1 | /**************************************** |
---|
2 | * Computer Algebra System SINGULAR * |
---|
3 | ****************************************/ |
---|
4 | /* $Id: polys1.cc,v 1.20 1999-04-14 18:32:00 Singular Exp $ */ |
---|
5 | |
---|
6 | /* |
---|
7 | * ABSTRACT - all basic methods to manipulate polynomials: |
---|
8 | * independent of representation |
---|
9 | */ |
---|
10 | |
---|
11 | /* includes */ |
---|
12 | #include <string.h> |
---|
13 | #include "mod2.h" |
---|
14 | #include "structs.h" |
---|
15 | #include "tok.h" |
---|
16 | #include "numbers.h" |
---|
17 | #include "mmemory.h" |
---|
18 | #include "febase.h" |
---|
19 | #include "weight.h" |
---|
20 | #include "intvec.h" |
---|
21 | #include "longalg.h" |
---|
22 | #include "ring.h" |
---|
23 | #include "ideals.h" |
---|
24 | #include "polys.h" |
---|
25 | #include "ipid.h" |
---|
26 | #ifdef HAVE_FACTORY |
---|
27 | #include "clapsing.h" |
---|
28 | #endif |
---|
29 | |
---|
30 | /*-------- several access procedures to monomials -------------------- */ |
---|
31 | /*2 |
---|
32 | *test if the monomial is a constant |
---|
33 | */ |
---|
34 | BOOLEAN pIsConstant(poly p) |
---|
35 | { |
---|
36 | if (p!=NULL) |
---|
37 | { |
---|
38 | int i; |
---|
39 | for (i=pVariables;i;i--) |
---|
40 | { |
---|
41 | if (pGetExp(p,i)!=0) return FALSE; |
---|
42 | } |
---|
43 | if (pGetComp(p)) return FALSE; |
---|
44 | } |
---|
45 | return TRUE; |
---|
46 | } |
---|
47 | |
---|
48 | /*2 |
---|
49 | *test if the monomial is a constant as a vector component |
---|
50 | */ |
---|
51 | BOOLEAN pIsConstantComp(poly p) |
---|
52 | { |
---|
53 | int i; |
---|
54 | |
---|
55 | for (i=pVariables;i>0;i--) |
---|
56 | { |
---|
57 | if (pGetExp(p,i)!=0) return FALSE; |
---|
58 | } |
---|
59 | return TRUE; |
---|
60 | } |
---|
61 | |
---|
62 | /*2 |
---|
63 | *test if a monomial is a pure power |
---|
64 | */ |
---|
65 | int pIsPurePower(poly p) |
---|
66 | { |
---|
67 | pTest(p); |
---|
68 | int i,k=0; |
---|
69 | |
---|
70 | for (i=pVariables;i>0;i--) |
---|
71 | { |
---|
72 | if (pGetExp(p,i)!=0) |
---|
73 | { |
---|
74 | if(k!=0) return 0; |
---|
75 | k=i; |
---|
76 | } |
---|
77 | } |
---|
78 | return k; |
---|
79 | } |
---|
80 | |
---|
81 | /*-----------------------------------------------------------*/ |
---|
82 | /* |
---|
83 | * the module weights for std |
---|
84 | */ |
---|
85 | static pFDegProc pOldFDeg; |
---|
86 | static intvec * pModW; |
---|
87 | static BOOLEAN pOldLexOrder; |
---|
88 | |
---|
89 | static int pModDeg(poly p) |
---|
90 | { |
---|
91 | return pOldFDeg(p)+(*pModW)[pGetComp(p)-1]; |
---|
92 | } |
---|
93 | |
---|
94 | void pSetModDeg(intvec *w) |
---|
95 | { |
---|
96 | if (w!=NULL) |
---|
97 | { |
---|
98 | pModW = w; |
---|
99 | pOldFDeg = pFDeg; |
---|
100 | pOldLexOrder = pLexOrder; |
---|
101 | pFDeg = pModDeg; |
---|
102 | pLexOrder = TRUE; |
---|
103 | } |
---|
104 | else |
---|
105 | { |
---|
106 | pModW = NULL; |
---|
107 | pFDeg = pOldFDeg; |
---|
108 | pLexOrder = pOldLexOrder; |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | /*-------------operations on polynomials:------------*/ |
---|
113 | /*2 |
---|
114 | * add p1 and p2, p1 and p2 are destroyed |
---|
115 | */ |
---|
116 | poly pAdd(poly p1, poly p2) |
---|
117 | { |
---|
118 | static poly a1, p, a2, a; |
---|
119 | int c; |
---|
120 | number t; |
---|
121 | |
---|
122 | if (p1==NULL) return p2; |
---|
123 | if (p2==NULL) return p1; |
---|
124 | a1 = p1; |
---|
125 | a2 = p2; |
---|
126 | a = p = pInit(); |
---|
127 | nNew(&(p->coef)); |
---|
128 | loop |
---|
129 | { |
---|
130 | /* a1 and a2 are non-NULL, so we may use pComp0 instead of pComp */ |
---|
131 | c = pComp0(a1, a2); |
---|
132 | if (c == 1) |
---|
133 | { |
---|
134 | a = pNext(a) = a1; |
---|
135 | pIter(a1); |
---|
136 | if (a1==NULL) |
---|
137 | { |
---|
138 | pNext(a) = a2; |
---|
139 | break; |
---|
140 | } |
---|
141 | } |
---|
142 | else if (c == -1) |
---|
143 | { |
---|
144 | a = pNext(a) = a2; |
---|
145 | pIter(a2); |
---|
146 | if (a2==NULL) |
---|
147 | { |
---|
148 | pNext(a) = a1; |
---|
149 | break; |
---|
150 | } |
---|
151 | } |
---|
152 | else |
---|
153 | { |
---|
154 | t=nAdd(a1->coef,a2->coef); |
---|
155 | pDelete1(&a2); |
---|
156 | if (nIsZero(t)) |
---|
157 | { |
---|
158 | nDelete(&t); |
---|
159 | pDelete1(&a1); |
---|
160 | } |
---|
161 | else |
---|
162 | { |
---|
163 | pSetCoeff(a1,t); |
---|
164 | a = pNext(a) = a1; |
---|
165 | pIter(a1); |
---|
166 | } |
---|
167 | if (a1==NULL) |
---|
168 | { |
