1 | #include <kernel/polys.h> |
---|
2 | #include <kernel/kstd1.h> |
---|
3 | #include <libpolys/coeffs/longrat.h> |
---|
4 | #include <libpolys/polys/clapsing.h> |
---|
5 | #include <bbcone.h> |
---|
6 | |
---|
7 | #include <initialReduction.h> |
---|
8 | |
---|
9 | poly initial(poly p) |
---|
10 | { |
---|
11 | poly g = p; |
---|
12 | poly h = p_Head(g,currRing); |
---|
13 | poly f = h; |
---|
14 | long d = p_Deg(g,currRing); |
---|
15 | pIter(g); |
---|
16 | while ((g != NULL) && (p_Deg(g,currRing) == d)) |
---|
17 | { |
---|
18 | pNext(h) = p_Head(g,currRing); |
---|
19 | pIter(h); |
---|
20 | pIter(g); |
---|
21 | } |
---|
22 | return(f); |
---|
23 | } |
---|
24 | |
---|
25 | |
---|
26 | BOOLEAN initial(leftv res, leftv args) |
---|
27 | { |
---|
28 | leftv u = args; |
---|
29 | if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
30 | { |
---|
31 | leftv v = u->next; |
---|
32 | if (v == NULL) |
---|
33 | { |
---|
34 | poly p = (poly) u->Data(); |
---|
35 | res->rtyp = POLY_CMD; |
---|
36 | res->data = (void*) initial(p); |
---|
37 | return FALSE; |
---|
38 | } |
---|
39 | } |
---|
40 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
41 | { |
---|
42 | leftv v = u->next; |
---|
43 | if (v == NULL) |
---|
44 | { |
---|
45 | ideal I = (ideal) u->Data(); |
---|
46 | ideal inI = idInit(IDELEMS(I)); |
---|
47 | for (int i=0; i<IDELEMS(I); i++) |
---|
48 | inI->m[i]=initial(I->m[i]); |
---|
49 | res->rtyp = IDEAL_CMD; |
---|
50 | res->data = (void*) inI; |
---|
51 | return FALSE; |
---|
52 | } |
---|
53 | } |
---|
54 | WerrorS("initial: unexpected parameters"); |
---|
55 | return TRUE; |
---|
56 | } |
---|
57 | |
---|
58 | |
---|
59 | BOOLEAN homogeneitySpace(leftv res, leftv args) |
---|
60 | { |
---|
61 | leftv u = args; |
---|
62 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
63 | { |
---|
64 | leftv v = u->next; |
---|
65 | if (v == NULL) |
---|
66 | { |
---|
67 | int n = currRing->N; |
---|
68 | ideal I = (ideal) u->Data(); |
---|
69 | poly g; |
---|
70 | int* leadexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
71 | int* tailexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
72 | gfan::ZVector leadexpw = gfan::ZVector(n); |
---|
73 | gfan::ZVector tailexpw = gfan::ZVector(n); |
---|
74 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
75 | for (int i=0; i<IDELEMS(I); i++) |
---|
76 | { |
---|
77 | g = (poly) I->m[i]; pGetExpV(g,leadexpv); |
---|
78 | leadexpw = intStar2ZVector(n, leadexpv); |
---|
79 | pIter(g); |
---|
80 | while (g != NULL) |
---|
81 | { |
---|
82 | pGetExpV(g,tailexpv); |
---|
83 | tailexpw = intStar2ZVector(n, tailexpv); |
---|
84 | equations.appendRow(leadexpw-tailexpw); |
---|
85 | pIter(g); |
---|
86 | } |
---|
87 | } |
---|
88 | gfan::ZCone* gCone = new gfan::ZCone(gfan::ZMatrix(0, equations.getWidth()),equations); |
---|
89 | omFreeSize(leadexpv,(n+1)*sizeof(int)); |
---|
90 | omFreeSize(tailexpv,(n+1)*sizeof(int)); |
---|
91 | |
---|
92 | res->rtyp = coneID; |
---|
93 | res->data = (void*) gCone; |
---|
94 | return FALSE; |
---|
95 | } |
---|
96 | } |
---|
97 | WerrorS("homogeneitySpace: unexpected parameters"); |
---|
98 | return TRUE; |
---|
99 | } |
---|
100 | |
---|
101 | |
---|
102 | BOOLEAN groebnerCone(leftv res, leftv args) |
---|
103 | { |
---|
104 | leftv u = args; |
---|
105 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
106 | { |
---|
107 | leftv v = u->next; |
---|
108 | if (v == NULL) |
---|
109 | { |
---|
110 | int n = currRing->N; |
---|
111 | ideal I = (ideal) u->Data(); |
---|
112 | poly g = NULL; |
---|
113 | int* leadexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
114 | int* tailexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
115 | gfan::ZVector leadexpw = gfan::ZVector(n); |
---|
116 | gfan::ZVector tailexpw = gfan::ZVector(n); |
---|
117 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
118 | gfan::ZMatrix equations = gfan::ZMatrix(0,n); |
---|
119 | long d; |
---|
120 | for (int i=0; i<IDELEMS(I); i++) |
---|
121 | { |
---|
122 | g = (poly) I->m[i]; pGetExpV(g,leadexpv); |
---|
123 | leadexpw = intStar2ZVector(n, leadexpv); |
---|
124 | pIter(g); |
---|
125 | d = p_Deg(g,currRing); |
---|
126 | while ((g != NULL) && (p_Deg(g,currRing) == d)) |
---|
127 | { |
---|
128 | pGetExpV(g,tailexpv); |
---|
129 | tailexpw = intStar2ZVector(n, tailexpv); |
---|
130 | equations.appendRow(leadexpw-tailexpw); |
---|
131 | pIter(g); |
---|
132 | } |
---|
133 | |
---|
134 | if (g != NULL) |
---|
135 | { |
---|
136 | while (g != NULL) |
---|
137 | { |
---|
138 | pGetExpV(g,tailexpv); |
---|
139 | tailexpw = intStar2ZVector(n, tailexpv); |
---|
140 | inequalities.appendRow(leadexpw-tailexpw); |
---|
141 | pIter(g); |
