the point. |
---|
73 | **/ |
---|
74 | std::pair<gfan::ZVector,groebnerCone> tropicalStartingPoint(const ideal I, const ring r, const tropicalStrategy& currentStrategy) |
---|
75 | { |
---|
76 | // start by computing a maximal Groebner cone and |
---|
77 | // check whether one of its rays lies in the tropical variety |
---|
78 | const groebnerCone sigma(I,r,currentStrategy); |
---|
79 | gfan::ZVector startingPoint = sigma.tropicalPoint(); |
---|
80 | if (startingPoint.size() > 0) |
---|
81 | return std::make_pair(startingPoint,sigma); |
---|
82 | |
---|
83 | // if not, traverse the groebnerFan and until such a cone is found |
---|
84 | // and return the maximal cone together with a point in its ray |
---|
85 | groebnerCones groebnerFan; |
---|
86 | groebnerCones workingList; |
---|
87 | workingList.insert(sigma); |
---|
88 | while (!workingList.empty()) |
---|
89 | { |
---|
90 | const groebnerCone sigma = *(workingList.begin()); |
---|
91 | groebnerCones neighbours = sigma.groebnerNeighbours(); |
---|
92 | for (groebnerCones::iterator tau = neighbours.begin(); tau!=neighbours.end(); tau++) |
---|
93 | { |
---|
94 | if (groebnerFan.count(*tau) == 0) |
---|
95 | { |
---|
96 | if (workingList.count(*tau) == 0) |
---|
97 | { |
---|
98 | startingPoint = tau->tropicalPoint(); |
---|
99 | if (startingPoint.size() > 0) |
---|
100 | return std::make_pair(startingPoint,*tau); |
---|
101 | } |
---|
102 | workingList.insert(*tau); |
---|
103 | } |
---|
104 | } |
---|
105 | groebnerFan.insert(sigma); |
---|
106 | workingList.erase(sigma); |
---|
107 | } |
---|
108 | |
---|
109 | // return some trivial output, if such a cone cannot be found |
---|
110 | gfan::ZVector emptyVector = gfan::ZVector(0); |
---|
111 | groebnerCone emptyCone = groebnerCone(); |
---|
112 | return std::pair<gfan::ZVector,groebnerCone>(emptyVector,emptyCone); |
---|
113 | } |
---|
114 | |
---|
115 | |
---|
116 | /** |
---|
117 | * Computes a starting point outside the lineatliy space by traversing the Groebner fan, |
---|
118 | * checking each cone whether it contains a ray in the tropical variety. |
---|
119 | * Returns a point in the tropical variety and a maximal Groebner cone containing the point. |
---|
120 | **/ |
---|
121 | std::pair<gfan::ZVector,groebnerCone> tropicalStartingDataViaGroebnerFan(const ideal I, const ring r, const tropicalStrategy& currentStrategy) |
---|
122 | { |
---|
123 | // start by computing a maximal Groebner cone and |
---|
124 | // check whether one of its rays lies in the tropical variety |
---|
125 | const groebnerCone sigma(I,r,currentStrategy); |
---|
126 | gfan::ZVector startingPoint = sigma.tropicalPoint(); |
---|
127 | if (startingPoint.size() > 0) |
---|
128 | return std::make_pair(startingPoint,sigma); |
---|
129 | |
---|
130 | // if not, traverse the groebnerFan and until such a cone is found |
---|
131 | // and return the maximal cone together with a point in its ray |
---|
132 | groebnerCones groebnerFan; |
---|
133 | groebnerCones workingList; |
---|
134 | workingList.insert(sigma); |
---|
135 | while (!workingList.empty()) |
---|
136 | { |
---|
137 | const groebnerCone sigma = *(workingList.begin()); |
---|
