1 | /************************************************************************* |
---|
2 | Copyright (c) 2005-2007, Sergey Bochkanov (ALGLIB project). |
---|
3 | |
---|
4 | Redistribution and use in source and binary forms, with or without |
---|
5 | modification, are permitted provided that the following conditions are |
---|
6 | met: |
---|
7 | |
---|
8 | - Redistributions of source code must retain the above copyright |
---|
9 | notice, this list of conditions and the following disclaimer. |
---|
10 | |
---|
11 | - Redistributions in binary form must reproduce the above copyright |
---|
12 | notice, this list of conditions and the following disclaimer listed |
---|
13 | in this license in the documentation and/or other materials |
---|
14 | provided with the distribution. |
---|
15 | |
---|
16 | - Neither the name of the copyright holders nor the names of its |
---|
17 | contributors may be used to endorse or promote products derived from |
---|
18 | this software without specific prior written permission. |
---|
19 | |
---|
20 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
21 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
22 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
23 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
24 | OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
25 | SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
26 | LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
27 | DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
28 | THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
29 | (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
30 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
31 | *************************************************************************/ |
---|
32 | |
---|
33 | #ifndef _lq_h |
---|
34 | #define _lq_h |
---|
35 | |
---|
36 | #include "ap.h" |
---|
37 | #include "amp.h" |
---|
38 | #include "reflections.h" |
---|
39 | namespace lq |
---|
40 | { |
---|
41 | template<unsigned int Precision> |
---|
42 | void rmatrixlq(ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
43 | int m, |
---|
44 | int n, |
---|
45 | ap::template_1d_array< amp::ampf<Precision> >& tau); |
---|
46 | template<unsigned int Precision> |
---|
47 | void rmatrixlqunpackq(const ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
48 | int m, |
---|
49 | int n, |
---|
50 | const ap::template_1d_array< amp::ampf<Precision> >& tau, |
---|
51 | int qrows, |
---|
52 | ap::template_2d_array< amp::ampf<Precision> >& q); |
---|
53 | template<unsigned int Precision> |
---|
54 | void rmatrixlqunpackl(const ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
55 | int m, |
---|
56 | int n, |
---|
57 | ap::template_2d_array< amp::ampf<Precision> >& l); |
---|
58 | template<unsigned int Precision> |
---|
59 | void lqdecomposition(ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
60 | int m, |
---|
61 | int n, |
---|
62 | ap::template_1d_array< amp::ampf<Precision> >& tau); |
---|
63 | template<unsigned int Precision> |
---|
64 | void unpackqfromlq(const ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
65 | int m, |
---|
66 | int n, |
---|
67 | const ap::template_1d_array< amp::ampf<Precision> >& tau, |
---|
68 | int qrows, |
---|
69 | ap::template_2d_array< amp::ampf<Precision> >& q); |