---|
142 | } |
---|
143 | } |
---|
144 | } |
---|
145 | gfan::ZCone* gCone = new gfan::ZCone(inequalities,equations); |
---|
146 | omFreeSize(leadexpv,(n+1)*sizeof(int)); |
---|
147 | omFreeSize(tailexpv,(n+1)*sizeof(int)); |
---|
148 | |
---|
149 | res->rtyp = coneID; |
---|
150 | res->data = (void*) gCone; |
---|
151 | return FALSE; |
---|
152 | } |
---|
153 | } |
---|
154 | WerrorS("groebnerCone: unexpected parameters"); |
---|
155 | return TRUE; |
---|
156 | } |
---|
157 | |
---|
158 | |
---|
159 | gfan::ZCone* maximalGroebnerCone(const ring &r, const ideal &I) |
---|
160 | { |
---|
161 | int n = rVar(r); |
---|
162 | poly g = NULL; |
---|
163 | int* leadexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
164 | int* tailexpv = (int*) omAlloc((n+1)*sizeof(int)); |
---|
165 | gfan::ZVector leadexpw = gfan::ZVector(n); |
---|
166 | gfan::ZVector tailexpw = gfan::ZVector(n); |
---|
167 | gfan::ZMatrix inequalities = gfan::ZMatrix(0,n); |
---|
168 | for (int i=0; i<IDELEMS(I); i++) |
---|
169 | { |
---|
170 | g = (poly) I->m[i]; pGetExpV(g,leadexpv); |
---|
171 | leadexpw = intStar2ZVector(n, leadexpv); |
---|
172 | pIter(g); |
---|
173 | while (g != NULL) |
---|
174 | { |
---|
175 | pGetExpV(g,tailexpv); |
---|
176 | tailexpw = intStar2ZVector(n, tailexpv); |
---|
177 | inequalities.appendRow(leadexpw-tailexpw); |
---|
178 | pIter(g); |
---|
179 | } |
---|
180 | } |
---|
181 | omFreeSize(leadexpv,(n+1)*sizeof(int)); |
---|
182 | omFreeSize(tailexpv,(n+1)*sizeof(int)); |
---|
183 | return new gfan::ZCone(inequalities,gfan::ZMatrix(0, inequalities.getWidth())); |
---|
184 | } |
---|
185 | |
---|
186 | |
---|
187 | BOOLEAN maximalGroebnerCone(leftv res, leftv args) |
---|
188 | { |
---|
189 | leftv u = args; |
---|
190 | if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
191 | { |
---|
192 | leftv v = u->next; |
---|
193 | if (v == NULL) |
---|
194 | { |
---|
195 | ideal I = (ideal) u->Data(); |
---|
196 | res->rtyp = coneID; |
---|
197 | res->data = (void*) maximalGroebnerCone(currRing, I); |
---|
198 | return FALSE; |
---|
199 | } |
---|
200 | } |
---|
201 | WerrorS("maximalGroebnerCone: unexpected parameters"); |
---|
202 | return TRUE; |
---|
203 | } |
---|
204 | |
---|
205 | /*** |
---|
206 | * If 1, replaces all occuring t with prime p, |
---|
207 | * where theoretically feasable. |
---|
208 | * Also computes GCD over integers than |
---|
209 | * over univariate polynomials |
---|
210 | **/ |
---|
211 | #define T_TO_P 0 |
---|
212 | |
---|
213 | /*** |
---|
214 | * Suppose I=g_0,...,g_{n-1}. |
---|
215 | * This function uses bubble sort to sorts g_1,...,g_{n-1} |
---|
216 | * such that lm(g_1)>...>lm(g_{n-1}) |
---|
217 | **/ |
---|
218 | static inline void sortingLaterGenerators(ideal I) |
---|
219 | { |
---|
220 | poly cache; int i; int n=IDELEMS(I); int newn; |
---|
221 | do |
---|
222 | { |
---|
223 | newn=0; |
---|
224 | for (i=2; i<n; i++) |
---|
225 | { |
---|
226 | if (pLmCmp(I->m[i-1],I->m[i])<0) |
---|
227 | { |
---|
228 | cache=I->m[i-1]; |
---|
229 | I->m[i-1]=I->m[i]; |
---|
230 | I->m[i]=cache; |
---|
231 | newn = i; |
---|
232 | } |
---|
233 | } |
---|
234 | n=newn; |
---|
235 | } while(n); |
---|
236 | } |
---|
237 | |
---|
238 | |
---|
239 | // /*** |
---|
240 | // * replaces coefficients in g of lowest degree in t |
---|
241 | // * divisible by p with a suitable power of t |
---|
242 | // **/ |
---|
243 | // static bool preduce(poly g, const number p) |
---|
244 | // { |
---|
245 | // // go along g and look for relevant terms. |
---|
246 | // // monomials in x which have been checked are tracked in done. |
---|
247 | // // because we assume the leading coefficient of g is 1, |
---|
248 | // // the leading term does not need to be considered. |
---|
249 | // poly done = p_LmInit(g,currRing); |
---|
250 | // p_SetExp(done,1,0,currRing); p_SetCoeff(done,n_Init(1,currRing->cf),currRing); |
---|
251 | // p_Setm(done,currRing); |
---|
252 | // poly doneEnd = done; |
---|
253 | // poly doneCache; |
---|
254 | // number dnumber; long d; |
---|
255 | // poly subst; number ppower; |
---|
256 | // while(pNext(g)) |
---|
257 | // { |
---|
258 | // // check whether next term needs to be reduced: |
---|
259 | // // first, check whether monomial in x has come up yet |
---|
260 | // for (doneCache=done; doneCache; pIter(doneCache)) |
---|
261 | // { |
---|
262 | // if (p_LmDivisibleBy(doneCache,pNext(g),currRing)) |
---|
263 | // break; |
---|
264 | // } |
---|
265 | // if (!doneCache) // if for loop did not terminate prematurely, |
---|
266 | // // then the monomial in x is new |
---|
267 | // { |
---|
268 | // // second, check whether coefficient is divisible by p |
---|