138 | groebnerCones neighbours = sigma.groebnerNeighbours(); |
---|
139 | for (groebnerCones::iterator tau = neighbours.begin(); tau!=neighbours.end(); tau++) |
---|
140 | { |
---|
141 | if (groebnerFan.count(*tau) == 0) |
---|
142 | { |
---|
143 | if (workingList.count(*tau) == 0) |
---|
144 | { |
---|
145 | startingPoint = tau->tropicalPoint(); |
---|
146 | if (startingPoint.size() > 0) |
---|
147 | return std::make_pair(startingPoint,*tau); |
---|
148 | } |
---|
149 | workingList.insert(*tau); |
---|
150 | } |
---|
151 | } |
---|
152 | groebnerFan.insert(sigma); |
---|
153 | workingList.erase(sigma); |
---|
154 | } |
---|
155 | |
---|
156 | // return some trivial output, if such a cone cannot be found |
---|
157 | gfan::ZVector emptyVector = gfan::ZVector(0); |
---|
158 | groebnerCone emptyCone = groebnerCone(); |
---|
159 | return std::pair<gfan::ZVector,groebnerCone>(emptyVector,emptyCone); |
---|
160 | } |
---|
161 | |
---|
162 | BOOLEAN positiveTropicalStartingPoint(leftv res, leftv args) |
---|
163 | { |
---|
164 | leftv u = args; |
---|
165 | if ((u!=NULL) && (u->Typ()==IDEAL_CMD)) |
---|
166 | { |
---|
167 | ideal I = (ideal) u->Data(); |
---|
168 | if (idSize(I)==1) |
---|
169 | { |
---|
170 | tropicalStrategy currentStrategy(I,currRing); |
---|
171 | poly g = I->m[0]; |
---|
172 | std::set<gfan::ZCone> Tg = tropicalVariety(g,currRing,¤tStrategy); |
---|
173 | for (std::set<gfan::ZCone>::iterator zc=Tg.begin(); zc!=Tg.end(); zc++) |
---|
174 | { |
---|
175 | gfan::ZMatrix ray = zc->extremeRays(); |
---|
176 | for (int i=0; i<ray.getHeight(); i++) |
---|
177 | { |
---|
178 | if (ray[i].isPositive()) |
---|
179 | { |
---|
180 | res->rtyp = BIGINTMAT_CMD; |
---|
181 | res->data = (void*) zVectorToBigintmat(ray[i]); |
---|
182 | return FALSE; |
---|
183 | } |
---|
184 | } |
---|
185 | } |
---|
186 | res->rtyp = BIGINTMAT_CMD; |
---|
187 | res->data = (void*) zVectorToBigintmat(gfan::ZVector(0)); |
---|
188 | return FALSE; |
---|
189 | } |
---|
190 | WerrorS("positiveTropicalStartingPoint: ideal not principal"); |
---|
191 | return TRUE; |
---|
192 | } |
---|
193 | WerrorS("positiveTropicalStartingPoint: unexpected parameters"); |
---|
194 | return TRUE; |
---|
195 | } |
---|
196 | |
---|
197 | BOOLEAN nonNegativeTropicalStartingPoint(leftv res, leftv args) |
---|
198 | { |
---|
199 | leftv u = args; |
---|
200 | if ((u!=NULL) && (u->Typ()==IDEAL_CMD)) |
---|
201 | { |
---|
202 | ideal I = (ideal) u->Data(); |
---|
203 | if (idSize(I)==1) |
---|
204 | { |
---|
205 | tropicalStrategy currentStrategy(I,currRing); |
---|
206 | poly g = I->m[0]; |
---|
207 | std::set<gfan::ZCone> Tg = tropicalVariety(g,currRing,¤tStrategy); |
---|
208 | for (std::set<gfan::ZCone>::iterator zc=Tg.begin(); zc!=Tg.end(); zc++) |
---|
209 | { |
---|
210 | gfan::ZMatrix ray = zc->extremeRays(); |
---|
211 | for (int i=0; i<ray.getHeight(); i++) |
---|
212 | { |
---|
213 | if (ray[i].isNonNegative()) |
---|
214 | { |
---|
215 | res->rtyp = BIGINTMAT_CMD; |
---|
216 | res->data = (void*) zVectorToBigintmat(ray[i]); |
---|
217 | return FALSE; |
---|
218 | } |
---|
219 | } |
---|
220 | } |
---|
221 | res->rtyp = BIGINTMAT_CMD; |
---|
222 | res->data = (void*) zVectorToBigintmat(gfan::ZVector(0)); |
