1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id$ */ |
---|
5 | |
---|
6 | #include <Singular/mod2.h> |
---|
7 | #include <kernel/options.h> |
---|
8 | #include <kernel/febase.h> |
---|
9 | #include <kernel/ideals.h> |
---|
10 | #include <kernel/intvec.h> |
---|
11 | #include <kernel/polys.h> |
---|
12 | #include <Singular/lists.h> |
---|
13 | #include <kernel/longrat.h> |
---|
14 | #include <Singular/ipid.h> |
---|
15 | #include <kernel/ring.h> |
---|
16 | #ifdef HAVE_FACTORY |
---|
17 | #include <factory.h> |
---|
18 | #endif |
---|
19 | |
---|
20 | //memory management |
---|
21 | #define mdmALLOC(x) omAlloc0(x) |
---|
22 | #define mdmFREE(x) omFree(x) |
---|
23 | |
---|
24 | // parameters to debug |
---|
25 | //#define debb |
---|
26 | //#define shmat |
---|
27 | //#define checksize |
---|
28 | //#define writemsg |
---|
29 | |
---|
30 | // possible strategies |
---|
31 | #define unsortedmatrix |
---|
32 | //#define integerstrategy |
---|
33 | |
---|
34 | #define modp_number int |
---|
35 | #define exponent int |
---|
36 | |
---|
37 | modp_number myp; // all modp computation done mod myp |
---|
38 | int myp_index; // index of small prime in Singular table of primes |
---|
39 | |
---|
40 | static inline modp_number modp_mul (modp_number x,modp_number y) |
---|
41 | { |
---|
42 | // return (x*y)%myp; |
---|
43 | return (modp_number)(((unsigned long)x)*((unsigned long)y)%((unsigned long)myp)); |
---|
44 | } |
---|
45 | static inline modp_number modp_sub (modp_number x,modp_number y) |
---|
46 | { |
---|
47 | // if (x>=y) return x-y; else return x+myp-y; |
---|
48 | return (x+myp-y)%myp; |
---|
49 | } |
---|
50 | |
---|
51 | typedef exponent *mono_type; |
---|
52 | typedef struct {mono_type mon; unsigned int point_ref;} condition_type; |
---|
53 | typedef modp_number *coordinate_products; |
---|
54 | typedef coordinate_products *coordinates; |
---|
55 | |
---|
56 | struct mon_list_entry_struct {mono_type mon; |
---|
57 | struct mon_list_entry_struct *next;}; |
---|
58 | typedef struct mon_list_entry_struct mon_list_entry; |
---|
59 | |
---|
60 | struct row_list_entry_struct {modp_number *row_matrix; |
---|
61 | modp_number *row_solve; |
---|
62 | int first_col; |
---|
63 | struct row_list_entry_struct *next;}; |
---|
64 | |
---|
65 | typedef struct row_list_entry_struct row_list_entry; |
---|
66 | |
---|
67 | struct generator_struct {modp_number *coef; |
---|
68 | mono_type lt; |
---|
69 | modp_number ltcoef; |
---|
70 | struct generator_struct *next;}; |
---|
71 | |
---|
72 | typedef struct generator_struct generator_entry; |
---|
73 | |
---|
74 | struct modp_result_struct {modp_number p; |
---|
75 | generator_entry *generator; |
---|
76 | int n_generators; |
---|
77 | struct modp_result_struct *next; |
---|
78 | struct modp_result_struct *prev;}; |
---|
79 | |
---|
80 | typedef struct modp_result_struct modp_result_entry; |
---|
81 | |
---|
82 | typedef modp_number *modp_coordinates; |
---|
83 | typedef mpq_t *q_coordinates; |
---|
84 | typedef mpz_t *int_coordinates; |
---|
85 | typedef bool *coord_exist_table; |
---|
86 | |
---|
87 | int final_base_dim; // dimension of the quotient space, known from the beginning |
---|
88 | int last_solve_column; // last non-zero column in "solve" part of matrix, used for speed up |
---|
89 | int n_points; // modp_number of ideals (points) |
---|
90 | int *multiplicity; // multiplicities of points |
---|
91 | int variables; // modp_number of variables |
---|
92 | int max_coord; // maximal possible coordinate product used during Evaluation |
---|
93 | bool only_modp; // perform only one modp computations |
---|
94 | |
---|
95 | modp_coordinates *modp_points; // coordinates of points for modp problem - used by Evaluate (this is also initial data for only modp) |
---|
96 | q_coordinates *q_points; // coordinates of points for rational data (not used for modp) |
---|
97 | int_coordinates *int_points; // coordinates of points for integer data - used to check generators (not used for modp) |
---|
98 | coord_exist_table *coord_exist; // checks whether all coordinates has been initialized |
---|
99 | mon_list_entry *check_list; // monomials to be checked in next stages |
---|
100 | coordinates *points; // power products of coordinates of points used in modp cycles |
---|
101 | condition_type *condition_list; // conditions stored in an array |
---|
102 | mon_list_entry *lt_list; // leading terms found so far |
---|
103 | mon_list_entry *base_list; // standard monomials found so far |
---|
104 | row_list_entry *row_list; // rows of the matrix (both parts) |
---|
105 | modp_number *my_row; // one special row to perform operations |
---|
106 | modp_number *my_solve_row; // one special row to find the linear dependence ("solve" part) |
---|
107 | mono_type *column_name; // monomials assigned to columns in solve_row |
---|
108 | |
---|
109 | int n_results; // modp_number of performed modp computations (not discarded) |
---|
110 | modp_number modp_denom; // denominator of mod p computations |
---|
111 | modp_result_entry *modp_result; // list of results for various mod p calculations (used for modp - first result is the desired one) |
---|
112 | modp_result_entry *cur_result; // pointer to current result (as before) |
---|
113 | modp_number *congr; // primes used in computations (chinese remainder theorem) (not used for modp) |
---|
114 | modp_number *in_gamma; // inverts used in chinese remainder theorem (not used for modp) |
---|
115 | mpz_t bigcongr; // result, in fact, is given in mod bigcongr (not used for modp) |
---|
116 | |
---|
117 | mpz_t *polycoef; // polynomial integercoefficients (not used for modp) |
---|
118 | mono_type *polyexp; // polynomial exponents |
---|
119 | |
---|
120 | struct gen_list_struct {mpz_t *polycoef; |
---|
121 | mono_type *polyexp; |
---|
122 | struct gen_list_struct *next;}; |
---|
123 | typedef struct gen_list_struct gen_list_entry; |
---|
124 | |
---|
125 | gen_list_entry *gen_list=NULL; // list of resulting generators - output data (integer version) |
---|
126 | |
---|
127 | int generic_n_generators; // modp_number of generators - should be the same for all modp comp (not used for modp) |
---|
128 | mono_type *generic_column_name; // monomials assigned to columns in solve_row - should be the same for all modp comp (!!! used for modp) |
---|
129 | mon_list_entry *generic_lt=NULL; // leading terms for ordered generators - should be the same for all modp comp (not used for modp) |
---|
130 | int good_primes; // modp_number of good primes so far; |
---|
131 | int bad_primes; // modp_number of bad primes so far; |
---|
132 | mpz_t common_denom; // common denominator used to force points coordinates to Z (not used for modp) |
---|
133 | bool denom_divisible; // common denominator is divisible by p (not used for modp) |
---|
134 | |
---|
135 | poly comparizon_p1; //polynomials used to do comparizons by Singular |
---|
136 | poly comparizon_p2; |
---|
137 | |
---|
138 | modp_number *modp_Reverse; // reverses in mod p |
---|
139 | |
---|
140 | bool protocol; // true to show the protocol |
---|
141 | |
---|
142 | #ifdef checksize |
---|
143 | int maximal_size=0; |
---|
144 | #endif |
---|
145 | |
---|
146 | void WriteMono (mono_type m) // Writes a monomial on the screen - only for debug |
---|
147 | { |
---|
148 | int i; |
---|
149 | for (i=0;i<variables;i++) Print("_%d", m[i]); |
---|
150 | PrintS(" "); |
---|
151 | } |
---|
152 | |
---|
153 | #ifdef debb |
---|
154 | void WriteMonoList (mon_list_entry *list) |
---|
155 | { |
---|
156 | mon_list_entry *ptr; |
---|
157 | ptr=list; |
---|
158 | while (ptr!=NULL) |
---|
159 | { |
---|
160 | WriteMono(ptr->mon); |
---|
161 | ptr=ptr->next; |
---|
162 | } |
---|
163 | } |
---|
164 | |
---|
165 | void Info () |
---|
166 | { |
---|
167 | int i; |
---|
168 | row_list_entry *curptr; |
---|
169 | modp_number *row; |
---|
170 | modp_number *solve; |
---|
