source: git/Singular/minpoly.h @ abcc692

spielwiese
Last change on this file since abcc692 was abcc692, checked in by Hans Schoenemann <hannes@…>, 13 years ago
new version git-svn-id: file:///usr/local/Singular/svn/trunk@14367 2c84dea3-7e68-4137-9b89-c4e89433aadc
  • Property mode set to 100644
File size: 9.7 KB
Line 
1/***********************************************************************************
2 * Copyright (C) 2011 Sebastian Jambor                                             *
3 * sebastian@momo.math.rwth-aachen.de                                              *
4 *                                                                                 *
5 * Implementation of an algorithm to compute the minimal polynomial of a           *
6 * square matrix A \in \F_p^{n \times n}.                                          *
7 *                                                                                 *
8 * Let V_1, \dotsc, V_k \in \F_p^{1 \times n} be vectors such that                 *
9 * V_1, V_1*A, V_1*A^2, \dotsc, V_2, V_2*A, V_2*A^2, \dotsc                        *
10 * generate \F_p^{1 \times n}.                                                     *
11 * Let mpV_i be the monic polynomial of smallest degree such that                  *
12 * V_i*mpV_i(A) = 0.                                                               *
13 * Then the minimal polynomial of A is the least common multiple of the mpV_i.     *
14 *                                                                                 *
15 *                                                                                 *
16 * The algorithm uses two classes:                                                 *
17 *                                                                                 *
18 * 1. LinearDependencyMatrix                                                       *
19 * This is used to find a linear dependency between the vectors V, V*A, \ldotsc.   *
20 * To to this, it has an internal n \times (2n + 1) matrix.                        *
21 * Every time a new row VA^i is inserted, it is reduced via Gauss' Algorithm,      *
22 * using right hand sides. If VA^i is reduced to zero, then the vectors are        *
23 * linearly dependend, and the dependency can be read of at the right hand sides.  *
24 *                                                                                 *
25 * Example: Compute the minimal polynomial of A = [[0,1],[1,1]] with V = [1,0]     *
26 * over F_5.                                                                       *
27 * Then LinearDependencyMatrix will be:                                            *
28 * After the first step (i.e., after inserting V = [1,0]):                         *
29 *       ( 1 0 | 1 0 0 )                                                           *
30 * After the second step (i.e., after inserting VA = [0,1]):                       *
31 *       ( 1 0 | 1 0 0 )                                                           *
32 *       ( 0 1 | 0 1 0 )                                                           *
33 * In the third step, where VA^2 = [1,1] is inserted, the row                      *
34 *       ( 1 1 | 0 0 1 )                                                           *
35 * is reduced to                                                                   *
36 *       ( 0 0 | 4 4 1)                                                            *
37 * Thus VA^2 + 4*VA + 4*V = 0, so mpV = t^2 + 4*t + 4.                             *
38 *                                                                                 *
39 *                                                                                 *
40 *                                                                                 *
41 * 2. NewVectorMatrix                                                              *
42 * If one vector V_1 is not enough to compute the minimal polynomial, i.e. the     *
43 * vectors V_1, V_1*A, V_1*A^2, \dotsc don't generate \F_p^{1 \times n}, then      *
44 * we have to find a vector V_2 which is not in the span of the V_1*A^i.           *
45 * This is done with NewVectorMatrix, which simply holds a reduced n \times n      *
46 * matrix, where the rows generate the span of the V_jA^i.                         *
47 * To find a vector which is not in the span, simply take the k-th standard        *
48 * vector, where k is not a pivot element of A.                                    *
49 *                                                                                 *
50 *                                                                                 *
51 * For efficiency reasons, the matrix entries in LinearDependencyMatrix            *
52 * and NewVectorMatrix are not initialized to zero. Instead, a variable rows       *
53 * is used to indicate the number of rows which are nonzero (all further           *
54 * rows are regarded as zero rows). Furthermore, the array pivots stores the       *
55 * pivot entries of the rows, i.e., pivots[i] indicates the position of the        *
56 * first non-zero entry in the i-th row, which is normalized to 1.                 *
57 ***********************************************************************************/
58
59
60
61
62#ifndef MINPOLY_H
63#define MINPOLY_H
64
65//#include<iostream>
66
67class NewVectorMatrix;
68
69class LinearDependencyMatrix {
70    friend class NewVectorMatrix;
71private:
72    unsigned p;
73    unsigned long n;
74    unsigned long **matrix;
75    unsigned long *tmprow;
76    unsigned *pivots;
77    unsigned rows;
78
79public:
80    LinearDependencyMatrix(unsigned n, unsigned long p);
81    ~LinearDependencyMatrix();
82
83    // reset the matrix, so that we can use it to find another linear dependence
84    // Note: there is no need to reinitalize the matrix and vectors!