---|
70 | template<unsigned int Precision> |
---|
71 | void lqdecompositionunpacked(ap::template_2d_array< amp::ampf<Precision> > a, |
---|
72 | int m, |
---|
73 | int n, |
---|
74 | ap::template_2d_array< amp::ampf<Precision> >& l, |
---|
75 | ap::template_2d_array< amp::ampf<Precision> >& q); |
---|
76 | |
---|
77 | |
---|
78 | /************************************************************************* |
---|
79 | LQ decomposition of a rectangular matrix of size MxN |
---|
80 | |
---|
81 | Input parameters: |
---|
82 | A - matrix A whose indexes range within [0..M-1, 0..N-1]. |
---|
83 | M - number of rows in matrix A. |
---|
84 | N - number of columns in matrix A. |
---|
85 | |
---|
86 | Output parameters: |
---|
87 | A - matrices L and Q in compact form (see below) |
---|
88 | Tau - array of scalar factors which are used to form |
---|
89 | matrix Q. Array whose index ranges within [0..Min(M,N)-1]. |
---|
90 | |
---|
91 | Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size |
---|
92 | MxM, L - lower triangular (or lower trapezoid) matrix of size M x N. |
---|
93 | |
---|
94 | The elements of matrix L are located on and below the main diagonal of |
---|
95 | matrix A. The elements which are located in Tau array and above the main |
---|
96 | diagonal of matrix A are used to form matrix Q as follows: |
---|
97 | |
---|
98 | Matrix Q is represented as a product of elementary reflections |
---|
99 | |
---|
100 | Q = H(k-1)*H(k-2)*...*H(1)*H(0), |
---|
101 | |
---|
102 | where k = min(m,n), and each H(i) is of the form |
---|
103 | |
---|
104 | H(i) = 1 - tau * v * (v^T) |
---|
105 | |
---|
106 | where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0, |
---|
107 | v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1). |
---|
108 | |
---|
109 | -- ALGLIB -- |
---|
110 | Copyright 2005-2007 by Bochkanov Sergey |
---|
111 | *************************************************************************/ |
---|
112 | template<unsigned int Precision> |
---|
113 | void rmatrixlq(ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
114 | int m, |
---|
115 | int n, |
---|
116 | ap::template_1d_array< amp::ampf<Precision> >& tau) |
---|
117 | { |
---|
118 | ap::template_1d_array< amp::ampf<Precision> > work; |
---|
119 | ap::template_1d_array< amp::ampf<Precision> > t; |
---|
120 | int i; |
---|
121 | int k; |
---|
122 | int minmn; |
---|
123 | int maxmn; |
---|
124 | amp::ampf<Precision> tmp; |
---|
125 | |
---|
126 | |
---|
127 | minmn = ap::minint(m, n); |
---|
128 | maxmn = ap::maxint(m, n); |
---|
129 | work.setbounds(0, m); |
---|
130 | t.setbounds(0, n); |
---|
131 | tau.setbounds(0, minmn-1); |
---|
132 | k = ap::minint(m, n); |
---|
133 | for(i=0; i<=k-1; i++) |
---|
134 | { |
---|
135 | |
---|
136 | // |
---|
137 | // Generate elementary reflector H(i) to annihilate A(i,i+1:n-1) |
---|
138 | // |
---|
139 | ap::vmove(t.getvector(1, n-i), a.getrow(i, i, n-1)); |
---|
140 | reflections::generatereflection<Precision>(t, n-i, tmp); |
---|
141 | tau(i) = tmp; |
---|
142 | ap::vmove(a.getrow(i, i, n-1), t.getvector(1, n-i)); |
---|
143 | t(1) = 1; |
---|
144 | if( i<n ) |
---|
145 | { |
---|
146 | |
---|
147 | // |
---|
148 | // Apply H(i) to A(i+1:m,i:n) from the right |
---|
149 | // |
---|