---|
169 | pNext(a) = a2; |
---|
170 | break; |
---|
171 | } |
---|
172 | else if (a2==NULL) |
---|
173 | { |
---|
174 | pNext(a) = a1; |
---|
175 | break; |
---|
176 | } |
---|
177 | } |
---|
178 | } |
---|
179 | pDelete1(&p); |
---|
180 | return p; |
---|
181 | } |
---|
182 | |
---|
183 | /*2 |
---|
184 | * multiply a polynomial by -1 |
---|
185 | */ |
---|
186 | poly pNeg(poly p) |
---|
187 | { |
---|
188 | poly h = p; |
---|
189 | while (h!=NULL) |
---|
190 | { |
---|
191 | pGetCoeff(h)=nNeg(pGetCoeff(h)); |
---|
192 | pIter(h); |
---|
193 | } |
---|
194 | return p; |
---|
195 | } |
---|
196 | |
---|
197 | /*2 |
---|
198 | * subtract p2 from p1, p1 and p2 are destroyed |
---|
199 | * do not put attention on speed: the procedure is only used in the interpreter |
---|
200 | */ |
---|
201 | poly pSub(poly p1, poly p2) |
---|
202 | { |
---|
203 | return pAdd(p1, pNeg(p2)); |
---|
204 | } |
---|
205 | |
---|
206 | /*3 |
---|
207 | * create binomial coef. |
---|
208 | */ |
---|
209 | static number* pnBin(int exp) |
---|
210 | { |
---|
211 | int e, i, h; |
---|
212 | number x, y, *bin=NULL; |
---|
213 | |
---|
214 | x = nInit(exp); |
---|
215 | if (nIsZero(x)) |
---|
216 | { |
---|
217 | nDelete(&x); |
---|
218 | return bin; |
---|
219 | } |
---|
220 | h = (exp >> 1) + 1; |
---|
221 | bin = (number *)Alloc0(h*sizeof(number)); |
---|
222 | bin[1] = x; |
---|
223 | if (exp < 4) |
---|
224 | return bin; |
---|
225 | i = exp - 1; |
---|
226 | for (e=2; e<h; e++) |
---|
227 | { |
---|
228 | // if(!nIsZero(bin[e-1])) |
---|
229 | // { |
---|
230 | x = nInit(i); |
---|
231 | i--; |
---|
232 | y = nMult(x,bin[e-1]); |
---|
233 | nDelete(&x); |
---|
234 | x = nInit(e); |
---|
235 | bin[e] = nIntDiv(y,x); |
---|
236 | nDelete(&x); |
---|
237 | nDelete(&y); |
---|
238 | // } |
---|
239 | // else |
---|
240 | // { |
---|
241 | // bin[e] = nInit(binom(exp,e)); |
---|
242 | // } |
---|
243 | } |
---|
244 | return bin; |
---|
245 | } |
---|
246 | |
---|
247 | static void pnFreeBin(number *bin, int exp) |
---|
248 | { |
---|
249 | int e, h = (exp >> 1) + 1; |
---|
250 | |
---|
251 | if (bin[1] != NULL) |
---|
252 | { |
---|
253 | for (e=1; e<h; e++) |
---|
254 | nDelete(&(bin[e])); |
---|
255 | } |
---|
256 | Free((ADDRESS)bin, h*sizeof(number)); |
---|
257 | } |
---|
258 | |
---|
259 | /*3 |
---|
260 | * compute for a monomial m |
---|
261 | * the power m^exp, exp > 1 |
---|
262 | * destroys p |
---|
263 | */ |
---|
264 | static poly pMonPower(poly p, int exp) |
---|
265 | { |
---|
266 | int i; |
---|
267 | |
---|
268 | if(!nIsOne(pGetCoeff(p))) |
---|
269 | { |
---|
270 | number x, y; |
---|
271 | y = pGetCoeff(p); |
---|
272 | nPower(y,exp,&x); |
---|
273 | nDelete(&y); |
---|
274 | pSetCoeff0(p,x); |
---|
275 | } |
---|
276 | for (i=pVariables; i!=0; i--) |
---|
277 | { |
---|
278 | pMultExp(p,i, exp); |
---|
279 | } |
---|
280 | #ifdef TEST_MAC_ORDER |
---|
281 | if (bNoAdd) |
---|
282 | pSetm(p); |
---|
283 | else |
---|
284 | #endif |
---|
285 | p->Order *= exp; |
---|
286 | return p; |
---|
287 | } |
---|
288 | |
---|
289 | /*3 |
---|
290 | * compute for monomials p*q |
---|
291 | * destroys p, keeps q |
---|
292 | */ |
---|
293 | static void pMonMult(poly p, poly q) |
---|
294 | { |
---|
295 | number x, y; |
---|
296 | int i; |
---|
297 | |
---|
298 | y = pGetCoeff(p); |
---|
299 | x = nMult(y,pGetCoeff(q)); |
---|
300 | nDelete(&y); |
---|
301 | pSetCoeff0(p,x); |
---|
302 | for (i=pVariables; i!=0; i--) |
---|
303 | { |
---|
304 | pAddExp(p,i, pGetExp(q,i)); |
---|
305 | } |
---|
306 | p->Order += q->Order; |
---|
307 | } |
---|
308 | |
---|
309 | /*3 |
---|
310 | * compute for monomials p*q |
---|
311 | * keeps p, q |
---|
312 | */ |
---|
313 | static poly pMonMultC(poly p, poly q) |
---|
314 | { |
---|
315 | number x; |
---|
316 | int i; |
---|
317 | poly r = pInit(); |
---|
318 | |
---|
319 | x = nMult(pGetCoeff(p),pGetCoeff(q)); |
---|
320 | pSetCoeff0(r,x); |
---|
321 | pSetComp(r, pGetComp(p)); |
---|
322 | for (i=pVariables; i!=0; i--) |
---|
323 | { |
---|
324 | pSetExp(r,i, pGetExp(p,i) + pGetExp(q,i)); |
---|
325 | } |
---|
326 | r->Order = p->Order + q->Order; |
---|
327 | return r; |
---|
328 | } |
---|
329 | |
---|
330 | /* |
---|
331 | * compute for a poly p = head+tail, tail is monomial |
---|
332 | * (head + tail)^exp, exp > 1 |
---|
333 | * with binomial coef. |
---|
334 | */ |
---|
335 | static poly pTwoMonPower(poly p, int exp) |
---|
336 | { |
---|
337 | int eh, e, al; |
---|
338 | poly *a; |
---|
339 | poly tail, b, res, h; |
