1 | // emacs edit mode for this file is -*- C++ -*- |
---|
2 | // $Id: fglmzero.cc,v 1.32 2000-12-15 18:49:28 Singular Exp $ |
---|
3 | |
---|
4 | /**************************************** |
---|
5 | * Computer Algebra System SINGULAR * |
---|
6 | ****************************************/ |
---|
7 | /* |
---|
8 | * ABSTRACT - The FGLM-Algorithm |
---|
9 | * Implementation of the fglm algorithm for 0-dimensional ideals, |
---|
10 | * based on an idea by Faugere/Gianni/Lazard and Mora. |
---|
11 | * The procedure CalculateFunctionals calculates the functionals |
---|
12 | * which define the given ideal in the source ring. They build the |
---|
13 | * input for GroebnerViaFunctionals, which defines the reduced |
---|
14 | * groebner basis for the ideal in the destination ring. |
---|
15 | */ |
---|
16 | |
---|
17 | /* Changes: |
---|
18 | * o FindUnivariatePolys added |
---|
19 | */ |
---|
20 | |
---|
21 | #include "mod2.h" |
---|
22 | |
---|
23 | #ifdef HAVE_FGLM |
---|
24 | #include "tok.h" |
---|
25 | #include "structs.h" |
---|
26 | #include "polys.h" |
---|
27 | #include "ideals.h" |
---|
28 | #include "ring.h" |
---|
29 | #include "ipid.h" |
---|
30 | #include "febase.h" |
---|
31 | #include "maps.h" |
---|
32 | #include "omalloc.h" |
---|
33 | #include "kstd1.h" // for kNF (see fglmquot) |
---|
34 | #include "fglm.h" |
---|
35 | #include "fglmvec.h" |
---|
36 | #include "fglmgauss.h" |
---|
37 | // assumes, that NOSTREAMIO is set in factoryconf.h, which is included |
---|
38 | // by templates/list.h. |
---|
39 | #include <templates/ftmpl_list.h> |
---|
40 | #define PROT(msg) |
---|
41 | #define STICKYPROT(msg) if (BTEST1(OPT_PROT)) Print(msg) |
---|
42 | #define PROT2(msg,arg) |
---|
43 | #define STICKYPROT2(msg,arg) if (BTEST1(OPT_PROT)) Print(msg,arg) |
---|
44 | #define fglmASSERT(ignore1,ignore2) |
---|
45 | |
---|
46 | |
---|
47 | |
---|
48 | // internal Version: 1.3.1.12 |
---|
49 | // ============================================================ |
---|
50 | //! The idealFunctionals |
---|
51 | // ============================================================ |
---|
52 | |
---|
53 | struct matElem |
---|
54 | { |
---|
55 | int row; |
---|
56 | number elem; |
---|
57 | }; |
---|
58 | |
---|
59 | struct matHeader |
---|
60 | { |
---|
61 | int size; |
---|
62 | BOOLEAN owner; |
---|
63 | matElem * elems; |
---|
64 | }; |
---|
65 | |
---|
66 | class idealFunctionals |
---|
67 | { |
---|
68 | private: |
---|
69 | int _block; |
---|
70 | int _max; |
---|
71 | int _size; |
---|
72 | int _nfunc; |
---|
73 | int * currentSize; |
---|
74 | matHeader ** func; |
---|
75 | matHeader * grow( int var ); |
---|
76 | public: |
---|
77 | idealFunctionals( int blockSize, int numFuncs ); |
---|
78 | ~idealFunctionals(); |
---|
79 | |
---|
80 | int dimen() const { fglmASSERT( _size>0, "called to early"); return _size; } |
---|
81 | void endofConstruction(); |
---|
82 | void map( ring source ); |
---|
83 | void insertCols( int * divisors, int to ); |
---|
84 | void insertCols( int * divisors, const fglmVector to ); |
---|
85 | fglmVector addCols( const int var, int basisSize, const fglmVector v ) const; |
---|
86 | fglmVector multiply( const fglmVector v, int var ) const; |
---|
87 | }; |
---|
88 | |
---|
89 | |
---|
90 | idealFunctionals::idealFunctionals( int blockSize, int numFuncs ) |
---|
91 | { |
---|
92 | int k; |
---|
93 | _block= blockSize; |
---|
94 | _max= _block; |
---|
95 | _size= 0; |
---|
96 | _nfunc= numFuncs; |
---|
97 | |
---|
98 | currentSize= (int *)omAlloc( _nfunc*sizeof( int ) ); |
---|
99 | for ( k= _nfunc-1; k >= 0; k-- ) |
---|
100 | currentSize[k]= 0; |
---|
101 | |
---|
102 | func= (matHeader **)omAlloc( _nfunc*sizeof( matHeader * ) ); |
---|
103 | for ( k= _nfunc-1; k >= 0; k-- ) |
---|
104 | func[k]= (matHeader *)omAlloc( _max*sizeof( matHeader ) ); |
---|
105 | } |
---|
106 | |
---|
107 | idealFunctionals::~idealFunctionals() |
---|
108 | { |
---|
109 | int k; |
---|
110 | int l; |
---|
111 | int row; |
---|
112 | matHeader * colp; |
---|
113 | matElem * elemp; |
---|
114 | for ( k= _nfunc-1; k >= 0; k-- ) { |
---|
115 | for ( l= _size-1, colp= func[k]; l >= 0; l--, colp++ ) { |
---|
116 | if ( ( colp->owner == TRUE ) && ( colp->size > 0 ) ) { |
---|
117 | for ( row= colp->size-1, elemp= colp->elems; row >= 0; row--, elemp++ ) |
---|
118 | nDelete( & elemp->elem ); |
---|
119 | omFreeSize( (ADDRESS)colp->elems, colp->size*sizeof( matElem ) ); |
---|
120 | } |
---|
121 | } |
---|
122 | omFreeSize( (ADDRESS)func[k], _max*sizeof( matHeader ) ); |
---|
123 | } |
---|
124 | omFreeSize( (ADDRESS)func, _nfunc*sizeof( matHeader * ) ); |
---|
125 | omFreeSize( (ADDRESS)currentSize, _nfunc*sizeof( int ) ); |
---|
126 | } |
---|
127 | |
---|
128 | void |
---|
129 | idealFunctionals::endofConstruction() |
---|
130 | { |
---|
131 | _size= currentSize[0]; |
---|
132 | } |
---|
133 | |
---|
134 | void |
---|
135 | idealFunctionals::map( ring source ) |
---|
136 | { |
---|
137 | // maps from ring source to currentRing. |
---|
138 | int var, col, row; |
---|
139 | matHeader * colp; |
---|
140 | matElem * elemp; |
---|
141 | number newelem; |
---|
142 | |
---|
143 | int * perm = (int *)omAlloc0( (_nfunc+1)*sizeof( int ) ); |
---|
144 | maFindPerm( source->names, source->N, NULL, 0, currRing->names, |
---|
145 | currRing->N, NULL, 0, perm, NULL , currRing->ch); |
---|
146 | nMapFunc nMap=nSetMap( source); |
---|
147 | |
---|
148 | matHeader ** temp = (matHeader **)omAlloc( _nfunc*sizeof( matHeader * )); |
---|
149 | for ( var= 0; var < _nfunc; var ++ ) { |
---|
150 | for ( col= 0, colp= func[var]; col < _size; col++, colp++ ) { |
---|
151 | if ( colp->owner == TRUE ) { |
---|
152 | for ( row= colp->size-1, elemp= colp->elems; row >= 0; |
---|
153 | row--, elemp++ ) |
---|
154 | { |