---|
223 | return FALSE; |
---|
224 | } |
---|
225 | WerrorS("nonNegativeTropicalStartingPoint: ideal not principal"); |
---|
226 | return TRUE; |
---|
227 | } |
---|
228 | WerrorS("nonNegativeTropicalStartingPoint: unexpected parameters"); |
---|
229 | return TRUE; |
---|
230 | } |
---|
231 | |
---|
232 | BOOLEAN negativeTropicalStartingPoint(leftv res, leftv args) |
---|
233 | { |
---|
234 | leftv u = args; |
---|
235 | if ((u!=NULL) && (u->Typ()==IDEAL_CMD)) |
---|
236 | { |
---|
237 | ideal I = (ideal) u->Data(); |
---|
238 | if (idSize(I)==1) |
---|
239 | { |
---|
240 | tropicalStrategy currentStrategy(I,currRing); |
---|
241 | poly g = I->m[0]; |
---|
242 | std::set<gfan::ZCone> Tg = tropicalVariety(g,currRing,¤tStrategy); |
---|
243 | for (std::set<gfan::ZCone>::iterator zc=Tg.begin(); zc!=Tg.end(); zc++) |
---|
244 | { |
---|
245 | gfan::ZMatrix ray = zc->extremeRays(); |
---|
246 | for (int i=0; i<ray.getHeight(); i++) |
---|
247 | { |
---|
248 | gfan::ZVector negatedRay = gfan::Integer(-1)*ray[i]; |
---|
249 | if (negatedRay.isPositive()) |
---|
250 | { |
---|
251 | res->rtyp = BIGINTMAT_CMD; |
---|
252 | res->data = (void*) zVectorToBigintmat(ray[i]); |
---|
253 | return FALSE; |
---|
254 | } |
---|
255 | } |
---|
256 | } |
---|
257 | res->rtyp = BIGINTMAT_CMD; |
---|
258 | res->data = (void*) zVectorToBigintmat(gfan::ZVector(0)); |
---|
259 | return FALSE; |
---|
260 | } |
---|
261 | WerrorS("negativeTropicalStartingPoint: ideal not principal"); |
---|
262 | return TRUE; |
---|
263 | } |
---|
264 | WerrorS("negativeTropicalStartingPoint: unexpected parameters"); |
---|
265 | return TRUE; |
---|
266 | } |
---|
267 | |
---|
268 | BOOLEAN nonPositiveTropicalStartingPoint(leftv res, leftv args) |
---|
269 | { |
---|
270 | leftv u = args; |
---|
271 | if ((u!=NULL) && (u->Typ()==IDEAL_CMD)) |
---|
272 | { |
---|
273 | ideal I = (ideal) u->Data(); |
---|
274 | if (idSize(I)==1) |
---|
275 | { |
---|
276 | tropicalStrategy currentStrategy(I,currRing); |
---|
277 | poly g = I->m[0]; |
---|
278 | std::set<gfan::ZCone> Tg = tropicalVariety(g,currRing,¤tStrategy); |
---|
279 | for (std::set<gfan::ZCone>::iterator zc=Tg.begin(); zc!=Tg.end(); zc++) |
---|
280 | { |
---|
281 | gfan::ZMatrix ray = zc->extremeRays(); |
---|
282 | for (int i=0; i<ray.getHeight(); i++) |
---|
283 | { |
---|
284 | gfan::ZVector negatedRay = gfan::Integer(-1)*ray[i]; |
---|
285 | if (negatedRay.isNonNegative()) |
---|
286 | { |
---|
287 | res->rtyp = BIGINTMAT_CMD; |
---|
288 | res->data = (void*) zVectorToBigintmat(ray[i]); |
---|
289 | return FALSE; |
---|
290 | } |
---|
291 | } |
---|
292 | } |
---|
293 | res->rtyp = BIGINTMAT_CMD; |
---|
294 | res->data = (void*) zVectorToBigintmat(gfan::ZVector(0)); |
---|
295 | return FALSE; |
---|
296 | } |
---|
297 | WerrorS("nonPositiveTropicalStartingPoint: ideal not principal"); |
---|
298 | return TRUE; |
---|
299 | } |
---|
300 | WerrorS("nonPositiveTropicalStartingPoint: unexpected parameters"); |
---|
301 | return TRUE; |
---|
302 | } |
---|
303 | |
---|
304 | BOOLEAN tropicalStartingPoint(leftv res, leftv args) |
---|
305 | { |
---|
306 | leftv u = args; |
---|
307 | if ((u!=NULL) && (u->Typ()==IDEAL_CMD)) |