---|
340 | number x; |
---|
341 | number *bin = pnBin(exp); |
---|
342 | |
---|
343 | tail = pNext(p); |
---|
344 | if (bin == NULL) |
---|
345 | { |
---|
346 | pMonPower(p,exp); |
---|
347 | pMonPower(tail,exp); |
---|
348 | #ifdef PDEBUG |
---|
349 | pTest(p); |
---|
350 | #endif |
---|
351 | return p; |
---|
352 | } |
---|
353 | eh = exp >> 1; |
---|
354 | al = (exp + 1) * sizeof(poly); |
---|
355 | a = (poly *)Alloc(al); |
---|
356 | a[1] = p; |
---|
357 | for (e=1; e<exp; e++) |
---|
358 | { |
---|
359 | a[e+1] = pMonMultC(a[e],p); |
---|
360 | } |
---|
361 | res = a[exp]; |
---|
362 | b = pHead(tail); |
---|
363 | for (e=exp-1; e>eh; e--) |
---|
364 | { |
---|
365 | h = a[e]; |
---|
366 | x = nMult(bin[exp-e],pGetCoeff(h)); |
---|
367 | pSetCoeff(h,x); |
---|
368 | pMonMult(h,b); |
---|
369 | res = pNext(res) = h; |
---|
370 | pMonMult(b,tail); |
---|
371 | } |
---|
372 | for (e=eh; e!=0; e--) |
---|
373 | { |
---|
374 | h = a[e]; |
---|
375 | x = nMult(bin[e],pGetCoeff(h)); |
---|
376 | pSetCoeff(h,x); |
---|
377 | pMonMult(h,b); |
---|
378 | res = pNext(res) = h; |
---|
379 | pMonMult(b,tail); |
---|
380 | } |
---|
381 | pDelete1(&tail); |
---|
382 | pNext(res) = b; |
---|
383 | pNext(b) = NULL; |
---|
384 | res = a[exp]; |
---|
385 | Free((ADDRESS)a, al); |
---|
386 | pnFreeBin(bin, exp); |
---|
387 | // tail=res; |
---|
388 | // while((tail!=NULL)&&(pNext(tail)!=NULL)) |
---|
389 | // { |
---|
390 | // if(nIsZero(pGetCoeff(pNext(tail)))) |
---|
391 | // { |
---|
392 | // pDelete1(&pNext(tail)); |
---|
393 | // } |
---|
394 | // else |
---|
395 | // pIter(tail); |
---|
396 | // } |
---|
397 | #ifdef PDEBUG |
---|
398 | pTest(res); |
---|
399 | #endif |
---|
400 | return res; |
---|
401 | } |
---|
402 | |
---|
403 | static poly pPow(poly p, int i) |
---|
404 | { |
---|
405 | poly rc = pCopy(p); |
---|
406 | i -= 2; |
---|
407 | do |
---|
408 | { |
---|
409 | rc = pMult(rc,pCopy(p)); |
---|
410 | i--; |
---|
411 | } |
---|
412 | while (i != 0); |
---|
413 | return pMult(rc,p); |
---|
414 | } |
---|
415 | |
---|
416 | /*2 |
---|
417 | * returns the i-th power of p |
---|
418 | * p will be destroyed |
---|
419 | */ |
---|
420 | poly pPower(poly p, int i) |
---|
421 | { |
---|
422 | if (i==0) |
---|
423 | return pOne(); |
---|
424 | |
---|
425 | poly rc=NULL; |
---|
426 | |
---|
427 | if(p!=NULL) |
---|
428 | { |
---|
429 | switch (i) |
---|
430 | { |
---|
431 | case 0: |
---|
432 | { |
---|
433 | rc=pOne(); |
---|
434 | #ifdef DRING |
---|
435 | if ((pDRING) && (pdDFlag(p)==1)) |
---|
436 | { |
---|
437 | pdSetDFlag(rc,1); |
---|
438 | } |
---|
439 | #endif |
---|
440 | pDelete(&p); |
---|
441 | break; |
---|
442 | } |
---|
443 | case 1: |
---|
444 | rc=p; |
---|
445 | break; |
---|
446 | case 2: |
---|
447 | rc=pMult(pCopy(p),p); |
---|
448 | break; |
---|
449 | default: |
---|
450 | if (i < 0) |
---|
451 | { |
---|
452 | #ifdef DRING |
---|
453 | if (pDRING) |
---|
454 | { |
---|
455 | int j,t; |
---|
456 | rc=p; |
---|
457 | while(p!=NULL) |
---|
458 | { |
---|
459 | for(j=1;j<=pdK;j++) |
---|
460 | { |
---|
461 | if(pGetExp(p,pdY(j))!=0) |
---|
462 | { |
---|
463 | pDelete(&rc); |
---|
464 | return NULL; |
---|
465 | } |
---|
466 | } |
---|
467 | for(j=1;j<=pdN;j++) |
---|
468 | { |
---|
469 | t=pGetExp(p,pdX(j)); |
---|
470 | pSetExp(p,pdX(j),pGetExp(p,pdIX(j))); |
---|
471 | pSetExp(p,pdIX(j),t); |
---|
472 | } |
---|
473 | pIter(p); |
---|
474 | } |
---|
475 | return pPower(rc,-i); |
---|
476 | } |
---|
477 | else |
---|
478 | #endif |
---|
479 | { |
---|
480 | pDelete(&p); |
---|
481 | return NULL; |
---|
482 | } |
---|
483 | } |
---|
484 | #ifdef SDRING |
---|
485 | if(pSDRING) |
---|
486 | { |
---|
487 | return pPow(p,i); |
---|
488 | } |
---|
489 | else |
---|
490 | #endif |
---|
491 | { |
---|
492 | rc = pNext(p); |
---|
493 | if (rc == NULL) |
---|
494 | return pMonPower(p,i); |
---|
495 | /* else: binom */ |
---|
496 | int char_p=rChar(currRing); |
---|
497 | if (pNext(rc) != NULL) |
---|
498 | return pPow(p,i); |
---|
499 | if ((char_p==0) || (i<=char_p)) |
---|
500 | return pTwoMonPower(p,i); |
---|
501 | poly p_p=pTwoMonPower(pCopy(p),char_p); |
---|
502 | return pMult(pPower(p,i-char_p),p_p); |
---|
503 | } |
---|
504 | /*end default:*/ |
---|
505 | } |
---|
506 | } |
---|
507 | return rc; |
---|
508 | } |
---|
509 | |
---|
510 | /*2 |
---|
511 | * returns the partial differentiate of a by the k-th variable |
---|
512 | * does not destroy the input |
---|
513 | */ |
---|
514 | poly pDiff(poly a, int k) |
---|