---|
155 | newelem= nMap( elemp->elem ); |
---|
156 | nDelete( & elemp->elem ); |
---|
157 | elemp->elem= newelem; |
---|
158 | } |
---|
159 | } |
---|
160 | } |
---|
161 | temp[ perm[var+1]-1 ]= func[var]; |
---|
162 | } |
---|
163 | omFreeSize( (ADDRESS)func, _nfunc*sizeof( matHeader * ) ); |
---|
164 | omFreeSize( (ADDRESS)perm, (_nfunc+1)*sizeof( int ) ); |
---|
165 | func= temp; |
---|
166 | } |
---|
167 | |
---|
168 | matHeader * |
---|
169 | idealFunctionals::grow( int var ) |
---|
170 | { |
---|
171 | if ( currentSize[var-1] == _max ) { |
---|
172 | int k; |
---|
173 | for ( k= _nfunc; k > 0; k-- ) |
---|
174 | func[k-1]= (matHeader *)omReallocSize( func[k-1], _max*sizeof( matHeader ), (_max + _block)*sizeof( matHeader ) ); |
---|
175 | _max+= _block; |
---|
176 | } |
---|
177 | currentSize[var-1]++; |
---|
178 | return func[var-1] + currentSize[var-1] - 1; |
---|
179 | } |
---|
180 | |
---|
181 | void |
---|
182 | idealFunctionals::insertCols( int * divisors, int to ) |
---|
183 | { |
---|
184 | fglmASSERT( 0 < divisors[0] && divisors[0] <= _nfunc, "wrong number of divisors" ); |
---|
185 | int k; |
---|
186 | BOOLEAN owner = TRUE; |
---|
187 | matElem * elems = (matElem *)omAlloc( sizeof( matElem ) ); |
---|
188 | elems->row= to; |
---|
189 | elems->elem= nInit( 1 ); |
---|
190 | for ( k= divisors[0]; k > 0; k-- ) { |
---|
191 | fglmASSERT( 0 < divisors[k] && divisors[k] <= _nfunc, "wrong divisor" ); |
---|
192 | matHeader * colp = grow( divisors[k] ); |
---|
193 | colp->size= 1; |
---|
194 | colp->elems= elems; |
---|
195 | colp->owner= owner; |
---|
196 | owner= FALSE; |
---|
197 | } |
---|
198 | } |
---|
199 | |
---|
200 | |
---|
201 | void |
---|
202 | idealFunctionals::insertCols( int * divisors, const fglmVector to ) |
---|
203 | { |
---|
204 | // divisors runs from divisors[0]..divisors[size-1] |
---|
205 | fglmASSERT( 0 < divisors[0] && divisors[0] <= _nfunc, "wrong number of divisors" ); |
---|
206 | int k, l; |
---|
207 | int numElems= to.numNonZeroElems(); |
---|
208 | matElem * elems; |
---|
209 | matElem * elemp; |
---|
210 | BOOLEAN owner = TRUE; |
---|
211 | if ( numElems > 0 ) { |
---|
212 | elems= (matElem *)omAlloc( numElems * sizeof( matElem ) ); |
---|
213 | for ( k= 1, l= 1, elemp= elems; k <= numElems; k++, elemp++ ) { |
---|
214 | while ( nIsZero( to.getconstelem(l) ) ) l++; |
---|
215 | elemp->row= l; |
---|
216 | elemp->elem= nCopy( to.getconstelem( l ) ); |
---|
217 | l++; // hochzaehlen, damit wir nicht noch einmal die gleiche Stelle testen |
---|
218 | } |
---|
219 | } |
---|
220 | else |
---|
221 | elems= NULL; |
---|
222 | for ( k= divisors[0]; k > 0; k-- ) { |
---|
223 | fglmASSERT( 0 < divisors[k] && divisors[k] <= _nfunc, "wrong divisor" ); |
---|
224 | matHeader * colp = grow( divisors[k] ); |
---|
225 | colp->size= numElems; |
---|
226 | colp->elems= elems; |
---|
227 | colp->owner= owner; |
---|
228 | owner= FALSE; |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | fglmVector |
---|
233 | idealFunctionals::addCols( const int var, int basisSize, const fglmVector v ) const |
---|
234 | { |
---|
235 | fglmVector result( basisSize ); |
---|
236 | matHeader * colp; |
---|
237 | matElem * elemp; |
---|
238 | number factor, temp; |
---|
239 | int k, l; |
---|
240 | int vsize = v.size(); |
---|
241 | |
---|
242 | fglmASSERT( currentSize[var-1]+1 >= vsize, "wrong v.size()" ); |
---|
243 | for ( k= 1, colp= func[var-1]; k <= vsize; k++, colp++ ) { |
---|
244 | factor= v.getconstelem( k ); |
---|
245 | if ( ! nIsZero( factor ) ) { |
---|
246 | for ( l= colp->size-1, elemp= colp->elems; l >= 0; l--, elemp++ ) { |
---|
247 | temp= nMult( factor, elemp->elem ); |
---|
248 | number newelem= nAdd( result.getconstelem( elemp->row ), temp ); |
---|
249 | nDelete( & temp ); |
---|
250 | nNormalize( newelem ); |
---|
251 | result.setelem( elemp->row, newelem ); |
---|
252 | } |
---|
253 | } |
---|
254 | } |
---|
255 | return result; |
---|
256 | } |
---|
257 | |
---|
258 | fglmVector |
---|
259 | idealFunctionals::multiply( const fglmVector v, int var ) const |
---|
260 | { |
---|
261 | fglmASSERT( v.size() == _size, "multiply: v has wrong size"); |
---|
262 | fglmVector result( _size ); |
---|
263 | matHeader * colp; |
---|
264 | matElem * elemp; |
---|
265 | number factor, temp; |
---|
266 | int k, l; |
---|
267 | for ( k= 1, colp= func[var-1]; k <= _size; k++, colp++ ) { |
---|
268 | factor= v.getconstelem( k ); |
---|
269 | if ( ! nIsZero( factor ) ) { |
---|
270 | for ( l= colp->size-1, elemp= colp->elems; l >= 0; l--, elemp++ ) { |
---|
271 | temp= nMult( factor, elemp->elem ); |
---|
272 | number newelem= nAdd( result.getconstelem( elemp->row ), temp ); |
---|
273 | nDelete( & temp ); |
---|
274 | nNormalize( newelem ); |
---|
275 | result.setelem( elemp->row, newelem ); |
---|
276 | } |
---|
277 | } |
---|
278 | } |
---|
279 | return result; |
---|
280 | } |
---|
281 | |
---|
282 | // ============================================================ |
---|
283 | //! The old basis |
---|
284 | // ============================================================ |
---|
285 | |
---|
286 | // Contains the data for a border-monomial, i.e. the monom itself |
---|
287 | // ( as a Singular-poly ) and its normal-form, described by an |
---|
288 | // fglmVector. The size of the Vector depends on the current size of |
---|
289 | // the basis when the normalForm was computed. |
---|
290 | // monom gets deleted when borderElem comes out of scope. |
---|
291 | class borderElem |
---|
292 | { |
---|
293 | public: |
---|
294 | poly monom; |
---|
295 | fglmVector nf; |
---|
296 | borderElem() : monom(NULL), nf() {} |
---|
297 | borderElem( poly p, fglmVector n ) : monom( p ), nf( n ) {} |
---|
298 | ~borderElem() { pDeleteLm(&monom); } |
---|