171 | char ch; |
---|
172 | cout << endl << "quotient basis: "; |
---|
173 | WriteMonoList (base_list); |
---|
174 | cout << endl << "leading terms: "; |
---|
175 | WriteMonoList (lt_list); |
---|
176 | cout << endl << "to be checked: "; |
---|
177 | WriteMonoList (check_list); |
---|
178 | #ifdef shmat |
---|
179 | cout << endl << "Matrix:" << endl; |
---|
180 | cout << " "; |
---|
181 | for (i=0;i<final_base_dim;i++) |
---|
182 | { |
---|
183 | WriteMono (column_name[i]); |
---|
184 | } |
---|
185 | cout << endl; |
---|
186 | curptr=row_list; |
---|
187 | while (curptr!=NULL) |
---|
188 | { |
---|
189 | row=curptr->row_matrix; |
---|
190 | solve=curptr->row_solve; |
---|
191 | for (i=0;i<final_base_dim;i++) |
---|
192 | { |
---|
193 | cout << *row << " , "; |
---|
194 | row++; |
---|
195 | } |
---|
196 | cout << " "; |
---|
197 | for (i=0;i<final_base_dim;i++) |
---|
198 | { |
---|
199 | cout << *solve << " , "; |
---|
200 | solve++; |
---|
201 | } |
---|
202 | curptr=curptr->next; |
---|
203 | cout << endl;} |
---|
204 | cout << "Special row: Solve row:" << endl; |
---|
205 | row=my_row; |
---|
206 | for (i=0;i<final_base_dim;i++) |
---|
207 | { |
---|
208 | cout << *row << " , "; |
---|
209 | row++; |
---|
210 | } |
---|
211 | cout << " "; |
---|
212 | row=my_solve_row; |
---|
213 | for (i=0;i<final_base_dim;i++) |
---|
214 | { |
---|
215 | cout << *row << " , "; |
---|
216 | row++; |
---|
217 | } |
---|
218 | #endif |
---|
219 | cout << endl; |
---|
220 | cin >> ch; |
---|
221 | cout << endl << endl; |
---|
222 | } |
---|
223 | #endif |
---|
224 | |
---|
225 | modp_number OneInverse(modp_number a,modp_number p) // computes inverse of d mod p without using tables |
---|
226 | { |
---|
227 | long u, v, u0, u1, u2, q, r; |
---|
228 | u1=1; u2=0; |
---|
229 | u = a; v = p; |
---|
230 | while (v != 0) { |
---|
231 | q = u / v; |
---|
232 | r = u % v; |
---|
233 | u = v; |
---|
234 | v = r; |
---|
235 | u0 = u2; |
---|
236 | u2 = u1 - q*u2; |
---|
237 | u1 = u0; |
---|
238 | } |
---|
239 | if (u1 < 0) u1=u1+p; |
---|
240 | // now it should be ok, but for any case... |
---|
241 | if ((u1<0)||((u1*a)%p!=1)) |
---|
242 | { |
---|
243 | PrintS("?"); |
---|
244 | modp_number i; |
---|
245 | for (i=1;i<p;i++) |
---|
246 | { |
---|
247 | if ((a*i)%p==1) return i; |
---|
248 | } |
---|
249 | } |
---|
250 | return (modp_number)u1; |
---|
251 | } |
---|
252 | |
---|
253 | int CalcBaseDim () // returns the maximal (expected) dimension of quotient space |
---|
254 | { |
---|
255 | int c; |
---|
256 | int i,j; |
---|
257 | int s=0; |
---|
258 | max_coord=1; |
---|
259 | for (i=0;i<n_points;i++) max_coord=max_coord+multiplicity[i]; |
---|
260 | for (j=0;j<n_points;j++) |
---|
261 | { |
---|
262 | c=1; |
---|
263 | for (i=1;i<=variables;i++) |
---|
264 | { |
---|
265 | c=(c*(multiplicity[j]+i-1))/i; |
---|
266 | } |
---|
267 | s=s+c; |
---|
268 | } |
---|
269 | return s; |
---|
270 | } |
---|
271 | |
---|
272 | bool EqualMon (mono_type m1, mono_type m2) // compares two monomials, true if equal, false otherwise |
---|
273 | { |
---|
274 | int i; |
---|
275 | for (i=0;i<variables;i++) |
---|
276 | if (m1[i]!=m2[i]) return false;; |
---|
277 | return true; |
---|
278 | } |
---|
279 | |
---|
280 | exponent MonDegree (mono_type mon) // computes the degree of a monomial |
---|
281 | { |
---|
282 | exponent v=0; |
---|
283 | int i; |
---|
284 | for (i=0;i<variables;i++) v=v+mon[i]; |
---|
285 | return v; |
---|
286 | } |
---|
287 | |
---|
288 | bool Greater (mono_type m1, mono_type m2) // true if m1 > m2, false otherwise. uses Singular comparing function |
---|
289 | { |
---|
290 | for (int j = variables; j; j--) |
---|
291 | { |
---|
292 | pSetExp(comparizon_p1, j, m1[j-1]); |
---|
293 | pSetExp(comparizon_p2, j, m2[j-1]); |
---|
294 | } |
---|
295 | pSetm(comparizon_p1); |
---|
296 | pSetm(comparizon_p2); |
---|
297 | bool res=(pLmCmp(comparizon_p1,comparizon_p2)>0); |
---|
298 | return res; |
---|
299 | } |
---|
300 | |
---|
301 | mon_list_entry* MonListAdd (mon_list_entry *list, mono_type mon) // adds one entry to the list of monomials structure |
---|
302 | { |
---|
303 | mon_list_entry *curptr=list; |
---|
304 | mon_list_entry *prevptr=NULL; |
---|
305 | mon_list_entry *temp; |
---|
306 | |
---|
307 | while (curptr!=NULL) |
---|
308 | { |
---|
309 | if (EqualMon (mon,(*curptr).mon)) return list; |
---|
310 | if (Greater ((*curptr).mon,mon)) break; |
---|
311 | prevptr=curptr; |
---|
312 | curptr=curptr->next;} |
---|
313 | temp=(mon_list_entry*)mdmALLOC(sizeof(mon_list_entry)); |
---|
314 | (*temp).next=curptr; |
---|
315 | (*temp).mon=(exponent*)mdmALLOC(sizeof(exponent)*variables); |
---|
316 | memcpy(temp->mon,mon,sizeof(exponent)*variables); |
---|
317 | if (prevptr==NULL) return temp; else { |
---|
318 | prevptr->next=temp; |
---|
319 | return list;} |
---|
320 | } |
---|
321 | |
---|
322 | mono_type MonListElement (mon_list_entry *list, int n) // returns ith element from list of monomials - no error checking! |
---|
323 | { |
---|
324 | mon_list_entry *cur=list; |
---|
325 | int i; |
---|
326 | for (i=0;i<n;i++) cur=cur->next; |
---|
327 | return cur->mon; |
---|
328 | } |
---|
329 | |
---|
330 | mono_type ZeroMonomial () // allocates memory for new monomial with all enries equal 0 |
---|
331 | { |
---|
332 | mono_type m; |
---|
333 | m=(exponent*)mdmALLOC(sizeof(exponent)*variables); |
---|
334 | int i; |
---|
335 | for (i=0;i<variables;i++) m[i]=0; |
---|
336 | return m; |
---|
337 | } |
---|
338 | |
---|
339 | void GeneralInit () // general initialization |
---|
340 | { |
---|
341 | int i,j,k; |
---|
342 | points=(coordinates*)mdmALLOC(sizeof(coordinates)*n_points); |
---|
343 | for (i=0;i<n_points;i++) |
---|
344 | { |
---|
345 | points[i]=(coordinate_products*)mdmALLOC(sizeof(coordinate_products)*variables); |
---|
346 | for (j=0;j<variables;j++) points[i][j]=(modp_number*)mdmALLOC(sizeof(modp_number)*(max_coord)); |
---|
347 | } |
---|
348 | condition_list=(condition_type*)mdmALLOC(sizeof(condition_type)*final_base_dim); |
---|
349 | for (i=0;i<final_base_dim;i++) condition_list[i].mon=(exponent*)mdmALLOC(sizeof(exponent)*variables); |
---|
350 | modp_points=(modp_coordinates*)mdmALLOC(sizeof(modp_coordinates)*n_points); |
---|
351 | for (i=0;i<n_points;i++) modp_points[i]=(modp_number*)mdmALLOC(sizeof(modp_number)*variables); |
---|
352 | if (!only_modp) |
---|
353 | { |
---|
354 | q_points=(q_coordinates*)mdmALLOC(sizeof(q_coordinates)*n_points); |
---|
355 | for (i=0;i<n_points;i++) |
---|
356 | { |
---|
357 | q_points[i]=(mpq_t*)mdmALLOC(sizeof(mpq_t)*variables); |
---|
358 | for (j=0;j<variables;j++) mpq_init(q_points[i][j]); |
---|
359 | } |
---|
360 | int_points=(int_coordinates*)mdmALLOC(sizeof(int_coordinates)*n_points); |
---|
361 | for (i=0;i<n_points;i++) |
---|
362 | { |
---|
363 | int_points[i]=(mpz_t*)mdmALLOC(sizeof(mpz_t)*variables); |
---|
364 | for (j=0;j<variables;j++) mpz_init(int_points[i][j]); |
---|
365 | } |
---|
366 | } |
---|
367 | coord_exist=(coord_exist_table*)mdmALLOC(sizeof(coord_exist_table)*n_points); |
---|
368 | for (i=0;i<n_points;i++) |
---|
369 | { |
---|
370 | coord_exist[i]=(bool*)mdmALLOC(sizeof(bool)*variables); |
---|
371 | for (j=0;j<variables;j++) coord_exist[i][j]=false; |
---|
372 | } |
---|
373 | generic_column_name=(mono_type*)mdmALLOC(sizeof(mono_type)*final_base_dim); |
---|
374 | for (i=0;i<final_base_dim;i++) generic_column_name[i]=ZeroMonomial (); |
---|
375 | good_primes=0; |
---|
376 | bad_primes=1; |
---|
377 | generic_n_generators=0; |
---|
378 | if (!only_modp) |
---|
379 | { |
---|
380 | polycoef=(mpz_t*)mdmALLOC(sizeof(mpz_t)*(final_base_dim+1)); |
---|
381 | polyexp=(mono_type*)mdmALLOC(sizeof(mono_type)*(final_base_dim+1)); |
---|
382 | for (i=0;i<=final_base_dim;i++) |
---|
383 | { |
---|
384 | mpz_init(polycoef[i]); |
---|
385 | polyexp[i]=ZeroMonomial (); |
---|
386 | } |
---|
387 | mpz_init(common_denom); |