515 | { |
---|
516 | poly res, f, last; |
---|
517 | number t; |
---|
518 | |
---|
519 | last = res = NULL; |
---|
520 | while (a!=NULL) |
---|
521 | { |
---|
522 | if (pGetExp(a,k)!=0) |
---|
523 | { |
---|
524 | f = pNew(); |
---|
525 | pCopy2(f,a); |
---|
526 | pNext(f)=NULL; |
---|
527 | t = nInit(pGetExp(a,k)); |
---|
528 | pSetCoeff0(f,nMult(t,pGetCoeff(a))); |
---|
529 | nDelete(&t); |
---|
530 | if (nIsZero(pGetCoeff(f))) |
---|
531 | pDelete1(&f); |
---|
532 | else |
---|
533 | { |
---|
534 | pDecrExp(f,k); |
---|
535 | pSetm(f); |
---|
536 | if (res==NULL) |
---|
537 | { |
---|
538 | res=last=f; |
---|
539 | } |
---|
540 | else |
---|
541 | { |
---|
542 | pNext(last)=f; |
---|
543 | last=f; |
---|
544 | } |
---|
545 | //res = pAdd(res, f); |
---|
546 | } |
---|
547 | } |
---|
548 | pIter(a); |
---|
549 | } |
---|
550 | return res; |
---|
551 | } |
---|
552 | |
---|
553 | static poly pDiffOpM(poly a, poly b,BOOLEAN multiply) |
---|
554 | { |
---|
555 | int i,j,s; |
---|
556 | number n,h,hh; |
---|
557 | poly p=pOne(); |
---|
558 | n=nMult(pGetCoeff(a),pGetCoeff(b)); |
---|
559 | for(i=pVariables;i>0;i--) |
---|
560 | { |
---|
561 | s=pGetExp(b,i); |
---|
562 | if (s<pGetExp(a,i)) |
---|
563 | { |
---|
564 | nDelete(&n); |
---|
565 | pDelete1(&p); |
---|
566 | return NULL; |
---|
567 | } |
---|
568 | if (multiply) |
---|
569 | { |
---|
570 | for(j=pGetExp(a,i); j>0;j--) |
---|
571 | { |
---|
572 | h = nInit(s); |
---|
573 | hh=nMult(n,h); |
---|
574 | nDelete(&h); |
---|
575 | nDelete(&n); |
---|
576 | n=hh; |
---|
577 | s--; |
---|
578 | } |
---|
579 | pSetExp(p,i,s); |
---|
580 | } |
---|
581 | else |
---|
582 | { |
---|
583 | pSetExp(p,i,s-pGetExp(a,i)); |
---|
584 | } |
---|
585 | } |
---|
586 | pSetm(p); |
---|
587 | /*if (multiply)*/ pSetCoeff(p,n); |
---|
588 | return p; |
---|
589 | } |
---|
590 | |
---|
591 | poly pDiffOp(poly a, poly b,BOOLEAN multiply) |
---|
592 | { |
---|
593 | poly result=NULL; |
---|
594 | poly h; |
---|
595 | for(;a!=NULL;pIter(a)) |
---|
596 | { |
---|
597 | for(h=b;h!=NULL;pIter(h)) |
---|
598 | { |
---|
599 | result=pAdd(result,pDiffOpM(a,h,multiply)); |
---|
600 | } |
---|
601 | } |
---|
602 | return result; |
---|
603 | } |
---|
604 | |
---|
605 | /*2 |
---|
606 | * returns the length of a (numbers of monomials) |
---|
607 | */ |
---|
608 | int pLength(poly a) |
---|
609 | { |
---|
610 | int l = 0; |
---|
611 | |
---|
612 | while (a!=NULL) |
---|
613 | { |
---|
614 | pIter(a); |
---|
615 | l++; |
---|
616 | } |
---|
617 | return l; |
---|
618 | } |
---|
619 | |
---|
620 | |
---|
621 | void pSplit(poly p, poly *h) |
---|
622 | { |
---|
623 | *h=pNext(p); |
---|
624 | pNext(p)=NULL; |
---|
625 | } |
---|
626 | |
---|
627 | /*2 |
---|
628 | * returns maximal column number in the modul element a (or 0) |
---|
629 | */ |
---|
630 | int pMaxComp(poly p) |
---|
631 | { |
---|
632 | int result,i; |
---|
633 | |
---|
634 | if(p==NULL) return 0; |
---|
635 | result = pGetComp(p); |
---|
636 | while (pNext(p)!=NULL) |
---|
637 | { |
---|
638 | pIter(p); |
---|
639 | i = pGetComp(p); |
---|
640 | if (i>result) result = i; |
---|
641 | } |
---|
642 | return result; |
---|
643 | } |
---|
644 | |
---|
645 | /*2 |
---|
646 | * returns minimal column number in the modul element a (or 0) |
---|
647 | */ |
---|
648 | int pMinComp(poly p) |
---|
649 | { |
---|
650 | int result,i; |
---|
651 | |
---|
652 | if(p==NULL) return 0; |
---|
653 | result = pGetComp(p); |
---|
654 | while (pNext(p)!=NULL) |
---|
655 | { |
---|
656 | pIter(p); |
---|
657 | i = pGetComp(p); |
---|
658 | if (i<result) result = i; |
---|
659 | } |
---|
660 | return result; |
---|
661 | } |
---|
662 | |
---|
663 | /*2 |
---|
664 | * returns TRUE, if all monoms have the same component |
---|
665 | */ |
---|
666 | BOOLEAN pOneComp(poly p) |
---|
667 | { |
---|
668 | if(p!=NULL) |
---|
669 | { |
---|
670 | int i = pGetComp(p); |
---|
671 | while (pNext(p)!=NULL) |
---|
672 | { |
---|
673 | pIter(p); |
---|
674 | if(i != pGetComp(p)) return FALSE; |
---|
675 | } |
---|
676 | } |
---|
677 | return TRUE; |
---|
678 | } |
---|
679 | |
---|
680 | /*2 |
---|
681 | * multiplies the polynomial a by the column generator with number i |
---|
682 | */ |
---|
683 | void pSetCompP(poly p, int i) |
---|
684 | { |
---|
685 | |
---|
686 | if ((p!=NULL) && (pGetComp(p)==0)) |
---|
687 | { |
---|
688 | do |
---|
689 | { |
---|
690 | pSetComp(p, (Exponent_t)i); |
---|
691 | pIter(p); |
---|
692 | } while (p!=NULL); |
---|
693 | } |
---|
694 | } |
---|
695 | |
---|