299 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
300 | void insertElem( poly p, fglmVector n ) |
---|
301 | { |
---|
302 | monom= p; |
---|
303 | nf= n; |
---|
304 | } |
---|
305 | #endif |
---|
306 | }; |
---|
307 | |
---|
308 | // This class contains the relevant data for the 'candidates' |
---|
309 | // The declaration of class fglmSelem is found in fglm.h |
---|
310 | |
---|
311 | fglmSelem::fglmSelem( poly p, int var ) : monom( p ), numVars( 0 ) |
---|
312 | { |
---|
313 | for ( int k = pVariables; k > 0; k-- ) |
---|
314 | if ( pGetExp( monom, k ) > 0 ) |
---|
315 | numVars++; |
---|
316 | divisors= (int *)omAlloc( (numVars+1)*sizeof( int ) ); |
---|
317 | divisors[0]= 0; |
---|
318 | newDivisor( var ); |
---|
319 | } |
---|
320 | |
---|
321 | void |
---|
322 | fglmSelem::cleanup() |
---|
323 | { |
---|
324 | omFreeSize( (ADDRESS)divisors, (numVars+1)*sizeof( int ) ); |
---|
325 | } |
---|
326 | |
---|
327 | // The data-structure for the Functional-Finding-Algorithm. |
---|
328 | class fglmSdata |
---|
329 | { |
---|
330 | private: |
---|
331 | ideal theIdeal; |
---|
332 | int idelems; |
---|
333 | |
---|
334 | int basisBS; |
---|
335 | int basisMax; |
---|
336 | int basisSize; |
---|
337 | polyset basis; //. rem: runs from basis[1]..basis[dimen] |
---|
338 | |
---|
339 | int borderBS; |
---|
340 | int borderMax; |
---|
341 | int borderSize; |
---|
342 | borderElem * border; //. rem: runs from border[1]..border[dimen] |
---|
343 | |
---|
344 | List<fglmSelem> nlist; |
---|
345 | BOOLEAN _state; |
---|
346 | public: |
---|
347 | fglmSdata( const ideal thisIdeal ); |
---|
348 | ~fglmSdata(); |
---|
349 | |
---|
350 | BOOLEAN state() const { return _state; }; |
---|
351 | int getBasisSize() const { return basisSize; }; |
---|
352 | int newBasisElem( poly & p ); |
---|
353 | void newBorderElem( poly & m, fglmVector v ); |
---|
354 | BOOLEAN candidatesLeft() const { return ( nlist.isEmpty() ? FALSE : TRUE ); } |
---|
355 | fglmSelem nextCandidate(); |
---|
356 | void updateCandidates(); |
---|
357 | int getEdgeNumber( const poly m ) const; |
---|
358 | poly getSpanPoly( int number ) const { return pCopy( (theIdeal->m)[number-1] ); } |
---|
359 | fglmVector getVectorRep( const poly m ); |
---|
360 | fglmVector getBorderDiv( const poly m, int & var ) const; |
---|
361 | }; |
---|
362 | |
---|
363 | fglmSdata::fglmSdata( const ideal thisIdeal ) |
---|
364 | { |
---|
365 | // An dieser Stelle kann die BlockSize ( =BS ) noch sinnvoller berechnet |
---|
366 | // werden, jenachdem wie das Ideal aussieht. |
---|
367 | theIdeal= thisIdeal; |
---|
368 | idelems= IDELEMS( theIdeal ); |
---|
369 | |
---|
370 | basisBS= 100; |
---|
371 | basisMax= basisBS; |
---|
372 | basisSize= 0; |
---|
373 | basis= (polyset)omAlloc( basisMax*sizeof( poly ) ); |
---|
374 | |
---|
375 | borderBS= 100; |
---|
376 | borderMax= borderBS; |
---|
377 | borderSize= 0; |
---|
378 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
379 | border= new borderElem[ borderMax ]; |
---|
380 | #else |
---|
381 | border= (borderElem *)omAlloc( borderMax*sizeof( borderElem ) ); |
---|
382 | #endif |
---|
383 | // rem: the constructors are called in newBorderElem(). |
---|
384 | _state= TRUE; |
---|
385 | } |
---|
386 | |
---|
387 | fglmSdata::~fglmSdata() |
---|
388 | { |
---|
389 | for ( int k = basisSize; k > 0; k-- ) |
---|
390 | pDeleteLm( basis + k ); //. rem: basis runs from basis[1]..basis[basisSize] |
---|
391 | omFreeSize( (ADDRESS)basis, basisMax*sizeof( poly ) ); |
---|
392 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
393 | delete [] border; |
---|
394 | #else |
---|
395 | for ( int l = borderSize; l > 0; l-- ) |
---|
396 | // rem: the polys of borderElem are deleted via ~borderElem() |
---|
397 | border[l].~borderElem(); |
---|
398 | omFreeSize( (ADDRESS)border, borderMax*sizeof( borderElem ) ); |
---|
399 | #endif |
---|
400 | } |
---|
401 | |
---|
402 | // Inserts poly p without copying into basis, reAllocs Memory if necessary, |
---|
403 | // increases basisSize and returns the new basisSize. |
---|
404 | // Remember: The elements of basis are deleted via pDelete in ~fglmSdata! |
---|
405 | // Sets m= NULL to indicate that now basis is ow(e?)ing the poly. |
---|
406 | int |
---|
407 | fglmSdata::newBasisElem( poly & m ) |
---|
408 | { |
---|
409 | basisSize++; |
---|
410 | if ( basisSize == basisMax ) { |
---|
411 | basis= (polyset)omReallocSize( basis, basisMax*sizeof( poly ), (basisMax + basisBS)*sizeof( poly ) ); |
---|
412 | basisMax+= basisBS; |
---|
413 | } |
---|
414 | basis[basisSize]= m; |
---|
415 | m= NULL; |
---|
416 | return basisSize; |
---|
417 | } |
---|
418 | |
---|
419 | // Inserts poly p and fglmvector v without copying into border, reAllocs Memory |
---|
420 | // if necessary, and increases borderSize. |
---|
421 | // Remember: The poly of border is deleted via ~borderElem in ~fglmSdata! |
---|
422 | // Sets m= NULL to indicate that now border is ow(e?)ing the poly. |
---|
423 | void |
---|
424 | fglmSdata::newBorderElem( poly & m, fglmVector v ) |
---|
425 | { |
---|
426 | borderSize++; |
---|
427 | if ( borderSize == borderMax ) { |
---|
428 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
429 | borderElem * tempborder = new borderElem[ borderMax+borderBS ]; |
---|
430 | for ( int k = 0; k < borderMax; k++ ) { |
---|
431 | tempborder[k]= border[k]; |
---|
432 | border[k].insertElem( NULL, fglmVector() ); |
---|
433 | } |
---|
434 | delete [] border; |
---|
435 | border= tempborder; |
---|
436 | #else |
---|
437 | border= (borderElem *)omReallocSize( border, borderMax*sizeof( borderElem ), (borderMax + borderBS)*sizeof( borderElem ) ); |
---|
438 | #endif |
---|
439 | borderMax+= borderBS; |
---|
440 | } |
---|
441 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