---|
388 | } |
---|
389 | |
---|
390 | // set all globally used lists to be initially empty |
---|
391 | modp_result=NULL; |
---|
392 | cur_result=NULL; |
---|
393 | gen_list=NULL; |
---|
394 | n_results=0; |
---|
395 | |
---|
396 | // creates polynomials to compare by Singular |
---|
397 | comparizon_p1=pOne(); |
---|
398 | comparizon_p2=pOne(); |
---|
399 | } |
---|
400 | |
---|
401 | void InitProcData () // initialization for procedures which do computations mod p |
---|
402 | { |
---|
403 | int i,j; |
---|
404 | check_list=MonListAdd (check_list,ZeroMonomial ()); |
---|
405 | my_row=(modp_number*)mdmALLOC(sizeof(modp_number)*final_base_dim); |
---|
406 | my_solve_row=(modp_number*)mdmALLOC(sizeof(modp_number)*final_base_dim); |
---|
407 | column_name=(mono_type*)mdmALLOC(sizeof(mono_type)*final_base_dim); |
---|
408 | for (i=0;i<final_base_dim;i++) column_name[i]=ZeroMonomial (); |
---|
409 | last_solve_column=0; |
---|
410 | modp_number *gen_table; |
---|
411 | modp_number pos_gen; |
---|
412 | bool gen_ok; |
---|
413 | modp_Reverse=(modp_number*)mdmALLOC(sizeof(modp_number)*myp); |
---|
414 | |
---|
415 | // produces table of modp inverts by finding a generator of (Z_myp*,*) |
---|
416 | gen_table=(modp_number*)mdmALLOC(sizeof(modp_number)*myp); |
---|
417 | gen_table[1]=1; |
---|
418 | for (pos_gen=2;pos_gen<myp;pos_gen++) |
---|
419 | { |
---|
420 | gen_ok=true; |
---|
421 | for (i=2;i<myp;i++) |
---|
422 | { |
---|
423 | gen_table[i]=modp_mul(gen_table[i-1],pos_gen); |
---|
424 | if (gen_table[i]==1) |
---|
425 | { |
---|
426 | gen_ok=false; |
---|
427 | break; |
---|
428 | } |
---|
429 | } |
---|
430 | if (gen_ok) break; |
---|
431 | } |
---|
432 | for (i=2;i<myp;i++) modp_Reverse[gen_table[i]]=gen_table[myp-i+1]; |
---|
433 | modp_Reverse[1]=1; |
---|
434 | mdmFREE(gen_table); |
---|
435 | } |
---|
436 | |
---|
437 | mon_list_entry* FreeMonList (mon_list_entry *list) // destroys a list of monomials, returns NULL pointer |
---|
438 | { |
---|
439 | mon_list_entry *ptr; |
---|
440 | mon_list_entry *pptr; |
---|
441 | ptr=list; |
---|
442 | while (ptr!=NULL) |
---|
443 | { |
---|
444 | pptr=ptr->next; |
---|
445 | mdmFREE(ptr->mon); |
---|
446 | mdmFREE(ptr); |
---|
447 | ptr=pptr;} |
---|
448 | return NULL; |
---|
449 | } |
---|
450 | |
---|
451 | void GeneralDone () // to be called before exit to free memory |
---|
452 | { |
---|
453 | int i,j,k; |
---|
454 | for (i=0;i<n_points;i++) |
---|
455 | { |
---|
456 | for (j=0;j<variables;j++) |
---|
457 | { |
---|
458 | mdmFREE(points[i][j]); |
---|
459 | } |
---|
460 | mdmFREE(points[i]); |
---|
461 | } |
---|
462 | mdmFREE(points); |
---|
463 | for (i=0;i<final_base_dim;i++) mdmFREE(condition_list[i].mon); |
---|
464 | mdmFREE(condition_list); |
---|
465 | for (i=0;i<n_points;i++) mdmFREE(modp_points[i]); |
---|
466 | mdmFREE(modp_points); |
---|
467 | if (!only_modp) |
---|
468 | { |
---|
469 | for (i=0;i<n_points;i++) |
---|
470 | { |
---|
471 | for (j=0;j<variables;j++) mpq_clear(q_points[i][j]); |
---|
472 | mdmFREE(q_points[i]); |
---|
473 | } |
---|
474 | mdmFREE(q_points); |
---|
475 | for (i=0;i<n_points;i++) |
---|
476 | { |
---|
477 | for (j=0;j<variables;j++) mpz_clear(int_points[i][j]); |
---|
478 | mdmFREE(int_points[i]); |
---|
479 | } |
---|
480 | mdmFREE(int_points); |
---|
481 | generic_lt=FreeMonList (generic_lt); |
---|
482 | for (i=0;i<=final_base_dim;i++) |
---|
483 | { |
---|
484 | mpz_clear(polycoef[i]); |
---|
485 | mdmFREE(polyexp[i]); |
---|
486 | } |
---|
487 | mdmFREE(polycoef); |
---|
488 | mdmFREE(polyexp); |
---|
489 | if (!only_modp) mpz_clear(common_denom); |
---|
490 | } |
---|
491 | for (i=0;i<final_base_dim;i++) |
---|
492 | { |
---|
493 | mdmFREE(generic_column_name[i]); |
---|
494 | } |
---|
495 | mdmFREE(generic_column_name); |
---|
496 | for (i=0;i<n_points;i++) mdmFREE(coord_exist[i]); |
---|
497 | mdmFREE(coord_exist); |
---|
498 | pDelete(&comparizon_p1); |
---|
499 | pDelete(&comparizon_p2); |
---|
500 | } |
---|
501 | |
---|
502 | void FreeProcData () // to be called after one modp computation to free memory |
---|
503 | { |
---|
504 | int i; |
---|
505 | row_list_entry *ptr; |
---|
506 | row_list_entry *pptr; |
---|
507 | check_list=FreeMonList (check_list); |
---|
508 | lt_list=FreeMonList (lt_list); |
---|
509 | base_list=FreeMonList (base_list); |
---|
510 | mdmFREE(my_row); |
---|
511 | my_row=NULL; |
---|
512 | mdmFREE(my_solve_row); |
---|
513 | my_solve_row=NULL; |
---|
514 | ptr=row_list; |
---|
515 | while (ptr!=NULL) |
---|
516 | { |
---|
517 | pptr=ptr->next; |
---|
518 | mdmFREE(ptr->row_matrix); |
---|
519 | mdmFREE(ptr->row_solve); |
---|
520 | mdmFREE(ptr); |
---|
521 | ptr=pptr; |
---|
522 | } |
---|
523 | row_list=NULL; |
---|
524 | for (i=0;i<final_base_dim;i++) mdmFREE(column_name[i]); |
---|
525 | mdmFREE(column_name); |
---|
526 | mdmFREE(modp_Reverse); |
---|
527 | } |
---|
528 | |
---|
529 | void modp_Evaluate(modp_number *ev, mono_type mon, condition_type con) // evaluates monomial on condition (modp) |
---|
530 | { |
---|
531 | int i; |
---|
532 | *ev=0; |
---|
533 | for (i=0;i<variables;i++) |
---|
534 | if (con.mon[i] > mon[i]) return ;; |
---|
535 | *ev=1; |
---|
536 | int j,k; |
---|
537 | mono_type mn; |
---|
538 | mn=(exponent*)mdmALLOC(sizeof(exponent)*variables); |
---|
539 | memcpy(mn,mon,sizeof(exponent)*variables); |
---|
540 | for (k=0;k<variables;k++) |
---|
541 | { |
---|
542 | for (j=1;j<=con.mon[k];j++) // this loop computes the coefficient from derivation |
---|
543 | { |
---|
544 | *ev=modp_mul(*ev,mn[k]); |
---|
545 | mn[k]--; |
---|
546 | } |
---|
547 | *ev=modp_mul(*ev,points[con.point_ref][k][mn[k]]); |
---|
548 | } |
---|
549 | mdmFREE(mn); |
---|
550 | } |
---|
551 | |
---|
552 | void int_Evaluate(mpz_t ev, mono_type mon, condition_type con) // (***) evaluates monomial on condition for integer numbers |
---|
553 | { |
---|
554 | int i; |
---|
555 | mpz_set_si(ev,0); |
---|
556 | for (i=0;i<variables;i++) |
---|
557 | if (con.mon[i] > mon[i]) return ;; |
---|
558 | mpz_set_si(ev,1); |
---|
559 | mpz_t mon_conv; |
---|
560 | mpz_init(mon_conv); |
---|
561 | int j,k; |
---|
562 | mono_type mn; |
---|
563 | mn=(exponent*)mdmALLOC(sizeof(exponent)*variables); |
---|
564 | memcpy(mn,mon,sizeof(exponent)*variables); |
---|
565 | for (k=0;k<variables;k++) |
---|
566 | { |
---|
567 | for (j=1;j<=con.mon[k];j++) // this loop computes the coefficient from derivation |
---|
568 | { |
---|
569 | mpz_set_si(mon_conv,mn[k]); // (***) |
---|
570 | mpz_mul(ev,ev,mon_conv); |
---|
571 | mn[k]--; |
---|
572 | } |
---|
573 | for (j=1;j<=mn[k];j++) mpz_mul(ev,ev,int_points[con.point_ref][k]); // this loop computes the product of coordinate |
---|
574 | } |
---|
575 | mdmFREE(mn); |
---|
576 | mpz_clear(mon_conv); |
---|
577 | } |
---|
578 | |
---|
579 | void ProduceRow(mono_type mon) // produces a row for monomial - first part is an evaluated part, second 0 to obtain the coefs of dependence |
---|
580 | { |
---|
581 | modp_number *row; |
---|
582 | condition_type *con; |
---|
583 | int i; |
---|
584 | row=my_row; |
---|
585 | con=condition_list; |
---|
586 | for (i=0;i<final_base_dim;i++) |
---|
587 | { |
---|
588 | modp_Evaluate (row, mon, *con); |
---|
589 | row++; |
---|
590 | con++; |
---|
591 | } |
---|
592 | row=my_solve_row; |
---|
593 | for (i=0;i<final_base_dim;i++) |
---|
594 | { |
---|
595 | *row=0; |
---|
596 | row++; |
---|
597 | } |
---|
598 | } |
---|
599 | |
---|
600 | void IntegerPoints () // produces integer points from rationals by scaling the coordinate system |
---|
601 | { |
---|
602 | int i,j; |
---|
603 | mpz_set_si(common_denom,1); // this is common scaling factor |
---|
604 | for (i=0;i<n_points;i++) |
---|
605 | { |
---|
606 | for (j=0;j<variables;j++) |
---|
607 | { |
---|
608 | mpz_lcm(common_denom,common_denom,mpq_denref(q_points[i][j])); |
---|
609 | } |
---|
610 | } |
---|
611 | mpq_t temp; |
---|