150 | reflections::applyreflectionfromtheright<Precision>(a, tau(i), t, i+1, m-1, i, n-1, work); |
---|
151 | } |
---|
152 | } |
---|
153 | } |
---|
154 | |
---|
155 | |
---|
156 | /************************************************************************* |
---|
157 | Partial unpacking of matrix Q from the LQ decomposition of a matrix A |
---|
158 | |
---|
159 | Input parameters: |
---|
160 | A - matrices L and Q in compact form. |
---|
161 | Output of RMatrixLQ subroutine. |
---|
162 | M - number of rows in given matrix A. M>=0. |
---|
163 | N - number of columns in given matrix A. N>=0. |
---|
164 | Tau - scalar factors which are used to form Q. |
---|
165 | Output of the RMatrixLQ subroutine. |
---|
166 | QRows - required number of rows in matrix Q. N>=QRows>=0. |
---|
167 | |
---|
168 | Output parameters: |
---|
169 | Q - first QRows rows of matrix Q. Array whose indexes range |
---|
170 | within [0..QRows-1, 0..N-1]. If QRows=0, the array remains |
---|
171 | unchanged. |
---|
172 | |
---|
173 | -- ALGLIB -- |
---|
174 | Copyright 2005 by Bochkanov Sergey |
---|
175 | *************************************************************************/ |
---|
176 | template<unsigned int Precision> |
---|
177 | void rmatrixlqunpackq(const ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
178 | int m, |
---|
179 | int n, |
---|
180 | const ap::template_1d_array< amp::ampf<Precision> >& tau, |
---|
181 | int qrows, |
---|
182 | ap::template_2d_array< amp::ampf<Precision> >& q) |
---|
183 | { |
---|
184 | int i; |
---|
185 | int j; |
---|
186 | int k; |
---|
187 | int minmn; |
---|
188 | ap::template_1d_array< amp::ampf<Precision> > v; |
---|
189 | ap::template_1d_array< amp::ampf<Precision> > work; |
---|
190 | |
---|
191 | |
---|
192 | ap::ap_error::make_assertion(qrows<=n); |
---|
193 | if( m<=0 || n<=0 || qrows<=0 ) |
---|
194 | { |
---|
195 | return; |
---|
196 | } |
---|
197 | |
---|
198 | // |
---|
199 | // init |
---|
200 | // |
---|
201 | minmn = ap::minint(m, n); |
---|
202 | k = ap::minint(minmn, qrows); |
---|
203 | q.setbounds(0, qrows-1, 0, n-1); |
---|
204 | v.setbounds(0, n); |
---|
205 | work.setbounds(0, qrows); |
---|
206 | for(i=0; i<=qrows-1; i++) |
---|
207 | { |
---|
208 | for(j=0; j<=n-1; j++) |
---|
209 | { |
---|
210 | if( i==j ) |
---|
211 | { |
---|
212 | q(i,j) = 1; |
---|
213 | } |
---|
214 | else |
---|
215 | { |
---|
216 | q(i,j) = 0; |
---|
217 | } |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | // |
---|
222 | // unpack Q |
---|
223 | // |
---|
224 | for(i=k-1; i>=0; i--) |
---|
225 | { |
---|
226 | |
---|
227 | // |
---|
228 | // Apply H(i) |
---|
229 | // |
---|
230 | ap::vmove(v.getvector(1, n-i), a.getrow(i, i, n-1)); |
---|
231 | v(1) = 1; |
---|
232 | reflections::applyreflectionfromtheright<Precision>(q, tau(i), v, 0, qrows-1, i, n-1, work); |
---|
233 | } |
---|
234 | } |
---|
235 | |
---|
236 | |
---|
237 | /************************************************************************* |
---|
238 | Unpacking of matrix L from the LQ decomposition of a matrix A |
---|
239 | |
---|
240 | Input parameters: |
---|
241 | A - matrices Q and L in compact form. |
---|
242 | Output of RMatrixLQ subroutine. |
---|
243 | M - number of rows in given matrix A. M>=0. |
---|
244 | N - number of columns in given matrix A. N>=0. |