442 | border[borderSize].insertElem( m, v ); |
---|
443 | #else |
---|
444 | border[borderSize].borderElem( m, v ); |
---|
445 | #endif |
---|
446 | m= NULL; |
---|
447 | } |
---|
448 | |
---|
449 | fglmSelem |
---|
450 | fglmSdata::nextCandidate() |
---|
451 | { |
---|
452 | fglmSelem result = nlist.getFirst(); |
---|
453 | nlist.removeFirst(); |
---|
454 | return result; |
---|
455 | } |
---|
456 | |
---|
457 | // Multiplies basis[basisSize] with all ringvariables and inserts the new monomials |
---|
458 | // into the list of candidates, according to the given order. If a monomial already |
---|
459 | // exists, then "insertions" and "divisors" are updated. |
---|
460 | // Assumes that ringvar(k) < ringvar(l) for k > l |
---|
461 | void |
---|
462 | fglmSdata::updateCandidates() |
---|
463 | { |
---|
464 | ListIterator<fglmSelem> list = nlist; |
---|
465 | fglmASSERT( basisSize > 0 && basisSize < basisMax, "Error(1) in fglmSdata::updateCandidates - wrong bassSize" ); |
---|
466 | poly m = basis[basisSize]; |
---|
467 | poly newmonom = NULL; |
---|
468 | int k = pVariables; |
---|
469 | BOOLEAN done = FALSE; |
---|
470 | int state = 0; |
---|
471 | while ( k >= 1 ) { |
---|
472 | newmonom = pCopy( m ); |
---|
473 | pIncrExp( newmonom, k ); |
---|
474 | pSetm( newmonom ); |
---|
475 | done= FALSE; |
---|
476 | while ( list.hasItem() && (done == FALSE) ) { |
---|
477 | if ( (state= pCmp( list.getItem().monom, newmonom )) < 0 ) |
---|
478 | list++; |
---|
479 | else done= TRUE; |
---|
480 | } |
---|
481 | if ( done == FALSE ) { |
---|
482 | nlist.append( fglmSelem( newmonom, k ) ); |
---|
483 | break; |
---|
484 | } |
---|
485 | if ( state == 0 ) { |
---|
486 | list.getItem().newDivisor( k ); |
---|
487 | pDeleteLm(&newmonom); |
---|
488 | } |
---|
489 | else { |
---|
490 | list.insert( fglmSelem( newmonom, k ) ); |
---|
491 | } |
---|
492 | k--; |
---|
493 | } |
---|
494 | while ( --k >= 1 ) { |
---|
495 | newmonom= pCopy( m ); // HIER |
---|
496 | pIncrExp( newmonom, k ); |
---|
497 | pSetm( newmonom ); |
---|
498 | nlist.append( fglmSelem( newmonom, k ) ); |
---|
499 | } |
---|
500 | } |
---|
501 | |
---|
502 | // if p == pHead( (theIdeal->m)[k] ) return k, 0 otherwise |
---|
503 | // (Assumes that pLmEqual just checks the leading monomials without |
---|
504 | // coefficients.) |
---|
505 | int |
---|
506 | fglmSdata::getEdgeNumber( const poly m ) const |
---|
507 | { |
---|
508 | for ( int k = idelems; k > 0; k-- ) |
---|
509 | if ( pLmEqual( m, (theIdeal->m)[k-1] ) ) |
---|
510 | return k; |
---|
511 | return 0; |
---|
512 | } |
---|
513 | |
---|
514 | // Returns the fglmVector v, s.t. |
---|
515 | // p = v[1]*basis(1) + .. + v[basisSize]*basis(basisSize) |
---|
516 | // So the size of v depends on the current size of the basis. |
---|
517 | // Assumes that such an representation exists, i.e. all monoms in p have to be |
---|
518 | // smaller than basis[basisSize] and that basis[k] < basis[l] for k < l. |
---|
519 | fglmVector |
---|
520 | fglmSdata::getVectorRep( const poly p ) |
---|
521 | { |
---|
522 | fglmVector temp( basisSize ); |
---|
523 | poly m = p; |
---|
524 | int num = basisSize; |
---|
525 | while ( m != NULL ) { |
---|
526 | int comp = pCmp( m, basis[num] ); |
---|
527 | if ( comp == 0 ) { |
---|
528 | fglmASSERT( num > 0, "Error(1) in fglmSdata::getVectorRep" ); |
---|
529 | number newelem = nCopy( pGetCoeff( m ) ); |
---|
530 | temp.setelem( num, newelem ); |
---|
531 | num--; |
---|
532 | pIter( m ); |
---|
533 | } |
---|
534 | else { |
---|
535 | if ( comp < 0 ) { |
---|
536 | num--; |
---|
537 | } |
---|
538 | else { |
---|
539 | // This is the place where we can detect if the sourceIdeal |
---|
540 | // is not reduced. In this case m is not in basis[]. Since basis[] |
---|
541 | // is ordered this is the case, if and only if basis[i]<m |
---|
542 | // and basis[j]>m for all j>i |
---|
543 | _state= FALSE; |
---|
544 | return temp; |
---|
545 | } |
---|
546 | } |
---|
547 | } |
---|
548 | return temp; |
---|
549 | } |
---|
550 | |
---|
551 | // Searches through the border for a monomoial bm which devides m and returns |
---|
552 | // its normalform in vector representation. |
---|
553 | // var contains the number of the variable v, s.t. bm = m * v |
---|
554 | fglmVector |
---|
555 | fglmSdata::getBorderDiv( const poly m, int & var ) const |
---|
556 | { |
---|
557 | // int num2 = borderSize; |
---|
558 | // while ( num2 > 0 ) { |
---|
559 | // poly temp = border[num2].monom; |
---|
560 | // if ( pDivisibleBy( temp, m ) ) { |
---|
561 | // poly divisor = pDivideM( m, temp ); |
---|
562 | // int var = pIsPurePower( divisor ); |
---|
563 | // if ( (var != 0) && (pGetCoeff( divisor, var ) == 1) ) { |
---|
564 | // Print( "poly %s divides poly %s", pString( temp ), pString( m ) ); |
---|
565 | // } |
---|
566 | // } |
---|
567 | // num2--; |
---|
568 | // } |
---|
569 | int num = borderSize; |
---|
570 | while ( num > 0 ) { |
---|
571 | poly temp = border[num].monom; |
---|
572 | if ( pDivisibleBy( temp, m ) ) { |
---|
573 | var = pVariables; |
---|
574 | while ( var > 0 ) { |
---|
575 | if ( (pGetExp( m, var ) - pGetExp( temp, var )) == 1 ) |
---|
576 | return border[num].nf; |
---|
577 | var--; |
---|
578 | } |
---|
579 | } |
---|
580 | num--; |
---|
581 | } |
---|
582 | return fglmVector(); |
---|
583 | } |
---|
584 | |
---|
585 | void |
---|
586 | internalCalculateFunctionals( const ideal & theIdeal, idealFunctionals & l, |
---|
587 | fglmSdata & data ) |
---|
588 | { |
---|
589 | |
---|
590 | // insert pOne() into basis and update the workingList: |
---|
591 | poly one = pOne(); |
---|
592 | data.newBasisElem( one ); |
---|
593 | data.updateCandidates(); |
---|
594 | |
---|
595 | STICKYPROT("."); |
---|
596 | while ( data.candidatesLeft() == TRUE ) { |
---|