696 | /*2 |
---|
697 | * handle memory request for sets of polynomials (ideals) |
---|
698 | * l is the length of *p, increment is the difference (may be negative) |
---|
699 | */ |
---|
700 | void pEnlargeSet(polyset *p, int l, int increment) |
---|
701 | { |
---|
702 | int i; |
---|
703 | polyset h; |
---|
704 | |
---|
705 | h=(polyset)ReAlloc((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly)); |
---|
706 | if (increment>0) |
---|
707 | { |
---|
708 | //for (i=l; i<l+increment; i++) |
---|
709 | // h[i]=NULL; |
---|
710 | memset(&(h[l]),0,increment*sizeof(poly)); |
---|
711 | } |
---|
712 | *p=h; |
---|
713 | } |
---|
714 | |
---|
715 | /*2 |
---|
716 | * returns a polynomial representing the integer i |
---|
717 | */ |
---|
718 | poly pISet(int i) |
---|
719 | { |
---|
720 | poly rc = NULL; |
---|
721 | if (i!=0) |
---|
722 | { |
---|
723 | rc = pInit(); |
---|
724 | pSetCoeff0(rc,nInit(i)); |
---|
725 | if (nIsZero(pGetCoeff(rc))) |
---|
726 | pDelete1(&rc); |
---|
727 | #ifdef TEST_MAC_ORDER |
---|
728 | else if (bNoAdd) |
---|
729 | pSetm(rc); |
---|
730 | #endif |
---|
731 | } |
---|
732 | return rc; |
---|
733 | } |
---|
734 | |
---|
735 | void pContent(poly ph) |
---|
736 | { |
---|
737 | number h,d; |
---|
738 | poly p; |
---|
739 | |
---|
740 | if(pNext(ph)==NULL) |
---|
741 | { |
---|
742 | pSetCoeff(ph,nInit(1)); |
---|
743 | } |
---|
744 | else |
---|
745 | { |
---|
746 | #ifdef PDEBUG |
---|
747 | if (!pTest(ph)) return; |
---|
748 | #endif |
---|
749 | nNormalize(pGetCoeff(ph)); |
---|
750 | if(!nGreaterZero(pGetCoeff(ph))) ph = pNeg(ph); |
---|
751 | h=nCopy(pGetCoeff(ph)); |
---|
752 | p = pNext(ph); |
---|
753 | while (p!=NULL) |
---|
754 | { |
---|
755 | nNormalize(pGetCoeff(p)); |
---|
756 | d=nGcd(h,pGetCoeff(p)); |
---|
757 | nDelete(&h); |
---|
758 | h = d; |
---|
759 | if(nIsOne(h)) |
---|
760 | { |
---|
761 | break; |
---|
762 | } |
---|
763 | pIter(p); |
---|
764 | } |
---|
765 | p = ph; |
---|
766 | //number tmp; |
---|
767 | if(!nIsOne(h)) |
---|
768 | { |
---|
769 | while (p!=NULL) |
---|
770 | { |
---|
771 | //d = nDiv(pGetCoeff(p),h); |
---|
772 | //tmp = nIntDiv(pGetCoeff(p),h); |
---|
773 | //if (!nEqual(d,tmp)) |
---|
774 | //{ |
---|
775 | // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/"); |
---|
776 | // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:"); |
---|
777 | // nWrite(tmp);Print(StringAppendS("\n")); |
---|
778 | //} |
---|
779 | //nDelete(&tmp); |
---|
780 | d = nIntDiv(pGetCoeff(p),h); |
---|
781 | pSetCoeff(p,d); |
---|
782 | pIter(p); |
---|
783 | } |
---|
784 | } |
---|
785 | nDelete(&h); |
---|
786 | #ifdef HAVE_FACTORY |
---|
787 | if ( (nGetChar() == 1) || (nGetChar() < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */ |
---|
788 | { |
---|
789 | singclap_divide_content(ph); |
---|
790 | if(!nGreaterZero(pGetCoeff(ph))) ph = pNeg(ph); |
---|
791 | } |
---|
792 | #endif |
---|
793 | } |
---|
794 | pTest(ph); |
---|
795 | } |
---|
796 | |
---|
797 | //void pContent(poly ph) |
---|
798 | //{ |
---|
799 | // number h,d; |
---|
800 | // poly p; |
---|
801 | // |
---|
802 | // p = ph; |
---|
803 | // if(pNext(p)==NULL) |
---|
804 | // { |
---|
805 | // pSetCoeff(p,nInit(1)); |
---|
806 | // } |
---|
807 | // else |
---|
808 | // { |
---|
809 | //#ifdef PDEBUG |
---|
810 | // if (!pTest(p)) return; |
---|
811 | //#endif |
---|
812 | // nNormalize(pGetCoeff(p)); |
---|
813 | // if(!nGreaterZero(pGetCoeff(ph))) |
---|
814 | // { |
---|
815 | // ph = pNeg(ph); |
---|
816 | // nNormalize(pGetCoeff(p)); |
---|
817 | // } |
---|
818 | // h=pGetCoeff(p); |
---|
819 | // pIter(p); |
---|
820 | // while (p!=NULL) |
---|
821 | // { |
---|
822 | // nNormalize(pGetCoeff(p)); |
---|
823 | // if (nGreater(h,pGetCoeff(p))) h=pGetCoeff(p); |
---|
824 | // pIter(p); |
---|
825 | // } |
---|
826 | // h=nCopy(h); |
---|
827 | // p=ph; |
---|
828 | // while (p!=NULL) |
---|
829 | // { |
---|
830 | // d=nGcd(h,pGetCoeff(p)); |
---|
831 | // nDelete(&h); |
---|
832 | // h = d; |
---|
833 | // if(nIsOne(h)) |
---|
834 | // { |
---|
835 | // break; |
---|
836 | // } |
---|
837 | // pIter(p); |
---|
838 | // } |
---|
839 | // p = ph; |
---|
840 | // //number tmp; |
---|
841 | // if(!nIsOne(h)) |
---|
842 | // { |
---|
843 | // while (p!=NULL) |
---|
844 | // { |
---|
845 | // d = nIntDiv(pGetCoeff(p),h); |
---|
846 | // pSetCoeff(p,d); |
---|
847 | // pIter(p); |
---|
848 | // } |
---|
849 | // } |
---|
850 | // nDelete(&h); |
---|
851 | //#ifdef HAVE_FACTORY |
---|