269 | // if (n_DivBy(p_GetCoeff(pNext(g),currRing->cf),p,currRing->cf)) |
---|
270 | // { |
---|
271 | // // reduce the term with respect to p-t: |
---|
272 | // // divide coefficient by p, remove old term, |
---|
273 | // // add t multiple of old term |
---|
274 | // dnumber = n_Div(p_GetCoeff(pNext(g),currRing->cf),p,currRing->cf); |
---|
275 | // d = n_Int(dnumber,currRing->cf); |
---|
276 | // n_Delete(&dnumber,currRing->cf); |
---|
277 | // if (!d) |
---|
278 | // { |
---|
279 | // p_Delete(&done,currRing); |
---|
280 | // WerrorS("initialReduction: overflow in a t-exponent"); |
---|
281 | // return true; |
---|
282 | // } |
---|
283 | // subst=p_LmInit(pNext(g),currRing); |
---|
284 | // if (d>0) |
---|
285 | // { |
---|
286 | // p_AddExp(subst,1,d,currRing); |
---|
287 | // p_SetCoeff(subst,n_Init(1,currRing->cf),currRing); |
---|
288 | // } |
---|
289 | // else |
---|
290 | // { |
---|
291 | // p_AddExp(subst,1,-d,currRing); |
---|
292 | // p_SetCoeff(subst,n_Init(-1,currRing->cf),currRing); |
---|
293 | // } |
---|
294 | // p_Setm(subst,currRing); pTest(subst); |
---|
295 | // pNext(g)=p_LmDeleteAndNext(pNext(g),currRing); |
---|
296 | // pNext(g)=p_Add_q(pNext(g),subst,currRing); |
---|
297 | // pTest(pNext(g)); |
---|
298 | // } |
---|
299 | // // either way, add monomial in x to done |
---|
300 | // pNext(doneEnd)=p_LmInit(pNext(g),currRing); |
---|
301 | // pIter(doneEnd); |
---|
302 | // p_SetExp(doneEnd,1,0,currRing); |
---|
303 | // p_SetCoeff(doneEnd,n_Init(1,currRing->cf),currRing); |
---|
304 | // p_Setm(doneEnd,currRing); |
---|
305 | // } |
---|
306 | // pIter(g); |
---|
307 | // } |
---|
308 | // p_Delete(&done,currRing); |
---|
309 | // return false; |
---|
310 | // } |
---|
311 | |
---|
312 | |
---|
313 | // #ifndef NDEBUG |
---|
314 | // BOOLEAN preduce(leftv res, leftv args) |
---|
315 | // { |
---|
316 | // leftv u = args; |
---|
317 | // if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
318 | // { |
---|
319 | // poly g; bool b; |
---|
320 | // number p = n_Init(3,currRing->cf); |
---|
321 | // omUpdateInfo(); |
---|
322 | // Print("usedBytes=%ld\n",om_Info.UsedBytes); |
---|
323 | // g = (poly) u->CopyD(); |
---|
324 | // b = preduce(g,p); |
---|
325 | // p_Delete(&g,currRing); |
---|
326 | // if (b) return TRUE; |
---|
327 | // omUpdateInfo(); |
---|
328 | // Print("usedBytes=%ld\n",om_Info.UsedBytes); |
---|
329 | // n_Delete(&p,currRing->cf); |
---|
330 | // res->rtyp = NONE; |
---|
331 | // res->data = NULL; |
---|
332 | // return FALSE; |
---|
333 | // } |
---|
334 | // return TRUE; |
---|
335 | // } |
---|
336 | // #endif //NDEBUG |
---|
337 | |
---|
338 | |
---|
339 | // /*** |
---|
340 | // * Returns the highest term in g with the matching x-monomial to m |
---|
341 | // * or, if it does not exist, the NULL pointer |
---|
342 | // **/ |
---|
343 | // static poly highestMatchingX(poly g, const poly m) |
---|
344 | // { |
---|
345 | // pTest(g); pTest(m); |
---|
346 | // poly xalpha=p_LmInit(m,currRing); |
---|
347 | |
---|
348 | // // go along g and find the first term |
---|
349 | // // with the same monomial in x as xalpha |
---|
350 | // while (g) |
---|
351 | // { |
---|
352 | // p_SetExp(xalpha,1,p_GetExp(g,1,currRing),currRing); |
---|
353 | // p_Setm(xalpha,currRing); |
---|
354 | // if (p_LmEqual(g,xalpha,currRing)) |
---|
355 | // break; |
---|
356 | // pIter(g); |
---|
357 | // } |
---|
358 | |
---|
359 | // // gCache now either points at the wanted term |
---|
360 | // // or is NULL |
---|
361 | // p_Delete(&xalpha,currRing); |
---|
362 | // pTest(g); |
---|
363 | // return g; |
---|
364 | // } |
---|
365 | |
---|
366 | |
---|
367 | // /*** |
---|
368 | // * Given g with lm(g)=t^\beta x^\alpha, returns g_\alpha |
---|
369 | // **/ |
---|
370 | // static poly powerSeriesCoeff(poly g) |
---|
371 | // { |
---|
372 | // // the first term obviously is part of our output |
---|
373 | // // so we copy it... |
---|
374 | // poly xalpha=p_LmInit(g,currRing); |
---|
375 | // poly coeff=p_One(currRing); |
---|
376 | // p_SetCoeff(coeff,n_Copy(p_GetCoeff(g,currRing),currRing->cf),currRing); |
---|
377 | // p_SetExp(coeff,1,p_GetExp(g,1,currRing),currRing); |
---|
378 | // p_Setm(coeff,currRing); |
---|
379 | |
---|
380 | // // ..and proceed with the remaining terms, |
---|
381 | // // appending the relevant terms to coeff via coeffCache |
---|
382 | // poly coeffCache=coeff; |
---|
383 | // pIter(g); |
---|
384 | // while (g) |
---|
385 | // { |
---|
386 | // p_SetExp(xalpha,1,p_GetExp(g,1,currRing),currRing); |
---|
387 | // p_Setm(xalpha,currRing); |
---|
388 | // if (p_LmEqual(g,xalpha,currRing)) |
---|
389 | // { |
---|
390 | // pNext(coeffCache)=p_Init(currRing); |