597 | fglmSelem candidate = data.nextCandidate(); |
---|
598 | if ( candidate.isBasisOrEdge() == TRUE ) { |
---|
599 | int edge = data.getEdgeNumber( candidate.monom ); |
---|
600 | if ( edge != 0 ) { |
---|
601 | // now candidate is an edge, i.e. we know its normalform: |
---|
602 | // NF(p) = - ( tail(p)/LC(p) ) |
---|
603 | poly nf = data.getSpanPoly( edge ); |
---|
604 | pNorm( nf ); |
---|
605 | pDeleteLm(&nf); //. deletes the leadingmonomial |
---|
606 | nf= pNeg( nf ); |
---|
607 | fglmVector nfv = data.getVectorRep( nf ); |
---|
608 | l.insertCols( candidate.divisors, nfv ); |
---|
609 | data.newBorderElem( candidate.monom, nfv ); |
---|
610 | pDelete( &nf ); |
---|
611 | STICKYPROT( "+" ); |
---|
612 | } |
---|
613 | else { |
---|
614 | int basis= data.newBasisElem( candidate.monom ); |
---|
615 | data.updateCandidates(); |
---|
616 | l.insertCols( candidate.divisors, basis ); |
---|
617 | STICKYPROT( "." ); |
---|
618 | } |
---|
619 | } |
---|
620 | else { |
---|
621 | int var = 0; |
---|
622 | fglmVector temp = data.getBorderDiv( candidate.monom, var ); |
---|
623 | fglmASSERT( var > 0, "this should never happen" ); |
---|
624 | fglmVector nfv = l.addCols( var, data.getBasisSize(), temp ); |
---|
625 | data.newBorderElem( candidate.monom, nfv ); |
---|
626 | l.insertCols( candidate.divisors, nfv ); |
---|
627 | STICKYPROT( "-" ); |
---|
628 | } |
---|
629 | candidate.cleanup(); |
---|
630 | } //. while ( data.candidatesLeft() == TRUE ) |
---|
631 | l.endofConstruction(); |
---|
632 | STICKYPROT2( "\nvdim= %i\n", data.getBasisSize() ); |
---|
633 | return; |
---|
634 | } |
---|
635 | |
---|
636 | // Calculates the defining Functionals for the ideal "theIdeal" and |
---|
637 | // returns them in "l". |
---|
638 | // The ideal has to be zero-dimensional and reduced and has to be a |
---|
639 | // real subset of the polynomal ring. |
---|
640 | // In any case it has to be zero-dimensional and minimal (check this |
---|
641 | // via fglmIdealcheck). Any minimal but not reduced ideal is detected. |
---|
642 | // In this case it returns FglmNotReduced. |
---|
643 | // If the base domain is Q, the leading coefficients of the polys |
---|
644 | // have to be in Z. |
---|
645 | // returns TRUE if the result is valid, FALSE if theIdeal |
---|
646 | // is not reduced. |
---|
647 | static BOOLEAN |
---|
648 | CalculateFunctionals( const ideal & theIdeal, idealFunctionals & l ) |
---|
649 | { |
---|
650 | fglmSdata data( theIdeal ); |
---|
651 | internalCalculateFunctionals( theIdeal, l, data ); |
---|
652 | return ( data.state() ); |
---|
653 | } |
---|
654 | |
---|
655 | static BOOLEAN |
---|
656 | CalculateFunctionals( const ideal & theIdeal, idealFunctionals & l, |
---|
657 | poly & p, fglmVector & v ) |
---|
658 | { |
---|
659 | fglmSdata data( theIdeal ); |
---|
660 | internalCalculateFunctionals( theIdeal, l, data ); |
---|
661 | // STICKYPROT("Calculating vector rep\n"); |
---|
662 | v = data.getVectorRep( p ); |
---|
663 | // if ( v.isZero() ) |
---|
664 | // STICKYPROT("vectorrep is 0\n"); |
---|
665 | return ( data.state() ); |
---|
666 | } |
---|
667 | |
---|
668 | // ============================================================ |
---|
669 | //! The new basis |
---|
670 | // ============================================================ |
---|
671 | |
---|
672 | // The declaration of class fglmDelem is found in fglm.h |
---|
673 | |
---|
674 | fglmDelem::fglmDelem( poly & m, fglmVector mv, int v ) : v( mv ), insertions( 0 ), var( v ) |
---|
675 | { |
---|
676 | monom= m; |
---|
677 | m= NULL; |
---|
678 | for ( int k = pVariables; k > 0; k-- ) |
---|
679 | if ( pGetExp( monom, k ) > 0 ) |
---|
680 | insertions++; |
---|
681 | // Wir gehen davon aus, dass ein fglmDelem direkt bei der Erzeugung |
---|
682 | // auch in eine Liste eingefuegt wird. Daher wird hier automatisch |
---|
683 | // newDivisor aufgerufen ( v teilt ja m ) |
---|
684 | newDivisor(); |
---|
685 | } |
---|
686 | |
---|
687 | void |
---|
688 | fglmDelem::cleanup() |
---|
689 | { |
---|
690 | if ( monom != NULL ) { |
---|
691 | pDeleteLm(&monom); |
---|
692 | } |
---|
693 | } |
---|
694 | |
---|
695 | class oldGaussElem |
---|
696 | { |
---|
697 | public: |
---|
698 | fglmVector v; |
---|
699 | fglmVector p; |
---|
700 | number pdenom; |
---|
701 | number fac; |
---|
702 | |
---|
703 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
704 | oldGaussElem() : v(), p(), pdenom( NULL ), fac( NULL ) {} |
---|
705 | #endif |
---|
706 | oldGaussElem( const fglmVector newv, const fglmVector newp, number & newpdenom, number & newfac ) : v( newv ), p( newp ), pdenom( newpdenom ), fac( newfac ) |
---|
707 | { |
---|
708 | newpdenom= NULL; |
---|
709 | newfac= NULL; |
---|
710 | } |
---|
711 | ~oldGaussElem(); |
---|
712 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
713 | void insertElem( const fglmVector newv, const fglmVector newp, number & newpdenom, number & newfac ) |
---|
714 | { |
---|
715 | v= newv; |
---|
716 | p= newp; |
---|
717 | pdenom= newpdenom; |
---|
718 | fac= newfac; |
---|
719 | newpdenom= NULL; |
---|
720 | newfac= NULL; |
---|
721 | } |
---|
722 | #endif |
---|
723 | }; |
---|
724 | |
---|
725 | oldGaussElem::~oldGaussElem() |
---|
726 | { |
---|
727 | nDelete( & fac ); |
---|
728 | nDelete( & pdenom ); |
---|
729 | } |
---|
730 | |
---|
731 | |
---|
732 | class fglmDdata |
---|
733 | { |
---|
734 | private: |
---|
735 | int dimen; |
---|
736 | oldGaussElem * gauss; |
---|
737 | BOOLEAN * isPivot; // [1]..[dimen] |
---|
738 | int * perm; // [1]..[dimen] |
---|
739 | int basisSize; //. the CURRENT basisSize, i.e. basisSize <= dimen |
---|
740 | polyset basis; // [1]..[dimen]. The monoms of the new Vectorspace-basis |
---|
741 | |
---|
742 | int groebnerBS; |
---|
743 | int groebnerSize; |
---|
744 | ideal destId; |