---|
308 | { |
---|
309 | ideal I = (ideal) u->Data(); |
---|
310 | tropicalStrategy currentStrategy(I,currRing); |
---|
311 | if (idSize(I)==1) |
---|
312 | { |
---|
313 | poly g = I->m[0]; |
---|
314 | std::set<gfan::ZCone> Tg = tropicalVariety(g,currRing,¤tStrategy); |
---|
315 | if (Tg.empty()) |
---|
316 | { |
---|
317 | res->rtyp = BIGINTMAT_CMD; |
---|
318 | res->data = (void*) zVectorToBigintmat(gfan::ZVector(0)); |
---|
319 | return FALSE; |
---|
320 | } |
---|
321 | gfan::ZCone C = *(Tg.begin()); |
---|
322 | gfan::ZMatrix rays = C.extremeRays(); |
---|
323 | if (rays.getHeight()==0) |
---|
324 | { |
---|
325 | gfan::ZMatrix lin = C.generatorsOfLinealitySpace(); |
---|
326 | res->rtyp = BIGINTMAT_CMD; |
---|
327 | res->data = (void*) zVectorToBigintmat(lin[0]); |
---|
328 | return FALSE; |
---|
329 | } |
---|
330 | res->rtyp = BIGINTMAT_CMD; |
---|
331 | res->data = (void*) zVectorToBigintmat(rays[0]); |
---|
332 | return FALSE; |
---|
333 | } |
---|
334 | gfan::ZCone C0 = currentStrategy.getHomogeneitySpace(); |
---|
335 | if (C0.dimension()==currentStrategy.getExpectedDimension()) |
---|
336 | { |
---|
337 | gfan::ZMatrix lin = C0.generatorsOfLinealitySpace(); |
---|
338 | res->rtyp = BIGINTMAT_CMD; |
---|
339 | res->data = (void*) zVectorToBigintmat(lin[0]); |
---|
340 | return FALSE; |
---|
341 | } |
---|
342 | std::pair<gfan::ZVector,groebnerCone> startingData = tropicalStartingDataViaGroebnerFan(I,currRing,currentStrategy); |
---|
343 | gfan::ZVector startingPoint = startingData.first; |
---|
344 | res->rtyp = BIGINTMAT_CMD; |
---|
345 | res->data = (void*) zVectorToBigintmat(startingPoint); |
---|
346 | return FALSE; |
---|
347 | } |
---|
348 | WerrorS("tropicalStartingPoint: unexpected parameters"); |
---|
349 | return TRUE; |
---|
350 | } |
---|
351 | |
---|
352 | /*** |
---|
353 | * returs the lineality space of the Groebner fan |
---|
354 | **/ |
---|
355 | static gfan::ZCone linealitySpaceOfGroebnerFan(const ideal I, const ring r) |
---|
356 | { |
---|
357 | int n = rVar(r); |
---|
358 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
359 | int* expv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
360 | int k = idSize(I); |
---|
361 | for (int i=0; i<k; i++) |
---|
362 | { |
---|
363 | poly g = I->m[i]; |
---|
364 | if (g) |
---|
365 | { |
---|
366 | p_GetExpV(g,expv,r); |
---|
367 | gfan::ZVector leadexp = intStar2ZVector(n,expv); |
---|
368 | for (pIter(g); g; pIter(g)) |
---|
369 | { |
---|
370 | p_GetExpV(g,expv,r); |
---|
371 | equations.appendRow(leadexp-intStar2ZVector(n,expv)); |
---|
372 | } |
---|
373 | } |
---|
374 | } |
---|
375 | omFreeSize(expv,(n+1)*sizeof(int)); |
---|
376 | return gfan::ZCone(gfan::ZMatrix(0,n),equations); |
---|
377 | } |
---|
378 | |
---|
379 | /*** |
---|
380 | * Computes a starting cone in the tropical variety. |
---|
381 | **/ |
---|
382 | groebnerCone tropicalStartingCone(const tropicalStrategy& currentStrategy) |
---|
383 | { |
---|
384 | ring r = currentStrategy.getStartingRing(); |
---|
385 | ideal I = currentStrategy.getStartingIdeal(); |
---|
386 | currentStrategy.reduce(I,r); |
---|
387 | if (currentStrategy.isConstantCoefficientCase()) |
---|