612 | mpq_init(temp); |
---|
613 | mpq_t denom_q; |
---|
614 | mpq_init(denom_q); |
---|
615 | mpq_set_z(denom_q,common_denom); |
---|
616 | for (i=0;i<n_points;i++) |
---|
617 | { |
---|
618 | for (j=0;j<variables;j++) |
---|
619 | { |
---|
620 | mpq_mul(temp,q_points[i][j],denom_q); // multiplies by common denominator |
---|
621 | mpz_set(int_points[i][j],mpq_numref(temp)); // and changes into integer |
---|
622 | } |
---|
623 | } |
---|
624 | mpq_clear(temp); |
---|
625 | mpq_clear(denom_q); |
---|
626 | } |
---|
627 | |
---|
628 | void int_PrepareProducts () // prepares coordinates of points and products for modp case (from integer coefs) |
---|
629 | { |
---|
630 | bool ok=true; |
---|
631 | int i,j,k; |
---|
632 | mpz_t big_myp; |
---|
633 | mpz_init(big_myp); |
---|
634 | mpz_set_si(big_myp,myp); |
---|
635 | mpz_t temp; |
---|
636 | mpz_init(temp); |
---|
637 | for (i=0;i<n_points;i++) |
---|
638 | { |
---|
639 | for (j=0;j<variables;j++) |
---|
640 | { |
---|
641 | mpz_mod(temp,int_points[i][j],big_myp); // coordinate is now modulo myp |
---|
642 | points[i][j][1]=mpz_get_ui(temp); |
---|
643 | points[i][j][0]=1; |
---|
644 | for (k=2;k<max_coord;k++) points[i][j][k]=modp_mul(points[i][j][k-1],points[i][j][1]); |
---|
645 | } |
---|
646 | } |
---|
647 | mpz_mod(temp,common_denom,big_myp); // computes the common denominator (from rational data) modulo myp |
---|
648 | denom_divisible=(mpz_sgn(temp)==0); // checks whether it is divisible by modp |
---|
649 | mpz_clear(temp); |
---|
650 | mpz_clear(big_myp); |
---|
651 | } |
---|
652 | |
---|
653 | void modp_PrepareProducts () // prepares products for modp computation from modp data |
---|
654 | { |
---|
655 | int i,j,k; |
---|
656 | for (i=0;i<n_points;i++) |
---|
657 | { |
---|
658 | for (j=0;j<variables;j++) |
---|
659 | { |
---|
660 | points[i][j][1]=modp_points[i][j]; |
---|
661 | points[i][j][0]=1; |
---|
662 | for (k=2;k<max_coord;k++) points[i][j][k]=modp_mul(points[i][j][k-1],points[i][j][1]); |
---|
663 | } |
---|
664 | } |
---|
665 | } |
---|
666 | |
---|
667 | void MakeConditions () // prepares a list of conditions from list of multiplicities |
---|
668 | { |
---|
669 | condition_type *con; |
---|
670 | int n,i,k; |
---|
671 | mono_type mon; |
---|
672 | mon=ZeroMonomial (); |
---|
673 | con=condition_list; |
---|
674 | for (n=0;n<n_points;n++) |
---|
675 | { |
---|
676 | for (i=0;i<variables;i++) mon[i]=0; |
---|
677 | while (mon[0]<multiplicity[n]) |
---|
678 | { |
---|
679 | if (MonDegree (mon) < multiplicity[n]) |
---|
680 | { |
---|
681 | memcpy(con->mon,mon,sizeof(exponent)*variables); |
---|
682 | con->point_ref=n; |
---|
683 | con++; |
---|
684 | } |
---|
685 | k=variables-1; |
---|
686 | mon[k]++; |
---|
687 | while ((k>0)&&(mon[k]>=multiplicity[n])) |
---|
688 | { |
---|
689 | mon[k]=0; |
---|
690 | k--; |
---|
691 | mon[k]++; |
---|
692 | } |
---|
693 | } |
---|
694 | } |
---|
695 | mdmFREE(mon); |
---|
696 | } |
---|
697 | |
---|
698 | void ReduceRow () // reduces my_row by previous rows, does the same for solve row |
---|
699 | { |
---|
700 | if (row_list==NULL) return ; |
---|
701 | row_list_entry *row_ptr; |
---|
702 | modp_number *cur_row_ptr; |
---|
703 | modp_number *solve_row_ptr; |
---|
704 | modp_number *my_row_ptr; |
---|
705 | modp_number *my_solve_row_ptr; |
---|
706 | int first_col; |
---|
707 | int i; |
---|
708 | modp_number red_val; |
---|
709 | modp_number mul_val; |
---|
710 | #ifdef integerstrategy |
---|
711 | modp_number *m_row_ptr; |
---|
712 | modp_number prep_val; |
---|
713 | #endif |
---|
714 | row_ptr=row_list; |
---|
715 | while (row_ptr!=NULL) |
---|
716 | { |
---|
717 | cur_row_ptr=row_ptr->row_matrix; |
---|
718 | solve_row_ptr=row_ptr->row_solve; |
---|
719 | my_row_ptr=my_row; |
---|
720 | my_solve_row_ptr=my_solve_row; |
---|
721 | first_col=row_ptr->first_col; |
---|
722 | cur_row_ptr=cur_row_ptr+first_col; // reduction begins at first_col position |
---|
723 | my_row_ptr=my_row_ptr+first_col; |
---|
724 | red_val=*my_row_ptr; |
---|
725 | if (red_val!=0) |
---|
726 | { |
---|
727 | #ifdef integerstrategy |
---|
728 | prep_val=*cur_row_ptr; |
---|
729 | if (prep_val!=1) |
---|
730 | { |
---|
731 | m_row_ptr=my_row; |
---|
732 | for (i=0;i<final_base_dim;i++) |
---|
733 | { |
---|
734 | if (*m_row_ptr!=0) *m_row_ptr=modp_mul(*m_row_ptr,prep_val); |
---|
735 | m_row_ptr++; |
---|
736 | } |
---|
737 | m_row_ptr=my_solve_row; |
---|
738 | for (i=0;i<last_solve_column;i++) |
---|
739 | { |
---|
740 | if (*m_row_ptr!=0) *m_row_ptr=modp_mul(*m_row_ptr,prep_val); |
---|
741 | m_row_ptr++; |
---|
742 | } |
---|
743 | } |
---|
744 | #endif |
---|
745 | for (i=first_col;i<final_base_dim;i++) |
---|
746 | { |
---|
747 | if (*cur_row_ptr!=0) |
---|
748 | { |
---|
749 | mul_val=modp_mul(*cur_row_ptr,red_val); |
---|
750 | *my_row_ptr=modp_sub(*my_row_ptr,mul_val); |
---|
751 | } |
---|
752 | my_row_ptr++; |
---|
753 | cur_row_ptr++; |
---|
754 | } |
---|
755 | for (i=0;i<=last_solve_column;i++) // last_solve_column stores the last non-enmpty entry in solve matrix |
---|
756 | { |
---|
757 | if (*solve_row_ptr!=0) |
---|
758 | { |
---|
759 | mul_val=modp_mul(*solve_row_ptr,red_val); |
---|
760 | *my_solve_row_ptr=modp_sub(*my_solve_row_ptr,mul_val); |
---|
761 | } |
---|
762 | solve_row_ptr++; |
---|
763 | my_solve_row_ptr++; |
---|
764 | } |
---|
765 | } |
---|
766 | row_ptr=row_ptr->next; |
---|
767 | #ifdef debb |
---|
768 | PrintS("reduction by row "); |
---|
769 | Info (); |
---|
770 | #endif |
---|
771 | } |
---|
772 | } |
---|
773 | |
---|
774 | bool RowIsZero () // check whether a row is zero |
---|
775 | { |
---|
776 | bool zero=1; |
---|
777 | int i; |
---|
778 | modp_number *row; |
---|
779 | row=my_row; |
---|
780 | for (i=0;i<final_base_dim;i++) |
---|
781 | { |
---|
782 | if (*row!=0) {zero=0; break;} |
---|
783 | row++; |
---|
784 | } |
---|
785 | return zero; |
---|
786 | } |
---|
787 | |
---|
788 | bool DivisibleMon (mono_type m1, mono_type m2) // checks whether m1 is divisible by m2 |
---|
789 | { |
---|
790 | int i; |
---|
791 | for (i=0;i<variables;i++) |
---|
792 | if (m1[i]>m2[i]) return false;; |
---|
793 | return true; |
---|
794 | } |
---|
795 | |
---|
796 | void ReduceCheckListByMon (mono_type m) // from check_list monomials divisible by m are thrown out |
---|
797 | { |
---|
798 | mon_list_entry *c_ptr; |
---|
799 | mon_list_entry *p_ptr; |
---|
800 | mon_list_entry *n_ptr; |
---|
801 | c_ptr=check_list; |
---|
802 | p_ptr=NULL; |
---|
803 | while (c_ptr!=NULL) |
---|
804 | { |
---|
805 | if (DivisibleMon (m,c_ptr->mon)) |
---|
806 | { |
---|
807 | if (p_ptr==NULL) |
---|
808 | check_list=c_ptr->next; |
---|
809 | else |
---|
810 | p_ptr->next=c_ptr->next; |
---|
811 | n_ptr=c_ptr->next; |
---|
812 | mdmFREE(c_ptr->mon); |
---|
813 | mdmFREE(c_ptr); |
---|
814 | c_ptr=n_ptr; |
---|
815 | } |
---|
816 | else |
---|
817 | { |
---|
818 | p_ptr=c_ptr; |
---|
819 | c_ptr=c_ptr->next; |
---|
820 | } |
---|
821 | } |
---|
822 | } |
---|
823 | |
---|
824 | void TakeNextMonomial (mono_type mon) // reads first monomial from check_list, then it is deleted |
---|
825 | { |
---|
826 | mon_list_entry *n_check_list; |
---|
827 | if (check_list!=NULL) |
---|
828 | { |
---|
829 | memcpy(mon,check_list->mon,sizeof(exponent)*variables); |
---|
830 | n_check_list=check_list->next; |
---|
831 | mdmFREE(check_list->mon); |
---|
832 | mdmFREE(check_list); |
---|
833 | check_list=n_check_list; |
---|
834 | } |
---|
835 | } |
---|
836 | |
---|
837 | void UpdateCheckList (mono_type m) // adds all monomials which are "next" to m (divisible by m and degree +1) |
---|
838 | { |
---|
839 | int i; |
---|
840 | for (i=0;i<variables;i++) |
---|
841 | { |
---|
842 | m[i]++; |
---|
843 | check_list=MonListAdd (check_list,m); |
---|
844 | m[i]--; |
---|
845 | } |
---|
846 | } |
---|
847 | |
---|
848 | void ReduceCheckListByLTs () // deletes all monomials from check_list which are divisible by one of the leading terms |