---|
745 | |
---|
746 | List<fglmDelem> nlist; |
---|
747 | public: |
---|
748 | fglmDdata( int dimension ); |
---|
749 | ~fglmDdata(); |
---|
750 | |
---|
751 | int getBasisSize() const { return basisSize; } |
---|
752 | BOOLEAN candidatesLeft() const { return ( nlist.isEmpty() ? FALSE : TRUE ); } |
---|
753 | fglmDelem nextCandidate(); |
---|
754 | void newBasisElem( poly & m, fglmVector v, fglmVector p, number & denom ); |
---|
755 | void updateCandidates( poly m, const fglmVector v ); |
---|
756 | void newGroebnerPoly( fglmVector & v, poly & p ); |
---|
757 | void gaussreduce( fglmVector & v, fglmVector & p, number & denom ); |
---|
758 | ideal buildIdeal() |
---|
759 | { |
---|
760 | idSkipZeroes( destId ); |
---|
761 | return destId; |
---|
762 | } |
---|
763 | }; |
---|
764 | |
---|
765 | fglmDdata::fglmDdata( int dimension ) |
---|
766 | { |
---|
767 | int k; |
---|
768 | dimen= dimension; |
---|
769 | basisSize= 0; |
---|
770 | //. All arrays run from [1]..[dimen], thus omAlloc( dimen + 1 )! |
---|
771 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
772 | gauss= new oldGaussElem[ dimen+1 ]; |
---|
773 | #else |
---|
774 | gauss= (oldGaussElem *)omAlloc( (dimen+1)*sizeof( oldGaussElem ) ); |
---|
775 | #endif |
---|
776 | isPivot= (BOOLEAN *)omAlloc( (dimen+1)*sizeof( BOOLEAN ) ); |
---|
777 | for ( k= dimen; k > 0; k-- ) isPivot[k]= FALSE; |
---|
778 | perm= (int *)omAlloc( (dimen+1)*sizeof( int ) ); |
---|
779 | basis= (polyset)omAlloc( (dimen+1)*sizeof( poly ) ); |
---|
780 | groebnerBS= 16; |
---|
781 | groebnerSize= 0; |
---|
782 | destId= idInit( groebnerBS, 1 ); |
---|
783 | } |
---|
784 | |
---|
785 | fglmDdata::~fglmDdata() |
---|
786 | { |
---|
787 | // STICKYPROT2("dimen= %i", dimen); |
---|
788 | // STICKYPROT2("basisSize= %i", basisSize); |
---|
789 | // fglmASSERT( dimen == basisSize, "Es wurden nicht alle BasisElemente gefunden!" ); |
---|
790 | int k; |
---|
791 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
792 | delete [] gauss; |
---|
793 | #else |
---|
794 | // use basisSize instead of dimen because of fglmquot! |
---|
795 | for ( k= basisSize; k > 0; k-- ) |
---|
796 | gauss[k].~oldGaussElem(); |
---|
797 | omFreeSize( (ADDRESS)gauss, (dimen+1)*sizeof( oldGaussElem ) ); |
---|
798 | #endif |
---|
799 | omFreeSize( (ADDRESS)isPivot, (dimen+1)*sizeof( BOOLEAN ) ); |
---|
800 | omFreeSize( (ADDRESS)perm, (dimen+1)*sizeof( int ) ); |
---|
801 | // use basisSize instead of dimen because of fglmquot! |
---|
802 | //. Remember: There is no poly in basis[0], thus k > 0 |
---|
803 | for ( k= basisSize; k > 0; k-- ) |
---|
804 | pLmDelete( basis[k]); |
---|
805 | omFreeSize( (ADDRESS)basis, (dimen+1)*sizeof( poly ) ); |
---|
806 | } |
---|
807 | |
---|
808 | fglmDelem |
---|
809 | fglmDdata::nextCandidate() |
---|
810 | { |
---|
811 | fglmDelem result = nlist.getFirst(); |
---|
812 | nlist.removeFirst(); |
---|
813 | return result; |
---|
814 | } |
---|
815 | |
---|
816 | void |
---|
817 | fglmDdata::newBasisElem( poly & m, fglmVector v, fglmVector p, number & denom ) |
---|
818 | { |
---|
819 | // inserts m as a new basis monom. m is NOT copied but directly inserted. |
---|
820 | // returns m=NULL to indicate, that now basis is oweing m. |
---|
821 | basisSize++; |
---|
822 | basis[basisSize]= m; |
---|
823 | m= NULL; |
---|
824 | int k= 1; |
---|
825 | while ( nIsZero(v.getconstelem(k)) || isPivot[k] ) { |
---|
826 | k++; |
---|
827 | } |
---|
828 | fglmASSERT( k <= dimen, "Error(1) in fglmDdata::pivot-search"); |
---|
829 | number pivot= v.getconstelem( k ); |
---|
830 | int pivotcol = k; |
---|
831 | k++; |
---|
832 | while ( k <= dimen ) { |
---|
833 | if ( ! nIsZero( v.getconstelem(k) ) && ! isPivot[k] ) { |
---|
834 | if ( nGreater( v.getconstelem( k ), pivot ) ) { |
---|
835 | pivot= v.getconstelem( k ); |
---|
836 | pivotcol= k; |
---|
837 | } |
---|
838 | } |
---|
839 | k++; |
---|
840 | } |
---|
841 | fglmASSERT( ! nIsZero( pivot ), "Error(2) fglmDdata::Pivotelement ist Null" ); |
---|
842 | isPivot[ pivotcol ]= TRUE; |
---|
843 | perm[basisSize]= pivotcol; |
---|
844 | |
---|
845 | pivot= nCopy( v.getconstelem( pivotcol ) ); |
---|
846 | #ifndef HAVE_EXPLICIT_CONSTR |
---|
847 | gauss[basisSize].insertElem( v, p, denom, pivot ); |
---|
848 | #else |
---|
849 | gauss[basisSize].oldGaussElem( v, p, denom, pivot ); |
---|
850 | #endif |
---|
851 | } |
---|
852 | |
---|
853 | void |
---|
854 | fglmDdata::updateCandidates( poly m, const fglmVector v ) |
---|
855 | { |
---|
856 | ListIterator<fglmDelem> list = nlist; |
---|
857 | poly newmonom = NULL; |
---|
858 | int k = pVariables; |
---|
859 | BOOLEAN done = FALSE; |
---|
860 | int state = 0; |
---|
861 | while ( k >= 1 ) { |
---|
862 | newmonom = pCopy( m ); |
---|
863 | pIncrExp( newmonom, k ); |
---|
864 | pSetm( newmonom ); |
---|
865 | done= FALSE; |
---|
866 | while ( list.hasItem() && (done == FALSE) ) { |
---|
867 | if ( (state= pCmp( list.getItem().monom, newmonom )) < 0 ) |
---|
868 | list++; |
---|
869 | else done= TRUE; |
---|
870 | } |
---|
871 | if ( done == FALSE ) { |
---|
872 | nlist.append( fglmDelem( newmonom, v, k ) ); |
---|
873 | break; |
---|
874 | } |
---|
875 | if ( state == 0 ) { |
---|
876 | list.getItem().newDivisor(); |
---|
877 | pDeleteLm( & newmonom ); |
---|
878 | } |
---|
879 | else { |
---|
880 | list.insert( fglmDelem( newmonom, v, k ) ); |
---|
881 | } |
---|
882 | k--; |
---|
883 | } |
---|
884 | while ( --k >= 1 ) { |
---|
885 | newmonom= pCopy( m ); |
---|
886 | pIncrExp( newmonom, k ); |
---|
887 | pSetm( newmonom ); |
---|
888 | nlist.append( fglmDelem( newmonom, v, k ) ); |
---|
889 | } |
---|
890 | } |
---|
891 | |
---|
892 | void |
---|
893 | fglmDdata::newGroebnerPoly( fglmVector & p, poly & m ) |
---|