388 | { |
---|
389 | // copy the data, so that it be deleted when passed to the loop |
---|
390 | // s <- r |
---|
391 | // inI <- I |
---|
392 | ring s = rCopy(r); |
---|
393 | int k = idSize(I); ideal inI = idInit(k); |
---|
394 | nMapFunc identityMap = n_SetMap(r->cf,s->cf); |
---|
395 | for (int i=0; i<k; i++) |
---|
396 | inI->m[i] = p_PermPoly(I->m[i],NULL,r,s,identityMap,NULL,0); |
---|
397 | |
---|
398 | // repeatedly computes a point in the tropical variety outside the lineality space, |
---|
399 | // take the initial ideal with respect to it |
---|
400 | // and check whether the dimension of its homogeneity space |
---|
401 | // equals the dimension of the tropical variety |
---|
402 | gfan::ZCone zc = linealitySpaceOfGroebnerFan(inI,s); |
---|
403 | gfan::ZVector startingPoint; groebnerCone ambientMaximalCone; |
---|
404 | while (zc.dimension()<currentStrategy.getExpectedDimension()) |
---|
405 | { |
---|
406 | // compute a point in the tropical variety outside the lineality space |
---|
407 | std::pair<gfan::ZVector,groebnerCone> startingData = tropicalStartingDataViaGroebnerFan(inI,s,currentStrategy); |
---|
408 | startingPoint = startingData.first; |
---|
409 | ambientMaximalCone = groebnerCone(startingData.second); |
---|
410 | |
---|
411 | id_Delete(&inI,s); rDelete(s); |
---|
412 | inI = ambientMaximalCone.getPolynomialIdeal(); |
---|
413 | s = ambientMaximalCone.getPolynomialRing(); |
---|
414 | |
---|
415 | // compute the initial ideal with respect to the weight |
---|
416 | inI = initial(inI,s,startingPoint); |
---|
417 | zc = linealitySpaceOfGroebnerFan(inI,s); |
---|
418 | } |
---|
419 | |
---|
420 | // once the dimension of the homogeneity space equals that of the tropical variety |
---|
421 | // we know that we have an initial ideal with respect to a weight |
---|
422 | // in the relative interior of a maximal cone in the tropical variety |
---|
423 | // from this we can read of the inequalities and equations |
---|
424 | |
---|
425 | // but before doing so, we must lift the generating set of inI |
---|
426 | // to a generating set of I |
---|
427 | ideal J = lift(I,r,inI,s); |
---|
428 | groebnerCone startingCone(J,inI,s,currentStrategy); |
---|
429 | id_Delete(&inI,s); |
---|
430 | id_Delete(&J,s); |
---|
431 | |
---|
432 | // assume(checkContainmentInTropicalVariety(startingCone)); |
---|
433 | return startingCone; |
---|
434 | } |
---|
435 | else |
---|
436 | { |
---|
437 | // copy the data, so that it be deleted when passed to the loop |
---|
438 | // s <- r |
---|
439 | // inJ <- I |
---|
440 | ring s = rCopy(r); |
---|
441 | int k = idSize(I); ideal inJ = idInit(k); |
---|
442 | nMapFunc identityMap = n_SetMap(r->cf,s->cf); |
---|
443 | for (int i=0; i<k; i++) |
---|
444 | inJ->m[i] = p_PermPoly(I->m[i],NULL,r,s,identityMap,NULL,0); |
---|
445 | |
---|
446 | // and check whether the dimension of its homogeneity space |
---|
447 | // equals the dimension of the tropical variety |
---|
448 | gfan::ZCone zc = linealitySpaceOfGroebnerFan(inJ,s); |
---|
449 | if (zc.dimension()==currentStrategy.getExpectedDimension()) |
---|
450 | { // this shouldn't happen as trivial cases should be caught beforehand |
---|