---|
391 | // pIter(coeffCache); |
---|
392 | // p_SetCoeff(coeffCache,n_Copy(p_GetCoeff(g,currRing),currRing->cf),currRing); |
---|
393 | // p_SetExp(coeffCache,1,p_GetExp(g,1,currRing),currRing); |
---|
394 | // p_Setm(coeffCache,currRing); |
---|
395 | // } |
---|
396 | // pIter(g); |
---|
397 | // } |
---|
398 | |
---|
399 | // p_Delete(&xalpha,currRing); |
---|
400 | // return coeff; |
---|
401 | // } |
---|
402 | |
---|
403 | |
---|
404 | // /*** |
---|
405 | // * divides g by t^b knowing that each term of g |
---|
406 | // * is divisible by t^b, i.e. no divisibility checks |
---|
407 | // * needed |
---|
408 | // **/ |
---|
409 | // static void divideByT(poly g, const long b) |
---|
410 | // { |
---|
411 | // while (g) |
---|
412 | // { |
---|
413 | // p_SetExp(g,1,p_GetExp(g,1,currRing)-b,currRing); |
---|
414 | // p_Setm(g,currRing); |
---|
415 | // pIter(g); |
---|
416 | // } |
---|
417 | // } |
---|
418 | |
---|
419 | |
---|
420 | // static void divideByGcd(poly &g) |
---|
421 | // { |
---|
422 | // // first determine all g_\alpha |
---|
423 | // // as alpha runs over all exponent vectors |
---|
424 | // // of monomials in x occuring in g |
---|
425 | |
---|
426 | // // gAlpha will store all g_\alpha, |
---|
427 | // // the first term will, for comparison purposes for now, |
---|
428 | // // also keep their monomial in x. |
---|
429 | // // we assume that the weight on the x are positive |
---|
430 | // // so that the x won't make the monomial smaller |
---|
431 | // ideal gAlphaFront = idInit(pLength(g)); |
---|
432 | // gAlphaFront->m[0] = p_Head(g,currRing); |
---|
433 | // p_SetExp(gAlphaFront->m[0],1,0,currRing); |
---|
434 | // p_Setm(gAlphaFront->m[0],currRing); |
---|
435 | // ideal gAlphaEnd = idInit(pLength(g)); |
---|
436 | // gAlphaEnd->m[0] = gAlphaFront->m[0]; |
---|
437 | // unsigned long gAlpha_sev[pLength(g)]; |
---|
438 | // gAlpha_sev[0] = p_GetShortExpVector(g,currRing); |
---|
439 | // long beta[pLength(g)]; |
---|
440 | // beta[0] = p_GetExp(g,1,currRing); |
---|
441 | // int count=0; |
---|
442 | |
---|
443 | // poly current = pNext(g); unsigned long current_not_sev; |
---|
444 | // int i; |
---|
445 | // while (current) |
---|
446 | // { |
---|
447 | // // see whether the monomial in x of current already came up |
---|
448 | // // since everything is homogeneous in x and the ordering is local in t, |
---|
449 | // // this comes down to a divisibility test in two stages |
---|
450 | // current_not_sev = ~p_GetShortExpVector(current,currRing); |
---|
451 | // for(i=0; i<=count; i++) |
---|
452 | // { |
---|
453 | // // first stage using short exponent vectors |
---|
454 | // // second stage a proper test |
---|
455 | // if (p_LmShortDivisibleBy(gAlphaFront->m[i],gAlpha_sev[i],current,current_not_sev, currRing) |
---|
456 | // && p_LmDivisibleBy(gAlphaFront->m[i],current,currRing)) |
---|
457 | // { |
---|
458 | // // if it already occured, add the term to the respective entry |
---|
459 | // // without the x part |
---|
460 | // pNext(gAlphaEnd->m[i])=p_Init(currRing); |
---|
461 | // pIter(gAlphaEnd->m[i]); |
---|
462 | // p_SetExp(gAlphaEnd->m[i],1,p_GetExp(current,1,currRing)-beta[i],currRing); |
---|
463 | // p_SetCoeff(gAlphaEnd->m[i],n_Copy(p_GetCoeff(current,currRing),currRing->cf),currRing); |
---|
464 | // p_Setm(gAlphaEnd->m[i],currRing); |
---|
465 | // break; |
---|
466 | // } |
---|
467 | // } |
---|
468 | // if (i>count) |
---|
469 | // { |
---|
470 | // // if it is new, create a new entry for the term |
---|
471 | // // including the monomial in x |
---|
472 | // count++; |
---|
473 | // gAlphaFront->m[count] = p_Head(current,currRing); |
---|
474 | // beta[count] = p_GetExp(current,1,currRing); |
---|
475 | // gAlphaEnd->m[count] = gAlphaFront->m[count]; |
---|
476 | // gAlpha_sev[count] = p_GetShortExpVector(current,currRing); |
---|
477 | // } |
---|
478 | |
---|
479 | // pIter(current); |
---|
480 | // } |
---|
481 | |
---|
482 | // if (count) |
---|
483 | // { |
---|
484 | // // now remove all the x in the leading terms |
---|
485 | // // so that gAlpha only contais terms in t |
---|
486 | // int j; long d; |
---|
487 | // for (i=0; i<=count; i++) |
---|
488 | // { |
---|
489 | // for (j=2; j<=currRing->N; j++) |
---|
490 | // p_SetExp(gAlphaFront->m[i],j,0,currRing); |
---|
491 | // p_Setm(gAlphaFront->m[i],currRing); |
---|
492 | // gAlphaEnd->m[i]=NULL; |
---|
493 | // } |
---|
494 | |
---|
495 | // // now compute the gcd over all g_\alpha |
---|
496 | // // and set the input to null as they are deleted in the process |
---|
497 | // poly gcd = singclap_gcd(gAlphaFront->m[0],gAlphaFront->m[1],currRing); |
---|
498 | // gAlphaFront->m[0] = NULL; |