894 | // Inserts gp = p[1]*basis(1)+..+p[basisSize]*basis(basisSize)+p[basisSize+1]*m as |
---|
895 | // a new groebner polynomial for the ideal. |
---|
896 | // All elements (monomials and coefficients) of gp are copied, instead of m. |
---|
897 | // Assumes that p.length() == basisSize+1. |
---|
898 | { |
---|
899 | //. Baue das Polynom von oben nach unten: |
---|
900 | fglmASSERT( p.size() == basisSize+1, "GP::newGroebnerPoly: p has wrong size" ); |
---|
901 | int k; |
---|
902 | poly result = m; |
---|
903 | poly temp = result; |
---|
904 | m= NULL; |
---|
905 | if ( nGetChar() > 0 ) { |
---|
906 | number lead = nCopy( p.getconstelem( basisSize+1 ) ); |
---|
907 | p /= lead; |
---|
908 | nDelete( & lead ); |
---|
909 | } |
---|
910 | if ( nGetChar() == 0 ) { |
---|
911 | number gcd= p.gcd(); |
---|
912 | fglmASSERT( ! nIsZero( gcd ), "FATAL: gcd and thus p is zero" ); |
---|
913 | if ( ! nIsOne( gcd ) ) |
---|
914 | p /= gcd; |
---|
915 | nDelete( & gcd ); |
---|
916 | } |
---|
917 | pSetCoeff( result, nCopy( p.getconstelem( basisSize+1 ) ) ); |
---|
918 | for ( k= basisSize; k > 0; k-- ) { |
---|
919 | if ( ! nIsZero( p.getconstelem( k ) ) ) { |
---|
920 | temp->next= pCopy( basis[k] ); |
---|
921 | pIter( temp ); |
---|
922 | pSetCoeff( temp, nCopy( p.getconstelem( k ) ) ); |
---|
923 | } |
---|
924 | } |
---|
925 | pSetm( result ); |
---|
926 | if ( ! nGreaterZero( pGetCoeff( result ) ) ) result= pNeg( result ); |
---|
927 | if ( groebnerSize == IDELEMS( destId ) ) { |
---|
928 | pEnlargeSet( & destId->m, IDELEMS( destId ), groebnerBS ); |
---|
929 | IDELEMS( destId )+= groebnerBS; |
---|
930 | } |
---|
931 | (destId->m)[groebnerSize]= result; |
---|
932 | groebnerSize++; |
---|
933 | } |
---|
934 | |
---|
935 | void |
---|
936 | fglmDdata::gaussreduce( fglmVector & v, fglmVector & p, number & pdenom ) |
---|
937 | { |
---|
938 | int k; |
---|
939 | number fac1, fac2; |
---|
940 | number temp; |
---|
941 | fglmASSERT( pdenom == NULL, "pdenom in gaussreduce should be NULL" ); |
---|
942 | pdenom= nInit( 1 ); |
---|
943 | number vdenom = v.clearDenom(); |
---|
944 | if ( ! nIsOne( vdenom ) && ! nIsZero( vdenom ) ) { |
---|
945 | p.setelem( p.size(), vdenom ); |
---|
946 | } |
---|
947 | else { |
---|
948 | nDelete( &vdenom ); |
---|
949 | } |
---|
950 | number gcd = v.gcd(); |
---|
951 | if ( ! nIsOne( gcd ) && ! nIsZero( gcd ) ) { |
---|
952 | v /= gcd; |
---|
953 | number temp= nMult( pdenom, gcd ); |
---|
954 | nDelete( &pdenom ); |
---|
955 | pdenom= temp; |
---|
956 | } |
---|
957 | nDelete( & gcd ); |
---|
958 | |
---|
959 | for ( k= 1; k <= basisSize; k++ ) { |
---|
960 | |
---|
961 | if ( ! v.elemIsZero( perm[k] ) ) { |
---|
962 | fac1= gauss[k].fac; |
---|
963 | fac2= nCopy( v.getconstelem( perm[k] ) ); |
---|
964 | v.nihilate( fac1, fac2, gauss[k].v ); |
---|
965 | fac1= nMult( fac1, gauss[k].pdenom ); |
---|
966 | temp= nMult( fac2, pdenom ); |
---|
967 | nDelete( &fac2 ); |
---|
968 | fac2= temp; |
---|
969 | p.nihilate( fac1, fac2, gauss[k].p ); |
---|
970 | temp= nMult( pdenom, gauss[k].pdenom ); |
---|
971 | nDelete( &pdenom ); |
---|
972 | pdenom= temp; |
---|
973 | |
---|
974 | nDelete( & fac1 ); |
---|
975 | nDelete( & fac2 ); |
---|
976 | number gcd = v.gcd(); |
---|
977 | if ( ! nIsOne( gcd ) && ! nIsZero( gcd ) ) { |
---|
978 | v /= gcd; |
---|
979 | number temp= nMult( pdenom, gcd ); |
---|
980 | nDelete( &pdenom ); |
---|
981 | pdenom= temp; |
---|
982 | } |
---|
983 | nDelete( & gcd ); |
---|
984 | gcd= p.gcd(); |
---|
985 | temp= nGcd( pdenom, gcd ); |
---|
986 | nDelete( &gcd ); |
---|
987 | gcd= temp; |
---|
988 | if ( ! nIsZero( gcd ) && ! nIsOne( gcd ) ) { |
---|
989 | p /= gcd; |
---|
990 | temp= nDiv( pdenom, gcd ); |
---|
991 | nDelete( & pdenom ); |
---|
992 | pdenom= temp; |
---|
993 | nNormalize( pdenom ); |
---|
994 | } |
---|
995 | nDelete( & gcd ); |
---|
996 | } |
---|
997 | } |
---|
998 | } |
---|
999 | |
---|
1000 | static ideal |
---|
1001 | GroebnerViaFunctionals( const idealFunctionals & l, |
---|
1002 | fglmVector iv = fglmVector() ) |
---|
1003 | // If iv is zero, calculates the groebnerBasis for the ideal which is |
---|
1004 | // defined by l. |
---|
1005 | // If iv is not zero, then the groebnerBasis if i:p is calculated where |
---|
1006 | // i is defined by l and iv is the vector-representation of nf(p) wrt. i |
---|
1007 | // The dimension of l has to be finite. |
---|
1008 | // The result is in reduced form. |
---|
1009 | { |
---|
1010 | fglmDdata data( l.dimen() ); |
---|
1011 | |
---|
1012 | // insert pOne() and update workinglist according to iv: |
---|
1013 | fglmVector initv; |
---|
1014 | if ( iv.isZero() ) { |
---|
1015 | // STICKYPROT("initv is zero\n"); |
---|
1016 | initv = fglmVector( l.dimen(), 1 ); |
---|
1017 | } |
---|
1018 | else { |
---|
1019 | // STICKYPROT("initv is not zero\n"); |
---|
1020 | initv = iv; |
---|
1021 | } |
---|
1022 | |
---|
1023 | poly one = pOne(); |
---|
1024 | data.updateCandidates( one, initv ); |
---|
1025 | number nOne = nInit( 1 ); |
---|
1026 | data.newBasisElem( one, initv, fglmVector( 1, 1 ), nOne ); |
---|
1027 | STICKYPROT( "." ); |
---|
1028 | while ( data.candidatesLeft() == TRUE ) { |
---|
1029 | fglmDelem candidate = data.nextCandidate(); |
---|
1030 | if ( candidate.isBasisOrEdge() == TRUE ) { |
---|
1031 | // Now we have the chance to find a new groebner polynomial |
---|
1032 | |
---|
1033 | // v is the vector-representation of candidate.monom |
---|
1034 | // some elements of v are zeroed in data.gaussreduce(). Which |
---|
1035 | // ones and how this was done is stored in p. |
---|
1036 | // originalV containes the unchanged v, which is later inserted |
---|
1037 | // into the working list (via data.updateCandidates(). |
---|
1038 | fglmVector v = l.multiply( candidate.v, candidate.var ); |
---|