---|
849 | { |
---|
850 | mon_list_entry *ptr; |
---|
851 | ptr=lt_list; |
---|
852 | while (ptr!=NULL) |
---|
853 | { |
---|
854 | ReduceCheckListByMon (ptr->mon); |
---|
855 | ptr=ptr->next; |
---|
856 | } |
---|
857 | } |
---|
858 | |
---|
859 | void RowListAdd (int first_col, mono_type mon) // puts a row into matrix |
---|
860 | { |
---|
861 | row_list_entry *ptr; |
---|
862 | row_list_entry *pptr; |
---|
863 | row_list_entry *temp; |
---|
864 | ptr=row_list; |
---|
865 | pptr=NULL; |
---|
866 | while (ptr!=NULL) |
---|
867 | { |
---|
868 | #ifndef unsortedmatrix |
---|
869 | if ( first_col <= ptr->first_col ) break; |
---|
870 | #endif |
---|
871 | pptr=ptr; |
---|
872 | ptr=ptr->next; |
---|
873 | } |
---|
874 | temp=(row_list_entry*)mdmALLOC(sizeof(row_list_entry)); |
---|
875 | (*temp).row_matrix=(modp_number*)mdmALLOC(sizeof(modp_number)*final_base_dim); |
---|
876 | memcpy((*temp).row_matrix,my_row,sizeof(modp_number)*(final_base_dim)); |
---|
877 | (*temp).row_solve=(modp_number*)mdmALLOC(sizeof(modp_number)*final_base_dim); |
---|
878 | memcpy((*temp).row_solve,my_solve_row,sizeof(modp_number)*(final_base_dim)); |
---|
879 | (*temp).first_col=first_col; |
---|
880 | temp->next=ptr; |
---|
881 | if (pptr==NULL) row_list=temp; else pptr->next=temp; |
---|
882 | memcpy(column_name[first_col],mon,sizeof(exponent)*variables); |
---|
883 | } |
---|
884 | |
---|
885 | |
---|
886 | void PrepareRow (mono_type mon) // prepares a row and puts it into matrix |
---|
887 | { |
---|
888 | modp_number *row; |
---|
889 | int first_col=-1; |
---|
890 | int col; |
---|
891 | modp_number red_val=1; |
---|
892 | row=my_row; |
---|
893 | #ifdef integerstrategy |
---|
894 | for (col=0;col<final_base_dim;col++) |
---|
895 | { |
---|
896 | if (*row!=0) |
---|
897 | { |
---|
898 | first_col=col; |
---|
899 | break; |
---|
900 | } |
---|
901 | row++; |
---|
902 | } |
---|
903 | my_solve_row[first_col]=1; |
---|
904 | if (first_col > last_solve_column) last_solve_column=first_col; |
---|
905 | #else |
---|
906 | for (col=0;col<final_base_dim;col++) |
---|
907 | { |
---|
908 | if (*row!=0) |
---|
909 | { |
---|
910 | first_col=col; |
---|
911 | red_val=modp_Reverse[*row]; // first non-zero entry, should multiply all row by inverse to obtain 1 |
---|
912 | modp_denom=modp_mul(modp_denom,*row); // remembers the divisor |
---|
913 | *row=1; |
---|
914 | break; |
---|
915 | } |
---|
916 | row++; |
---|
917 | } |
---|
918 | my_solve_row[first_col]=1; |
---|
919 | if (first_col > last_solve_column) last_solve_column=first_col; |
---|
920 | if (red_val!=1) |
---|
921 | { |
---|
922 | row++; |
---|
923 | for (col=first_col+1;col<final_base_dim;col++) |
---|
924 | { |
---|
925 | if (*row!=0) *row=modp_mul(*row,red_val); |
---|
926 | row++; |
---|
927 | } |
---|
928 | row=my_solve_row; |
---|
929 | for (col=0;col<=last_solve_column;col++) |
---|
930 | { |
---|
931 | if (*row!=0) *row=modp_mul(*row,red_val); |
---|
932 | row++; |
---|
933 | } |
---|
934 | } |
---|
935 | #endif |
---|
936 | RowListAdd (first_col, mon); |
---|
937 | } |
---|
938 | |
---|
939 | void NewResultEntry () // creates an entry for new modp result |
---|
940 | { |
---|
941 | modp_result_entry *temp; |
---|
942 | int i; |
---|
943 | temp=(modp_result_entry*)mdmALLOC(sizeof(modp_result_entry)); |
---|
944 | if (cur_result==NULL) |
---|
945 | { |
---|
946 | modp_result=temp; |
---|
947 | temp->prev=NULL; |
---|
948 | } |
---|
949 | else |
---|
950 | { |
---|
951 | temp->prev=cur_result; |
---|
952 | cur_result->next=temp; |
---|
953 | } |
---|
954 | cur_result=temp; |
---|
955 | cur_result->next=NULL; |
---|
956 | cur_result->p=myp; |
---|
957 | cur_result->generator=NULL; |
---|
958 | cur_result->n_generators=0; |
---|
959 | n_results++; |
---|
960 | } |
---|
961 | |
---|
962 | void FreeResultEntry (modp_result_entry *e) // destroys the result entry, without worrying about where it is |
---|
963 | { |
---|
964 | generator_entry *cur_gen; |
---|
965 | generator_entry *next_gen; |
---|
966 | cur_gen=e->generator; |
---|
967 | while (cur_gen!=NULL) |
---|
968 | { |
---|
969 | next_gen=cur_gen->next; |
---|
970 | mdmFREE(cur_gen->coef); |
---|
971 | mdmFREE(cur_gen->lt); |
---|
972 | mdmFREE(cur_gen); |
---|
973 | cur_gen=next_gen; |
---|
974 | } |
---|
975 | mdmFREE(e); |
---|
976 | } |
---|
977 | |
---|
978 | |
---|
979 | void NewGenerator (mono_type mon) // new generator in modp comp found, shoul be stored on the list |
---|
980 | { |
---|
981 | int i; |
---|
982 | generator_entry *cur_ptr; |
---|
983 | generator_entry *prev_ptr; |
---|
984 | generator_entry *temp; |
---|
985 | cur_ptr=cur_result->generator; |
---|
986 | prev_ptr=NULL; |
---|
987 | while (cur_ptr!=NULL) |
---|
988 | { |
---|
989 | prev_ptr=cur_ptr; |
---|
990 | cur_ptr=cur_ptr->next; |
---|
991 | } |
---|
992 | temp=(generator_entry*)mdmALLOC(sizeof(generator_entry)); |
---|
993 | if (prev_ptr==NULL) cur_result->generator=temp; else prev_ptr->next=temp; |
---|
994 | temp->next=NULL; |
---|
995 | temp->coef=(modp_number*)mdmALLOC(sizeof(modp_number)*final_base_dim); |
---|
996 | memcpy(temp->coef,my_solve_row,sizeof(modp_number)*final_base_dim); |
---|
997 | temp->lt=ZeroMonomial (); |
---|
998 | memcpy(temp->lt,mon,sizeof(exponent)*variables); |
---|
999 | temp->ltcoef=1; |
---|
1000 | cur_result->n_generators++; |
---|
1001 | } |
---|
1002 | |
---|
1003 | void MultGenerators () // before reconstructing, all denominators must be cancelled |
---|
1004 | { |
---|
1005 | #ifndef integerstrategy |
---|
1006 | int i; |
---|
1007 | generator_entry *cur_ptr; |
---|
1008 | cur_ptr=cur_result->generator; |
---|
1009 | while (cur_ptr!=NULL) |
---|
1010 | { |
---|
1011 | for (i=0;i<final_base_dim;i++) |
---|
1012 | cur_ptr->coef[i]=modp_mul(cur_ptr->coef[i],modp_denom); |
---|
1013 | cur_ptr->ltcoef=modp_denom; |
---|
1014 | cur_ptr=cur_ptr->next; |
---|
1015 | } |
---|
1016 | #endif |
---|
1017 | } |
---|
1018 | |
---|
1019 | void PresentGenerator (int i) // only for debuging, writes a generator in its form in program |
---|
1020 | { |
---|
1021 | int j; |
---|
1022 | modp_result_entry *cur_ptr; |
---|
1023 | generator_entry *cur_gen; |
---|
1024 | cur_ptr=modp_result; |
---|
1025 | while (cur_ptr!=NULL) |
---|
1026 | { |
---|
1027 | cur_gen=cur_ptr->generator; |
---|
1028 | for (j=0;j<i;j++) cur_gen=cur_gen->next; |
---|
1029 | for (j=0;j<final_base_dim;j++) |
---|
1030 | { |
---|
1031 | Print("%d;", cur_gen->coef[j]); |
---|
1032 | } |
---|
1033 | PrintS(" and LT = "); |
---|
1034 | WriteMono (cur_gen->lt); |
---|
1035 | Print(" ( %d ) prime = %d\n", cur_gen->ltcoef, cur_ptr->p); |
---|
1036 | cur_ptr=cur_ptr->next; |
---|
1037 | } |
---|
1038 | } |
---|
1039 | |
---|
1040 | modp_number TakePrime (modp_number p) // takes "previous" (smaller) prime |
---|
1041 | { |
---|
1042 | #ifdef HAVE_FACTORY |
---|
1043 | myp_index--; |
---|
1044 | return cf_getSmallPrime(myp_index); |
---|
1045 | #else |
---|
1046 | return IsPrime(p-1); |
---|
1047 | #endif |
---|
1048 | } |
---|
1049 | |
---|
1050 | void PrepareChinese (int n) // initialization for CRA |
---|
1051 | { |
---|
1052 | int i,k; |
---|
1053 | modp_result_entry *cur_ptr; |
---|
1054 | cur_ptr=modp_result; |
---|
1055 | modp_number *congr_ptr; |
---|
1056 | modp_number prod; |
---|
1057 | in_gamma=(modp_number*)mdmALLOC(sizeof(modp_number)*n); |
---|
1058 | congr=(modp_number*)mdmALLOC(sizeof(modp_number)*n); |
---|
1059 | congr_ptr=congr; |
---|
1060 | while (cur_ptr!=NULL) |
---|
1061 | { |
---|
1062 | *congr_ptr=cur_ptr->p; |
---|
1063 | cur_ptr=cur_ptr->next; |
---|
1064 | congr_ptr++; |
---|
1065 | } |
---|
1066 | for (k=1;k<n;k++) |
---|
1067 | { |
---|
1068 | prod=congr[0]%congr[k]; |
---|
1069 | for (i=1;i<=k-1;i++) prod=(prod*congr[i])%congr[k]; |
---|
1070 | in_gamma[i]=OneInverse(prod,congr[k]); |
---|
1071 | } |
---|
1072 | mpz_init(bigcongr); |