---|
499 | // gAlphaFront->m[1] = NULL; |
---|
500 | // for(i=2; i<=count; i++) |
---|
501 | // { |
---|
502 | // gcd = singclap_gcd(gcd,gAlphaFront->m[i],currRing); |
---|
503 | // gAlphaFront->m[i] = NULL; |
---|
504 | // } |
---|
505 | // // divide g by the gcd |
---|
506 | // poly h = singclap_pdivide(g,gcd,currRing); |
---|
507 | // p_Delete(&gcd,currRing); |
---|
508 | // p_Delete(&g,currRing); |
---|
509 | // g = h; |
---|
510 | |
---|
511 | // id_Delete(&gAlphaFront,currRing); |
---|
512 | // id_Delete(&gAlphaEnd,currRing); |
---|
513 | // } |
---|
514 | // else |
---|
515 | // { |
---|
516 | // // if g contains only one monomial in x, |
---|
517 | // // then we can get rid of all the higher t |
---|
518 | // p_Delete(&g,currRing); |
---|
519 | // g = gAlphaFront->m[0]; |
---|
520 | // pIter(gAlphaFront->m[0]); |
---|
521 | // pNext(g)=NULL; |
---|
522 | // gAlphaEnd->m[0] = NULL; |
---|
523 | // id_Delete(&gAlphaFront,currRing); |
---|
524 | // id_Delete(&gAlphaEnd,currRing); |
---|
525 | // } |
---|
526 | // } |
---|
527 | |
---|
528 | |
---|
529 | // /*** |
---|
530 | // * 1. For each \alpha\in\NN^n, changes (c_\beta t^\beta + c_{\beta+1} t^{\beta+1} + ...) |
---|
531 | // * to (c_\beta + c_{\beta+1}*p + ...) t^\beta |
---|
532 | // * 2. Computes the gcd over all (c_\beta + c_{\beta+1}*p + ...) and divides g by it |
---|
533 | // **/ |
---|
534 | // static void simplify(poly g, const number p) |
---|
535 | // { |
---|
536 | // // go along g and look for relevant terms. |
---|
537 | // // monomials in x which have been checked are tracked in done. |
---|
538 | // poly done = p_LmInit(g,currRing); |
---|
539 | // p_SetCoeff(done,n_Init(1,currRing->cf),currRing); |
---|
540 | // p_Setm(done,currRing); |
---|
541 | // poly doneEnd = done; |
---|
542 | // poly doneCurrent; |
---|
543 | |
---|
544 | // poly subst; number substCoeff, substCoeffCache; |
---|
545 | // unsigned long d; |
---|
546 | |
---|
547 | // poly gCurrent = g; |
---|
548 | // while(pNext(gCurrent)) |
---|
549 | // { |
---|
550 | // // check whether next term needs to be reduced: |
---|
551 | // // first, check whether monomial in x has come up yet |
---|
552 | // for (doneCurrent=done; doneCurrent; pIter(doneCurrent)) |
---|
553 | // { |
---|
554 | // if (p_LmDivisibleBy(doneCurrent,pNext(gCurrent),currRing)) |
---|
555 | // break; |
---|
556 | // } |
---|
557 | // // if the monomial in x already occured, then we want to replace |
---|
558 | // // as many t with p as theoretically feasable |
---|
559 | // if (doneCurrent) |
---|
560 | // { |
---|
561 | // // suppose pNext(gCurrent)=3*t5x and doneCurrent=t3x |
---|
562 | // // then we want to replace pNext(gCurrent) with 3p2*t3x |
---|
563 | // // subst = ?*t3x |
---|
564 | // subst = p_LmInit(doneCurrent,currRing); |
---|
565 | // // substcoeff = p2 |
---|
566 | // n_Power(p,p_GetExp(subst,1,currRing)-p_GetExp(doneCurrent,1,currRing),&substCoeff,currRing->cf); |
---|
567 | // // substcoeff = 3p2 |
---|
568 | // n_InpMult(substCoeff,p_GetCoeff(pNext(gCurrent),currRing),currRing->cf); |
---|
569 | // // subst = 3p2*t3x |
---|
570 | // p_SetCoeff(subst,substCoeff,currRing); |
---|
571 | // p_Setm(subst,currRing); pTest(subst); |
---|
572 | |
---|
573 | // // g = g - pNext(gCurrent) + subst |
---|
574 | // pNext(gCurrent)=p_LmDeleteAndNext(pNext(gCurrent),currRing); |
---|
575 | // g=p_Add_q(g,subst,currRing); |
---|
576 | // pTest(pNext(gbeginning)); |
---|
577 | // } |
---|
578 | // else |
---|
579 | // { |
---|
580 | // // if the monomial in x is brand new, |
---|
581 | // // then we check whether the coefficient is divisible by p |
---|
582 | // if (n_DivBy(p_GetCoeff(pNext(gCurrent),currRing->cf),p,currRing->cf)) |
---|
583 | // { |
---|
584 | // // reduce the term with respect to p-t: |
---|
585 | // // suppose pNext(gCurrent)=4p3*tx |
---|
586 | // // then we want to replace it with 4*t4x |
---|
587 | // // divide 4p3 repeatedly by p until it is not divisible anymore, |
---|
588 | // // keeping track on the final value 4 |
---|
589 | // // and the number of times it has been divided 3 |
---|
590 | // substCoeff = n_Div(p_GetCoeff(pNext(gCurrent),currRing->cf),p,currRing->cf); |
---|
591 | // d = 1; |
---|
592 | // while (n_DivBy(substCoeff,p,currRing->cf)) |
---|
593 | // { |
---|
594 | // substCoeffCache = n_Div(p_GetCoeff(pNext(gCurrent),currRing->cf),p,currRing->cf); |
---|
595 | // n_Delete(&substCoeff,currRing->cf); |
---|
596 | // substCoeff = substCoeffCache; |
---|
597 | // d++; |
---|
598 | // assume(d>0); // check for overflow |
---|
599 | // } |
---|
600 | |
---|
601 | // // subst = ?*tx |
---|
602 | // subst=p_LmInit(pNext(gCurrent),currRing); |
---|