1039 | fglmVector originalV = v; |
---|
1040 | fglmVector p( data.getBasisSize()+1, data.getBasisSize()+1 ); |
---|
1041 | number pdenom = NULL; |
---|
1042 | data.gaussreduce( v, p, pdenom ); |
---|
1043 | if ( v.isZero() ) { |
---|
1044 | // Now v is linear dependend to the already found basis elements. |
---|
1045 | // This means that v (rsp. candidate.monom) is the leading |
---|
1046 | // monomial of the next groebner-basis polynomial. |
---|
1047 | data.newGroebnerPoly( p, candidate.monom ); |
---|
1048 | nDelete( & pdenom ); |
---|
1049 | STICKYPROT( "+" ); |
---|
1050 | } |
---|
1051 | else { |
---|
1052 | // no linear dependence could be found, so v ( rsp. monom ) |
---|
1053 | // is a basis monomial. We store the zeroed version ( i.e. v |
---|
1054 | // and not originalV ) as well as p, the denomiator and all |
---|
1055 | // the other stuff. |
---|
1056 | // erst updateCandidates, dann newBasisELem!!! |
---|
1057 | data.updateCandidates( candidate.monom, originalV ); |
---|
1058 | data.newBasisElem( candidate.monom, v, p, pdenom ); |
---|
1059 | STICKYPROT( "." ); |
---|
1060 | } |
---|
1061 | } |
---|
1062 | else { |
---|
1063 | STICKYPROT( "-" ); |
---|
1064 | candidate.cleanup(); |
---|
1065 | } |
---|
1066 | } //. while data.candidatesLeft() |
---|
1067 | STICKYPROT( "\n" ); |
---|
1068 | return ( data.buildIdeal() ); |
---|
1069 | } |
---|
1070 | //<- |
---|
1071 | |
---|
1072 | static ideal |
---|
1073 | FindUnivariatePolys( const idealFunctionals & l ) |
---|
1074 | { |
---|
1075 | fglmVector v; |
---|
1076 | fglmVector p; |
---|
1077 | ideal destIdeal = idInit( pVariables, 1 ); |
---|
1078 | |
---|
1079 | int i; |
---|
1080 | BOOLEAN isZero; |
---|
1081 | for ( i= 1; i <= pVariables; i++ ) { |
---|
1082 | // main loop |
---|
1083 | STICKYPROT2( "(%i)", i ); |
---|
1084 | gaussReducer gauss( l.dimen() ); |
---|
1085 | isZero= FALSE; |
---|
1086 | v= fglmVector( l.dimen(), 1 ); |
---|
1087 | while ( isZero == FALSE ) { |
---|
1088 | if ( (isZero= gauss.reduce( v )) == TRUE ) { |
---|
1089 | STICKYPROT( "+" ); |
---|
1090 | p= gauss.getDependence(); |
---|
1091 | number gcd= p.gcd(); |
---|
1092 | if ( ! nIsOne( gcd ) ) { |
---|
1093 | p /= gcd; |
---|
1094 | } |
---|
1095 | nDelete( & gcd ); |
---|
1096 | int k; |
---|
1097 | poly temp = NULL; |
---|
1098 | poly result; |
---|
1099 | for ( k= p.size(); k > 0; k-- ) { |
---|
1100 | number n = nCopy( p.getconstelem( k ) ); |
---|
1101 | if ( ! nIsZero( n ) ) { |
---|
1102 | if ( temp == NULL ) { |
---|
1103 | result= pOne(); |
---|
1104 | temp= result; |
---|
1105 | } |
---|
1106 | else { |
---|
1107 | temp->next= pOne(); |
---|
1108 | pIter( temp ); |
---|
1109 | } |
---|
1110 | pSetCoeff( temp, n ); |
---|
1111 | pSetExp( temp, i, k-1 ); |
---|
1112 | pSetm( temp ); |
---|
1113 | } |
---|
1114 | } |
---|
1115 | if ( ! nGreaterZero( pGetCoeff( result ) ) ) result= pNeg( result ); |
---|
1116 | (destIdeal->m)[i-1]= result; |
---|
1117 | } |
---|
1118 | else { |
---|
1119 | STICKYPROT( "." ); |
---|
1120 | gauss.store(); |
---|
1121 | v= l.multiply( v, i ); |
---|
1122 | } |
---|
1123 | } |
---|
1124 | } |
---|
1125 | STICKYPROT( "\n" ); |
---|
1126 | return destIdeal; |
---|
1127 | } |
---|
1128 | |
---|
1129 | // for a descritption of the parameters see fglm.h |
---|
1130 | BOOLEAN |
---|
1131 | fglmzero( idhdl sourceRingHdl, ideal & sourceIdeal, idhdl destRingHdl, ideal & destIdeal, BOOLEAN switchBack, BOOLEAN deleteIdeal ) |
---|
1132 | { |
---|
1133 | idhdl initialRingHdl = currRingHdl; |
---|
1134 | BOOLEAN fglmok; |
---|
1135 | |
---|
1136 | if ( currRingHdl != sourceRingHdl ) |
---|
1137 | rSetHdl( sourceRingHdl ); |
---|
1138 | idealFunctionals L( 100, pVariables ); |
---|
1139 | fglmok = CalculateFunctionals( sourceIdeal, L ); |
---|
1140 | if ( deleteIdeal == TRUE ) |
---|
1141 | idDelete( & sourceIdeal ); |
---|
1142 | rSetHdl( destRingHdl ); |
---|
1143 | if ( fglmok == TRUE ) { |
---|
1144 | L.map( IDRING( sourceRingHdl ) ); |
---|
1145 | destIdeal= GroebnerViaFunctionals( L ); |
---|
1146 | } |
---|
1147 | if ( (switchBack == TRUE) && (currRingHdl != initialRingHdl) ) |
---|
1148 | rSetHdl( initialRingHdl ); |
---|
1149 | return fglmok; |
---|
1150 | } |
---|
1151 | |
---|
1152 | BOOLEAN |
---|
1153 | fglmquot( ideal sourceIdeal, poly quot, ideal & destIdeal) |
---|
1154 | { |
---|
1155 | BOOLEAN fglmok; |
---|
1156 | fglmVector v; |
---|
1157 | |
---|
1158 | idealFunctionals L( 100, pVariables ); |
---|
1159 | // STICKYPROT("calculating normal form\n"); |
---|
1160 | // poly p = kNF( sourceIdeal, currRing->qideal, quot ); |
---|
1161 | // STICKYPROT("calculating functionals\n"); |
---|
1162 | fglmok = CalculateFunctionals( sourceIdeal, L, quot, v ); |
---|
1163 | if ( fglmok == TRUE ) { |
---|
1164 | // STICKYPROT("calculating groebner basis\n"); |
---|
1165 | destIdeal= GroebnerViaFunctionals( L, v ); |
---|
1166 | } |
---|
1167 | return fglmok; |
---|
1168 | } |
---|
1169 | |
---|
1170 | BOOLEAN |
---|
1171 | FindUnivariateWrapper( ideal source, ideal & destIdeal ) |
---|
1172 | { |
---|
1173 | BOOLEAN fglmok; |
---|
1174 | |
---|
1175 | idealFunctionals L( 100, pVariables ); |
---|
1176 | fglmok = CalculateFunctionals( source, L ); |
---|
1177 | if ( fglmok == TRUE ) { |
---|
1178 | destIdeal= FindUnivariatePolys( L ); |
---|
1179 | return TRUE; |
---|
1180 | } |
---|
1181 | else |
---|
1182 | return FALSE; |
---|
1183 | } |
---|
1184 | |
---|
1185 | |
---|
1186 | #endif |
---|
1187 | |
---|
1188 | // ---------------------------------------------------------------------------- |
---|
1189 | // Local Variables: *** |
---|
1190 | // compile-command: "make Singular" *** |
---|
1191 | // page-delimiter: "^\\(\\|//!\\)" *** |
---|
1192 | // fold-internal-margins: nil *** |
---|
1193 | // End: *** |
---|