85    void resetMatrix();
86
87
88    // return the first nonzero entry in row (only the first n entries are checked,
89    // regardless of the size, since we will also apply this for rows with
90    // right hand sides).
91    // If the first n entries are all zero, return -1 (so this gives a check if row is the zero vector)
92    int firstNonzeroEntry(unsigned long *row);
93
94    void reduceTmpRow();
95
96    void normalizeTmp(unsigned i);
97
98    bool findLinearDependency(unsigned long* newRow, unsigned long* dep);
99
100    //friend std::ostream& operator<<(std::ostream& out, const LinearDependencyMatrix& mat);
101};
102
103
104// This class is used to find a new vector for the next step in the
105// minimal polynomial algorithm.
106class NewVectorMatrix {
107private:
108    unsigned p;
109    unsigned long n;
110    unsigned long **matrix;
111    unsigned *pivots;
112    unsigned rows;
113
114public:
115    NewVectorMatrix(unsigned n, unsigned long p);
116    ~NewVectorMatrix();
117
118    // return the first nonzero entry in row (only the first n entries are checked,
119    // regardless of the size, since we will also apply this for rows with
120    // right hand sides).
121    // If the first n entries are all zero, return -1 (so this gives a check if row is the zero vector)
122    int firstNonzeroEntry(unsigned long *row);
123
124//    // let piv be the pivot position of row i. then this method eliminates entry piv of row
125//    void subtractIthRow(unsigned long *row, unsigned i);
126
127    void normalizeRow(unsigned long *row, unsigned i);
128
129    void insertRow(unsigned long* row);
130
131    // insert each row of the matrix
132    void insertMatrix(LinearDependencyMatrix& mat);
133
134    // Finds the smallest integer between 0 and n-1, which is not a pivot position.
135    // If no such number exists, return -1.
136    int findSmallestNonpivot();
137};
138
139
140// compute the minimal polynomial of matrix \in \F_p^{n \times n}.
141// The result is an array of length n + 1, where the i-th entry represents the i-th coefficient
142// of the minimal polynomial.
143//
144// result should be deleted with delete[]
145unsigned long* computeMinimalPolynomial(unsigned long** matrix, unsigned n, unsigned long p);
146
147
148
149/////////////////////////////////
150// auxiliary methods
151/////////////////////////////////
152
153
154// compute x^(-1) mod p
155//
156// NOTE: this uses long long instead of unsigned long, for the XEA to work.
157// This shouldn't be a problem, since p has to be < 2^31 for the multiplication to work anyway.
158//
159// There is no need to distinguish between 32bit and 64bit architectures: On 64bit, long long
160// is the same as long, and on 32bit, we need long long so that the variables can hold negative values.
161unsigned long modularInverse(long long x, long long p);
162
163void vectorMatrixMult(unsigned long* vec, unsigned long **mat, unsigned long* result, unsigned n, unsigned long p);
164
165// a is a vector of length at least dega + 1, and q is a vector of length at least degq + 1,
166// representing polynomials \sum_i a[i]t^i \in \F_p[t].
167// After this method, a will be a mod q.
168// Method will change dega accordingly.
169void rem(unsigned long* a, unsigned long* q, unsigned long p, int & dega, int degq);
170
171// a is a vector of length at least dega + 1, and q is a vector of length at least degq + 1,
172// representing polynomials \sum_i a[i]t^i \in \F_p[t].
173// After this method, a will be a / q.
174// Method will change dega accordingly.
175void quo(unsigned long* a, unsigned long* q, unsigned long p, int & dega, int degq);
176
177
178// NOTE: since we don't know the size of result (the list can be longer than the degree of the polynomial),
179// every entry has to be preinitialized to zero!
180void mult(unsigned long* result, unsigned long* a, unsigned long* b, unsigned long p, int dega, int degb);
181
182
183// g = gcd(a,b).
184// returns deg(g)
185//
186// NOTE: since we don't know the size of g, every entry has to be preinitialized to zero!
187int gcd(unsigned long* g, unsigned long* a, unsigned long* b, unsigned long p, int dega, int degb);
188
189// l = lcm(a,b).
190// returns deg(l)
191//
192// has side effects for a
193//
194// NOTE: since we don't know the size of l, every entry has to be preinitialized to zero!
195int lcm(unsigned long* l, unsigned long* a, unsigned long* b, unsigned long p, int dega, int degb);
196
197
198// method suggested by Hans Schoenemann to multiply elements in finite fields
199// on 32bit and 64bit machines
200static inline unsigned long multMod(unsigned long a, unsigned long b, unsigned long p)
201{
202#if SIZEOF_LONG == 4
203#define ULONG64 (unsigned long long)
204#else
205#define ULONG64 (unsigned long)
206#endif
207  return (unsigned long)((ULONG64 a)*(ULONG64 b) % (ULONG64 p));
208}
209
210#endif // MINPOLY_H
Note: See TracBrowser for help on using the repository browser.