---|
1073 | mpz_set_ui(bigcongr,congr[0]); |
---|
1074 | for (k=1;k<n;k++) mpz_mul_ui(bigcongr,bigcongr,congr[k]); |
---|
1075 | } |
---|
1076 | |
---|
1077 | void CloseChinese (int n) // after CRA |
---|
1078 | { |
---|
1079 | mdmFREE(in_gamma); |
---|
1080 | mdmFREE(congr); |
---|
1081 | mpz_clear(bigcongr); |
---|
1082 | } |
---|
1083 | |
---|
1084 | void ClearGCD () // divides polynomials in basis by gcd of coefficients |
---|
1085 | { |
---|
1086 | bool first_gcd=true; |
---|
1087 | int i; |
---|
1088 | mpz_t g; |
---|
1089 | mpz_init(g); |
---|
1090 | for (i=0;i<=final_base_dim;i++) |
---|
1091 | { |
---|
1092 | if (mpz_sgn(polycoef[i])!=0) |
---|
1093 | { |
---|
1094 | if (first_gcd) |
---|
1095 | { |
---|
1096 | first_gcd=false; |
---|
1097 | mpz_set(g,polycoef[i]); |
---|
1098 | } |
---|
1099 | else |
---|
1100 | mpz_gcd(g,g,polycoef[i]); |
---|
1101 | } |
---|
1102 | } |
---|
1103 | for (i=0;i<=final_base_dim;i++) mpz_divexact(polycoef[i],polycoef[i],g); |
---|
1104 | mpz_clear(g); |
---|
1105 | } |
---|
1106 | |
---|
1107 | void ReconstructGenerator (int ngen,int n,bool show) // recostruction of generator from various modp comp |
---|
1108 | { |
---|
1109 | int size; |
---|
1110 | int i,j,k; |
---|
1111 | int coef; |
---|
1112 | char *str=NULL; |
---|
1113 | str=(char*)mdmALLOC(sizeof(char)*1000); |
---|
1114 | modp_result_entry *cur_ptr; |
---|
1115 | generator_entry *cur_gen; |
---|
1116 | modp_number *u; |
---|
1117 | modp_number *v; |
---|
1118 | modp_number temp; |
---|
1119 | mpz_t sol; |
---|
1120 | mpz_t nsol; |
---|
1121 | mpz_init(sol); |
---|
1122 | mpz_init(nsol); |
---|
1123 | u=(modp_number*)mdmALLOC(sizeof(modp_number)*n); |
---|
1124 | v=(modp_number*)mdmALLOC(sizeof(modp_number)*n); |
---|
1125 | for (coef=0;coef<=final_base_dim;coef++) |
---|
1126 | { |
---|
1127 | i=0; |
---|
1128 | cur_ptr=modp_result; |
---|
1129 | while (cur_ptr!=NULL) |
---|
1130 | { |
---|
1131 | cur_gen=cur_ptr->generator; |
---|
1132 | for (j=0;j<ngen;j++) cur_gen=cur_gen->next; // we have to take jth generator |
---|
1133 | if (coef<final_base_dim) u[i]=cur_gen->coef[coef]; else u[i]=cur_gen->ltcoef; |
---|
1134 | cur_ptr=cur_ptr->next; |
---|
1135 | i++; |
---|
1136 | } |
---|
1137 | v[0]=u[0]; // now CRA begins |
---|
1138 | for (k=1;k<n;k++) |
---|
1139 | { |
---|
1140 | temp=v[k-1]; |
---|
1141 | for (j=k-2;j>=0;j--) temp=(temp*congr[j]+v[j])%congr[k]; |
---|
1142 | temp=u[k]-temp; |
---|
1143 | if (temp<0) temp=temp+congr[k]; |
---|
1144 | v[k]=(temp*in_gamma[k])%congr[k]; |
---|
1145 | } |
---|
1146 | mpz_set_si(sol,v[n-1]); |
---|
1147 | for (k=n-2;k>=0;k--) |
---|
1148 | { |
---|
1149 | mpz_mul_ui(sol,sol,congr[k]); |
---|
1150 | mpz_add_ui(sol,sol,v[k]); |
---|
1151 | } // now CRA ends |
---|
1152 | mpz_sub(nsol,sol,bigcongr); |
---|
1153 | int s=mpz_cmpabs(sol,nsol); |
---|
1154 | if (s>0) mpz_set(sol,nsol); // chooses representation closer to 0 |
---|
1155 | mpz_set(polycoef[coef],sol); |
---|
1156 | if (coef<final_base_dim) |
---|
1157 | memcpy(polyexp[coef],generic_column_name[coef],sizeof(exponent)*variables); |
---|
1158 | else |
---|
1159 | memcpy(polyexp[coef],MonListElement (generic_lt,ngen),sizeof(exponent)*variables); |
---|
1160 | #ifdef checksize |
---|
1161 | size=mpz_sizeinbase(sol,10); |
---|
1162 | if (size>maximal_size) maximal_size=size; |
---|
1163 | #endif |
---|
1164 | } |
---|
1165 | mdmFREE(u); |
---|
1166 | mdmFREE(v); |
---|
1167 | mdmFREE(str); |
---|
1168 | ClearGCD (); |
---|
1169 | mpz_clear(sol); |
---|
1170 | mpz_clear(nsol); |
---|
1171 | } |
---|
1172 | |
---|
1173 | void Discard () // some unlucky prime occures |
---|
1174 | { |
---|
1175 | modp_result_entry *temp; |
---|
1176 | #ifdef writemsg |
---|
1177 | Print(", prime=%d", cur_result->p); |
---|
1178 | #endif |
---|
1179 | bad_primes++; |
---|
1180 | if (good_primes>bad_primes) |
---|
1181 | { |
---|
1182 | #ifdef writemsg |
---|
1183 | Print("-discarding this comp (%dth)\n", n_results); |
---|
1184 | #endif |
---|
1185 | temp=cur_result; |
---|
1186 | cur_result=cur_result->prev; |
---|
1187 | cur_result->next=NULL; |
---|
1188 | n_results--; |
---|
1189 | FreeResultEntry (temp); |
---|
1190 | } |
---|
1191 | else |
---|
1192 | { |
---|
1193 | #ifdef writemsg |
---|
1194 | PrintS("-discarding ALL.\n"); |
---|
1195 | #endif |
---|
1196 | int i; |
---|
1197 | modp_result_entry *ntfree; |
---|
1198 | generator_entry *cur_gen; |
---|
1199 | temp=cur_result->prev; |
---|
1200 | while (temp!=NULL) |
---|
1201 | { |
---|
1202 | ntfree=temp->prev; |
---|
1203 | FreeResultEntry (temp); |
---|
1204 | temp=ntfree; |
---|
1205 | } |
---|
1206 | modp_result=cur_result; |
---|
1207 | cur_result->prev=NULL; |
---|
1208 | n_results=1; |
---|
1209 | good_primes=1; |
---|
1210 | bad_primes=0; |
---|
1211 | generic_n_generators=cur_result->n_generators; |
---|
1212 | cur_gen=cur_result->generator; |
---|
1213 | generic_lt=FreeMonList (generic_lt); |
---|
1214 | for (i=0;i<generic_n_generators;i++) |
---|
1215 | { |
---|
1216 | generic_lt=MonListAdd (generic_lt,cur_gen->lt); |
---|
1217 | cur_gen=cur_gen->next; |
---|
1218 | } |
---|
1219 | for (i=0;i<final_base_dim;i++) memcpy(generic_column_name[i],column_name[i],sizeof(exponent)*variables); |
---|
1220 | } |
---|
1221 | } |
---|
1222 | |
---|
1223 | void modp_SetColumnNames () // used by modp - sets column names, the old table will be destroyed |
---|
1224 | { |
---|
1225 | int i; |
---|
1226 | for (i=0;i<final_base_dim;i++) memcpy(generic_column_name[i],column_name[i],sizeof(exponent)*variables); |
---|
1227 | } |
---|
1228 | |
---|
1229 | void CheckColumnSequence () // checks if scheme of computations is as generic one |
---|
1230 | { |
---|
1231 | int i; |
---|
1232 | if (cur_result->n_generators!=generic_n_generators) |
---|
1233 | { |
---|
1234 | #ifdef writemsg |
---|
1235 | PrintS("wrong number of generators occured"); |
---|
1236 | #else |
---|
1237 | if (protocol) PrintS("ng"); |
---|
1238 | #endif |
---|
1239 | Discard (); |
---|
1240 | return; |
---|
1241 | } |
---|
1242 | if (denom_divisible) |
---|
1243 | { |
---|
1244 | #ifdef writemsg |
---|
1245 | PrintS("denom of coef divisible by p"); |
---|
1246 | #else |
---|
1247 | if (protocol) PrintS("dp"); |
---|
1248 | #endif |
---|
1249 | Discard (); |
---|
1250 | return; |
---|
1251 | } |
---|
1252 | generator_entry *cur_gen; |
---|
1253 | mon_list_entry *cur_mon; |
---|
1254 | cur_gen=cur_result->generator; |
---|
1255 | cur_mon=generic_lt; |
---|
1256 | for (i=0;i<generic_n_generators;i++) |
---|
1257 | { |
---|
1258 | if (!EqualMon(cur_mon->mon,cur_gen->lt)) |
---|
1259 | { |
---|
1260 | #ifdef writemsg |
---|
1261 | PrintS("wrong leading term occured"); |
---|
1262 | #else |
---|
1263 | if (protocol) PrintS("lt"); |
---|
1264 | #endif |
---|
1265 | Discard (); |
---|
1266 | return; |
---|
1267 | } |
---|
1268 | cur_gen=cur_gen->next; |
---|
1269 | cur_mon=cur_mon->next; |
---|
1270 | } |
---|
1271 | for (i=0;i<final_base_dim;i++) |
---|
1272 | { |
---|
1273 | if (!EqualMon(generic_column_name[i],column_name[i])) |
---|
1274 | { |
---|
1275 | #ifdef writemsg |
---|
1276 | PrintS("wrong seq of cols occured"); |
---|
1277 | #else |
---|
1278 | if (protocol) PrintS("sc"); |
---|
1279 | #endif |
---|
1280 | Discard (); |
---|
1281 | return; |
---|
1282 | } |
---|
1283 | } |
---|
1284 | good_primes++; |
---|
1285 | } |
---|
1286 | |
---|
1287 | void WriteGenerator () // writes generator (only for debugging) |
---|
1288 | { |
---|
1289 | char *str; |
---|
1290 | str=(char*)mdmALLOC(sizeof(char)*1000); |
---|
1291 | int i; |
---|
1292 | for (i=0;i<=final_base_dim;i++) |
---|
1293 | { |
---|
1294 | str=mpz_get_str(str,10,polycoef[i]); |
---|
1295 | PrintS(str); |
---|
1296 | PrintS("*"); |
---|
1297 | WriteMono(polyexp[i]); |
---|
1298 | PrintS(" "); |
---|
1299 | } |
---|
1300 | mdmFREE(str); |
---|
1301 | PrintLn(); |
---|
1302 | } |
---|
1303 | |
---|