603 | // // subst = ?*t4x |
---|
604 | // p_AddExp(subst,1,d,currRing); |
---|
605 | // // subst = 4*t4x |
---|
606 | // p_SetCoeff(subst,substCoeffCache,currRing); |
---|
607 | // p_Setm(subst,currRing); pTest(subst); |
---|
608 | |
---|
609 | // // g = g - pNext(gCurrent) + subst |
---|
610 | // pNext(gCurrent)=p_LmDeleteAndNext(pNext(gCurrent),currRing); |
---|
611 | // pNext(gCurrent)=p_Add_q(pNext(gCurrent),subst,currRing); |
---|
612 | // pTest(pNext(gCurrent)); |
---|
613 | // } |
---|
614 | |
---|
615 | // // either way, add monomial in x with minimal t to done |
---|
616 | // pNext(doneEnd)=p_LmInit(pNext(gCurrent),currRing); |
---|
617 | // pIter(doneEnd); |
---|
618 | // p_SetCoeff(doneEnd,n_Init(1,currRing->cf),currRing); |
---|
619 | // p_Setm(doneEnd,currRing); |
---|
620 | // } |
---|
621 | // pIter(gCurrent); |
---|
622 | // } |
---|
623 | // p_Delete(&done,currRing); |
---|
624 | // } |
---|
625 | |
---|
626 | |
---|
627 | // #ifndef NDEBUG |
---|
628 | // BOOLEAN divideByGcd(leftv res, leftv args) |
---|
629 | // { |
---|
630 | // leftv u = args; |
---|
631 | // if ((u != NULL) && (u->Typ() == POLY_CMD)) |
---|
632 | // { |
---|
633 | // poly g; |
---|
634 | // omUpdateInfo(); |
---|
635 | // Print("usedBytes1=%ld\n",om_Info.UsedBytes); |
---|
636 | // g = (poly) u->CopyD(); |
---|
637 | // divideByGcd(g); |
---|
638 | // p_Delete(&g,currRing); |
---|
639 | // omUpdateInfo(); |
---|
640 | // Print("usedBytes1=%ld\n",om_Info.UsedBytes); |
---|
641 | // res->rtyp = NONE; |
---|
642 | // res->data = NULL; |
---|
643 | // return FALSE; |
---|
644 | // } |
---|
645 | // return TRUE; |
---|
646 | // } |
---|
647 | // #endif //NDEBUG |
---|
648 | |
---|
649 | |
---|
650 | // BOOLEAN initialReduction(leftv res, leftv args) |
---|
651 | // { |
---|
652 | // leftv u = args; |
---|
653 | // if ((u != NULL) && (u->Typ() == IDEAL_CMD)) |
---|
654 | // { |
---|
655 | // leftv v = u->next; |
---|
656 | // if (v == NULL) |
---|
657 | // { |
---|
658 | // ideal I = (ideal) u->Data(); |
---|
659 | |
---|
660 | // /*** |
---|
661 | // * Suppose I=g_0,...,g_n and g_0=p-t. |
---|
662 | // * Step 1: sort elements g_1,...,g_{n-1} such that lm(g_1)>...>lm(g_{n-1}) |
---|
663 | // * (the following algorithm is a bubble sort) |
---|
664 | // **/ |
---|
665 | // sortingLaterGenerators(I); |
---|
666 | |
---|
667 | // /*** |
---|
668 | // * Step 2: replace coefficient of terms of lowest t-degree divisible by p with t |
---|
669 | // **/ |
---|
670 | // number p = p_GetCoeff(I->m[0],currRing); |
---|
671 | // for (int i=1; i<IDELEMS(I); i++) |
---|
672 | // { |
---|
673 | // if (preduce(I->m[i],p)) |
---|
674 | // return TRUE; |
---|
675 | // } |
---|
676 | |
---|
677 | // /*** |
---|
678 | // * Step 3: the first pass. removing terms with the same monomials in x as lt(g_i) |
---|
679 | // * out of g_j for i<j |
---|
680 | // **/ |
---|
681 | // int i,j; |
---|
682 | // poly uniti, unitj; |
---|
683 | // for (i=1; i<IDELEMS(I)-1; i++) |
---|
684 | // { |
---|
685 | // for (j=i+1; j<IDELEMS(I); j++) |
---|
686 | // { |
---|
687 | // unitj = highestMatchingX(I->m[j],I->m[i]); |
---|
688 | // if (unitj) |
---|
689 | // { |
---|
690 | // unitj = powerSeriesCoeff(unitj); |
---|
691 | // divideByT(unitj,p_GetExp(I->m[i],1,currRing)); |
---|
692 | // uniti = powerSeriesCoeff(I->m[i]); |
---|
693 | // divideByT(uniti,p_GetExp(I->m[i],1,currRing)); |
---|
694 | // pTest(unitj); pTest(uniti); pTest(I->m[j]); pTest(I->m[i]); |
---|
695 | // I->m[j]=p_Add_q(p_Mult_q(uniti,I->m[j],currRing), |
---|
696 | // p_Neg(p_Mult_q(unitj,p_Copy(I->m[i],currRing),currRing),currRing), |
---|
697 | // currRing); |
---|
698 | // divideByGcd(I->m[j]); |
---|
699 | // } |
---|
700 | // } |
---|
701 | // } |
---|
702 | // for (int i=1; i<IDELEMS(I); i++) |
---|
703 | // { |
---|
704 | // if (preduce(I->m[i],p)) |
---|
705 | // return TRUE; |
---|
706 | // } |
---|
707 | |
---|
708 | // /*** |
---|
709 | // * Step 4: the second pass. removing terms divisible by lt(g_j) out of g_i for i<j |
---|
710 | // **/ |
---|
711 | // for (i=1; i<IDELEMS(I)-1; i++) |
---|
712 | // { |
---|
713 | // for (j=i+1; j<IDELEMS(I); j++) |
---|
714 | // { |
---|
715 | // uniti = highestMatchingX(I->m[i],I->m[j]); |
---|
716 | // if (uniti && p_GetExp(uniti,1,currRing)>=p_GetExp(I->m[j],1,currRing)) |
---|
717 | // { |
---|
718 | // uniti = powerSeriesCoeff(uniti); |
---|
719 | // divideByT(uniti,p_GetExp(I->m[j],1,currRing)); |
---|
720 | // unitj = powerSeriesCoeff(I->m[j]); |
---|
721 | // divideByT(unitj,p_GetExp(I->m[j],1,currRing)); |
---|
722 | // I->m[i] = p_Add_q(p_Mult_q(unitj,I->m[i],currRing), |
---|
723 | // p_Neg(p_Mult_q(uniti,p_Copy(I->m[j],currRing),currRing),currRing), |