451 | // this is the case that the tropical variety consists soely out of the lineality space |
---|
452 | groebnerCone startingCone(I,inJ,s,currentStrategy); |
---|
453 | id_Delete(&inJ,s); |
---|
454 | rDelete(s); |
---|
455 | return startingCone; |
---|
456 | } |
---|
457 | |
---|
458 | // compute a point in the tropical variety outside the lineality space |
---|
459 | // compute the initial ideal with respect to the weight |
---|
460 | std::pair<gfan::ZVector,groebnerCone> startingData = tropicalStartingDataViaGroebnerFan(inJ,s,currentStrategy); |
---|
461 | gfan::ZVector startingPoint = startingData.first; |
---|
462 | groebnerCone ambientMaximalCone = groebnerCone(startingData.second); |
---|
463 | id_Delete(&inJ,s); rDelete(s); |
---|
464 | inJ = ambientMaximalCone.getPolynomialIdeal(); |
---|
465 | s = ambientMaximalCone.getPolynomialRing(); |
---|
466 | inJ = initial(inJ,s,startingPoint); |
---|
467 | ideal inI = initial(I,r,startingPoint); |
---|
468 | zc = linealitySpaceOfGroebnerFan(inJ,s); |
---|
469 | |
---|
470 | // and check whether the dimension of its homogeneity space |
---|
471 | // equals the dimension of the tropical variety |
---|
472 | if (zc.dimension()==currentStrategy.getExpectedDimension()) |
---|
473 | { // this case shouldn't happen as trivial cases should be caught beforehand |
---|
474 | // this is the case that the tropical variety has a one-codimensional lineality space |
---|
475 | ideal J = lift(I,r,inJ,s); |
---|
476 | groebnerCone startingCone(J,inJ,s,currentStrategy); |
---|
477 | id_Delete(&inJ,s); |
---|
478 | id_Delete(&J,s); |
---|
479 | return startingCone; |
---|
480 | } |
---|
481 | |
---|
482 | // from this point on, inJ contains the uniformizing parameter, |
---|
483 | // hence it contains a monomial if and only if its residue over the residue field does. |
---|
484 | // so we will switch to the residue field |
---|
485 | ring rShortcut = rCopy0(r); |
---|
486 | nKillChar(rShortcut->cf); |
---|
487 | rShortcut->cf = nCopyCoeff((currentStrategy.getShortcutRing())->cf); |
---|
488 | rComplete(rShortcut); |
---|
489 | rTest(rShortcut); |
---|
490 | k = idSize(inJ); |
---|
491 | ideal inJShortcut = idInit(k); |
---|
492 | nMapFunc takingResidues = n_SetMap(s->cf,rShortcut->cf); |
---|
493 | for (int i=0; i<k; i++) |
---|
494 | inJShortcut->m[i] = p_PermPoly(inJ->m[i],NULL,s,rShortcut,takingResidues,NULL,0); |
---|
495 | idSkipZeroes(inJShortcut); |
---|
496 | id_Delete(&inJ,s); |
---|
497 | |
---|
498 | // we are interested in a maximal cone of the tropical variety of inJShortcut |
---|
499 | // this basically equivalent to the case without valuation (or constant coefficient case) |
---|
500 | // except that our ideal is still only homogeneous in the later variables, |
---|
501 | // hence we set the optional parameter completelyHomogeneous as 'false' |
---|
502 | tropicalStrategy shortcutStrategy(inJShortcut,rShortcut,false); |
---|
503 | groebnerCone startingConeShortcut = tropicalStartingCone(shortcutStrategy); |
---|
504 | id_Delete(&inJShortcut,rShortcut); rDelete(rShortcut); |
---|
505 | |
---|
506 | // now we need to obtain the initial of the residue of inJ |
---|