852 | // if ( (nGetChar() == 1) || (nGetChar() < 0) ) /* Q[a],Q(a),Zp[a],Z/p(a) */ |
---|
853 | // { |
---|
854 | // pTest(ph); |
---|
855 | // singclap_divide_content(ph); |
---|
856 | // pTest(ph); |
---|
857 | // } |
---|
858 | //#endif |
---|
859 | // } |
---|
860 | //} |
---|
861 | |
---|
862 | void pCleardenom(poly ph) |
---|
863 | { |
---|
864 | number d, h; |
---|
865 | poly p; |
---|
866 | |
---|
867 | p = ph; |
---|
868 | if(pNext(p)==NULL) |
---|
869 | { |
---|
870 | pSetCoeff(p,nInit(1)); |
---|
871 | } |
---|
872 | else |
---|
873 | { |
---|
874 | h = nInit(1); |
---|
875 | while (p!=NULL) |
---|
876 | { |
---|
877 | nNormalize(pGetCoeff(p)); |
---|
878 | d=nLcm(h,pGetCoeff(p)); |
---|
879 | nDelete(&h); |
---|
880 | h=d; |
---|
881 | pIter(p); |
---|
882 | } |
---|
883 | /* contains the 1/lcm of all denominators */ |
---|
884 | if(!nIsOne(h)) |
---|
885 | { |
---|
886 | p = ph; |
---|
887 | while (p!=NULL) |
---|
888 | { |
---|
889 | /* should be: |
---|
890 | * number hh; |
---|
891 | * nGetDenom(p->coef,&hh); |
---|
892 | * nMult(&h,&hh,&d); |
---|
893 | * nNormalize(d); |
---|
894 | * nDelete(&hh); |
---|
895 | * nMult(d,p->coef,&hh); |
---|
896 | * nDelete(&d); |
---|
897 | * nDelete(&(p->coef)); |
---|
898 | * p->coef =hh; |
---|
899 | */ |
---|
900 | d=nMult(h,pGetCoeff(p)); |
---|
901 | nNormalize(d); |
---|
902 | pSetCoeff(p,d); |
---|
903 | pIter(p); |
---|
904 | } |
---|
905 | nDelete(&h); |
---|
906 | if (nGetChar()==1) |
---|
907 | { |
---|
908 | h = nInit(1); |
---|
909 | p=ph; |
---|
910 | while (p!=NULL) |
---|
911 | { |
---|
912 | d=nLcm(h,pGetCoeff(p)); |
---|
913 | nDelete(&h); |
---|
914 | h=d; |
---|
915 | pIter(p); |
---|
916 | } |
---|
917 | /* contains the 1/lcm of all denominators */ |
---|
918 | if(!nIsOne(h)) |
---|
919 | { |
---|
920 | p = ph; |
---|
921 | while (p!=NULL) |
---|
922 | { |
---|
923 | /* should be: |
---|
924 | * number hh; |
---|
925 | * nGetDenom(p->coef,&hh); |
---|
926 | * nMult(&h,&hh,&d); |
---|
927 | * nNormalize(d); |
---|
928 | * nDelete(&hh); |
---|
929 | * nMult(d,p->coef,&hh); |
---|
930 | * nDelete(&d); |
---|
931 | * nDelete(&(p->coef)); |
---|
932 | * p->coef =hh; |
---|
933 | */ |
---|
934 | d=nMult(h,pGetCoeff(p)); |
---|
935 | nNormalize(d); |
---|
936 | pSetCoeff(p,d); |
---|
937 | pIter(p); |
---|
938 | } |
---|
939 | nDelete(&h); |
---|
940 | } |
---|
941 | } |
---|
942 | } |
---|
943 | pContent(ph); |
---|
944 | } |
---|
945 | } |
---|
946 | |
---|
947 | /*2 |
---|
948 | *tests if p is homogeneous with respect to the actual weigths |
---|
949 | */ |
---|
950 | BOOLEAN pIsHomogeneous (poly p) |
---|
951 | { |
---|
952 | poly qp=p; |
---|
953 | int o; |
---|
954 | |
---|
955 | if ((p == NULL) || (pNext(p) == NULL)) return TRUE; |
---|
956 | pFDegProc d=(pLexOrder ? pTotaldegree : pFDeg ); |
---|
957 | o = d(p); |
---|
958 | do |
---|
959 | { |
---|
960 | if (d(qp) != o) return FALSE; |
---|
961 | pIter(qp); |
---|
962 | } |
---|
963 | while (qp != NULL); |
---|
964 | return TRUE; |
---|
965 | } |
---|
966 | |
---|
967 | // orders monoms of poly using merge sort (ususally faster than |
---|
968 | // insertion sort). ASSUMES that pSetm was performed on monoms |
---|
969 | // (i.e. that Order field is set correctly) |
---|
970 | poly pOrdPolyMerge(poly p) |
---|
971 | { |
---|
972 | poly qq,pp,result=NULL; |
---|
973 | |
---|
974 | if (p == NULL) return NULL; |
---|
975 | |
---|
976 | for (;;) |
---|
977 | { |
---|
978 | qq = p; |
---|
979 | for (;;) |
---|
980 | { |
---|
981 | if (pNext(p) == NULL) return pAdd(result, qq); |
---|
982 | if (pComp(p,pNext(p)) != 1) |
---|
983 | { |
---|
984 | pp = p; |
---|
985 | pIter(p); |
---|
986 | pNext(pp) = NULL; |
---|
987 | result = pAdd(result, qq); |
---|
988 | break; |
---|
989 | } |
---|
990 | pIter(p); |
---|
991 | } |
---|
992 | } |
---|
993 | } |
---|
994 | |
---|
995 | // orders monoms of poly using insertion sort, performs pSetm on each |
---|
996 | // monom (i.e. sets Order field) |
---|
997 | poly pOrdPolyInsertSetm(poly p) |
---|
998 | { |
---|
999 | poly qq,result = NULL; |
---|
1000 | |
---|
1001 | while (p != NULL) |
---|
1002 | { |
---|
1003 | qq = p; |
---|
1004 | pIter(p); |
---|
1005 | qq->next = NULL; |
---|
1006 | pSetm(qq); |
---|
1007 | result = pAdd(result,qq); |
---|
1008 | pTest(result); |
---|
1009 | } |
---|
1010 | return result; |
---|
1011 | } |
---|
1012 | |
---|
1013 | /*2 |
---|
1014 | *returns a re-ordered copy of a polynomial, with permutation of the variables |
---|
1015 | */ |
---|