1304 | bool CheckGenerator () // evaluates generator to check whether it is good |
---|
1305 | { |
---|
1306 | mpz_t val,sum,temp; |
---|
1307 | int con,i; |
---|
1308 | mpz_init(val); |
---|
1309 | mpz_init(sum); |
---|
1310 | for (con=0;con<final_base_dim;con++) |
---|
1311 | { |
---|
1312 | mpz_set_si(sum,0); |
---|
1313 | for (i=0;i<=final_base_dim;i++) |
---|
1314 | { |
---|
1315 | int_Evaluate(val, polyexp[i], condition_list[con]); |
---|
1316 | mpz_mul(val,val,polycoef[i]); |
---|
1317 | mpz_add(sum,sum,val); |
---|
1318 | } |
---|
1319 | if (mpz_sgn(sum)!=0) |
---|
1320 | { |
---|
1321 | mpz_clear(val); |
---|
1322 | mpz_clear(sum); |
---|
1323 | return false; |
---|
1324 | } |
---|
1325 | } |
---|
1326 | mpz_clear(val); |
---|
1327 | mpz_clear(sum); |
---|
1328 | return true; |
---|
1329 | } |
---|
1330 | |
---|
1331 | void ClearGenList () |
---|
1332 | { |
---|
1333 | gen_list_entry *temp; |
---|
1334 | int i; |
---|
1335 | while (gen_list!=NULL) |
---|
1336 | { |
---|
1337 | temp=gen_list->next; |
---|
1338 | for (i=0;i<=final_base_dim;i++) |
---|
1339 | { |
---|
1340 | mpz_clear(gen_list->polycoef[i]); |
---|
1341 | mdmFREE(gen_list->polyexp[i]); |
---|
1342 | } |
---|
1343 | mdmFREE(gen_list->polycoef); |
---|
1344 | mdmFREE(gen_list->polyexp); |
---|
1345 | mdmFREE(gen_list); |
---|
1346 | gen_list=temp; |
---|
1347 | } |
---|
1348 | } |
---|
1349 | |
---|
1350 | void UpdateGenList () |
---|
1351 | { |
---|
1352 | gen_list_entry *temp,*prev; |
---|
1353 | int i,j; |
---|
1354 | prev=NULL; |
---|
1355 | temp=gen_list; |
---|
1356 | exponent deg; |
---|
1357 | for (i=0;i<=final_base_dim;i++) |
---|
1358 | { |
---|
1359 | deg=MonDegree(polyexp[i]); |
---|
1360 | for (j=0;j<deg;j++) |
---|
1361 | { |
---|
1362 | mpz_mul(polycoef[i],polycoef[i],common_denom); |
---|
1363 | } |
---|
1364 | } |
---|
1365 | ClearGCD (); |
---|
1366 | while (temp!=NULL) |
---|
1367 | { |
---|
1368 | prev=temp; |
---|
1369 | temp=temp->next; |
---|
1370 | } |
---|
1371 | temp=(gen_list_entry*)mdmALLOC(sizeof(gen_list_entry)); |
---|
1372 | if (prev==NULL) gen_list=temp; else prev->next=temp; |
---|
1373 | temp->next=NULL; |
---|
1374 | temp->polycoef=(mpz_t*)mdmALLOC(sizeof(mpz_t)*(final_base_dim+1)); |
---|
1375 | temp->polyexp=(mono_type*)mdmALLOC(sizeof(mono_type)*(final_base_dim+1)); |
---|
1376 | for (i=0;i<=final_base_dim;i++) |
---|
1377 | { |
---|
1378 | mpz_init(temp->polycoef[i]); |
---|
1379 | mpz_set(temp->polycoef[i],polycoef[i]); |
---|
1380 | temp->polyexp[i]=ZeroMonomial (); |
---|
1381 | memcpy(temp->polyexp[i],polyexp[i],sizeof(exponent)*variables); |
---|
1382 | } |
---|
1383 | } |
---|
1384 | |
---|
1385 | void ShowGenList () |
---|
1386 | { |
---|
1387 | gen_list_entry *temp; |
---|
1388 | int i; |
---|
1389 | char *str; |
---|
1390 | str=(char*)mdmALLOC(sizeof(char)*1000); |
---|
1391 | temp=gen_list; |
---|
1392 | while (temp!=NULL) |
---|
1393 | { |
---|
1394 | PrintS("generator: "); |
---|
1395 | for (i=0;i<=final_base_dim;i++) |
---|
1396 | { |
---|
1397 | str=mpz_get_str(str,10,temp->polycoef[i]); |
---|
1398 | PrintS(str); |
---|
1399 | PrintS("*"); |
---|
1400 | WriteMono(temp->polyexp[i]); |
---|
1401 | } |
---|
1402 | PrintLn(); |
---|
1403 | temp=temp->next; |
---|
1404 | } |
---|
1405 | mdmFREE(str); |
---|
1406 | } |
---|
1407 | |
---|
1408 | |
---|
1409 | void modp_Main () |
---|
1410 | { |
---|
1411 | mono_type cur_mon; |
---|
1412 | cur_mon= ZeroMonomial (); |
---|
1413 | modp_denom=1; |
---|
1414 | bool row_is_zero; |
---|
1415 | |
---|
1416 | #ifdef debb |
---|
1417 | Info (); |
---|
1418 | #endif |
---|
1419 | |
---|
1420 | while (check_list!=NULL) |
---|
1421 | { |
---|
1422 | TakeNextMonomial (cur_mon); |
---|
1423 | ProduceRow (cur_mon); |
---|
1424 | #ifdef debb |
---|
1425 | cout << "row produced for monomial "; |
---|
1426 | WriteMono (cur_mon); |
---|
1427 | cout << endl; |
---|
1428 | Info (); |
---|
1429 | #endif |
---|
1430 | ReduceRow (); |
---|
1431 | row_is_zero = RowIsZero (); |
---|
1432 | if (row_is_zero) |
---|
1433 | { |
---|
1434 | lt_list=MonListAdd (lt_list,cur_mon); |
---|
1435 | ReduceCheckListByMon (cur_mon); |
---|
1436 | NewGenerator (cur_mon); |
---|
1437 | #ifdef debb |
---|
1438 | cout << "row is zero - linear dependence found (should be seen in my_solve_row)" << endl; |
---|
1439 | cout << "monomial added to leading terms list" << endl; |
---|
1440 | cout << "check list updated" << endl; |
---|
1441 | Info (); |
---|
1442 | #endif |
---|
1443 | } |
---|
1444 | else |
---|
1445 | { |
---|
1446 | base_list= MonListAdd (base_list,cur_mon); |
---|
1447 | UpdateCheckList (cur_mon); |
---|
1448 | ReduceCheckListByLTs (); |
---|
1449 | #ifdef debb |
---|
1450 | cout << "row is non-zero" << endl; |
---|
1451 | cout << "monomial added to quotient basis list" << endl; |
---|
1452 | cout << "new monomials added to check list" << endl; |
---|
1453 | cout << "check list reduced by monomials from leading term list" << endl; |
---|
1454 | Info (); |
---|
1455 | #endif |
---|
1456 | PrepareRow (cur_mon); |
---|
1457 | #ifdef debb |
---|
1458 | cout << "row prepared and put into matrix" << endl; |
---|
1459 | Info (); |
---|
1460 | #endif |
---|
1461 | } |
---|
1462 | } |
---|
1463 | mdmFREE(cur_mon); |
---|
1464 | } |
---|
1465 | |
---|
1466 | void ResolveCoeff (mpq_t c, number m) |
---|
1467 | { |
---|
1468 | if ((long)m & SR_INT) |
---|
1469 | { |
---|
1470 | long m_val=SR_TO_INT(m); |
---|
1471 | mpq_set_si(c,m_val,1); |
---|
1472 | } |
---|
1473 | else |
---|
1474 | { |
---|
1475 | if (m->s<2) |
---|
1476 | { |
---|
1477 | mpz_set(mpq_numref(c),m->z); |
---|
1478 | mpz_set(mpq_denref(c),m->n); |
---|
1479 | mpq_canonicalize(c); |
---|
1480 | } |
---|
1481 | else |
---|
1482 | { |
---|
1483 | mpq_set_z(c,m->z); |
---|
1484 | } |
---|
1485 | } |
---|
1486 | } |
---|
1487 | |
---|
1488 | ideal interpolation(lists L, intvec *v) |
---|
1489 | { |
---|
1490 | protocol=TEST_OPT_PROT; // should be set if option(prot) is enabled |
---|
1491 | |
---|
1492 | bool data_ok=true; |
---|
1493 | |
---|
1494 | // reading the ring data *************************************************** |
---|
1495 | if ((currRing==NULL) || ((!rField_is_Zp ())&&(!rField_is_Q ()))) |
---|
1496 | { |
---|
1497 | WerrorS("coefficient field should be Zp or Q!"); |
---|
1498 | return NULL; |
---|
1499 | } |
---|
1500 | if ((currRing->qideal)!=NULL) |
---|
1501 | { |
---|
1502 | WerrorS("quotient ring not supported!"); |
---|
1503 | return NULL; |
---|
1504 | } |
---|
1505 | if ((currRing->OrdSgn)!=1) |
---|
1506 | { |
---|
1507 | WerrorS("ordering must be global!"); |
---|
1508 | return NULL; |
---|
1509 | } |
---|
1510 | n_points=v->length (); |
---|
1511 | if (n_points!=(L->nr+1)) |
---|
1512 | { |
---|
1513 | WerrorS("list and intvec must have the same length!"); |
---|
1514 | return NULL; |
---|
1515 | } |
---|
1516 | variables=currRing->N; |
---|
1517 | only_modp=rField_is_Zp(); |
---|
1518 | if (only_modp) myp=rChar(); |
---|
1519 | // ring data read ********************************************************** |
---|
1520 | |
---|
1521 | |
---|
1522 | multiplicity=(int*)malloc(sizeof(int)*n_points); |
---|
1523 | int i; |
---|
1524 | for (i=0;i<n_points;i++) multiplicity[i]=(*v)[i]; |
---|
1525 | |
---|
1526 | final_base_dim = CalcBaseDim (); |
---|
1527 | |
---|
1528 | #ifdef writemsg |
---|
1529 | Print("number of variables: %d\n", variables); |
---|
1530 | Print("number of points: %d\n", n_points); |
---|
1531 | PrintS("multiplicities: "); |
---|
1532 | for (i=0;i<n_points;i++) Print("%d ", multiplicity[i]); |
---|
1533 | PrintLn(); |
---|
1534 | Print("general initialization for dimension %d ...\n", final_base_dim); |
---|
1535 | #endif |
---|
1536 | |
---|
1537 | GeneralInit (); |
---|
1538 | |
---|
1539 | // reading coordinates of points from ideals ********************************** |
---|
1540 | mpq_t divisor; |
---|
1541 | if (!only_modp) mpq_init(divisor); |