507 | // with respect to a weight in the tropical cone, |
---|
508 | // and obtain the initial of inJ with respect to the same weight |
---|
509 | ring sShortcut = startingConeShortcut.getPolynomialRing(); |
---|
510 | inJShortcut = startingConeShortcut.getPolynomialIdeal(); |
---|
511 | gfan::ZCone zd = startingConeShortcut.getPolyhedralCone(); |
---|
512 | gfan::ZVector interiorPoint = startingConeShortcut.getInteriorPoint(); |
---|
513 | inJShortcut = initial(inJShortcut,sShortcut,interiorPoint); |
---|
514 | inI = initial(inI,r,interiorPoint); |
---|
515 | |
---|
516 | s = rCopy0(sShortcut); // s will be a ring over the valuation ring |
---|
517 | nKillChar(s->cf); // with the same ordering as sShortcut |
---|
518 | s->cf = nCopyCoeff(r->cf); |
---|
519 | rComplete(s); |
---|
520 | rTest(s); |
---|
521 | |
---|
522 | k = idSize(inJShortcut); // inJ will be overwritten with initial of inJ |
---|
523 | inJ = idInit(k+1); |
---|
524 | inJ->m[0] = p_One(s); // with respect to that weight |
---|
525 | identityMap = n_SetMap(r->cf,s->cf); // first element will obviously be p |
---|
526 | p_SetCoeff(inJ->m[0],identityMap(currentStrategy.getUniformizingParameter(),r->cf,s->cf),s); |
---|
527 | nMapFunc findingRepresentatives = n_SetMap(sShortcut->cf,s->cf); |
---|
528 | for (int i=0; i<k; i++) // and then come the rest |
---|
529 | inJ->m[i+1] = p_PermPoly(inJShortcut->m[i],NULL,sShortcut,s,findingRepresentatives,NULL,0); |
---|
530 | |
---|
531 | ideal J = currentStrategy.computeLift(inJ,s,inI,I,r); |
---|
532 | // currentStrategy.reduce(J,s); |
---|
533 | groebnerCone startingCone(J,inJ,s,currentStrategy); |
---|
534 | id_Delete(&inJ,s); |
---|
535 | id_Delete(&J,s); |
---|
536 | rDelete(s); |
---|
537 | id_Delete(&inI,r); |
---|
538 | |
---|
539 | assume(checkContainmentInTropicalVariety(startingCone)); |
---|
540 | return startingCone; |
---|
541 | } |
---|
542 | } |
---|
543 | |
---|
544 | BOOLEAN tropicalStartingCone(leftv res, leftv args) |
---|
545 | { |
---|
546 | leftv u = args; |
---|
547 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
548 | { |
---|
549 | ideal I = (ideal) u->CopyD(); |
---|
550 | leftv v = u->next; |
---|
551 | if ((v != NULL) && (v->Typ() == NUMBER_CMD)) |
---|
552 | { |
---|
553 | number p = (number) v->Data(); |
---|
554 | leftv w = v->next; |
---|
555 | if (w==NULL) |
---|
556 | { |
---|
557 | tropicalStrategy currentStrategy(I,p,currRing); |
---|
558 | groebnerCone sigma = tropicalStartingCone(currentStrategy); |
---|
559 | gfan::ZCone* startingCone = new gfan::ZCone(sigma.getPolyhedralCone()); |
---|
560 | res->rtyp = coneID; |
---|
561 | res->data = (char*) startingCone; |
---|
562 | return FALSE; |
---|
563 | } |
---|
564 | } |
---|
565 | else |
---|
566 | { |
---|
567 | if (v==NULL) |
---|
568 | { |
---|
569 | tropicalStrategy currentStrategy(I,currRing); |
---|
570 | groebnerCone sigma = tropicalStartingCone(currentStrategy); |
---|
571 | res->rtyp = coneID; |
---|
572 | res->data = (char*) new gfan::ZCone(sigma.getPolyhedralCone()); |
---|
573 | return FALSE; |
---|
574 | } |
---|
575 | } |
---|
576 | } |
---|
577 | WerrorS("tropicalStartingCone: unexpected parameters"); |
---|
578 | return TRUE; |
---|
579 | } |
---|