1016 | poly pPermPoly (poly p, int * perm, ring oldRing, |
---|
1017 | int *par_perm, int OldPar) |
---|
1018 | { |
---|
1019 | int OldpVariables = oldRing->N; |
---|
1020 | poly result = NULL; |
---|
1021 | poly aq=NULL; |
---|
1022 | poly qq; |
---|
1023 | int i; |
---|
1024 | |
---|
1025 | while (p != NULL) |
---|
1026 | { |
---|
1027 | if (OldPar==0) |
---|
1028 | { |
---|
1029 | qq = pInit(); |
---|
1030 | pGetCoeff(qq)=nMap(pGetCoeff(p)); |
---|
1031 | } |
---|
1032 | else |
---|
1033 | { |
---|
1034 | qq=pOne(); |
---|
1035 | aq=naPermNumber(pGetCoeff(p),par_perm,OldPar); |
---|
1036 | pTest(aq); |
---|
1037 | } |
---|
1038 | pSetComp(qq, pRingGetComp(oldRing,p)); |
---|
1039 | if (nIsZero(pGetCoeff(qq))) |
---|
1040 | { |
---|
1041 | pDelete1(&qq); |
---|
1042 | } |
---|
1043 | else |
---|
1044 | { |
---|
1045 | for(i=1; i<=OldpVariables; i++) |
---|
1046 | { |
---|
1047 | if (pRingGetExp(oldRing,p,i)!=0) |
---|
1048 | { |
---|
1049 | if (perm==NULL) |
---|
1050 | { |
---|
1051 | pSetExp(qq,i, pRingGetExp(oldRing,p,i)); |
---|
1052 | } |
---|
1053 | else if (perm[i]>0) |
---|
1054 | pAddExp(qq,perm[i], pRingGetExp(oldRing, p,i)); |
---|
1055 | else if (perm[i]<0) |
---|
1056 | { |
---|
1057 | lnumber c=(lnumber)pGetCoeff(qq); |
---|
1058 | c->z->e[-perm[i]-1]+=pRingGetExp(oldRing, p,i); |
---|
1059 | } |
---|
1060 | else |
---|
1061 | { |
---|
1062 | /* this variable maps to 0 !*/ |
---|
1063 | pDelete1(&qq); |
---|
1064 | break; |
---|
1065 | } |
---|
1066 | } |
---|
1067 | } |
---|
1068 | } |
---|
1069 | pIter(p); |
---|
1070 | if (qq!=NULL) |
---|
1071 | { |
---|
1072 | pSetm(qq); |
---|
1073 | pTest(qq); |
---|
1074 | pTest(aq); |
---|
1075 | if (aq!=NULL) |
---|
1076 | { |
---|
1077 | qq=pMult(aq,qq); |
---|
1078 | aq=NULL; |
---|
1079 | } |
---|
1080 | result = pAdd(result,qq); |
---|
1081 | pTest(result); |
---|
1082 | } |
---|
1083 | else if (aq!=NULL) |
---|
1084 | { |
---|
1085 | pDelete(&aq); |
---|
1086 | } |
---|
1087 | } |
---|
1088 | return result; |
---|
1089 | } |
---|
1090 | |
---|
1091 | poly pJet(poly p, int m) |
---|
1092 | { |
---|
1093 | poly r=NULL; |
---|
1094 | poly t=NULL; |
---|
1095 | |
---|
1096 | while (p!=NULL) |
---|
1097 | { |
---|
1098 | if (pTotaldegree(p)<=m) |
---|
1099 | { |
---|
1100 | if (r==NULL) |
---|
1101 | r=pHead(p); |
---|
1102 | else |
---|
1103 | if (t==NULL) |
---|
1104 | { |
---|
1105 | pNext(r)=pHead(p); |
---|
1106 | t=pNext(r); |
---|
1107 | } |
---|
1108 | else |
---|
1109 | { |
---|
1110 | pNext(t)=pHead(p); |
---|
1111 | pIter(t); |
---|
1112 | } |
---|
1113 | } |
---|
1114 | pIter(p); |
---|
1115 | } |
---|
1116 | return r; |
---|
1117 | } |
---|
1118 | |
---|
1119 | poly pJetW(poly p, int m, short *w) |
---|
1120 | { |
---|
1121 | poly r=NULL; |
---|
1122 | poly t=NULL; |
---|
1123 | short *wsave=ecartWeights; |
---|
1124 | |
---|
1125 | ecartWeights=w; |
---|
1126 | |
---|
1127 | while (p!=NULL) |
---|
1128 | { |
---|
1129 | if (totaldegreeWecart(p)<=m) |
---|
1130 | { |
---|
1131 | if (r==NULL) |
---|
1132 | r=pHead(p); |
---|
1133 | else |
---|
1134 | if (t==NULL) |
---|
1135 | { |
---|
1136 | pNext(r)=pHead(p); |
---|
1137 | t=pNext(r); |
---|
1138 | } |
---|
1139 | else |
---|
1140 | { |
---|
1141 | pNext(t)=pHead(p); |
---|
1142 | pIter(t); |
---|
1143 | } |
---|
1144 | } |
---|
1145 | pIter(p); |
---|
1146 | } |
---|
1147 | ecartWeights=wsave; |
---|
1148 | return r; |
---|
1149 | } |
---|
1150 | |
---|
1151 | int pDegW(poly p, short *w) |
---|
1152 | { |
---|
1153 | int r=0; |
---|
1154 | short *wsave=ecartWeights; |
---|
1155 | |
---|
1156 | ecartWeights=w; |
---|
1157 | |
---|
1158 | while (p!=NULL) |
---|
1159 | { |
---|
1160 | r=max(r, totaldegreeWecart(p)); |
---|
1161 | pIter(p); |
---|
1162 | } |
---|
1163 | ecartWeights=wsave; |
---|
1164 | return r; |
---|
1165 | } |
---|
1166 | |
---|
1167 | /*-----------type conversions ----------------------------*/ |
---|
1168 | /*2 |
---|
1169 | * input: a set of polys (len elements: p[0]..p[len-1]) |
---|
1170 | * output: a vector |
---|
1171 | * p will not be changed |
---|
1172 | */ |
---|
1173 | poly pPolys2Vec(polyset p, int len) |
---|
1174 | { |
---|
1175 | poly v=NULL; |
---|
1176 | poly h; |
---|
1177 | int i; |
---|
1178 | |
---|
1179 | for (i=len-1; i>=0; i--) |
---|
1180 | { |
---|
1181 | if (p[i]) |
---|
1182 | { |
---|
1183 | h=pCopy(p[i]); |
---|
1184 | pSetCompP(h,i+1); |
---|
1185 | v=pAdd(v,h); |
---|
1186 | } |
---|
1187 | } |
---|
1188 | return v; |
---|
1189 | } |
---|
1190 | |
---|
1191 | /*2 |
---|