---|
245 | |
---|
246 | Output parameters: |
---|
247 | L - matrix L, array[0..M-1, 0..N-1]. |
---|
248 | |
---|
249 | -- ALGLIB -- |
---|
250 | Copyright 2005 by Bochkanov Sergey |
---|
251 | *************************************************************************/ |
---|
252 | template<unsigned int Precision> |
---|
253 | void rmatrixlqunpackl(const ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
254 | int m, |
---|
255 | int n, |
---|
256 | ap::template_2d_array< amp::ampf<Precision> >& l) |
---|
257 | { |
---|
258 | int i; |
---|
259 | int k; |
---|
260 | |
---|
261 | |
---|
262 | if( m<=0 || n<=0 ) |
---|
263 | { |
---|
264 | return; |
---|
265 | } |
---|
266 | l.setbounds(0, m-1, 0, n-1); |
---|
267 | for(i=0; i<=n-1; i++) |
---|
268 | { |
---|
269 | l(0,i) = 0; |
---|
270 | } |
---|
271 | for(i=1; i<=m-1; i++) |
---|
272 | { |
---|
273 | ap::vmove(l.getrow(i, 0, n-1), l.getrow(0, 0, n-1)); |
---|
274 | } |
---|
275 | for(i=0; i<=m-1; i++) |
---|
276 | { |
---|
277 | k = ap::minint(i, n-1); |
---|
278 | ap::vmove(l.getrow(i, 0, k), a.getrow(i, 0, k)); |
---|
279 | } |
---|
280 | } |
---|
281 | |
---|
282 | |
---|
283 | /************************************************************************* |
---|
284 | Obsolete 1-based subroutine |
---|
285 | See RMatrixLQ for 0-based replacement. |
---|
286 | *************************************************************************/ |
---|
287 | template<unsigned int Precision> |
---|
288 | void lqdecomposition(ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
289 | int m, |
---|
290 | int n, |
---|
291 | ap::template_1d_array< amp::ampf<Precision> >& tau) |
---|
292 | { |
---|
293 | ap::template_1d_array< amp::ampf<Precision> > work; |
---|
294 | ap::template_1d_array< amp::ampf<Precision> > t; |
---|
295 | int i; |
---|
296 | int k; |
---|
297 | int nmip1; |
---|
298 | int minmn; |
---|
299 | int maxmn; |
---|
300 | amp::ampf<Precision> tmp; |
---|
301 | |
---|
302 | |
---|
303 | minmn = ap::minint(m, n); |
---|
304 | maxmn = ap::maxint(m, n); |
---|
305 | work.setbounds(1, m); |
---|
306 | t.setbounds(1, n); |
---|
307 | tau.setbounds(1, minmn); |
---|
308 | |
---|
309 | // |
---|
310 | // Test the input arguments |
---|
311 | // |
---|
312 | k = ap::minint(m, n); |
---|
313 | for(i=1; i<=k; i++) |
---|
314 | { |
---|
315 | |
---|
316 | // |
---|
317 | // Generate elementary reflector H(i) to annihilate A(i,i+1:n) |
---|
318 | // |
---|
319 | nmip1 = n-i+1; |
---|
320 | ap::vmove(t.getvector(1, nmip1), a.getrow(i, i, n)); |
---|
321 | reflections::generatereflection<Precision>(t, nmip1, tmp); |
---|
322 | tau(i) = tmp; |
---|
323 | ap::vmove(a.getrow(i, i, n), t.getvector(1, nmip1)); |
---|
324 | t(1) = 1; |
---|
325 | if( i<n ) |
---|
326 | { |
---|
327 | |
---|
328 | // |
---|
329 | // Apply H(i) to A(i+1:m,i:n) from the right |
---|
330 | // |
---|
331 | reflections::applyreflectionfromtheright<Precision>(a, tau(i), t, i+1, m, i, n, work); |
---|
332 | } |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | |
---|
337 | /************************************************************************* |
---|
338 | Obsolete 1-based subroutine |
---|
339 | See RMatrixLQUnpackQ for 0-based replacement. |
---|
340 | *************************************************************************/ |