---|
724 | // currRing); |
---|
725 | // divideByGcd(I->m[j]); |
---|
726 | // } |
---|
727 | // } |
---|
728 | // } |
---|
729 | // for (int i=1; i<IDELEMS(I); i++) |
---|
730 | // { |
---|
731 | // if (preduce(I->m[i],p)) |
---|
732 | // return TRUE; |
---|
733 | // } |
---|
734 | |
---|
735 | // res->rtyp = NONE; |
---|
736 | // res->data = NULL; |
---|
737 | // IDDATA((idhdl)u->data) = (char*) I; |
---|
738 | // return FALSE; |
---|
739 | // } |
---|
740 | // } |
---|
741 | // WerrorS("initialReduction: unexpected parameters"); |
---|
742 | // return TRUE; |
---|
743 | // } |
---|
744 | |
---|
745 | |
---|
746 | #if 0 |
---|
747 | /*** |
---|
748 | * Given a general ring r with any ordering, |
---|
749 | * changes the ordering to a(v),ws(-w) |
---|
750 | **/ |
---|
751 | bool changetoAWSRing(ring r, gfan::ZVector v, gfan::ZVector w) |
---|
752 | { |
---|
753 | omFree(r->order); |
---|
754 | r->order = (int*) omAlloc0(4*sizeof(int)); |
---|
755 | omFree(r->block0); |
---|
756 | r->block0 = (int*) omAlloc0(4*sizeof(int)); |
---|
757 | omFree(r->block1); |
---|
758 | r->block1 = (int*) omAlloc0(4*sizeof(int)); |
---|
759 | for (int i=0; r->wvhdl[i]; i++) |
---|
760 | { omFree(r->wvhdl[i]); } |
---|
761 | omFree(r->wvhdl); |
---|
762 | r->wvhdl = (int**) omAlloc0(4*sizeof(int*)); |
---|
763 | |
---|
764 | bool ok = false; |
---|
765 | r->order[0] = ringorder_a; |
---|
766 | r->block0[0] = 1; |
---|
767 | r->block1[0] = r->N; |
---|
768 | r->wvhdl[0] = ZVectorToIntStar(v,ok); |
---|
769 | r->order[1] = ringorder_ws; |
---|
770 | r->block0[1] = 1; |
---|
771 | r->block1[1] = r->N; |
---|
772 | r->wvhdl[1] = ZVectorToIntStar(w,ok); |
---|
773 | r->order[2]=ringorder_C; |
---|
774 | return ok; |
---|
775 | } |
---|
776 | |
---|
777 | |
---|
778 | /*** |
---|
779 | * Given a ring with ordering a(v'),ws(w'), |
---|
780 | * changes the weights to v,w |
---|
781 | **/ |
---|
782 | bool changeAWSWeights(ring r, gfan::ZVector v, gfan::ZVector w) |
---|
783 | { |
---|
784 | omFree(r->wvhdl[0]); |
---|
785 | omFree(r->wvhdl[1]); |
---|
786 | bool ok = false; |
---|
787 | r->wvhdl[0] = ZVectorToIntStar(v,ok); |
---|
788 | r->wvhdl[1] = ZVectorToIntStar(w,ok); |
---|
789 | return ok; |
---|
790 | } |
---|
791 | |
---|
792 | |
---|
793 | // /*** |
---|
794 | // * Creates an int* representing the transposition of the last two variables |
---|
795 | // **/ |
---|
796 | // static inline int* createPermutationVectorForSaturation(static const ring &r) |
---|
797 | // { |
---|
798 | // int* w = (int*) omAlloc0((rVar(r)+1)*sizeof(int)); |
---|
799 | // for (int i=1; i<=rVar(r)-2; i++) |
---|
800 | // w[i] = i; |
---|
801 | // w[rVar(r)-1] = rVar(r); |
---|
802 | // w[rVar(r)] = rVar(r)-1; |
---|
803 | // } |
---|
804 | |
---|
805 | |
---|
806 | /*** |
---|
807 | * Creates an int* representing the permutation |
---|
808 | * 1 -> 1, ..., i-1 -> i-1, i -> n, i+1 -> n-1, ... , n -> i |
---|
809 | **/ |
---|
810 | static inline int* createPermutationVectorForSaturation(const ring &r, const int i) |
---|
811 | { |
---|
812 | int* sigma = (int*) omAlloc0((rVar(r)+1)*sizeof(int)); |
---|
813 | int j; |
---|
814 | for (j=1; j<i; j++) |
---|
815 | sigma[j] = j; |
---|
816 | for (; j<=rVar(r); j++) |
---|
817 | sigma[j] = rVar(r)-j+i; |
---|
818 | return(sigma); |
---|
819 | } |
---|
820 | |
---|
821 | |
---|
822 | /*** |
---|
823 | * Changes the int* representing the permutation |
---|
824 | * 1 -> 1, ..., i -> i, i+1 -> n, i+2 -> n-1, ... , n -> i+1 |
---|
825 | * to an int* representing the permutation |
---|
826 | * 1 -> 1, ..., i-1 -> i-1, i -> n, i+1 -> n-1, ... , n -> i |
---|
827 | **/ |
---|
828 | static void changePermutationVectorForSaturation(int* sigma, const ring &r, const int i) |
---|
829 | { |
---|
830 | for (int j=i; j<rVar(r); j++) |
---|
831 | sigma[j] = rVar(r)-j+i; |
---|
832 | sigma[rVar(r)] = i; |
---|
833 | } |
---|
834 | |
---|
835 | |
---|
836 | /*** |
---|
837 | * returns a ring in which the weights of the ring variables are permuted |
---|
838 | * if handed over a poly in which the variables are permuted, this is basically |
---|
839 | * as good as permuting the variables of the ring itself. |
---|
840 | **/ |
---|
841 | static ring permuteWeighstOfRingVariables(const ring &r, const int* const sigma) |
---|
842 | { |
---|
843 | ring s = rCopy0(r); |
---|
844 | for (int j=0; j<rVar(r); j++) |
---|
845 | { |
---|
846 | s->wvhdl[0][j] = r->wvhdl[0][sigma[j+1]]; |
---|
847 | s->wvhdl[1][j] = r->wvhdl[1][sigma[j+1]]; |
---|
848 | } |
---|
849 | rComplete(s,1); |
---|
850 | return s; |
---|
851 | } |
---|
852 | |
---|
853 | |
---|
854 | /*** |
---|
855 | * creates a ring s that is a copy of r except with ordering wp(w) |