---|
1542 | int j; |
---|
1543 | for(i=0; i<=L->nr;i++) |
---|
1544 | { |
---|
1545 | ideal I=(ideal)L->m[i].Data(); |
---|
1546 | for(j=0;j<IDELEMS(I);j++) |
---|
1547 | { |
---|
1548 | poly p=I->m[j]; |
---|
1549 | if (p!=NULL) |
---|
1550 | { |
---|
1551 | poly ph=pHead(p); |
---|
1552 | int pcvar=pVar(ph); |
---|
1553 | if (pcvar!=0) |
---|
1554 | { |
---|
1555 | pcvar--; |
---|
1556 | if (coord_exist[i][pcvar]) |
---|
1557 | { |
---|
1558 | Print("coordinate %d for point %d initialized twice!\n",pcvar+1,i+1); |
---|
1559 | data_ok=false; |
---|
1560 | } |
---|
1561 | number m; |
---|
1562 | m=pGetCoeff(p); // possible coefficient standing by a leading monomial |
---|
1563 | if (!only_modp) ResolveCoeff (divisor,m); |
---|
1564 | number n; |
---|
1565 | if (pNext(p)!=NULL) n=pGetCoeff(pNext(p)); |
---|
1566 | else n=nInit(0); |
---|
1567 | if (only_modp) |
---|
1568 | { |
---|
1569 | n=nNeg(n); |
---|
1570 | n=nDiv(n,m); |
---|
1571 | modp_points[i][pcvar]=(int)((long)n); |
---|
1572 | } |
---|
1573 | else |
---|
1574 | { |
---|
1575 | ResolveCoeff (q_points[i][pcvar],n); |
---|
1576 | mpq_neg(q_points[i][pcvar],q_points[i][pcvar]); |
---|
1577 | mpq_div(q_points[i][pcvar],q_points[i][pcvar],divisor); |
---|
1578 | } |
---|
1579 | coord_exist[i][pcvar]=true; |
---|
1580 | } |
---|
1581 | else |
---|
1582 | { |
---|
1583 | PrintS("not a variable? "); |
---|
1584 | wrp(p); |
---|
1585 | PrintLn(); |
---|
1586 | data_ok=false; |
---|
1587 | } |
---|
1588 | pDelete(&ph); |
---|
1589 | } |
---|
1590 | } |
---|
1591 | } |
---|
1592 | if (!only_modp) mpq_clear(divisor); |
---|
1593 | // data from ideal read ******************************************************* |
---|
1594 | |
---|
1595 | // ckecking if all coordinates are initialized |
---|
1596 | for (i=0;i<n_points;i++) |
---|
1597 | { |
---|
1598 | for (j=0;j<variables;j++) |
---|
1599 | { |
---|
1600 | if (!coord_exist[i][j]) |
---|
1601 | { |
---|
1602 | Print("coordinate %d for point %d not known!\n",j+1,i+1); |
---|
1603 | data_ok=false; |
---|
1604 | } |
---|
1605 | } |
---|
1606 | } |
---|
1607 | |
---|
1608 | if (!data_ok) |
---|
1609 | { |
---|
1610 | GeneralDone(); |
---|
1611 | WerrorS("data structure is invalid"); |
---|
1612 | return NULL; |
---|
1613 | } |
---|
1614 | |
---|
1615 | if (!only_modp) IntegerPoints (); |
---|
1616 | MakeConditions (); |
---|
1617 | #ifdef writemsg |
---|
1618 | PrintS("done.\n"); |
---|
1619 | #else |
---|
1620 | if (protocol) Print("[vdim %d]",final_base_dim); |
---|
1621 | #endif |
---|
1622 | |
---|
1623 | |
---|
1624 | // main procedure ********************************************************************* |
---|
1625 | int modp_cycles=10; |
---|
1626 | bool correct_gen=false; |
---|
1627 | if (only_modp) modp_cycles=1; |
---|
1628 | #ifdef HAVE_FACTORY |
---|
1629 | myp_index=cf_getNumSmallPrimes (); |
---|
1630 | #endif |
---|
1631 | |
---|
1632 | while ((!correct_gen)&&(myp_index>1)) |
---|
1633 | { |
---|
1634 | #ifdef writemsg |
---|
1635 | Print("trying %d cycles mod p...\n",modp_cycles); |
---|
1636 | #else |
---|
1637 | if (protocol) Print("(%d)",modp_cycles); |
---|
1638 | #endif |
---|
1639 | while ((n_results<modp_cycles)&&(myp_index>1)) // some computations mod p |
---|
1640 | { |
---|
1641 | if (!only_modp) myp=TakePrime (myp); |
---|
1642 | NewResultEntry (); |
---|
1643 | InitProcData (); |
---|
1644 | if (only_modp) modp_PrepareProducts (); else int_PrepareProducts (); |
---|
1645 | |
---|
1646 | modp_Main (); |
---|
1647 | |
---|
1648 | if (!only_modp) |
---|
1649 | { |
---|
1650 | MultGenerators (); |
---|
1651 | CheckColumnSequence (); |
---|
1652 | } |
---|
1653 | else |
---|
1654 | { |
---|
1655 | modp_SetColumnNames (); |
---|
1656 | } |
---|
1657 | FreeProcData (); |
---|
1658 | } |
---|
1659 | |
---|
1660 | if (!only_modp) |
---|
1661 | { |
---|
1662 | PrepareChinese (modp_cycles); |
---|
1663 | correct_gen=true; |
---|
1664 | for (i=0;i<generic_n_generators;i++) |
---|
1665 | { |
---|
1666 | ReconstructGenerator (i,modp_cycles,false); |
---|
1667 | correct_gen=CheckGenerator (); |
---|
1668 | if (!correct_gen) |
---|
1669 | { |
---|
1670 | #ifdef writemsg |
---|
1671 | PrintS("wrong generator!\n"); |
---|
1672 | #else |
---|
1673 | // if (protocol) PrintS("!g"); |
---|
1674 | #endif |
---|
1675 | ClearGenList (); |
---|
1676 | break; |
---|
1677 | } |
---|
1678 | else |
---|
1679 | { |
---|
1680 | UpdateGenList (); |
---|
1681 | } |
---|
1682 | } |
---|
1683 | #ifdef checksize |
---|
1684 | Print("maximal size of output: %d, precision bound: %d.\n",maximalsize,mpz_sizeinbase(bigcongr,10)); |
---|
1685 | #endif |
---|
1686 | CloseChinese (modp_cycles); |
---|
1687 | modp_cycles=modp_cycles+10; |
---|
1688 | } |
---|
1689 | else |
---|
1690 | { |
---|
1691 | correct_gen=true; |
---|
1692 | } |
---|
1693 | } |
---|
1694 | // end of main procedure ************************************************************************************ |
---|
1695 | |
---|
1696 | #ifdef writemsg |
---|
1697 | PrintS("computations finished.\n"); |
---|
1698 | #else |
---|
1699 | if (protocol) PrintLn(); |
---|
1700 | #endif |
---|
1701 | |
---|
1702 | if (!correct_gen) |
---|
1703 | { |
---|
1704 | GeneralDone (); |
---|
1705 | ClearGenList (); |
---|
1706 | WerrorS("internal error - coefficient too big!"); |
---|
1707 | return NULL; |
---|
1708 | } |
---|
1709 | |
---|
1710 | // passing data to ideal ************************************************************************************* |
---|
1711 | ideal ret; |
---|
1712 | |
---|
1713 | if (only_modp) |
---|
1714 | { |
---|
1715 | mono_type mon; |
---|
1716 | ret=idInit(modp_result->n_generators,1); |
---|
1717 | generator_entry *cur_gen=modp_result->generator; |
---|
1718 | for(i=0;i<IDELEMS(ret);i++) |
---|
1719 | { |
---|
1720 | poly p,sum; |
---|
1721 | sum=NULL; |
---|
1722 | int a; |
---|
1723 | int cf; |
---|
1724 | for (a=final_base_dim;a>=0;a--) |
---|
1725 | { |
---|
1726 | if (a==final_base_dim) cf=cur_gen->ltcoef; else cf=cur_gen->coef[a]; |
---|
1727 | if (cf!=0) |
---|
1728 | { |
---|
1729 | p=pISet(cf); |
---|
1730 | if (a==final_base_dim) mon=cur_gen->lt; else mon=generic_column_name[a]; |
---|
1731 | for (j=0;j<variables;j++) pSetExp(p,j+1,mon[j]); |
---|
1732 | pSetm(p); |
---|
1733 | sum=pAdd(sum,p); |
---|
1734 | } |
---|
1735 | } |
---|
1736 | ret->m[i]=sum; |
---|
1737 | cur_gen=cur_gen->next; |
---|
1738 | } |
---|
1739 | } |
---|
1740 | else |
---|
1741 | { |
---|
1742 | ret=idInit(generic_n_generators,1); |
---|
1743 | gen_list_entry *temp=gen_list; |
---|
1744 | for(i=0;i<IDELEMS(ret);i++) |
---|
1745 | { |
---|
1746 | poly p,sum; |
---|
1747 | sum=NULL; |
---|
1748 | int a; |
---|
1749 | for (a=final_base_dim;a>=0;a--) // build one polynomial |
---|
1750 | { |
---|
1751 | if (mpz_sgn(temp->polycoef[a])!=0) |
---|
1752 | { |
---|
1753 | number n=(number)omAllocBin(rnumber_bin); |
---|
1754 | #ifdef LDEBUG |
---|
1755 | n->debug=123456; |
---|
1756 | #endif |
---|
1757 | mpz_init_set(n->z,temp->polycoef[a]); |
---|
1758 | n->s=3; |
---|
1759 | nlNormalize(n); |
---|
1760 | p=pNSet(n); //a monomial |
---|
1761 | for (j=0;j<variables;j++) pSetExp(p,j+1,temp->polyexp[a][j]); |
---|
1762 | pSetm(p); // after all pSetExp |
---|
1763 | sum=pAdd(sum,p); |
---|
1764 | } |
---|
1765 | } |
---|
1766 | ret->m[i]=sum; |
---|
1767 | temp=temp->next; |
---|
1768 | } |
---|
1769 | } |
---|
1770 | // data transferred **************************************************************************** |
---|
1771 | |
---|
1772 | |
---|
1773 | GeneralDone (); |
---|
1774 | ClearGenList (); |
---|
1775 | return ret; |
---|
1776 | } |
---|
1777 | |
---|
1778 | |
---|
1779 | BOOLEAN jjINTERPOLATION (leftv res, leftv l, leftv v) |
---|
1780 | { |
---|
1781 | res->data=interpolation((lists)l->Data(),(intvec*)v->Data()); |
---|
1782 | setFlag(res,FLAG_STD); |
---|
1783 | return errorreported; |
---|
1784 | } |
---|