---|
341 | template<unsigned int Precision> |
---|
342 | void unpackqfromlq(const ap::template_2d_array< amp::ampf<Precision> >& a, |
---|
343 | int m, |
---|
344 | int n, |
---|
345 | const ap::template_1d_array< amp::ampf<Precision> >& tau, |
---|
346 | int qrows, |
---|
347 | ap::template_2d_array< amp::ampf<Precision> >& q) |
---|
348 | { |
---|
349 | int i; |
---|
350 | int j; |
---|
351 | int k; |
---|
352 | int minmn; |
---|
353 | ap::template_1d_array< amp::ampf<Precision> > v; |
---|
354 | ap::template_1d_array< amp::ampf<Precision> > work; |
---|
355 | int vm; |
---|
356 | |
---|
357 | |
---|
358 | ap::ap_error::make_assertion(qrows<=n); |
---|
359 | if( m==0 || n==0 || qrows==0 ) |
---|
360 | { |
---|
361 | return; |
---|
362 | } |
---|
363 | |
---|
364 | // |
---|
365 | // init |
---|
366 | // |
---|
367 | minmn = ap::minint(m, n); |
---|
368 | k = ap::minint(minmn, qrows); |
---|
369 | q.setbounds(1, qrows, 1, n); |
---|
370 | v.setbounds(1, n); |
---|
371 | work.setbounds(1, qrows); |
---|
372 | for(i=1; i<=qrows; i++) |
---|
373 | { |
---|
374 | for(j=1; j<=n; j++) |
---|
375 | { |
---|
376 | if( i==j ) |
---|
377 | { |
---|
378 | q(i,j) = 1; |
---|
379 | } |
---|
380 | else |
---|
381 | { |
---|
382 | q(i,j) = 0; |
---|
383 | } |
---|
384 | } |
---|
385 | } |
---|
386 | |
---|
387 | // |
---|
388 | // unpack Q |
---|
389 | // |
---|
390 | for(i=k; i>=1; i--) |
---|
391 | { |
---|
392 | |
---|
393 | // |
---|
394 | // Apply H(i) |
---|
395 | // |
---|
396 | vm = n-i+1; |
---|
397 | ap::vmove(v.getvector(1, vm), a.getrow(i, i, n)); |
---|
398 | v(1) = 1; |
---|
399 | reflections::applyreflectionfromtheright<Precision>(q, tau(i), v, 1, qrows, i, n, work); |
---|
400 | } |
---|
401 | } |
---|
402 | |
---|
403 | |
---|
404 | /************************************************************************* |
---|
405 | Obsolete 1-based subroutine |
---|
406 | *************************************************************************/ |
---|
407 | template<unsigned int Precision> |
---|
408 | void lqdecompositionunpacked(ap::template_2d_array< amp::ampf<Precision> > a, |
---|
409 | int m, |
---|
410 | int n, |
---|
411 | ap::template_2d_array< amp::ampf<Precision> >& l, |
---|
412 | ap::template_2d_array< amp::ampf<Precision> >& q) |
---|
413 | { |
---|
414 | int i; |
---|
415 | int j; |
---|
416 | ap::template_1d_array< amp::ampf<Precision> > tau; |
---|
417 | |
---|
418 | |
---|
419 | if( n<=0 ) |
---|
420 | { |
---|
421 | return; |
---|
422 | } |
---|
423 | q.setbounds(1, n, 1, n); |
---|
424 | l.setbounds(1, m, 1, n); |
---|
425 | |
---|
426 | // |
---|
427 | // LQDecomposition |
---|
428 | // |
---|
429 | lqdecomposition<Precision>(a, m, n, tau); |
---|
430 | |
---|
431 | // |
---|
432 | // L |
---|
433 | // |
---|
434 | for(i=1; i<=m; i++) |
---|
435 | { |
---|
436 | for(j=1; j<=n; j++) |
---|
437 | { |
---|
438 | if( j>i ) |
---|
439 | { |
---|
440 | l(i,j) = 0; |
---|
441 | } |
---|
442 | else |
---|
443 | { |
---|
444 | l(i,j) = a(i,j); |
---|
445 | } |
---|
446 | } |
---|
447 | } |
---|
448 | |
---|
449 | // |
---|
450 | // Q |
---|
451 | // |
---|
452 | unpackqfromlq<Precision>(a, m, n, tau, n, q); |
---|
453 | } |
---|
454 | } // namespace |
---|
455 | |
---|
456 | #endif |
---|