1192 | * convert a vector to a set of polys, |
---|
1193 | * allocates the polyset, (entries 0..(*len)-1) |
---|
1194 | * the vector will not be changed |
---|
1195 | */ |
---|
1196 | void pVec2Polys(poly v, polyset *p, int *len) |
---|
1197 | { |
---|
1198 | poly h; |
---|
1199 | int k; |
---|
1200 | |
---|
1201 | *len=pMaxComp(v); |
---|
1202 | if (*len==0) *len=1; |
---|
1203 | *p=(polyset)Alloc0((*len)*sizeof(poly)); |
---|
1204 | while (v!=NULL) |
---|
1205 | { |
---|
1206 | h=pHead(v); |
---|
1207 | k=pGetComp(h); |
---|
1208 | pSetComp(h,0); |
---|
1209 | (*p)[k-1]=pAdd((*p)[k-1],h); |
---|
1210 | pIter(v); |
---|
1211 | } |
---|
1212 | } |
---|
1213 | |
---|
1214 | int pVar(poly m) |
---|
1215 | { |
---|
1216 | if (m==NULL) return 0; |
---|
1217 | if (pNext(m)!=NULL) return 0; |
---|
1218 | int i,e=0; |
---|
1219 | for (i=pVariables; i>0; i--) |
---|
1220 | { |
---|
1221 | if (pGetExp(m,i)==1) |
---|
1222 | { |
---|
1223 | if (e==0) e=i; |
---|
1224 | else return 0; |
---|
1225 | } |
---|
1226 | } |
---|
1227 | return e; |
---|
1228 | } |
---|
1229 | |
---|
1230 | /*----------utilities for syzygies--------------*/ |
---|
1231 | //BOOLEAN pVectorHasUnitM(poly p, int * k) |
---|
1232 | //{ |
---|
1233 | // while (p!=NULL) |
---|
1234 | // { |
---|
1235 | // if (pIsConstantComp(p)) |
---|
1236 | // { |
---|
1237 | // *k = pGetComp(p); |
---|
1238 | // return TRUE; |
---|
1239 | // } |
---|
1240 | // else pIter(p); |
---|
1241 | // } |
---|
1242 | // return FALSE; |
---|
1243 | //} |
---|
1244 | |
---|
1245 | BOOLEAN pVectorHasUnitB(poly p, int * k) |
---|
1246 | { |
---|
1247 | poly q=p,qq; |
---|
1248 | int i; |
---|
1249 | |
---|
1250 | while (q!=NULL) |
---|
1251 | { |
---|
1252 | if (pIsConstantComp(q)) |
---|
1253 | { |
---|
1254 | i = pGetComp(q); |
---|
1255 | qq = p; |
---|
1256 | while ((qq != q) && (pGetComp(qq) != i)) pIter(qq); |
---|
1257 | if (qq == q) |
---|
1258 | { |
---|
1259 | *k = i; |
---|
1260 | return TRUE; |
---|
1261 | } |
---|
1262 | else |
---|
1263 | pIter(q); |
---|
1264 | } |
---|
1265 | else pIter(q); |
---|
1266 | } |
---|
1267 | return FALSE; |
---|
1268 | } |
---|
1269 | |
---|
1270 | void pVectorHasUnit(poly p, int * k, int * len) |
---|
1271 | { |
---|
1272 | poly q=p,qq; |
---|
1273 | int i,j=0; |
---|
1274 | |
---|
1275 | *len = 0; |
---|
1276 | while (q!=NULL) |
---|
1277 | { |
---|
1278 | if (pIsConstantComp(q)) |
---|
1279 | { |
---|
1280 | i = pGetComp(q); |
---|
1281 | qq = p; |
---|
1282 | while ((qq != q) && (pGetComp(qq) != i)) pIter(qq); |
---|
1283 | if (qq == q) |
---|
1284 | { |
---|
1285 | j = 0; |
---|
1286 | while (qq!=NULL) |
---|
1287 | { |
---|
1288 | if (pGetComp(qq)==i) j++; |
---|
1289 | pIter(qq); |
---|
1290 | } |
---|
1291 | if ((*len == 0) || (j<*len)) |
---|
1292 | { |
---|
1293 | *len = j; |
---|
1294 | *k = i; |
---|
1295 | } |
---|
1296 | } |
---|
1297 | } |
---|
1298 | pIter(q); |
---|
1299 | } |
---|
1300 | } |
---|
1301 | |
---|
1302 | /*2 |
---|
1303 | * returns TRUE if p1 = p2 |
---|
1304 | */ |
---|
1305 | BOOLEAN pEqualPolys(poly p1,poly p2) |
---|
1306 | { |
---|
1307 | while ((p1 != NULL) && (p2 != NULL)) |
---|
1308 | { |
---|
1309 | /* p1 and p2 are non-NULL, so we may use pComp0 instead of pComp */ |
---|
1310 | if (! pEqual(p1, p2)) |
---|
1311 | { |
---|
1312 | return FALSE; |
---|
1313 | } |
---|
1314 | if (nEqual(pGetCoeff(p1),pGetCoeff(p2)) == FALSE) |
---|
1315 | { |
---|
1316 | return FALSE; |
---|
1317 | } |
---|
1318 | pIter(p1); |
---|
1319 | pIter(p2); |
---|
1320 | } |
---|
1321 | return (p1==p2); |
---|
1322 | } |
---|
1323 | |
---|
1324 | /*2 |
---|
1325 | *returns TRUE if p1 is a skalar multiple of p2 |
---|
1326 | *assume p1 != NULL and p2 != NULL |
---|
1327 | */ |
---|
1328 | BOOLEAN pComparePolys(poly p1,poly p2) |
---|
1329 | { |
---|
1330 | number n,nn; |
---|
1331 | int i; |
---|
1332 | |
---|
1333 | if (pLength(p1) != pLength(p2)) |
---|
1334 | return FALSE; |
---|
1335 | n=nDiv(pGetCoeff(p1),pGetCoeff(p2)); |
---|
1336 | while ((p1 != NULL) /*&& (p2 != NULL)*/) |
---|
1337 | { |
---|
1338 | if ( ! pLmEqual(p1, p2)) |
---|
1339 | { |
---|
1340 | nDelete(&n); |
---|
1341 | return FALSE; |
---|
1342 | } |
---|
1343 | if (!nEqual(pGetCoeff(p1),nn=nMult(pGetCoeff(p2),n))) |
---|
1344 | { |
---|
1345 | nDelete(&n); |
---|
1346 | nDelete(&nn); |
---|
1347 | return FALSE; |
---|
1348 | } |
---|
1349 | nDelete(&nn); |
---|
1350 | pIter(p1); |
---|
1351 | pIter(p2); |
---|
1352 | } |
---|
1353 | nDelete(&n); |
---|
1354 | return TRUE; |
---|
1355 | } |
---|