---|
856 | **/ |
---|
857 | static inline ring createInitialRingForSaturation(const ring &r, const gfan::ZVector &w, bool &ok) |
---|
858 | { |
---|
859 | assume(rVar(r) == (int) w.size()); |
---|
860 | |
---|
861 | ring s = rCopy0(r); int i; |
---|
862 | for (i=0; s->order[i]; i++) |
---|
863 | omFreeSize(s->wvhdl[i],rVar(r)*sizeof(int)); |
---|
864 | i++; |
---|
865 | omFreeSize(s->order,i*sizeof(int)); |
---|
866 | s->order = (int*) omAlloc0(3*sizeof(int)); |
---|
867 | omFreeSize(s->block0,i*sizeof(int)); |
---|
868 | s->block0 = (int*) omAlloc0(3*sizeof(int)); |
---|
869 | omFreeSize(s->block1,i*sizeof(int)); |
---|
870 | s->block1 = (int*) omAlloc0(3*sizeof(int)); |
---|
871 | omFreeSize(s->wvhdl,i*sizeof(int*)); |
---|
872 | s->wvhdl = (int**) omAlloc0(3*sizeof(int*)); |
---|
873 | |
---|
874 | s->order[0] = ringorder_wp; |
---|
875 | s->block0[0] = 1; |
---|
876 | s->block1[0] = rVar(r); |
---|
877 | s->wvhdl[0] = ZVectorToIntStar(w,ok); |
---|
878 | s->order[1]=ringorder_C; |
---|
879 | |
---|
880 | rComplete(s,1); |
---|
881 | return s; |
---|
882 | } |
---|
883 | |
---|
884 | |
---|
885 | /*** |
---|
886 | * Given an weighted homogeneous ideal I with respect to weight w |
---|
887 | * that in standard basis form with respect to the ordering ws(-w), |
---|
888 | * derives the standard basis of I:<x_n>^\infty |
---|
889 | * and returns a long k such that I:<x_n>^\infty=I:<x_n>^k |
---|
890 | **/ |
---|
891 | static long deriveStandardBasisOfSaturation(ideal &I, ring &r) |
---|
892 | { |
---|
893 | long k=0, l; poly current; |
---|
894 | for (int i=0; i<IDELEMS(I); i++) |
---|
895 | { |
---|
896 | current = I->m[i]; |
---|
897 | l = p_GetExp(current,rVar(r),r); |
---|
898 | if (k<l) k=l; |
---|
899 | while (current) |
---|
900 | { |
---|
901 | p_SubExp(current,rVar(r),l,r); p_Setm(current,r); |
---|
902 | pIter(current); |
---|
903 | } |
---|
904 | } |
---|
905 | return k; |
---|
906 | } |
---|
907 | |
---|
908 | |
---|
909 | /*** |
---|
910 | * Given a weighted homogeneous ideal I with respect to weight w |
---|
911 | * with constant first element, |
---|
912 | * returns NULL if I does not contain a monomial |
---|
913 | * otherwise returns the monomial contained in I |
---|
914 | **/ |
---|
915 | poly containsMonomial(const ideal &I, const gfan::ZVector &w) |
---|
916 | { |
---|
917 | assume(rField_is_Ring_Z(currRing)); |
---|
918 | |
---|
919 | // first we switch to the ground field currRing->cf / I->m[0] |
---|
920 | ring r = rCopy0(currRing); |
---|
921 | nKillChar(r->cf); |
---|
922 | r->cf = nInitChar(n_Zp,(void*)(long)n_Int(p_GetCoeff(I->m[0],currRing),currRing->cf)); |
---|
923 | rComplete(r); |
---|
924 | |
---|
925 | ideal J = id_Copy(I, currRing); poly cache; number temp; |
---|
926 | for (int i=0; i<IDELEMS(I); i++) |
---|
927 | { |
---|
928 | cache = J->m[i]; |
---|
929 | while (cache) |
---|
930 | { |
---|
931 | // TODO: temp = npMapGMP(p_GetCoeff(cache,currRing),currRing->cf,r->cf); |
---|
932 | p_SetCoeff(cache,temp,r); pIter(cache); |
---|
933 | } |
---|
934 | } |
---|
935 | |
---|
936 | |
---|
937 | J = kStd(J,NULL,isHomog,NULL); |
---|
938 | |
---|
939 | bool b = false; |
---|
940 | ring s = createInitialRingForSaturation(currRing, w, b); |
---|
941 | if (b) |
---|
942 | { |
---|
943 | WerrorS("containsMonomial: overflow in weight vector"); |
---|
944 | return NULL; |
---|
945 | } |
---|
946 | |
---|
947 | return NULL; |
---|
948 | } |
---|
949 | |
---|
950 | |
---|
951 | gfan::ZCone* startingCone(ideal I) |
---|
952 | { |
---|
953 | I = kStd(I,NULL,isNotHomog,NULL); |
---|
954 | gfan::ZCone* zc = maximalGroebnerCone(currRing,I); |
---|
955 | gfan::ZMatrix rays = zc->extremeRays(); |
---|
956 | gfan::ZVector v; |
---|
957 | for (int i=0; i<rays.getHeight(); i++) |
---|
958 | { |
---|
959 | v = rays[i]; |
---|
960 | } |
---|
961 | return zc; |
---|
962 | } |
---|
963 | #endif |
---|
964 | |
---|
965 | |
---|
966 | void tropical_setup(SModulFunctions* p) |
---|
967 | { |
---|
968 | p->iiAddCproc("","groebnerCone",FALSE,groebnerCone); |
---|
969 | p->iiAddCproc("","maximalGroebnerCone",FALSE,maximalGroebnerCone); |
---|
970 | p->iiAddCproc("","initial",FALSE,initial); |
---|
971 | #ifndef NDEBUG |
---|
972 | // p->iiAddCproc("","divideByGcd",FALSE,divideByGcd); |
---|
973 | p->iiAddCproc("","pReduce",FALSE,pReduce); |
---|
974 | p->iiAddCproc("","reduceInitially0",FALSE,reduceInitially0); |
---|
975 | p->iiAddCproc("","reduceInitially1",FALSE,reduceInitially1); |
---|
976 | #endif //NDEBUG |
---|
977 | // p->iiAddCproc("","initialReduction",FALSE,initialReduction); |
---|
978 | p->iiAddCproc("","homogeneitySpace",FALSE,homogeneitySpace); |
---|
979 | } |
---|