1 | #ifndef MODULOP_H |
---|
2 | #define MODULOP_H |
---|
3 | /**************************************** |
---|
4 | * Computer Algebra System SINGULAR * |
---|
5 | ****************************************/ |
---|
6 | /* $Id: modulop.h,v 1.13 2000-12-15 18:49:34 Singular Exp $ */ |
---|
7 | /* |
---|
8 | * ABSTRACT: numbers modulo p (<=32003) |
---|
9 | */ |
---|
10 | #include "structs.h" |
---|
11 | |
---|
12 | // define if a*b is with mod instead of tables |
---|
13 | #define HAVE_MULT_MOD |
---|
14 | |
---|
15 | extern int npPrimeM; |
---|
16 | extern int npGen; |
---|
17 | extern int npMapPrime; |
---|
18 | |
---|
19 | BOOLEAN npGreaterZero (number k); |
---|
20 | number npMult (number a, number b); |
---|
21 | number npInit (int i); |
---|
22 | int npInt (number &n); |
---|
23 | number npAdd (number a, number b); |
---|
24 | number npSub (number a, number b); |
---|
25 | void npPower (number a, int i, number * result); |
---|
26 | BOOLEAN npIsZero (number a); |
---|
27 | BOOLEAN npIsOne (number a); |
---|
28 | BOOLEAN npIsMOne (number a); |
---|
29 | number npDiv (number a, number b); |
---|
30 | number npNeg (number c); |
---|
31 | number npInvers (number c); |
---|
32 | BOOLEAN npGreater (number a, number b); |
---|
33 | BOOLEAN npEqual (number a, number b); |
---|
34 | void npWrite (number &a); |
---|
35 | char * npRead (char *s, number *a); |
---|
36 | #ifdef LDEBUG |
---|
37 | BOOLEAN npDBTest (number a, char *f, int l); |
---|
38 | #endif |
---|
39 | void npSetChar(int c, ring r); |
---|
40 | void npInitChar(int c, ring r); |
---|
41 | |
---|
42 | //int npGetChar(); |
---|
43 | |
---|
44 | nMapFunc npSetMap(ring src, ring dst); |
---|
45 | number npMapP(number from); |
---|
46 | /*-------specials for spolys, do NOT use otherwise--------------------------*/ |
---|
47 | /* for npMultM, npSubM, npNegM, npEqualM : */ |
---|
48 | extern int npPminus1M; |
---|
49 | extern CARDINAL *npExpTable; |
---|
50 | extern CARDINAL *npLogTable; |
---|
51 | |
---|
52 | #ifdef HAVE_MULT_MOD |
---|
53 | inline number npMultM(number a, number b) |
---|
54 | { |
---|
55 | return (number) |
---|
56 | ((((unsigned long) a)*((unsigned long) b)) % ((unsigned long) npPrimeM)); |
---|
57 | } |
---|
58 | #else |
---|
59 | inline number npMultM(number a, number b) |
---|
60 | { |
---|
61 | int x = npLogTable[(int)a]+npLogTable[(int)b]; |
---|
62 | return (number)npExpTable[x<npPminus1M ? x : x-npPminus1M]; |
---|
63 | } |
---|
64 | #endif |
---|
65 | |
---|
66 | #if 0 |
---|
67 | inline number npAddAsm(number a, number b, int m) |
---|
68 | { |
---|
69 | number r; |
---|
70 | asm ("addl %2, %1; cmpl %3, %1; jb 0f; subl %3, %1; 0:" |
---|
71 | : "=&r" (r) |
---|
72 | : "%0" (a), "g" (b), "g" (m) |
---|
73 | : "cc"); |
---|
74 | return r; |
---|
75 | } |
---|
76 | inline number npSubAsm(number a, number b, int m) |
---|
77 | { |
---|
78 | number r; |
---|
79 | asm ("subl %2, %1; jnc 0f; addl %3, %1; 0:" |
---|
80 | : "=&r" (r) |
---|
81 | : "%0" (a), "g" (b), "g" (m) |
---|
82 | : "cc"); |
---|
83 | return r; |
---|
84 | } |
---|
85 | #endif |
---|
86 | |
---|
87 | inline number npAddM(number a, number b) |
---|
88 | { |
---|
89 | int r = (int)a + (int)b; |
---|
90 | return (number)(r >= npPrimeM ? r - npPrimeM : r); |
---|
91 | } |
---|
92 | |
---|
93 | inline BOOLEAN npIsZeroM (number a) |
---|
94 | { |
---|
95 | return 0 == (int)a; |
---|
96 | } |
---|
97 | |
---|
98 | /* |
---|
99 | *inline number npMultM(number a, number b) |
---|
100 | *{ |
---|
101 | * return (number)(((int)a*(int)b) % npPrimeM); |
---|
102 | *} |
---|
103 | */ |
---|
104 | |
---|
105 | #define npSubM(a,b) (number)((int)a<(int)b ?\ |
---|
106 | npPrimeM-(int)b+(int)a : (int)a-(int)b) |
---|
107 | |
---|
108 | #define npNegM(A) (number)(npPrimeM-(int)(A)) |
---|
109 | #define npEqualM(A,B) ((int)A==(int)B) |
---|
110 | #define npIsZeroM(a) (0 == (int)a) |
---|
111 | #endif |
---|
112 | |
---|